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Abstract

The primary subject of this dissertation is the analysis and improvement of variational meth-
ods that combine the use of classical and gate based quantum computers. The secondary
subject is the development of matrix based error mitigation and benchmarking protocols for
noisy quantum computers.

Variational methods run on quantum computer emulators are used to find the ground state
energies of the Heisenberg and Hubbard models and selected molecules in chemistry. An
algorithm is developed and deployed to automate the creation of variational circuits. The
theory and overview of variational methods and gradient based optimisation algorithms are
presented. We learn that while variational methods make it possible to use current genera-
tion quantum computers, guarantees of always finding the ground state energy are elusive.
We introduce noise in our emulations and adapt the optimisation algorithms to withstand
it. We observe the emergence of local minima and barren plateaus which hinder variational
methods from finding the ground state energies. It is discerned that clever choices of ini-
tial states and parameters are necessary ingredients for success. We develop the technique
of quasi-dynamical evolution inspired by quantum annealing. It overcomes the limitations of
standard variational algorithms by systematically improving the ground state energy estimate.
Our tests show that the heuristic improves the energy estimate even in facile settings.

We introduce seven criteria for ideal error mitigation protocols. A new protocol is devel-
oped on its basis. Our tests on IBM Q quantum computers show noticeable error mitigation.
The matrix generated during the execution of the protocol helps detect and visualise errors
and biases. We invent and use small depth quantum circuits for benchmarking quantum
computers.
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Zusammenfassung

Das Hauptthema dieser Dissertation ist die Analyse und Verbesserung von Variationsmetho-
den, die den Einsatz von klassischen und gatterbasierten Quantencomputern kombinieren. Das
sekundäre Thema ist die Entwicklung von matrixbasierte Fehlermitigation und Benchmarking-
Protokollen für verrauschte Quantencomputer.

Die Variationsmethoden werden auf Quantencomputeremulatoren implementiert. Hierbei
beschränkt sich der Anwendungsbereich auf die Berechnung der Grundzustandsenergien des
Heisenberg-Modells, des Hubbard-Modells und ausgewählter Moleküle. Es wird ein Algorith-
mus entwickelt und eingesetzt, um die Erstellung von Variationsschaltungen zu automatisieren.
Eine Zusammenfassung von Variationsmethoden und gradientenbasierten Optimierungsalgo-
rithmen wird bereitgestellt. Wir finden, dass Variationsmethoden den Einsatz von gatterbasierten
Quantencomputern der aktuellen Generation ermöglichen. Natürlich besteht keine Garantie,
dass der Grundzustand tatsächlich gefunden wird. Wir führen Rauschen in unsere Emulatio-
nen ein und passen die Optimierungsalgorithmen an, um diesem Rauschen zu widerstehen.
Wir können das Auftreten von lokalen Minima und kargen Plateaus feststellen, die die Varia-
tionsmethoden daran hindern, die Grundzustandsenergien zu finden. Eine geschickte Wahl des
Variationsansatzes und der Variationsparameter ist unabdingbar für den Erfolg. Wir entwickeln
die Technik der quasi-dynamischen Evolution, die von der Quantenannealing inspiriert ist. Sie
überwindet die Beschränkungen von Standard-Variationsalgorithmen, indem sie die Schätzung
der Grundzustandsenergie systematisch verbessert. Unsere Tests zeigen, dass die Heuristik die
Energieschätzung sogar in einfachen Situationen verbessert.

Des Weiteren stellen wir sieben Kriterien für idealen Fehlermitigation-Protokollen vor. Ein
neues Protokoll wird auf dessen Grundlage entwickelt. Diese Strategie wird auf IBM Q Quan-
tencomputern getestet. Hierbei lässt sich eine erkennbare Fehlermitigation feststellen. Die
während der Ausführung des Protokolls erzeugte Matrix hilft, Fehler und Verzerrungen zu erken-
nen und zu visualisieren. Wir erfinden und verwenden Quantenschaltkreise mit geringer Tiefe
für das Benchmarking von Quantencomputern.
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Chapter 1

Introduction

Humans compute. They employ tools for assistance. The earliest of them, notched bones,
were used at least twenty thousand years ago to store numbers [D’E+12]. The last dozen
centuries have seen an increase in computing tools, including the abacus, the machines of
Schickhard, Pascal, Leibniz, Odhner, Baldwin, Hollerith, Kelvin, Bush, up to the Babbage’s
conception of an analytical engine in the mid-19th century [IH01; Bab37]. Afterwards, in the
last century, there has been a rapid development of computers [Lud09; Zus36; Tur37; Ran82].
One essential characteristic of computers is scalibility, that is, the ability that the compu-
tational power can be increased in proportion to the needs of the humans by reasonable
adjustments. However, the highest computational needs of humans continue to surpass any
computer built to date.

Humans describe. They employ physical laws, theories, and models for assistance. More
than two thousand years ago, Archimedes indulged in discovering physical principles [Arc09].
Some progress has been made since then. In the last century, humans have developed quan-
tum theory, which has vast descriptive authority [Lam92]. Peculiarly, quantum theory’s de-
scriptive power is statistical [Bal14]. The theory’s framework is derived from a few axioms
[VBG55]. Given that the theory predicts probabilities of plausible events, at its core it is based
on probability theory [Jay03]. Despite the progress in the description of nature, the equations
of quantum theory are not easily solvable in general.

Humans compute to describe. Universal digital computers or classical computers have be-
come omnipresent in daily life. From transistors to supercomputers, computers assist hu-
mans in many tasks. A vast amount of research today is assisted by computers and can be
expected to continue in the future. The computational demands of the research community
exceed the supply. In particular, it is believed that digital computers are inefficient in simulat-
ing general quantum systems [Pre21]. It has been envisioned that quantum computers may
prove helpful in simulating physical phenomena or solving specific problems more efficiently
[Fey82; Ben82]. The time is ripe for identifying more such problems and testing them.

Quantum computing

The core idea of quantum computing is to use efficient and scalable computing machines to
assist in the description of nature. If other problems exist that fit such a description, then
they may also be solved efficiently on a quantum computer. The realisation of such a con-
cept is envisioned to require a computing machine that works on the principles of quantum
theory.

Two types of quantum computers are currently under research and development: annealers
and gate-based systems [NM19]. The first approach to quantum computing is termed quan-
tum annealing [Fin+94; KN98; Far+00; Har+10; Joh+11]. Quantum annealing is primarily used
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to solve specific types of optimisation problems [Wil+20a; PO+19; Ohz20; Hsu+19]. Recently,
novel applications of annealers such as the realization of spin ice [Kin+21; Kin+22a; Kin+22b],
studying phase transitions [Har+18], observing a topological phenomenon [Kin+18], studying
the two dimensional Ising model [Wei+20], and machine learning [PL13; Wil+20], among oth-
ers [AS21; Cha19], have been found.

The other type of quantum computing is gate-based. As the name suggests, gate-based
quantum computers rely on logic operations or gates to manipulate the stored information.
Such computers are considered universal because any arbitrary operation can be decom-
posed as a sequence of unitary gates [Bar+95; DiV95; DBE95]. In this work, we focus on
gate-based quantum computers. Henceforth, the mention of a quantum computer shall im-
ply a gate-based one unless otherwise specified.

There are parallels between classical and quantum computing. The classical computer’s el-
ementary storage and manipulation unit is one bit consisting of two states. Due to the scal-
ability of semiconductor devices, they are highly preferred for the physical implementation
of the classical bit. A bistable multivibrator [RSR10], commonly known as the flip-flop, can
store one bit of information, either 0 or 1, corresponding to each of its stable states. Similarly,
the quantum computer’s elementary storage and manipulation unit is also a two-level system
commonly regarded as a quantum bit or qubit. Several physical implementations of the qubit
are possible, e.g. nuclear spin, electron spin, trapped ions, quantum dots, superconducting
transmons [NC10; LD98; Koc+07]. Which implementation is the most suitable remains part
of active research. The essential difference between the two types of computing platforms is
the following. The best-known theoretical description of classical computers states that the
bit stays in either one of the two possible states at all times during the computation. In con-
trast, quantum theory tells us that the quantum computer is not necessarily in either of the
two states during the computation. Only the measurement produces either one of the two
states.

Classical computers manipulate their bits by relying on logic gate operations. Common
operations include the NOT gate, which takes the input 0 or 1 and changes it to 1 or 0, re-
spectively. To cover all possible Boolean operations, one can use multiple NAND gates. The
NAND gate gives the output 0 when both inputs are 1 and 1 otherwise. Since all Boolean op-
erations can be expressed in combinations of NAND gates, it is referred to as one of the uni-
versal gates [Mai07]. Quantum computers manipulate their qubits relying on reversible logic
operations, in contrast to their classical counterparts. Universal gates also exist for quantum
computers [SW95; DiV95].

We have come a long way from the first abstract model of a quantum computer [Ben80].
The 21st century has seen a rapid development of experimental devices physically imple-
menting the quantum computer. It has been shown that a quantum computer can perform
a task, albeit without a meaningful task it was originally envisioned, faster than a classical
computer [Aru+19]. The ultimate purpose is to leverage the framework of quantum theory to
gain a meaningful computational advantage over classical computers [EJ96]. It is not envi-
sioned that quantum computers will replace all classical computers [JM19]. The advantage is
theoretically predicted for several areas, among them (1) algorithms to find the prime factors
of integers [Sho94; Sho99] or for database search [Gro96]; (2) efficient simulation of quantum
mechanical systems [Fey82]. In this dissertation, we devote our attention to the latter.

Motivations

The properties of any isolated physical system that is described by quantum mechanics can
be calculated by solving Schrödinger’s equation. It describes the dynamical evolution of the
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systems on the atomic scale. The time-dependent form is given by

iħ ∂

∂t
|Ψ(t )〉 = H(t ) |Ψ(t )〉 , (1.1)

where H(t ) is a time-dependent Hamiltonian describing the system of interest, and |Ψ(t )〉
describes the state of the entire system at a given time t , which according to quantum me-
chanics contains all the information that can be known about the system. We briefly motivate
systems that rely on solving Eq. (1.1) to obtain these properties.

Heisenberg model: The phenomenon of magnetism has perplexed humanity since the dis-
covery of the lodestone. The multitude of superstitions arising after this discovery were first
questioned by William Gilbert in the year 1600. An interesting account of the history of mag-
netism is found in [Ver96; Mat06]. His work initiated the first arguments to bring about a
description of the phenomenon [Gil60; MB00]. More than four centuries later, the current
understanding of magnetism is as follows.

The description of magnetism in a material is given in terms of a magnetic order, which
occurs from the presence of atoms with magnetic moments and their interactions. The two
broad types of interactions which can be important in allowing the magnetic moments in a
material to communicate with each other and produce magnetic order are magnetic dipole
interaction and exchange interaction. We are led to the Heisenberg model by focusing on the
exchange interaction. The model is analytically solvable only for the case of a one-dimensional
lattice using the Bethe ansatz [Bet31]. Since the spin magnetic moments are inherently quan-
tum mechanical in nature, their mapping to the qubits of a quantum computer is straight-
forward. After the mapping, the properties of the state of a quantum computer then encode
the corresponding properties of the state of the Heisenberg model.

Hubbard model: For more than half of the twentieth century, collective electron theory
was the dominant theory explaining ferromagnetism in metals [Woh53; Sto47]. Despite its
success, it failed to accurately describe the itinerant ferromagnetism of transition metals,
such as iron and nickel. Hubbard [Hub63; Hub64a; Hub64b], and independently Kanamori
[Kan63] and Gutzwiller [Gut63], proposed a model which is now named after Hubbard that
arose to fill in the gap. The model was initially applied to describe the behaviour of the
transition-metal monoxides, e.g. FeO and other antiferromagnetic insulators, which had been
predicted to be metallic by methods which do not take into account strong electron interac-
tions [Sca16].

Since the Hubbard model describes fermionic systems, the mapping to a quantum com-
puter is not straightforward and requires suitable transformations. The transformed Hamil-
tonians of the Hubbard model can then be mapped to the quantum computer. Interesting
properties of the Hubbard model, e.g. the ground state energy, have a direct correspondence
to the properties of the quantum computer. In essence, if the transformed Hamiltonian can
be brought into the ground state on a quantum computer, we have also found the ground
state of the Hubbard model. This would be a significant step in understanding and predict-
ing the numerous quantum properties of materials.

Quantum chemistry: The goal is to calculate the ground state energy for molecular sys-
tems described by Eq. (1.1). Given the combinations of atoms to create all kinds of rele-
vant molecules, chemistry applications can range from prototypes to those well beyond the
capabilities of any supercomputer. For quantum advantage, such applications need to be
tailor-fitted so that they are not irrelevant due to (a) unavailability of experimental results,
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(b) availability of efficient classical computations, (c) complexity, or (d) industrial inapplica-
bility [Elf+20].

In the above examples, the governing idea is to solve Eq. (1.1). The Ψ(t ) in Eq. (1.1) is a
complex-valued function. To process Ψ(t ) in general on a classical computer, the first step is
to represent Ψ(t ) using floating-point arithmetic on a combination of flip-flops. A 2N dimen-
sional array of floating-point numbers is required to represent all the information contained
in Ψ(t ) at a particular time t and for N qubits. Since this representation doubles with every
new qubit added, classical computers quickly run out of storage space. On the other hand,
the representation of Ψ(t ) on a quantum computer is more natural or efficient. Therefore,
the motivation is to use such computers to solve this type of problems.

While it is clear that such an ideal computer can solve the problems mentioned above,
there is no guarantee that such a computer can ever be built. A fully working, large-scale,
error-free or error-corrected, ideal quantum computer is neither currently available nor fore-
seen in the near future. All current quantum computers belong to the noisy intermediate scale
quantum (NISQ) regime [Pre18; Pre21]. The motivations of current research in applications
of quantum computing are as follows.

1. To develop methods that can use quantum computers despite (a) the small number of
gate operations possible on them and (b) the presence of noise.

2. To investigate if, and under what conditions, quantum advantage is possible through
such methods on such computers.

3. To develop techniques that help mitigate noise.

Objectives and methods

In line with the above motivations, we investigate the following things. We also mention the
methods to be used to investigate.

I. Hybrid variational methods for quantum computers, which are based on the variational
principle, have recently been used to leverage the resources of small-scale prototype
quantum computers. The variational principle allows any ansatz to be used. However,
not every ansatz will solve the problem. Therefore, it is vital to develop ways to create
ansätze that are problem-specific and test them on their quality to find the ground state
energy. By mimicking and using an ideal quantum computer through an emulator, we
will solve for the ground state energy of the problems and compare them against the
true values found using classical methods. To analyse the effects of noise, we will add
artificial noise to the emulator while solving for the ground state energy.

II. One aim is to identify and illustrate deficiencies of hybrid variational algorithms. We
remedy the deficiencies by proposing, implementing, and testing a heuristic that is able
to improve the results of standard variational algorithms. This heuristic quasi-evolves
the given system to its ground state in a systematic way. We observe that the heuristic
avoids problems common to variational algorithms. Furthermore, we time the emulator
against a realistic but hypothetical quantum computer to ascertain which will solve a
given task faster.

III. We aim to develop error mitigation and benchmarking methods for current and near
future quantum computers. We will use actual noisy quantum hardware to perform
error mitigation and simple benchmarking experiments.
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Outline

The contents are structured as follows. In chapter 2, we introduce the gate-based model of
quantum computing. Starting from the elementary qubit, which is manipulated using gates,
which combine to form circuits, we briefly describe a quantum algorithm.

In chapter 3, we introduce the hybrid variational methods for quantum computers. By
introducing the variational principle using two simple examples, we illustrate how the circuit
preparation can be automated and the ingredients necessary to effectively use such methods.
We then briefly introduce the basic classical optimisation theory relevant to such methods.

In chapter 4, the variational algorithms are used to find the ground state energy of three
problems: the Heisenberg model, the Hubbard model, and some molecules in quantum chem-
istry. A quantum computer emulator is used for this purpose.

In chapter 5, we first numerically demonstrate problems facing variational methods, then
propose a heuristic called quasi-dynamics that alleviates some of these problems. We show
a connection between the heuristic and quantum annealing and numerically demonstrate its
working on selected problems.

In chapter 6, we introduce criteria for an ideal error mitigation protocol. Based on these,
we develop a matrix-based mitigation protocol that improves previous protocols. We test this
protocol and a benchmarking circuit on real quantum hardware.

Chapter 7 contains the main conclusions of this work. We also offer an outlook for future
work.
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Chapter 2

Gate-based quantum computing

2.1 Quantum digits

To understand the working of a quantum computer, it is essential to start from its most el-
ementary unit. In this section, we review the qubits. We look at how the qubit is different
from a bit, and what differences highlight their basic information storage capabilities.

2.1.1 One qubit

A classical computer’s elementary information storage unit is a binary digit or bit. The binary
digit takes precisely two values, 0 or 1. Theoretically, it does not exist in any state other
than these two. Physical implementations ensure that the state of such a computer stays
in either one of the states unless it is required to change. Naturally, a useful bit is the one
which can be changed from one state to another as per need. When the state is changed,
the time taken is negligibly small. During this negligibly small time the system exists in a
classical superposition of the two states. From this argumentation, it is clear that classical
digital computers are only an abstract construct. In reality, computers are always analogue
in the strict sense, but with a good enough physical implementation, they can be reasonably
well approximated as digital computers.

Similarly, the elementary storage unit of a quantum computer is a quantum binary digit,
or qubit. Since the state is a variable of quantum theory, it is represented by |Ψ〉. The state
of the two-level system is described by

|Ψ〉 = c0 |0〉+ c1 |1〉 , (2.1)

where |0〉 and |1〉 represent the computational basis states corresponding to the binary states
0 and 1, respectively. The variables c0 and c1 are complex numbers in general and c2

0 +c2
1 = 1.

By requiring a restriction condition c0 6= c1 and (c0,c1) ∈ {0,1} for Eq. (2.1), we get the corre-
sponding classical bit. Thus, classical computers can be considered to be a special case of
quantum computers and we can expect quantum computers to have a greater computational
power [DiV00]. In general, a qubit described by Eq. (2.1) can take any linear combination of
values of the two complex variables. This property in the description of the theory of quan-
tum mechanics is termed as quantum superposition of states.

A striking difference between classical and quantum computers arises when considering
the read-out of the final state after performing a certain computation. The binary digit does
not need any special arrangement for its read-out, e.g. the waveform of the final state when
using a flip-flop continues to exist in the last computational state. On the contrary, the final
state |Ψ〉 after a computation on a quantum computer is not directly accessible. The complex
variables in Eq. (2.1) only define the probabilities to observe the state |Ψ〉, given by |c0|2 and
|c1|2 to observe the qubit states |0〉 and |1〉, respectively. Since the total probabilities must
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z

y

x

|Ψ〉

FIGURE 2.1: Bloch sphere representation of a general single qubit state |Ψ〉. The
blue colour, green colour, and the dotted line show the xz, y z, and x y planes,

respectively.

sum to unity, |c0|2 + |c1|2 = 1. The read-out of |Ψ〉 is a statistical process, requiring a set of
several repeated preparations and measurements.

Since the bit exists in two states before, during, and after the measurement of a compu-
tation, it justifies the name binary digit. On the contrary, the qubit can be in any arbitrary
superposition of its states before and during the computation. It only exists in a binary state
after the measurement if the word "binary" is to be consistently understood in the classical
sense. A more appropriate name may have been qit or quantum digit. However, for consis-
tency throughout the literature, the word "qubit" will be followed.

For the case of a single qubit, it is instructive to look at a geometric representation on the
Bloch sphere. The state of the qubit can be parametrised as

|Ψ(θ,φ)〉 = cos
θ

2
|0〉+e iφ sin

θ

2
|1〉 , (2.2)

where θ and φ are real numbers, and we ignore a global phase factor which has no observ-
able effects [NC10]. The Bloch sphere is shown in Fig. 2.1. The unit vector |Ψ〉 stretching to
the sphere’s surface represents the general state. The computation on a single qubit moves
the vector around in arbitrary directions. The computational states |0〉 and |1〉 are shown in
Fig. 2.2. Every point can be reached on the surface of the sphere with a suitable combina-
tion of θ and φ in Eq. (2.2). The choice of direction of the computational states, e.g. |0〉 (|1〉)
towards +z (−z) is a matter of choice or definition.

2.1.2 Multiple qubits

The elementary storage units of a classical computer need to be put together to store mean-
ingful information consisting of combinations of 0s and 1s. For two such units put together,
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|1〉 |0〉

FIGURE 2.2: Bloch sphere representation of the two computational states (red
line) of a single qubit.

the system is described by a set of four ordered pairs

{00, 01, 10, 11}, (2.3)

where the order in which the bits appear is significant. The significance of the order implies
that unless the bits are the same, any two orderings are not equivalent. Generalising to more
than two units, the corresponding state of N bits is described by an N -fold Cartesian product
containing 2N elements, given by

X = x0x1 . . . xN−1 ∈ {0,1}N = {00. . .0,00. . .1, . . . ,11. . .1}. (2.4)

Similarly, a single qubit is not a very useful unit of processing information in itself unless
multiple qubits are combined together to store and manipulate meaningful information. The
quantum state of such a system is described by the multi-qubit state |Ψ〉 which is a linear
superposition of all possible computational states given by

|Ψ〉 = c0 |00. . .0〉+ c1 |00. . .1〉+ · · ·+ c2N−1 |11. . .1〉
= ∑

x0...xN−1∈{0,1}N

c(x0x1...xN−1)base 10 |x0x1 . . . xN−1〉

=
2N−1∑
k=0

ck |Xk〉 where
∑
k
|ck |2 = 1.

(2.5)

The multi-qubit states of the combined system of qubits can be in any state out of all the
possibilities in Eq. (2.5). Note that the fundamental difference in classical and quantum com-
puting does not merely arise by the description of their multi-unit storage given by Eq. (2.4)
and Eq. (2.5), respectively. The difference arises from the fact that quantum superposition
is an active part and is used during the computation, in contrast to classical superposition.
Clearly, there exist states in Eq. (2.5) that cannot be written in a Cartesian product form as
given in Eq. (2.4). A commonly known example of such a state is

|Φ−
2 〉 =

1p
2

(|00〉− |11〉). (2.6)

The fact that |Φ−〉 is a valid state is readily verified since 〈Φ−|Φ−〉 = 1, implying that the total
probability adds to unity, as required. Since |Φ−〉 in Eq.(2.6) cannot be written as a product of
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two independent single particle states, it is termed as an entangled state. A counterexample
to an entangled state is a product state,

|Φ′
2〉 =

1p
2

(|00〉− |01〉) = 1p
2
|0〉 (|0〉− |1〉), (2.7)

which can be written as a product of individual qubit states. Consider another simple exam-
ple of a state

|Φ+
4 〉 =

1p
4

(|1010〉+ |0100〉+ |0010〉+ |0001〉)

= 1p
4

(
(|101〉+ |010〉) |0〉+ |00〉 (|10〉+ |01〉)),

(2.8)

for a four qubits system, which can only be partially written in a product of individual states.
From a quantum computing perspective, most interesting are then the "fully-entangled" states,
since it is their description that requires a complete statevector of length 2N . Since |Φ〉 is
never directly observed, it can be said that entanglement is a property of our description of
Nature and not of Nature itself, an important requisite. Therefore, it is misleading to say that
entanglement itself (or real numbers, for that matter) can be observed.

Work has been done in identifying entangled states in physical phenomena through the
separability criterion [HHH96] and entanglement witnesses [Ter00] in the context of Bell in-
equalities [Bel64; BA04]. The idea is to test a mathematical inequality where if a violation is
observed, it is inferred that the state must have been entangled. Violations of the inequality
are also used to infer that it is only a property of non-local systems. However, even local-
realistic models reproducing the results of quantum mechanics violate Bell inequalities [De
+07; Jat19]. Other alternative "subquantum" models that can reproduce the results of quan-
tum mechanics using event-based simulations can be found in [Wil+20b; De +20]. The local
realistic models obtain this violation only by post-selection on the full dataset, similar to the
experiments.

The visual representation of a single qubit was easy to realise using the Bloch sphere, but
this is not the case for multi-qubit systems. While the mapping from Eq. (2.1) to Eq. (2.2) is
straightforward, a similar geometric mapping of Eq. (2.5) does not provide a complete picture
of all the linear combinations possible. Attempts have been made that require more than one
sphere per qubit to cover all possibilities [Wie14]. It is still useful, nevertheless, to visualise
each qubit in a multi-qubit system on a single Bloch sphere per qubit [Wil20].

2.2 Quantum gates

A successful computation requires not only the storage of information but also its manipu-
lation on a computer. The quantum computer would not be very useful without the means
to manipulate the stored information. In this section, we look at the various operations that
can be done on a quantum computer. These operations are known as quantum gates.

Most operations on the bit are designed to be irreversible. It is possible to design classi-
cal gates that are reversible [Ben73]. Reversibility is not a necessary condition for classical
computing. In contrast, quantum gates and operations are necessarily reversible due to the
unitarity of the underlying operators in quantum mechanics. In principle, there can be gates
acting on an arbitrary number of inputs. However, it turns out that it is sufficient to have
gates acting on up to two inputs to realise a universal computation [DiV95].
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2.2.1 Single qubit gates

Single bit gates on a classical computer are one-input one-output gates. The simplest exam-
ple of such a gate is the NOT gate, which negates the input value at its output. Similarly,
for a quantum computer we can define a NOT gate that changes the computational state
of the qubit from |0〉 to |1〉, and vice versa. The interesting difference between the classi-
cal and quantum NOT gate, however, appears when the qubit is in some linear combination,
e.g. c0 6= 0 6= c1 in Eq. (2.1). In this case, given an input state as described in Eq. (2.1), the
output is given by

NOT(|Ψ〉) = NOT(c0 |0〉)+NOT(c1 |1〉) = c0 |1〉+ c1 |0〉 . (2.9)

A more convenient way of representing the operation in Eq. (2.9) is to define a matrix of
the quantum NOT gate, given by

X ≡
[

0 1
1 0

]
, (2.10)

and a vector corresponding to |Ψ〉, given by[
c0

c1

]
. (2.11)

In this new notation, Eq. (2.9) is rewritten as

X |Ψ〉 =
[

0 1
1 0

][
c0

c1

]
=

[
c1

c0

]
. (2.12)

Using the matrix and vector representation, we have moved from a symbolic and abstract no-
tation to a more concrete and numerical one. This opens the possibility to emulate quantum
computers on classical computers.

There also exist other gates that do not have a corresponding classical counterpart. An
example of such a gate is the Z gate, given by

Z =
[

1 0
0 −1

]
. (2.13)

The action of the Z gate on the state |Ψ〉 = c0 |0〉+ c1 |1〉 gives Z |Ψ〉 = c0 |0〉− c1 |1〉. This pro-
duces no effect on the probabilities to measure the computational states, |c0|2 and |c1|2.

A general single-qubit gate is realised as a three dimensional rotation on the Bloch sphere
due to the correspondence between Eq. (2.1) and Eq. (2.2). Such a rotation is expressed as

Rα(2θ) = exp(−iθσα), (2.14)

where σα for α ∈ {x, y, z} are the Pauli matrices

σx =
[

0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
. (2.15)
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Every point on the Bloch sphere can be transformed to every other point using suitable rota-
tions. The rotations written explicitly in matrix form are

Rx (2θ) =
[

cosθ −i sinθ

−i sinθ cosθ

]
,

Ry (2θ) =
[

cosθ −sinθ

sinθ cosθ

]
,

Rz (2θ) =
[

cosθ− i sinθ 0
0 cosθ+ i sinθ

]
.

(2.16)

The terms in Eq. (2.16) define a complete set of elementary single qubit rotations that can be
used to manipulate any kind of information stored in the qubit(s).

Single qubit gates are also applied to entangled qubits. In this case, the gate acts only on
the intended qubit and changes its state similar to the case of a single qubit. Let the state of
a multi-qubit system be given by |Ψ〉, then the Pauli rotation on a single qubit with an index
i by an angle 2θ is given by

Rα,i (2θ) = exp(−iθσα
i ) = I0 ⊗ I1 ⊗·· ·⊗Rα(2θ)⊗·· ·⊗ IN−1 (2.17)

where I is the identity matrix denoted by

σI = I =
[

1 0
0 1

]
, (2.18)

and the indexes correspond to the numbering of the qubits.
All the gates discussed in this section acted on one qubit at a time. Series of such gates can

be combined to perform manipulation of the information only for each individual qubits. To
make meaningful manipulations, information also needs to be interchanged or inter-acted
between multiple qubits, which necessitates the existence of multi-qubit gates. We discuss
such gates in the next section.

