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Abstract

Understanding intelligence and how it allows humans to learn, to make decision and form
memories, is a long-lasting quest in neuroscience. Our brain is formed by networks of neurons
and other cells, however, it is not clear how those networks are trained to learn to solve spe-
cific tasks. In machine learning and artificial intelligence it is common to train and optimize
neural networks with gradient descent and backpropagation. How to transfer this optimiza-
tion strategy to biological, spiking networks (SNNs) is still a matter of research. Due to the
binary communication scheme between neurons of an SNN via spikes, a direct application of
gradient descent and backpropagation is not possible without further approximations.
In my work, I present gradient-free optimization techniques that are directly applicable to
artificial and biological neural networks. I utilize metaheuristics, such as genetic algorithms
and the ensemble Kalman Filter, to optimize network parameters and train networks to learn
to solve specific tasks. The optimization is embedded into the concept of meta-learning and
learning to learn respectively. The learning to learn concept consists of a two loop optimiza-
tion procedure. In the first, inner loop the algorithm or network is trained on a family of
tasks, and in the second, outer loop the hyper-parameters and parameters of the network are
optimized.
First, I apply the EnKF on a convolution neural network, resulting in high accuracy when
classifying digits. Then, I employ the same optimization procedure on a spiking reservoir
network within the L2L framework. The L2L framework, an implementation of the learning
to learn concept, allows me to easily deploy and execute multiple instances of the network in
parallel on high performance computing systems. In order to understand how the network
learning evolves, I analyze the connection weights over multiple generations and investigate
a covariance matrix of the EnKF in the principle component space. The analysis not only
shows the convergence behaviour of the optimization process, but also how sampling tech-
niques influence the optimization procedure. Next, I embed the EnKF into the L2L inner
loop and adapt the hyper-parameters of the optimizer using a genetic algorithm (GA). In
contrast to the manual parameter setting, the GA suggests an alternative configuration. Fi-
nally, I present an ant colony simulation foraging for food while being steered by SNNs. While
training the network, self-coordination and self-organization in the colony emerges. I employ
various analysis methods to better understand the ants’ behaviour.
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With my work I leverage optimization for different scientific domains utilizing meta-learning
and illustrate how gradient-free optimization can be applied on biological and artificial net-
works.



Zusammenfassung

Die Intelligenz zu verstehen und wie sie den Menschen ermöglicht zu lernen, Entscheidun-
gen zu treffen und Erinnerungen zu bilden, ist ein langfristiges Bestreben in den Neurowis-
senschaften. Unser Gehirn besteht aus Netzwerken von Neuronen und anderen Zellen, jedoch
ist es nicht klar wie diese Netzwerke trainiert werden können, um bestimmte Aufgaben zu
lösen. Im Bereich des maschinellen lernen und künstlicher intelligenz ist es üblich neuronale
Netzwerke mittels Gradientenabstieg und Backpropagation zu trainieren und zu optimieren.
Wie diese Optimierungsstrategie auf biologische, gepulste neuronale Netzwerke übertragen
werden kann, ist wissenschaftlich noch offen. Wegen der binären Kommunikation zwischen
den Neuronen des gepulsten Netzwerke mittels Spikes, ist eine direkte Anwendung des Gra-
dientenabstieg und Backpropagation ohne Approximationen nicht möglich.
In meiner Arbeit präsentiere ich gradientfreie Optimierungstechniken, welche auf künstliche
und biologische Netzwerke direkt anwendbar sind. Ich benutze Metaheuristiken, wie zum
Beispiel Genetische Algorithmen oder Ensemble Kalman Filter (EnKF), um die Netzwerkpa-
rameter zu optimieren und die Netzwerke zu trainieren bestimmte Aufgaben zu lösen. Die
Optimierung wird in das Konzept des Meta-Lernens bzw. learning to learn eingebettet. Das
learning to learn Konzept besteht aus einem zwei Schleifen Optimierungsprozess. In der er-
sten, inneren Schleife wird ein Algorithmus oder ein Netzwerk auf einer Aufgabe aus einer
Familie von Aufgaben trainiert. In der zweiten, äußeren Schleife werden die Parameter und
Hyper-Parameter des Netzwerkes optimiert.
Als Erstes optimiere ich mit dem EnKF ein Convolutional Neural Network und erreiche
eine hohe Erfolgsrate bei der Klassifizierung von Zahlen. Danach, wende ich die gleiche
Optimierungsstrategie innerhalb der L2L Bibliothek auf ein gepulstes Reservoir Netzwerk
an. L2L, eine Implementierung des learning to learn Konzepts, ermöglicht es mir auf eine
einfache Weise mehrere Netzwerkinstanzen parallel auf Hochleistungsrechnern auszuführen.
Um zu verstehen wie sich das Lernen des Netzwerkes entwickelt, analysiere ich die Netzw-
erkgewichte über mehrere Generationen und untersuche eine Kovarianzmatrix des EnKF im
Hauptkomponentenraum. Die Analyse zeigt nicht nur das Konvergenzverhalten der Opti-
mierung, sondern auch wie zum Beispiel Sampling Techniken die Optimierung beeinflussen.
Danach bette ich den EnKF in die innere Schleife des L2L ein und passe die Hyper-Parameter
des Optimierers mit einem genetischem Algorithmus (GA) an. Im Kontrast zur manuellen
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Contents

Parametereinstellung findet der GA eine alternative Konfiguration. Zum Schluss präsentiere
ich eine simulierte Ameisenkolonie, die nach Futter sucht und vom einem gepulstem Netzwerk
gesteuert wird. Während des Netzwerktrainings entwickelt sich eine Selbstkoordination und
Selbstorganization innerhalb der Kolonie. Ich verwende verschiedene Analysemethoden, um
das Ameisenverhalten besser zu verstehen.
Mit meiner Arbeit zeige ich wie Optimierung und Meta-Lernen auf einfache Weise in ver-
schiedenen Wissenschaftsbereichen benutzt werden können und wie gradientfreie Optimierung
auf biologische und künstliche Netzwerke angewendet werden kann.
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1 Introduction and Motivation

1.1 Motivation

Understanding intelligence and how it emerges from a clump of soft matter is one of the
greatest questions in neuroscience. This question occupies all kinds of scientists that wish
to explore and exploit the mechanisms of intelligence. The quest to understand biological
intelligence in living organisms can be compared to the motivation to create an artificial
intelligence (AI). For the AI community it is interesting to explore how mechanisms observed
in the human brain can be leveraged to create a general artificial intelligence, which exhibits
humanlike intelligence (Yoshua Bengio, Lee, et al. 2015; Lake et al. 2017; Hassabis et al. 2017;
Hasson et al. 2020).

In recent years, work intertwining neuroscience and artificial intelligence has seen substantial
progress. Researchers are drawing inspiration from neuroscientific observations and ideas to
enhance learning in AI with the hope to create intelligent machines. For example, Guerguiev
et al. (2017) combine deep neural networks with multi-compartment neurons and enable the
network to utilize neurons in different layers to coordinate synaptic weight updates. This
approach allows the network to exhibit a better performance in classifying images than a
single layered network. One of the authors’ goals is to better understand the mechanisms of
the neocortex and to comprehend how the neocortex may optimize cost functions. DiCarlo
et al. (2012) and Yamins et al. (2016) relate deep learning to specific functions of the human
visual system and draw conclusions on how learning in deep networks could be enhanced.

Neuroscience is able to profit from insights in AI as well. Khaligh-Razavi et al. (2014) test
a variety of computational models to perform categorization and investigate whether the in-
ternal representations of those models can explain the representation of the inferior temporal
(IT) cortex. They compare the representational dissimilarity matrices (RDMs) of the model
representations with the RDMs obtained from electrophysiological recordings of human and
monkey IT. Interestingly, their results show the necessity for supervised training when ex-
plaining the behaviorally induced categorical divisions of the IT. Richards et al. (2019) divide
deep learning into three basic components: objective functions, learning rules and architec-
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1 Introduction and Motivation

ture. They argue that focusing on these components will benefit systems neuroscience, which
investigates how the brain implements perceptual, cognitive and motor tasks. The authors
conclude the framework has to be rooted in optimization. For example, they mention that
in order to solve complex tasks, local plasticity rules (e.g. Hebbian learning) must incorporate
objective functions and the appropriate design of network architectures. They conclude that
a top-down framework of systems neuroscience will profit when guided by machine learning
insights.

As illustrated in the works above, there is an interest in the neuroscience and artificial intelli-
gence community to understand the potential of combining biological networks with artificial
ones to solve complex tasks. In neuroscience, spiking neural networks (SNNs) offer an un-
derstandable and biologically realistic way to explore certain dynamics observed in the brain.
The potential of those networks is not fully understood and, as aforementioned, still subject
to research within the neuroscience and artificial intelligence communities. Despite the com-
putational success of artificial neural networks (ANNs), SNNs are more energy and memory
efficient, since they utilize sparse and temporal coding via electrical signals (Yamazaki et al.
2022). This efficiency may be extremely helpful when leveraged for applications that require
real time responses and a low power consumption such as drones or swarm robots.

The real challenge lies in optimizing SNNs for machine learning tasks, such as image classifi-
cation or steering multiple collaborative agents to navigate in (changing) 2D or 3D environ-
ments. Mimicking the learning process of the brain is not yet feasible, since the application
of learning rules or objective functions in the brain is not well understood (Marblestone et al.
2016; Richards et al. 2019). Optimizing SNNs is a complex task and, due to the sheer amount
of parameters, requires manual adjustments which is very time consuming and error prone.
Additionally, the non-linear relationship between the neuron’s input and its output makes
the optimization process non-intuitive (Russell et al. 2010). Gradient descent, a popular op-
timization technique in machine learning, is not applicable without further approximations
and structural changes to the network (Whittington et al. 2019; Surace et al. 2020). Training
deep neural networks requires significant amounts of computational resources (Chowdhery et
al. 2022). Similarly, scaling up spiking networks to simulate a small percentage of the brain
requires computational power as well (J. Jordan et al. 2018). This increases the importance of
algorithms and optimization techniques that scale well on high performance computers. There
is a need to find alternative ways to optimize SNNs in order to increase their performance.

In machine learning and data sciences black box optimizers are successfully applied on opti-
mization problems in order to automate the search for optimal parameters. Gradient-free
optimization techniques, such as evolutionary algorithms or Kalman filtering, are less com-
mon utilized when training artificial networks. However, they provide a powerful alternative
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1.1 Motivation

to optimize biological and artificial networks, since they do not require the explicit calculation
of gradients and can be directly applied without changing any property of the network. More-
over, gradient-free methods avoid the problem of vanishing or exploding gradients, which can
occur when optimizing deep artificial networks with gradient descent. This problem hinders
the network to learn by disabling the parameter updates (vanishing gradients) or by extremely
increasing them (exploding gradients), so that the network cannot convergence into a local
optimum.

The applied optimization methods have to be model agnostic, i.e. the optimization pro-
cess has to be generic and employable on many problems without the need of knowing the
underlying model or structure. That means, the optimization target does not have to be
the model parameters, it can be any parameter configuration as well as hyper-parameters.
Hyper-parameters are parameters that influence and control the learning process of an
algorithm or model. Often, hyper-parameter optimization is applied after the training in an
offline, grid-search fashion. A range of parameters is tested to observe if the algorithm per-
formance increases. However, this approach just iterates over all available parameter ranges
and does not adapt very well to any parameter modification, which is necessary in an online
training scenario. Furthermore, due to the simple iteration over the parameter range, grid-
search’s run time performance is inefficient. Thus, an alternative and intelligent approach is
desirable, which adapts the hyper-parameters in an interchangeable manner with the model
parameters. Meta-learning or learning to learn is a technique to update hyper-parameters
while an algorithm or model is trained to solve a problem. The optimization workflow con-
sists of a two loop structure. While in the first (also called the inner loop) the algorithm
is trained and optimized on a task from a family of tasks, the second (the outer loop) ad-
justs the hyper-parameters. In the inner loop an objective or fitness function evaluates the
performance of the algorithm. The fitness and parameters of the inner optimization process,
and optionally the algorithm parameters, are sent to the outer loop optimizer, which returns
optimized parameters for the next iteration. The outer loop usually consists of black box
optimizers, which are agnostic to the inner loop algorithm.

In my thesis I focus on the optimization of biological and artificial networks utilizing the learn-
ing to learn concept to solve machine learning tasks. My work interconnects neuroscience and
artificial intelligence by exploring how gradient-free optimizers can enhance the performance
of networks and how they can be used to overcome problems such as vanishing gradients.
The presented, gradient-free optimizers are metaheuristics and optimize their targets based
on population decisions, leading to an overall increase in performance. Utilizing a framework
based on the implementation of the learning to learn concept, I am able to efficiently scale
the algorithms to high performance computers (HPCs), which let me run multiple inner loop
models in parallel easing the compute load. Furthermore, I analyze the optimized parame-
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1 Introduction and Motivation

ters and provide an interpretation of the learning process within convolutional and spiking
networks. This helps to understand the relationship between ANNs and SNNs and how the
acquired insight in one of those fields can be transferred to the other. Finally, I explore
and analyze a setup that includes SNNs controlling multiple agents. While optimizing the
network, the swarm evolves and starts to exhibit a collective behaviour and self-organization,
which increases their performance to solve a task in a 2D environment.

1.2 Contribution of the Thesis

The main contribution of this thesis is to leverage optimization for artificial and biological
networks. My work focuses on bridging computational neuroscience and artificial intelligence
to better understand how to utilize optimization to solve complex tasks which are applicable
within both fields. In the same spirit of Richards et al. (2019), I describe and embed the
problem of solving (machine learning) tasks with biological and artificial networks within
an optimization framework, namely the L2L framework, which is an implementation of the
learning to learn concept. Following this principle, my work allows scientists to better un-
derstand and compare optimization problems of different domains. On the one hand, this
cross-fertilization can help create an easier comprehension for optimization in biological net-
works, which is an emergent field. On the other hand this work can help enhance learning
in artificial networks if biological processes are understood better and made transferable to
artificial networks. By utilizing gradient-free methods I can apply the optimization methods
directly on the network parameters without the need for any computational approximation
or structural change of the network topology.

The optimization process needs to scale well to complex problems while still being efficient
and robust. Here, I use metaheuristic optimizers which are model agnostic and applicable on
different problems and tasks. This automates the search for optimal parameter settings of
SNNs, which otherwise is a tedious task due to the sheer amount of variables to set. I incre-
mentally increase the complexity of the problems from image classification with ANNs and
SNNs, to hyper-parameter optimization on top of the classification and finally to optimizing
a spiking neural network to steer a swarm of agents collectively foraging food. With this
work, I also show the potential of gradient-free optimization on networks of different domains
solving complex tasks.
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1.3 Scope and Structure of this Thesis

In Chapter 2, I provide an introduction to artificial and biological networks. I discuss differ-
ent types of networks and explain basic concepts in order to model and simulate them. A
short introduction into biological processes of neurons will establish the basics to differenti-
ate between ANNs and SNNs. The chapter ends with an outlook to bio-inspired learning,
which intersects learning in neuroscience and AI and illustrates how inspirations drawn from
neuroscience enhances learning in AI.

The next chapter (Chapter 3) dives into the topic of optimization. After a short primer into
the theory of optimization, I discuss gradient descent and backpropagation as popular and
established optimization methods when training ANNs. I continue explaining the problem of
vanishing or exploding gradients when applying gradient descent as an optimization technique.
Moreover, it is not clear how gradient descent could be implemented in biological networks.
The discussion is not only from a biological but also a computational point of view. In
contrast to ANNs, in SNNs a gradient cannot be calculated without any approximation or
without changing the structure of the network. Instead, gradient-free methods, in particular
metaheuristics, can provide a suitable solution, which I explicate in more detail.

In Chapter 4, I investigate the problem of vanishing gradients by analyzing activation values
and gradients of a convolutional neural network when it is trained with gradient descent.
I discuss the ensemble Kalman filter (EnKF) as an alternative optimizer for training deep
neural networks and present the performance of the network classifying digits and letters. The
EnKF provides a stable optimization solution even under ill-conditioned network settings.
Additionally, I analyze the effects of different hyper-parameters of the EnKF and provide a
simple algorithm to adapt the hyper-parameters. Finally, I discuss the convergence behaviour
and benchmark the computational time of the EnKF.

Chapter 5 discusses the importance of hyper-parameter optimization and introduces the learn-
ing to learn concept and the corresponding L2L Python implementation. Here, I explain in
detail how an experiment with the L2L framework is conducted. I present optimization results
of digit classification using a spiking reservoir network optimized by the Kalman filter within
the L2L framework. Afterwards, I explore the learning process of the reservoir by analyzing
the connection weights and the covariance matrix of the EnKF. In order to automatically find
the optimal parameter configuration for the optimizer I embed the EnKF optimization into
the inner loop of L2L. I optimize the hyper-parameters of the EnKF using a genetic algorithm
(GA). The hyper-parameter optimization finds a value similar to the manual setting for one
parameter, but suggests a more efficient configuration for the other parameters.
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In Chapter 6 I present the optimization of SNNs steering multiple agents, in particular an ant
colony, foraging for food. While the SNN is evolving over the generations, self-organization
and self-coordination emerges within the ant colony. The actions of the ants are not manually
encoded and there are no pre-defined rules, i.e. the optimization procedure has to find an
efficient network configuration to enhance the foraging behaviour. For example, the ants are
able to deposit chemical signals, pheromones, to create a trail other ants can follow to a food
source. This behaviour is not encoded into the network and the network has to learn how
to utilize the pheromones. After describing the L2L optimization workflow I analyze the ant
foraging behaviour. I compare the performance between a simple, rule-based system and the
SNN based model. The SNN performs better than the simple model, but disabling the ants’
pheromone sensing the performance deteriorates significantly. This highlights the importance
of using pheromones for communication and organization purposes. The ants deposit the
pheromones on their way to the food source and not necessarily when they visually perceive
the food source or sense their nest. To have a better understanding of the ant behaviour, I
correlate the input to output spike activity of the SNN over several or all generations and
thus, relate the ants’ actions to their visual and sensing perceptions.

The last chapter of this thesis, Chapter 7, provides conclusions and discusses the future
developments and applications of gradient-free optimization and learning to learn applied on
biological and artificial networks. I explore and suggest techniques which can be used in the
future to overcome current limitations when optimizing networks.
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Although the structure and process units of artificial neural networks (ANNs) are inspired by
the brain, there are significant differences between ANNs and biological spiking neural net-
works (SNNs). This chapter aims to introduce important types of ANNs and SNNs mainly
utilized in my simulations. First, I will describe the structure of feed-forward networks such
as multilayer perceptrons (MLP, Section 2.1.1) and Convolutional Neural Networks (CNN,
Section 2.1.3). CNNs are loosely inspired by the visual system of the brain and provide state
of the art results in image classification and image vision tasks. A short primer into biological
neurons and their communication processes (Section 2.2) will help to understand the elemen-
tary differences between these types of networks. Then, I will introduce the leaky integrate
and fire (LIF) neuron, which is the basic unit I mainly use in my biological models. Most
models found in nature are (complex) dynamical systems and time is a substantial parameter
in such systems. Inspired by the recurrent structure of the brain, recurrent neural networks
can process sequential or temporal data, i.e. they incorporate time as a variable (Section 2.3).
Based on the LIF neuron, I will describe the reservoir computing (RC, Section 2.3.2) ap-
proach, specifically the Liquid State Machine which is the network I utilize for my biological
simulations. The last section (Section 2.5) concludes with a short excursion exploring the in-
tersection between artificial intelligence and neuroscience and how neuroscientific phenomena
inspire learning in artificial systems.

2.1 Overview of Artificial Neural Networks

Most types of neural networks can be described as processing systems which receive input, do
computations and output a result. The multilayer perceptron and the convolutional neural
network are feed-forward networks loosely inspired by the brain. The origins of artificial
neural networks and the initial quest to represent the brain as a logical processing system
can be tracked back to the works of McCulloch et al. (1943), Rosenblatt (1957), and Widrow
et al. (1960).
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Input Layer ∈ ℝ⁸ Hidden Layer∈ ℝ¹² Output Layer ∈ ℝ⁴

Figure 2.1: A typical multilayer perceptron (MLP). This feed-forward network has a stacked
architecture with input, hidden and output layers. The circles are neurons which
are processing units. Bias neurons are depicted in blue. Adding more layers makes
the network deeper, known as a deep neural network.

2.1.1 Multilayer Perceptron

In its simplest form an MLP consist of 3 different layers, the input, hidden and output layer
as depicted in Figure 2.11. Each layer has nodes called neurons or units (circles in Figure 2.1).
A nonlinear activation function (see Section 2.1.2) is applied to every neuron. The activation
function is not used on neurons of the input layer in order to not transform the input data.
Often, bias units (or simply biases, blue circles in Figure 2.1) are added to the network as
well. Biases shift the output of the activation function by adding a constant value, e.g. to
shift the result towards positive values. In most cases the network is trained in a supervised
manner via the backpropagation method (Rumelhart et al. 1995) and optimized by gradient
descent. The network training is separated into two steps: a feed-forward phase, where the
data propagates from the input to the output layer and a feed-back phase, where the error,
calculated in the last layer by comparing the output of the network with a target or label,
is propagated back through the network. Every connection between neurons has weights
attached to it, which are updated in the backpropagation step.

1The figure was drawn with the tool provided by Alex Lenail at https://alexlenail.me/NN-SVG. Descrip-
tions were added afterwards.
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2.1 Overview of Artificial Neural Networks

In the following is a short mathematical description of neural networks based on the for-
mulations by Bishop (2007). A feed-forward neural network can be constructed from linear
combinations of fixed nonlinear basis functions ϕj(x):

f(x,w) = σ

 M∑
j=1

wjϕj(x)

 (2.1)

where σ(·) is a nonlinear activation function, e.g. the logistic function (see Equation 2.7).
Given a simple network with input, hidden and output layer like in Figure 2.1, the basic
network structure can be described as functional transformations of M linear combinations.
Thus, a formulation for the first layer with variables x1, . . . , xD can be written as:

aj =
D∑
i=1

w1
jixi + w1

j0 , (2.2)

with j = 1, . . . ,M , where i is the index of the neuron and the superscript 1 is indicating
parameters of the first layer, wj0 is a bias and wji is a connection weight. The aj are called
activations and can be transformed by applying the nonlinear activation function σ(·):

zj = σ(aj) . (2.3)

The final description for this simple network is:

f(x,w) = σ2

 M∑
j=0

w2
kj σ1

(
D∑
i=0

w1
jixi

) , (2.4)

where k = 1, . . . ,K is the index of the output neurons. σ1 and σ2 indicate that different
activation functions can be utilized for each layer. The bias parameter is absorbed into the
weight vectors by clamping an additional input variable to x0 = 1 (c.f. Equation 2.2):

aj =
D∑
i=0

w1
jixi . (2.5)

In supervised learning setting the output, e.g. the prediction in a classification task, can
now be compared against the label (or target) y from the dataset. The total error can be
calculated as:

E(w) = 1
N

N∑
n=1
||ŷn − y||2 (2.6)

where ŷn = f(xn,w) is the network output for a set of input vectors {xn}, n = 1, . . . , N .
Equation 2.6 is the Mean Squared Error. This error can be minimized with different op-
timization techniques such as gradient descent (GD). While Chapter 3 will primarily cover
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gradient-free optimization techniques, gradient descent is described in detail in Section 3.2.

2.1.2 Activation Functions
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Figure 2.2: Activation functions. Left in blue is the graph of the logistic or sigmoidal function.
In the middle the tanh function’s graph in green and on the right the graph of
the rectified linear unit (ReLU) in cyan. The dashed line in purple depicts the
exponential linear unit (ELU), which allows negative values, while ReLU clips
them to 0.