2.2.2 Multiple qubit gates

The logic gates that take input from at least two bits form the backbone of the classical com-
puter. The combination of the NOT and the AND gate gives the NAND gate, from which every
other digital logic gate can be constructed by suitable combinations. The NAND gate is a two-
input, two-output gate and is considered universal for classical computing. Similarly, there
exist quantum gates that also take two inputs and give two outputs. A very commonly used
gate is the controlled NOT gate often termed as the CNOT gate. It is defined in the matrix
notation as

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.19)

The action of the CNOT gate is such that it reads one input, often termed as the control input,
and if the input is |1〉 it performs a NOT operation on the second input, often termed as the
target input. If the control input is |1〉, the target input undergoes |0〉 → |1〉 or |1〉 → |0〉. If
the control input is |0〉, then it leaves the target qubit unchanged, |0〉 → |0〉 or |1〉 → |1〉. For
a concise notation, we use the convention CNOT(c, t ), where c is the control input index and
t is the target input index of the qubit. Note that the structure of the matrix in Eq. (2.19)
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|0〉 X • Rx (−π/2) •
|1〉 S • •

|0〉 H • T †

FIGURE 2.3: An exemplary circuit consisting of three qubits and some elementary
gates. The CNOT gate consists of a solid dot for the control qubit and a circle with a

plus sign in it for the target qubit.

assumes a certain notation of the corresponding state vector |Ψ〉 it acts on. This is given by
placing all the components such that they are arranged in the increasing order in the binary
representation,

|Ψ〉 =


Ψ00

Ψ01

Ψ10

Ψ11

 . (2.20)

Taking the CNOT gate as a starting point, other gates can be envisioned that act on three
or more qubits simultaneously, for example, the control-control-NOT or CCNOT gate. Since
universal computation can be achieved by using the CNOT gate, the construction of three or
more qubits gates is not necessary. Due to the fact that any unitary operator can be converted
into a quantum gate, a large number of gates can be imagined. The practical implementation
of actual hardware often has a smaller universal gate set and can vary from one device to
another or over different architectures.

2.3 Quantum circuits

Qubits and gates acting on them are combined in quantum circuits to perform meaningful
operations. A quantum circuit can be thought of as a set of instructions defined as a se-
quence of gates acting on pre specified qubits. Similar to classical computation, the idea is to
decompose any arbitrary algorithm into a finite sequence of gates that perform the intended
manipulations.

A prevalent understanding of circuits is through visual representations. A sample three
qubits circuit is shown in Fig. 2.3. Each qubit is initialised in the computational basis states
|0〉 or |1〉. The horizontal lines show the working space of each individual qubit where gates
can be applied. A gate operation is given by a box with an alphabet representing the type of
gate. The control and target inputs of the CNOT gate are identified with the symbols • and ⊕,
respectively. The vertical line between these symbols acts as a visual guide for connecting the
two qubits involved. In the circuit, the time can be thought of as flowing from left to right,
where each gate takes some finite amount of time to be completed.

A circuit can either be (A) run directly on a quantum computer or be (B) run using an em-
ulator on a classical computer. For case (A), we do not have direct access to |Ψ〉, and the cir-
cuit needs to be run several times where each time it produces one of the possible bitstrings
from the underlying probability distribution. In certain cases, the individual measurements
of the final states of the qubits need to be performed in a different basis. To achieve this,
appropriate gates performing a basis change operation can be appended to the end of the
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circuit. For case (B), it is possible to obtain |Ψ〉 and perform exact calculations of the prop-
erties of the system. This case is for testing purposes. Note that the precision of numeric
’exactness’ is limited to floating point value of 10−15 and is sufficient for our purposes. Since
the underlying probability distribution |Ψ〉 is available, it is also possible to sample from it at
random to directly emulate an ideal quantum computer. In this dissertation, we use all the
above possibilities.

Despite the similarity to circuits used in classical computing, there are three essential things
not allowed in quantum circuits [NC10]. First, the feedback loops common in classical com-
puting where one of the wires is connected to another part of the circuit, is not allowed.
Second, unlike classical wires, two quantum wires cannot be merged at any point of time in
the computation. Third, classically it is possible to produce multiple copies of the output at
the end of the computation, but this is not possible using a quantum computer. There is a
simple reason why such possibilities do not exist for quantum wires, as follows. While the
classical wire carries electrical current in the form of moving electrons under the influence of
an electric potential, this picture does not accurately transform to the quantum ’wire’ where
something moving along the circuit cannot be pictured. Our understanding of the quantum
computer is based on quantum theory, where the state of the system |Ψ〉 is revealed only
after the end of the computation when a measurement is performed, as a collection of fre-
quencies of measured values. Quantum theory does not give us a detailed picture on an on-
tological level of each step of the computation. There is no conflict in this idea if we accept
that quantum theory only makes statistical predictions.

Properties

Given the visual representations of quantum circuits, it is helpful to define notions that will
help characterise differences in circuits. Here we briefly define some properties of quantum
circuits.

• Wire: horizontal lines which show the flow of time from left to right and on which gates
are placed. See Fig. 2.3.

• Total gates: number of gate operations along all the paths on the wire.

• Depth: number of gate operations along the longest path on the wire counted such that
all total gates can be executed. The depth is always an integer.

There may be other properties of a circuit that may become relevant for particular applica-
tions. These will be defined as necessary.

2.4 Quantum computer emulator

With the elementary units of a computer, namely the qubits, gates, and circuits ready, it be-
comes possible to visualise a quantum computer. A five-point criterion has been proposed
for the physical realisation of any quantum computer [DiV00]. A significant amount of re-
search has gone into developing them. Despite that, no error-free fully-functional quantum
computer is currently available which has a larger number of qubits than can be emulated on
current classical computers. Therefore, it is interesting to investigate if applications of quan-
tum computers are successful on such emulators. Since current computers are small-scale
and serve as prototypes, emulators have shown significant importance.

The terms emulator and simulator are often mixed or used interchangeably. We distinguish
these two based on the following discussion. At least four factors influence the definition and
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meaning of these words. These tend to vary more widely for the word simulator in contrast
to the emulator. These factors are

1. Aim: The purpose of the effort, be it simulation or emulation, is a contributing factor
to the definitions. For example, the aims of a simulation could be to model the laws of
physics or train a medical student for emergency procedures.

2. Object: The aim is focused on an object to be studied. For example, the simulation of
crowds exiting a stadium could be performed either on a digital computer (simulator
A) or in a small-scale real-life experiment with humans (simulator B).

3. Context: The broad field of the aim and object under study influence how the words
are perceived. The meaning may remain relevant only within that context or field.

4. Platform: The execution of the simulation or emulation is platform-dependent. In con-
trast to emulators, simulators are often implemented on a platform different from the
object.

By fixing the above four criteria, a consistent and unambiguous definition of a simulator or
an emulator can be defined. These can also help distinguish the different meanings of each
word among two communities. For example, the word simulator is used extensively both in
experimental and theoretical physics. On the one hand, it refers to actual hardware used as
a ’quantum simulator’ of interesting physics problems [BR12; BDN12], e.g. using ultracold
atoms in an optical superlattice as the platform with the aim of studying many-body phe-
nomena [Tro+12]. On the other hand, it refers to the modelling of physical phenomena in
order to ’simulate’ their properties. For example, using a programming language run on a
classical computer as a platform with the aim of finding the ground state energy of the Hub-
bard model.

Quantum computing

The broad field of quantum computing sets the context factor for defining simulators or em-
ulators. These two words are used in the quantum computing context throughout the rest
of this dissertation. By changing the context or the field, say to medicine, one or both the
words may not exist, may exist but without regular usage, or may be used to imply different
things. The meaning of both the words can change depending on the combination of aim,
object, and platform for which they are used. In what follows, we set the definitions of each
by fixing these three factors.

Simulator

1. Aim: to produce and use a model that helps study, analyse, or imitate.

2. Object: a gate based quantum computer and the physics behind it.

3. Platform: programming language run on a classical digital computer.

Emulator

1. Aim: to mimic or use as substitute.

2. Object: a gate based quantum computer.

3. Platform: programming language run on a classical digital computer.
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Jülich universal quantum computer simulator (JUQCS)

JUQCS [De +07; De +19] is a simulator insofar as it models the behaviour of a computer
whose workings are described by quantum mechanics. This is done by representing the quan-
tum computer’s state through the wavefunction in the form of a complex state vector stored
in the memory of a classical computer. Knowing the state vector, one models everything in-
teresting about the quantum computer. This state vector can be used to calculate any prop-
erty of interest or manipulated to imitate the time evolution of the quantum computer. The
state vector is manipulated by multiplying it with appropriate matrices. While there exist
emulators that can approximate the wavefunction to increase the total number of qubits,
we only work with those that manipulate the complete wavefunction. For larger problems
beyond approx. 30 qubits, it becomes necessary to employ supercomputers. We use the
JUWELS supercomputer [Juw].

Consider that the following features are added to the simulator handling the state vector.
First, a finite set of "gate" instructions are allowed as input along with information about the
initial state of the state vector. Second, converting the state vector into samples or bitstrings
that appear to be generated at random. These new features, along with the simulator, can
mimic a quantum computer completely. This describes an emulator.

The following example considers both emulation and simulation. Assume that we are inter-
ested in finding the ground state energy of some material. Let the description of the material
lattice be given in terms of a one-dimensional Heisenberg model. In the conventional sense,
analytically solving for the energy on pen and paper is neither emulation nor simulation. In
the sense of the four factors outlined above, it is a simulation where the platform is pen and
paper. In the conventional sense, numerical techniques to solve for the energy on classical
computers is termed as simulation. Variational techniques used here when run on an ac-
tual quantum computer would also be simulation. However, it would be emulation when run
through JUQCS.

2.5 Quantum algorithms

The final step in using a fully functional quantum computer is an algorithm that can exploit
its features. Once a quantum computer or an emulator is available, it becomes possible to
execute a circuit. However, not every circuit is interesting. The quantum computer is not
foreseen to perform every computation faster than a classical computer, only certain spe-
cific computations. The interest lies in those computations that can offer an advantage when
executed on a quantum computer. A compilation of computations that perform meaning-
ful calculations with the potential of offering some advantage will be referred to as quantum
algorithms.

One of the first algorithms to show that quantum computers can deliver an exponential
speed-up against a classical computer is Shor’s algorithm [Sho94; Sho97]. There has been a
large amount of research on algorithms ever since, and we would not attempt to make an ex-
haustive list here. This dissertation restricts itself to hybrid variational algorithms. However,
before the stage for such algorithms can be set up, it is helpful to look at yet another estab-
lished algorithm which carries out similar tasks, namely, the phase estimation algorithm. This
algorithm is also a subroutine of Shor’s algorithm and helps understand whence the compu-
tational power of quantum computer comes.
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2.5.1 Phase estimation algorithm

We look at our first algorithm that makes use of the concepts discussed so far in this chapter.
The phase estimation algorithm (PEA) was one of the first algorithms used to calculate the
ground state energies of two small molecules [AG+05]. Algorithms often make use of sub-
routines. The PEA makes use of a subroutine known as the quantum Fourier transform. To
understand the working of PEA for the molecular problems, it is essential to understand the
working of the quantum Fourier transform.

Quantum Fourier transform

A detailed introduction and suitable applications of the quantum Fourier transform are found
in [NC10]. Here we only give a brief overview. The quantum Fourier transform takes as input
a vector of complex numbers of length L (say |x〉) and outputs another vector of the same
length (say |y〉) guided by the transformation

|x〉→ 1p
L

L−1∑
y=0

e2πi x y/L |y〉 . (2.21)

Since the length of the vector for the purpose of quantum computing will be always a power
of 2, it is possible to set L = 2N where N is the number of qubits. Furthermore, y can be
written in fractional binary notation such that

y = y1 . . . yN and
y

2N
=

N∑
k=1

yk

2k
. (2.22)

Substituting Eq. (2.22) in Eq. (2.21), we get

|x〉→ 1

2N /2

2N−1∑
y=0

e2πi x(
∑N

k=1 yk /2k ) |y1 . . . yN 〉

= 1

2N /2

2N−1∑
y=0

N∏
k=1

e2πi x yk /2k |y1 . . . yN 〉

= 1

2N /2

N⊗
k=1

(|0〉+e2πi x/2k |1〉).

(2.23)

The task to perform the above transformation using a quantum circuit is carried out as fol-
lows. By using the Hadamard gate H , as shown in Fig. 2.4, each qubit is put into a superpo-
sition of states where each qubit attains the state (|0〉+ |1〉)/

p
2. To implement the coefficient

of |1〉 given in Eq. (2.23) a series of unitary operations are applied using the gate Uk defined
as

Uk ≡
[

1 0

0 e2πi /2k

]
. (2.24)

By using the circuit shown in Fig. 2.4 and performing swapping operations at the end to re-
verse the order of the qubits, the quantum Fourier transform is efficiently implemented.

The quantum Fourier transform is used in several quantum algorithms, e.g. Shor’s algo-
rithm for factorisation [Sho99], solving linear systems of equations [HHL09], Grover’s algo-
rithm [Gro96], and quantum counting algorithm [BHT98].
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|x1〉 H U2 . . . Un

|x2〉 • . . . H U2 . . . UN−1

...
...

...
...

|xn〉 . . . • • H

FIGURE 2.4: Circuit performing the quantum Fourier transform. After the end of
the circuit swap operations (not shown) reverse the order of the qubits. The Uk

gate is defined in Eq. (2.24).

|0〉 H . . . • |0〉+e2πi (2t−1φ)|1〉p
2

QF T †

...
...

...
...

...

|0〉 H • . . . |0〉+e2πi (21φ)|1〉p
2

|0〉 H • . . . |0〉+e2πi (20φ)|1〉p
2

|u〉 / U 20
U 21 . . . U 2t−1 |u〉

FIGURE 2.5: Circuit performing phase estimation. The qubits are divided into two
sets, top and bottom. Top set is initialised in the |0〉 state and bottom set in the
|u〉 state. The intermediate state of the top set of qubits is written explicitly. The
inverse quantum Fourier transform is applied before measurement of the top set.

Phase estimation

The Fourier transform expressed in Eq. (2.23) will help in the phase estimation as follows.
Assume a unitary operator U with an eigenvector |u〉 and eigenvalue e2πiφ where φ is the
unknown variable. Further assume that by some means the eigenvector |u〉 has already been
prepared on a quantum computer. The phase estimation algorithm uses two sets of qubits.
The first set contains t qubits all initialised in the state |0〉. The choice of t depends on the
accuracy to which φ needs to be estimated as well as the probability of the procedure to be
successful [NC10]. The second set of qubits contain the state |u〉. The number of qubits in
the second set depends entirely on the specific problem.

The circuit used for the phase estimation is shown in Fig. 2.5. After preparing one set
of qubits in the |0〉 state and applying Hadamard gates on all of them, they are allowed to
interact with the set of qubits containing the state |u〉 through a sequence of controlled-U
operations. The state of the individual qubits after all the controlled-U gates is also written
in Fig. 2.5. This state resembles closely the last term in Eq. (2.23). This means we have a
Fourier transformed state available with the unknown variable φ embedded in the phase of
the coefficient of |1〉⊗N . To extract the φ, we need to perform an inverse Fourier transform
given in the circuit shown in Fig. 2.5 as QF T †. Measurements of the top pair of qubits reveal
the value after the inverse transform.
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Application to molecular problems

An essential ingredient of the PEA is the availability of the state |u〉. In the ideal case, it
should be the ground state if one is interested in estimating the ground state energy of a
system. If it is not the ground state, then the success of the PEA is proportional to the over-
lap of the state |u〉 with the true ground state of the system [AG+05]. In quantum chemistry,
approximations to the ground state wave functions are often given by the Hartree-Fock state
|ΨHF 〉. For small systems, the |ΨHF 〉 is a good approximation to the true ground state, how-
ever, it is known that for larger systems or systems close to their dissociation limit, |ΨHF 〉 has
a vanishing overlap with the ground state [Koh99]. To overcome the problem of vanishing
overlap of the initial state, methods have been suggested [BF28; Far+01]. Preparing |u〉 is a
problem to be solved in itself.

2.5.2 Drawbacks of phase estimation

PEA is one of the first algorithms to facilitate the estimation of eigenvalues of interesting
Hamiltonians on a quantum computer. While a variant of it has been experimentally imple-
mented for small systems [Pae+17], its drawbacks make it impractical to use on current or
near-future quantum devices for realistic problems. We highlight three of these drawbacks.

The first drawback concerns the precision of the phase estimate. To reach precision ε, PEA
requires O(1) repetitions of circuits with depth O(1/ε) [WHB19]. Since the required precision
is high (small ε) for most practical applications, the inverse proportionality to circuit depth
implies that PEA is out of reach of current as well as near-term devices. The second draw-
back concerns the preparation of the approximate ground state |u〉. While there are efficiently
preparable ground state approximations to some Hamiltonians, it is not generally possible
for any arbitrary one. Hence, all problems for which |u〉 is not known remain out of reach of
quantum computers via PEA. The third drawback is the large number of qubits required. PEA
requires two sets of qubits, and depending on the problem size and the precision required;
both can be very high and far beyond the reach of near-future quantum computers. It is esti-
mated that the algorithm will require qubits in the range of millions for practical applications
in quantum chemistry [Lee+21].

2.5.3 Motivation for variational algorithms

To first motivation is to shorten the long circuit depths of PEA in order to bring them closer to
what is supported by current quantum computers. We require an algorithm whose precision
of the eigenvalue estimate does not depend on the circuit depth. As we will see in the next
chapter, quantum circuits of variational algorithms are short enough to be implementable
on current computers and the eigenvalue estimate can be improved by sampling repeatedly
from the circuit.

We also wish to solve problems whose approximate ground state may not be known be-
forehand. Intuitively, this will not be achieved without sacrificing something else. Along with
the benefit of realistic circuit depths, variational methods allow the use of any ansatz to solve
the problem. The sacrifice here is that not every ansatz will guarantee a complete overlap
with the ground state. Whether a given ansatz will solve for the ground state energy is then
a problem specific question. Will variational methods work for the Heisenberg model, the
Hubbard model, or quantum chemistry?

The first few applications of variational methods, among them the variational quantum
eigensolver [Per+14; O’M+16], have been shown to work only for prototype, small scale prob-
lems. Variational methods have been used to calculate the ground state energies of small
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molecules on superconductivity based [Kan+17; Col+18; McC+19; Aru+20] or trapped ion
[Nam+20] computers. The number of qubits used were far less than what can be emulated
using a classical computer, where memory is the limiting factor. All variational applications
on real hardware known to the author remain below this threshold. Therefore, it is pertinent
to ask: do variational methods work beyond the small scale?

Variational methods make use of the classical optimisation algorithms. However, achiev-
ing useful results using these algorithms has been recently argued to be NP-hard [BK21]. In
what ways do we modify them to avoid the problem and make them usable for variational
methods? How does noise influence our ability to solve for the ground state energy?
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Chapter 3

Theory of variational methods

3.1 Introduction

The concept of hybrid variational methods is introduced in detail. The chapter is divided
into two main sections, namely, variational algorithms and classical optimisation. The former
focuses on the concept and implementation of variational methods for applications relevant
for this work. The latter focuses briefly and specifically on that part of the field of classical
optimisation that is relevant for variational methods used in the rest of the dissertation.

3.2 Theorem of variation

Consider a Hamiltonian H describing a physical system of interest. Let the different possible
energies of the system be given by Ek for k eigenstates of the system. We are interested in
finding the energy E0 of the ground state (represented by k = 0) of this system. Consider two
different wavefunctions describing the ground state of the system. The first one describes the
true ground state and is given by |ψ̃0〉, which is unknown to us. The second, which we call
a “trial wavefunction", is given by |ψ0〉. The expectation value of H using the trial wavefunc-
tion, is given as

〈H〉 = 〈ψ0|H |ψ0〉
〈ψ0|ψ0〉

, (3.1)

where we allow the possibility that |ψ0〉 may not be normalised. The variational theorem
states that the expectation value of H is an upper bound to the true ground state energy of
the system,

〈H〉 ≥ E0, (3.2)

where the equality sign holds only for the case where |ψ0〉=|ψ̃0〉. We ignore differences in
global phases. We assume the ground state is non-degenerate for simplicity but without loss
of generality. Thus, the variational principle allows the use of any trial wavefunction to es-
timate the ground state energy. However, with this broad scope the associated drawback is
that not every trial wavefunction will adequately estimate the energy.

Proof

Let us expand the trial wavefunction in terms of a normalised set of energy eigenfunctions of
H as

|ψ0〉 =
∞∑

k=0
|ψ̃k〉〈ψ̃k |ψ0〉 , (3.3)
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where |ψ̃k〉 is an exact energy eigenfunction of H , giving

H |ψ̃k〉 = Ek |ψ̃k〉 . (3.4)

We remind ourselves that the ground state is given for k = 0, giving H |ψ̃0〉 = E0 |ψ̃0〉. Using
Eq. (3.3) and Eq. (3.4) in Eq. (3.1), we get

〈H〉 = 〈ψ0|H |ψ0〉
〈ψ0|ψ0〉

=
∑∞

k=0 〈ψ0|ψ̃k〉〈ψ̃k |H |ψ̃k〉〈ψ̃k |ψ0〉∑∞
k=0 〈ψ0|ψ̃k〉〈ψ̃k |ψ0〉

=
∑∞

k=0 | 〈ψ0|ψ̃k〉 |2 〈ψ̃k |ψ̃k〉Ek∑∞
k=0 | 〈ψ̃k |ψ0〉 |2

=
∑∞

k=0 | 〈ψ0|ψ̃k〉 |2(Ek −E0 +E0)∑∞
k=0 | 〈ψ̃k |ψ0〉 |2

=
∑∞

k=0 | 〈ψ0|ψ̃k〉 |2(Ek −E0)∑∞
k=0 | 〈ψ̃k |ψ0〉 |2

+
∑∞

k=0 | 〈ψ0|ψ̃k〉 |2E0∑∞
k=0 | 〈ψ̃k |ψ0〉 |2

=
∑∞

k=0 | 〈ψ0|ψ̃k〉 |2(Ek −E0)∑∞
k=0 | 〈ψ̃k |ψ0〉 |2

+E0

≥ E0,

(3.5)

where the first term is the product of squared values and (Ek − E0), in which the latter is
always non-negative due to our definition that E0 is the lowest energy. Thus, for any trial
wavefunction |ψ0〉 describing the ground state, the corresponding 〈H〉 will always be more
than or equal to E0. Substituting |ψ0〉 = |ψ̃0〉 in Eq. (3.5) gives the true ground state energy
〈H〉 = E0.

Application and examples

To see the potential of the variational theorem we apply it to two simple problems using
suitable trial wavefunctions. The application of the method to solving problems proceeds as
follows.

1. Construct a trial wavefunction that has one or more parameters a,b,c, ..., etc. It can be
inspired by the dynamical variables of a problem. Check the trial wavefunction for con-
sistency with the problem. For example, some problems require that the wavefunction
must vanish at certain regions.

2. Evaluate the expectation value of the Hamiltonian with the trial wavefunction giving the
energy as a function of the parameters, E(a,b,c, ...).

3. Minimise E(a,b,c, ...) with respect to the parameters to evaluate the lowest energy ob-
tainable using that trial wavefunction.

The obtained energy is then the best approximation to the ground state energy of the sys-
tem of interest using that trial wavefunction. Note that the analytical expression for step 2
is often only available for elementary examples. In general, numerical estimates are relied
upon. These numerical estimates offer local information about the function around a point.
To better understand the variational principle and the benefits it offers, consider two exam-
ples for which exact wavefunctions are known. We will not use the exact wavefunctions but
some other trial wavefunctions. The first example will be about the harmonic oscillator, ow-
ing to problems of theoretical interest and approximations, and the second example will be
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of the hydrogen atom, owing directly to physical problems. Both examples will illustrate the
working of the variational principle to calculate the ground state energy.

Harmonic oscillator

The well known harmonic oscillator Hamiltonian is given as

H = −ħ2

2m

d 2

d x2 + mω2x2

2
, (3.6)

where m is the mass, ω is the frequency, and ħ is the Planck’s constant. For the purpose of
demonstrating the variational method, even though we know the correct functional form of
the wavefunction which can give us the exact ground state energy, we will use a different one.
This is done in view of the fact that in an arbitrary problem the correct functional form of the
wavefunction giving the exact ground state energy is, in general, unknown. We will guess the
trial wavefunction using insight, shape of the potential, and conditions that a wavefunction
must satisfy. A reasonable guess (inspired from [Mei96]) is given by

ψ0(x) = b

px2 +a2 , (3.7)

where we will alternatively use a and p as parameters, such that when a is a parameter, p
is a constant, and vice versa. The numerator b, as our calculations will reveal, will drop out
in both cases and thus cannot be used as a parameter. Note that ψ0(x) → 0 when x →∞, as
suggested by the potential.

Now we compute 〈H〉 as per Eq. (3.1). The denominator of the term, giving the normalisa-
tion constant, is given as

〈ψ0(x)|ψ0(x)〉 =
∫∞

−∞
d x

b2

(px2 +a2)2 = πb2

2a3pp
. (3.8)

The numerator of the term is given as

〈ψ0(x)|H |ψ0(x)〉 =
∫∞

−∞
d x

( b

px2 +a2

(−ħ2

2m

d 2

d x2 + mω2x2

2

) b

px2 +a2

)
=

∫∞

−∞
d x

( −b

px2 +a2

2bp(3px2 −a2)

(a2 +px2)3

ħ2

2m
+ b2x2

(px2 +a2)2

mω2

2

)
= ħ2

2m

πb2pp

4a5 + mω2

2

πb2

2ap3/2
.

(3.9)

Combining the numerator and denominator, we get

〈H〉 = ħ2p

4ma2 + mω2a2

2p
= E(a, p), (3.10)

which is the energy as a function of a and p .
Case I: Let a be the parameter and p be the constant, so that E(a, p) = E(a). To find the

ground state energy we have to minimise E(a). Thus, we set

d

d a
E(a) = 0, (3.11)
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which gives

a2
min = ħpp

2mω
, (3.12)

where amin is the minimum value. Substituting Eq. (3.12) into the energy in Eq. (3.10), we get
the minimum energy

E(amin) = E a
0 = ħωp

2
. (3.13)

Case II: Let p be the parameter and a be the constant, so that E(a, p) = E(p). Similar to
the previous case, we set

d

d p
E(p) = 0, (3.14)

which gives

pmin =
p

2ma2ω

ħ , (3.15)

where pmin is the minimum value. Substituting pmin into the energy, we get the minimum
energy

E(pmin) = E p
0 = ħωp

2
. (3.16)

The absence of b in Eq. (3.10) makes it clear that it could not be used as a parameter,
but only as a constant, and in this case Eq. (3.10) directly gives the ground state energy. In
case I, using a as the parameter the minimum energy was ħω/

p
2, which came out to be the

same as that of case II, where p was used as the parameter. Thus, from this example of the
wavefunction as given in Eq. (3.7), it seems that as long as a parameter appears in the energy
equation, regardless of where it is placed in this trial wavefunction, it does not change the
minimum energy. Given that Eq. (3.15) is the same as Eq. (3.12), there was some liberty in
parameterising the function. In this example the overparametrisation does not influence our
ability to reach the minimum energy. However, it is an open question if overparametrisation
is helpful for variational algorithms relevant for quantum computers.

The wavefunction which gives the exact ground state energy of the harmonic oscillator is

given by ψ̃0(x) = e−ax2
, where a is the variational parameter. Doing the complete calculation

using this wavefunction will give the exact ground state energy E0 =ħω/2. Knowing the exact
ground state energy, we may calculate the error in our guessed trial-wavefunction energy,
which in this case is given as

E a
0 −E0

E0
=p

2−1 ≈ 41%, (3.17)

which is rather large and other guesses might perform better. A detailed and intuitive intro-
duction to the variational method for the harmonic oscillator is found in [Goo77]. For so-
lutions with different trial wavefunctions, see [Mei96]. Interestingly, trial wavefunctions that
give the best approximation to the ground state energy may not be the best approximation to
the exact wave function, as required to calculate other physical properties [RM86]. The ap-
plication of the variational principle for a different potential, that of a particle in a box, can
be found in [CD00].

Hydrogen atom

The Hamiltonian for the radial part of the hydrogen atom (in Hartree atomic units) is given
by

H =− 1

2r 2

d

dr
r 2 d

dr
− 1

r
, (3.18)
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where r is the dynamical variable describing the electron-proton distance. For the purpose of
the demonstration, consider once again the trial wavefunction given in Eq. (3.7) and replace
the variable x with r , having the parameters a,b, p giving the normalisation constant

〈ψ0(r )|ψ0(r )〉 =
∫∞

0

r 2b2dr

(pr 2 +a2)2 = πb2

4ap3/2
. (3.19)

Note that due to the constraints of the problem, we only use the positive part of our trial
wavefunction, hence the new integration limits are from zero to infinity. We now have to
calculate

〈ψ0(r )|H |ψ0(r )〉 =
∫∞

0
r 2drψ∗

0 (r )Hψ0(r )

=
∫∞

0
dr

br 2

pr 2 +a2

(
− 1

2r 2

d

dr
r 2 d

dr
− 1

r

) b

pr 2 +a2 .
(3.20)

Equation (3.20) is solved for b = p = 1 in [Som11]. Dividing the solution by Eq. (3.19) gives
the energy

E(a) = 1

4a2 − 2

πa
. (3.21)

The minimum energy is then given as

E(amin) =− 4

π2 ≈−0.405 Hartree. (3.22)

This trial function gives the minimum energy of −11.0 eV, which is higher than the exact
value of −13.6 eV [Som11].