An activation function introduces nonlinearities into a neural network. Without activation
functions the output signal of a neural network is only a combination of linear functions of
the input. Thus, they allow the network to solve nontrivial, nonlinear problems. There is a
plethora of different functions; three exemplary types are shown in Figure 2.2. On the left
the logistic (or sigmoidal) function applied on a variable x ∈ [−10, 10] is formulated as:

σ(x) = 1
1 + e−x

. (2.7)

The results are in the interval of [0, 1]. The hyperbolic tangent function (tanh, Figure 2.2
middle)

σ(x) = ex − e−x

ex + e−x
(2.8)

has a shape similar to the logistic function. According to Yann LeCun, Bottou, et al. (2012)
the tanh is symmetric around the origin on the x and y axis, which produces in average values
closer to zero and thus converges faster.

Sigmmoidal function were the de facto standard applied in feed-forward neural networks.
Their use in deep neural networks is discouraged due to the vanishing and exploding gradient
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2.1 Overview of Artificial Neural Networks

problem, which is discussed in Section 3.2.3. Instead, the rectified linear unit ReLU (Figure 2.2
right, cyan line)

σ(x) = max(0, x) (2.9)

replaced the logistic function as the standard activation function for neural networks (Jarrett
et al. 2009) to tackle the vanishing gradient issue. The ReLU is a piece-wise linear func-
tion, which preserves properties for an easier optimization with gradient descent. It helps
linear models to generalize better, since models can be optimized easier when their behavior
is linear (Goodfellow et al. 2016; Nair et al. 2010). However, the drawback of ReLU is the
non differentiability at 0. Additionally, neurons can fall into a state where they are inactive
for all inputs. In this state gradients cannot “flow“ back through the neuron in the back-
propagation step, which leads to an inactive state where the neuron “dies“. To counteract
this issue smoothing can be applied, such as the exponential linear unit (Clevert et al. 2015)
(ELU, Figure 2.2 right, dashed purple line):

σ(x) =

x, if x > 0

α(ex − 1), if x ≤ 0
(2.10)

with α > 0.

2.1.3 Convolutional Neural Networks

Max-Pool Convolution Max-Pool Dense

8@128x128
8@64x64

24@48x48 24@16x16 1x256

1x128

Figure 2.3: A typical convolutional neural network with 2 max-pool layers, one convolutional
layer and 2 fully-connected (dense) layers. Note, the network input is omitted.

One of the first published and nowadays widely used Convolutional Neural Network (CNN) is
the classical LeNet architecture (Yann LeCun, Boser, et al. 1989). Its performance on image
classification sparked wide attention in the computer vision community. This model, depicted
in Figure 2.3, was introduced by Yann LeCun to recognize handwritten digits, namely the
MNIST dataset (Yann LeCun, Cortes, et al. 2010). The network consists of an input layer,
several hidden layers and an output layer. Often the penultimate layer is fully connected
(dense) with the last layer, similar to an MLP. The main idea of a CNN is to extract local
features from the input image since neighboring pixels are more correlated than distant ones.
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Figure 2.4: Max pooling over 16 pixels divided into 4 subgroups. The kernel size of the
max-pool operation is 2, thus the result is a 2 × 2 (sub-sampled) group with the
maximum value of each subgroup.

These low-level features (e.g. edges) are found in the early layers of the network. They corre-
spond to a small region of the image and help to detect higher-order features (e.g. features of
a face) in deeper layers, which in the end provides information of the image as a whole (Er-
han et al. 2009). There are three important mechanisms in CNNs (Bishop 2007): 1. local
receptive fields, 2. weight sharing and 3. subsampling (i.e. pooling). The name CNN already
implies that the network employs the convolution operation, i.e. convolving the input with a
filter or kernel and passing it to the next layer. The output of this operation is often called
feature map. The idea is that units in the kernel only take a small subregion and that all
units share the same weight values. The kernel is slid over the image and convolved with
the corresponding pixels. Instead of learning the weights like in MLPs, the kernels’ weights
and biases are learned in a CNN. For a two-dimensional image I(m,n) and a kernel K, the
formula of the convolution operation can be stated as follows (Goodfellow et al. 2016):

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n) . (2.11)

The distance from one position to the next when moving the kernel over the image is called
stride. The striding distance reduces the learnable parameters for the filters and the size of
the next layer and is an important element when designing the architecture of the CNN.

A further typical operation in CNNs is the sub-sampling known as pooling. Patches of a
small receptive field from the previous layer are reduced to one value either by taking the
maximum (max pooling) or the average (average pooling). An example of max-pooling over
a patch of 4×4 pixels is shown in Figure 2.4. The last layer is often a fully connected layer as
depicted in Figure 2.3. Similar to MLPs, activation functions are applied on the output of the
neurons. In case of multi-class predictions a softmax nonlinearity (for details see section 3.2)
can be applied to the last layer. The machine learning community considered CNNs to be
shift invariant, i.e. the displacement or translation in the image is correctly projected in the
output prediction. However, recent work shows that CNNs are only equivariant or need
several modifications to be shift-invariant (Azulay et al. 2018; Myburgh et al. 2021).
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2.2 Introduction into Neurons & Spiking Neural Networks

Figure 2.5: A drawing of the cerebral cortex by Ramón y Cajal. A-D depict different cell
layers, while F shows white matter and G the striatum. In this picture, Cajal
compiled his observations from small mammals such as rabbit or mouse. Modified
from Gil Fernández et al. (2014)

The central processing units in our brains and nervous system are neurons. Neurons are
highly interconnected with each other. An early drawing of a fragment depicting the cerebral
cortex can be seen in Figure 2.5. This picture was drawn by Ramón y Cajal in the 1890s who
is one of the pioneers in neuroscience. The figure shows neurons with triangular and circular
cell bodies with their extensions partly spanning over different layers. In this drawing, layers
B, C contain pyramidal cells which have a triangularly shaped cell body. It is estimated
that the cerebral cortex has more than 10 billion neurons and the brain in total around 100
billion (Von Bartheld et al. 2016).

2.2.1 Structure of a Neuron

Figure 2.6 is a schematic view of a neuron. The neuron can be separated into three parts: the
cell body (soma), dendrites, and an axon. The cell body contains the nucleus, mitochondria,
ribosomes, Golgi apparatus and other organelles, which are not shown in the figure. The main
function of the soma is to supply the neuron with energy and proteins. The axon extends the
body of the neuron from the axon hillock, which controls the electrical signal transmission
along the axon. Electrical signals are the primary form of communication between neurons.

23



2 Artificial and Biological Neural Networks
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Figure 2.6: A schematic view of a neuron. Modified from Vecteezy.com

The axon can branch into smaller parts and ends at the nerve or axon terminals. Axons can
be covered with a myelin sheath, to accelerate the signal transmission. The sheath consists
of glia cells, e.g. the Schwann cell (Figure 2.6). Glia cells have many supporting functions for
the neurons, however, their role is not fully understood and remains a topic of research (Jäkel
et al. 2017). Dendrites extend from the soma and are connected via their synapses to other
neuronal axons. In summary, a neuron receives electrical signals from other neurons via its
dendrites and passes information to other neurons through its axon. There are other methods
to transmit electrical signals such as gap junctions or synapses which are directly attached
to the soma, however, they are not as common. The electric signals pass from one neuron to
the other through junctions known as synapses. A synapse is located between the end of the
axon (presynaptic) and the dendrite of the other neuron (postsynaptic), the space between
the two neurons is called synaptic cleft. Signal transmission occurs via chemical activity. The
voltage change induced by the action potential (see Section 2.2.2) at the presynaptic neuron
triggers the release of chemicals, also called neurotransmitters. These transmitters bind to
receptors at the membrane of the postsynaptic cell. This process opens ion channels, ions
flow in, depolarize the cell to trigger an action potential and, thus, continue the transmission.

2.2.2 Properties of a Neuron

Every cell has a membrane potential, which is a voltage difference between the cell body and
its surroundings. Ion pumps and ion channels at the membrane of a cell are responsible to
maintain or change the potential. As aforementioned, neurons communicate via electrical
signals. These signals are called action potentials or spikes. Before an action potential
can occur, the membrane potential has to be depolarized from its resting state at around
−70mV as depicted in Figure 2.7a2. Incoming spikes are depolarizing the neuron and only

2The shape and amplitude is dependent on the experiment and the location where the measurement was
taken.
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(a) (b)

Figure 2.7: (a) Typical phases of an action potential, indicating how a spike is evoked over
time. Source: Wikimedia Commons. (b) The summation of incoming signals
elucidate a spike in the postsynaptic neuron if it passes the threshold. This is
abstracted as a binary event in time. Figure from Lobo et al. (2020).

after reaching a threshold potential at around −55mV the action potential is triggered. The
membrane potential can rise up to 40mV, afterwards it repolarizes, i.e. the potential drops
below −70mV. In the refractory period the neuron cannot be excited, until it reaches its
resting state again. The whole process takes less than 5ms, while the action potential lasts
around 1− 2ms.

In computational neuroscience the action potential is described as a “all or nothing“ rule.
Only if the incoming input is able to excite the neuron, so that the polarization passes
the threshold, a spike is emitted. For computational purposes it is useful to abstract the
biophysical characteristics of a spike as a binary event in time. As depicted in Figure 2.7b the
summation of incoming spikes in a certain time frame stimulates the neuron and triggers it
to produce one spike, i.e. one event in time. Spikes elucidated from one neuron in successive
order are called a spike train s(t):

s(t) =
n∑

i=1
δ(t− ti) (2.12)

for n spikes with t as time and δ as the dirac function. Note that, a spike train can contain
spikes from several neurons. Fortunately in simulations the origin of a spike can clearly be
attributed to a specific neuron. There exists a plethora of mathematical models to describe
the dynamics of neurons. In this work, I use the Leaky-Integrate-and-Fire neuron (LIF). The
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LIF neuron incorporates a leak term for the diffusion of ions through the membrane. The
model can be formulated as (Dayan et al. 2005):

τm
dV

dt
= EL − V +RmIe , (2.13)

where τm is the membrane time constant, Rm the membrane resistance, EL the resting po-
tential, V the voltage and Ie the input current. In contrast, the resistance Rm in a non-leaky-
integrate-and-fire model is infinite, i.e. the membrane is not leaky and is a perfect insulator.
The equation can be extended to generate an action potential, i.e. whenever a threshold Vth

is reached a spike is emitted and afterwards the potential is reset to Vreset. When Ie = 0 the
membrane potential is exponentially relaxed to V = EL with the time constant τm. The next
action potential occurs when the membrane potential V (t) reaches the threshold at time step
∆t:

V (t+∆t) = EL +RmIe + (Vreset − EL −RmIe) exp(∆t/τm) . (2.14)

2.3 Recurrent Neural Networks

When we humans speak, the words we use to build our sentences are based on previous words
and sentences. Neural Networks such as MLPs or CNNs are not able to process data in this
manner. They can only handle vectors of fixed size as inputs such as images or videos and
they ouput fixed-sized vectors. Recurrent neural networks (RNNs) are a family of networks
which can process sequential or temporal data. Furthermore, they have feed-back (recurrent)
connections, which enable them to store information and, thus, have an internal state or
memory. By utilizing their internal state, RNNs can work on sequential inputs with variable
lengths.

2.3.1 The Basics of Recurrent Networks

Different versions of RNNs have been proposed, such as Elman or Jordan networks (Elman
1990; M. I. Jordan 1997). In the Elman network the output of the previous hidden layer is
provided as the input alongside the initial input to the actual layer. In contrast, the Jordan
network uses the output of the last layer as the input alongside the normal input. The Elman
network can be formulated as:
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(a)

...

(b)

Figure 2.8: (a) A standard recurrent neural network. The arrow to itself in the middle layer
indicates a recurrent connection. (b) The computation graph of an unrolled RNN.
xt is the input (blue), ht the hidden layer activity (orange) and yt the output
(gray). W, U, V are input, hidden and output layer weight matrices.

ht = σh(Wxt +Uht−1 + bh) (2.15)

yt = σy(Vht + by) (2.16)

where xt is an input vector of time t, t = 1, . . . , T with T the total time, ht is a hidden layer
vector, yt is an output vector. W,U,V are input, hidden and output layer weight matrices,
b is a bias vector, σy, σh are activation functions. In the original implementation Elman uses
context units to store the internal state ht−1. These units can be bypassed by directly sending
the internal state to the next layer’s ht. To describe the Jordan network, ht−1 in Equation 2.15
needs to be replaced by yt−1. Figure 2.8a depicts a standard RNN with the input xt, the
hidden layer state ht and its output yt. The internal computing process of an RNN can be
described using a computational graph as shown in the diagram Figure 2.8b. In every time
step t, the output (following Elman’s description) of the previous hidden layer is provided in
addition to the vector x as an input to the actual hidden layer. This process is called unrolling
the network. In machine learning, RNNs are typically trained with gradient descent and a
technique named as backpropagation through time (BPTT, for details see Section 3.2.1).

2.3.2 Reservoir Computing

Reservoir computing (RC) is a computational approach to process sequential or temporal
data. It was independently developed by Jaeger (2001, Echo State Network) and Maass et al.
(2002, Liquid State Machine). The system consists of a reservoir of non-linear neurons to
project input signals into a higher dimensional space and a readout layer to read the state of
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Reservoir ReadoutInput
Figure 2.9: A typical reservoir computing network with recurrent connections. The weights

inside the reservoir are fixed, while the readout weights are trained.

the network and map it to a target output. The weights inside the reservoir are fixed, but the
readouts can be trained with a simple algorithm such as linear regression. In comparison to
other recurrent neural networks, a reservoir network can faster learn and has lower training
costs. According to Maass et al. (2002) the reservoir computing approach exhibits two major
properties:

1. The separation property which is the ability to separate the reservoir’s internal states
caused by different types of input streams from each other and

2. The approximation property, which is the capability of the readouts to distinguish but
also map the internal state(s) to the target outputs.

The separation property depends on the complexity of the reservoir, i.e. the structure of the
reservoir such as number of connections, neurons and layers or columns. The concept of sepa-
ration is comparable to the kernel trick in machine learning (e.g. in support vector machines),
where the problem space is elevated and computed in a higher dimensional space (Shi et al.
2007; Hermans et al. 2012). The approximation property depends on the adaptability of the
readouts to the given task, i.e. the readouts should be able to understand the internal state
of the reservoir and map it correctly to the outputs. However, for different types of inputs,
i.e. inputs coming from distinct tasks, the readouts usually have to be retrained.

The reservoir dynamics can be formalized as (Maass et al. 2002):

xM (t) = (LMu)(t) , (2.17)

where t is the time, xM is the (liquid) state of the reservoir, u(s), s ≤ t, is the input function
and LM is a filter which transforms the input to the reservoir state. The output is obtained
as follows:

y(t) = fM (xM (t)) , (2.18)
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fM is a memory-less readout map that transforms in every time step t the state xM to the
output y(t). In contrast to the filter LM , the design choice of fM depends on the specific
task. Since the readout maps are memory-less, all information to produce the target output
y(t) at time step t has to be contained in the internal state xM (t) (Maass et al. 2002). It
was shown that RC systems exhibit universal approximation properties (Maass et al. 2002;
Gonon et al. 2019).

From a biological point of view RC is an interesting approach, since it provides a compelling
interpretation about computations in columns of neocortical microcircuits (Buonomano et al.
2009). The connections are not hard-coded to a specific task and the same reservoir can be
trained for different input types (only the readouts are task specific). Continuous time inputs
are handled in a more “natural” fashion. There is no need to learn (recurrent) weights with
biologically implausible learning rules such as backpropagation through time. For instance
many dynamical models allow to use the (infinitely) full history of the input for computations.
RC have a continuity property called fading memory which states that for any input u(·) the
output (Fu)(0) can be approximated by the outputs (Fv)(0). v(·) is any other input function
which approximates u on a sufficiently long time interval [−T, 0] (Maass 2011). This means
that it is not required to precisely know the value of the input function at any time or the
whole history in time. A study conducted by Nikolić et al. (2009) indicated that the primary
visual cortex is endowed with the fading memory property.

2.4 Simulation Tools for Neural Networks

Simulations are one of the main tools computational neuroscientist are utilizing to understand
the mechanisms of the brain. NEST is a popular library for simulating spiking neural net-
works. The design focuses on the efficient and accurate simulations of point neuron models.
In NEST the morphology of a neuron is abstracted into a single, iso-potential compartment,
i.e. the morphology of axons and dendrites do not have physical extents. The library supports
parallelization with MPI and multi-threading, and thus, scales very well on high performance
computing systems (HPCs). Simulations can either be conducted on local machines such as
laptops or efficiently be scaled up to large scale runs on HPCs (J. Jordan et al. 2018).

In the artificial intelligence and machine learning community PyTorch (Paszke et al. 2019) is
a popular framework for designing and running ANNs. PyTorch is an open-source Python
package and provides tensor computing on CPUs and GPUs. It allows to build deep neural
networks using an automatic differentiation system to calculate gradients, therefore it is effi-
cient and scales well on HPCs. PyTorch implements tensors, which are multidimensional and
homogeneous instances of vectors. In this context, a tensor is a data structure and should not
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be confused with the mathematical notion of a tensor. PyTorch’s core is written in C++ and
has an interface to support Python. Implementing networks in PyTorch follows the design
principles of Python, thus the framework is easy to use for programmers who are already
familiar with Python.

In this work, the reservoir network in Chapter 5 and the spiking network in Chapter 6 are
implemented in NEST. The convolutional neural network in Chapter 4 is designed with Py-
Torch and the network is trained utilizing PyTorch’s gradient descent optimizers, as well as
PyTorch’s automatic differentiation system.

2.5 Neuro-inspired Learning

The two domains of artificial intelligence and neuroscience are interconnected and many
properties of AI models are inspired by neuroscientific principles. This section is a brief
excursion to explore the intersection and discusses some examples following the argumentation
found in Van Gerven (2017) and Hassabis et al. (2017). One goal in artificial intelligence is
to achieve a general or strong intelligence (artificial general intelligence, AGI), comparable
to human intelligence. Therefore, it is obvious to copy and adapt principles of neuronal
processes from the human brain into artificial models. In order to understand complex bio-
physical systems Marr et al. (1976) postulated three requirements to be fulfilled. These are
known as information processing systems:

1. The computational level requires to understand the system on a functional level, i.e. what
the system does.

2. The algorithmic level is how the system solves the problem.

3. The implementation level is how the system is physically realized.

According to Hassabis et al. (2017) the first two points help us gain insights into the general
processes of the biological brain which can be transferred to artificial machines or agents. The
third point helps to understand the physical boundaries of the system, e.g. with regards to
energy efficiency, and how it interacts with the environment it is set into.

2.5.1 Visual Cortex as Inspiration for Convolutional Networks

A popular example for a model inspired by the primary visual cortex (V1) is the CNN. V1 is
known for advanced preprocessing of visual input captured by the eye. A model of a CNN is
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Figure 2.10: Hierarchical CNN as a model for the visual cortex. a depicts a macaque brain.
The yellow arrow indicates the stream through different areas of the visual sys-
tem. b shows the ventral visual pathway. After the eye captures the image at
the bottom, a cascade of operations between individual layers are executed and
information is encoded or decoded along the pathway. c depicts the correspond-
ing CNN. Green dashed arrows indicate the corresponding layers and operations
to the visual pathway. Figure from Yamins et al. (2016).

Figure 2.11: The visualization shows the first layer’s feature detection filters of a pre-trained
ResNet-50 model from PyTorch.

compared to the visual cortex of a macaque monkey in Figure 2.10. Figure 2.10a shows the
macaque brain and the yellow arrow indicates the visual stream which goes through different
areas, i.e. V1, V2, V4 and IT The IT area is further divided into posterior, central and
anterior inferior temporal cortex (PIT, CIT, AIT). Neurons in the retina (retinal ganglion
cells, RGC in Figure 2.10b) perform a simple preprocessing of the image. The difference of
Gaussians (DOG) is a preprocessing step, which mimics the feature extraction capabilities
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of the retina, to obtain features such as edges. This resembles the feature detector units in
early layers of CNNs which are able to identify lines, edges and rough objects as depicted in
Figure 2.11, while later layers can detect more complex structures.

The lateral geniculate nucleus (LGN) is responsible for spatial-temporal correlations and
relays the information to the primary visual cortex. In Figure 2.10 operations applied in the
LGN and V1 are symbolized as T(·). The corresponding functions in the CNN are marked
as LN and include filtering, thresholding, pooling and normalization (Figure 2.10c). These
functions are applied in every layer of the CNN, however, in the deeper layers of the visual
pathway these operations are much more complex and not entirely understood. The whole
cascade of operations from V1 to IT happens within the first 100ms of glimpsing on the
picture. The IT area can be compared to the last layers of CNNs, in which objects are finally
predicted or recognized (DiCarlo et al. 2012).

2.5.2 Other Neuro-Inspired Methods

Neuroscience

Memory

Episodic Memory

Working Memory

deep-Q-
Network

Experience
Replay

LSTMs

Neuron Statistics Poissonian

Dropout

Visual Cortex

CNNs

Attention Networks

Attention

Plasticity

Experiments

Local Learning
Rules

STDP

Backpropagation
Approximation

Targetprop

Reinforcement
Learning

TD-Learning

Life-long
Learning

Continual
Learning

Learning to Learn Transfer LearningFew/One-Shot
Learning

Figure 2.12: Many neuroscientific principles inspired models and methods in artificial intelli-
gence. This figure gives an overview regarding the topics and methods explicated
in Section 2.5.2.

In this section I describe other methods influenced by neuroscience, following the examples
mentioned in the work of Hassabis et al. (2017). Figure 2.12 gives an overview of the discussed
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methods.

Dropout is a regularization method to prevent overfitting when training neural networks.
In the training phase neurons are ”turned‘ off, i.e. with a certain probability their output is
multiplied with zero. This is motivated by the stochasticity of neurons with Poissonian firing
rates.

Reinforcement learning and temporal difference learning were inspired by animal be-
haviour and conditioning experiments. For example, Schultz (1998) conducted reach and
grasp experiments with monkeys which were rewarded with juice if they successfully com-
pleted a task He recorded the neuronal activity of reward-related dopamine neurons after
the monkeys learned the task. The reward was either predicted due to the preceding pre-
sentation of a conditioned stimulus (CS) or not predicted. If the reward was not predicted
(no additional CS), the dopamine neurons responded upon receiving the reward. However, if
the monkeys predicted the reward (due to a CS), the neurons responded to the CS and not
to the reward. The observations of such reward based behaviour were incorporated into the
temporal difference learning.

Synaptic Plasticity strengthens or weakens the connection between synapses depending on
the firing activity. In the backpropagation step weight updates are dependent on non-local
errors, i.e. error signals acquired in downstream layers. In contrast, plasticity is based on local
information, the pre- and post-synaptic neural activity. Authors of Yoshua Bengio, Lee, et al.
(2015) and Yoshua Bengio, Mesnard, et al. (2017) approximate stochastic gradient descent
and backpropagation using mechanisms found in spike-timing-dependent-plasticity (STDP).
They compare STDP to the delta rule and formulate an algorithm called targetprop which
can obtain the gradient in one layer, while not relying on the updates from deeper layers.

Attention modules mimic the primate visual system. Instead of processing the whole input,
primates shift their attention from location to location and center it on specific regions. This
mechanism is implemented in AI models which glimpse at the input image in every step and
update their internal states to select the next location to shift their attention to (Larochelle
et al. 2010; Mnih et al. 2015; Vaswani et al. 2017).

Episodic memory is an instance based mechanism, allowing learned experiences to be en-
coded and stored. The network stores a subset of already trained data and is able to replay
the experience in an offline fashion (deep-Q-network; Mnih et al. 2015). One goal is to coun-
teract catastrophic forgetting, a status in which the optimization overwrites the weights when
training on a new data set and thus, performs poorly on previously learned data samples (Mc-
Closkey et al. 1989; Ratcliff 1990). The episodic learning mechanism to process and store new
memories is similar to the one in the hippocampus which encodes new learned information and
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consolidates the experience to the neocortex. The learned memory is replayed or reactivated
while sleeping and resting (O’Neill et al. 2010).

Working memory is a system with the ability to temporarily store and manipulate infor-
mation and is important for behavioural actions such as reasoning and planning (Baddeley
2003). Research indicates that working memory is endowed within the prefrontal cortex and
interconnected regions (Goldman-Rakic 1991). Long-short-term memory (LSTM) networks,
are able to store information into their internal state and maintain it until needed or replaced
using a gating mechanism (Hochreiter and Schmidhuber 1997).

Often, models are trained to solve a specific task. However, to reach AGI, the system needs to
learn continuously. Continual learning is an approach to mimic life-long learning. Learning
to learn, transfer learning, one-/few-Shot learning and continuous learning are part of this
category. The idea is to quickly generalize and perform well on new data sets using the
experience from previously learned examples. Humans and other primates have the ability to
learn with only a few examples presented (Harlow 1949). How this higher-level of learning is
achieved is still unknown. Theories state that the formation of conceptual representation is
emerging, which encode abstract and relational information (Doumas et al. 2008).

2.6 Summary

Artificial neural networks are inspired by their biological counterparts. While the multilayer
perceptron reflects the functionality of biological neural networks in an abstract and simplified
manner, the convolutional neural network takes its inspirations from the visual system. For
example, activation functions are non-linear functions and resemble the thresholding function
in spiking neurons to create an action potential. An action potential or a spike is an elec-
trical signal a biological neuron uses to communicate with other neurons. In computational
neuroscience this signal is often represented as a binary event. A spike is only elucidated if
the incoming spikes at the neuron exceed a certain threshold.

Spiking neural networks are dynamical systems with recurrent connections. Recurrent neural
networks are able to process sequential or temporal data. The reservoir network is a spe-
cific type of recurrent networks, where the neurons in the reservoir are randomly connected.
When adapting the network, only the connection weights from the reservoir to the output
are changed. The reservoir network has two characteristics, the separation property, which is
the ability of the network to separate internal states, and the approximation property, which
maps the internal states to the outputs.

The intersection between neuroscience and artificial intelligence is an ongoing field of research.
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2.6 Summary

From an artificial intelligence perspective, this interconnection is called neuro-inspired learn-
ing. Many machine learning methods and frameworks draw inspiration from neuroscience and
incorporate neuronal properties into their design. Bio-inspired learning helps to overcome lim-
itations and provides, among other things, the ability for local, temporal or continual learning
and efficient training via memorization (e.g. working and episodic memory).
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3 Optimization methods applied on Neural
Networks

In the previous chapter I introduced different types of artificial neural networks, components
and properties of biological neurons and discussed recurrent networks, in particular the reser-
voir network. Since both fields complement each other, I shortly discussed the intersection
between neuroscience and artificial intelligence. The previous chapter was considered mostly
from a bottom-up perspective – the building blocks to construct and execute neural networks
were represented. However, to gain an understanding of how such models work, we also have
to account the top-down or the functional view. In light of this, our models need to learn to do
meaningful tasks so we can evaluate their performance, which can provide an interpretation
about the usefulness of the model. Training neural networks requires optimization, which is
the focus of this chapter.

After a general introduction into optimization, I will explicate the gradient descent algorithm
(Section 3.2), a powerful and efficient optimization technique frequently used in machine
learning when training neural networks. To train feed-forward neural networks, gradient
descent is applied in conjunction with the backpropagation algorithm. A second version is
called backpropagation through time and is used in recurrent neural networks to incorporate
time as a variable (Section 3.2.1). Although gradient descent optimization is a very popular
technique, it can lead to issues such as vanishing gradients when applied on recurrent neural
networks. Moreover, from a biological standpoint the direct application of gradient descent is
implausible and cannot be used to optimize spiking neural networks without complex approxi-
mations (Section 3.2.4). Fortunately, a plethora of alternative optimization techniques exists.
I will describe different metaheuristic variants, such as the genetic algorithm (Section 3.3.1),
a nature inspired evolutionary algorithm, and the ensemble Kalman filter (Section 3.3.3), an
iterative filtering strategy and a suitable technique for solving inverse problems. Addition-
ally, I introduce the ant colony optimization (Section 3.3.2) as a technique for finding shortest
paths. In a later chapter, this introduction will help to understand the difference between
training SNNs to control swarm agents and applying classical ant colony optimization with
pre-defined, rule-based models to steer swarms.
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3.1 Introduction into Optimization

Optimization describes the process of finding the best decision from a selection with regards to
certain constraints. This results in an optimal performance given a set of optimal parameters
of a (real-world) model formulated in a mathematical way. For example, maximizing or
minimizing a function is a typical optimization problem. An optimization problem can be
mathematically described as (Malik et al. 2021):

min
x

fi(x), i = 1, 2, . . . , P (3.1)

Subject to

gj(x) = 0, j = 1, 2, . . . , Q (3.2)

hk(x) ≤ 0, k = 1, 2, . . . , R (3.3)

where fi(x), gj(x), hk(x) are functions for the input or decision vector x = [x1, x2, . . . , xn]T

and x ∈ Rn and each xi ∈ R. The functions fi are called objective functions, if P = 1 then
there is a single objective. In Equation 3.2 gj(x) denotes the equality constraint function,
while hk(x) in Equation 3.3 denotes the inequality constraint function. The space spanned
by x is the search space and the space formed by the objective functions is the solution
space. Objective functions can be linear or non-linear. To maximize an objective function
the inequality constraints can be expressed as ≥ 0, since the maximization of fi(x) is the
minimization of −fi(x) with −hk(x) ≥ 0. For a decision variable xi, xi,min ≤ xi ≤ xi,max

are the bounds. The maximization max(·) can replace the min(·) operation depending on
the optimization target. The functions fi(x) can conflict with each other forcing the multi-
objective optimization to find a trade-off to satisfy the functions in the best possible manner.
For example, this can result in reducing the error of one function while increasing the error
of the other function. A Pareto optimal solution is desirable, i.e. solutions which degrades
the performance of one or more objectives if the other objective function is improved. In
multi-objective optimization it is important to find the right measure which considers all the
objectives and their importance or priority in the optimization process. A classical measure
is the weighted sum, also called weighted fitness F :

F (x) =
M∑

m=1
wmfm(x), (3.4)

where M is the set of objectives and the wm are factors which weight the importance of the
objective for the overall fitness. Thus, the weighted sum measure influences the performance
of the optimization and the final result.

38
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3.1.1 Optimization algorithms

Most of the optimization algorithms are iterative methods. In every iteration of the op-
timization process the optimizer updates the decision vector x with the goal to provide a
solution which performs better than the solution of the previous iteration. The optimization
step incorporates the objective function and its constraints as well as the performance of the
optimization target. Requirements for optimization algorithms are (Malik et al. 2021):

1. Efficiency: They should be resourceful. For example their computations should be
lightweight and fast. Here, parallelization can be helpful as well, it eases the compute
load by distributing calculations to different processing units, e.g. cores or compute
nodes on high performance computers, or architectures, e.g. CPU and GPU.

2. Accuracy: They need to be precise, but not sensitive to errors, e.g. to rounding errors
or outliers in the data.

3. Robustness: They should be applicable to different optimization problems and perform
well.

3.2 Gradient Descent and Backpropagation

Gradient descent (GD) is a first-order optimization method, used to find the local minima of
an objective function. Gradient descent is a popular choice to update the connection weights
w in neural networks. To optimize the weights GD does a small step in the direction of the
negative gradient:

wt+1 = wt − η∇E(wt) (3.5)

where the hyper-parameter η > 0 is the learning rate, which determines how fast the gradient
can descend towards a local minima. t is the iteration step and E is a function, e.g. the error
function when training a neural network (see Section 2.1.1). GD is an iterative method, after
every update the gradients are re-evaluated and the optimization procedure is repeated. In
this case, the whole dataset is required to calculate the new gradients, this is known as a
batch method. In contrast, stochastic gradient descent (SGD) uses a mini-batch, i.e. only
a small partition of the dataset is taken to update the new gradients. In comparison to
the standard gradient descent, SGD provides an efficient solution with low computational
costs (Yann LeCun, Boser, et al. 1989).

To evaluate the error function E(w) of a neural network a technique called backpropaga-
tion (BP; Rumelhart et al. 1995) – also called backprop – can be applied. We can apply the

39



3 Optimization methods applied on Neural Networks

Figure 3.1: Illustration of the backpropagation algorithm. The blue arrow indiciates a for-
ward pass of the network while the red arrows depict the error propagation back
to neuron j of a hidden layer. δk is the backpropagated error of neuron k. zj is
the activation of neuron j. Modified from Bishop (2007).

backpropagation algorithm to the network presented in Section 2.1.1. The derivative of En

needs to be calculated with respect to the weight wji, where En , n = 1, . . . , N , is the error for
one data point. Since En depends on the weight wji via the input aj to neuron j, the chain
rule can be applied to calculate the partial derivative (Bishop 2007, see also Figure 3.1):

∂En

∂wji
= ∂En

∂aj

∂aj
∂wji

. (3.6)

Equation 3.6 can be shortened as ∂En
∂wji

= δjzi, with δj ≡ ∂En
∂aj

and zi = ∂aj
∂wji

. The δ’s are often
referred as errors. For the output we have δk = ŷk − yk, with ŷk the prediction value and yk

the target value for output neuron k. The gradients for the hidden layers can be calculated
as:

∂En

∂aj
=
∑
k

∂En

∂ak

∂ak
∂aj

, (3.7)

where k are all neurons to which neuron j has connections to. By further substituting, the
final backpropagation formula becomes:

δj = σ′(aj)
∑
k

wkjδk . (3.8)

3.2.1 Backpropagation Through Time

Backpropagation through time (BPTT) is a special application of the backpropagation al-
gorithm for recurrent neural networks. The computation graph of an RNN is unrolled for
each time step as depicted in Figure 2.8b. Then, the BP algorithm is applied to the unrolled
graph. The gradients need to be differentiated with respect to the weights of the matrices
W,U,V (see Equation 2.15 and Equation 2.16).

Let L (y, ŷ)t be the error or loss function (e.g. MSE) for the time step t, where y is the target
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and ŷ the prediction of the network. Then the gradient for the loss with respect to the weight
matrix U can be derived as:

∂Lt

∂U
= ∂Lt

∂ŷ
∂ŷt

∂ht

∂ht

∂U
. (3.9)

The term backpropagation through time becomes visible in the term ∂ht

∂U , since all gradients
of the previous states of ht have to be obtained and summed up:

∂ht

∂U =
t∑

k=1

∂ht

∂hk

∂hk

∂U , (3.10)

∂ht

∂hk
=

t∏
i=k+1

∂hi

∂hi−1 (3.11)

Equation 3.10 is recursively applied from k = t, while in every update step k is decremented.
It is important to note that the same weights are reused at every time step. The gradi-
ents with respect to V and W can be calculated in a similar manner as in Equation 3.9.
The multiplications depicted in Equation 3.11 can cause the vanishing or exploding gradient
problem. A direct implementation of the BPTT algorithm following the equations above is
tedious, not very efficient and error prone. Fortunately, machine learning frameworks like
TensorFlow (Martín Abadi et al. 2015) and PyTorch (Paszke et al. 2019) provide modules
for automatic differentiation to compute the gradients by using computational graphs. For
example the autograd module 1 is such a graph implemented in PyTorch.

3.2.2 Adaptive Moment Estimation

The adaptive moment estimation (Adam) is an alternative gradient descent algorithm pro-
posed by Kingma et al. (2014). It computes adaptive learning rates for each weight by using
estimations of the first and second moments of the gradient and keeps an exponentially de-
caying average mt of past gradients gt = ∇ωLt with Lt the loss:

mt = β1m
t−1 + (1− β1)gt

vt = β2v
t−1 + (1− β2)(g2)t

(3.12)

where mt and vt are estimates of the first and the second moment of the gradients respectively
and t is the iteration step. β1 , β2 are the decay factors for the moving average. To finally
obtain the new weights w, the gradient is calculated:

wt+1 = wt − η√
v̂t + ϵ

m̂t , (3.13)

1https://pytorch.org/docs/stable/autograd.html
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Figure 3.2: Gradient descent and Adam applied on an elliptic paraboloid function. The
orange line depicts vanilla gradient descent, the green and white lines show the
Adam optimizer with different learning rates. The green line is oscillating around
the minimum in the center of the image due to a high learning rate.

with
m̂t = mt

1− βt
1
, v̂t = vt

1− βt
2
, (3.14)

where ϵ > 0 is a small scalar to prevent division by 0 and η > 0 is the learning rate parameter.
Root-squaring and squaring is applied element-wise.

Figure 3.2 depicts the gradient descent (white line) and Adam (green and orange lines) opti-
mizer applied on an elliptic paraboloid function z = x2 + y2 with x, y ∈ [−1, 1]. The gradient
descent has a learning rate parameter of η = 0.02 and the white line shows the minimization
process from a randomly chosen point to the global minimum in the center of the image. The
orange line depicts the optimization process using Adam, with β1 = 0.9, β2 = 0.999, η = 0.01.
It follows the gradient straight to the minimum, similar to the normal gradient descent opti-
mization. Increasing the learning rate to η = 0.1, results in a big step size and the gradient
descent oscillates around the minimum as the green line depicts. According to Kingma et al.
(2014), the Adam optimizer is computationally efficient with little memory requirements and
performs well on noisy problems with sparse gradients or on large data sets and models with
lots of parameters. However, the authors of Keskar et al. (2017) recommend to switch to
stochastic gradient descent in later stages of the training, since it enhances the performance
and generalizes better.
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3.2.3 The Problem of Exploding and Vanishing Gradients
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Figure 3.3: The blue line depicts the sigmoid function, the dashed blue line is its derivative.

The problem of vanishing or exploding gradients does not only occur within RNNs but also
in very deep feed-forward networks. In every step of the backpropagation the weights are
updated following the gradient of the error function with respect to the weights. The sigmoid
activation function (see Section 2.1.2) can be utilized to understand the issue in an intuitive
way. Figure 3.3 depicts its derivative σ(x)(1− σ(x)) as a dashed blue line. If the neuron gets
saturated, i.e. the input to the sigmoid function is big and the output is close to 0 or 1, the
gradient becomes very small. This can immensely decelerate the training process (Y. LeCun
et al. 1998; Yann LeCun, Bottou, et al. 2012). Similarly, the exploding gradient problem
appears if the gradients keep getting larger during the backpropagation step, which results in
large weight updates and leads to an unstable network. According to Goodfellow et al. (2016)
the parameter space contains sharp non-linearities, which resemble steep cliffs and give rise
to large gradients. The parameters close to such regions can “jump” to suboptimal values
after the gradient descent update is applied, thus, hindering or stopping the optimization
process (Pascanu et al. 2013). A simple solution to counteract these issues, is to clip or scale
down the gradients g by its norm whenever it exceeds a threshold υ (Pascanu et al. 2013):

g← gυ
∥g∥ , if ∥g∥ > υ . (3.15)

Several studies investigate why the logistic function is not suitable as an activation func-
tion (Y. LeCun et al. 1998; Pennington et al. 2017). Instead, different activation functions
such as ReLU and ELU (see Section 2.1.2) are suggested. However, small numerical in-
stabilities due to possible singular instabilities can occur for small smoothing parameters.
Furthermore, alternative weight initialization schemes are proposed to tackle the vanishing
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and exploding gradient problem (Glorot et al. 2010; K. He et al. 2015). Glorot et al. (2010)
investigate different activation functions regarding the saturation of the gradients and in-
troduce the Xavier initialization. Especially, K. He et al. (2015) incorporate the number of
incoming and outgoing neurons from the previous and next layer to normalize the weights
and thus, stabilize the training.

The effects of vanishing and exploding gradients on deep neural networks will be presented
and further analyzed in Section 4.1.

3.2.4 Biological Plausibility of Gradient Descent and Backpropagation in Spiking
Neural Networks

Gradient descent and backpropagation are efficient techniques to optimize artificial neural
networks. However, their biological plausibility and application in the mammalian brain is
still debated and open questions remain how backpropagation can be implemented in the
cortex (Crick 1989; Grossberg 1987).

Backpropagation requires synaptic symmetry in the forward and backward pass. The
error δ of Equation 3.8 needs to be sent from the post-synaptic to the pre-synaptic neuron.
In ANNs this is realized as a flow back through the layers along the weights w. However,
the error is dependent on the feedback weights which are symmetric to the weights of the
forward pass (see also Figure 3.1). Having the same set of weights for two different connection
paths is biological implausible. This is known as the “weight transport problem” (Grossberg
1987). Furthermore, to update one synaptic connection, distant error signals and the weights
of other connections need to be specified, however, this information is not locally available for
the synapse. Recent work showed alternative solutions and approximations using plausible
computations. For example, Lillicrap et al. (2016) propose feedback-alignment; a method
which uses fixed random weight feedback matrices between the network layers and allows
backpropagation to update the feed-forward weights to align with the feedback matrices. A
modification suggested by Nøkland (2016) utilizes the random feedback to pass directly the
error obtained at the network output to every layer. Samadi et al. (2017) apply the direct
feedback alignment to spiking neural networks. However, an effective application of feedback
alignment algorithm is limited to shallow networks, deep networks lose accuracy under such
a procedure (Bartunov et al. 2018).

Training ANNs is divided into the feed-forward step and the backwards step. Only at the
output of the network the error is evaluated and propagated back. From a biological viewpoint
this approach is problematic. In mammalian brains there is no such a separation into two
distinct phases. For example, plasticity between synapses occurs locally and in a constant
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manner. Recently, Sacramento et al. (2018) propose a framework in which a neuron can be
simultaneously used for activity propagation, error encoding and error propagation in different
locations of the neuron without the need for different learning stages. The weights update
depends on the difference between the predictive input steered by synaptic plasticity and
error feedback from deeper layers. Although the framework is biological plausible in many
aspects, the implemented model requires a strict connectivity between the layers, which does
not align with neuroscientific experiments.

1-1

1

Figure 3.4: The all-or-nothing behaviour of a spiking neuron is expressed as a Heaviside step
function H(v) (blue), its derivative is zero except at 0, where it is ill-defined.
Piece-wise linear functions (orange) can approximate the gradient at 0.

Another challenge is the non-differentiability of the spiking non-linearity. In the backprop-
agation step and in BPTT the activation function needs to be derived as well (see Equation 3.8
and Equation 3.9). In the spiking neuron, however, the all-or-nothing behaviour to emit a
spike can be understood as a Heavside step function, thus the derivative is zero except at 0
(blue line in Figure 3.4), where it is ill-defined. Thus, an exact calculation of the gradient
is intractable and often approximations are suggested. The simplest solution, is a piece-wise
linear approximation as depicted in the schematic Figure 3.4 (orange line). In recent work
surrogate gradients were introduced (Neftci et al. 2019; Bellec et al. 2019; Woźniak et al. 2020)
to overcome this issue. Surrogate gradient learning involves the membrane potential to obtain
gradients or is based on the recent spiking activity of the neuron. Other approaches apply
smoothing on the neuron by altering the synapse properties. For example, Huh et al. (2018)
modify an IF neuron and replace the non-linearity by a continuous-valued gating function,
thus, they are able to directly apply backpropagation.

Finally, backpropagation requires to calculate the error between the target and the prediction.
How such a target signal could be realized in the brain is not clear.
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3.3 Metaheuristics

Heuristic algorithms are based on a trial and error approach. In general, they should be
applicable for many problems and agnostic of the task itself. Metaheuristics are based on
heuristics, however, they use a trade-off between local and random search. In this context,
also taking the term “meta” into account, metaheuristic can be understood as a higher-level
strategy to discover solutions of a problem and to guide the search process. Metaheuristics
perform better and computationally more efficient than simple heuristic approaches. They
are approximating and often non-deterministic (Blum et al. 2003). Most metaheuristic opti-
mization algorithms are inspired by nature, they mimic biological or evolutionary processes
and consist of two fundamental components:

1. Selection of the best ensures the algorithm converges to an optimal solution by
ranking the problem solutions and selecting the best.

2. Randomization avoids that the algorithm gets trapped in a local optima and enlarges
the pool of possible solutions, i.e. it increases the diversity of the possible solutions.

In most cases, a trade-off between these two components will lead to a suitable local optimum
or even to the global optimum. Furthermore, in metaheuristic optimization a balance between
exploration and exploitation of the search process is very important. Exploration is the
divergence of the search space, i.e. the search for possible better solutions than the already
found ones by exploring the search space maximally. For example, increasing the search space
when initializing the optimization algorithm is a strategy to cover a broad range of search
solutions. Exploitation is a concept to strengthen the search space by exploring better
performing solutions in the neighborhood of found solutions. For instance, perturbing the
solutions with noise to acquire new search candidates is a common applied technique.

Metaheuristic algorithms can be classified into two types, population based and trajectory
based. Population based algorithms use several individuals or agents to explore the search
space, in the mathematical framework described in Section 3.1 they are different instances of
the vector x. These individuals are often randomly initialized according certain distributions
and interact with each other in every optimization step. Examples of such algorithms are ant
colony optimization, evolutionary strategies including genetic algorithms, ensemble Kalman
filter and particle swam optimization.
Trajectory based methods are single point search techniques. They do not rely on a popula-
tion of individuals but use a single agent or solution which explores the search space in a piece
wise manner, thus, describing a single trajectory. Simulated annealing, tabu search, iterated
local search and variable neighborhood search are realizations of trajectory based algorithms.
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3.3.1 Evolutionary Strategies

Algorithm 1: Basic genetic algorithm. To create a new population the crossover
and mutation steps are applied on a selection of fittest individuals.
1 Initialize population P with M individuals
2 while convergence condition not met do
3 f ← Fitness(P)
4 for i in P do
5 O← Select(P, f)
6 end
7 for o in O do
8 P′ ← Crossover(o)
9 end

10 for j in P′ do
11 P′′ ←Mutate(j)
12 end
13 f ← Fitness(P′′)
14 P← Select(P ∪P′′, f)
15 end

Evolutionary strategies are metaheuristic search techniques and are inspired by biological evo-
lution. Within the family of evolutionary strategies the genetic algorithm (GA) is the most
prominent gradient free, optimization algorithm. GA was introduced by Holland (1992) and
mimics evolutionary processes such as selection, reproduction and survival of the fittest (Si-
mon 2013). Because the algorithm is based on biology the terminology is inspired by nature
as well. The elements spanning the search space (c.f. Section3.1) are called individuals, the
set of individuals is the population P. The performance of the population is evaluated by
a fitness function (the objective function) and results in a fitness value f . The fitness can
be a vector or a scalar and depends on the objective function as well as the corresponding
task. The design of the fitness of is the one the most challenging but important parts, since it
defines the success of the whole optimization. Single elements of the individuals (mathemat-
ically xi) are the chromosomes. A selection phase ensures the best or fittest individuals are
passed to the next generation (also known as elite strategy). This is in order to keep a high
fitness within the population and not to coincidentally remove high performing individuals.
In the tournament phase the individuals from the actual generation are compared with each
other and ranked according to their fitness. The Hall of Fame (HoF) keeps track of the best
individuals in every generation. In the HoF, the individuals with a higher fitness replace
worse performing ones and are stored over the generations. Crossover and mutation are two
techniques to randomly recombine the chromosomes of the individuals to generate a new
population. Crossover takes two parent chromosomes and exchanges them with each other.
Mutation perturbs chromosomes, e.g. by adding Gaussian noise. Algorithm 1 illustrates a
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Parents

Crossover Mutation

Offspring
Figure 3.5: A sketch of the recombination process. The left side shows two parental indi-

viduals, the colors depict chromosomes. In the first steps crossover is applied.
The second step shows the mutation of an individual. Given a probability the
chromosome is changed, e.g. by adding Gaussian noise. The crossover step does
not have to be applied beforehand.

simple implementation, written in pseudo-code. The algorithm iterates until a convergence
criterion is met, for example this can be a predefined generation number or a target fitness
value. In every generation the fitness is evaluated before selection and recombination. De-
pending on its value, the fitness defines which individuals go into crossover and mutation and
which individuals are kept for the next generation. This ensures to search for good solution
candidates in the local neighborhood (exploitation step) but allows also to increase the search
space (exploration for better optima). Depending on the fitness the final step mixes the newly
obtained generation with the old kept generation.