For more advanced trial wavefunctions and how they improve the ground state energy, we
refer to [HA18]. Once again, a wavefunction that gives a better ground state energy may not
yield a better value for another molecular property, see [PT19]. If the trial ground state en-
ergy approaches the true ground state energy, the corresponding trial wavefunction also ap-
proaches the exact one, as can be clearly seen from the example presented in [Ben93]. These
facts will continue to apply to quantum variational methods. Both the examples illustrate
that the choice of the trial wavefunction, referred to as an ansatz in the context of hybrid
variational methods, is critical to finding the ground state energy.

The aim of finding the ground state energy for practical quantum chemistry requires that
the accuracy exceeds that of the available experimental techniques. This is known as chem-
ical accuracy. An accuracy of 1 kcal/mole or 0.043 eV has been commonly accepted to be
appropriate [Pop99].

3.3 Variational methods

The core idea of variational methods is to parametrise a trial wavefunction, |ψ〉→ |ψ(θ)〉, such
that an ansatz containing the parameters θ is executed on the quantum computer while the
numerical values of the parameters are decided by a supporting classical computer. In this
way, variational methods are a hybrid of quantum and classical counterparts. Given that we
are interested in the lowest eigenvalue or the ground state of physically interesting Hamilto-
nians, we focus our study of the variational methods to finding the ground states.

Figure 3.1 visualizes the different components common to any hybrid quantum-classical
variational method. As a hybrid, it combines alternating workflows between a quantum and a
classical processing unit. After both the units are set up, a calculation is started by initialising



26 Chapter 3. Theory of variational methods

Bitstrings
Variational
parameters

OUTPUT

Execution Measurement

QUANTUM PROCESSING UNIT

Energy

calculator

Optimiser

CLASSICAL PROCESSING UNIT

|0〉

|0〉

|0〉

P
rep

aration

U
1 (
θ
1 )

U
M
(
θ
M
)

...... ...

...

...

...

�θ

E0

Start

Stop

Bitstrings

accumulator

Ansatz

Initial state Hamiltonian

Polynomial size

Polynomial time

INPUT

Control
instructions

AssistantAssistant

FIGURE 3.1: Schematic of the variational method showing quantum and classical pro-
cessing units. The circuit prepares an initial state from |0〉⊗N and successively applies
parametrized unitary operators U1(θ1), . . . ,UM (θM ). The bitstrings from measurement of
the final state are accumulated and used to calculate the energy. The optimiser suggests

parameters and iteratively minimises the energy.

the parameters as input to the classical unit. The first task of the quantum unit is to prepare
a problem-specific initial state. This initial state can have a significant effect on the ability
of variational methods to solve a problem. Next, it takes as input the numeric values of the
variational parameters suitably placed in a quantum circuit. The circuit is then executed.
After the execution, a measurement in a suitable basis gives the output as a sequence of
bits. Each bit corresponds to the measurement outcome of each qubit. The bitstring of the
outcome is then transferred to the classical unit. The entire process at the quantum unit
is then repeated several times and the bitstrings are accumulated in the classical unit. The
energy is calculated using the accumulated bitstrings. The numeric value of the energy is
then fed to an optimiser. The optimiser computes the next set of parameters with the aim
that successive iterations optimise the energy. The parameters are sent to the quantum unit
and the quantum-classical loop repeats itself. The optimiser checks for some internal criteria
each time it gets an energy input and it terminates the loop if the criteria are met, giving E0.

For a variational method to be successful, it is necessary that none of the working parts
act as an impediment. An impediment is any task within the method whose completion time
or resources would scale exponentially. On the quantum side, the total number of samples
required to estimate the expectation value should not scale exponentially. The number of
qubits required to solve a problem should not scale exponentially when the problem size is
increased. On the classical side, the accumulated bitstrings should avoid exponential stor-
age requirements and the time required to calculate the energy from them should also not
be exponentially scaling. The time required by the optimiser to suggest the next parameters
should also not be exponentially increasing.

The three essential ingredients for the quantum processing unit of any variational algo-
rithm are:
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1. Ansatz. An ansatz is a quantum circuit that implements |ψ(θ)〉 on a quantum com-
puter. The chosen ansatz will parametrically explore the Hilbert space. We require that
(a) there is a systematic procedure to create a circuit corresponding to a parametrised
state |ψ(θ)〉, and (b) the circuit has a finite sequence of quantum gates that could be
executed on the quantum computer. It is essential that the time taken to perform (a)
and (b) does not scale exponentially with the number of qubits.

2. Problem. For physical systems, the given problem is written in terms of a Hamiltonian.
For optimisation problems, the given problem is often encoded into a cost function,
sometimes also known as the loss function. The circuit is appropriately adjusted to
calculate the expectation value of the stated problem.

3. Initial state. For a quantum computer with N qubits, there are 2N possible computa-
tional states that the computer can be prepared in. The choices of initial states with
arbitrary superpositions between N qubits is infinite. Often a variational algorithm’s
ability to solve the problem depends on the choice of the initial state.

Similarly, the essential ingredients for the classical processing unit of any variational algo-
rithm are:

1. Optimiser. The task of an optimiser is to lower the energy after successive iterations
and to stop the calculation. Optimisation algorithms can be broadly categorised in two
categories, namely, gradient based and gradient free. Each has its own merits and draw-
backs depending on whether a quantum computer or a quantum computer emulator
is used for the task. Gradient based optimisers are commonly accepted to converge
faster for noise-free functions. Popular candidates are the SLSQP and BFGS algorithms
[JOP+01; Kra88; GF19]. However, the output of even an error-free quantum computer
will be stochastic in nature, and it remains part of active research to answer which cat-
egory is preferable. Several stochastic methods have been recently developed [Arr+20;
Swe+20; O’B+19; MNM20; Sto+20; Ber+18].

2. Bitstrings accumulator. A quantum computer will output one bitstring at a time and
the memory in the classical computer is used to store these. Each bitstring requires N
bits of classical storage. Assuming that a polynomial number of measurements (each
giving a bitstring) are sufficient to calculate the energy, the total storage requirements
do not scale exponentially with increasing N .

3. Energy calculator. The accumulated bitstrings are suitably manipulated to calculate the
expectation value or the energy. The manipulation would require polynomial time if the
total bitstrings to be manipulated are polynomial in number. The energy may be only
one of the many interesting properties of a given Hamiltonian. The hybrid quantum-
classical loop can be over other scalar quantities as well, e.g. magnetisation, overlap
with the ground state (for testing purposes), etc.

The assistant

An additional ingredient of the classical processing unit is an "assistant" (see Fig. 3.1). For
variational algorithms, the classical assistant serves the purpose of controlling how many rep-
etitions of a circuit need to be performed, to change the state of the quantum computer at
the end of a computation to a suitable basis as per a given Hamiltonian, etc. It is not directly
involved in the variational loop discussed previously. The instructions are not necessarily sent
from the same CPU that runs the optimiser. Current superconducting type quantum comput-
ers are assisted by microwave electronics and pulse-shaping to realise one- or two-qubit gates



28 Chapter 3. Theory of variational methods

[GCS17; Wil20]. See [Bra19] for an extensive list of control electronics. After a computation
on the quantum processor, the measurements are performed using "classical" equipment, e.g.
using a Josephson amplifier [Abd+11] or a low-inductance undulatory galvanometer [Hov+14].
We term the instruments as classical not because quantum effects do not appear in them, but
because such effects are not relevant for their contribution to the process. Post-processing of
the readout measurement is done digitally either by classical computers or customised field
programmable gate arrays [Ris+12; Vij+12].

The number of individual terms in a Hamiltonian often increase with N and the elemen-
tary technique of measuring one term at a time can incur significant overhead even for a
quantum computer. One solution to this problem is to measure commuting terms of the
Hamiltonian together. Grouping such commuting terms, however, is a difficult and often a
hard problem. Several recent studies have suggested new ways to minimise the total compu-
tational time by proposing methods that offer improvement over the elementary technique
[Gok+20; Hug+21; Had+22]. When analytical arguments are exhausted to reduce such terms,
pre-processing the terms is carried out on a classical assistant.

Often quantum circuits can be optimised to produce new circuits that perform the same
computation but with (significantly) fewer number of gate operations; such a task is per-
formed by an assistant. The optimisation of quantum circuits has emerged into a field of
its own, often termed in the literature as quantum compiling [Mar+21]. Although quantum
compiling can be used in the context of both gate-based quantum computers and quantum
annealers, we restrict our focus on the former. Several algorithms have been proposed that
perform quantum compiling. Examples include polynomial-time optimization of circuits con-
sisting of Clifford and T gates using matroid partitioning [AMM14], techniques to reduce cir-
cuit depths of non-Clifford type circuits [KW20], using quantum Karnaugh maps [Bae+20], us-
ing machine learning for circuit optimisation [Mor+21; Fö+21], among several others [SPK13;
Mas+08; PF13; Wu+20]. Thus, classical computers assist quantum computers by helping re-
duce the total number of either simultaneous and/or total gate operations. It is important to
note that quantum compiling, except in the case of a single qubit, is a hard problem with al-
gorithms requiring classical runtime exponential in the number of qubits [HC18] and heuris-
tics do not guarantee optimality [Mas+08].

Furthermore, the assistant can completely take over the tasks of a quantum unit through
an emulator [De +07; De +19] up to a certain number of qubits, limited by the memory which
scales exponentially with N .

Applications

Different applications of variational methods on quantum computers often inspire different
names for such algorithms. We briefly differentiate between the use of the words method and
algorithm. The mention of variational methods is used to imply the general systematic pro-
cedure to solve problems on a quantum computer using the variational principle. It is the
method that is illustrated in Fig. 3.1. A method, in our definition, does not itself solve any
specific problem but outlines the techniques to do so. In contrast, an algorithm consists of
rules that make the method specific to a problem or set of problems. A method becomes
an algorithm when at least the problem or the ansatz is specified. Some algorithms spec-
ify more rules than others. For example, the quantum approximate optimisation algorithm
[FGG14] is specific to combinatorial optimisation problems combined with an alternating op-
erator ansatz but the variational quantum eigensolver [Per+14; McC+16] generally only speci-
fies that the problem be described by a physically relevant Hamiltonian. The underlying idea
and mechanisms are very similar despite the different names. Several applications of vari-
ational methods have been found beyond solving optimisation problems or finding ground
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states. In this section, we briefly outline the scope of applications that have been found for
variational methods.

Algorithms for solving systems of linear equations exponentially faster than classical com-
puters have been envisioned for quantum computers [HHL09]. Crude estimates outline that
to get an advantage over classical computers, at least 340 fault free qubits and circuit depths
of order 1025 are needed [Sch+17]. These requirements put all quantum computers out of
scope within this decade. Heuristics have emerged to fill the gap by proposing variational
methods as the remedy [HBR21], e.g. the variational quantum linear solver [BP+19; PWK22].
Systems of nonlinear equations are also central to various scientific fields. Variational meth-
ods have been proposed that utilise multiple copies of variational quantum states to treat
nonlinearities which solve such systems [Lub+20]. Another variational algorithm has been
used to solve an instance of the Navier-Stokes equation [KPE21].

Factoring prime numbers is one of the earliest conceived applications that can give an ex-
ponential advantage [Sho99]. However, practical advantage is unforeseen for near term quan-
tum computers. Variational quantum factoring [Ans+19] has been proposed for such NISQ
computers. The proposal reformulates factoring as a solution to the ground state problem
for a classical Ising model. See [Kar+21] for an experimental demonstration.

As mentioned in the previous section, quantum compiling is a hard problem for classi-
cal computers. Attempts have been made to utilise variational methods for it [Kha+19] that
essentially transfer the task onto quantum computers (see [Car+20] for experimental demon-
stration). The task can also be achieved by reformulating it as a task of finding the ground
state energy of a suitable Hamiltonian [JB22].

Quantum machine learning seeks to learn patterns from available data in order to make
predictions for unseen data [Bia+17]. There exist several quantum machine learning models
that can be understood from the viewpoint of variational methods [Cer+21]. There has been
development of classifiers [Wil+20; Sch+20] (see [Hav+19; Kus+21] for experimental demon-
strations), autoencoders [ROAG17; VPB18], and quantum neural networks [FN18].

While we have mentioned a few applications of variational methods for quantum comput-
ers, they are a work in progress and more should be expected to appear in the future. The
wide range of application of such methods can be considered the stepping stone towards
practical quantum computing until (or even after) fully fault tolerant machines become avail-
able.

Excited states

While one of the main tasks of variational algorithms is to find ground state energies, they
can be extended to also calculate excited states energies [HWB19; Jon+19; NMF19]. One way
to do so is proposed in [HWB19] and is summarised as follows. The core idea is to change
the function that is minimised such that a successful variational minimisation leads to the
required excited state energy. The changed function to be minimised contains the original
Hamiltonian H from Eq. (3.5) along with additional terms such that

〈F 〉 = 〈H〉+
k−1∑
i=0

βi | 〈ψk (θ)|ψi (θ′)〉 |2, (3.23)

where k = 1 gives the first excited state, k = 2 gives the second excited state, and so on, and
θ (θ′) is the set of parameters for the kth run of the variational algorithm. The βi ’s are suf-
ficiently large constants. Evaluating the kth excited state energy requires the precalculation
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of k −1 previous lower energy states. While the calculation of the first term 〈H〉 is straight-
forward using variational methods, the calculation of the overlap is estimated to a given pre-
cision by the fraction of all-zero bitstrings [Hav+19], which can be improved by using varia-
tional methods also for the overlap term [HWB19].

3.3.1 Automating circuit preparation

Prototype quantum computers have a small number of qubits and circuits have a shallow cir-
cuit depth, thus they can be created manually by placing each gate on a visual digital drawing
board. In contrast, as discussed in the previous section, algorithms that will achieve quan-
tum advantage will require a large number of qubits and large circuit depths. In such cases
it would be no longer possible to manually create circuits and it becomes necessary to auto-
mate the process. Additionally, once the proverbial wheel has been invented, it can also roll
the easier circuit creations more efficiently than doing it manually even before the realisa-
tion of quantum advantage. In this section, we design and implement a circuit preparation
algorithm for a classical computer that takes as input alphabetical strings and creates a cor-
responding circuit. The algorithm is then used to create almost all the circuits used in this
work. Although a similar algorithm already exists to create circuits for Hamiltonian dynamics
[RWS12], it is unsuitable for variational methods. In contrast, the algorithm described here
can be used to create circuits for Hamiltonian dynamics with a small modification.

An ansatz is a collection of unitary operators that acts on the initial state of a quantum
computer. The state of the computer as a function of the parameters is given by

|Ψ(θ)〉 =U(θ) |Ψ0〉 , (3.24)

where |Ψ0〉 is the initial state. A specific N qubits parametrised ansatz that contains sums of
products of Pauli operators (see Eq. (2.15)) is given by

U(θ) = e−i A(θ), (3.25)

where

A =
m∑

j=1
c j â⊗N

j , â⊗N
j =⊗N

l=1Θ̂ j l , (3.26)

where Θ̂ j l ∈ {σI ,σx ,σy ,σz } and m is the total number of products of Pauli operators. While
an ansatz written in the form U(θ) is most general, several interesting ansätze can be written
in the form exp(−i A(θ)). The full implementation of such an ansatz as given in Eq. (3.25) is
not a simple task if all the terms in an ansatz do not commute. In such a case, factorisation
of the matrix exponential is required [DR87]. The factorisation further creates long series of
products of more unitary operators whose implementation would require circuits with a large
number of gates and circuit depths well beyond the scope of near future quantum computers.

To solve the issue of factorisation, we consider ansätze already in a factorised form which
circumvent the creation of long circuits. A simple way forward is to consider each term in
Eq. (3.26) separately such that the ansatz no longer contains a sum of operators but a set of
operators,

A = {c j â⊗N
j ; j = 1, . . . ,m}. (3.27)

Operators of the form given in Eq. (3.27) will form the basis of the construction of the cir-
cuits used in part of this work. The terms in the ansatz can be parametrised individually
or in groups. Since the Pauli basis is a complete basis set, any other representation can be
written in terms of the Pauli basis by a suitable transformation. The exponentiation of A and
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individual parametrisation of each term in it gives the unitary operators

U(θ) = e−iθm cm â⊗N
m . . .e−iθ2c2 â⊗N

2 e−iθ1c1 â⊗N
1 . (3.28)

The generated circuit can be stored and communicated with others through the standard
open quantum assembly language [Cro+17]. An algorithm that takes an input, processes it,
and systematically outputs a circuit works as follows.

Input

The operators can be input as strings no longer than a polynomial size representation, in
order to keep this process classically efficient. The operators in string representation are de-
fined as

[A] ≡ {(S j ,c j , p j ); j = 1, . . . ,m}, (3.29)

where c j is a real coefficient, p j is a natural number enumerating an independent parameter,
and Sj = (Sσx

j
,Sσ

y
j
,Sσz

j
) where Sσx

j
, Sσ

y
j
, and Sσz

j
are the strings corresponding to the positions

of the σx , σy , and σz Pauli operators in â⊗N
j , respectively. While c j is the multiplicative factor

to the parameter, p j can be used to duplicate one or more parameters in the circuit. When all
operators in the ansatz are required to have independent parameters, p j = j for j = 1, . . . ,m.
In contrast, when only one operator has an independent parameter and all the others are
dependent on it, p j = 1 for j = 1, . . . ,m. Thus, the largest value enumerated by p j is the total
number of independent parameters in the circuit which need not necessarily be equal to the
total number of parameters.

As an example, consider a set of operators for N = 3 and m = 2,

A = {1.0×σy ⊗σy ⊗σI ;1.5×σy ⊗σI ⊗σz }, (3.30)

where one wishes to assign independent parameters to both the terms. The string represen-
tation has the terms

Sσ
y
1
= (1,2), Sσ

y
2
= (1), Sσz

2
= (3), (3.31)

where the numbers in the parenthesis represent the location of the corresponding Pauli op-
erator in the ansatz written from left to right (see Eq. 3.30). All other terms are non-existent.
The coefficients are c1 = 1.0 and c2 = 1.5. Thus, the representation is given by

[A] = {(S1,c1, p1); (S2,c2, p2)} = {((0, (1,2),0),1.0,1); ((0, (1), (3),1.5,2))}. (3.32)

While a number in parenthesis inside S j gives the location(s), 0 denotes an empty string
reflecting the absence of the corresponding term, e.g. no σx in S2. Note that a matrix repre-
sentation of exp(−i A(θ)) would be exponentially large in N but the string representation of
its operators [A] has polynomial size. A sample input file is displayed in Appendix A.

Processing

The bitstring representation contains all the information about an ansatz assuming the or-
dering of the operators is controlled using p, where the smaller values appear first. Before a
circuit is constructed from the string representation, it is sometimes useful to perform certain
operations. For example, an ansatz may benefit in a reduction of independent parameters by
placing all the commuting operators together and assigning them a single parameter. This
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FIGURE 3.2: Circuits showing the implementation of e−iθσz⊗σz

(top), e−iθσx⊗σx

(middle), and e−iθσy⊗σy
(bottom).

has the benefit that fewer number of independent parameters require less computational ef-
fort of the classical resources. Additionally, classical optimisation is NP-hard [BK21] and re-
ducing the number of active parameters can help avoid the problem. An algorithm to group
the commuting terms can be found in [RWS12]. A commonly used example of such grouping
is the Hamiltonian variational ansatz [Wie+20; Ber+22; Lar+21; SY22].

Let us assume we have successfully grouped the m operators in an ansatz into m groups,
where 1 ≤ m ≤ m, and the left or right equality holds for the cases when all operators in the
ansatz are commuting or non-commuting, respectively. The ansatz then becomes a set of
these m group(s) of operators, where all the terms in a group mutually commute. The next
step is to exponentiate the operators to form unitary operators and convert them to a circuit.
To understand the conversion, it is worthwhile to first consider a single term consisting of
σz ⊗σz , whose exponentiation is given by exp(−iθσz ⊗σz ). This operator is represented by
the first circuit shown in Fig. 3.2 [WBAG11; NC10]. First, a CNOT gate is applied which entan-
gles the two qubits, then a parametrised rotation in the σz basis, followed by a second CNOT

gate. Varying the parameter θ explores different superposition states of the Hilbert space and
changes the energy of the system. The circuit is better understood by representing each gate
in its matrix form. The matrix product of the gates is given by

CNOT Rz (2θ) CNOT
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




e−iθ 0 0 0
0 e iθ 0 0
0 0 e−iθ 0
0 0 0 e iθ




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

=


e−iθ 0 0 0

0 e iθ 0 0
0 0 e iθ 0
0 0 0 e−iθ

. (3.33)

Now we can prepare circuits for other combinations of the Pauli operators by appropri-
ate basis changes. To create the circuits for exp(−iθσx ⊗σx ) and exp(−iθσy ⊗σy ) we may
use the circuit identities H Z H = X and S†H Z HS = Y , respectively [Lom03]. However, since
the number of gate operations that can be performed on current and near-future quantum
computers are limited, we prefer other identities that require fewer gates. The above identi-
ties could alternatively be achieved by appropriate Rx and Ry rotations. These are available
on current generation superconducting type quantum computers [5-qe; 5-qb]. Using these
identities, the circuit for exp(−iθσx ⊗σx ) is given by sandwiching exp(−iθσz ⊗σz ) between
Rx gates. The second and last circuits in Fig. 3.2 show the implementation of exp(−iθσx

1σ
x
2 )
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and exp(−iθσy
1σ

y
2 ), respectively. Knowing the circuit implementation of exp(−iθσα⊗σβ) for

α,β ∈ {x, y, z} and the identities, we can create a quantum circuit for any arbitrary combina-
tion of terms. For example, the second term S2 in the example given in Eq. (3.30) translates
to the circuit shown in Fig. 3.3.

Output

Although the algorithm described until now can be used to instruct a quantum computer
to run a circuit directly, it is preferred that the output of the algorithm be stored in a com-
monly accessible format. Access to quantum computers is expected to remain cloud based,
as currently offered by IBM [Ale+], Rigetti [Kar+20], or others, in the near future. Additionally,
cloud based service providers often do not provide "direct" access to a quantum computer
but require an intermediate circuit execution format which can be checked for consistencies
before it is run. To this end, we choose to convert the output to the standard open quantum
assembly language using Qiskit [Ale+]. A sample output is shown in Appendix A.

3.3.2 Problem Hamiltonian

Similar to the expression of N qubit ansatz given in Eq. (3.25), the Hamiltonian of a given
problem having m terms can be expressed as

Ĥ⊗N =
m∑

j=1
c j h⊗N

j , h⊗N
j =⊗N

l=1Θ̂ j l . (3.34)

Following the same procedure as in section 3.3.1, the Hamiltonian can also be expressed in a
string format

[H ] = [Ĥ⊗N ] ≡ {(S j ,cr
j ,c∗j ); j = 1, . . . ,m}, (3.35)

where cr
j and c∗j are the real and imaginary parts of the complex coefficient, respectively.

Note again that the matrix representation of Ĥ⊗N requires exponentially increasing classical
memory to store while [H ] has polynomial size. The index j can be used to group terms
together.

Connection to circuit preparation

To calculate the expectation value of the Hamiltonian it is necessary that the final state of the
quantum computer is measured in the appropriate basis. The relevant basis for each term is
defined in Eq. (3.34). The circuit preparation algorithm that creates the ansatz can read the
Hamiltonian input file and suitably change the basis after the end of the computation but
before the measurement. A sample input file for the Hamiltonian is shown in Appendix A.
There are essentially four different types of operators in H each of which can be measured as
follows
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1. σx : add an Ry (π/2) gate at the end of the circuit,

2. σy : add an Rx (π/2) gate at the end of the circuit,

3. σz ,σI : no need for any additional gates.

The indices of the qubits on which the gates should be added is given by the index l in
Eq. (3.34). Thus, the circuit preparation algorithm reads each string of each term in [H ] and
adds a relevant gate on which a non-identity operator exists.

Efficiency of measurements

The total energy of H is the sum of energies of the individual terms multiplied with their co-
efficients. The total number of strings the circuit preparation algorithm processes (at most)
is ∝ N ×m, the latter of which ought not to be scaling exponentially to remain classically ef-
ficient. For example, the number of distinct Pauli strings in chemical Hamiltonians scales as
N 4 for large molecules [Cer+21]. If the problem that the number of samples required to mea-
sure each term within a certain accuracy (which can be impractically large [WHT15]) is not
an issue, several techniques have been proposed to reduce the total number of measurement
terms, as discussed below.

An intuitive solution is to measure multiple terms at once which pertains to the partition-
ing of the Pauli operators into sets whose members mutually commute. The task of par-
titioning is equivalent to combinatorial problems of graph colouring [JGM19] or finding a
minimum clique cover [VYI20; Izm+20; Zha+20b]. A simple and easy to implement solution,
which may not give the best grouping, is to enumerate the strings and create sets of those
that commute on the relevant index per term.

Several other solutions have been summarised in [Cer+21]. One solution is to optimise the
samples per term by considering the weight of the coefficient of that term. If the coefficient is
small it will contribute less to the overall variance. Other solutions explore classical shadows
[HKP20] or neural network tomography [Tor+20].

Exact diagonalisation

The ground state energy can be calculated for small systems using exact diagonalisation of
the Hamiltonian matrix. The same string representations can be used to streamline the pro-
cess with the circuit preparation algorithm. The string representation [H ] contains all the
information about H . Once input to a classical computer, one can create the matrix from
[H ], at least for small systems. This matrix can be diagonalised exactly within machine pre-
cision to calculate the eigenvalues and eigenvectors. An exact diagonalisation is helpful for
benchmarking and verifying variational methods on small systems.

Beyond small-size systems, the construction, as well as the diagonalisation of the matrix,
quickly become intractable for classical computers. Despite the exponential growth of the
matrix and, therefore, the inability of classical computers to solve for the eigenvalues, it is
worthwhile to mention that certain methods have been developed that have extended the
ability of exact diagonalisation by reducing resource consumption. Two such methods are
the Lanczos method and the Jacobi-Davidson method. While exact diagonalisation relies on
matrix transforming techniques, these methods are iterative [VG96]. Note that sometimes the
Lanczos method is also called exact diagonalisation in the literature. The Lanczos method
can be found in [CW02]. The Jacobi-Davidson method was first suggested in [SV00] by com-
bining Davidson’s method [Dav75] with Jacobi’s procedure [Jac46]. For a comparison of the
two methods, we refer to [WF08].
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3.3.3 Initial state

An important ingredient for variational methods is the initial state of quantum computers.
Often in variational methods, the initial state is variedly defined. On one side, the initial
state can mean only one of the 2N possible combinations of computational states in which
the quantum computer can be prepared. On the other side, it can also mean any efficiently
preparable initial state (requiring several gates) for which the energy estimate is closer to the
ground state than any random point on the landscape. In this work, the initial state mostly
refers to the latter cases. It is possible that the two cases coincide (see section 4.1) or do not
coincide (see section 4.3).

The combination of the ansatz and the problem Hamiltonian gives rise to a rugged multi-
dimensional landscape whose global minimum (ideally) corresponds to the ground state of
the problem. The dimension of the landscape is equal to the number of independent param-
eters in the circuit. It is possible that for a wrong choice of an ansatz, the global minima of
the landscape do not correspond to the ground state. For example, in the case of the trial
wavefunction of the harmonic oscillator given in Eq. (3.10) where if p is the parameter, the
landscape is convex, and the global minimum is easy to calculate. We saw in that example
that the global minima did not correspond to the ground state energy, representing a bad
choice of ansatz. Since we are primarily interested in the energy, its estimate calculated from
variational methods for multi-dimensional landscapes can be significantly above the ground
state energy.

Traversing the rugged energy landscapes is a difficult problem. It has been shown that clas-
sical optimisation is intrinsically hard, for variational methods NP-hard, and does not merely
inherit the hardness from the ground state problem [BK21]. Thus, finding the global minima
of the landscape from an arbitrary starting point is fraught with problems. One such prob-
lem is the existence of barren plateaus in the energy landscapes [McC+18; CNB21; Hol+22]
(see also section 5.2.2). While efforts are underway to avoid barren plateaus [Pat+21; ZG21],
it remains an open problem. Additionally, there may be a large number of local minima sur-
rounding and prohibiting accessing the global minimum starting from an arbitrary point.

The above mentioned problems can be avoided by preparing good initial states. However,
it is not in general clear what the good initial states should be for any given problem. For
some problems, classical approximations can offer some insight but need not necessarily al-
ways help. It is an open question if such initial states can be known for any given problem
in advance. For the problems we test, there exist initial states that offer a better initial energy
than a random point on the energy surface.