Different, alternative versions to the classical GA exist. In a recent work Salimans et al.
(2017) create a new population by applying Gaussian noise to the fittest individuals and
calculate a stochastic gradient estimate over several episodes to update the parameters. Sim-
ilarly, the authors of Wierstra et al. (2014) apply the natural evolution strategies (NES)
optimizer, a sampling technique which utilizes a multivariate Gaussian distribution to create
new individuals.

3.3.2 Ant Colony Optimization

The ant colony optimization algorithm (ACO) is based on the movement of ants to randomly
forage for food in the environment and quickly bring it back to the nest. The ants are able
to deposit chemical signals, pheromones, on the ground to mark the path and guide other
cohorts from the nest to the food source. The pheromone leaves a fading trail and the more
ants follow this trail the higher the concentration. ACOs are applied in travel salesman
problems or graph problems and can be described as follows. ηij is a heuristic value when
moving between two points i and j (e.g. hive and food patch, usually set as 1/dij with d the
distance), then pkij is the probability that an ant k will move from point i to j using the
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amount of pheromone τij (Iba et al. 2020):

pkij =
τijη

α
ij∑

h∈Jk
i
τihη

α
ih

, (3.16)

where J is the set of points the ants can still visit and α is a factor to weight the distance
to travel. The equation expresses the condition that the ants will move towards the higher
pheromone concentration, but also includes past searches as well as the heuristic to further
explore the environment. The pheromone trails are updated when every ant completed her
turn. The amount is increased or decreased depending on the found solution:

τij = (1− ρ)τij +
∑
k

∆τkij , (3.17)

where ρ is the pheromone evaporation coefficient. ∆τij is the amount of pheromone deposited
by ant k:

∆τkij =

Q/Lk if ant k goes from i to j,

0 otherwise .
(3.18)

Q is a constant (e.g. Q = 1) and Lk is the length of the tour the kth ant takes. Because the
pheromone evaporates with time, long tours contribute to a low density of concentration. In
contrast a high pheromone amount indicates a high transit of ants from point i to j. This
results in finding the shortest path between the food sources and the nest.

3.3.3 Ensemble Kalman Filter

The ensemble Kalman filter (EnKF; Evensen 1994) is an iterative numerical method for
nonlinear dynamic filtering problems under noise. It is suitable for problems with a large
number of variables, for example partial differential equations in geophysical models such
as weather forecast simulations and similar data-assimilation applications (Evensen 1994;
Janjic et al. 2014; Schwenzer et al. 2019) as well as in mathematical studies (Schillings et al.
2018; Herty et al. 2019). Recently, Iglesias et al. (2013) applied the EnKF also to inverse
problems. The EnKF consists of a set of particles, the ensemble, which approximate the
state distribution (Katzfuss et al. 2016). The state distribution is the distribution of a state
space model in time which consists of an observation and an evolution part. The ensemble
is propagated through time and updated with new incoming data. Thus, the method can
be divided into different phases as depicted in Figure 3.6: The initialization which takes a
priori knowledge into account, the prediction and the update step. If a priori knowledge
is available, it can be incorporated into the EnKF in form of state matrices. At the start
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Prediction step
Based on e.g.

physical model

Prior knowledge
of state

Update step
Compare prediction
to measurements

 

Measurements

Next timestep

Output estimate
of state

G(u)
Model State

Figure 3.6: The prediction and update step of the ensemble Kalman filter. A priori knowledge
state matrices, e.g. the weather state over the last days for a weather forecasting
scenario, or a certain initialization scheme of the ensembles can be incorporated
into the method. In the next step the model makes a prediction to approximate
the solution. The prediction is compared in the update step with new incoming
observations or measurements. Afterwards, the method converges or continues
the iteration. Modified from Wikimedia Commons

of the iteration, assumptions on the ensemble’s initialization, such as the state distribution
being a Gaussian normal distribution with a specified mean and standard deviation, can
be accounted for. The prediction, is the model output G(u) and provides a solution or an
approximation to the given optimization problem. Afterwards, the output is compared with
new incoming observations (or measurements) to update the ensemble to incorporate new
data. The ensemble is shifted by moving its mean towards the distribution of the state, this
is schematically indicated in the Figure 3.6 as a moving point cloud from the prior state to
the output estimate. The method converges if the convergence criterion is met or continues
with the next iteration. The EnKF has its root in Bayesian inference, the method uses linear
update rules to convert the prior ensemble distribution to a posterior distribution after each
update (Katzfuss et al. 2016). This means, in the next iteration the posterior is accounted as
the prior knowledge of the state.

Following the formulation by Iglesias et al. (2013) the EnKF can be described as:

un+1
j = un

j +C(Un)
(
D(Un) + Γ−1

)−1 (
yn+1 − G(un

j )
)

(3.19)

where Un = {un
j }Jj=1 is the set of the ensemble, n is the iteration index, uj ∈ Rd is an

ensemble member (or state vector) and J is the total number of the members in the ensemble
and G(u) ∈ RK×d. Γ ∈ RK×K is the covariance matrix related to the measurement of noise
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and often multiplied with the scaling factor 1
∆t . In this work, Γ is an identity matrix multiplied

with a small scalar, i.e. Γ = γI. J, γ, and n are the hyper-parameters of the EnKF.

The matrices C(Un) and D(Un) are sample covariance matrices defined by:

C(U) = 1
J

J∑
j=1

(uj − u)⊗
(
G(uj)− G

)
∈ Rd×K ,

D(U) = 1
J

J∑
j=1

(
G(uj)− G

)
⊗
(
G(uj)− G

)
∈ RK×K ,

u = 1
J

J∑
j=1

uj , G = 1
J

J∑
j=1
G(uj) ,

(3.20)

where ⊗ is the tensor-product. Both matrices are important for the convergence behaviour of
the EnKF ,which can be compared to gradient descent. The matrices define in which direction
the mean in the feature space shifts and how the ensemble variance contracts.

Equation 3.19 is the update step of the EnKF, while the latter part requires the model
output G(u)j and the observations y obtained in an earlier step. The later part subtracts
the model output from the observation, thus it corrects the model prediction by calculating
the distance to the observations. The greater the distance, the larger the prediction error,
which has a greater weight in the update step. Kovachki et al. (2018) have shown that
under simplified assumptions it exists u⋆ = argmin(Φ(u,y)) and 1

N

∑J
j=1 un

j
n→∞−−−→ u∗. The

first equation describes the minimization of the ensemble members given the labels y in a
supervised learning setting and will be utilized in Chapter 4 to optimize a convolutional
network. The latter, more theoretical term indicates that a local or global minimum exists if
the number of members goes towards infinity. Then, the optimum is the mean of all ensemble
members.

3.4 Summary

Optimization is the process of obtaining the best set of parameters with regards to one or more
criteria. In mathematical terms an optimizer minimizes or maximizes a problem expressed as
a function. In machine learning and deep learning, gradient descent and backpropagation is
commonly used when training neural networks. Backpropagation through time incorporates
the notion of time and is applicable on artificial recurrent neural networks. For every time step
the recurrent network is unrolled so that backpropagation can calculate the derivatives with
respect to the weights, which is a time and compute intensive operation. In deep networks
the exploding or vanishing problem can appear, which leads to a saturation of the neurons,
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thus, hindering any further network learning.

The process of how biological networks are trained in the brain is still an ongoing area of re-
search. Reinforcement learning in combination with synaptic plasticity (see Section 2.5.2) are
developed theories indicating how biological networks may be trained in the brain. Moreover,
neurotransmitters and neuromodulators, such as dopamine, serotonin, and norepinephrine,
play a role in regulating synaptic plasticity. These chemicals can influence the strengthening
or weakening of neuronal synapses based on the brain’s dynamics and (external) environmen-
tal conditions. However, optimizing biological networks using standard backpropagation is
biologically implausible and a direct application is not possible. Instead, metaheuritics as op-
timization techniques can provide alternative solutions. They do not require the calculation of
a gradient and are also model agnostic. Many population based optimization methods, such
as the ant colony optimization and genetic algorithm, are inspired by biological observations.
Especially, the ensemble Kalman filter and the genetic algorithm are two techniques, which
will be utilized in the following chapters when optimizing spiking neural networks.
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Ensemble Kalman Filter

The vanishing and exploding gradient problem was introduced in the previous chapter (Sec-
tion 3.2.3), in this chapter I will discuss the effects of vanishing gradients on neural networks
(Section 4.1) and present the ensemble Kalman filter as an alternative, gradient-free opti-
mization technique applied on a convolutional neural network. The problem is connected to
the parameter settings for neural networks, such as the initialization scheme of the weights
and the selected activation functions. Applying the EnKF the problem of vanishing gradients
does not occur, because the method does not explicitly calculate gradients and allows the
employment of non differentiable activation functions. Even with ill-conditioned settings the
EnKF is able to optimize the network and an overall satisfactory classification performance
on the MNIST and letters dataset is achieved (Section 4.4).

The main aim of this chapter is to analyze network parameter configurations which lead to the
vanishing gradient problem when training the network with gradient based methods and how
the EnKF provides an alternative and stable solution, since it does not require to calculate
gradients. Therefore, I will explicate a setup where a CNN learns to classify a task and
compare the performance of two gradient descent methods and the EnKF while optimizing the
weights of the network during the training process. Analyzing the gradients and weights over
the training iterations will show how vanishing gradients affect the learning when optimized
with gradient descent. In contrast, this effect does not appear when optimizing with the
EnKF.

A typical hyper-parameter for the ensemble Kalman filter is the number of state vectors in
the ensemble, which influences the overall performance of the network. In Section 4.4.2, I
will show that, additionally, the accuracy of the network on the classification tasks depends
to a great extent on the ensemble member size. Similarly, one other hyper-parameter is the
repetition size, i.e. how often the same sample of data-points is presented to the network while
training and before a new set is shown. To automatically adjust the repetition and ensemble
member size, I will introduce an adaptive technique based on the previously obtained accuracy
(Section 4.4.4).
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4.1 The Effects of Vanishing Gradients in Deep Neural Networks
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Figure 4.1: Mean test error of a CNN optimized by SGD (blue line) and EnKF (green line).
The network is trained for one epoch and the mean error over 10 separate runs is
depicted. The shaded area is the standard deviation of the error. The weights are
sampled from the normal distribution with a standard deviation of σ = 1. The
test is performed on a test dataset every 500 iterations.

The initialization of weights and the selected activation functions are factors which determine
the performance of deep artificial neural networks (Xie et al. 2017; Hayou et al. 2019). Poorly
selected parameters can result in loss of information in the feedforward step of the network
training or lead to the vanishing or exploding gradient issue in the backpropagation phase (Y.
Bengio, P. Frasconi, et al. 1993; Y. Bengio, Simard, et al. 1994; Hochreiter, Yoshua Bengio,
et al. 2001; Sutskever et al. 2013, see also Section 3.2.3). Figure 4.1 illustrates the vanishing
gradient problem for a CNN (see Section 4.2) trained to classify the MNIST (Yann LeCun,
Cortes, et al. 2010) dataset over one epoch for 10 different runs. The dark colored line is
the mean test error, on a test dataset in every 500th iteration. The shaded area depicts the
standard deviation of the error of all 10 runs. If the initialization of the weights is non-optimal
the SGD is not able to train the network due to vanishing gradients (a detailed explanation
is given in Section 4.3). In contrast, the EnKF optimizes the network to perform well. In all
10 runs the error stays low as the standard deviation in the zoomed view displays.
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Figure 4.2: The iterative workflow depicts a training run of a CNN. The network is optimized
by the EnKF. In the initialization the network weights are sampled form a normal
distribution. A mini-batch of digits is presented to the network, which classifies
the input. Afterwards, the weights are updated by the EnKF and fed back to
the network. The hyper-parameters of the optimizer are adjusted in an adaptive
manner.

4.2 Experimental Setup and Network Optimization

In this setting, the network is a convolutional neural network, consisting of two convolutional
layers and a fully connected output layer, as depicted in Figure 4.2. The activation function
is the logistic function and applied on all layers. The kernel size of the convolution is of
size 5 × 5 and has a stride of 1. On both convolution layers max pooling is applied with a
kernel size of 2 and a stride of 2. The experiments are conducted on a compute node with
an NVIDIA Tesla K20c graphic card, an Intel i74770 CPU, the operating system is Scientific
Linux 7.4. The network is implemented with PyTorch v1.2.0.

4.2.1 Ensemble Kalman Filter Optimization

Parameter estimations fall under the domain of inverse problems (Tarantola 2004), thus the
EnKF can be applied here. The ensemble Kalman filter (see Section 3.3.3) requires the evalu-
ation of the feedforward pass, and omits the backpropagation step when training deep neural
networks. In contrast to gradient based methods, the EnKF is easily parallelizable, since the
model outputs are not dependent on each other and the covariance matrix calculations can
be executed in parallel as well.

Kovachki et al. (2018) and Mirikitani et al. (2008) presented first results training deep neural
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networks and recurrent neural networks with the EnKF. Kovachki et al. (2018) formulate the
network training as a minimization problem for Φ:

Φ(u,y) = ∥G(u)− y∥2Γ , (4.1)

where G(u) is the model output, i.e. the output of the feed-forward network, and y is the
target or label. In this setting, the ensemble uj is the weight matrix of a convolutional neural
network.

The optimization workflow is depicted in Figure 4.2, the experiments are performed on the
MNIST dataset. In Section 4.4.3, classification results using the letters dataset are shown as
well. In the initialization, the network biases are set to 0 and the weights W = (Wi,k)i,k for
each layer are drawn from a normal distribution:

Wi,k ∼ N (µ, σ2) (4.2)

with µ = 0, σ ∈ [0.01, 10], where N is the normal distribution with mean µ and variance σ.

Every member of un at n = 0 is initialized J times, i.e. a single member j of the ensemble
corresponds to a random initialized weight matrix W drawn from the normal distribution
N (µ, σ2). This matrix corresponds to u0

j := W ∈ Rlayer×weights for j = 1, . . . , J . un
j for

n > 0 is obtained by the update step in Equation 3.19. The initial ensemble member size
is J = 5000. Different settings will be discussed in Section 4.4.2. For J iterations the j-th
ensemble is initialized as weights for the network and one classification step is performed for
a mini-batch of size 64. The scaling factor γ is a constant in all runs and set to γ = 0.01.

The EnKF receives the output of the network and the targets and a new set of the ensemble
J is calculated according to Equation 3.19. A repetitive presentation of the mini-batch before
switching to a new set of images increased the network performance and helped the opti-
mization process to converge faster. To reach a high accuracy on the training set the initial
number of repetitions is 8. A smaller number or even omitting the repetition is possible after
500 iterations and when a high test accuracy is obtained (see Section 4.4.4). Every 500th
iterations, after completing the training, the test errors are acquired. The mean vector u of
the ensemble is calculated and set as the network weights in order to test the network on a
test set in order to obtain the classification error.

4.2.2 Training with Gradient Descent

In a second setting, SGD and Adam are chosen as optimizers when training the network. The
training procedure is similar to the workflow described as above. The cross entropy loss, a
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combination of the negative log-likelihood and log softmax, is applied on the model output
zj = G(uj):

σ(zj) = − log
(

ezj∑
i e

zi

)
. (4.3)

However, for longer runs the network is not able learn or improve its accuracy on the test set
when optimized by SGD (see Section 4.3.1).

4.3 Numerical Results with Gradient Descent Optimizers

In this section, the focus is on how the gradients and activation values are affected by the
vanishing gradient problem when optimized with SGD and Adam. The initialization scheme
described in Section 4.2 is applied here as well. Afterwards, the influence of different sigmoidal
activation functions, i.e. the logistic function, ReLU, Tanh, on the network performance on the
basis of the test error is discussed. Similarly, a varying number of the ensemble members affect
the performance of the EnKF. Furthermore, training results on the letters dataset (Bulatov
2018) are presented.

4.3.1 Optimization with SGD: Non evolving Gradients and Activation Values

In the aforementioned experimental setup applying SGD as an optimizer leads to a saturation
of the neurons in the early training stage. Even in later phases the units cannot recover as
depicted in Figure 4.3a. Here, the evolution of the mean in dark blue for the first, orange for
the second and green line for the last layer and standard deviation of the activation values,
respective in light blue, orange and green vertical bars, is shown. The logistic function is
applied on the hidden layers over all mini-batch iterations. The activation values saturate
around 200 iterations for the first and second layer. The mean activation value of layer one is
0.4597, with a standard deviation of 0.2976, for layer two the mean activation is 0.3178 and
with 0.4624 as the standard deviation. The mean activation value in layer three (0.1) stays
constant through the whole training and has a standard deviation of 0.2908.

The gradients saturate as depicted in the histogram of Figure 4.3b. The plot shows addi-
tionally a kernel density estimation (KDE) to highlight peaks in the distribution. After 800
mini-batch iterations the distribution does not change and the mean of the gradients is close
to zero, the gradients are saturated.

After more than 50 epochs the network is still not able to learn. This is shown in Figure 4.4a,
the gradients have zero mean for all three layers. While the first two layers have a standard
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Figure 4.3: Activation values and gradient distributions in one epoch using SGD as an opti-
mizer. (a) Mean and standard deviation of the activation values during training.
The lines depict the means of the three layers (blue: first layer, orange: second
layer, green: third layer) and the corresponding vertical bars are the standard
deviations. Every 8th entry is displayed. (b) The distribution of gradients is de-
picted as a histogram with a KDE plot. The mean value is close to 0 for all three
layers. One epoch is run with a mini-batch size of 64.

deviation around the value of 0, the third layer has an oscillating standard deviation around
the value of 0.1. Similarly, the activation functions stay between a mean of 0 and 0.5, as it
can be seen in the distribution of the mean activation (Figure 4.4b). A small shift in the
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mean from 0.475 towards 0.5 occurs in layer one, however, the values of the other layers do
not change and are close to zero.
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Figure 4.4: Activation values and gradient distributions over epochs using SGD as an opti-
mizer. (a) Mean of the backpropagated gradients (blue: first layer, orange: second
layer, green: third layer) and the standard deviation (blue, orange and green ver-
tical bars) for all three layers over 50 epochs. (b) Mean distributions of activation
values over 50 epochs depicted for all layers. Colors indicate the epoch. Blue:
epoch 0, orange: epoch 10, green: epoch 20, violet: epoch 40.
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Figure 4.5: Network test error. The network is trained for 50 epochs on the MNIST dataset
and optimized by SGD and Adam. The weights are initialized using a normal
distribution with different standard deviations σ. Blue: SGD, σ = 1; orange:
SGD, σ = 3; green: Adam, σ = 1; red line: Adam, σ = 3.

4.3.2 Optimization with Adam: Slowly evolving Gradients and Activation Values

In contrast to SGD, Adam is more robust regarding the performance when optimizing the
network. For a standard deviation of σ = 1 the network starts to correctly classify the dataset.
However, this process is slow, after 10 epochs the network reaches a test accuracy of 95% (see
Figure 4.5, green line). Fixing σ = 3, the behaviour resembles the SGD setting in the first
epochs (Figure 4.5, red line). Until the 30th epoch, the network is not able to classify the
dataset, afterwards it slowly starts to perform better but does not reach the same accuracy
as the setting with σ = 1.

In the setting with σ = 3, the mean and standard deviation of the activation values within in
the first epoch for layer one does not show a fast saturation as depicted in Figure 4.6a (dark
blue). An increase of the mean value of the activation values from 0.49 up to 0.53 can be
observed (an overall mean value of 0.5124), with a standard deviation of 0.2860. Analyzing
layer two, a slow saturation in the longer run can be seen. From the first iteration on, layer
two increases its mean activation value (0.47) to the value 0.5, but it stagnates at around the
400th iteration with a value of 0.5 (overall mean is 0.4957, standard deviation is 0.4965). The
mean value of layer three stays constant at 0.1. Figure 4.6b shows the mean distribution of
gradients after one epoch and obtained after the backpropagation step. The mean is close to
zero for all layers.

Figure 4.7a shows how the mean activation values evolve within 50 epochs. Only after 30
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Figure 4.6: Activation values and gradient distributions in one epoch using Adam as an
optimizer, σ = 3. (a) Mean (shown as lines, layer 1: dark blue, layer 2: orange
and layer 3: green) and standard deviation (blue, orange and green vertical bars)
of the activation values of the three network layers over one epoch. (b) Histogram
depicting the distribution of the gradients. The mean value for all three layers is
close to 0. The input has a mini-batch size of 64.

epochs the performance is starting to increase as shown in Figure 4.5. Before 30 epochs the
network is not able to classify the dataset, i.e. the test error is higher than 60%. The mean
activations in Figure 4.7a explain this issue. In the first epoch the distribution is around
0.49, after 40 epochs the distribution evolves around 0.56. In contrast, the distribution of the
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activation values of layers two and three do not change, they stay around 0.5 and 0.0.
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Figure 4.7: Activation values and gradient distributions over epochs using Adam as an opti-
mizer. (a) Mean (line) and standard deviation (vertical bar) of the backpropagated
gradients for all three layers for 50 epochs. (b) Mean distributions of activation
values over 50 epochs for all three layers. Colors indicate the epoch. Blue: epoch
0, orange: epoch 10, green: epoch 20, violet: epoch 40.

However, after 30 epochs the network is able to classify the dataset and exhibits a better
performance (less than 15% test error). Up to epoch 10 the mean and standard deviations of
the backpropagated gradients in layer one and layer two do not fluctuate much as depicted in
Figure 4.7a. Until then, the network is not capable to learn (test accuracy below 10%). Mean
values in the first epochs for layer one are between −0.3 and 0.2 and standard deviations
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are between −0.8 and 0.6 with decreasing trend. For layer two the mean values are between
−0.1 and 0.1 and the standard deviations are between −0.2 and 0.2. From epoch 10 up
to epoch 28 mean and standard deviation of layer one and two decrease and stay close to
zero. After the 28th epoch the network performs better. An increase and a small variance
in the mean and standard deviations of layer one is observable (layer one means around:
[−0.02, 0.02], standard deviations: [−0.01, 0.06]). There is a small shift in layer two (means
around [−0.01, 0.01], standard deviation: [−0.01, 0.03]). However, the mean activation value
of layer three is constant in all iterations with a small value close to zero. In contrast, the
standard deviation starts in the first epoch at 0.16 and decreases to 0.01. The results can be
interpreted as follows:

1. A network can recover from the vanishing gradient problem, i.e. the saturation of its
gradients, if given enough time to train.

2. The network can converge to classification rates with high accuracy only for suitable
initial settings.

4.4 Optimization Results with the EnKF

For the same, above mentioned setup, the network reaches a high test accuracy when using
the ensemble Kalman filter as an optimizer, which shown in Figure 4.8a and Figure 4.9. After
the first epoch the network has already a small test error of 3.8% on the MNIST dataset.

In the following, the performance with a varying number of ensemble members and the sen-
sitivity to different activation functions is analyzed.

4.4.1 The Effect of Different Activation Functions

Figure 4.8a depicts the classification test errors on the MNIST test dataset using different
activation functions and the EnKF as an optimizer. A minor difference in the test errors is
observable when ReLU (Figure 4.8a, gray line) or the logistic function (Figure 4.8a, purple
line) as activation functions are applied. The test errors obtained with ReLU and the logistic
function in the 500th iteration are 6.56% and 6.11% with a difference of only 0.45%. After one
epoch (60000 training samples × 1/8 mini-batch samples × 8 repetitions = 7500 iterations)
the error is at 3.8% with logistic function applied and at 3.75% for ReLU. The performance
with Tanh as the activation function is slightly worse, with a test error of 8.15% at the 500th
iteration and 4.51% after one epoch (brown line). This discrepancy may be due to the range
of the Tanh function, which is in [−1, 1], whereas the range of the normalized images is
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Figure 4.8: EnKF optimization test results with different activation values and ensemble
member sizes. (a) Test error on the MNIST dataset for different activation
functions within one epoch. The purple line is the logistic function, gray line
is ReLU and the brown line shows the Tanh activation function. (b) Test error on
the MNIST dataset for different ensemble member sizes within one epoch. Every
500th iteration is shown. The blue line depicts the error for 100 ensemble mem-
bers, the orange line for 5000 members and the green line for 10000 members.

between [0, 1]. A similar observation is described in Y. LeCun et al. (1998). Due to the fast
convergence of the EnKF , the network reaches a high accuracy already after 500 iterations.
Afterwards, the improvement slows down, the accuracy between the 500th and the 7500th
iteration increases approximately around 3% for all settings.