3.3.4 Classical calculations

The role of the classical subroutine is twofold: energy calculation and parameter optimisa-
tion. In this section, we discuss the former. The subroutine run on a quantum computer
gives after measurement one bitstring at a time. This output is stored on a classical com-
puter. Since the quantum theory is probabilistic, the quantum computer must be run several
times to build the statistics required for a meaningful computation. Furthermore, interesting
problem Hamiltonians often consist of more than one term that does not necessarily com-
mute amongst others. Not all the terms can be measured at once in such cases. We are in-
terested in calculating the expectation value of a Hamiltonian of the type given in Eq. (3.34).
For simplicity of explanation, we assume that each term h is measured on the corresponding
basis separately. The process can be readily generalised to grouped terms. The procedure to
compute the expectation value is as follows.
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Energy calculation

Assume that the parametric optimisation of an ansatz has prepared the state |Ψ〉 on a quan-
tum computer. Let s samples be obtained on the relevant basis of the term on the ground
state. The output corresponding to each measurement is accumulated in a classical com-
puter. Assume that the sequential preparation and measurement of the state |Ψ〉 several
times gives a (random) sequence of N -length bitstrings

r0 = [010. . .01]

r1 = [110. . .00]

...
...

rs−1 = [100. . .11]

(3.36)

where ri is the i -th bitstring produced when sampling s times. The data collected from the
quantum computer can be stored in a matrix R of size N×s, where each element is a classical
bit 0 or 1,

r0

r1

...

rs−1

→


010. . .01
110. . .00

...
100. . .11


N×s

= R. (3.37)

It is noteworthy that the total number of elements in the matrix is proportional to s, which
should (for practical applications) scale polynomially with N . Thus, the size of R is not expo-
nential in N , in contrast to the matrix representation of the Hamiltonian. Additionally, stor-
ing the sequential outputs is not necessary as each bitstring can be processed as soon as it is
measured (see section 5.5). However, for simplicity of explanation, the data is represented by
the matrix in the rest of the section.

To compute the expectation value, we need to calculate the unknown non-zero coefficients
of the wavefunction given in Eq. (2.5). It is assumed that the collected bitstrings have been
measured in the relevant Pauli basis prescribed in the Hamiltonian. Recall that all the Pauli
operators σα have the eigenvalues 1 and −1. We adopt the convention σα |1〉 = −|1〉. We
compute the parity of each bitstring given by each row of R by multiplying the eigenvalues
of each individual bit in the string corresponding to the operator in the term. To do so, it is
relevant to count the number of 1s in each bitstring against the presence of a Pauli operator
in the Hamiltonian term. The conditional product giving the parity of the bitstring is given
by

Ps =
N−1∏
i=0

δs(ri ,hi ), (3.38)

where the index i enumerates each bit of the bitstring r and Hamiltonian string [h], and
δ(ri ,hi ) = −1 only if hi ∈ {σx ,σy ,σz } and ri = 1, and 1 otherwise. The list of possibilities are
tabulated below.

hi ri Parity
σα 1 −1
σα 0 1
σI 1 1
σI 0 1

By enumerating through each bit in the string, the parity of an individual bitstring is given
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by Eq. (3.38). For example, the parity counting operation on r0 given in Eq. (3.37), assuming
a Hamiltonian term σx

0σ
x
1 , gives

Pr0 =σ⊗N |010. . .01〉 =σI
N−1 |0〉σI

N−2 |1〉σI
N−3 |0〉 . . .σx

1 |0〉σx
0 |1〉

= (+1)× (+1)× (+1)× . . .× (+1)× (−1)

=−1.

(3.39)

Thus, the parity of an individual bitstring is given by the product of parities of the individual
bits in the string as calculated for the given Hamiltonian term operators. The parities of s
bitstrings are collected in the vector

P = P0, . . . ,Ps−1. (3.40)

By enumerating all bitstrings rk for k = 0, . . . , s − 1 taken from the quantum computer, we
can write the expectation value of one term h j of H in terms of the measured frequencies
(bitstrings) such that

〈c j h j 〉 = c j
〈Ψ|h j |Ψ〉
〈Ψ|Ψ〉 = c j

(〈r0|σ⊗N |r0〉+〈r1|σ⊗N |r1〉+ · · ·+〈rs−1|σ⊗N |rs−1〉
)

s

= c j
(
P0 +P1 +·· ·+P s−1

)
s

= c j
(∑s′−1

i=0 P i G (ri ,R)
)

s
,

(3.41)

where G (x, y) is the frequency of reoccurrences of bitstring x in the rows of matrix y , s′ ≤
s is the number of unique bitstrings in R, and c is the coefficient described in Eq. (3.34).
Note that by blindly enumerating s′ from 0 to 2N−1 (all possible states) for the purpose of
counting, we add an exponential overhead which should be avoided by enumerating each
row (all measured states) in R instead which has only a polynomial number of entries.

The procedure until now can calculate the energy of a single term. Let R = R1,R2, . . . ,Rm

be the list of matrices corresponding to each term j . The expectation value of the entire
Hamiltonian is found by adding those of the individual ones,

〈H〉 = 〈c1h1〉+〈c2h2〉+ · · ·+〈cmhm〉

=
m∑

j=1
c j 〈h j 〉

=
m∑

j=1

c j
∑s′j−1

i=0 P i , j ×G (ri , j ,R j )

s j
.

(3.42)

3.3.5 Error resilience

Since variational quantum algorithms are designed for quantum computers that will be prone
to errors, it is expected that they are tolerant of them to some extent. In this section, we
discuss briefly how such algorithms have an inherent ability to be resilient against certain
types of errors.

The first defence of variational methods against errors is the construction of a special ansatz
for particular types of problems. Such construction requires previous knowledge about the
problem. For example, problems comprising spins on a lattice or electrons in a molecule
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often conserve the total number of spins or electrons. Due to the conservation of a certain
property of the system under study, it is possible to design an ansatz that respects the conser-
vation. To preserve the total number of particles in a system, a so-called number preserving
ansatz [Con+22; Kir+22] has been proposed. The number of particles in such an ansatz is
conserved for all possible values of θ. The preservation is not necessarily limited to particle
numbers but can be extended to other symmetries [Gar+20] and has been demonstrated in
prototype applications [Omi+22]. A bit flip error can be detected since the total number of
|0〉s and |1〉s in the state |ψ〉 after the end of the computation will not match with those at the
beginning. Thus, all final bitstrings output by the quantum computer that do not conserve
an assumed symmetry can be discarded.

The error resilience of variational algorithms is also through the parametrisation. Let an
ansatz of an arbitrary product of unitary operators be given by U(θ) act (in theory) on an
initial state |ψ0〉. Assume that an error prone quantum computer instead performs U′(θ) |ψ0〉,
where U′(θ) 6= U(θ). Such an error is variationally suppressible if there exists a correction
vector β such that

||U(θ)−U′(θ′)|| < ε, θ′ = θ+β, (3.43)

for a given ε> 0 and if the corrected vector θ′ = θ+β corresponds to an optimum on the op-
timisation landscape [McC+16]. No additional knowledge about an Hamiltonian or an ansatz
is required if the condition given in Eq. (3.43) is met. In some troublesome cases the error
resilience through parametrisation may not work (see [McC+16] for examples and remedies).

Lastly, even if Eq. (3.43) does not work, it is still possible to approximate the ground state
energy. Inherent to the variational methods is the ability to use any ansatz to find the ground
state energy. Even if the quantum computer performs U′(θ) instead of U(θ), it is a valid
ansatz in itself albeit not the intended one. Therefore, although a mapping from U(θ) →U′(θ′)
may remain unknown, a quantum computer can still be used to approximate the ground
state energy.

3.4 Classical optimisation

An integral part of the variational methods is the parameter optimisation that is carried out
on a classical computer. All the methods we discuss in this section are run on classical com-
puters because they are not hard or intractable for them. We explore the types of optimi-
sation algorithms that are suitable for the hybrid variational methods described until now.
Although the majority of the work in this dissertation is concerned with using the energy
scalar that is input to the optimisation algorithms, we keep the discussion general by using a
function f as the scalar generator. Parts of this section are based on optimisation algorithms
as discussed in [NW06].

3.4.1 Mathematical foundations

Optimisation consists of minimising or maximising a given f . We assume that

• x is a real vector of parameters – corresponding to each unique parameter in the quan-
tum circuit; and

• f is the objective function with the argument x, i.e. f (x), which outputs a scalar quan-
tity to be minimised or maximised.

Often a third assumption is made that defines the constraints on x. However, such an as-
sumption is not necessary for the work considered in this dissertation. The optimisation
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FIGURE 3.4: An illustrative one-dimensional optimisation landscape. There are
three local minima, namely x∗
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3 , and one global minimum x∗
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problem in the above notation is written as

fmin = min
x∈Rm

f (x), (3.44)

where x is a real vector in R and f : Rm →R is assumed to be a smooth function. The optimi-
sation to maximise f can be done by minimising − f , and vice versa. In this work, the main
interest would be finding the ground state energy of various physical models and, therefore,
the minimisation of f .

To achieve an optimisation objective, the algorithm should yield a global optimum of f
which is a point x∗

g such that
f (x∗

g ) ≤ f (x) for all x,

where the domain of x is Rm . In practice, however, finding a global optimum is a difficult
problem since the knowledge of f is usually only local. Generally, in practice one is also
limited by the total number of function evaluations that can be performed. Most algorithms
find a local optimum which is x∗ such that

f (x∗) ≤ f (x) for all x ∈N (x), (3.45)

where N (x) is the neighbourhood of x∗. For example, Fig. 3.4 illustrates a difficult single pa-
rameter case for global optimisation. There are three local minima and one global minimum.
An algorithm that only goes downhill and does not start in the neighbourhood of x∗

g will not
find x∗

g . The local minima illustrated in Fig. 3.4 are a problem for algorithms in general. For
variational algorithms, the knowledge of a suitable initial state combined with initial param-
eters can allow starting in N (x)g . In general, however, such knowledge may not be readily
available or computationally feasible. Even if some information is available, it is in general
difficult to ascertain if N (x) is N (x)g in multi-dimensional landscapes. Functions for which
no prior knowledge about their landscape can be made available are called black-box func-
tions. In general, functions in variational methods are black-box type.

Taylor’s theorem to recognise an optimum

Given a black-box function, it might appear that the only way to ascertain that a given x is
a local minimum x∗ is to check the value of f (x) for each x in the neighbourhood N (x).
Only when the Eq. (3.45) is satisfied for all x ∈ N (x) can we make the claim that x∗ is a
local minimum. In general, this process requires enormous computational effort and quickly
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becomes intractable if f is continuous and/or difficult to compute. However, if we assume
that f is smooth, there are more efficient ways to determine a local minimum than checking
for every possible point. This section outlines Taylor’s theorem, which will help us achieve
that efficiently.

Theorem 1 Taylor’s theorem.

Let f : Rm →R be continuously differentiable and let p ∈Rm . Then we may write

f (x+p) = f (x)+∇ f (x+ tp)Tp, (3.46)

for some t ∈ (0,1) where the superscript T in AT implies the transpose of A. If f is further
assumed to be twice continuously differentiable, we have that

∇ f (x+p) =∇ f (x)+
∫1

0
∇2 f (x+ tp)pd t , (3.47)

and that

f (x+p) = f (x)+∇ f (x)Tp+ 1

2
pT ∇2 f (x+ tp)p. (3.48)

Thus, the Taylor series truncated at the second term allows us to approximate a given black-
box function with a quadratic polynomial. From Eq. (3.48), it is immediately apparent that at
the points x, by substituting p= 0 we get the original value of the function, and the quadratic
term approximates f for a small perturbation around x. The perturbation will define the
neighbourhood N (x), and as we will see, there are efficient ways to recognise the local min-
imum of N (x) for this approximation. Thus, if our approximation to the function is rea-
sonable, we would have efficiently recognised the local minimum of the black-box function
around x∗.

The necessary and sufficient conditions to recognise x∗ as a local minimum are derived
by assuming that the point is a local minimum and then proving facts about the first and
second-order derivatives of f . We look at the following theorems to find the local minimum
of the quadratic approximation. Here we only state the theorems; the proofs can be found in
[NW06].

Theorem 2 First-order necessary condition: If x∗ is a local minimum and f is continuously dif-
ferentiable in a neighbourhood N (x∗), then ∇ f (x∗) = 0.

Theorem 3 Second-order necessary condition: If x∗ is a local minimum and ∇2 f exists and is
continuous in N (x∗), then ∇ f (x∗) = 0 and ∇2 f (x∗) is positive semidefinite.

Theorem 4 Second-order sufficient condition: If ∇2 f is continuous in N (x∗), ∇ f (x∗) = 0 and
∇2 f (x∗) is positive definite, then x∗ is a strict local minimum of f .

We use these theorems for our purpose as follows. Theorem 1 tells us that we can replace
our unknown f with a quadratic approximation. By doing so, we avoid having to check each
point in N (x). Theorem 2 tells us that if f is smooth, the first-order derivatives of a local
minimum x∗ vanish. Theorem 3 goes further and tells us that if the second-order derivative
exists, it is positive semidefinite. Theorem 4 tells us that if all the conditions stated in the
previous theorems are met, then x∗ is a strict local minimum of f . A minimum is called
’strict’ when the equality sign is removed from Eq. (3.45). Thus, the process of finding the
local minimum of a black-box function involves assuming that the given function is smooth
and approximating it with a quadratic polynomial. The local minimum of this approximated
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FIGURE 3.5: A quadratic Taylor approximation to the arbitrary function around
the local minimum at x∗

1 shown in Fig. 3.4. The dashed red curve showing the ap-
proximated function is in good agreement with f in the region N (x). The dashed

vertical blue lines show the neighbourhood N (x) around x.

function is "global" by construction. In other words, the global minimum of the Taylor’s ap-
proximation of f is the local minimum of the black-box function f in the neighbourhood
N (x).

For example, consider the local minimum at x∗
1 from Fig. 3.4 shown again in Fig. 3.5. The

three terms on the right hand side of Eq. (3.48) are shown for x∗
1 . The value of f at x∗

1 is
the first term in Eq. (3.48), the first-order derivative of f is the second term, and the second-
order derivative is the last term. The quadratic approximation in the neighbourhood N (x) is
shown by the dashed red curve. The value ∇ f = 0 only at x∗

1 . For any x 6= x∗
1 , ∇ f 6= 0. Thus,

for this example, the local minimum is found when ∇ f = 0. The idea is readily extended to
more than one dimension.

In summary, one way or another, any optimisation algorithm seeks to find that value of f
where ∇ f (x) = 0. This explains how gradient based algorithms get their name; as they seek to
find a zero gradient. It was assumed that the function is smooth; however, if it is not smooth,
this technique will not work. An introduction to methods for non-smooth functions can be
found in [HUL93a; HUL93b].

3.4.2 Gradient based algorithms

Optimisation algorithms come in all forms and flavours and it is difficult to fit them all in
a few categories. A large number of algorithms can still be categorised broadly in terms of
gradient based or gradient free. Our first aim is to find out if variational algorithms can
work for ideal quantum computers emulated by a classical computer. For the optimisation
part, we will rely heavily on gradient based methods as they offer a quicker convergence for
noise-free function evaluations. Only if the variational algorithm works for this ideal quan-
tum computer, it makes sense to move onto mimicking real hardware. On an actual quantum
computer, the function evaluation is stochastic which makes computing the gradient unreli-
able with the usual numerical formulas. We will discuss techniques to compute gradients
when such functions are involved if certain conditions about the ansatz are met. In general,
however, gradients cannot always be reliably computed for such functions; different gradient
free methods for them are reviewed in [RS13; LMW19].
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The process

All optimisation algorithms require an initial point x0. If some information about f is avail-
able, then x0 can greatly help in reaching the global minimum when {x0,x∗

g } ∈N (x)g . Since
for black-box functions no prior information is available, x0 is often initialised at random.
Beginning at x0, algorithms move forward in a sequence of iterates at points xk for k =
0,1,2, . . . ,∞ that terminates either when no more progress is made or when a certain thresh-
old for the number of iterations is reached. To decide the next iterate xk+1 given a previous
iterate xk , an algorithm uses the information about f at xk . Some algorithms might also use
the information from all or some previous iterates x0,x1, . . . ,xk−1, e.g. Bayesian optimisation
[Den+20]. The sole purpose of an algorithm is to find those next iterates that decrease the
value of f as the value of k increases. Thus, an algorithm proceeds systematically to find a
new iterate xk+1 such that f (xk+1) < f (xk ).

Line search and trust region

Once it is known that we seek to find x such that ∇ f (x) = 0 starting from x0, the next ques-
tion arises naturally: how do optimisation processes proceed to find that x? There are two
broad categories of gradient based algorithms that answer this question: line search and trust
region. In line search, an algorithm has to choose a direction of search pk and then search
along that direction until a new iterate xk+1 is found that lowers the value of f . The distance
to move in the direction pk is found by approximately solving to find a step length α:

min
α>0

f (xk +αpk ). (3.49)

The exact solution of Eq. (3.49) would give the maximum benefit from direction pk , however,
an exact optimisation may be prohibitively expensive. Instead, a limited number of trial step
lengths may be chosen until the algorithm finds one that roughly approximates the minimum
of Eq. (3.49). The choice may depend on the current iterate, e.g. α=α(k). At the next iterate,
a new search direction is chosen and step length is calculated. The process is repeated until
convergence (∇ f → 0).

In the trust region category, information about f is used to construct a model function
mk which behaves similar to f in a certain ’trust region’ around xk . As the quality of mk to
mimic f deteriorates when x is far from the current iterate xk , the search for a minimiser of
mk is restricted to some smaller region around xk . The algorithm approximately solves the
following subproblem to find the best candidate step l:

min
l

mk (xk + l), (3.50)

where xk +l lies inside the trust region. If a candidate solution produces a sufficient decrease
in f , the solution is accepted and the next iterate is found.

The next iterate

Using the line search method, given a current iterate xk , the next iterative xk+1 is given by

xk+1 =xk +αkpk . (3.51)
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The first task is to find a direction pk that will decrease f , or a descent direction. The most
commonly used descent directions can be categorised as

pk =


−I∇ fk gradient,

−(∇2 fk )−1∇ fk Newton,

−B−1
k ∇ fk quasi-Newton,

(3.52)

where I is the identity matrix, ∇2 fk is the Hessian matrix, and B−1
k is a matrix approximat-

ing the Hessian. While the gradient direction is the most cost effective to calculate, it is also
the slowest: offering only a linear convergence. On the other hand, the Newton direction
offers quadratic convergence (see [NW06] for proof). The disadvantages of Newton’s direc-
tion are that it requires (a) very large number of (potentially costly) function evaluations and
(b) inverting the Hessian matrix, at every iteration. The quasi-Newton direction meets in the
middle by offering a convergence better than gradient descent but requiring only the first
order gradient information. These quasi-Newton methods iteratively update the Hessian in-
verse approximation B−1

k as the optimiser traverses the landscape to obtain the information
about the curvature beyond a linear approximation. Quasi-Newton methods are the optimal
choice for variational methods due to their low number of function evaluations as well as
usage of second order information.

After the selection of a direction, a suitable step size αk is required at the iterate xk . A
trivial choice is αk = 1, but it may not always work if xk is far away from the minimum.
In contrast, the trivial choice may actually increase the value of f . To solve the problem we
backtrack along the direction by decreasing the value of αk until we find a sufficient decrease
in f [Pre+07; Wol69]. A potential direction of research is to find a method for inexact line
search so that the expensive to calculate the gradient for variational methods is used most
optimally.

3.4.3 Calculating gradients

We learnt from the previous section that calculating the gradient is an important task for op-
timisation algorithms. There are two broad ways of calculating gradients, as described below.

Numerical gradients

When an analytical form of the function is not available (black-box), the most commonly
used method is the finite difference approximation. Different types of finite difference formu-
las are available for numerical differentiation. While the finite difference formulas work well
for noise-free functions, they often fail on quantum computers due to the stochastic nature
of the function. We will discuss remedies to this problem later. The calculation of gradients is
carried out numerically using forward, backward, or central finite difference formulas. Below
we describe the gradient computation for a single parameter but it is readily generalised by
replacing xk with a vector xk . The equation for the gradient at xk is given by definition

∇ f (xk ) = lim
h→0

f (xk +h)− f (xk )

h
. (3.53)

Since f is a black-box function, the above expression is not available analytically. The gradi-
ent is then computed using the finite differences formula

∇ f (xk ) = f (xk +h)− f (xk )

h
+C , (3.54)
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where C is the difference between the true value of the gradient and the value given by the
approximation of the finite differences formula. For a smooth function, C can be made ar-
bitrarily small by decreasing h. Assuming that C is sufficiently small, the finite differences
formula approximates the gradient as

∇ f (xk ) ≈ f (xk +h)− f (xk )

h
, (3.55)

where for our numerical purposes h = 10−8 is sufficiently small. While the central difference
formula approximates the gradient more accurately, we do not use it due to the overhead in
function evaluations. Using the forward difference formula the number of functional evalua-
tions per iteration is equal to the number of parameters in the circuit plus one.

When a function is evaluated on an emulator of a quantum computer which uses the wave-
function, the output energy is numerically exact. In other words, the underlying function is a
proper mathematical function. For two sets A and B, f is defined by a set of ordered pairs
(a,b) where a ∈A and b ∈B, and every element of A maps to exactly one element in B. In
this case, the gradient can be reliably computed using Eq. (3.55).

When a function is evaluated on a quantum computer or an emulator of a quantum com-
puter (by sampling), even though the underlying function is proper, due to sampling from
it the output energy is not exact. Such a computer does not output the wavefunction but
measurables or samples (bitstrings). For a finite number of samples, the apparent underlying
function is then not a proper mathematical function but a stochastic function f ′ such that

f ′(x) = f (x)±ε(x), (3.56)

where ε(x) is a stochasticity variable. The energy from the function f ′ becomes exact in the
asymptotic limit of infinite measurables, where ε(x) → 0. In practice, however, only a limited
number of measurables are taken from a computer and ε(x) 6= 0. In this case, in general, the
gradient cannot be reliably computed using Eq. (3.55). However, in our case, since we can
reduce ε by increasing the number of samples, it is possible to estimate the gradient to some
extent.

The stochastic nature of f ′ implies that Eq. (3.55) is affected by an additional stochastic
variable E as

∇ f ′(xk ) ≈ f (xk +h)− f (xk )±E (k)

h
, (3.57)

where E (k) > 0 allows for the case that the variable may take different values at each iteration.
Let us define

∆ fk = | f (xk +h)− f (xk )|. (3.58)

To make use of the finite difference formula in this case, it is required (see also appendix of
[Kan+17]) that

∆ fk À E (k). (3.59)

We know for our cases that E is inversely proportional to the number of samples. It is not
required that E vanishes, but only that it reduces in value such that Eq. (3.59) becomes valid.
If the left hand side of Eq. (3.59) is much larger than the right hand side, we get the finite
difference approximation, leading to a descent direction for the gradient descend. Otherwise,
if the right hand side is too large (∆ fk ¿ E ) or comparable (∆ fk ≈ E ), the gradient computa-
tion will fail to give a good approximation and the search direction will obey the stochastic
fluctuations of E , leading to no progress in the optimisation. A drawback is that a very large
number of samples may be required to fulfil Eq. (3.59) when ∆ fk → 0, which is the case near
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a local minimum.

Analytical gradients

Consider a general approach where each unitary operator has the form

Ui (θi ) = exp(−iθi Ai ) for i = 1, . . . ,m, (3.60)

where Ai is some Pauli operator. We know that the energy at each iteration xk is

Exk = 〈ψ0|U †
1 (θ1) . . .U †

m(θm)HUm(θm) . . .U1(θ1) |ψ0〉 , (3.61)

where x= {θ1,θ2, . . . ,θm}. The task is to compute the gradient of Exk in each direction ei for
i = 1,2, . . . ,m. The partial derivative in a certain direction ei is

∂

∂θi
E(θ1, . . . ,θm) =− i 〈ψ0|U †

1 (θ1) . . .U †
m(θm)HUm(θm) . . . AiUi (θi ) . . .U1(θ1) |ψ0〉

+ i 〈ψ0|U †
1 (θ1) . . .U †

i (θi )Ai . . .U †
m(θm)HUm(θm) . . .U1(θ1) |ψ0〉

=−2Im〈ψ0|U †
1 (θ1) . . .U †

m(θm)HUm(θm) . . . AiUi (θi ) . . .U1(θ1) |ψ0〉 .

(3.62)

It is assumed that Ak = A†
k . We can use an auxiliary qubit to calculate the expression in

Eq. (3.62). The gradient in a certain direction can be computed by making repeated mea-
surements on the auxiliary qubit where the circuit depth is 2m + 2 as described in [FN18].
Avoiding use of an auxiliary qubit is desirable for emulators because using an additional qubit
doubles the memory requirements for a classical computer. Analytical gradients will be help-
ful where numerical gradients cannot be reliably calculated.

3.4.4 Summary

We are interested in the application of the optimisation algorithms to the variational meth-
ods. It is generally agreed that gradient based methods converge much faster than gradi-
ent free methods when the function is not stochastic. This has also been demonstrated in
benchmarking simulations of small molecules [Cla+20]. However, the challenge arising from
stochastic functions has regenerated interest and efforts in optimisation algorithms for quan-
tum computing. The main problem facing gradient based methods when the functions are
stochastic is the gradient computation. In the presence of even a small amount of stochastic-
ity, gradient based methods fail [Lav+20]. To counter the problem, novel methods have been
proposed to calculate the gradient in NISQ computing, e.g. the parameter shift rule [Sch+19],
quantum natural gradient [Sto+20], and quantum analytic descent [KB22]. Various alterna-
tives and improvements for gradient based and gradient free methods have been proposed
[Swe+20; Ben+19; VCM13; Zhu+19]. It is not clear whether gradient based or gradient free
methods are better in the presence of stochasticity.

We discussed the mathematical foundations and working of gradient based optimisation
algorithms. Undoubtedly, the most important component of such algorithms is the calcula-
tion of accurate gradients at each iteration. We discussed the difficulties to such calculation
when the function is stochastic and gave countermeasures. We will apply these measures and
some new ideas in the next chapter.
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Chapter 4

Applications

This chapter is dedicated to the applications of the variational methods discussed in previous
chapters. We apply the variational method to three different types of problems: the Heisen-
berg model, the Hubbard model, and molecules from quantum chemistry. The task is to find
the ground state energy of each problem. Each problem is briefly introduced before the sim-
ulation details are laid out. Parts of the chapter are based on results published in [Jat+22a;
JLM22].

4.1 Heisenberg model

4.1.1 Introduction

The literature on the Heisenberg model abounds with exemplary introductions. In this sec-
tion, we briefly introduce the model as introduced in [Blu01]. Consider two electrons having
spatial coordinates ~r1 and ~r2, each described by single electron wavefunctions ψa(~r1) and
ψb(~r2), respectively. The joint state of the two can be written as the product of the indi-
vidual wavefunctions as ψa(~r1)ψb(~r2). However, such a simple wavefunction does not obey
exchange symmetry, i.e. by exchanging the two electrons we get ψa(~r2)ψb(~r1) which is not
a multiple of ψa(~r1)ψb(~r2). The requirement that states behave properly under particle ex-
change operation needs to be incorporated in the wavefunction. Furthermore, the wavefunc-
tion needs to be antisymmetric so the spin part must be either an antisymmetric singlet state
χS or a symmetric triplet state χT . These requirements are fulfilled by

ΨS = 1p
2

(
ψa(~r1)ψb(~r2)+ψa(~r2)ψb(~r1)

)
χS

ΨT = 1p
2

(
ψa(~r1)ψb(~r2)−ψa(~r2)ψb(~r1)

)
χT ,

(4.1)

which include both the spatial and spin parts of the wavefunction. The variational energies
of the these two states are given by

ES =
∫

Ψ∗
S HΨSd~r1d~r2

ET =
∫

Ψ∗
T HΨT d~r1d~r2,

(4.2)
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FIGURE 4.1: Illustrations of two and three dimensional lattice structures.

where spin parts of the wavefunction are normalised. The difference between the two ener-
gies is

ES −ET =
∫(

Ψ∗
S HΨS −Ψ∗

T HΨT
)
d~r1d~r2

= 2
∫

ψ∗
a(~r1)ψ∗

b (~r2)Hψa(~r2)ψb(~r1)d~r1d~r2.
(4.3)

An effective Hamiltonian [Blu01] can be written as

Heff =−(ES −ET )Ŝ1 · Ŝ2 +C , (4.4)

in terms of the spin-1/2 particle operators Ŝ1 and Ŝ2, where Ŝ = ħσ/2 (we set ħ = 1), and
C = 1/4(ES +3ET ) is a constant term. Let us define J = ES −ET . Thus, the spin-dependent
term in the Hamiltonian becomes

Hspin =−J Ŝ1 · Ŝ2. (4.5)

If J > 0, ES > ET and the triplet state is favoured. If J < 0, ES < ET and the singlet state is
favoured. The final step is the assumption that the derivation above is valid for any arbitrary
pair of electrons in a material and can be generalised to the entirety of the material. This
leads to the Hamiltonian of the Heisenberg model:

Hs =−∑
i> j

Ji j Ŝi · Ŝ j =−1

2

∑
i j

Ji j Ŝi · Ŝ j , (4.6)

where Ji j is the exchange constant between the i th and j th spins, and the factor of 1/2 in
the right-most term appears because each pair is counted twice. This work will focus on the
antiferromagnetic case of J < 0.

Categorisation of the model

The model described by Eq. (4.6) can be categorised based on its use. The model will be
called one dimensional if the spins are located on the sites of a one dimensional lattice. Sim-
ilarly, it can also be used for two or three dimensional lattices. The exchange constant, also
called the coupling interaction strength, is chosen to be either unity (isotropic) or random.
For lattices with two or more dimensions, the structures can further take various forms. They
may be regular or frustrated. Furthermore, the boundary conditions at the ends of each lat-
tice can either be open or periodic. For a visual illustration, we draw some common two and
three dimensional lattices in Fig. 4.1. Shown are frustrated, square shaped, and ladder type
two dimensional lattices. As an example of a three dimensional lattice we draw a 3× 3× 2
structure. The vertices are the sites where the particles can be accommodated. The edges
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between vertices represent the coupling between neighbouring sites. A site can also be con-
nected to a next-to-neighbour site as an appropriate change in the model, and so on.

Periodic boundary conditions are assumed for H . The energy of H is given in dimension-
less units. The Hamiltonian given in Eq. (4.6) can be converted into string representation
once it has been categorised. As an example, consider the ferromagnetic Heisenberg Hamil-
tonian consisting of spins on a one dimensional lattice of length N having m terms, given
by

H =−J
∑
i> j

σiσ j , (4.7)

where σ = {σx ,σy ,σz }, we set J = 1, and j = 1, . . . , N − 1 and i = j + 1 are the indices of the
lattice sites. The spin operators of Eq. (4.6) are taken in the Pauli basis. Other choices of i and
j indices can be used to describe two or more dimensional models. The string formulation
is obtained from the discussion in chapter 3.

Exact diagonalisation

One way to find the ground state energies of the Hamiltonians is through exact diagonalisa-
tion. The matrix is of dimensions 2N ×2N . The string representation can be used to create the
matrix as described in section 3.3.2. In the example considered above (Eq. (4.7)), for N = 3
the matrix is

MH =



−3 0 0 0 0 0 0 0
0 1 −2 0 −2 0 0 0
0 −2 1 0 −2 0 0 0
0 0 0 1 0 −2 −2 0
0 −2 −2 0 1 0 0 0
0 0 0 −2 0 1 −2 0
0 0 0 −2 0 −2 1 0
0 0 0 0 0 0 0 −3


23×23

. (4.8)

The diagonalisation is performed after the creation of the matrix. A given square matrix A
is said to be diagonalisable if it is similar to some diagonal matrix, i.e. if there exists an
invertible matrix P such that

AD = P−1 AP, (4.9)

is diagonal. The diagonal matrix AD contains the eigenvalues of A, and usually, the lowest of
these is of interest since it corresponds to the ground state of a physical system represented
by A. The matrix in Eq. (4.8) can be diagonalised to give the lowest eigenvalue −3. This ex-
ample also illustrates the dimension of MH as a function of N , which is of order O(22N ). The
amount of memory and processing required scale as O(24N ) and O(26N ), respectively. Due to
the exponential scaling, it becomes difficult to store and process the matrix at large values of
N . Thus, exact diagonalisation is not suited for finding the ground state of Hamiltonians with
large number of spins. This is one of the many reasons why the Heisenberg model is a hard
problem to solve.

The resources of quantum computers can be leveraged to find the ground state energy
without exact diagonalisation. The remainder of this section is dedicated to the study of the
implementation of the Heisenberg model on quantum computers. Since the current comput-
ers are error prone and belong to the noisy intermediate scale quantum (NISQ) computers
[Pre18], quantum simulators [De +07; De +19; Ale+] that mimic quantum computers will as-
sist in the study.
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Classical memory

Similar to the scaling of the storage space required for storing the H matrix, the classical
random access memory required for storing the state vector scales as 2N and thus doubles
per qubit. Although state vectors for systems requiring up to 30 qubits can be stored on
modern personal computers, simulations of several such interesting medium scale applica-
tions are rarely encountered. This suggests that the memory requirement cannot be the only
hindrance. Contributing factors are a large number of gate operations and thousands of it-
erations required by the optimisation algorithm, making such applications impractical. To
make it practically feasible, we use a massively parallel simulator [De +19; De +07] that ac-
commodates the resource demands on a supercomputer [Juw]. Quantum verification in the
supremacy experiment was performed by the same software [Aru+19].

Verifying the ground state energy

To verify the results in the current case, we compare it with a mean-field model. The main
idea behind the mean-field model is to use the average value of all the spins (excluding the
one of interest) in a system as a mean value affecting another single spin of interest. There
are multiple formulations of mean-field theories; refer to [CL95] for examples. The Hamilto-
nian of interest for the verification is given as

H =− J

L

L∑
〈i , j 〉

σi ·σ j − g
L∑

i=1
σz

i , (4.10)

where J ,L, and g are the model parameters [HD00], and 〈i , j 〉 is the coupling of each spin to
every other spin. The Hamiltonian has eigenvalues

El ,m =−2J l (l +1)/L−2g m + 3

2
J . (4.11)

For simplicity, let us rewrite Eq. (4.10) such that

LH =−J
L∑

〈i , j 〉
σi ·σ j , (4.12)

where setting g = 0 simplifies the calculation. The corresponding eigenvalues are given by

El =−2J l (l +1)+ 3

2
JL. (4.13)

Two different cases are used to verify the simulation results. First, the antiferromagnetic case.
Taking a two-qubit Hamiltonian

H af
s =σx

1σ
x
2 +σ

y
1σ

y
2 +σz

1σ
z
2, (4.14)

where H af
s denotes the antiferromagnetic Hamiltonian, the model parameters are set L = 2, J =

−1, and l = 0. The energy is then calculated using Eq. (4.13) and is given by

E af =−2×−1×0(0+0)+ 3

2
×−1×2 =−3. (4.15)

The simulation also produces the value −3 using σx
1σ

y
2 operators in the ansatz [O’M+16], ini-

tial state |10〉, and a single parameter θ =π/2. Thus, the simulation is verified to work for the
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antiferromagnetic case.
Second, the ferromagnetic case. Taking the two qubits Hamiltonian given by

H f
s =−σx

1σ
x
2 −σ

y
1σ

y
2 −σz

1σ
z
2, (4.16)

where the model parameters are set L = 2, J = 1, and l = 1. The energy is then given by

E f =−2×1×1(1+1)+ 3

2
×1×2 =−4+3 =−1. (4.17)

The simulation model produces the value −1 using operators σx
1σ

y
2 in the ansatz, initial state

|10〉, and a single parameter θ = −π/2. In summary, the simulation produces the correct
ground state energies for both the ferromagnetic and antiferromagnetic cases. This is also
true for Hamiltonians of more than two spins.

4.1.2 Finding an ansatz

The choice of an ansatz is critical to the performance of the variational methods. Finding
an ansatz for a two qubits problem is relatively easy, but finding an ansatz for large N is an
open problem. One may choose to rely on knowledge from classical theories. For the one
dimensional case, the Bethe ansatz [Bet31; Sut85] is known to give the exact solutions. How-
ever, its implementation on a quantum computer seems difficult because the gate decom-
position involves square roots of complicated functions [Nep20]. Nonetheless, some progress
has been made using real-valued solutions [VD+21]. Furthermore, we wish also to find the
ground states of two and three dimensional lattices for which no analytical means to solve
the problem are known. In this section, we demonstrate how we found a suitable ansatz for
the Heisenberg model.

We tune the variational method to optimise the overlap of the trial wavefunction with the
ground state instead of the energy. The overlap of a normalised trial wavefunction with the
normalised exact eigenfunction(s) of the problem Hamiltonian is defined as

O =
d∑

i=1
| 〈ψT |ψE

i k〉 |2, (4.18)

where ψT is the trial wavefunction and ψE
i k the exact eigenfunctions of the k th d-degenerate

eigenvalue. We set k = 0 since we are interested in the ground state. The value of O is
bounded as 0 ≤O ≤ 1.

Two and three qubits

We begin with the simplest case of two qubits. Dealing with only two qubits the choice of
combinations of the Pauli terms can be completely exhausted by trying all possible combina-
tions. The ansatz is then given by

U (θ) = e−iθâ j , (4.19)

where â j is a single term with an identifier index j . In total there are fifteen possible single
(e.g. â = σxσI ) and double (e.g. â = σxσz ) operator products terms. Using only one term at
a time, we avoid the need for factorisation of the exponential [DR87] in the case of three or
more qubits. Each one can be converted into a circuit as discussed in section 3.3.1. We try all
fifteen terms independently and optimise for the maximum wavefunction overlap. Thirteen
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Rz (2θ)

FIGURE 4.2: Circuit implementation of exp(−iθσzσzσz ).

terms give an overlap of 0.5, and two give a complete overlap of 1.0. These two terms were

â1 =σx
1σ

y
2 and â2 =σ

y
1σ

x
2 .

Using each term and minimising the energy instead also gives the correct energy of −3.0
which matches with the value calculated using exact diagonalisation.

In the case of three qubits, we repeat the same procedure by restricting to single and dou-
ble operator products where j = 1,2,3, . . . ,36. Thirty-two terms give an overlap of two-thirds,
while only four terms give a complete overlap. The terms giving the complete overlap are

â1 =σx
1σ

y
2σ

I
3 , â2 =σ

y
1σ

x
2σ

I
3 , â3 =σI

1σ
y
2σ

x
3 , and â4 =σI

1σ
x
2σ

y
3 .

Using each term and minimising the energy also gives the correct ground state energy −3.0,
which matches the result from exact diagonalisation.

Four or more qubits

The number of single and double product terms scale as 32N !/2!(N −2)!+ 3N for N qubits.
Given this scaling, it quickly becomes difficult to check each term and even harder to check
combinations of terms. Checking individual terms is also likely to fail since it is unlikely that
the ground state of a problem when N > 3 can be expressed by such a simple ansatz. An
ansatz for N ≥ 4 can be divided into two categories: neighbouring and non neighbouring. A
’neighbouring’ ansatz has combinations of terms that have products of terms on consecutive
indices only. A ’non neighbouring’ ansatz has both neighbouring terms and terms that have
product terms with indices not necessarily consecutive. The cases of two and three qubits
hint that the combinations of terms with σx and σy are more successful at finding the com-
plete overlaps than others. In other words, the ground state seems to be expressed by these
terms, provided the optimal parameters can be found. Thus, for N ≥ 4, we proceed with
combinations of terms with σx and σy only.

We observed that placing the parametrised gate only on the last qubit of the quantum cir-
cuits led to better results. In the case of N ≥ 3, a third σz operator is needed in the ansatz,
which always operates on the last qubit. An exemplary circuit is shown in Fig. 4.2. We use
such a construction in the remainder of the section.

The task is to construct a variational ansatz that solves for the ground state of the anti-
ferromagnetic Heisenberg Hamiltonian. We are interested in an ansatz that contains a set of
operators instead of a sum of operators. Such an approach will have a smaller circuit depth.
One can start with a large pool of operators; however, this overparametrisation will not nec-
essarily lead to the solution. We wish to have a minimal pool of operators that express the
ground state.

To accomplish similar tasks, an adaptive method has been proposed [Gri+19]. The adaptive
method has been extended to find excited state energies as well [Yor+21]. For a benchmark
of fixed ansatz and the adaptive ansatz methods for small diatomic molecules (i.e. H2, NaH)
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Previous works This work

Used in quantum chemistry
(e.g. LiH, BeH2)

Used for the Heisenberg
model

Minimisation of the energy Maximisation of the overlap
Best term has the steepest
gradient

Best term has the best
overlap

Pool has single and double
fermionic operator products

Pool has double spin
operator products

No variational optimisation
in choosing best term

Variational optimisation in
choosing best term

TABLE 4.1: Comparison between the implementation of the adaptive variational
ansatz preparation method proposed in [Gri+19] and the implementation used in

this work.

see [Cla+20]. The idea behind an adaptive method is to grow the number of parametrised
operators step-by-step for a given problem until a desired accuracy is achieved. Here we
will use it for the Heisenberg model. We implement an adaptive method different from the
one proposed in [Gri+19]. The differences in our approach to the original are tabulated in
Table 4.1.

The setup we adopt for finding the ansatz is as follows. As shown in Fig. 4.3, a quan-
tum computer is initialised with a state acted upon by a circuit created out of the terms in
the ansatz having i independent parameters. Each parameter belongs to a single term in
the ansatz. For the first step, i = 0 and the ansatz is empty. One term from the operator
pool is appended to the ansatz and all the parameters are optimised for maximum overlap.
Since each term in the pool is independent, this step can be done in parallel. The optimised
outputs are arranged ~Om = O1,O2, . . . ,Om , where m is the number of terms in the operator
pool. Then, the highest overlap in ~Om is checked against a threshold Oth , and if it meets the
threshold, the procedure is stopped. If the threshold is not met, the term with the highest
overlap is appended permanently to the ansatz and the number of parameters is increased
by one. Then, we begin the next cycle and the loop continues to append the terms with the
highest overlap until a certain threshold is met. Since we are interested in the ground state
of the Heisenberg model, |ψT

0 〉 → |ψE
0 〉 when O → 1. The value of O can be chosen to be

arbitrary close to 1 depending on the precision required for the overlap.
Techniques have been developed to reduce the size of the operator pool, which reduces

the computational resources required, e.g. mutual information assistance [Zha+21]. Similar
ideas for improving such adaptive techniques and reducing the computational resources have
been studied [Tan+21; Yao+21]. Since our operator pool is already heavily reduced, we do not
apply such techniques.

We apply the adaptive method to antiferromagnetic Heisenberg chains of length N = 4,5,6,
and 7. The results for neighbouring and non neighbouring pools are shown in Fig. 4.4. The
overlap precision threshold was set to Oth = 0.9999. We choose an arbitrary value for the
threshold but it can be problem dependent, e.g. chemical accuracy in quantum chemistry.
The operator pools were non-depletive, meaning that a term once used is not removed from
the pool and could be reused. The opposite is also possible but not used. We observe that
for N = 4, the minimum number of terms required to reach Oth are the same. However, this
changes as N is increased. The difference becomes visible for N ≥ 5 where the number of
terms required to overpass the threshold is fewer from the non neighbouring pool than the
neighbouring pool. The difference increases as N increases; thus, it can be hypothesised that
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FIGURE 4.3: Schematic diagram of the working of an adaptive variational ansatz
selection method. One operator is picked from the operator pool and is added
to the ansatz. The overlap of the ansatz is then maximised and the term with the
highest overlap is permanently appended to the ansatz. The process is repeated

until a threshold is reached.

it will increase further for N > 7. It is also interesting to note that an overlap of 0.9 or ninety
per cent is reached within a few terms, but the threshold accuracy is reached with signifi-
cantly more terms. For example, for N = 7 a 90 per cent overlap is reached at the twelfth term
for both neighbouring and non neighbouring cases, but 99.99 per cent overlap is reached at
72 and 59 terms, respectively. The non neighbouring pool appears to be advantageous if it is
important to keep the number of terms (and therefore the number of parameters) to a min-
imum. However, current quantum computers do not offer connectivities between the qubits
suitable for this and swap gates increase the circuit depth significantly. The neighbouring
pool appears to be advantageous if the task is to implement the ansatz on current quan-
tum computers, which mostly offer nearest neighbour connectivities without requiring swap
gates. Furthermore, the fact that in all cases the adaptive method is able to converge adds
confidence that the choice of a reduced form of the two product operators pool, namely only
the σx and σy terms, was reasonable.

Summary

Table 4.2 shows the energies and overlaps obtained from the adaptive ansatz selection method.
The adaptive method did not optimise for the energy but the overlap; however, optimising the
energies also leads to similar results. The results may have been different because the opti-
misation landscapes of energy and overlap are not necessarily the same. It was assumed that
the overlap maximisation always finds the global maximum of the corresponding landscape.
This assumption leads to the inference that the term appended to the ansatz was the best
term. However, this is not necessarily true. Finding global minima is itself a hard problem
[BK21]. Despite this drawback, we observe that the adaptive method was able to converge
for the small sized problems.

The adaptive method used here uses the wavefunction to compute the overlap that is max-
imised. The wavefunction is not accessible on a quantum computer; therefore, this method
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FIGURE 4.4: The overlap of the optimised trial wavefunction with the ground state
of the isotropic antiferromagnetic Heisenberg model as a function of the num-
ber of operators added to the ansatz. The overlap threshold is set to 9.999×10−1.

Shown are problem requiring (a) 4 qubits, (b) 5 qubits, (c) 6 qubits, (d) 7 qubits.

Qubits Pool Ground state energy Variational energy Overlap

4 Type 1 −8.00000 −8.00000 1.00000
4 Type 2 −8.00000 −8.00000 1.00000
5 Type 1 −7.47214 −7.47210 0.99999
5 Type 2 −7.47214 −7.47182 0.99997
6 Type 1 −11.21110 −11.21089 0.99998
6 Type 2 −11.21110 −11.20999 0.99992
7 Type 1 −11.42072 −11.42072 1.00000
7 Type 2 −11.42072 −11.42071 1.00000

TABLE 4.2: Energies and overlaps calculated at the termination of the adaptive
variational ansatz selection method. Type 1 is neighbouring and type 2 is non
neighbouring. The ground state energies are calculated by diagonalising the
Hamiltonian matrix. The variational energies are calculated using the parame-

ters obtained from the optimisation of the corresponding overlaps.



56 Chapter 4. Applications

is not suitable for solving practical problems on the computer. Additionally, the resource re-
quirements of solving a variational calculation for each term make it impractical. However,
its application to the small scale prototype problems has given us significant hints as to how
to build an ansatz for large scale problems. Namely, that products of two Pauli operators may
be sufficient to estimate the ground state energy. We observed that by using an operator pool
consisting of only products of two Pauli spin matrices, one is able to find the ground state,
when the overlap approaches unity. This motivates an ansatz we introduce in the following
section.

4.1.3 The XY ansatz

The set of operators that was found to give a good overlap with the ground state consists of
the form

U (θ) = e−iθσxσyσz
N . (4.20)

This knowledge helps us guess the set of operators whose parametrisation is likely to ap-
proximate the ground state energy. In general, even if the set of operators is identified, their
ordering is still important. The same operators but ordered differently can produce varia-
tional energies different from one another [Gri+20; Tra+19]. A change in order may also alter
the optimisation landscape. We order the operators as follows. The unitary operation as a
product of all exponentiated operators is given by

U (θ) =
1∏

l=N−1

l+1∏
k=N

Ulk (θlk )
1∏

l=N−1

l+1∏
k=N

Ukl (θkl ), (4.21)

where

Ukl (θkl ) =
{

e−iθkl σ
y
kσ

x
l if k = N or l = N ,

e−iθkl σ
y
kσ

x
l σ

z
N otherwise.

(4.22)

The parameters θkl affect the phase of the N th qubit. There are N (N −1) unitary operators
in Eq. (4.21). The ansatz expressed by Eq. (4.22) is termed the XY ansatz. Simple tests with
the XY ansatz showed that the arrangement used for simulation in this dissertation performs
better than 100 random shufflings of the terms (tested for 7 qubits). We do not rule out better
ordering than the one we found. Heuristics have been proposed to improve the ordering of
the terms and tested through simulations [Tra+19]. We do not implement these heuristics
since the ordering presented in this dissertation performs well. Finding the most optimal
ordering for each N is beyond the scope of this dissertation.

4.1.4 Initial state

The ground state of a two-spin system with an antiferromagnetic coupling in classical me-
chanics is the Néel state. This knowledge can be extended to a multiparticle system which
maintains the Néel state as its ground state. In quantum mechanics, the Néel state no longer
describes the ground state of the system. The ground state of the one dimensional isotropic
antiferromagnetic Heisenberg model is located in the sector of total spin zero. The Néel state,
for an even number of spins, is also in this sector. Therefore, for the variational approach, it
can be expected that a system in the Néel state is likely closer to the quantum mechanical
ground state than any other arbitrary state chosen at random.

We choose to initialise the quantum computer in the Néel state to solve for the ground
state energy of the antiferromagnetic Heisenberg model. Additionally, we use the Néel state
for all types of lattices. These include two and three dimensional lattices, frustrated lattices,
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FIGURE 4.5: Picture of the Néel state on a 3×3×4 bipartite spin lattice. Observe
that the neighbour of any given spin is antiparallel to it.

etc. Half of the lattice spins for the frustrated lattices would be initialised antiparallel to the
other half, regardless of their location on the lattice. An example configuration is shown in
Fig. 4.5. To initialise the Néel state as the initial state of a quantum computer, the qubit
indices are first mapped to the lattice indices. Then, the parallel and antiparallel spins are
assigned the computational states |0〉 or |1〉, respectively.

4.1.5 Results - Part I

All the basic ingredients required for finding the ground state energy of the Heisenberg model
have been prepared. We have verified that the simulation produces results matching those
of exact diagonalisation. There are two different ways to proceed. First, through emulation
of a perfect quantum computer on a classical computer where the wavefunction is accessi-
ble. These results are presented in this section. Second, on an actual quantum computer or
through sampling of the wavefunction that mimics a quantum computer. These results are
presented in the next section.

An emulator directly manipulates the underlying state vector describing the quantum sys-
tem. Since the Hilbert space grows exponentially, and therefore so does the state vector, em-
ulators are restricted to a limited number of qubits. However, testing even on a small number
of qubits helps to benchmark methods and to predict if they will work when they are run on a
quantum computer larger than what can be classically emulated. In this section, the emulator
is used to test various methods for finding the ground state energy of the Heisenberg model.
Various options affecting the simulations were tried which include different ansätze, differ-
ent initialisations of the variational parameters, optimisation algorithms, and initial states.
The aim was to find the best set of options that are able to solve for the ground state en-
ergy within reasonable accuracy. The variational energies will be compared to ground state
energies computed using exact diagonalisation or Lanczos method.

Isotropic Hamiltonians

The Hamiltonian described an isotropic one-dimensional lattice with periodic boundary con-
ditions. The ground state energies up to 12 qubits were calculated using exact diagonali-
sation, and for all others using the Lanczos method. The XY ansatz was initialised with all
parameters set to zero in all cases. The optimisation algorithm used was Sequential Least
Squares Quadratic Programming (SLSQP) [Kra88] in the SciPy package [JOP+01]. The Néel
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FIGURE 4.6: Variationally optimised energies of the antiferromagnetic Heisenberg
rings of size 7 to 26 (top to bottom) as a function of the number of energy evalu-
ations. The solid (dotted) black lines below (above) the end of each energy curve
correspond to the ground (Néel) state energy of the corresponding curve. The

Néel state energies are only shown for selected odd rings of length 13 to 25.
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state energies for selected odd ring sizes show the difference between the initial and ground
state energies. The results for the simulations are shown in Fig. 4.6. The following observa-
tions are drawn from the results shown in Fig. 4.6.

• The approximation to the ground state energy using the XY ansatz converges rapidly at
first and then slows down. This can be observed by the fact that the curves approach
the ground state energies as the optimisation proceeds. We observe this trend in all
cases.

• The staircase like progress of the energy curves is due to the working of the gradient
based optimisation algorithms. At each iteration, the computation of the gradient in-
volves m + 1 function evaluations, where m is the number of parameters. Since the
change in θ for gradient computation using the finite differences approximation is very
small, the change in energy is also very small compared to the scale on the y-axis. Thus,
these small deviations are not visible, and the m +1 points appear as horizontal lines
or "staircase steps". The length of these lines increases for increasing number of qubits
(downwards in the plot) since the number of parameters scales as N (N −1).

• The optimisation algorithm did not reach convergence for all cases starting from 14
qubits. Note that the convergence criterion is met when the energy cannot be improved
to a threshold of at least 10−6 per iteration. Since all these cases were performed on the
supercomputer [Juw], time restrictions for submitted jobs stop the simulations after a
period of 24hrs. The optimisation process could be restarted from the last parameters,
as shown in the case of 25 qubits.

To observe the trend of the larger lattices, we restrict their total energy evaluations be-
tween 30,000 and 40,000. The differences between the ground state and variational energies,
|E0 −E f |, are plotted in Fig. 4.7 in blue circles. The difference begins to show starting from 7
qubits and increases linearly with the number of qubits. The difference is lower for an even
number of qubits than for an odd number. The cause for this trend is unclear. One reason
could be that the systems with an even number of qubits have non-degenerate ground states
while systems with an odd number of qubits have at least a two-fold degeneracy. In all cases,
the parameters were initialised from zeros. However, this is not necessarily the best possible
choice to find the global minimum. We do not know of a better choice, and finding it numer-
ically is a hard problem itself. For systems with a larger number of qubits the optimisation
process did not terminate. Restarting the optimisation algorithm can potentially lead to lower
but unlikely substantially lower energy than shown in the plot. We learn from the case of 25
qubits that progress remains relatively slow beyond this range. The data highlights the im-
portance of starting from low initial energy, preferably as close to the ground state energy as
possible.

Random couplings

We investigated the performance of the XY ansatz for the case of random coupling coeffi-
cients in the model. We change the Hamiltonian such that Ji j ∈ (0,1], the case of the random
coupling. The Néel state served as the initial state. The results are shown in Fig. 4.8(a). We
observe that due to the random couplings, the ground state energies are no longer monoton-
ically decreasing in proportion to the ring size. The relatively large drops initially were also
seen for the random case, as well as a step like optimisation curve. The gap between the
variationally found energy and the ground state energy grows in proportion to the ring size.
The ground state energy was approximated reasonably well by the XY ansatz. Using the same
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FIGURE 4.7: Difference between the ground state energies and the optimised vari-
ational energies obtained using the XY ansatz initialised from zeros as a function
of the system size in terms of the number of qubits. Blue circles represent the

isotropic case and orange triangles the random coupling case.

ansatz, we get a figure similar to Fig. 4.6, for problem sizes of up to 20 qubits. It is more rel-
evant to compare the isotropic and random coupling cases than the absolute values for each
case. Therefore, the difference between the ground state and variational energies, |E0 −E f |,
is plotted in Fig. 4.7. The blue dots are the isotropic case (also shown in Fig. 4.6) and the
orange dots are for the random couplings case (Fig.4.8(a)) .

Also for the random coupling case, the difference between variational and ground state en-
ergies is visible starting from 7 qubits. The difference up to 20 qubits is shown in the orange
dots of Fig. 4.7. From the given data, the XY ansatz for the random coupling case seems to
work well. Not all reported values correspond to the cases where the optimisation algorithm
signalled convergence. The values do not show a structure visible for the isotropic case since
the values Ji j ∈ (0,1) are random and this changes the exact energy of the system as well
as the energy landscape to be optimised. In conclusion, the difference between the ground
state and variational energies for the random coupling case appears to be lower than in the
corresponding isotropic case when the same simulation settings are used. A more concrete
analysis requires averages of many more sets of random coupling coefficients. However, such
simulations are computationally prohibitive even on supercomputers.

The variational method can be extended further to simulate two and three-dimensional
models using all the mechanisms previously discussed. We tried the XY ansatz with zeros as
initial parameters on isotropic ladders that were mapped on 6 to 26 qubits. The optimisa-
tion progress for the ladder cases is shown in Fig. 4.9. The dotted lines show the Néel state
energy which is the initial energy to start the optimisation. The cases of 16 and more qubits
were restarted from the previously saved parameters at 20,000 function evaluations. The en-
ergy continues to decrease albeit slowly even at 40,000 function evaluations suggesting that
the optimiser did not reach a minimum. Continuing the optimisation process is again pos-
sible but not pursued due to limitations on the supercomputer budget. Even with the final
variational energies at unconverged optimisation, the gap between the ground state and vari-
ational energies seems to increase linearly with the ladder size.
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FIGURE 4.8: (a): Same as Fig. 4.6 except that different rings (see legend) had ran-
dom coupling interactions. (b): Comparison between the energies obtained at the
end of the variational optimization using different optimisation algorithms and

the ground state (GS) energies. The couplings were isotropic.

Two- and three-dimensional lattices

Finding the ground state energy of square lattice of dimensions
p

N×p
N was investigated for

N = 16,25,36. The XY ansatz was used in all cases. For N = 16 and open boundary conditions,
the optimiser converged to −35.492 after 48000 energy evaluations. The ground state energy
is −36.757. Similarly, for N = 25 and open boundary conditions, although the optimiser did
not converge, the progress at 52000 energy evaluations dropped to less than 10−3. The varia-
tional energy was found to be −57.454 as compared to the ground state energy −58.785. The
largest case investigated was N = 36 with periodic boundary conditions. Due to the large size
of the lattice and a total of 1260 independent parameters, no more than a single iteration
could be performed on the supercomputer in one run. However, restarting is possible. De-
spite the large size of the lattice, due to the XY ansatz, the total number of gate operations
were below 4100. After eight iterations, the energy dropped from −72.000 to −94.694. The
ground state energy is −97.758 [Fen].

Only a select few three-dimensional lattices are possible due to the memory limits. Even
a relatively small 4×4×4 lattice is beyond what can be currently emulated using variational
methods. Nonetheless, we used the variational algorithms to find the ground state energies of
a few isotropic lattices. Using the XY ansatz and zeros as initial parameters, the minimum en-
ergy of a 3×3×2 lattice was E f /N =−2.457. The ground state energy is −2.617 [Fen]. We then
implemented an ansatz such that we doubled the number of the operators in the XY-ansatz,
thus making the active parameter space 2N (N − 1). This ’new’ ansatz gave E f /N = −2.592,
improving the energy estimate. We used the XY-ansatz for 3× 3× 3 and 3× 3× 4 lattices to
obtain E f /N =−2.607 and E f /N =−2.644, respectively. The ground state energies are −2.720
and −2.797, respectively.
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FIGURE 4.9: Same as Fig. 4.6 except that the lattices under consideration were
isotropic antiferromagnetic Heisenberg ladders with 6 to 26 qubits. The Néel state

energies are shown for all cases in the same colour as the energy curve.
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Different optimisers

We investigated the use of two different types of optimisers. Candidates for the gradient
based and gradient free categories were SLSQP and constrained optimisation by linear ap-
proximation (COBYLA) [Pow94], respectively. They were tasked to start from the same ini-
tial parameters and to find the ground state energies of the isotropic rings. The results are
shown in Fig. 4.8(b). The SLSQP optimiser converged and self terminated, requiring less than
4×104 energy evaluations. The COBYLA optimiser was manually stopped at about 5×104 en-
ergy evaluations. Despite the fewer number of evaluations, SLSQP was able to approximate
the ground state energy better than COBYLA, although both performed reasonably well. The
difference between the energies obtained by the two increases with increasing ring size, as
shown in Fig. 4.8(b). These results confirm the commonly held belief that if functions are
smooth and gradient calculation can be expected to succeed, gradient based methods con-
verge faster [NFT20].