4.4.2 Varying Number of the Ensemble Members

The number of ensemble members is a hyper-parameter. The convergence behavior of the
EnKF is dependent on this value. Figure 4.8b depicts the test error for a different number
of ensemble members. A number of hundred ensemble members is not sufficient to optimize
the network and to reach a suitable accuracy. The test error fluctuates around 47%, which is
just above chance level. In contrast, with a higher number of ensemble members, e.g. 5000
members, it is possible to achieve a good performance on the test set. After one epoch the
test error is at 3.8%. In comparison, a higher number of 10000 ensemble members decreases
the error to 3%. This means, that a higher number does not necessarily lead to a better
performance.
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4.4.3 Performance on the Letters Dataset
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Figure 4.9: Test error on the letters dataset for different sizes of the ensemble members. The
blue line depicts the error obtained with 5000 members and the orange line for
10000 members. Every 500th iteration the error is shown.

Figure 4.9 depicts the test error on the letters dataset. The letters dataset is similar to
MNIST, it contains 10 types of handwritten letters, with a total set of 70000 samples. This
dataset is little bit more difficult to classify than the MNIST dataset. The setup is the
same as described in Section 4.2.2. Figure 4.9 shows the test errors obtained with 5000 and
10000 ensemble members. A higher number of ensemble members achieves a slightly better
performance with a test error of 15.1% within one epoch. The test error for 5000 member is
at 16.32%. A higher number of ensemble members enables a better performance but is not
necessarily an overall solution to increase the accuracy. An experiment to test if a run with
a smaller size less than 10000 members could achieve the same error rate was not conducted.

4.4.4 Adapting the Hyper-Parameters

The obtained results indicate the possibility to adapt the hyper-parameters of the EnKF.
Therefore, this section describes an algorithm to decrease the number of ensemble members,
repetitions and iterations. The main idea is to compare the actual test accuracy with the
previous one (tn, tn−1) and adjust the value of the parameters within predefined upper and
lower boundaries (bu, bl). A detailed description is given in Algorithm 2 and the procedure is
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Algorithm 2: Algorithm adapting the hyper-parameters of the EnKF based on the
test error.

Input: Lower bound bl, upper bound bu, error threshold ϵ, test error tn, mini-batch
size m, length of dataset Ds, update interval τ , ensemble update step υ,
error difference threshold κ

Output: Number of ensemble members J , total iterations N , repetitions r
1 if n mod τ = 0 and n > 0 then
2 if tn < ϵ and tn < tn−1 then
3 if J > bl and tn−1 − tn ≤ κ then
4 J = J − υ

5 N = Ds
m · r

6 r = r − 1
7 end
8 else if n < bu and tn−1 − tn > κ then
9 J = J + υ

10 N = Ds
m · r

11 r = r + 1
12 end
13 end
14 end
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Figure 4.10: Two runs on the MNIST dataset with (adaptive, orange graphs) and without
(fixed, blue graphs) adaptive changes. In the adaptive setting, every 500 iteration
the values of the parameters required by the EnKF are dynamically changed
depending on the test errors.

explained in the following.

Figure 4.10 depicts two EnKF optimization runs on the MNIST dataset. The orange line
displays the adaptive changes and the blue line shows a run without any parameter adjust-
ments and follows the setup described in Section 4.2 (c.f. Figure 4.8a). In the latter setting,
the values of the hyper-parameters are fixed. The left plot shows the test error, the number
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of ensemble members and repetitions are on the right plot. In every 500th iteration (τ = 500
in Algorithm 2) the test errors determine the parameter change if tn < ϵ with ϵ = 10% test
error. The iteration of the test error of the fixed parameter run goes only up to iteration
2500, because by then the adaptive setting has completed one epoch. The adaptive param-
eter adjustments (Figure 4.10 left, orange line with dots) do not increase the test error and
reach the same accuracy as the fixed run (blue line with dots). Due to the fast converge of
the optimizer it is possible to decrease the repetition number r by 1 in every 500th iteration
(Figure 4.10 right, orange line with stars). Additionally, after some iterations and after a high
accuracy is reached, more repetitions of the same mini-batch do not increase the performance
any further. The number of ensemble members N decreases after 1500 iterations by υ = 1000
(orange line with squares). This setting is rather conservative since it increases or decreases
the parameters slowly. For instance, the number of ensemble members decreases only by
υ = 1000 and not, e.g., by half to ensure smaller changes and stability. The lower bound bl is
initialized with a minimal number of 1000 ensemble members and the upper bound bu is set
to a maximal number of 10000 ensemble members. Another condition to decrease the values
is the difference between the previous and actual test error which has to be equal or less than
κ = 1, i.e. tn−1 − tn ≤ κ. This setting is restrictive and causes a slow decrease regarding
the number of ensemble members after 1500 iterations. In the conducted experiments, an
increase in the test error does not occur, thus no parameter is increased.

4.4.5 Convergence of the EnKF
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Figure 4.11: Kullback-Leibler divergence (DKL) between ensemble members. Every 500th
iteration the DKL is calculated between the previous and the actual test iteration.
After the 1500th iteration the DKL varies minimally. The EnKF algorithm has
converged. The network is trained on the MNIST dataset.

67



4 Deep Neural Networks Optimized by the Ensemble Kalman Filter

The convergence behavior of the EnKF algorithm by means of the Kullback-Leibler divergence
is analyzed in this section. The Kullback-Leibler divergence (DKL; MacKay 2003) is defined
as:

DKL = (P ||Q) =
∑
x

P (x) log
(
P (x)
Q(x)

)
(4.4)

for two probability distribution P (x) and Q(x) over the probability space X .

Figure 4.11 shows the Kullback-Leibler divergence applied on the network connection weights,
i.e. the ensemble members. Before the DKL between the ensemble members of the previous
(P (x)) and actual test (Q(x)) iteration is computed (e.g. between the 500 and 1000th itera-
tion), the distribution over the members is calculated. Additionally, the ensemble members
are normalized, so that the sum of the distribution is equal to one. As visible in Figure 4.11,
after the 500th step the DKL varies only a little bit. The little fluctuations between the
iterations around 0, especially after the 1500th iteration, show that the EnKF optimization
has converged, which aligns with the slowly evolving network performance after 2000 itera-
tions (compare with Figure 4.8a). This can be also observed in the test errors of Figure 4.8a:
Between the 500th and the 7500th iteration the accuracy improves slightly, approximately
3%. It is possible to soften the strong convergence in order to increase the performance by
adding more variance to the ensemble members in the update step of the EnKF as suggested
by Kovachki et al. (2018), e.g. by adding Gaussian noise.
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Figure 4.12: Mean (dark line) and standard deviation (vertical bar) of the activation values
for the three hidden layers of the network during training on the MNIST dataset.
The optimizer is the EnKF.
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A problem described in Section 4.3.1 and Section 4.3.2 are the non evolving gradients or
activation function values, which hindered the network to learn. In a similar way the mean
and standard deviation of the activation values during training while being optimized by the
EnKF are investigated. As seen in Figure 4.12 the means and standard deviations of all layers
do vary. For layer one, the mean oscillates around 0.54 with a maximal standard deviation of
0.2. Layer two shows less variance in its mean of 0.53 after the first iterations with a standard
deviation of 0.19. A similar situation can be observed for layer three, after the first iteration
the mean varies around 0.1 and a maximal standard deviation of 0.4. The overall behavior
corresponds to the slow changing distribution as described in the previous Section 4.4.5, which
is due to the fast convergence of the EnKF method.

4.4.6 Benchmarking the EnKF
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Figure 4.13: Benchmark results of the EnKF fit function. The colors indicate the number of
ensemble members, with blue for 100, orange for 1000, green for 5000 and red
for 10000 ensemble members. The run time for different operations is depicted
in seconds.

Although the ensemble Kalman filter converges fast and is a suitable optimizer for network
training, the compute time performance is inadequate and needs to be improved for big
datasets with millions of samples. One epoch on the MNIST dataset with the aforemen-
tioned setup takes up to 11 hours on a NVIDIA Tesla K20 graphics card. To find out which
component causes a high compute load over time, individual functions of the EnKF method
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are benchmarked. Figure 4.13 depicts the calculation time for the two covariance matrices
(Equation 3.20), the update step (Equation 3.19), indexing samples from the model output
and the whole function (fit()), which includes every operation such as tensor assignments,
copy processes and setting the correct dimensions. The setup configuration is the same as
presented in section 4.2 and the benchmark is run for one iteration on the MINST dataset
with a mini-batch size of 64. The colors in Figure 4.13 indicate the number of ensemble
members, with blue for 100, orange 1000, green 5000 and red 10000 ensemble members. The
copy and set operation times are neglectable and do not last longer than a few milliseconds,
for instance for 5000 members cloning takes 0.01516s, setting dimensions 9.775e−6s and con-
verting to PyTorch tensors 0.00796s. Here, the time for every operation is summed up and
obtained with the Python profiling tool cProfile1. Similarly, the time for calculating the co-
variance matrices C(U) and D(U) is negligible with 0.01094s and 0.00917s for 5000 ensemble
members. Surprisingly, in comparison to the other operations, the indexing takes the most
amount of time, with 3.63357s for 5000 members and close to 10s for 10000 ensemble mem-
bers. This may be due to the structure of the object which holds the output. The object is
a 3D PyTorch array with the size of RJ×K×b, i.e. the number of ensemble members × model
output × mini-batches. The main time consuming component in the update step is obtaining
the inverse,

(
D(U) + Γ−1)−1, with 1.3593s for 5000 ensemble members.

4.5 Discussion

The performance of networks is dependent on the weight initialization and the selection of
activation functions. Improperly selected, the vanishing gradient problem occurs, especially
in deep neural network trained with gradient descent and backpropagation, as presented in
Section 4.3.

For different parameter settings, gradients and activation function values are investigated by
analyzing their distributions, mean and standard deviation per layer over iterations and over
epochs. The optimizers are SGD and Adam, the weights are sampled from a random weight
distribution and the activation function is the logistic function. With this setting, the CNN
could not or only slowly learn to classify the MNIST dataset. In contrast to SGD, Adam is
more robust and shows a better performance for different parameter configurations.

As an alternative optimizer the ensemble Kalman filter is analyzed. The EnKF does not
calculate gradients and requires only the feed-forward step of the network. Given the same
settings, the EnKF provides an optimization solution to train the network on the MNIST and
letters dataset. The network performance is able to reach a high accuracy above 96% and

1https://docs.python.org/3/library/profile.html
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85% for the MNIST and letters dataset. Similarly to the gradient based optimization, the
activation values of different network layers are investigated by analyzing the distribution,
mean and standard deviations over iterations within one epoch. Furthermore, the results
show that a larger ensemble member size does not necessarily improve the performance as
initially expected (Section 4.4.2).

Due to the fast convergence of the EnKF, the network can classify the MNIST dataset after
500 iterations. However, depending on the optimization problem, the fast convergence can
cause the EnKF to be stuck in a local minimum and hinder exploration of other possible
optima. Adding noise to the ensemble members in every update step can counteract this
issue (Kovachki et al. 2018). Another approach is to dynamically adjust the scaling (γ) of the
identity matrix Γ, either by a simple algorithm as presented in Section 4.4.4 or with a more
intelligent approach such as learning-to-learn (see Chapter 5).

One bottleneck is the compute time performance within the update step of the EnKF. The
EnKF is easy to parallelize, since the update step can be calculated for each ensemble member,
which is only dependent on the previous iteration. A limiting factor seems to be the calculation
of the covariance matrices, but the benchmarks in Section 4.4.6 show that the matrices can
be quickly computed. It is open, whether parallelizing the covariance matrices enhances the
compute speed. Interestingly, the bottleneck is due to the indexing operation to acquire the
model output. A simplified structure, which decreases the dimensions of the data object, may
already help to reduce the indexing time.

The EnKF approach provides an alternative solution to optimize neural networks and can
overcome the issues introduced by different activation functions and initialization settings.
It provides a basis to further investigate gradient free methods to train neural networks.
The set of analyzed parameters is chosen rather small to control the optimization process
and to strengthen the conclusions drawn from the experiments. However, the EnKF can be
advantageous when exploring different settings and is an unique option to overcome specific
problems introduced by optimization methods based on gradients.
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Successfully training an algorithm requires not only a suitable optimizer, but the optimizer’s
hyper-parameters need to be selected in an appropriate fashion, too. Hyper-parameters influ-
ence the learning process of the training. Finding and setting them in a manual fashion can
be a tedious and error prone process. As aforementioned in Section 4.5, a smart approach
to automatically tune the optimizer’s hyper-parameters is desirable. Fortunately, methods
such as learning to learn exist to automate the learning and optimization of parameters and
hyper-parameters. Learning to learn or meta-learning is a technique to learn via experi-
ence (Thrun et al. 2012). The learning performance of an algorithm improves by generalizing
over a family of tasks. A task specific function evaluates the performance of the algorithm.
Learning to learn can be decomposed into a two-loop structure. The inner loop consists of
an optimizee (e.g. an artificial network or a simulation of a biological neuronal network) with
learning capabilities trained on specific tasks. The outer loop is an optimizer algorithm which
optimizes parameters that improve the optimizee’s learning performance over the iterations.
In this work, the aim is to improve the overall performance of the algorithm by optimizing the
learning parameters, i.e. the parameters and hyper-parameters of the algorithm. The concept
of learning to learn is inspired by biological evolution, thus, the performance measure is called
fitness and the iterations are called generations.

First, I will embed learning to learn into its historical context and describe the state of
the art work (Section 5.1). Then, I will continue with the basic concepts and theoretical
formulation of learning to learn (Section 5.2), followed by a technical description of the L2L
framework, which implements the concepts of meta-learning (Section 5.3). I will describe
a use case, in which the parameters of a spiking reservoir network are optimized by the
L2L framework, in particular utilizing the EnKF optimizer. Additionally, I will analyze the
parameters of the evolved network (Section 5.5). Finally, I explore hyper-parameters of the
EnKF, while it optimizes the connection weights of the reservoir network. In this setting, the
EnKF is run within the inner loop and its hyper-parameters are adapted in the outer loop
(Section 5.6). This approach will highlight the advantages of an automated hyper-parameter
exploration to find a suitable optimizer configuration, which is comparable to the manually
tuned EnKF parameter setup for the reservoir network.
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5.1 From the Historical Context to the State of the Art

Already in 1976, Rice (1976) mentioned the problem of effectively choosing an algorithm for
a given problem. He explored if approximation theory could be applied to select algorithms.
This approach is a meta-learning approach that tests out different methods to solve the prob-
lem tasks. Rendell et al. (1987) introduced the Variable Bias Management System (VBMS),
which is able learn about the relationship between induction problems and biases, i.e. the
systems understands the problem and how to solve it by using meta-learning. Schmidhuber
(1987) first applied meta-learning on neural networks. He described a set of methods with
the learning to learn idea by using self-referential learning. In this case, artificial neural net-
works are able to learn their own weights and predict them. Schmidhuber used evolutionary
algorithms to optimize the networks. Thrun et al. (1998) formalized the term learning to
learn in a theoretical way and demonstrated different practical implementations of learning
to learn. Yoshua Bengio, S. Bengio, et al. (1990) and S. Bengio et al. (1995) propose to learn
new, synaptic rules for ANNs using a learning to learn approach. They consider the rule
as a parametric function and learn the parameters of this function. Early work on learning
to learn focused on using the computational power of recurrent networks to learn dynamics
of the inner loop network (Hochreiter, Younger, et al. 2001). The weights of the recurrent
networks were treated as the hyper-parameters and trained/learned in the outer loop, whilst
being kept fixed in the inner loop. This allowed the dynamics of the recurrent network to
perform the learning. The supervised learning paradigm of Hochreiter, Younger, et al. (2001)
was later extended to reinforcement learning (Y. Duan et al. 2016; Wang et al. 2016).

Recent work focuses on optimizing gradients of the inner loop network with networks which
learn the gradients or apply additional optimization techniques in the outer loop. For ex-
ample, Andrychowicz et al. (2016) is using an LSTM (long short term memory network) to
optimize the top-level gradients and update the weights of the network inside the inner loop.
They utilize the outer loop network to replace the gradient descent optimizer of the inner
loop. The weights in the inner loop network are fixed and considered as hyper-parameters and
are learned in the outer loop. Inspired by the work of Andrychowicz et al. (2016), Ravi et al.
(2017) incorporates the test error into the optimization step. This leads to fewer unrollings of
the LSTMs and the optimization process converged faster, thus, reducing the computational
cost.

Finn, Abbeel, et al. (2017) introduce the Model Agnostic Meta-Learning (MAML) framework
for feed-forward models. MAML learns initial parameters of the inner loop network. They
utilize gradient descent in the outer loop and are able to train a network to generalize well
on the validation set. The method is agnostic to the model in the inner loop, and thus, can
be applied to a variety of different tasks. Finn and Levine (2017) show that sophisticated
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optimization methods such as recurrent networks in the outer loop can be replaced by learning
the initialization parameters and updating them as hyper-parameters with gradient descent.
Several works extend the MAML framework in order to enhance the performance of the
learning and the computation time (Finn, Xu, et al. 2018; Finn, Rajeswaran, et al. 2019).

Population based algorithms for the outer loop optimization are a popular choice as well.
For example, Cao et al. (2019) propose to use particle swarm optimization (Kennedy et
al. 1995) to train a meta-optimizer that continuously learns point-based and population-
based optimizers. They employ LSTMs to train and learn the fitness function for a sample
population. Their learning incorporates two attention mechanisms, the feature-level (“intra-
particle”) and sample-level (“inter-particle”) attentions. The intra-particle module is utilizing
the hidden state of the corresponding LSTM to weight the features and the inter-particle
attention module learns to update the particle information based on the previous particles.

In a similar manner Jaderberg et al. (2017) employ a parallelized, population based approach.
They use a random search optimizer to update the hyper-parameters of neural networks.
First, they randomly sample the network parameter and hyper-parameters in the initialization
phase. Then, they execute the optimization procedure in parallel and asynchronously evaluate
every training run. An underperforming network is exchanged by a more successful network.
To expand the search space, Jaderberg et al. (2017) additionally perturb the hyper-parameters
of the replacing network.

Learning to learn can be extended to search for the architecture of neural networks, which
is known as neural architecture search (Zoph and Q. V. Le 2016). In combination with
evolutionary algorithms, neural architecture search has been shown to be very powerful in
finding network architectures for different tasks (Stanley and Miikkulainen 2002).

Bergstra et al. (2012) showed that random search is surprisingly effective for hyper-parameter
searches for a wide variety of tasks. Automated hyper-parameter search is a part of Automated
Machine Learning or in short AutoML (Hutter et al. 2019; X. He et al. 2021).

5.2 Basic concepts of Learning to Learn

Learning to learn or meta-learning is a technique to learn and generalize from experience (Thrun
et al. 2012). The learning to learn process is divided into two loops, the inner and outer loop
as depicted in Figure 5.1. The inner loop consists of an algorithm with learning capabilities
(e.g. an artificial or spiking neural network), the algorithm runs a specific task T from a
family F of tasks. Tasks can range from classification, e.g. the MNIST dataset, or training
agents to solve optimization problems in an autonomous fashion.

75



5 Learning to Learn

Optimizer

Pool of tasks 
from family F

Task T from F

Performance of
model M in task T

Performance
metric

Evolutionary strategies
Filtering strategies
Simulated annealing
Cross entropy 

Simulation 
hyperparameters

Outer loop

 

Inner loop Performance
calculationSimulation of the 

dynamics of M for 
a specific task 

Neural network 
or single cell
model (M)
 

Optimizee

Figure 5.1: The two loop, parallel structure of L2L. In the inner loop an algorithm is learning
a task from a family of tasks. A fitness function evaluates the performance of the
algorithm in every generation. The (hyper-) parameters together with the fitness
are sent to outer loop where they are optimized.

A fitness function evaluates the performance of the algorithm. This function is specifically
designed and calculates a fitness value f or a fitness vector f . In general, the function is
adjusted for every model and dependent on the task.

The outer loop receives parameters and hyper-parameters, together with the fitness value
of the optimizee. In order to improve the optimizee’s performance, different optimization
algorithms based on meta-heuristics, such as evolutionary algorithms, filtering methods or
gradient descent optimize the hyper-parameters. After the optimization step, the hyper-
parameters are fed back to the inner loop algorithm and a new generation iteration (i.e. the
inner loop) starts. From a technical point of view, the optimizee orchestrates the inner loop.
Each optimizee starts a simulation process. After the optimization phase, it accepts optimized
(hyper-)parameters coming from the outer loop and executes the inner loop process to run
the simulation. Lastly, it calculates the fitness and sends everything together to the outer
loop optimizer.

L2L’s terminology is inspired by evolutionary algorithms, thus, the parameter set which is
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optimized, is called an individual and the algorithm performance is the fitness.

L2L follows the hyper-parameter optimization process and the fitness f for a loss or fitness
function L is theoretically formulated as (Brazdil et al. 2022):

f = L(A(M(α, θ, dtrain)Xtest), ytest) , (5.1)

where M(α, θ, dtrain) is a trained model M , α is the algorithm with hyper-parameters θ trained
on a dataset dtrain. A(M(α, θ, dtrain)Xtest) is the model output on a test sample coming from
a test set. This is a partition of the dataset which is separated before the training and is
used in order to evaluate the model performance on unseen data samples. To obtain the loss
L, the model output on the test set is compared against the target ytest. However, this is
task specific and often labels are not available, thus ytest is omitted. In this formulation the
algorithm α is interchangeable and a parameter itself. A shorter form for the loss with a
fixed algorithm, which includes only the input parameters, is L(α, θ, dtrain, dtest). The outer
loop has to optimize the hyper-parameters α and θ with respect to a set of algorithms A and
possible parameter configurations Θ:

(α∗, θ∗) = argmin
θ∈Θ, α∈A

L(α, θ, dtrain, dtest) . (5.2)

The model performance, i.e. the loss L, is evaluated on the test set dtest. In Equation 5.2 the
algorithm selection can be incorporated into the parameter configuration, this shortens the
term (α∗, θ∗) to (θ∗). The evaluation of θ over many generations is represented as a trajectory
T , which keeps track of the optimized parameters and fitnesses over the generations n and
per individual i:

Tθ,L ≡ (θiLi)n . (5.3)

5.3 Technical description of L2L

In L2L the optimizers are based on population based methods which enables simulations to
be run embarrassingly parallel, i.e. each individual is initialized independently. It is possi-
ble to easily distribute every individual via the message passing interface (MPI) on several
computing nodes and thus exploit high-performance computing systems (HPC). Addition-
ally, the framework supports multi-threading on single nodes or local/non-HPC machines.
The hardware resources can be set in the initialization phase of L2L and the framework will
automatically take care over the resource distributions and collection of results.

77



5 Learning to Learn

5.3.1 Executing an L2L run

1 from l2l.utils.experiment import Experiment
2 from l2l.optimizees.optimizee import Optimizee, OptimizeeParameters
3 from l2l.optimizers.optimizer import Optimizer, OptimizerParameters
4

5 experiment = Experiment(root_dir_path='/home/user/L2L/results')
6 jube_params = {"exec": "srun -n 1 -c 8 --exact python"}
7 traj, all_jube_params = experiment.prepare_experiment(name='L2L-Run',
8 log_stdout=True,
9 jube_parameter=jube_params)

10

11 ## Inner loop simulator
12 # Optimizee class
13 optimizee = Optimizee(traj)
14 optimizee_parameters = OptimizeeParameters()
15

16 ## Outer loop optimizer initialization
17 optimizer_parameters = OptimizerParameters()
18 optimizer = Optimizer(traj,
19 optimizee_prepare=optimizee.create_individual,
20 fitness_weights=(1.0,),
21 optimizee_bounding_func=optimizee.bounding_func,
22 parameters=optimizer_parameters)
23

24 experiment.run_experiment(optimizee=optimizee,
25 optimizee_parameters=optimizee_parameters,
26 optimizer=optimizer,
27 optimizer_parameters=optimizer_parameters)
28 experiment.end_experiment(optimizer)

Listing 1: Template script to execute an L2L run. The experiment class manages the run.
The optimizer and optimizee are initialized here.