The gradients

The gradient calculations may not always succeed, for example, in the case of a stochastic
function. Calculating the energy by sampling an actual quantum computer can be thought of
in terms of a stochastic function. In this and the next subsection, we discuss how to calculate
gradients in such cases. Consider an ansatz having m independent parameters acting on an
initial state,

U (θ) |ψ0〉 =Um(θm)Um−1(θm−1) . . .U1(θ1) |ψ0〉 , (4.23)

where θ = θ1, . . . ,θm . In the specific case of the XY ansatz, we know that each term in the
product is of the form

Ui (θi ) = exp(−iθi âi ); â ∈ {σ⊗σ,σ⊗σ⊗σz
N }, (4.24)

for i = 1,2, . . . ,m. To compute the gradient in a direction ei , the corresponding θi is changed
according to a forward differences approximation. For example, for finite forward differences
the function is computed at f (θi ) and f (θi +h), which helps to calculate the gradient ∇ fi in
the direction ei . Gradient-based methods require the gradient in each direction to be repre-
sented by the number of parameters in the ansatz. Therefore, we need

∇f = {∇ f1,∇ f2, . . . ,∇ fm}, (4.25)

which contains the gradients for m directions or parameters. Important is the fact that the
computation of a gradient in the direction ei is done by changing only θi while all the other
parameters are kept constant. This allows the possibility of parallel processing. Combining
this with the fact that each Ui is unitary, we can expect a periodic behaviour.

Sinusoidal fitting

It is not always possible to use the finite difference approximation to accurately calculate the
gradients. Here, we explore an alternative way to compute gradients given what we know
about our ansatz. Given the periodic behaviour, it is possible to vary θi from 0 to 2π at equal
discrete steps and fit the data points to a sinusoidal curve assuming analytical forms of the
functions at a given iterate xk :

fi = ai sin(θi +φi )+ ci , (4.26)

where a is the amplitude of the variation, φ is the phase, and c is the offset constant. Similar
ideas have been implemented [VT18; OGB21]. Having obtained an analytical form fi due to
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a change in a certain parameter θi , the corresponding gradient is then given by

∇ fi (θ) = ai cos(θi +φi ), (4.27)

where θi is taken from the current iterate xk in the direction ei . The process is repeated
m times to get the corresponding gradient for each operator in the ansatz. Thus, Eq. (4.25)
becomes

∇f = {a1 cos(θ1 +φ1), a2 cos(θ2 +φ2), . . . , am cos(θm +φm)}, (4.28)

where θi for i = 1, . . . ,m are given by the current iterate

xk = {θ1,θ2, . . . ,θm}, (4.29)

and a,φ are determined by fitting equally spaced points in the interval [0,2π] using Eq. (4.26).
Since we consider the function evaluation to be expensive, the aim is to use the least num-

ber of evaluations without compromising on the quality of the gradients. To fit the param-
eters in Eq. (4.26) in the least amount of evaluations, the periodicity of 2π for our choice of
ansatz is used; see the Appendix of [OGB21] for a proof. Then, f (θi ) is uniquely determined if
the energies at three different θi are measured at equally spaced points in the interval [0,2π].
Secondly, due to the periodicity, the value of f (θi = 0) can be reused for f (θi = 2π). For a
stochastic function, there will be different values. Since the proposed method fits the data
to a sinusoidal curve and uses it to compute analytical gradients, stochastic functions no
longer pose a problem in the gradient computation. The gradients calculated from the above
mentioned method were tested for some of the problems already tested using the state vec-
tor simulator. These functions are not stochastic. The gradients and the variational energies
were in perfect agreement with the results already found using finite difference methods.

Demonstration

The following model for the noise or stochasticity was introduced to test the method. In a
hybrid quantum-classical simulation, errors can occur at the various steps of the computa-
tion, e.g. during the quantum subroutine, during data transfer to the cloud, or even at the
classical computer collecting the bitstrings to compute the energy. To take all these possible
sources of error as well as keep a simple model for the errors, we add a random variable to
the energy such that at the iterate xk it is then given by

Exk = Exk (1+R(−ε,ε)), (4.30)

where E is the energy from the state vector at xk , R(a,b) is a random number between a and
b, and ε is the parameter deciding the largest amount of noise to introduce. For example, by
setting ε = 0.01, the energy Exk has less than one percent random error at most. Note that
as the energy drops, the maximum possible variation increases. The value of R is larger than
h in the forward differences formula in all cases. We test the method for ε = 10−1 to 10−4

and for two different numbers of parameters. For the gradient based optimiser we use SLSQP
and for the gradient-free optimisers there are three choices: (1) covariance matrix adaptation
(CMA) [HMK03], which has been used in recent quantum variational applications [Del+22;
Eba+22; Ost+21; Chi+20]; (2) COBYLA used in benchmarking [Lav+20] and for a scheduling
problem [AGV20]; (3) implicit filtering (IMFIL) [Kel11] which has shown some robustness to
noise as well as insensitivity to initial parameters [Lav+20].

Results for a 5-qubits model with XY ansatz having 20 parameters are shown in Fig. 4.10.
The plots show the optimisation progress of the four different optimisers. The optimisers
easily get stuck in local minima for ε = 10−1. As ε is decreased, all four optimisers are able
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FIGURE 4.10: Optimisation progress in a 5-qubits model with different amounts
of noise ε. Blue curves are for CMA, orange for IMFIL, green for COBYLA, and red
for SLSQP, respectively. The shaded grey area shows the maximum allowed level

of noise in the energy at each function evaluation.

to make more progress towards the ground state energy. For the case with the least amount
of noise, ε= 10−4, the fastest progress is made by COBYLA; however, the best estimate of the
ground state energy is found by SLSQP. In summary, for a small number of parameters and a
small amount of noise, all optimisers work, and there is no significant difference in the total
number of function evaluations either.

The results for a case with a slightly more number of parameters, the 8-qubits isotropic
Heisenberg model with 56 parameters is shown in Fig. 4.11. For large ε, none of the optimis-
ers found the ground state energy. As ε is decreased, SLSQP and COBYLA both make quicker
progress than the other two; however, COBYLA gets stuck in a local minimum. The gradient
based method is able to make a significant drop in energy at the first step in all cases, which
gives it a large lead. While SLSQP converges faster, it does not always reach the lowest energy,
as is seen for ε = 10−3. For ε = 10−4, SLSQP produces the best results. Since 56 parameters
are still small in number, i.e. when compared to the 50-qubits case which will have 2450 pa-
rameters, it is already evident that gradient based methods will converge much faster if they
can be provided with good quality gradients despite the presence of noise. In conclusion,
an overhead of at least three function evaluations per parameter will still use a much lower
total number of function evaluations for the entire optimisation process as the problems are
scaled up.

Parameter shift rule

The overhead of at least three function evaluations per parameter per iteration can be further
reduced to two if certain conditions about the ansatz are met. In Appendix B we show the
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FIGURE 4.11: Same as Fig. 4.10 except that an 8-qubits model was used.

equivalence of this rule to our previous approach. To evaluate the gradient, the parameter
shift rule [Sch+19; Cro19] can be used. If each operator in the ansatz satisfied Eq. (4.26),
then the gradient is evaluated using the fact that if the curve fits to the sin function, then
the derivative is calculable directly without any fitting. This has additional benefits. First, no
ancilla qubits are required. This can allow for all the qubits to be used for the variational
application. Second, a suitable change in the input parameters allows for the gradient to be
computed. The number of samples required remains the same. We outline the process as
follows.

Instead of fitting points to sin and using the cos with the same fitted values, it is more
efficient to use

∇ fi =
f (θi + π

2 )− f (θi − π
2 )

2
, (4.31)

where only two evaluations per parameter are sufficient to get the gradient. Due to the fact
that evaluation of ∇ f is possible by shifting the parameters while using the same circuit,
Eq. (4.31) is named as the parameter shift rule. The gradient is then

∇f =
{ f (θ1 + π

2 )− f (θ1 − π
2 )

2
, . . . ,

f (θm + π
2 )− f (θm − π

2 )

2

}
. (4.32)

We tested the rule laid out in Eq. (4.32) and it did give accurate gradients for stochastic energy
evaluations. The parameter shift rule allows an efficient evaluation of the gradient given that
some conditions are fulfilled by the ansatz. In other terms, if some knowledge about the
ansatz is available, through which one can ascertain that the rule is applicable, the variational
optimisation can be sped up. This teaches us that additional information helps when using
variational methods.
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FIGURE 4.12: Energy optimisation progress against the number of evaluations us-
ing gradient based algorithms with two different step sizes h. Left: four qubits

problem with 5 parameters. Right: eight qubits problem with 56 parameters.

4.1.6 Results - Part II

On a quantum computer, the given f to be minimised becomes stochastic. The fundamental
change in the optimisation problem occurs due to a change in the optimisation landscape.
In other words, f is no longer a function in a strict mathematical sense since the domain x
is not uniquely mapped onto the codomain f (x), but instead to f (x)+ ε, where ε → 0 only
when the number of samples approaches infinity. This leads to problems in the gradient
calculations if a finite difference formula is used. To better study the case, we can use an
emulator to mimic a quantum computer by sampling from the underlying state vector.

We demonstrate that gradient based methods used until now would fail on a quantum
computer. Figure 4.12 shows the optimisation progress of the 4 and 8 qubits isotropic Heisen-
berg antiferromagnetic Hamiltonians each having a parameterised ansatz containing 5 and 56
parameters, respectively. Each plot shows the energy evaluated at the k th iteration using two
different values of h. The h used in this section is a scalar and should not be confused with
subterms of a Hamiltonian. The energies calculated using exact diagonalisation are −8.000
and −14.604, respectively. The parameters in all four cases are initialised to zero. The dots
in blue colour correspond to the case where ∆ fk < E , whereas the orange ones correspond
to ∆ fk > E (see Eq. (3.59)). The optimisation progress for these two cases is substantially
different. Using h = 10−6 gives ∆ fk < E and the gradient calculation fails to give the correct
direction. This leads to no progress. Using h = 10−1 gives ∆ fk > E and the gradient cal-
culation succeeds in finding a descend direction. The optimisation process for orange dots
stopped itself, but the one with blue dots needed to be stopped manually since the optimiser
was unable to decide on a stopping condition. Figure 4.12 demonstrates the importance of
choosing the correct h for optimisation to progress towards a direction that decreases energy.
However, this is not a solution to the problem because taking the step size large enough does
not necessarily improve the gradient in general. Furthermore, the accuracy of the final energy
is affected negatively.

At a given iterate xk , the value of ∆ fk is controlled using the finite difference h > 0. Thus,
to use Eq. (3.59), we need to find h such that ∆ fk (h) À E . For the purposes of finding the
gradient at iterate xk , it suffices ∆ fk to be an order of magnitude larger than E due to the fact
that a small change in the true value of the gradients still corresponds to a descend direction.
Therefore, the task is to find

min
h

∆ fk (h) ≥ gE , (4.33)
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FIGURE 4.13: The curve represents the unknown function f and the dots are eval-
uations of f at and around the current iterate xk . The least squares fit approxi-
mates the gradient for the evaluations of f . The fit is used as the gradient to take
the step reaching the new iterate xk+1 where the process is repeated. Observably,

using only f (xk +h) and f (xk ) would give an inexact gradient.

which gives a good approximation to the gradient for g = 10 and reduces f at the next iterate
xk+1. The accuracy of the gradients can be improved by demanding g À 1, but it should
be noted that due to f being unknown, it cannot be guaranteed that ∆ fk exists for g À 1.
Equation (4.33) can be solved by starting at a very low value of h and increasing it at certain
intervals, i.e. by an order of magnitude. While exactly solving Eq. (4.33) will give the most
benefit, it is also to be considered that not a lot of computational effort is spent on it. Upon
finding a suitable h, it can be kept constant until the optimisation stops making any progress.
The optimisation process will stop making progress for the following two reasons. First, the
assumption that Ek = E for all k breaks down. Second, Eq. (4.33) is no longer valid at the
stopping iterate xk . To proceed further, Eq. (4.33) can be solved again and the process can be
restarted.

In the case of the Heisenberg model, gradient based optimisation algorithms make slow or
no progress near the local minimum due to the fact that as xk approaches a local minimiser,
the gradient becomes smaller. Further progress requires smaller h which leads to smaller
values of ∆ fk which contradicts the assumption that ∆ fk > E . The two examples shown in
Fig. 4.12 demonstrate that as long as the change in energy is much greater than E , the gradi-
ents will be accurate, and each new iterate xk+1 will minimise the energy. When an optimiser
reaches close to a minimum, where the difference in energy is closer to zero, the optimiser
will stop making progress. While one choice of h makes the algorithms perform better than
the other, it still does not lead to the ground state energy. Thus, it appears that no progress
is possible without modifications to the current algorithm beyond a certain iterate.

The problem is the use of the forward differences formula, which depends on only two
function evaluations. To access the true gradient of a stochastic f is the task that needs to be
addressed. Such a task may be addressed by increasing evaluations of f to multiple points
instead of two. Taking multiple function values around the iterate xk and performing a least
squares fit yields a better approximation of the gradient. The gradient at xk using the linear
fitting method evaluates the f at the points

fr = f (xk + r h), (4.34)

where r ∈ [−n,n], for n ∈Z. As an example, consider N = 2 which takes five evaluations of f
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FIGURE 4.14: Optimisation progress of finding the ground state energy of the
Heisenberg model using two different types of optimisation algorithms. SLSQP
is shown in blue and BOBYQA in orange. Panels (a), (b), (c), and (d) correspond to

4, 5, 6, and 7 qubits problem sizes, respectively.

around an iterate xk , as shown in Fig. 4.13. Clearly, the evaluated points will not necessarily
lie on f . If the gradient was calculated using the finite difference formula, which uses evalu-
ations f (xk +h) and f (xk ), the gradient would be almost zero, and the optimisation process
would make no progress. However, the least squares fit to the five points closely approxi-
mates the true gradient and this helps in choosing the descend direction. After taking a step,
the process can be repeated at the new iterate xk+1 until convergence is reached. The accu-
racy of the computed gradient can be improved at the cost of more evaluations of f . The
drawback is that significantly more function evaluations are required. It is important to note
that this technique will only work in the domain where Eq. (4.33) is valid.

Using the technique mentioned above, we compare the gradient based algorithm SLSQP
to yet another gradient free algorithm called BOBYQA in Fig. 4.14. In BOBYQA, each itera-
tion employs a quadratic approximation to the true (unknown) function [Pow09]. The panels
show the energy evaluated at each function evaluation for Heisenberg rings of sizes 4, 5, 6,
and 7 qubits. The problem Hamiltonian was isotropic with periodic boundary conditions.
The XY ansatz was initialised with zeros as initial parameters. The gradient for SLSQP was
approximated at each iterate using a 5-point linear fit around xk . The XY ansatz in panel (a)
contains 12 parameters, and due to the small parameter space, BOBYQA quickly overtakes
SLSQP and reaches the minimum faster. However, in panel (b), as the parameters increase
to 20, BOBYQA requires more evaluations of f at the initial point to proceed. As the num-
ber of parameters is further increased in panels (c) and (d), where there are 30 and 42 pa-
rameters, respectively, BOBYQA needs even more function evaluations at the initial point to
lower the energy. Requiring a large number of evaluations is detrimental to the aim of reach-
ing the minimum in the least amount of evaluations. The plot clearly shows that finding a
quadratic approximation to f at each xk is already very expensive at small problem sizes.
Thus, if gradient based methods can be modified to be used with noisy functions, they are
preferable to methods that use quadratic approximations of the function. It is important to
note that practical applications of variational algorithms require significantly more parame-
ters than demonstrated here in small prototype problems.
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FIGURE 4.15: Comparison between the optimisation progress curves for the en-
ergies obtained using bitstrings (blue) and state vector (orange). (a) 8 qubits and

(b) 9 qubits antiferromagnetic Heisenberg models.

Next we compare the SLSQP results from Fig. 4.14 with the corresponding results using
the state vector. These are shown in Fig. 4.15. Panels (a) and (b) compare the optimisation
progress from the quantum computer emulator (in blue) and the state vector simulator (in
orange) for 8 and 9 qubits isotropic Heisenberg models, respectively. In both cases of the
model, a five point linear fit reflects directly in the number of function evaluations required
to go to the next iterate xk+1. In the 8 qubits case shown in panel (a), the number of pa-
rameters were 56, and therefore, the gradient for the state vector case is calculated using at
least m + 1 (57) function evaluations. However, for the same case, the emulator requires at
least 4m +1 (225) function evaluations. Thus, the blue "staircase steps" in panel (a) are four
times the length of the orange ones in (b). A similar argument is valid for panel (b) where the
number of parameters were 72. In both the 8 and 9 qubits cases, it is observable that the first
few iterations have an almost same drop in energy. Additionally, we observe that some en-
ergies do not lie on the staircase-like steps due to the gradient based optimisation algorithm
seeking to find a suitable step size. Given that the same optimiser was used, the same drop
in energy highlights that the gradient computation using the five points linear fit is approxi-
mately accurate to the gradient computed using the state vector simulator. The optimisation
curves would look the same if the gradient was exactly the same at each step. It is also ob-
served that the drop in energy is less in magnitude for the quantum computer after the first
few iterations. One reason for this slow progress is as follows. As the parameters approach
a minimum, the relative change of the parameters between two consecutive iterations de-
creases. Further progress then may require more accurate gradient computations which can
be achieved using more points for the linear fit and further reducing h. In conclusion, good
approximations to the gradient are essential for the optimisation progress of gradient based
algorithms and in the case of stochastic functions, such gradients may be computed at the
cost of increasing the number of function evaluations.
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4.1.7 Discussion

Relevant literature

Beyond what has been presented in this chapter, work has been done in implementing the
Heisenberg model on quantum computers and emulators. While some simulations exploit
symmetries in the Hamiltonian [SSY20], others use e.g. a hardware efficient ansatz [Kan+17].
Qubit efficient architectures [Hug+19] have been used to reduce the number of qubits re-
quired and used for a 4×4 square lattice with 6 qubits and about 97% fidelity which would
otherwise require 16 qubits [Liu+19]. Effects of noise on the simulations of the model have
been studied [Zen+21]. The Heisenberg model has been used as a benchmarking test bed for
various methods [KB22; OGB21].

Classical competitors to quantum variational methods

While we have focussed on variational methods for quantum computers, many methods im-
plemented on classical computers have been successful in simulating the Heisenberg model.
We briefly mention some of them. A Green’s-function Monte Carlo (GFMC) method [Kal62]
has been used to compute the staggered magnetization [Run92b] and ground state energy
[Run92a] in a two dimensional antiferromagnet on a 12×12 lattice.

Several numerical results from various methods are available for one-dimensional lattices
with and without periodic boundary conditions for comparison. For example, a chain of
N = 20 spins with periodic boundary conditions using variational Monte Carlo (with 1010 it-
erations) gives E/N = −1.694916(12) [PF10] as compared to the variational energy using the
XY ansatz E f /N = −1.7671. A method closely related to GFMC reported E/N = −1.7796(8)
[BD88]. The ground state energy is E0/N = −1.7809 [Fen]. The 20 spins case is itself a rea-
sonable approximation to the infinite lattice limit −1.7726 given by the Bethe ansatz. Monte
Carlo methods suffer from the well known sign problem for two and three dimensional frus-
trated models [De 93] but are nevertheless useful [DDL84].

Simulations of the ladder lattices using the density-matrix renormalisation group technique
[Whi92] have been performed for lattices of size up to 160× 2 [ABN19] but have had only
limited success in two dimensions [PF10]. Quantum Monte Carlo simulations have been done
for ladders of sizes up to 200×2 [Wes+17]. It is not currently possible to use the variational
methods discussed in this dissertation on emulators for such large lattices. However, a ladder
of size 10×2 with open boundary conditions has been simulated to give E f /N =−2.231 and
compared to the ground state energy of −2.246 found using the Lanczos method [Fen].

Two dimensional lattices pose a tougher challenge as the analytical results are unknown
and the numerical methods are difficult to scale up. Exact diagonalisation has been done for
up to 40 spins [RS10] a decade ago. A variant of Monte Carlo type simulations used in [BS88]
for the 4×4 and 6×6 lattices with periodic boundary conditions give E/N =−2.8100(24) and
E/N =−2.7260(28), respectively, as compared to variational energies per spin obtained in this
chapter E f /N =−2.6403 and E f /N =−2.6304, respectively.

4.2 Quantum chemistry

4.2.1 Introduction

This section explores ways to use quantum computers to solve chemical problems. This in-
volves describing the problem, converting the problem to be used in an algorithm designed
for quantum computers, and running that algorithm to extract the desired output. The ex-
tent to which quantum computers will help solve chemical problems has been extensively
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reviewed in [Cao+19]. Prototype applications of finding ground state energies of a chain of
twelve hydrogen atoms have been demonstrated on superconductivity based quantum com-
puters [Aru+20], among others like water [Nam+20] or small molecules [Hem+18; McC+19].

In the following sections, we revisit some of the basic principles involved in finding the
ground state energies of Hamiltonians for chemical problems on quantum computers. We
demonstrate the working by finding the ground state energy of the water molecule and study
the effect of introducing errors in the computation of it. We present a prototype use case for
finding the dissociation energy of Li-Li. Note that the energy of the Hamiltonians within this
section is given in the Hartree units.

Describing the problem

The formulation of a problem to be solved begins with knowing the physical configuration
of an atom or a molecule of interest. This configuration includes information regarding the
atom(s), the charge, the spin, physical units to be used, the basis set, interatomic distances,
etc. Once the configuration is known, it becomes possible to calculate properties related to
the molecule, e.g. nuclear repulsion energy, number of orbitals, nuclear dipole moment, or-
bital energies, etc., and are classically tractable. These calculations are not performed on a
quantum computer but are stored and often recombined with calculations performed on the
computer.

The relative coordinates of the atoms or molecules can be used for calculating the follow-
ing properties. One- and two-body integrals in the molecular orbital basis, dipole integrals,
molecular orbital coefficients, Hartree-Fock energy, Nuclear repulsion energy, etc. Prepro-
grammed packages are available to perform these calculations. In this dissertation, we used
the Python-based simulations of chemistry framework (PySCF) package [Sun+18]. Alterna-
tives are available [Fri+16; Par+17]. Some other properties besides the five mentioned above,
for example, the total number of orbitals, number of active, frozen, or empty orbitals, are
used together for the next step.

Converting the problem

After the problem description and some elementary calculations, the next step is to make the
problem quantum computer compatible. In the literature, this step is also termed as trans-
lation or mapping. The description of the problem is originally in terms of the annihilation
and creation operators, also called second quantisation or the fermionic language. The task is
to convert the second quantised Hamiltonian into a spin Hamiltonian. There are many ways
to do this, e.g. by using the Jordan-Wigner transformation [JW28], Bravyi-Kitaev transforma-
tion [BK02; SRL12], Parity transformation [Bra+17], Bravyi-Kitaev Superfast (BKSF) algorithm
[SW18], and various others [HTW17; VC05]. One conversion method may be better for one
molecule and worse for another molecule. For example, one study estimates that the Bravyi-
Kitaev method would have a reduced quantum computational cost than the Jordan-Wigner
method for systems with more than 32 spin orbitals [Tra+18]. We briefly introduce the Jordan
Wigner transformation below.

Jordan Wigner transformation

We describe the Jordan Wigner transformation in part as discussed in [SRL12]. The transfor-
mation involves two basic tasks. First, the information pertaining to the number of fermions
is stored on the lattice. The task is based on what is termed as occupational number basis or
representation, where, as the name suggests, we let the state of a qubit store the occupational
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number of a corresponding orbital. Second, the fermionic operators are mapped to spin op-
erators. Once the states are stored, we need to convert the fermionic creation and annihila-
tion operators to spin operators that will act on qubits in the same way that fermionic oper-
ators would have acted on the fermions. These let us encode fermionic states onto qubits.

Here we outline how the second task can be carried out. Assume that we wish to have a
set of operations that perform the operations

Q+ |0〉 = |1〉 Q+ |1〉 = 0

Q− |0〉 = 0 Q− |1〉 = |0〉 ,
(4.35)

where Q’s are the qubit operators we seek to represent in terms of fermionic operators. We
need to make sure that Q’s also obey the fermionic anticommutation relations

{a†
i , a†

j } = {ai , a j } = 0 and {a†
i , a j } = δi j I . (4.36)

The set of Pauli operators

σ+ = 1

2
(σx + iσy )

σ− = 1

2
(σx − iσy ),

(4.37)

fulfil that criterion when we represent them as

Q+ =σ− and Q− =σ+. (4.38)

It is easy to recognise that Q± anti-commutes with σz . If we represent the action of the
fermionic operators with Q±

j in Eq. (4.38) and of σz on all qubits with index less than j , the

qubit operators will obey the relations of Eq. (4.36). In other words, the states of our qubits
will have the same phases when acted upon by qubit operators as do the electronic states of a
molecule when acted upon by the corresponding creation or annihilation operators [SRL12].
The effect of the action of σz on qubits is to handle the parity associated with the fermions
by introducing a phase change of −1 if the parity of the set of qubits having index < j is 1
(odd), or +1 (no change) if it is 0 (even). The parity of a set of qubits is defined as the sum
(modulo 2) of numbers that describe the states they are in. The fermionic operators are then
given in terms of qubit operators as

a†
j = 1⊗n− j−1 ⊗Q+⊗ [σz⊗ j ] and a j = 1⊗n− j−1 ⊗Q−⊗ [σz⊗ j ]. (4.39)

Preparation timings

Before a quantum chemistry problem can be solved on a quantum computer, it needs to be
formulated in machine readable format and transferred to the computer. Additionally, part of
the computational effort can be performed on a classical computer by using approximations
such as frozen orbitals. There exist computational packages [Sun+18] that take as input the
geometrical structure of the atom or molecule and output the corresponding Hamiltonian in
a suitable basis. The geometrical coordinates are input along with the desired basis to PySCF.

Table 4.3 show timings for different calculations involved. For each molecule, we use close
to minimal bases that are useful for formulating prototype problems. It is these bases that
decide the number of qubits required for the task. The circuit obtained from the unitary
coupled cluster ansatz gives the number of parameters. The time taken to perform all the
tractable classical calculations for each molecule are given under the Transpile column. These
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Molecule Basis Qubits Parameters Transpile (min) OpenMP (min) MPI (min)

OHOHO STO-6G 24 678 5.8 15.3 3.5
NCHOH- STO-6G 24 1427 12.0 76.6 11.0
Li2 631G 28 63 3.9 421.8 24.9
Be2 631G 28 262 5.7 457.6 25.9
N2 631G 28 1083 14.2 28.6
O2– 631G 28 1419 17.9 30.7
CN- 631G 29 2127 24.3 114.5
NC-CN STO-6G 29 2815 30.6 124.4
OHO- 631G 32 4201 33.3 845.9

TABLE 4.3: Preparation and runtime estimates for molecules.

calculations include, e.g. generating the Hamiltonian, calculating nuclear repulsion energy,
creating the circuit, etc. Next, all of the ingredients required to perform a variational calcu-
lation are combined to calculate the energy of the Hamiltonian once. These numeric values
will later be controlled by the optimisation algorithm in the variational method, which is not
performed here. The time taken to calculate the energy once, i.e. for one set of numeric pa-
rameters, is done on either one compute node using OpenMP [DM98] and multiple compute
nodes using MPI [For94] protocols and is shown in their respective columns. The energy is
calculated using JUQCS on 24 cores using only one node (OpenMP) and using 1536 cores
on multiple nodes (MPI) on the JURECA supercomputer [Jur]. This data has been previously
published in [Mic20].

The data in the table shows that the classical part of the calculations remains tractable (see
Transpile column). In contrast, the time taken to calculate the energy even once grows signif-
icantly with the size of the molecule. This was expected and it confirms why we need quan-
tum computers. Additionally, the standard unitary coupled cluster ansatz parametrises the
circuit with a growing number of parameters. These two combinations make the prospect of
emulation to find the ground state energy of these molecules infeasible. The gradient based
quasi-Newton algorithms would require energy evaluations equal to one plus the number of
parameters to complete one iteration. Gradient free methods would most likely require more.
Several thousand iterations can be expected to be required to find a ground state energy
within chemical accuracy. Therefore, although the number of qubits required to represent
such molecules is within the memory capabilities of current supercomputers, the number of
energy evaluations remains prohibitively large. Furthermore, the bases used in the table are
not necessarily the most accurate for estimating the ground state energies measured in exper-
iments. These bases are used to demonstrate prototype applications. More accurate energies
can be obtained by increasing the basis sizes, thus leading to even more qubits, parameters,
and total time required.

4.2.2 Water molecule

We consider the geometry of the water molecule as shown in Fig. 4.17. We use the basis
set "STO-6G" to calculate its ground state energy [HSP69]. The STO is an acronym for Slater
type orbitals. An extensive list of basis sets and their usages is found in [You01]. We generate
the unitary coupled cluster singles and doubles (UCCSD) ansatz [Ana+22], which contains 30
parameters using Qiskit. The water molecule in the selected basis is mapped into a problem
requiring eight qubits. The initial state is prepared according to the Hartree-Fock state. All
the parameters were initialised to zero to take advantage of this initial state. We observe
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FIGURE 4.16: Optimisation progress of finding the ground state energy of the wa-
ter molecule.

that due to this initial state, the optimisation algorithm only requires a few iterations before
convergence.
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FIGURE 4.17: Configuration
of the water molecule given

in (x, y) coordinates.

The progress of the optimisation is shown in Fig. 4.16. The fi-
nal energy after the optimiser signalled convergence was found to
be −23.6379. Note that this is the variationally optimised energy
of the active orbital space. The ground state energy found us-
ing exact diagonalisation is −23.63799. The total energy −75.729
is found by adding to the final energy the frozen orbital energy
(−61.2846) and the nuclear repulsion energy (9.1939), respectively.
The ground state energies of molecules are always calculated in
a prescribed basis. It is difficult to compare such energies across
different bases since two bases are rarely on an equal footing. For
example, even with the STO basis there can be further characterisations such as double zeta
or triple zeta with two polarisation functions, etc. The full configuration interaction or exact
diagonalisation of the water molecule in an STO basis of double zeta polarised basis gives
−76.07 [VDN94] which is clearly different from STO-6G.

Simulations with errors

We investigate the effects of introducing certain errors on the variational quantum eigen-
solver. The errors are introduced by adding different gates to the original circuit. In quantum
computers, errors are broadly categorised into the following categories: bit flip and phase
flip channels, depolarisation channel, overrotations, amplitude damping, and phase damping
[NC10]. In this section, bit flip and phase flip errors and overrotation errors have been im-
plemented. Some of the error categories are challenging to implement (e.g. depolarisation
channel) due to the large number of circuits involved. Due to the large number of comput-
ing resources required, we have instead focused on what was implementable in a reasonable
amount of computing time, which restricts us to an average of only a few cases of the instead
of a very large number of them.

The errors are introduced in the quantum circuit used to calculate the ground state energy
of the water molecule. The quantum circuit can find the ground state energy within chemical
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FIGURE 4.18: Final variational energies as a function of increasing number of gate errors added
to the quantum circuit. (a) Average of energies obtained in ten runs after randomly adding X ,Y ,
and Z gate errors. (b) All final energies in the ten cases from panel (a) are shown and colour
coded. Energy gaps are observed. (c) Average of energies obtained in ten runs as a function of
increasing overrotation errors; (d) All final energies in the ten cases from panel (c) are shown

and colour coded.
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accuracy when no errors are introduced. To introduce errors, we added additional gates as
follows. For the bit flip errors, the flip gate X is randomly added to the circuit at uniform
intervals. Similarly, we add the gate Z for the phase flip error, and for the bit and phase
flip error, we add the Y gate. All these X ,Y , and Z gates are randomly chosen, each with a
probability of one-thirds and added at a random location in the quantum circuit. For over-
rotations, the extra gates added are Rx ,Ry , and Rz , or namely, the rotation along the X -axis,
Y -axis, and Z -axis, respectively, with a fixed (but configurable) small angle (e.g. one degree)
of rotation. In an error prone simulation, in principle, errors may appear at any time during
the execution of a circuit; however, owing to simplicity and limited computational resources,
we restrict the errors to appearing at only certain depths of the circuit at uniform intervals
over the circuit. The number of errors appearing in a circuit is controlled, but the placement
in the circuit is kept random. The seed for the randomness generator is changed ten times
leading to ten different placements each time.

Results

Results for the simulations when introducing the errors are shown in Fig. 4.18. Panels (a) and
(b) show the minimum energies obtained as a function of the total number of X ,Y , and Z
gate errors added to the quantum circuit. Panel (a) shows the average, while panel (b) shows
each case in ten different error gate configurations each denoted by a different colour marker.
The lowest point of the y-axis is the ground state energy calculated using exact diagonalisa-
tion. We observe the emergence of levels where the finally obtained energies appear to be
accumulated. Certain energies are never reached when the optimisation algorithm converges
to a minimum. The left plots show the average of each of these ten random seeds. Interest-
ingly, even though a large number of points appear at the bottom in the right plot, the cal-
culated average over ten different runs shows that such cases are rare given that the average
is much higher. The minimum energies obtained were between −71.339 and −75.729. The
best result is obtained when no error gates are introduced. Even a few error gates increase
the minimum obtained significantly.

In panels (c) and (d) in Fig. 4.18, we show the results when introducing the overrotation
gates as errors. Panel (c) is the average of each of the ten runs shown and colour coded in
panel (d). Each overrotation gate involved an angle of 1 degree or approx. 0.017 radians. We
observe a completely different effect than that visible in panels (a) and (b). The minimum
energy obtained appears to be monotonically increasing as the number of error gates is in-
creased. The levels of energy obtained in the previous case have disappeared.

We conclude that while variational methods are able to tolerate errors, the impact on the
accuracy sensitive results may be undesirable.

4.2.3 Dissociation of Li-Li

One measure of the bond strength of atoms in a molecule is the dissociation energy. Thus, a
prototype application is to calculate the dissociation energy of molecules. We investigate the
dissociation of Li-Li. In this section, we go through the ingredients to set up the problem.
Often in quantum chemistry, approximations are performed in the formulation of a problem.
One such approximation is called core freezing. In core freezing, electrons at the core of the
atom or molecule are left out of the calculation due to insignificant contributions. In essence,
it is the electron orbitals which are "frozen". Undertaking such an approximation can signif-
icantly simplify the problem’s difficulty without a significant effect on the description of the
properties of the system.
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We used the PySCF package to automate the generation of a Hamiltonian as well as core
freezing. For small systems like the Li atom, it remains possible to perform calculations with
and without core freezing. When freezing the core of the Li atom, the active orbital space
is mapped to a problem requiring 13 qubits. The energy of the frozen core is then −7.2355.
After using the UCCSD ansatz, the optimised variational energy was found to be −0.1958.
The ground state energy of the Li atom is given by

E Li
0 =−7.2355−0.1958 =−7.4312. (4.40)

We found the same energy without freezing the core, which was mapped into a problem re-
quiring 15 qubits and more terms in the Hamiltonian. Since Li-Li will dissociate into two Li
atoms each in the ground state energy Eq. (4.40), the total energy of both the atoms will be
double that of each individual atom. The Li-Li Hamiltonian described a 28-qubits system.
The frozen orbital energy of the molecule is −16.0546. In addition to the frozen orbital en-
ergy, the molecule has a classically efficiently computable nuclear repulsion energy of 1.7817.
Using the UCCSD ansatz, the ground state energy of active orbitals of Li-Li was found to be
−0.5483. The total ground state energy is given by

E Li-Li
0 =−14.8211. (4.41)

Dissociation energy

Using the ground state energies of Li-Li and Li one can calculate the bond dissociation energy
by subtracting the energies of the individual atoms from the energy of the molecule,

Ed = E Li-Li
0 −2E Li

0 = 0.0413. (4.42)

Experiments have found the dissociation energy to be close to the above value, e.g. 0.0377±
0.0002 [VOZ69] or 0.0400 [Luo07]. The estimates vary depending on the experimental method
[Luo07]. It must be noted that we did not verify if both the energies were within chemical
accuracy. Therefore, our estimate may be only accidently accurate despite the reasonable
value of the dissociation energy.

4.3 Hubbard model

4.3.1 Introduction

The Hubbard Hamiltonian arises naturally by considering a simple description of the mo-
tion and interactions of electrons on a lattice. Given a certain lattice, by using the Born-
Oppenheimer approximation [BO27] the lattice points describe the stationary atoms. Most
of the complexity of the atom is taken away by considering that it has only a single level or
orbital. Thus, one site in a lattice accommodates at most two electrons and is described by
at most four configurations: empty, one up electron, one down electron, or a pair of up and
down electrons. For a solid with only one energy band at the Fermi surface, this simplifica-
tion with only one orbital is already relevant [Sca16].

Electrons possess kinetic energy. This energy can be modelled by considering a kinetic
term t which makes the electrons hop from one site to another. In the language of creation
and annihilation operators, this is the equivalent of the electrons disappearing from one site
and appearing on another. For simplicity, the Hubbard Hamiltonian only considers hopping
between the nearest sites on the lattice. Furthermore, the electrons in the lattice interact via
the repulsive Coulomb interaction. For simplicity, the Hubbard Hamiltonian only considers
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FIGURE 4.19: Pictorial representation of the kinetic and Coulomb potential terms
on a lattice half-filled with electrons. The left picture depicts how t enables elec-
trons to hop from one site to another. The right picture shows how U is turned on
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FIGURE 4.20: Mapping of fermionic lattice sites A,B,C to qubit indices for (left)
odd-even scheme and (right) up-down scheme.

this repulsion if the electrons are on the same site. This interaction is modelled by an on-
site repulsion term U . Thus, U is zero if the site is empty or has only one electron, and it is
positive if the site is doubly occupied. Although this is the simplest case, extensions of the
model also include interaction between electrons of the neighbouring atom and so on (see
Ref. [LH87; EN07; MZ93]). A pictorial representation of both the terms is given in Fig. 4.19.

Formally, the Hamiltonian is given by

H =−t
∑

〈i , j 〉,σ
(a†

iσa jσ+a†
jσaiσ)+U

∑
i

ni↑ni↓, (4.43)

where n = a†
i↑ai↑ is the number operator and the symbol 〈i , j 〉 indicates that the hopping

takes place over the nearest neighbours only. The mutual interplay of different values of t
and U can give rise to a number of interesting physical phenomena.

Translation

Schemes to transform a fermionic Hamiltonian to a spin Hamiltonian were described earlier.
Before the transformations can be used, it is necessary to identify a layout of the mapping. In
all schemes, the total number of qubits required is twice the number of sites on the fermionic
lattice. Since each fermionic site requires two qubits, two mapping layouts are common for
the Hubbard model. We name them the odd-even and the up-down schemes. We use the
OpenFermion package to implement both [McC+17b]. They are briefly described below.

• Odd-even: Assume that the fermionic lattice sites are enumerated i = 1,2, . . . ,n, and the
qubits are enumerated j = 1,2, . . . ,2n. Then the odd-even scheme refers to the mapping
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such that each i th fermionic site is mapped to qubits with the indices j = 2i and j =
2i −1. Since each fermionic site occupies an odd and even indexed qubit, the scheme
is named odd-even. It is a matter of choice if the spin-up term is given the odd or the
even index.

• Up-down: Assume again that the fermionic lattice sites are enumerated i = 1,2, . . . ,n,
and the qubits are enumerated j = 1,2, . . . ,2n. Then the up-down scheme refers to the
mapping such that each i th fermionic site with the spin-up term is mapped to qubits
with the indices j = i and with the spin-down term with j = n + i , or vice versa, as per
chosen convention. Since each fermionic site occupies the qubit indices based on spin,
the scheme is named up-down. Both the schemes are illustrated in Fig. 4.20.

4.3.2 Ansatz

In finding the ground state energy of the Hubbard model, certain symmetries need to be
respected. One of them is particle conservation symmetry. The task in solving the Hubbard
model is often to find the ground state energy given a certain filling of the lattice, which
remains conserved at all times. Most often, the model is considered for half filling. The XY
ansatz is unsuitable as it does not necessarily respect the particle conservation symmetry of
the problem. This section outlines an ansatz suited for the Hubbard model.

Variational Hamiltonian Ansatz

The adaptive method used to build the ansatz for the Heisenberg model was met with lim-
ited success when used for the Hubbard model. An ansatz inspired by the Hamiltonian it-
self [WHT15] has shown reasonable success under certain conditions [Cad+20]. It has since
been widely used, e.g. in solving the Hubbard model [MS20] or the Heisenberg model on
the kagome lattice [KW21; BM22], as well as observed for having fewer local minima upon
overparametrisation [Wie+20]. We introduce the variational Hamiltonian Ansatz below.

As described in Eq. (3.34), the Hamiltonian is often a sum of terms

H =∑
j

c j h j , (4.44)

and not all terms necessarily commute amongst each other. For simplicity, and without loss
of generality, assume that all terms in H are non-commuting. Then a p-depth variational
Hamiltonian Ansatz is given by

U (θ) =
p∏

l=1

(∏
j

e−iθ j ,l h j
)
, (4.45)

which is again a set of operators defined by each h. This ansatz is inspired by adiabatic evo-
lution. When operators commute, sets of commuting operators replace h and are assigned a
corresponding single parameter. Given the set of operators, this ansatz can be used to con-
struct circuits similar to those previously simulated for the Heisenberg model. Note that the
parameter is not always placed on the last qubit in this case.

The sets of commuting terms depend on the configuration of the lattice structure. On two
dimensional square lattices, often, five sets are sufficient to accommodate all the operators
such that operators in each set all mutually commute [Cad+20; Rei+19]. Four of these rep-
resent the hopping term and the fifth is the on-site interaction. We investigate periodic one
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dimensional lattices where five sets are also sufficient. An advantage of the variational Hamil-
tonian Ansatz is the small number of parameters per step.

Number preserving ansatz

While the variational Hamiltonian Ansatz intrinsically conserves the occupation number or
the particle conservation symmetry, one can imagine other operators not present in the Hamil-
tonian that also conserve it [Cad+20]. As the name suggests, a number preserving ansatz is
any ansatz that respects the particle symmetry, or any other symmetry that may be relevant
[Gar+20]. A number preserving ansatz can be considered a general case of the variational
Hamiltonian Ansatz.

4.3.3 Initial state

Part of the reason for the success of finding the ground state energy of the Heisenberg model
was the ability to start a from low initial energy state, the Néel state. In the Hubbard model,
one can take advantage of the interplay of the kinetic or on-site interaction terms by set-
ting either one to zero. The state of the resulting Hamiltonian can then be prepared on a
quantum computer. One can intuitively expect doing so to be advantageous over a random
initialisation of parameters.

In the context of the Hubbard model, the initial state does not only refer to the initial com-
putational states of the qubits. If interpreted in the same way as in the Heisenberg model, the
initial state is fixed and expected to be specified in the problem itself. For example, a poten-
tial task might be to find the ground state energy when the Hubbard lattice is half filled. The
computational states would then be set with half of the qubits in the state |1〉 or |0〉, as per
chosen convention, to "fill" the lattice. The filling will not change during the entire course
of the variational optimisation. In contrast to the Heisenberg model, the initial state can also
refer to some gate operations applied to the computational state. These are not part of an
ansatz. Such operations, in combination with the initial computational states, are expected
to deliver the same effect as the Néel state in the Heisenberg model. Below we discuss two
ways to prepare such initial states for the Hubbard model.

Only kinetic terms or U = 0

The ground state of the non-interacting Hubbard model, or U = 0, is efficiently preparable
using fermionic Fourier transform [VCL09; Jia+18], swap networks [Cad+20], or using Givens
rotations [Jia+18]. Although the state is preparable, it is not a straightforward task, in contrast
to the Néel state. Furthermore, the overhead of circuit depth [Cad+20] incurred when prepar-
ing these states should preferably be avoided in view of the low-depth capabilities of current
quantum computers.

Only on-site terms or t = 0

By removing the kinetic terms, the Hamiltonian effectively describes a collection of single
site lattices, whose ground state is also efficiently preparable. Similar to the Néel state, the
occupational number of the Hamiltonian can be prepared by suitably setting (or filling) the
computational initial states. In this case, the initial parameters of an ansatz may not always
be set to zero as the initial point may be a local minimum. To avoid the minimum, the
parameters may be set close to zero or to any other combination.
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FIGURE 4.21: Energy progress curves for different lattices of the Hubbard model.
The lattice sizes were 6×1 (left) and 16×1 (right). The ground state energies are

not shown.

4.3.4 Results

We used the variational Hamiltonian Ansatz to find the ground state energy of a one dimen-
sional fermionic ring of length sixteen with periodic boundary conditions. The problem maps
to a system with 32 qubits. We study the case of U = 4 and t = 1. Using the Jordan Wigner
transformation and an odd-even scheme, the converted Hamiltonian has 113 terms. The
ansatz consists of ten steps, p = 10, where each step contributes five independent parame-
ters. Thus, the total number of parameters was 50. Three of these five parameters in each
step are attributed to the hopping terms, divided such that all terms in a set commute. The
fourth and fifth parameters are given to the periodic boundary hopping terms and the on-site
interaction terms, respectively. The initial state is set to fill eight spin up and eight spin down
fermions without any additional gate operations, which is the t = 0 case. We initialise all pa-
rameters with the value 0.025. These initial parameters give an initial energy of 0.376. The
optimiser stopped making significant progress after a variational energy of −1.626, which can
be thought of as a local minimum but cannot be strictly established as such. This estimate is
far from the ground state energy, which is close to −7.64 [Han].

We also investigated finding the ground state energy of a ring of length six with periodic
boundary conditions. We use the variational Hamiltonian Ansatz with four parameters per
step and a total of ten steps. Unlike the sixteen site lattice, we place the periodic boundary
hopping terms with one of the other sets of hopping terms. Clearly, there is some freedom
in using the variational Hamiltonian Ansatz. The parameters were initialised with the value
0.05. The final energy after the optimiser signalled convergence was −1.851. The ground state
energy is −3.669 [Han].

We observe that the variationally obtained energy in both cases is not a good approxima-
tion to the ground state energy. The variational method fails to find the ground state. We
plot the energy progress curves for both the cases in Fig. 4.21. Although the energy initially
drops quickly, similar to the Heisenberg model, we observe that the curves have some differ-
ences from the ones shown for the Heisenberg model. For the 6×1 case, we observe several
slowdowns and quick drops of the energy, and the most progress is no longer made initially,
in contrast to the Heisenberg cases. The contrast is more visible for the 16×1 case, where the
optimiser appears to make relatively no progress from 2000 to 5000 energy evaluations, and
thereafter the energy drops significantly. These observations give credence to the intuition
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that the energy landscape may be non-convex and difficult to navigate.

4.3.5 Discussion

The results show that variational methods were not able to find the ground state energy for
the Hubbard model, at least not in the configuration used. Here we discuss reasons and
potential configurations that may find better results. The first reason is that the initial energy
was much higher than the ground state energy. The larger the difference between the initial
and the ground state energies, the more the traversing distance for the optimiser to find the
global minimum. Traversing more distance on the landscape has more chances of getting
stuck in a local minimum. One way to avoid this problem is to start from an initial energy
relatively closer to the ground state energy. The initial state with U = 0 offers a potential
solution by providing a lower initial energy [Cad+20].

The second reason is the initialisation of parameters in conjunction with the initial state.
Similar to the Néel state in the Heisenberg model, a random initialisation will not be success-
ful. Since the variational Hamiltonian Ansatz is inspired by adiabatic evolution, the initial
parameters have also been proposed to be initialised in a way that mimics it [Rei+19]. For
example, by setting θ = 1/t for the hopping terms and θ = l /pt for the interaction terms.

4.4 Conclusion

Heisenberg model

We calculated ground state energies of the Heisenberg model using variational methods and
compared them to the results known from other methods. We learnt that although simulat-
ing the model is theoretically possible for any variational ansatz and settings if good results
are expected, several contributing factors need to be considered. The first factor is the choice
of a suitable ansatz. An ansatz should not only have a good overlap with the ground state
but should also produce an energy landscape that is navigable through optimisation algo-
rithms. The aim is to avoid getting stuck in a local minimum where the energy is much
higher than the ground state energy. Not only should the landscape have the value of the en-
ergy at the global minimum reasonably close to the ground state of the Hamiltonian, but it
should also be possible to reach (close to) the global minimum within a reasonable number
of energy evaluations. An ansatz inspired by applying an adaptive ansatz selection method
to a small number of lattice sizes was invented and used for the model. This ansatz allowed
us to find reasonable approximations to the ground state energies. One disadvantage of the
ansatz is that it requires all-to-one qubit connectivity, which is difficult to achieve in practice
on superconductivity based quantum computers; however, trapped ion computers offer this
feature.

We observed that the limiting factor to finding the ground state energies of the Heisenberg
model was not always the memory of the classical computer emulating the quantum com-
puter. For the following reasons, even supercomputers cannot efficiently emulate quantum
computers for variational methods. Large circuit depths and thousands of iterations required
to find a good approximation to the ground state energy demand considerable resources. Ad-
ditionally, although the number of parameters in the XY ansatz grows polynomially, the eval-
uation of the energy even once for lattices of size thirty five or more is already very expensive.
This implies that only a few energy evaluations are possible within 24 hours, the time limit
per job on the supercomputer [Juw]. Since quasi-Newton methods improve their approxi-
mation to the Hessian at each iteration, having very few iterations per job leads to worse
performance. While this is a serious disadvantage for quasi-Newton methods, it can be fixed
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by saving the internal parameters of the optimisation processes. This is a possible track for
future projects.

Quantum chemistry

The accurate description of a molecule depends on the basis selected to describe its orbitals.
Finding the ground state energies of molecular Hamiltonians on a quantum computer re-
quires a transformation of the second quantised Hamiltonian to the spin Hamiltonian. This
task can be carried out using the Jordan Wigner transformation. The process of obtaining the
ground state energy consists of two parts: tractable and intractable. The former includes e.g.
frozen orbitals and the latter e.g. active orbitals. The former is calculated on the classical
computer, and the latter is intended for the quantum computer. Our primary focus was on
the latter. Since current quantum computers are not good enough, we performed the calcula-
tions on emulators. We used minimal or close to minimal bases for the prototype problems.

We analysed the time required to perform variational calculations for some molecules that
required between 24 to 32 qubits. As expected, the tractable parts of the calculations could
be performed in a reasonable amount of time. The intractable parts, e.g. the emulation of
a quantum computer, required up to several hours for a single energy evaluation. Since the
variational methods will require thousands of energy evaluations before converging to the
ground state energy, these were not feasible and, therefore, not performed.

We demonstrated the use case of the water molecule. After calculating its ground state
energy, we investigated the effect of gate errors introduced to the simulation. We found that
although variational methods are resistant to errors, the accuracy of the energy is lost. For
example, by adding gate errors, the obtained final energy was not within chemical accuracy.
Finally, we demonstrated another use case by calculating the dissociation energy of the Li-Li
bond.

Hubbard model

Similar to the Heisenberg model and molecules, the Hubbard model is also a hard problem
to solve. We investigated the use of quantum computers through an emulator and the chal-
lenges of calculating the ground state energy of the model. Similar to the molecular Hamilto-
nians, the Hubbard model is first converted to the spin Hamiltonian using the Jordan Wigner
transformation. Each fermion requires two qubits. We discussed two choices: odd-even and
up-down. Due to the considerations of particle symmetries, the ansatz had to be suitably
chosen. We implemented the variational Hamiltonian Ansatz, which respects particle conser-
vation on the lattice. Furthermore, there are two promising ways to set up the initial state
which should provide a better initial energy to start the variational optimisation, in contrast
to the initialisation of the parameters at random.

Our results showed that the variational configurations we used were unable to find the
ground state energy. We discussed recent literature which highlights better configurations
which may yield better results. We concluded that the variational setup needs to be fine
tuned for each problem to have any reasonable chance of finding the ground state energy.
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Chapter 5

Quasi dynamical evolution

5.1 Introduction

Variational methods have been one of the first promising prototype quantum computer ap-
plications. In the previous chapters, we demonstrated their use beyond the small scale. We
also encountered potential problems. In this chapter, we highlight those problems and de-
velop a quasi dynamical evolution heuristic to remedy them. The chapter is structured as
follows. First, we numerically demonstrate the presence of local minima and barren plateaus
in the energy landscape of selected Hamiltonians. Second, we propose the heuristic, which is
intended to find the ground state energy of a given Hamiltonian systematically. We also dis-
cuss the connection of the heuristic to quantum annealing. Third, we present the results of
implementing the heuristic on different Hamiltonians. Last, we discuss issues related to the
computation of parities of the measured bitstrings and the computation time for an emula-
tor against an ideal quantum computer. This chapter is based on results already published in
[Jat+22b].

5.2 Problems in variational methods

5.2.1 Local minima

Even prototype problems of relatively small size that require no more than a few qubits can
exhibit multiple local minima around the global minimum in their multidimensional energy
landscapes. This is a problem for variational methods. To numerically demonstrate the pres-
ence of such local minima, we implement and test two different problems. First, we find the
ground state energy of a collection of one dimensional isotropic antiferromagnetic rings us-
ing the XY-ansatz. Second, we compute the ground state energy of the water molecule using
different ansätze.

Isotropic antiferromagnetic Heisenberg model

Figure 5.1(a) compares the energies found using the variational quantum eigensolver against
the ground state energies as a function of the problem size. The energies are found using the
BFGS minimisation algorithm, which is restarted 100 times after it reports convergence. The
parameters were assigned randomly in the interval [0,2π) upon each restart. The ground state
energies are calculated using exact diagonalisation, which is possible due to the small size of
the systems. The error bars show the maximum and minimum values obtained in all 100
restarts. Interestingly, the even numbered lattices have wider error bars. The initial energies,
obtained by setting the initial state to the Néel state, are shown in dotted lines. Overall, we
observe that the variational energies drop below the initial Néel state energies and converge
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FIGURE 5.1: (a) Minimum energies found using the variational quantum eigen-
solver for the Heisenberg model averaged over 100 restarts (green squares) and
their maximum and minimum values (error bars). Solid (dashed) black (red) lines
are the ground (Néel) state energies for each lattice. (b) Percentage of unique en-

ergies found for different lattice sizes.

towards the ground state energies. The variationally obtained energies are, on average, close
to the ground state energies.

Figure 5.1(b) shows the number of unique values of energy per 100 trials. We count the
number of local minima by enumerating the unique energy values. The underlying assump-
tion is that the unique values of the energy represent unique local minima. To accommodate
for the fact that a local minimum may be a valley (in multidimensions) the energy values are
rounded off to 10−3. Using our analysis, there is a possible undercounting of local minima as
there may be different minima having the same energy. However, as the data shows, in the
larger lattices a large number of local minima are present even when undercounting them.
There is a sharp increase in the number of local minima for N ≥ 7. Plot (b) shows that local
minima pose a problem when finding the ground state energy of the Heisenberg model even
for small size, proof of concept lattices.

Water molecule

The energies found using the variational quantum eigensolver when restarting a thousand
times using random initial parameters are shown in Fig. 5.2. Refer to section 4.2.2 for details
of the Hamiltonian. The ground state energy of the active orbital space found using exact
diagonalisation is −23.638 Hartree, which is approximately −643.223 eV. Figure 5.2(a) shows
the data when using the unitary coupled cluster singles and doubles (UCCSD) and Fig. 5.2(b)
when using a TwoLocal ansatz inbuilt in Qiskit [Ale+]. We observe in both cases the existence
of unique values of energy that represent local minima. A large number of cases fall into
the same local minima while others get stuck elsewhere. In Fig. 5.2(a), we observe the pres-
ence of a local minimum at −23.591 Hartree in which a large number of trials get trapped.
The energies of the rest of the local minima in the UCCSD ansatz are closer to the ground
state energy. In Fig. 5.2(b), there are also many different local minima but they are not con-
centrated closer to the ground state energy. The obtained energies were not within chemical
accuracy in any of the experiments using either ansatz. The aim of the results presented here
was only to show the presence of local minima.



5.2. Problems in variational methods 87

(a)

1 200 400 600 800 1000
−23.638

−23.628

−23.618

−23.608

−23.598

−23.588

Restart number

E
n

er
gy

(H
ar

tr
ee

)
(b)

1 200 400 600 800 1000

−22.000

−22.500

−22.750

−23.000

−23.250

−23.638

Restart number

FIGURE 5.2: (a) Final energies obtained after 1000 restarts using the UCCSD
ansatz. (b) Same as (a) except using TwoLocal ansatz.
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FIGURE 5.3: Picture showing emergence of barren plateaus in a one dimensional
optimisation landscape.

Summary

Figures 5.1 and 5.2 together show that multiple local minima exist even for prototype, small
scale problems. Also, when the local minima exist, they often surround the global minimum.
Therefore, it is vital that variational methods are able to escape or avoid local minima. Rele-
vant research in this direction is limited and proposed improvements are resource expensive
[WGK20].

5.2.2 Barren plateaus

An important factor for the success of a variational calculation is the starting point of the
optimiser in conjunction with an initial state of the quantum computer. In general, it may not
be possible to bring about a suitable combination of the two and one must rely on randomly
choosing an initial state as well as parameters. It has been shown that such attempts will be
detrimental for the success of variational methods as they will encounter what is known as
barren plateaus [McC+18; ZG21; CNB21; Pat+21; Hol+22].