To create the optimizee and start the L2L run, the user needs to work on two files. The first
file, the run script, is the entry script to invoke the L2L run. The optimizee is the second
file and handles the inner loop simulation.

In the run script the user sets the optimizee and optimizer, their configurations and configures
the hardware settings, e.g. the user can define if the simulation should run on an HPC or a
local computer. Listing 1 shows an exemplary code template to invoke an L2L run. Lines
1–3 import the necessary Python modules, which are the experiment, optimizee and the
optimizer. For simplicity the names of the modules in the template are called Optimizee and
Optimizer, in a real run they have to be adapted to their corresponding class names. The
experiment class steers the run. In line 5 the class experiment is initialzed and the result
path is set inside the constructor. All outputs produced by the L2L run are stored in this
folder. prepare_experiment in line 7 is a method to prepare the run. The user sets the name
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of the run, enables logging and configures further parameters for the Juelich Benchmarking
Environment (JUBE; Speck et al. 2020). The version of JUBE in L2L is stripped down to
submit and manage parallel jobs on HPCs, it offer an interface to the job management system
SLURM (Yoo et al. 2003). The prepare_experiment method returns the trajectory object,
which in the template is named as traj. This object is a container which holds the history
of the parameter space exploration, the parameters to be explored and the optimization
results of every generation. The optimizee and optimizer have read and write access to the
trajectory, thus the trajectory acts as an interface between both classes to exchange the
parameters and the fitnesses. The trajectory is modelled after PyPet’s trajectory1. In line 6
the directives for the HPC jobs are displayed. exec is the command to invoke a run, followed
by a srun directive for SLURM. In the template, one task (-n 1) will be executed on 8
cores (-c 8). The python command indicates that the optimizee and optimizer are Python
executables. On local machines the run can be executed without any parameters by invoking
the command {'exec':'python'}. Internally, JUBE creates a job script and passes it to
SLURM, which then invokes the optimizees and the optimizer. It is possible to execute the
script either as a batch script or as an interactive job on an HPC.

The optimizee is initialized in line 13, it requires the trajectory traj. OptimizeeParameters
is a namedtuple object, which is a Python tuple with a keyword and a corresponding item,
similar to a Python dictionary. It accepts the parameters for the optimizee. For the optimizee,
the namedtuple appears as a parameter object and can be accessed using the parameter’s
name, i.e. as parameters.name.

The optimizee requires at least two functions to be implemented:

1. The function create_individual() defines the individual. Here, the parameters which
are going to be explored are initialized and returned as a Python dictionary.

2. simulate() invokes the simulation run. The L2L framework and especially the op-
timization process is agnostic to the application carrying out the simulation. It only
requires that a fitness value or fitness vector is returned.

3. bounding_func() is an optional function in which parameters before and after the
optimization are restricted to defined ranges. For example, in a spiking neural network
delays have to be strictly positive and greater than zero. The function is applied only
on parameters which are defined in create_individual().

The optimizer is created in line 18. It requires the optimizer parameters (line 17), the method
optimizee.create_individual and optionally the bounding function optimizee.bounding_func.

1https://github.com/SmokinCaterpillar/pypet
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Additionally, a tuple of weights (fitness_weights, in the template (1.0, )) can be specified,
which weights the optimizee’s fitness by multiplying those values with the fitness itself. For
example, in case of a two dimensional fitness vector, a tuple of (1.0, 0.5) would weight the first
fitness fully and the second one only half. The L2L framework offers different optimization
techniques, such as cross-entropy, genetic algorithm (GA), evolutionary strategies (Salimans
et al. 2017), gradient descent, grid-search, ensemble Kalman filtering, natural evolution strate-
gies (Wierstra et al. 2014), parallel tempering and simulated annealing. The results of the
optimization runs and the trajectory are saved in a user specified folder as Python binary
files. Additionally, the user can store the results from within the optimizee in any format and
location they wish.

The method run_experiment (line 24) requires that the optimizee, the optimizer and their
parameters are initialized. Finally, the end_experiment method is responsible to end the
simulation and to stop any logging processes.

5.4 Optimizing with L2L

This section presents an L2L optimization run to classify digits using a spiking neural network,
in particular a reservoir network (see Section 2.3.2). A fitness function evaluates the perfor-
mance of the classification and the EnKF optimizes the connection weights. After multiple
generations the optimized network exhibits a high accuracy.

5.4.1 MNIST Classification with a Liquid State Machine

Reservoir OutputEncoderInput

10

10

2

2

Figure 5.2: An illustration of a reservoir network classifying the MNIST dataset. The input
is encoded into firing rates and fed to the reservoir. The output consists of a
cluster of 10 excitatory neurons colored in red and 2 inhibitory neurons colored
in blue. The output with the highest activity indicates the digit presented in the
input.
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The reservoir is a liquid state machine implemented in the NEST simulator. As shown in
Figure 5.2 the network consists of an input encoding layer, a recurrent reservoir and an output
layer. The weights between the reservoir and the output layer are optimized to increase the
classification accuracy.

The network consists of three populations of leaky integrate-and-fire (LIF) neurons (Sec-
tion 2.2.2), the encoder, the reservoir and the output. The input to the network are MNIST
digits, encoded into firing rates. Rate coding is a popular choice to encode image pixels to
spikes (Guo et al. 2021). This scheme encodes each pixel into a firing rate, which can be
utilized as the firing rate for a poisson generator to create spike trains. The firing rate coding
is the frequency with which a neuron fires proportional to the gray value intensity of the pixel:

νm,n = I(m,n)νmax − νmin
pmax

+ vmin (5.4)

where νm,n is the mean firing rate for the poisson generator in NEST for a pixel (m,n) of the
image I, with pmax the highest pixel intensity value and νmax and νmin are the maximum and
minimum defined rates. The pixel intensities range from 0 to 255 and are mapped between
[1, 100]Hz. The input pixels are connected to a total of 784 excitatory neurons in an one-to-one
connection.

The reservoir has 1600 excitatory and 400 inhibitory neurons, while the output has a pop-
ulation of 12 neurons (see Figure 5.2, 10 excitatory (red), 2 inhibitory (blue)) per digit.
The connections in the reservoir are random. They are limited to a maximal outdegree of
6% and 8% for each excitatory and inhibitory neuron. In this setting, three digits of the
dataset (0 to 2) are classified, thus there are three output clusters. Each excitatory neuron
receives a maximal indegree of 640 connections and each inhibitory neuron receives an inde-
gree of maximal 460 connections from the reservoir, thus resulting in 28800 (= 800× 12× 3)
connections in total. The neurons within the output cluster are recurrently connected and
have no connections to neurons in the other clusters. The network exhibits low spiking activ-
ity in all three parts if no input is presented. The network is constructed in the optimizee’s
create_individual function. The connection weights are sampled from a normal distribu-
tion with µ = 70 and σ = 50 for the excitatory neurons and µ = −90 and σ = 50 for the
inhibitory neurons.

When simulating the network (simulate function), a small batch of 12 different numbers are
presented to network for 500ms per image as spike trains. Furthermore, each neuron receives
background Poissonian noise with a mean firing rate of ≈ 5 spikes/s in order to maintain a
low activity within the reservoir.

A warming up simulation phase lasting for 100ms is run before any image is presented. This
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decays all neuron parameters to their resting values. Similarly, between every image there is
a cooling period of 200ms where no input is shown. After the simulation, the output with
the highest spike activity indicates the presented digit.

Over the generations, the value of the optimized weights may rise. To counteract this, the
weights are clipped in the bounding_func function if they are greater than or less than 1000
or −1000. Additionally, in the same fashion as creating new individuals, random values are
sampled from a Gaussian distribution with µ = 0 and σ = 200 and added to the clipped
weights, so that the optimization process does not prematurely converge. This helps the
network to have a high classification performance in later generations. Otherwise the high
weights would result in an unstable dynamical regime (e.g. too much stimulation received on
the outputs) and thus degrade the performance.

5.4.2 Fitness function of the Reservoir Network

In the output the firing rates of all clusters are acquired and then the softmax function is
applied:

σ(x)j =
exj∑
k e

xk
,

where σ : Rk → [0, 1]k and x = (x0, x1, . . . xk) ∈ Rk, j = 1, . . . , k is the vector of firing rates.
The highest value indicates the classified digit. Since every image in the dataset has a label
the mean squared error or loss L between the prediction and the corresponding label can be
calculated:

L = 1
n

n∑
i=1

(yi − ŷi)2 , (5.5)

with yi the label and ŷi the predicted output encoded as one-hot vectors with a non-zero
entry corresponding to the position of the label. The optimizer used in the outer loop is the
ensemble Kalman filter, which optimizes the weights to minimize the distance between the
model output and the training label. Thus, the fitness function is defined as f = 1 − L and
is used to rank individuals (see next Section). After the presentation of the image batch, the
optimizer receives the fitness and the softmax model output for each input.

5.4.3 Optimizing the Reservoir with the Ensemble Kalman Filter

The ensemble Kalman filter is the optimizer in the outer loop to update the weights between
the reservoir and the output, this is similar to the optimization procedure described in Sec-
tion 4.2. Before the optimization, the weights are normalized to be in the range of [0, 1].
Additionally, the weights from the reservoir to the output are concatenated to construct one
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individual. In total, 98 individuals are optimized and each individual has 28800 weights. In
terms of the EnKF setting, the ensemble members are the network weights, the observations
are the labels and the the model output is the result of the softmax operation. In Section 4.4.2
it was shown with around 100 ensembles it is possible to reach at least chance level on the
MNIST dataset. However, the experiments were conducted using convolutional neural net-
works and tested with harsh conditions such as poor weight initialization as well as different
activation functions. The simulation time takes a long time to finish, since in every generation
the network has to be reconstructed, thus the number of ensemble members is limited in this
case.

The EnKF optimization is slightly modified to replace poorly performing individuals with
the best individuals. The individuals are ranked according to their fitness and the worst n

individuals are replaced with m best ones. Furthermore, random noise drawn from a normal
distribution is added to the replacing individuals, this increases the search space for the
parameters to find different and possibly better solutions. n and m are set to be 10% of the
corresponding individuals. One hyper-parameter of the EnKF is γ (here set to γ = 0.5), it
has a similar effect as the learning rate in stochastic gradient descent. A lower γ may lead
to a faster convergence but also has the risk of overshooting minima which results in longer
training runs. In contrast a higher γ is slower to converge, or can get trapped in minima and
thus hindering the exploration of further parameter spaces. In this setting, the EnKF with
the added extensions is a suitable optimizer, because it is able to quickly converge to minima
and provide satisfactory results. Unfortunately, it is not possible to train the whole dataset,
since the simulations take a long time to finish.

5.4.4 Classification Performance of the Reservoir

Figure 5.3 depicts the performance of the reservoir up to 400 generations. The fitness is
acquired over a subset of the MNIST test set in every tenth generation. Before the training,
the test set of 10000 images is separated from the training set of 60000 images in order to
contain digits which are not going to be presented during the training phase.

While the mean fitness steadily increases over the generations, the best individual fitness
exceeds 0.8 at generation 50 and improves to a fitness close to 1.0 at the end of the generations.
Towards the end of training, the mean fitness increases, however, the standard deviation also
increases slightly. The highest standard deviation of 0.12 occurs in generation 37, it reaches a
minimum value of 0.04 at generation 180 and remains around 0.09 at the end of the training.
It is important to note that the green curve depicts the performance of the best, i.e. highest
performing, individual in each generation, which is not necessarily always the same individual.
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Figure 5.3: Every tenth generation the reservoir is evaluated on a subset of the MNIST test
data. The L2L simulations run over 390 generations. The blue star-dotted line
depicts the mean fitness, while the shaded area is the standard deviation of all
individuals. The green line shows the best fitness in every tenth generation.

In every training and testing phase 12 images are presented for 500ms on each generation,
resulting in long simulation times. Thus, the whole dataset cannot be processed and the total
number of used images is limited to 4800 (4320 training, 480 testing). To process an entire
generation of 98 individuals, including the optimization phase, the run on an HPC2 takes less
than 3 minutes. In comparison, a grid search on 28000 parameters exploring a range of 20
values for each weight would require the evaluation of 2028000 combinations.

The fast convergence behaviour of the EnKF makes it possible to reach an optimal solution
within a few generations. The added modifications to sample new individuals from well
performing ones and perturbing them enables the optimization to find better solutions by
exploring other parameter ranges. Section 5.6 describes the optimization process when the
EnKF is moved into the inner loop to update the weights, while the hyper-parameters of the
optimizer are adapted by a genetic algorithm in the outer loop.

2The simulations are run on the JUSUF HPC, with 2 × AMD EPYC 7742 CPUs, 2 × 64 cores, 2.25 GHz,
for HPC details see https://apps.fz-juelich.de/jsc/hps/jusuf/index.html
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5.5 Analysis of the Parameters

In the following I will analyze parameters of the evolved reservoir previously described in
Section 5.4. This will help to understand how the optimization process evolved the network
and can provide insight for future improvements regarding the presented methods, in order to
employ them on SNNs in a more efficient manner. In particular, I will focus on the connection
weights and the corresponding covariance matrix values of the EnKF obtained before every
10th generation, i.e. the iteration in which the test set is evaluated and none of the parameters
are updated. Thus, there are 40 parameter sets of weights and covariance matrices, out of
400 generations.

5.5.1 Weights Analysis

Figure 5.4: PCA of all individual weights of every 10th generation. Each color corresponds
to one individual. All weights lie on the same manifold. This is due to the
EnKF optimization which quickly converges the weights to an optima.

As an initial analysis and to see if patterns within the weights are emerging, principal com-
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Figure 5.5: DKL between the connection weights over the generations. In later generations
the DKL does not vary much due to the convergence of the optimization.

ponent analysis (PCA) is applied. The function is from the Python library scikit-learn 3 (Pe-
dregosa et al. 2011). The PCA function in scikit-learn first learns the model parameters and in
a second step transforms and reduces the dimensionality of the data, the weights in this case.
The weights are organized in an array of a shape of 40× 98× 28800 (every 10th generation ×
individuals × weights), which is reduced to 40× 98× 3 by selecting 3 principal components.
The result is depicted in Figure 5.4. Every color displays all weights of one individual lying on
an arch-shaped manifold in a three dimensional space. If only early generations are plotted
(e.g. up to 200th generation) the shape is not as smooth as in Figure 5.4 and much more
scattered in space. The smooth form is due to the quick convergence behaviour of the EnKF.

In later generations the weights do not vary much, as shown in Figure 5.5 which depicts the
Kullback-Leibler divergence (DKL) between the connection weights. The DKL is obtained as
described in Section 4.4.5. Up to generation 180 the divergence is high, especially between
generations 60 and 100 as well as 160 and 200. Between generation 280 and 340 slight increases
are visible, but the DKL stays low afterwards. In the fitness plot (Figure 5.3) the performance
changes in those ranges as well. In contrast to earlier generations, the performance drop which
occurs, for example, between generation 360 and 370 (see Figure 5.3) is less captured by the
DKL.

3Version 1.0.2
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5.5.2 Covariance Matrix Analysis

Figure 5.6: The covariance matrix C(U) values over the generations are depicted in the
PC space. Bright colors indicate later generations. While in earlier generations
(black and dark purple colors) the high variance of the values is visibly reflected
as a spread over the parameter space, in later generations (red and yellow colors)
the value spread is less and more contracted.

Besides the weight updates, the EnKF has two covariance matrices C(U) and D(U) (see Sec-
tion 3.3.3 for details), which are interesting to analyze as well. Similar to the PCA analysis
in the previous section, it is also possible to observe the covariance matrices in the principle
component (PC) space. In this work, matrix C(U) is of interest, since it relates the en-
semble members to the predicted model output. As described in Section 4.2.1 the ensemble
members are the optimized weights for the new individuals. In contrast, the covariance ma-
trix D(U) (which has dimensions of 3× 3) provides less values as it correlates only the model
outputs.

Figure 5.6 shows a scatter plot of the covariance matrix C(U) in a two dimensional PC
space. In this step, the covariance matrix values over every tenth (test) generations are fit
using the PCA function, thus 40 parameter sets are available. The matrix C(U) has a shape
of 40 × 12 × 28800 × 3. The last dimension corresponds to the dimension of the output
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cluster. The 12 dimensions in the middle denote the 12 images from the mini-batch, as for
every image the covariance matrix is calculated. Unless otherwise stated, figures presented
in this section show the first dimension, i.e. the covariance matrix of the first image of the
mini-batch. The parameters for the other images are similar. While bright colors such as
red, orange (generation 200 − 300) and yellow (or cream colored) indicate later generations
(generation 300 − 400), black and dark purple colors denote earlier generations (0 − 200).
In earlier generations the covariance matrix values are scattered over the space, in contrast
the spread in later generations is less and more contracted around zero. To highlight later
generations Figure 5.6 is drawn in two dimensions. If drawn in a three dimensional space,
points of later generations are not visible, they lie in the center of the point cloud, covered by
points of earlier generations. In contrast, the point clouds of the later generations are more
elliptic and rotated around their horizontal axis. Especially, the red colored cloud (around
generation 200) has a very narrow, elliptic form, which is due to the distribution of its values.
In general, the covariance matrix has small values, with a mean close to zero and a standard
variation of 0.003, which is captured in the PC space as well.

As mentioned above, the last three dimensions of matrix C(U) correspond to the three outputs
of the reservoir network. Thus, a detailed look into the last dimension within the PC space
may shed light on further details. The following listing describes the analysis in three steps:

1. Obtain for each of the three dimensions the PCA components.

2. Create a boolean mask to bound the components. The respective ranges for the three
outputs are values ≤ −0.013 and ≥ 0.014. These values are obtained after calculat-
ing the minimum and maximum of the components and adding/subtracting a small
value (0.01, 0.009) to the minimum or maximum. This step decreases the number of
components by excluding values close to zero.

3. Plot the result over the generations.

Figure 5.7 shows the result for each of the outputs. The y-axis depicts the covariance ma-
trix values, the x-axis are the number of obtained points, i.e. the mask consists up to 600
entries. The color gradient indicates the generation number as previously described in Fig-
ure 5.6. In all three outputs the covariance matrix values of later generations are narrowing
down towards 0 and stay between the range [−0.01, 0.01]. Earlier generations (e.g. generation
50, dark purple) range between [−0.02, 0.02]. Furthermore, for output 2 generation 380 is
depicted as a thin line and oscillates around 0, i.e. the covariance matrix values are small (in
the order of 1e−7). This occurs, if the weights are heavily adapted and is also visible in the
DKL of Figure 5.5, where a small spike can be observed at generation 380. In contrast, the
last generation of output 1 is not as distinct and narrowed, it still has values over 0.01. This

88



5.5 Analysis of the Parameters

0.02

0.01

0.00

0.01

0.02
Output 0

0.02

0.01

0.00

0.01

0.02

Output 1

0 100 200 300 400 500 600
0.03

0.02

0.01

0.00

0.01

0.02

0.03 Output 2

0

50

100

150

200

250

300

350

Figure 5.7: Covariance matrix values obtained from masked PCA components. The brighter
the color the higher the generation number.

may be related to the convergence behaviour of the optimization procedure. While for output
0 and output 2 the weight parameters are already optimized, the parameters for output 1
may need further optimization, i.e. the network may need more training runs.
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Figure 5.8: Histogram of the masked covariance matrix C(U).

Another noticeable aspect are the red colored lines, i.e. points from generations ≥ 200. The
red colored points were also prominent in the form of a narrow shaped ellipse in Figure 5.4.
A different point of view gives the histogram in Figure 5.8. This plot represents Figure 5.7
as a histogram and helps to see if the red colored values prominently occur in all outputs. As
visible, for all outputs the distribution has a mean around 0 and throughout the generations
the standard deviation is shrinking towards the mean as well. The red bars correspond to
the red lines and the red point cloud in the previous figures. For output 0 and output 2
the red bars are in the range of [−0.02,−0.02] and [−0.03, 0.03]. Because values close to
zero are excluded, they seem to have a bimodal distribution, which is not the case and they
are normal distributed, i.e. unimodal. This behaviour occurs after the weights are heavily
updated and is often followed by a performance increase. Before the parameter update, the
covariance matrix has a narrow distribution, which indicates a fitness decrease, afterwards
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5.5 Analysis of the Parameters

the distribution is broadened to adapt the weights. A weight change is also visible in the DKL
of Figure 5.5, where it has a peak between generations 180 and 200. Additionally, whenever
the performance drops, the weights are sampled from the best individuals of the previous
generation, which also influences the weight change. Similarly, in early generations, values
for output 1 are in the range of [−0.03, 0.03] (see purple bars). In this case, a high variance
between these values is more likely to occur, since at this point, the optimization has not
converged yet.
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5.6 Hyper-Parameter Optimization with L2L

L2L is a hyper-parameter optimization library. Since the framework is agnostic to the model
and its parameters it was possible to optimize the connection weights. Hyper-parameters
such as the EnKF’s γ were manually set and tuned.

In this section, the ensemble Kalman filter is applied within the inner loop to optimize the
reservoir weights. In the outer loop hyper-parameters of the EnKF are optimized using L2L’s
genetic algorithm. The hyper-parameters are:

• γ controls the learning rate. A lower γ lets the optimizer explore the parameter space by
updating the weights heavily, i.e. a small γ increases the weights when multiplied with
the covariance matrices which have small values. This may lead to a faster convergence
but also has the risk to overshoot and oscillate around minima (for an example illustrat-
ing this behaviour see Figure 3.2). In contrast, a higher value is updating the weights
less and is more robust in terms of convergence, however, it increases the optimization
iterations required to converge towards an optimal solution.

• Ensemble size is the number of optimized individuals. As discussed in Section 4.4.2
and Section 5.4.3 the size can vary and is task dependent.

• Repetitions define how often the same batch of images is shown. While repetitions
helped to increase the performance of the CNN, this approach was not necessary when
optimizing the reservoir. Note, only repetitions of size ≥ 2 are regarded as repetitions,
since in Python a for loop of range 1 is executed once, i.e. not repeated.

5.6.1 Hyper-Parameter Optimization Workflow

While the optimizee follows the same setup described in Section 5.4.3, the EnKF optimizer is
now additionally applied in the inner loop. However, this change requires an adaptation of the
workflow, which will be described in the following. The new workflow consists of two parts,
the creation and simulation phase. In contrast to the previous setup only 20 individuals are
initialized. These individuals spawn up to 50 ensemble members in parallel on an HPC node.
The optimizer adapts the number of ensembles, which executes additional steps necessary to
reserve compute resources.

The workflow starts with the creation step, which is displayed as a simplified flowchart in
Figure 5.9. It mainly constructs the reservoir network and creates the individuals. The
creation phase is executed once in generation 0 and initializes the hyper-parameters in the

92



5.6 Hyper-Parameter Optimization with L2L
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Figure 5.9: The create phase initializes the hyper-parameters and parameters such as weights
and invokes the reservoir network. The constructed network reads in the weights
and saves the connection details on the disk as csv files.

create_individual function. All parameters are set randomly: γ is drawn from a normal
distribution with µ = 0 and σ = 0.5 and is strictly positive, the ensemble size is uniformly
distributed between 10 and 50, similarly the repetitions are uniformly distributed between
1 and 3. create_individual induces a cascade of follow-up methods. First, the hyper-
parameters are min-max normalized to be in the range of [0, 1]. This is necessary for the
mutation step within the GA, since noise drawn from the same distribution is added onto the
individuals. Thus, it is important that the parameters are in the same range. Additionally,
the bounding_func function ensures that the hyper-parameters do not exceed the range of
[0.001, 1] before starting with the inner loop. Later, in the simulate phase, the parameters are
re-normalized, i.e. transformed to their original range. Then create_ensemble creates the
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weights for the reservoir and saves them on the disk as csv files, so that they can be read from
within the NEST simulation. Additionally, create_ensemble calls create_batchfile to
write a small batch script including details for the HPC run such as the account details or the
number of CPUs utilized in the simulation. It also reserves a node to execute the simulations
and sets the time the simulation needs to finish. 50 simulations are able to run in parallel on a
single node. This number is defined by the ensemble size. Furthermore, the function prepares
a for loop inside the batch file to invoke the NEST simulations. As a next step, it calls the
execute_subprocess function, which invokes a Python subprocess to pass parameters, such
as the path, to the csv files and the “create” directive to indicate that the NEST simulation
should read in the path, construct only the network and save the connection structure without
invoking its internal simulation call (simulate()). NEST saves the network architecture as
a table describing how the neurons are connected. This means that all individuals share the
same architecture even if the weights will change as the optimization process takes place.
Note, only the architecture is constructed, no further simulation is run at this point. Here,
the construction process creates four tables, corresponding to the connections between the
reservoir and outputs, i.e. the excitatory to excitatory, excitatory to inhibitory, inhibitory to
excitatory and inhibitory to excitatory neurons. Finally, create_ensemble waits until the
network construction is finished and reads in the connection details. This step is needed to
correctly reassign the weights to the network for the next simulation phase, since the structure
is changed to a two dimensional matrix when passing the weights to the EnKF optimizer.

After the creation phase, the simulation phase continues. The inner loop has 100/repetitions
iterations and runs for 8 generations in total. L2L’s simulate function starts the simulation
phase as shown in Figure 5.10. First, the function initializes the inner loop optimizer, the
ensemble Kalman filter. Then it reads in the MNIST data and corresponding labels for the
training or testing step and saves the data for the NEST simulation. Additionally, the func-
tion obtains the optimized hyper-parameters from the trajectory and transforms them back
from the normalized to the original ranges, which is for simplicity called re-normalization 4.
Afterwards, the load_weights function is called to load and check the weights. If the num-
ber of ensemble members increases, new weights have to be created. New ensemble members
are created by sampling from already optimized weights and perturbing them. Here, the
aforementioned connection structure is maintained, e.g. weights for excitatory to excitatory
connections are only sampled from corresponding connection weights.

The next step in the workflow executes the Python subprocess with the “simulate” directive.
The execute_subprocess function passes parameters to the NEST simulation, which recon-
structs the reservoir by reading in the connection structure and the weights. Since multiple

4The method described here should not be confused with the renormalization technique from quantum field
theory and statistical mechanics.
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Figure 5.10: The simulation phase simulates the optimizee – the reservoir –, executes the
training and test runs and returns the fitness with the hyper-parameters to the
outer loop.
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individuals spawn in parallel, the generation index, the individual number, and the ensemble
member number are transferred as well, in order to identify the correct individual when load-
ing back the model outputs. Then, NEST simulates the reservoir and the data is presented
to the network in order to obtain the model output activity. After the NEST simulation the
optimization starts. The inner loop optimizer class reads the saved model outputs and recon-
structs the weights from the table format to a matrix and normalizes the weights to be in the
range of [0, 1]. The EnKF optimizes the weights, which are then re-normalized and saved.
Finally, in every tenth iteration a test run is initialized to obtain a fitness value. The test run
is equivalent to the training, but skips the optimization part and uses the test set and test
labels as input for the reservoir. Both the training and test runs use the calculate_fitness
function to obtain the fitness. Then, the softmax function applied on the model outputs
squashes the values between [0, 1]. The highest value, which indicates the model prediction,
and the MNIST label are then used to calculate the MSE. However, only at the end of the
overall inner loop iteration the fitness and the hyper-parameters of the training phase are
returned to the outer loop.

5.6.2 Hyper-Parameter Optimization Results
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Figure 5.11: Optimized hyper-parameters increase the fitness over generations. Individual
points denote the fitness of an ensemble member. The violin plots depict the
distribution of the fitness points.

The hyper-parameters of the reservoir in Section 5.4.3 are manually tuned. By setting γ = 0.5,
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the ensemble member size to 98 and no repetitions the network reaches a good performance.
However, setting parameters in a manual fashion is tedious and prone to errors. Fortunately,
L2L automates this process.

The two-loop optimization workflow consists of a total of 8 generations and 100/repetitions
inner loop iterations. It is important to note, that in order to better compare how the hyper-
parameters evolve in every generation the weights are reset to their initial values, i.e. the
weight training progress is not transferred to the next generation. Nonetheless, the found
parameter configuration should be similar to the manual setting and reach a comparable
performance within 100 iterations. Figure 5.11 depicts the fitness over 8 generations. The
figure consists of two plots, a scatter plot, where points indicate the fitness over the mini-
batch from an ensemble member and a violin plot, which represents the underlying fitness
distribution. The horizontal placement of the points within a generation is the order the
ensemble member have in the data and has no real value. In total, there are 4356 points
displayed on the figure. However, due to the adapting ensemble size, every generation has a
different number of points which ranges from 300 to over 600. The fitness values range from
0.4 to 0.78. While in most of the generations (e.g. generations 2 to 4) the mean fitness is
around 0.5, it slightly increases in later generations towards 0.55. The density estimation of
the violin plots shows this by a narrowed density at 0.5, especially visible in generations 5 to
7. Moreover, the number of points increases towards a higher fitness, with the highest fitness
at 0.78. This can be seen by observing the endpoints of the violin plots, the density thins out
at lower fitness ranges and the plot is longer than earlier generations. For example, generation
5 has the overall highest performance, the lowest part of the violin plot is at 0.45 while the
highest point is close to 0.8. All these characteristics indicate a performance increase induced
by optimizing the hyper-parameters.

Figure 5.12 shows how the hyper-parameters evolve over the generations. The y-axis depicts
the corresponding value for the parameter and the color indicates the fitness. The brighter
the color the higher the fitness is. Each point corresponds to an ensemble member (of an
individual), as mentioned earlier. The top left panel of the figure shows a clear trend for γ.
The more generations pass the closer the points get between 0.4 and 0.5, with the brightest
points around 0.5. This observation overlaps with the manual setting, where it is set to
γ = 0.5. In the first generation the values range from ≤ 0.1 to 1.2 but are quickly pushed
towards 0.5. A few points are close to 1.2, however, from the second generation on there are
no values greater than 0.7. This exhibits the effect of γ, in early generations a low value may
be beneficial to explore different local optima, but may not converge into a suitable optimum.
On the other hand, a high value, e.g. close to 1, is useful to exploit the feature space around
minima, but may prevent further exploration.
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Figure 5.12: The fitness is related to the optimized hyper-parameters over the generations.
While γ and the ensemble member size show a clear trend towards certain values,
the repetition parameter seems to be not as relevant. Each individual point
depicts the fitness of an ensemble member. The brighter the color the higher the
fitness.

A similar behaviour can be observed for the ensemble member size, which is initially in the
range from 10 to 50 members and converges towards 30 members. Observing the fitness, a
high number of ensemble members does not lead to a higher fitness. In general, an ensemble
with less members than 40 achieves a high performance.

The parameter for repetitions seems not to be relevant as the other parameters. Interestingly,
the repetition never reaches the value of 3 (i.e. 2 repetitions of the same mini-batch). This
value neither occurs at the initialization nor is it reached afterwards. It follows that repeating
a mini-batch in this setup does not increase the performance. In generation 7 the best fitness
is reached without any repetitions and may indicate that training with new data leads to a
better performance than presenting the same mini-batch.
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5.7 Discussion

Adapting hyper-parameters in a manual way is a tedious, time consuming, usually unsys-
tematic and error prone task. Often, the whole workflow has to be executed from scratch
to see the effects of adapting the parameters. Learning to learn is a concept to optimize
(hyper-)parameters via experience. The idea is to learn on a family of tasks and generalize
well enough to perform more efficiently on new tasks than the performance of a fresh training
run. To achieve this, learning to learn is composed as a two loop structure, the inner and
outer loop. In the inner loop an optimizee or an algorithm with learning capabilities, such as
a neural networks, learns from the family of tasks. A fitness function evaluates the perfor-
mance of the trained optimizee. In most cases the outer loop optimizer is from the family of
metaheuristics, as these types of optimizers only require a fitness vector and parameters to
optimize, thus, they are applicable for a variety of problems. To generate the set of param-
eters, called an individual, instances of the model are created. It is possible to execute the
individuals in parallel in order to decrease the computation time and load. After receiving
the parameters and the fitness the outer loop optimizer ranks the individuals according to
their fitness and applies the optimization. The optimizer recombines and/or perturbs the
individuals’ parameters for the next generation and returns them to the inner loop.

L2L is a Python framework which implements the concept of learning to learn. It is able to
automatically optimize (hyper-)parameters of a given model. The framework is agnostic to
the model and can optimize all kind of parameters as long they are in the correct form and
provide a fitness. The framework enables a simple interface to parallelize the execution of
optimizees on HPCs.

Optimizing a spiking neural network to do a specific task is not trivial. In contrast to an
artificial neural network, gradient descent is not directly applicable (see Section 3.2.4), thus,
other optimization procedures are required. Metaheuristics, such as the EnKF, are alternative
solutions to circumvent this problem. The ensemble Kalman filter is able to optimize the
connection weights without the need of any approximative method. The task described in
this work is to classify the MNIST dataset with a reservoir network. One interesting property
of the reservoir is the capability to map the input to a space where the output is able to
classify it. To achieve the classification only the weights from the reservoir to the output need
to be updated, thus, decreasing the number of parameters to optimize. Due to the length of
the simulation the network is trained on a subset of the dataset. Nonetheless, the model is
successfully able to classify three digits and achieve a high performance.

To understand how the network learns, the connection weights and the covariance matrix
C(U) of the EnKF are analyzed in Section 5.5. The weight analysis in PCA space shows
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that the weights plotted over generations lie on an arch like shaped manifold. A possible
explanation is the fast convergence due to the EnKF optimizer, which shifts the parameters
to a mean close to zero with a decreasing standard deviation. A performance drop due
to misclasification of the network results in a change of weights as the DKL in Figure 5.5
shows. High peaks indicate a change in the weights. The covariance matrix analysis in PC
space displays the converging behaviour of the optimizer. Additionally, the covariance matrix
is responsible for the direction and the speed of the convergence. A performance drop in
the fitness results in small covariance values, expressed by a narrow distribution, which in
successive the generation is expanded to correct the direction the optimization should take
(see Figure 5.6 and Figure 5.7). In later generations the covariance matrix values converge
towards a zero mean and also show a decreasing standard deviation. To summarize, by
changing its values, the covariance matrix defines when to explore the parameter space and
when to exploit it: While small values close to zero followed by high values in subsequent
generations indicate an exploration step, slow changing values with a decreasing standard
deviation point to an exploitation or to a convergence of the optimization.

A higher network performance can be achieved by manually tuning the hyper-parameters of
the optimizer. L2L automates this process. In Section 5.6 the EnKF optimization is also
applied in the inner loop and three hyper-parameters of the optimizer are adapted in the
outer loop. In 8 generations this two-loop optimization process shows a clear trend towards
certain parameter ranges and is comparable to the manual configuration. Figure 5.12 displays
the fitness in relation to the parameters. For parameter γ an increase of small values and
a decrease of high values towards 0.5 is observable. Similarly, the ensemble size converges
towards a value of 30. A repetitive presentation of the same mini-batch does not have a big
effect on the performance. Given the long runs and restricted time on the HPC, more training
runs with new data is preferable in order to increase the performance.
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6 Optimizing Spiking Neural Networks
enhances Foraging Behaviour of
Swarm-Agents

The previous chapter (Chapter 5) described the optimization of a reservoir network to classify
MNIST digits using L2L as an optimization library. In this chapter SNNs controlling swarm-
agents, in particular ants, are optimized via a genetic algorithm to enhance the foraging
behaviour. The ants explore the simulated environment and forage food, their task is to return
the food to their nest as much as possible while the simulation is ongoing (Section 6.1.1). The
ants get rewarded or punished solely based on their actions (Section 6.2.2). The ant colony
simulation and foraging task is well described in the literature, however, most approaches
define action rules which guide and characterize the behaviour of the ants. The optimization
process in this work is not constrained by any rules. Actions such as pheromone depositing
are not manually defined, instead, the learning of such a behaviour is achieved through the
evolutionary algorithm.

In Section 6.1 I will motivate the ant colony modeling problem and relate it to other works.
Then, I will continue with the setup of the environment, the model and the optimization pro-
cess (Section 6.2). Over the generations the ants learn to deposit the pheromone which leads
to self-organization and self-coordination, thus enhancing the food foraging. In order to better
understand the foraging behaviour, I will employ different analysis techniques (Section 6.3).
I will compare the foraging performance of the evolved SNN-driven model to a simple, rule
based system. The latter serves as a base line regarding the foraging performance. An addi-
tional test of the SNN-driven model assess the effect of the pheromone usage on the foraging
behaviour when the pheromone sensor of the ants is disabled. Furthermore, I compare the
performance of an evolved colony driven by an another SNN-driven model, where the ants
have their pheromone pathways disabled, i.e. the ants are not able to perceive and deposit
the pheromone. Finally, to understand if there is a relation between the ants’ perceptions
and their actions, I will correlate the input spike activity to the output spike activity of the
network.
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6.1 Modeling the Ant Colony

Swarm colonies use chemical signals as an efficient approach to interact and collaborate. Social
insects, such as ants and termites, use pheromones to guide their cohorts while foraging for
food. The coordination is self-organized, without following a central lead. Colonies are able
to solve complex tasks, such as finding the shortest paths to the next food source. This
behaviour is shaped by evolutionary processes over millions of generations. The modeling of
ant colonies is a well studied field. The models are inspired by biological observations and
implement (probabilistic) action rules to define the behaviour of the agents to interact with
their cohorts (see also Section 3.3.2). By depositing chemical signals on the environment
the agents are able to self-organize and self-coordinate. Although simple rules may help the
system to solve specific tasks, it may not be an efficient solution and may not reflect the
natural foraging behaviour. Furthermore, manually defining action rules for complex tasks,
is difficult endeavour. To understand if an emerging self-organization and self-coordination
within the swarm can be related to physiological properties and whether this self-organization
can improve the foraging behaviour, it is useful to simulate the swarm behaviour within an
environment to solve a complex task. In this work, the simulation encompasses the task of
a swarm of agents to forage for food and return it to the nest. An SNN steers an agent, in
particular an ant from an ant colony, in a 2D environment.

In the literature, there are many computational models which replicate, within certain bound-
aries, the dynamics observed in biological ant colonies. Vittori et al. (2004) and similarly
Bandeira de Melo et al. (2008) build their probabilistic models based on the foraging behaviour
of the Argentine ants Linepithema. Due to the pheromone usage their models exhibit self-
organization and are able to find the shortest route to a food source in a maze. Wilensky
(1997) implements a simple, rule based model to steer the local decisions of the ants. By
utilizing pheromones the ants exhibit self-coordination and collaboration.

In Hecker et al. (2015), the authors implement a rule-based probabilistic model mimicking the
foraging behaviour of seed-harvester ants and apply the model on real robots in environments
where the food distribution changes. The model is evolved using genetic algorithms, so that
the robots are successfully able to navigate within the environment and collect the food.

Similarly, other authors have explored models of different types of swarm agents solving
problems in other application fields. H. Duan et al. (2014) proposes a framework to control
agents, called shills, which are able to find strategies and provide those to other agents.
Their model implements the iterated prisoner’s dilemma game, where the agents can update
their strategies based on pre-designed rules. The updates are adapted by a particle swarm
optimization algorithm.
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A combination of swarms and an SNN is presented by Chevallier et al. (2010). The authors
propose a spatio-temporal model called “SpikeAnts” and show the emergence of a synchro-
nized behaviour between agents of an ant colony. In their work, each ant is represented by
two interconnected neurons. The network receives no external stimuli and does not include
any learning rules. The authors conclude that the swarm is able to self-organize due to the
emergent distributed learning process the ants display.

The papers cited above observe and analyze emergent communication and self-coordination as
a result of the swarm organization, however, these approaches are probabilistic state models
or rule-based systems that enforce collaborative behaviour. It is a difficult approach to rely
only on the physiology of the agents to achieve a high performance in specific tasks. When
including a collaborative or adaptive behaviour within a dynamic environment the complexity
raises even more and requires to incorporate many complex rules. Thus, finding different rules
scales up with the complexity of the task and number of agents, an optimal solution is often
intractable. Optimizing for an emergent behaviour could provide a reasonable and adaptable
approach to tackle this scenario.

In this work, the behaviour of the agents is not based on pre-defined rules. While navigat-
ing, the agents perceive their environment through multimodal sensory stimuli from various
sources such as visual, mechanoreceptory, or chemical (pheromone) sensors. The sensory
information is received by input neurons, which are connected to a second layer of all-to-all
connected neurons. The second layer is connected to the output neurons which are responsible
for the agent’s actions such as movement and pheromone depositing. The all-to-all connec-
tion avoids bounding the network to a pre-defined topology, i.e. the type of connection is
not fixed and can be adapted during the optimization process. There is no explicit mapping
between the sensory input and the ants’ behaviour, such as perception of visual information
and pheromone depositing. A genetic algorithm optimizes the SNN’s connection weights and
spike time delays, so that the network is able to steer the ants to efficiently forage for food.
The 2D environment, is based on the ant-colony model by Wilensky (1997). In this model,
the pheromone diffusion and evaporation is simulated in a grid world.

6.1.1 Environment and Task

Figure 6.1 shows a screenshot from the NetLogo (Tisue et al. 2004) environment of the
ant colony foraging for food. The ants deposit the pheromone on their way to the food
sources (green leaves) and around their nest (black, brown hexagon). The blue patches
indicate the pheromone concentration; the brighter the color the higher the concentration.
The concentration exponentially evaporates over time. Other agents can smell the pheromone
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Figure 6.1: Screenshot from the NetLogo environment depicting the ant colony foraging for
food. Blue patches indicate the pheromone concentration. The brighter the color
the higher the concentration. Green patches depict food piles. The nest is the
black hexagon in the middle. The red wall around the environment is impassable,
the ants cannot cross the world from one side to the other.

and react to it. Some ants are following the pheromone trail to the food source or the nest,
other ants are exploring the environment. The ants can only collect one food patch at a time
and must return it to the nest before they are able to transport another food patch again. In
every generation the position of the nest is changed randomly, in order to avoid overfitting
the SNNs to the position of the food sources.

6.1.2 Network Architecture

An exemplary SNN steering an ant is depicted in Figure 6.2. The network has twelve input
neurons. The first three neurons are receptors which react to the position of the pheromone.
The next three neurons are able to locate the nest. The queen receptor indicates the middle
of the nest. The reward receptors and nociceptors determine the reward and punishment.
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Figure 6.2: Spiking network to control an ant of the colony. The network consist of 12 neurons
for the input, 20 neurons in the middle and 4 neurons in the output.

The green and red photoreceptors are activated whenever food or the wall is seen by the
ant. The heartbeat neuron stimulates the network in every timestep by supplying a small
direct current in order to maintain activity in the network. Twenty neurons are in the middle
layer and are connected in an all-to-all manner. The four output neurons are fully connected
with the middle layer and control the movement (rotate left, right, move forward) and the
activation to deposit the pheromone.

6.2 Optimizing the Ant’s Network with L2L

The simulations are run in the inner loop of an L2L experiment1. The optimization workflow
follows the same two loop structure as described in Section 5.2 and is schematically depicted
in Figure 6.3. In every generation there are 32 individuals and each individual is constituted
by an instance of the SNN; note that the individual is not a simulated ant. In each simulation,
15 ants are foraging for food, meaning there are 15 copies of the same individual, i.e. the same
network parameter configuration. Since there are 32 individuals, 32 simulations are executed
in parallel, thus, 32 ∗ 15 = 480 networks are run in total per generation. The simulation of
the SNN utilizes NEST as the back-end.

1The simulations are conducted on a workstation with an AMD Ryzen Threadripper CPU, 32 cores (3.7Ghz),
64GB RAM and Ubuntu OS 21.04.

105



6 Optimizing Spiking Neural Networks enhances Foraging Behaviour of Swarm-Agents

Ant 15Ant 2Ant 15Ant 2Ant 1
Ant 15Ant 2

Ant 1

Individual
1

Individual
2

... ...
Ant 1

...

Individual
32

...

Generation

Genetic Algorithm
Recombination Mutation Evaluation

 fitness

optimized 
parameters: 

weights, 
delays

Figure 6.3: Optimization workflow for the ant foraging task. In every generation 32 SNNs,
which constitute the individuals in the inner loop of L2L, are used to steer the
behaviour of ants in a colony during the simulation of the foraging task. Each ant
in the colony is steered by a copy of the SNN. The genetic algorithm optimizes
the connection weights and delays of the SNN.

6.2.1 L2L Simulation Details

In the create_individual function, the connection weights are uniformly distributed in the
range of [−25, 25] and delays are in [1, . . . , 7)N+ . Additionally, the parameters are min-max
normalized and saved in a csv file. They are read in when constructing the SNN in NEST.
The simulate function calls the NEST simulation by executing a Python subprocess. The
environment is based on the model of Wilensky (1997) implemented in NetLogo. NetLogo is a
multi-agent simulator and modeling environment. Every object in a NetLogo simulation is an
agent and agents can communicate with each other. With NetLogo it is easy to replicate the
same simulation and agent. Blue colored patches represent the pheromone which is deposited
by the ants on the environment (see Figure 6.1).

The inner loop waits until the simulation finishes and collects the fitness which is calculated
based on the amount of food collected by the colony and returned to the nest, the extend
of movement and pheromone depositing (see Section 6.2.2). The parameters of the network
and the fitness values are then sent to the GA in the outer loop. In every generation, the
weights are clipped in the bounding_func to stay in the range of [−20, 20] and delays to [1, 5].
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Figure 6.4: Evolution of the fitness of two different ant colony simulations over 1700 gen-
erations. In the first SNN-driven model the pheromone pathway is activated.
However, the ants of the second SNN-driven model are not able to sense and de-
posit pheromones. The blue data series illustrates the fitness evolution of the first
model. The green data series shows it for the second model. The dotted data
series depicts the best individual of every generation. The blue/green solid line is
the mean fitness of all individuals and the blue/green shaded area is the standard
deviation.

Restricting the parameters to these values resulted in an enhanced swarm performance.

6.2.2 Ant Foraging Performance

The fitness of the ant colony optimization is the summation of the rewards and punishments
received by each of the ants in the colony during the simulation. An ant receives a small
positive reward for touching a food patch and a large reward for returning with food to the
nest. This induces the ants to quickly return to their nest, whenever they find food. A small
punishment is given at every time step. This encourages the colony to quickly complete the
task. At the same time, the ants receive a small punishment for every action in order to
avoid excessive reactions, such as depositing too much pheromone or exhibiting too much
movement. In this section, two different SNN-driven models are compared. The first model
is SNN-driven (SNN model 1) as described in Section 6.1.2. The second model is SNN-driven
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(SNN model 2) as well, however, the pheromone pathways are disabled and the ants do not
have the capability to deposit or perceive pheromones. Note, that both SNN-driven models
are evolved over 1700 generations, the optimization workflow follows the scheme explained
above.

Behaviour Cost
Resting -0.5
Dropping Pheromone -0.05
Rotation -0.02
Movement -0.25
Return nest 220
Touch food 1.5
η 30.0

Table 6.1: Cost values to calculate the fitness of the colony. Every movement, rotation and
pheromone deposit of each ant results in a small punishment. Returning to the
nest with food and touching the food is positively rewarded.

The simulation takes T = 2000 steps to finish, a step size corresponds to 20ms simulation
time in NEST. The ants additionally receive a reward if they are able to collect all the food
before the simulation ends. This reward is the result of the difference between the total
simulation time and the time Ts the ants require to collect the food and is multiplied by a
scalar η. This can be written as:

fi =
Ts∑
t=1

 J∑
j=1
N (t)

i,j + F (t)
i,j + C(t)i,j

+ η (T − Ts) , (6.1)

where t = 1, . . . , Ts is the simulation step with Ts ≤ T and T the total simulation time, η is a
scalar to weight the speed of the ants to collect the food. i is a specific individual, j = 1, . . . , J
is the ant index and J is the total number of ants in a colony. N is the positive reward value
for coming back to the nest with food, F is a positive value for touching the food and C is
the punishment cost. The specific values are listed in Table 6.1.

Figure 6.4 shows the evolution of the fitness over 1700 generations for two different simulations.
As mentioned above, two different ant colonies are trained, in the first SNN-driven model the
ants have the capability to perceive and deposit pheromones, however, in the second SNN-
driven model the ant’s pheromone pathway is disabled, i.e. the ants are only using their
visual receptors to perceive the food. For both runs the mean fitness is increasing over the
generations. After 1000 generations the performance increase of the first model slows down
and oscillates around a mean of 8100 with a standard deviation of 3970. The highest fitness
is at 38004 in generation 14020, specific individuals reach a fitness higher than 30000. The
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mean of the second model converges after 700 generations with a value of 5800 and a standard
deviation of 3950. The highest fitness is 24450 in generation 1150. In contrast to the first
model, specific individuals reach a high fitness in early generations, e.g. in generation 390 a
fitness of 21716 is observable. Compared to a randomly initialized SNN, these results show
that the SNN exhibits an increasing performance due to the optimization with a genetic
algorithm. Furthermore, colonies capable of utilizing the pheromone efficiently (SNN model
1) display a higher performance than the colonies which rely only on their visual perception
(SNN model 2).

6.3 Analysis of the Ant Foraging Behaviour

After evolving the SNN, the ant colony is able to efficiently forage for food. This section
investigates how the swarm develops and adapt its behaviour over multiple generations. First,
the performance of the SNN-driven model is compared to a rule based system, in which each
ant follows a set of pre-defined rules. It is additionally compared to a second SNN-driven
model in which the agents lack the ability to perceive and deposit pheromones. Second, the
behaviour of the ants is analyzed by correlating the input and output spike activity of the
corresponding SNN.

6.3.1 Comparing the Performance to a rule-based Model
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Figure 6.5: Ant model performance comparison. The boxes show the average number of food
patches collected within 2000 simulation steps over 100 trials. The vertical black
line is the standard deviation. The position of the nest is changed in every trial.
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To assess the performance of the ant colony the average amount of food foraged by the colony
and returned to the nest is calculated within the simulation time of 2000 steps and over 100
trials. Three piles of food are distributed in different locations of the 2D-environment as
depicted in Figure 6.1. Each pile contains 50 units of food making a total of 150 units, which
is the maximum score that a colony can reach in this setup.

Figure 6.5 shows the foraging performance of the two models. The boxes depict the mean
number of collected food over 100 trials and the black vertical line is the standard deviation
(SD). The first model is a rule based system implemented in NetLogo (Wilensky 1997). Here,
the ant foraging behaviour is determined by pre-defined action rules. The self-organized
behaviour of the ants emerges from the interactions of the individual members. The rule
based system is the baseline for the comparison. In this setting, the colony reaches a mean of
124.45 of foraged food units with a standard deviation of 19.552. In contrast to the rule-based
system, the SNN model 1 reaches a higher mean score (135.74) and a lower standard deviation
(9.007). The effect of the pheromone on the colony coordination is measured by disabling
the pheromone sensing in the evolved SNN model (SNN model 1 impaired pheromone). The
foraging performance drops significantly, the ants are not able to collect the food (mean: 0.67,
SD: 0.936). The ants of SNN model 2 do not have the ability to utilize the pheromone, the
performance is lower than the rule based system and SNN model 1 (mean: 97.1, SD: 60.0).

Based on these results, the evolved model with a self-coordinated system (SNN model 1)
is more performant than the rule based system and the SNN model 2, which relies only
on the visual sensory pathways to navigate and forage for food. Through the optimization
procedure, the ants are able to learn to communicate via pheromones, which increases the
foraging performance. The behaviour is not manually encoded and the communication within
the colony emerges as a swarm strategy through evolutionary optimization.

6.3.2 Correlating the Input and Output Activity

To better comprehend how the ant behaviour evolves over the generations, all input spike
trains are correlated with all output spike trains for all ants of the best individual of specific
generations. First, the input and output spike trains are binned in a histogram with a bin
number of 2000, which corresponds to the simulation step size of 20ms. Second, the mean
Pearson product-moment correlation coefficients between all binned spike trains are obtained.
Figure 6.6 depicts a correlation heatmap for the input (x-axis) and the output (y-axis) activity
(see Figure 6.2 for the input/output description of the network) over 4 different generations.
A bright color indicates a high correlation, a dark color denotes a negative correlation. The
nomenclature follows the naming scheme of Figure 6.2, i.e. the output activity Left is rotate
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Figure 6.6: Heatmap showing the correlation between the network input and output spike
activity. Each heatmap depicts the mean Pearson product-moment correlation
coefficients between the input and output spike trains of all ants from the best
individual in that generation.

left, Move means move forward.

Across the generations it can be observed that Smell Middle is positively correlated with Move,
with a value of 0.265, which decreases to 0.116 in generation 1600. The Figure also shows
that Smell Right is negatively correlated with Move, in generation 10 it has a value of 0.487
but at generation 1600 the strength of this anti-correlation reduces to 0.182. Interestingly,
in early generations Smell Left is negatively correlated with Left, but the correlation gets
positive after 200 generations. A negative correlation between Move and On Nest (0.220 in
generation 10) can be observed in early generations, while for later generations it becomes
uncorrelated (0.002 in generation 1600). In generation 10, Nest Middle and Left are anti-
correlated (0.187) and positively correlated in generation 1600 (0.135). The correlation Visual
Green and Pheromone is slightly positive in early generations (0.136 in generation 10) and
increases in later generations (0.313 in generation 1600). Extensive pheromone depositing is
punished by the fitness function and thus, leads to a rather restrained usage. A slight increase
in the correlation between Pheromone and On Nest over the generations is also observable.
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Due to the optimization with the evolutionary algorithm the input-output relationship ex-
hibits a variable behaviour across the generations, the relationship between input and output
gets weakened or enhanced. Some of these mappings fit to observations made in nature,
e.g. the increasing correlation between Pheromone and Visual Green reflects the positive re-
inforcement when an ant perceives food. Additionally, the pheromone serves as an attractor
and as a guiding signal for the colony to food patches or to identify the direction of the nest.
This is expressed by the correlation between smelling pheromones and the ant movement.
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Figure 6.7: Regression plots of the input-to-output correlation. In every tenth generation the
correlations between the input and output spike trains of the first ant of the best
individual are obtained. A regression (solid lines) is fit on the resulting correlation
values. The s-value indicates the slope of the curve. The null-hypothesis states
that the slope of the curve is zero. Only plots with a p-value below 0.005 are
displayed. σ is the standard deviation of the points.

The pheromone heatmap already provides an interesting interpretation of the ant behaviour
for specific generations. To see how the behaviour evolves over all generations and to deter-
mine trends for certain actions, the above obtained input-to-output correlation values are fit
using a linear regression for the same ant of the best individual. The regression, depicted in
Figure 6.7, returns a p- and s-value. A low p-value rejects the null-hypothesis that the slope of
the curve is zero (no correlation) and the s-value is the slope of the curve. Figure 6.7 displays
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plots with a p < 0.005. This visualization depicts trends in the ant behaviour over genera-
tions. For example, Visual Red is initially positively correlated to Move, but shows a trend
towards anti-correlation over the generations. In contrast, Visual Green and Pheromone show
an increasing trend, which aligns with the observation made above. Similarly, Smell Right
has an increasing positive correlation with Right and an increasing negative correlation with
Left. Smell Left is positively correlated to Move in early generations, but tends to zero later
on. Furthermore, Smell Left shows an increasing correlation with Nest Left and it decreases
with Nest Right. Smell Middle displays an increasing positive correlation with Move over the
generations. Nest Middle has an increasing positive correlation with Left, while Nest Right
shows an increasing negative correlation with Left. Initially, pheromone is dropped in the
vicinity of the nest. However, the pheromone output activity decreases over the generations,
indicated by a negative trend for On Nest.

Pheromone is used as an attractor and trails with higher pheromone concentration mark
shortest paths to food sources. This results from a combination of optimized movements
while sensing the pheromone, the evaporation rate of the pheromone, and the evolutionary
pressure of the fitness metric towards the pattern explore, get the food and return it to the
nest, which resembles the evolutionary shaped behaviour of natural ant colonies.

6.4 Discussion

This chapter presented the successful optimization and evolution of SNNs controlling agents
foraging for food. Due to the emerging self-coordination and self-organization via pheromones
the ants are able to collaborate and increase their performance. In this setting, the ants learn
to communicate which leads to an efficient performance during the foraging task. Disabling
the ant’s pheromone sensing drastically reduces the performance of the swarm. This high-
lights the importance of the (pheromone) communication, which emerges over hundreds of
generations, for the effective collaboration between the agents. The performance comparison
shows that the evolved colony steered by an SNN achieves a higher performance than the
multi-agent rule-based colony. It is important to note, that the release of pheromone does
not obey any pre-defined rules or a manual synaptic pre-configuration of the network. In-
stead, it is an emergent behaviour that is triggered under certain conditions and established
during the evolutionary process. Interestingly, neither the mechanism to trigger the release of
pheromone nor the interpretation of these signals is engineered. The optimization algorithm
efficiently exploits the simulated physiological properties of the ants and the characteristics
of the environment.
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Optimizing spiking and artificial neural networks to solve complex tasks is not an easy pro-
cedure. Optimization requires to embed the task in a suitable framework consisting of the
mathematical problem formulation, an objective function, and a fitness function to evaluate
the performance of the algorithm (Richards et al. 2019). Furthermore, adapting the network
parameters, such as connection weights, is not the only configuration that leads to a suitable
performance. Hyper-parameters influence and control the learning process heavily. In my
thesis I present ways to leverage gradient-free optimization techniques to be applicable on
spiking neural networks (SNNs) and artificial neural networks (ANNs) without the need to
change the network structure or employ complex approximations to calculate gradients.

7.1 Conclusion and Discussion

In the beginning of Chapter 2, I introduce the basic concepts of artificial and biological
networks. It is important to understand the differences between those types of networks.
While ANNs are more task specific, e.g. they are used for classification or language processing,
SNNs are utilized to understand brain activity and related processes. In recent years the
interest in the artificial intelligence (AI) community to combine biological processes with
artificial networks increased (Marblestone et al. 2016; Lake et al. 2017; Hassabis et al. 2017;
Zador 2019). Many building blocks of ANNs incorporate biological, neuronal processes in an
abstract manner and draw inspiration from neuroscience. This interconnection increases the
learning efficiency and network performance on many machine learning tasks. In neuroscience
the interconnection is still emerging and subject to extensive research (Bartunov et al. 2018;
Richards et al. 2019; Tavanaei et al. 2019; Lobo et al. 2020). Since the brain is able to easily
solve learning tasks, SNNs should have the potential to do the same. However, training and
optimizing SNNs to solve tasks is still challenging, but promising.

In my thesis I propose ways to apply optimization on SNNs which also work on ANNs. I
explore gradient-free optimization techniques, which can be seamlessly applied on both arti-
ficial and spiking networks. In machine learning, gradient descent and backpropagation are
popular methods to optimize neural networks. However, depending on the initialization and
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other properties, such as the selection of activation functions, the problem of vanishing or ex-
ploding gradients can occur. This problem hinders networks from learning since the gradients
either are extremely small or too high. Furthermore, the application of backpropagation and
gradient descent on SNNs is biologically implausible or requires complex approximations. A
challenging point is the non-differentiability of the spiking non-linearity. The all-or-nothing
behaviour of the neuron to emit a spike can be understood as a Heaviside step function and
makes the calculation of a gradient challenging or impossible without approximations. In-
stead, in this thesis I investigate metaheuristics, such as genetic algorithms or the ensemble
Kalman filter. Metaheuristics are black-box optimizers based on population decisions and
are a powerful, alternative solution to gradient descent. Every metaheuristic requires several
randomly initialized instances of the algorithm and a fitness function to evaluate the perfor-
mance. Metaheuristics are model agnostic and can be employed on a wide range of problems
as long as the algorithm or model can be represented as an optimization problem.

In Chapter 4, I explicate the problem of vanishing gradients in a convolutional neural network
(CNN) and describe an optimization technique which is able to overcome this problem. Here, I
design a setting based on the selection of network weight initialization and activation functions
that leads to the vanishing gradient problem when the network is trained with gradient
descent and backpropagation. The task is to classify digits from the MNIST dataset. In the
initialization the weights are sampled from a normal distribution and the activation functions
are sigmoidal functions, such as the logistic or the tanh function. To see the effects of the
vanishing gradient problem, I analyze the gradients and activation values. When trained
with stochastic gradient descent, the network is not able to classify the digits. A detailed
look into the histogram of the activation values and gradients show that they do not change
throughout the training. A similar picture can be seen for the optimization with Adam,
although it is slightly more robust. It takes over 30 epochs before the network is able to
classify, however the performance is not satisfactory. As an alternative to gradient descent I
propose the ensemble Kalman filter (EnKF) as a gradient-free optimization technique. Due
to the fast convergence on non-convex problems with several optima, the ensemble Kalman
filter is suitable for problems where calculation of the gradient is not possible or requires
complex approximations. I apply the EnKF on the same network setting and within one
epoch the network exhibits a high classification performance. In contrast to the gradient
descent methods, the activation values do vary over the iterations, thus, the network is able
to learn. Additionally, I analyze the effects on the network performance when changing the
hyper-parameters of the EnKF, such as the number of ensemble members, repetitions of the
same mini-batch and different activation functions. A simple algorithm based on previous loss
and the actual one adapts the hyper-parameters of the EnKF. However, it becomes clear that
an automated hyper-parameter optimization method is preferable, especially if the number
of parameters increases. Although the EnKF provides a suitable optimization solution the
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run time of the algorithm is long. Surprisingly, benchmarking the compute time reveals that
accessing the model output takes the longest time to finish in contrast to e.g. the calculation
of the covariance matrices. Changing the array object, in which model outputs are stored,
may decrease the indexing time. Optimizing the run time of the EnKF is a topic for future
investigation.

The simple algorithm to adapt the parameters of the EnKF showed the need to have an
automated way of optimizing hyper-parameters. L2L is a framework to optimize hyper-
parameters and parameters. L2L consists of a two loop structure, the inner and outer loop.
In the inner loop an algorithm or a model is trained or simulated on a task of a family
of tasks. The outer loop optimizes the (hyper-) parameters of the algorithm. A fitness
function evaluates the performance of the inner loop algorithm. The naming scheme in L2L is
inspired by evolutionary algorithms, thus, the performance is called fitness and the optimized
parameters are named individuals. In L2L the optimizers are gradient-free metaheuristics
and are agnostic to the model or algorithm.

In Chapter 5, I describe hyper-parameter and parameter optimization utilizing learning to
learn. I explain the advantages of automated hyper-parameter optimization and how it can
improve parameter exploration in contrast to a manual approach. I start the chapter with
introducing the concept of learning to learn, I use the EnKF as an outer loop optimizer to
adapt the connection weights of a spiking reservoir network to classify digits. The reservoir is
implemented in the spiking neural network simulator NEST and each individual is distributed
on an high performance computing system (HPC) and runs in parallel. Due to the multi-
threading implementation of NEST, the individuals scale well on the HPC. Additionally, L2L
enables further parallelization by running multiple instances of the network at the same time
on different compute nodes. Although the simulation takes time and only 3 digits are pre-
sented to the network, after 400 generations the reservoir exhibits a high accuracy. Due to
the fast convergence behaviour of the EnKF the optimization can prematurely converge to
a local optimum. In order to circumvent this problem I implemented a method which ranks
the individuals according to their fitness and replaces the poorly performing individuals with
the best ones. Additionally, I perturb the new individuals by adding random values drawn
from a normal distribution in order to increase the parameter search space and to find dif-
ferent or possibly better solutions. In order to understand the optimization of the evolving
reservoir network I explore and analyze the connection weights and the covariance matrix of
the EnKF over the generations in the principle components (PC) space. The weights over the
generations lay on the same arch-shaped manifold in 3D space and show a similar convergence
behaviour which is due to EnKF convergence. Similarly, the Kullback-Leibler divergence of
the weights varies within 200 generations and stabilizes afterwards with minor oscillations
around generation 300. The covariance matrices of the EnKF determine the optimization di-
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rection and convergence, thus the outcome of the optimization. The covariance matrix values
for the three different outputs of the reservoir in PC space decrease over generations, which
is in line with the converge of the weights.

The learning progress of the algorithm is influenced by its hyper-parameters. In order to
see how hyper-parameters affect the learning performance of the reservoir network, I design
a workflow which includes the EnKF optimization in the inner loop and adapt parameters
of the optimizer in the outer loop using a genetic algorithm (GA). In this setting, I opti-
mize three hyper-parameters: 1. γ, 2. ensemble member size and 3. repetitions of the same
mini-batch. While the GA finds a similar configuration to the manually tuned setting for γ

(γ ≈ 0.5), the optimizer proposes a lower number of ensemble members (≈ 30) According
to the optimization results, the repetitions are not required. Instead a higher number of
training samples is preferable. These results show the benefits of automated hyper-parameter
searches: a manual configuration is error prone and requires to run the simulation several
times, which is tedious. Instead, hyper-parameter optimization automatically explores and
finds suitable configurations, which could be missed otherwise. It also makes better usage of
computational resources as the exploration is guided by a meaningful metric and not just by
random exploration or subjective experience from the user.

The final chapter (Chapter 6) addresses the application of optimization techniques for spiking
neural networks applied to a multi-agent systems. In this setting, the problem deals with the
optimization of SNNs and the emergence of self-coordination and self-organization among the
agents. Here, SNNs are steering agents or ants of an ant colony, which collectively forage for
food. The connection weights and delays of the network are optimized by a GA. The ants are
able to deposit chemical signals, called pheromones. There are no pre-defined rules to control
the ant behaviour, i.e. there is no explicit mapping of the ant’s sensory input and its actions.
The optimization process has to find a solution to enhance the foraging performance. The
simulation is run within L2L and only the fitness and the connection weights are sent to the
optimizer. During the optimization, self-coordination and self-organization within the colony
emerges. The ants learn to deposit the pheromone, which enhances the foraging behaviour.
This highlights the importance of communication by using the pheromone and results in an
effective collaborative between the ants.

I compare the foraging performance using an SNN with a ruled-based model. The perfor-
mance of the SNN is higher than the ruled-based model. However, turning off the pheromone
sensing has as a consequence that the ants are not able to fulfill their task anymore and the
performance drops significantly. Furthermore, to have a better understanding of the foraging
behaviour, I correlate the input and output spiking activity of the network over multiple
generations. The analysis shows that pheromone is utilized as an attractor and high concen-
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tration pheromone trails indicate the shortest paths to the food source. This resembles the
actual behaviour of ant colonies observed in nature.

In terms of optimization, a challenge is to create the fitness function used to evaluate the
ant foraging performance. The fitness function is problem specific and finding an efficient
function is a complex task. To illustrate this point, the foraging task can be extended so that
the ants are punished whenever they collide. However, just adding a simple cost value for
the collision increases the complexity of the training and optimization. The ants erratically
spin around or stop moving after a few steps. This behaviour might resolve with further
training runs, but it is more likely that the fitness function has to be adapted. It is important
to find a balance between punishment and reward cost, which leads to several trials and
manual adjustments. This exploratory and exploitative behaviour is influenced by the fitness
function. A strict fitness function, i.e. every action in the simulation generates a reward or
a punishment, may lead to exploitation of local optima. However, it may also restrict the
exploration of different, better optima. Conversely, a lax fitness function may result in an
overly exploratory behaviour, that does not exhibit any exploitation.

7.2 Outlook

In my work I illustrated the commonalities and differences between SNNs and ANNs and
how optimization can be applied on both network types. I investigated meta-learning and
metaheuristics to optimize hyper-parameters and practicable solutions to efficiently scale al-
gorithms in a parallel fashion using the L2L framework. The framework is applicable on
SNNs and ANNs and provides an easy way to optimize parameters following the learning to
learn two loop structure. The concept of learning to learn incorporates learning by gener-
alization, i.e. given a family of tasks, the learning algorithm can utilize previously learned
knowledge to enhance it’s performance on the actual task. The main idea comprises that
with this scheme the algorithm is able to generalize and perform better on a variety of tasks.
Therefore, I aim to test the reservoir network additionally on a second dataset, such as the
letters dataset (see Chapter 4). After reaching a high accuracy on the MNIST dataset, the
network will be trained on the letters dataset to achieve a higher performance in a quicker
fashion in comparison to a single training scheme.

One problem when training networks on multiple datasets is catastrophic forgetting (Mc-
Closkey et al. 1989, see also Section 2.5). Learning to learn in combination with bio-inspired
techniques is able to overcome this issue (Kirkpatrick et al. 2017; Beaulieu et al. 2020; Nicholas
et al. 2021). Another approach is multi-objective optimization, which separates the objectives
from a single fitness function and optimizes the algorithm for several independent objectives
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in an interchangeable manner. It is possible to weight specific objectives with a pre-factor to
find the optimal pareto front. The L2L framework is already able to process several fitness
values, and thus, allows for multi-objective optimization.

Sampling and perturbing parameters by adding noise were effective techniques to increase the
performance when training the network. By applying those techniques, exploration and ex-
ploitation of optima was possible. However, the balance between exploration and exploitation
is hard to achieve and requires a careful configuration of parameters. Future work includes the
adaption of the noise parameters or even the noise itself via L2L. For example, when sampling
from a Gaussian distribution the parameter σ, which controls the standard variation, can be
adjusted with L2L. Another parameter to optimize is the number of replaced individuals. In
this setting, 10% of the best individuals replaced 10% of the worst individuals. Depending
on the network performance these numbers could be adapted automatically by L2L.

To further gain insight for a follow-up parameter analysis and leverage optimization, a vi-
sualization through generations may prove to be useful. A visualization tool which can plot
the evolution of the parameters using simple diagrams such as histograms, correlations and
similar statistics can be helpful to create a better understanding of the optimization. As
demonstrated by Tensorboard1, a desirable feature would be to interact with the plot while
the simulation is ongoing.

An interesting approach is to extend the capabilities of the optimization by using neural
networks as optimizers. This method was proposed by Andrychowicz et al. (2016), where
the outer loop recurrent neural network (RNN) was learning the gradients of the inner loop
RNN. In the setting of my work, the outer loop network could learn the distribution of the
parameter space of the inner loop reservoir and predict the next set of parameters. For exam-
ple, generative models, such as autoencoders, are able to approximate the high-dimensional
distribution of the parameter space and create new samples by estimating the likelihood of
each observation or input (Ruthotto et al. 2021). Such a model could be the optimizer in the
outer loop. One other interesting direction is to search for an optimal network architecture for
a specific task or for several tasks. This concept, known as neural architecture search (NAS,
Zoph and Q. Le 2017) or neuroevolution (Stanley 2017), uses genetic algorithms to optimize
the number of layers and neurons of a neural network. In the case of the reservoir network,
the number of excitatory and inhibitory neurons inside the reservoir and output clusters, as
well as the connections to the output can be optimized in order to enhance the separation
and approximation properties of the network.

In conclusion, I presented an optimization scheme applied on spiking and artificial networks
within the framework of meta-learning using metaheuristics. With this work I leverage op-

1https://www.tensorflow.org/tensorboard/
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timization applied on different types of networks for scientists working in the intersection of
neuroscience and AI. Finally, I have displayed the positive effects of cross-fertilization between
both fields regarding gradient-free optimization.
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