Barren plateaus refers to the phenomenon of gradients approaching zero on the optimi-
sation landscape. When a gradient based optimiser is provided with an initial point and it
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FIGURE 5.4: Energies for the 3×3×3 Heisenberg model obtained using 104 sets of
random initial parameters.

tries to find the gradient at the point in order to seek a downhill or descend direction, it en-
counters a zero or close to zero gradient. A pictorial representation is drawn in Fig. 5.3 which
shows a global minimum and a local minimum surrounded by barren plateaus in one dimen-
sion. A random point on the landscape will likely encounter the barren plateau. The gradient
for such plateaus is zero which is the same as it would be when a minimum is reached, thus
the algorithm cannot progress as the neighbourhood of the point leads to no drop in the
function value. Additionally, it has been shown that gradient free optimisers will not solve
the problem either [Arr+21].

We show a numerical example of an occurrence of the phenomenon in the Heisenberg
model in Fig. 5.4. The energy landscape is 702 dimensional and represents a 3× 3× 3 lat-
tice of the isotropic Heisenberg model. We do not measure the gradients in each experiment
but the energy found using those parameters. The energy values show the initial energies of
104 different random settings of the initial parameters. For comparison, note that the ground
state energy is −73.452 and the Neél state energy is −54. The fact that the energies shown
in the figure are far above the Neél state energy shows that randomly initialising the param-
eters does not provide an optimal initial energy even when trying a large number of times.
Although the quantum computer was prepared in the Neél initial state, choosing the param-
eters randomly destroys the initial state. The data shown in Fig 5.4 shows an almost flat line
(see Fig. 5.3). The fact that random probes of the energy landscape show a flat line suggests
the presence of barren plateaus.

Since finding a solution to the problem of barren plateaus is vital for the success of varia-
tional methods, it is essential that techniques are developed that help avoid barren plateaus.

5.3 Evolution

The dynamics of a quantum mechanical system is described by the operation of the unitary
operators on the initial state of the system. Finding the ground state of a given problem,
starting from some initial state, can be viewed from the perspective of finding a trajectory
of the wavefunction that leads to it. In quantum annealing, this is known and requires the
time evolution to be sufficiently slow [BF28; Kat50], which in turn requires depths of quan-
tum circuits not feasible on current quantum computers. No variational calculations need to
be involved in such dynamics. Variational algorithms are an alternative offering small depth
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circuits where an optimisation algorithm traverses the trajectory. Among several drawbacks of
optimisation is the possibility to get stuck in a local minimum. To ameliorate the drawbacks
of both annealing and variational methods, we propose an idea that makes use of trajectories
of both of them. We propose a kind of dynamics that has the same features, namely, the ac-
tion of unitary operators on the initial state until the ground state is obtained. However, the
proposal deviates from the previously mentioned dynamics insofar it introduces variational
parameters and optimisation processes. Therefore, we name the process as quasi dynamics.

5.3.1 The quasi dynamics

Let the quantum mechanical system under study be a quantum computer. Assume that it is
prepared in the initial state |Ψ0〉. Let U (θ) be a parametrised ansatz. Then, the wavefunc-
tion describing the state of a quantum computer as a function of M parametrised unitary
operators is

|ψ(θ)〉 =U (θ) |Ψ0〉 =UM (θM ) . . .U1(θ1) |Ψ0〉 . (5.1)

Each unitary operator can have a different parameter. To avoid the mixing of notation, let
U(Θ) be the unitary operators obtained when the optimisation algorithm signals convergence,
where Θ denotes the optimised parameters. The parameter optimised final state is given by

|Ψ1〉 =U(Θ) |Ψ0〉 . (5.2)

Often the energy obtained by sampling |Ψ1〉 is significantly far away from the true ground
state energy of the system. This can be due to local minima. One can perform another opti-
misation on |Ψ1〉 using once again the same ansatz. Thus, the state |Ψ1〉 can serve as the ini-
tial state, |Ψ1〉→ |Ψ0〉, for another variational optimization. Substituting Eq. (5.2) in Eq. (5.1)
gives

|ψ(θ)〉 =U (θ)U(Θ) |Ψ0〉 =U (θ) |Ψ1〉 . (5.3)

This process of substitution can be repeated p times such that the state of the system after
pth successive repetition is given by

|Ψp〉 =Up (Θp ) . . .U1(Θ1) |Ψ0〉 . (5.4)

We view each repetition as one cycle. We name the process represented by Eq. (5.4) as quasi
dynamical state evolution, or evolution in short. To use |Ψ〉 from cycle k as initial state in
cycle k +1, special care needs to be taken that the parameters in Up+1(θ) are appropriately
chosen. Otherwise, the progress can be insignificant. We demonstrate this point numerically
using the following examples.

5.3.2 Demonstration

We consider four different lattice sizes of the one dimensional Heisenberg model to illustrate
that there is little progress when appropriate parameters are not chosen for each cycle. To
demonstrate the case, we choose new sets of random values for initialising each cycle’s pa-
rameters. The results are shown in Fig. 5.5. Cycle number zero represents the final energy
obtained using the standard variational quantum eigensolver. The initial parameters for cy-
cle zero were zeros. Thereafter, the evolution heuristic is used with random parameters. We
calculate the energy fidelity which is defined as the ratio of minimum energy obtained using
the variational quantum eigensolver and the ground state energy. The results show that the
energy fidelity decreases abruptly. The reason for the decrease can be explained from the fact
that each cycle the optimiser begins anew and, therefore, may get stuck in a local minima.
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FIGURE 5.5: Energy fidelity for the isotropic one dimensional Heisenberg model
as a function of the number of evolution cycles using random parameters for each

new evolution cycle. (a) 9 qubits; (b) 10 qubits; (c) 11 qubits; and (d) 12 qubits.

(a)

0 5 10

0.992

0.994

0.996

0.998

1.0

Cycles

E
n

er
gy

fi
d

el
it

y

(b)

0 5 10 15

0.996

0.998

1.0

Cycles

(c)

0 2 4 6 8

0.990

0.992

0.994

0.996

0.998

1.0

Cycles

(d)

0 10 20

0.996

0.998

1.0

Cycles

FIGURE 5.6: Same as Fig. 5.5 except for using zeros as parameters for each cycle.
(a) 9 qubits; (b) 10 qubits; (c) 11 qubits; and (d) 12 qubits.

When choosing random parameters, each cycle is equivalent to performing a standard vari-
ational calculation where the initial states are different for each cycle. No systematic benefit
can be guaranteed from such an approach.

In contrast to random parameters, we set all parameters to zero for every evolution cycle,
θ = [0, . . . ,0]. Starting from zeros is equivalent to initialising an identity circuit [Gra+19]. The
results for the same problems are shown in Fig. 5.6. We observe that the energy fidelity only
increases. The evolution heuristic is stopped after a certain number of cycles when the im-
provement in the fidelity is below a small threshold. Additionally, by avoiding an initialization
at random places in the energy landscape possible barren plateaus can be avoided [McC+18].

Operators for each cycle

While writing Eq. (5.4) it was assumed that the U (θ) at each cycle is the same unitary opera-
tor. We used this assumption for the examples shown in Fig. 5.6. It is by no means necessary
to adopt such an assumption. Let for each evolution cycle U (θ) there be either a different set
of unitary operators or a different combination of the same operators (if they do not com-
mute). At present it is unclear how to choose a different U (θ) at each cycle that allows fur-
ther improvement in the energy, for a given Hamiltonian. The adaptive method to build an
ansatz [Gri+19] solves this problem but is computationally expensive. Using the evolution
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heuristic, different unitary operators can be used at each new cycle. This allows for expand-
ing the parameter space at the expense of polynomial increase in the gate operations. Ideas
similar to the proposed heuristic have been demonstrated for machine learning [Sko+21] and
combinatorial optimization problems [Liu+22].

5.3.3 Connection to annealing

We conjecture that certain choices of U(Θ) at each cycle can facilitate finding the ground
state |Ψg 〉 of H , such that in the asymptotic limit of p →∞,

|Ψp〉→ |Ψg 〉 . (5.5)

The convergence at the asymptotic limit is the worst case scenario. To find the ground state
energy E0 using Eq. (5.5) and the variational principle, we get

E = 〈Ψp |H |Ψp〉
〈Ψp |Ψp〉

→ E0 as p →∞. (5.6)

Repeated evolution cycles will only lower the energy. The underlying energy function de-
creases monotonically by construction of the evolution heuristic because an optimizer is de-
signed to accept only those parameters that increase the energy fidelity (or lower the energy)
at each iteration. Thus, the energy either improves or stays constant, as observed in the ex-
amples shown in Fig. 5.6. To increase the energy fidelity at each cycle it is assumed that
suitable U(Θ) are chosen. The energy fidelity cannot be calculated except for exemplary prob-
lems, therefore, the decrease in energy should be the measure of improvement. The proposal
remains a conjecture because it is unclear what the suitable U(Θ) should be for each cycle
and given problem Hamiltonian.

Quantum annealing is based on the adiabatic theorem which guarantees that a system,
(say) initially prepared in the ground state, will remain in its instantaneous ground state given
that the following conditions are met. First, the change in the system Hamiltonian is slow
enough and second, there is a sufficiently large gap between the ground and excited states.
When p À 1, the parameters can be confined to some bounds in such a way that the state
evolution corresponds to an adiabatic evolution. The quantum approximate optimization al-
gorithm [FGG14] and rapidly quenched quantum annealing [Cal+21] have been developed
with similar lines of thought.

5.4 Results

We employ the evolution heuristic in two different ways. First, we use it to test if there is
an improvement in the ground state energies obtained by the variational quantum eigen-
solver for the Heisenberg model. Second, we generate random Hamiltonians and verify if the
heuristic can improve the energy fidelities.

5.4.1 Heisenberg model

We employ the heuristic on antiferromagnetic rings of size 4 ≤ N ≤ 12. First we test the stan-
dard strategy of initialising the parameters randomly a hundred times against using the Néel
initial state. Due to the small size of the problems, exact diagonalisation can be used to find
the ground state energy. The results are shown in Fig. 5.7(a). We found that rings up to
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FIGURE 5.7: Energy fidelity as a function of the size of the lattice for the isotropic
one dimensional Heisenberg model when using different strategies to find the
ground state energy. (a) Comparison between the Néel state initialisation and ran-
dom initializations (RI) strategies for the antiferromagnetic rings. (b) Same as (a)
except that the average of RI runs data is replaced by the evolution data, and the

x- and y-axis scales are changed.

N ≤ 5 are relatively easy problems and both the strategies can find the energy with a fidelity
of 1.000.

The average performance of the random initialisation strategy drops significantly as the
size of the lattice increases. This behaviour is explained on the basis of the existence of local
minima in the energy landscape and was to be expected. The best energy fidelity out of all
the random initialisations performs better, however, at the expense of using approximately
100 times more computational time. It is interesting to note that starting the optimisation
from the Néel initial state is beneficial for all lattice sizes tested. This is not trivial since we
know of no guarantee that the point in the energy landscape for the Néel initial state is itself
not a local minimum.

Given the success of the Néel state initialisation, we employ the evolution heuristic to use
the final state obtained after the optimiser converges the variational optimisation starting
from the Néel state. The same U (θ) are used for each cycle and the evolution is stopped
when the decrease in the energy is less than 10−4 between consecutive cycles. The results
are shown in Fig. 5.7(b). We observe that the energy fidelity using evolution exceeds the best
of all random initialisations for all lattice sizes. The reason for odd numbered lattices hav-
ing relatively lower energy fidelities can be thought to be arising from the degeneracy of the
ground state. We conclude that the evolution heuristic is able to improve the approximation
to the ground state energy systematically.

5.4.2 Random Hamiltonians

We study the performance of the evolution heuristic by trying it out on randomly generated
Hamiltonians. We first define the total Hamiltonian

HT = ∑
〈i , j 〉

(
J xx

i j σx
i ·σx

j + J y y
i j σ

y
i ·σ

y
j + J zz

i j σ
z
i ·σz

j

)
, (5.7)
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FIGURE 5.8: Relative energy fidelity for 103 different Hamiltonians generated by
random assignment of coefficients and subsets of terms from Eq. (5.7). Lower rel-
ative energy fidelity signifies a better improvement of the energy by the evolution.

A value of 1.0 signifies no improvement. Data taken for (a) N = 6 and (b) N = 8.

where the sum 〈i , j 〉 sums over all pairs of N lattice sites. A total of one third of all the terms
are randomly picked from HT and their coefficients are assigned random values in the inter-
val Jαα

i j ∈ (0,10) for α ∈ {x, y, z}. Note that Eq. (5.7) is analytically solvable for J xx
i j = J y y

i j = J zz
i j =

1. The ground state energy for a finite subset of terms in the Hamiltonian defined in Eq. (5.7)
with random coefficients needs to be computed numerically. We confine our numerical study
to rings of length six and eight. For the former case, we use only half of all the terms in the
XY-ansatz while in the latter case we use the complete XY-ansatz. The optimisation param-
eters are initialised randomly and the evolution is performed on the final state nine times.
To study the decrease in the energies, we define a relative energy fidelity which is the ratio
of the energy obtained through the standard variational quantum eigensolver and the final
energy obtained after nine evolution cycles. The purpose here is not to find the ground state
energy as accurately as possible but to find out if evolution can decrease the energy when
the standard eigensolver gives suboptimal results.

The results for a thousand different experiments are shown in Fig. 5.8. Lower relative en-
ergy fidelity means a better improvement offered by evolution. Figure 5.8(a) shows that the
improvement is substantial for a majority of experiments when N = 6. One reason is that only
half of the terms in the XY-ansatz were used. It was known that this modified ansatz does
not necessarily find the ground state energy accurately, therefore, it is an ideal case to test
the evolution heuristic. In contrast, in Fig. 5.8(b), the complete XY-ansatz was used which we
know is able to approximate the ground state energy reasonably well. Therefore, we observe
relatively less improvement for the N = 8 case than for the N = 6 case. In all the experiments
that show improvement the standard variational quantum eigensolver gets stuck in some lo-
cal minimum, and using evolution one is able to further improve the energy. Furthermore,
even the simplistic approach of using the same U (θ) for each cycle appears useful.

5.4.3 Large lattices

Results from large lattices have been published in [Jat+22b]. Here we briefly summarise the
findings. Under study were the antiferromagnetic Heisenberg rings of size 13 ≤ N ≤ 25, lad-
ders of size 6× 2 ≤ N ≤ 13× 2, and square lattices of size 4× 4 ≤ N ≤ 6× 6. Either open or
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periodic boundary conditions were considered. The evolution was performed on the final
state obtained after the standard variational eigensolver application to the Néel initial state.
Due to the time required to complete the evolution for such large lattice the number of cycles
were restricted to three for the rings and to one for others. The ground states were calculated
numerically using the Lanzcos algorithm for calculating the energy fidelity.

All antiferromagnetic rings started with an energy fidelity of less than 0.60 when initialised
in the Néel initial state. After the application of the evolution heuristic the fidelities obtained
were greater than 0.99. Similarly, for the ladder and square lattices the fidelity was less than
0.75 when initialised in the Néel state. After one evolution cycle the fidelity for all ladder
lattices improved at least up to 0.98. There was no noticeable improvement for the square
lattices except for the 6×6 case. This can be explained since the same U (θ) may not be the
best choice for each cycle.

5.5 Discussion

In this section, we discuss the following two issues. First, once the computer has reached
the ground state of the problem, samples from measuring that state need to be stored and
manipulated in a classical computer. We highlight some issues relevant for manipulating bit-
strings obtained from the measurement. Second, quantum computers are often compared
against classical computers. We compare the emulation of a quantum computer on a classi-
cal computer against a hypothetical fully functional quantum computer.

Parity computation considerations

We performed the evolution calculations by manipulating the complete wavefunction. On an
actual quantum computer, the wavefunction will not be accessible. Instead, once the com-
puter is prepared in the ground state, the final state will be sampled uncovering the under-
lying distribution. Evolution, or quantum algorithms in general, can be deemed to be useful
if the following assumption about the sampling is satisfied. Finite samples should be suf-
ficient to accurately calculate the expectation value of the Hamiltonian. Additionally, if the
number of contributing states in a certain measurement basis do not increase exponentially
with N , their storage is feasible in the matrix form expressed in Eq. (3.37). However, if this
is not possible, the expectation value can still be calculated by processing each bitstring after
it is measured without storing it. Thus, there are two ways of processing the measurements
made on the quantum computer; (I) storage of all the bitstrings before processing or (II) pro-
cessing the bitstrings as they are measured. In this section, we examine which approach is
advantageous.

To visualise some of the results that use the evolution heuristic, we sample the final state
106 times. The number of samples is motivated by the same number used to demonstrate
quantum supremacy in a different experiment [Aru+19]. We plot the unique states obtained
from the samples against 2N for each of the ring and ladder lattice results. The data is plotted
in Fig. 5.9. Note that 106 samples are not necessarily sufficient to accurately extract all the
possible unique states when 2N is more than or comparable to 106. For the ring and ladder
cases requiring less than 16 qubits, where the total samples are orders of magnitude more
than all possible states, we observe that unique states do not overlap with all possible states.
This suggests that not all states contribute to the calculation of the expectation value. For N >
20, the number of samples were less than all possible states, so that no concrete conclusions
can be drawn. In general, as the ring and ladder sizes increase, we observe that the number
of unique states start to approach the total number of samples. We can expect that as the
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FIGURE 5.9: Comparison between the unique number of states (triangles) and all
possible states (squares) found when sampling a million times (circles). Results

are shown for (a) isotropic rings and (b) isotropic ladders.

size is increased beyond 26 qubits, more and more unique states will be sampled. It can be
expected that for N > 50, sampling a million times will likely yield only unique samples for
the Heisenberg model. This was also the case for the supremacy experiment [Aru+19]. To
explain the relevance of this result, we first discuss the following.

A part of the classical computational effort required to evaluate the expectation values lies
at calculating the parity (see section 3.3.4) of each measured bitstring corresponding to the
terms in the Hamiltonian. The effort to compute the parity is proportional to

N × s ×m, (5.8)

where N is the number of qubits, s are the total number of samples, and m is the number of
terms in the Hamiltonian. Although s and m in Eq. (5.8) are expected to scale polynomially
with N , thus making evaluation of expectation values possible, it is relevant to ask if it will
be practically significant. A quantum computer with 60 qubits has recently been sampled
7× 107 times [Zhu+22]. We use these values for the Heisenberg model, which would have
180 terms in the Hamiltonian. The maximum number of comparison operations required to
compute the parity of all the bitstrings would be 60×7×107×180 = 7.56×1011. This is not an
insignificant number of operations but not very large either.

The number of terms in the Heisenberg model scale linearly as 3N . In some quantum
chemistry applications, the number of terms scales polynomially rather than linearly. We
tabulate information about some molecular Hamiltonians in Table 5.1. Note that the number
of terms m depends on the basis used for the Hamiltonian. The tabulated data used mini-
mal bases sto6g or 631g, whose accuracies are low but serve as good prototypes. The parity
operations required for such prototype problems are significant. With improved and more
accurate bases, one can expect the number of operations to increase further. As an example,
consider that the water molecule in the sto6g basis has N = 8 and m = 514, but in another
basis (631gss) has N = 42 and m = 107382. Assuming that a million samples are enough to
approximate the ground state energy, the former (latter) would require 4.11×109 (4.51×1012)
operations. The molecules considered here are considered prototype problems; as more chal-
lenging molecules are considered, the operations can be expected to increase further. While
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Molecule N m N × s ×m

OHOHO 24 9187 2.20×1011

NCHOH- 24 24263 5.82×1011

N2 28 21489 6.02×1011

CN- 29 42897 1.24×1012

OHO- 32 34475 1.10×1012

TABLE 5.1: Number of operations required to calculate the parities of a million
samples (s = 106) for different molecules. N is the number of qubits and m is the

number of terms in the Hamiltonian.

they may grow only polynomially, it is still relevant to manage them such that the total time
of the entire computation of an algorithm, both classical and quantum, remains practical.

In this section, we predicted that future larger scale simulations of the Heisenberg model
will likely sample only unique states. This assumption may also hold for various other in-
teresting Hamiltonians. Additionally, the classical computational effort required to compute
the parity of the sampled bitstrings is not insignificant even for prototype problems and will
likely increase for future large scale simulations. Combining these two observations, we con-
clude that it would be beneficial to process the parities of the bitstrings as soon as they are
measured instead of storing them and doing it later.

Timing against an emulator

One core expectation from future quantum computers is the ability to solve some problems
significantly quicker than classical computers. Quantum advantage is often shown by using
a quantum computer to compute a certain task and estimating the time required by a classi-
cal computer to complete the same task. In this section, we perform the task differently. We
compare the time required by an emulator to mimic a quantum computer against the poten-
tial time required by a fully functional quantum computer. We estimate the latter using the
currently available single and two qubit gate operation times. The total number of operations
on a quantum computer can be estimated as

No = NG ×aTH × s, (5.9)

where NG is the number of gates, TH is the number of terms in the Hamiltonian, 0 < a ≤ 1
accounts for the fact that several terms in the Hamiltonian may be measured simultaneously
for some problems, and s is the number of samples required to reach a certain accuracy.

We make the reasonable assumption that the same gate operation takes the same amount
of time on each execution on the actual quantum computer. Ion trap based computers offer
relatively slower two qubits gates where the execution time is of the order 1.6µs [Sch+18]. The
estimates for superconducting type quantum computers vary. Some require single qubit gate
execution times of the order of 100 ns and two qubits gates around 500 ns [Tak+17], while
others require execution times for both type of gates close to the order of 10 ns [Aru+19]. For
the calculation below we take the latter most optimistic values.

The total number of energy evaluations required for the N = 24 spins ring up to three evo-
lution cycles was 84744. A new layer of U (θ) was added to the circuit at each cycle. For the
purpose of estimating the execution time, relevant is the total number of operations men-
tioned in Eq. (5.9) that need to be performed sequentially. This number is often lower than
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all possible single and two qubits operations. The number of sequential operations were ap-
proximately 6400 and 11500, for single and two qubits gates, respectively. Taking optimistic
values aTh = 3 and s = 213, the time required to calculate the energy once would be about
44 seconds. The total time required to complete the variational calculation using a quan-
tum computer stands at 43 days. In comparison, running the emulator on a supercomputer
required 4 days for the same computation.

For the largest lattice case of a 20×2 ladder (N = 40), the time taken to calculate the en-
ergy using JUQCS once was on average 110 seconds. The number of terms in the XY ansatz
were sharply reduced to allow ten iterations per run. The reduced ansatz did not recover
the ground state energy. We only discuss the computational time required without consid-
ering evolution. The time required by a fully working quantum computer, in comparison,
would be about 3.23 seconds. The time for JUQCS is larger partly because of the transfer
of the wavefunction between different nodes of the supercomputer is time consuming and
partly because the computational effort per node also increases. Thus, as the system size
increases, a fully functional computer may perform tasks faster than its emulator on a super-
computer. We note two important things. First, the comparison does not illustrate quantum
advantage since we compared an emulator against the quantum computer. There may exist
classical algorithms that find the ground state energy quicker than emulated variational al-
gorithms. Any conclusion of potential advantage needs to study the best classical algorithm
against variational algorithms on the computer. Second, the ansatz used will expectedly not
find the ground state energy, and was only used to show that a large scale simulation is pos-
sible by manipulating the state vector. Using the XY ansatz for N = 40 is not yet practical on
supercomputers.

5.6 Conclusion

We proposed the idea of quasi-dynamical evolution which was built on standard variational
methods and systematically lowers the ground state energy of a problem Hamiltonian. The
idea, by construction, permits only improvements in the energy. The idea is generally ap-
plicable to a broad range of variational methods and is inspired by quantum annealing. We
demonstrated its working by improving the standard variational estimates of ground state en-
ergies for the Heisenberg model. While evolution is a useful heuristic, it does not guarantee
finding the ground state energy for problems in general. The reason for this is the fact that
it is not clear what U are the most suitable for each cycle. Future works should focus on
answering this open question.
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Chapter 6

Error mitigation and benchmarking

Quantum computers built to date are error prone. It is known that error correction can help
overcome the challenges of working with an error prone quantum computer [DS96; Sho96;
Got98; DiV09]. Error correction is described as a method of protecting quantum computation
against errors by encoding redundant information to the computation [NC10]. Error correc-
tion can be termed active in the sense that the technique is executed simultaneously with
the main application that it helps avoid errors. The redundancy requires several additional
qubits per logical qubit [DiV+00] to be used for error correction to be implementable. This
is a significant disadvantage since the fabrication of large scale quantum computers remain
a difficult challenge. We wish to avoid requiring additional hardware and need an alternative
method altogether. This chapter is based on the work published in [Jat+20].

6.1 Introduction

Error mitigation is one way to overcome the errors in computations on current and near-
term quantum computers without requiring additional qubits. The idea is that if a quantum
computer can systematically reproduce its errors, then the errors may be mitigatable to some
extent. In contrast to error correction, error mitigation protocols are passive since they need
to be run either before or after the execution of the main application. Such protocols often
do not require additional qubits but additional resources from the available qubits, thereby
circumventing the main problem faced by error correction.

Several error mitigation techniques have been studied. Examples include mitigation us-
ing error extrapolation [TBG17; LB17] (see [Zha+20a] for experimental demonstration), using
quasi-probability decomposition [TBG17], using conserved symmetries [BM+18] (see [Sag+19]
for experimental demonstration), using a stabilizer-like method [MYB19] for depolarisation
errors, using correlated Markovian noise models [Bra+21], using gate set tomography and
quasi-probability decomposition [Son+19], using subspace expansion [McC+17a], and using
matrix based methods [Jat+20; Nat+21]. Error mitigation has been demonstrated for up to 20
qubits [RGM22]. Despite the progress in error mitigation protocols, drawbacks persist. For
example, one protocol works only for small depth circuits [TBG17] or another that mitigates
only measurement based errors [Bra+21]. Often error mitigation protocols attenuate the er-
rors but do not completely eliminate them. Therefore, it becomes necessary to weigh the cost
of the extra resources required against the benefit obtained. Often the protocols are difficult
to implement and may not be attractive to an end user of a quantum computer who lacks
knowledge of complicated protocols.

This chapter introduces and demonstrates easy to implement error mitigation protocols on
real quantum computers. We introduce criteria that ideal mitigation protocols should strive
for, and explore the additional benefit of benchmarking offered by matrix based mitigation
protocols. We also implement a technique to achieve scalable error mitigation. Our proposal
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has been used in at least two independent studies [Gho+21; TGH22]. We also explore ways
to benchmark quantum computers using the techniques used in error mitigation as well as
develop other models.

6.2 Mitigation criteria

Although several mitigation protocols exist and have also been experimentally demonstrated,
a concrete formulation of the requirements that such protocols should aim for has not been
formulated. Such requirements can serve as a guideline for developing new and better pro-
tocols. Below we discuss the criteria published in [Jat+20] that all ideal error mitigation pro-
tocols should fulfil.

1. Result recovery. The protocol should be able to mitigate errors to a satisfactory accu-
racy. For protocols where theoretical guarantees are missing, we quantify this in section
6.3.

2. Depth independence. The protocol should not depend on circuit depth. An ideal error
mitigation protocol should work independently of the depth of the circuit used in the
main application.

3. Error model. The protocol should take into account all types of errors a quantum com-
puter may be prone to. Additionally, it should not rely on prior information about errors
the quantum computer is prone to.

4. Practically realisable. The protocol should make use of resources that are practically
similar to the resources used by the circuit which is to be mitigated. The total time
taken by the mitigation protocol should be reasonable compared to the main applica-
tion.

5. No additional hardware. The protocol should not require (many) additional qubits for
being implementable. For example, some protocols may require a single ancilla qubit.
If many additional qubits are required, error correction might be a better alternative.

6. Gate-set independence. The protocol should take into account and be applicable to all
types of quantum gates. It should not be restricted to using a certain set of gates only.

7. No output knowledge. The protocol should not make use of any specific knowledge
about the output of a given circuit.

We introduce a standard matrix based protocol which is commonly used for mitigation
of state preparation and measurement errors. This standard protocol fulfils requirements 2,
5, and 7. We then improve this standard protocol using a simple and easy to implement
mechanism. The new, improved protocol satisfies the requirements 2, 3, 5, 6, and 7. While
the standard protocol only mitigates state preparation and measurement errors, the improved
protocol mitigates all general errors during a quantum circuit execution.

6.3 Standard protocol

Two persistent errors in any error prone quantum computer can appear during state prepa-
ration and measurement. The standard protocol is helpful if a large part of an erroneous
quantum computer output contains these errors. The standard protocol works as follows. As-
sume that state preparation and measurement errors for a given circuit Cg will also occur for
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other circuit(s) Cc . To mitigate the errors, measure the effects produced by these errors by
designing Cc such that their outputs are known or easy to compute. Then, Cc can be used to
calibrate the output of the quantum computer. We call, therefore, Cc calibration circuit(s).

Assume that an error prone quantum computer produces some bitstrings with relative fre-
quencies v1, v2, ..., v2N that differ from the ideal (exact) expected probabilities e1,e2, ...,e2N .
Further assume that there exist error mitigated frequencies x1, x2, ..., x2N and ideal emulated
frequencies s1, s2, ..., s2N as well. The column vectors representing these quantities are defined
as

V =


v1

v2
...

v2N

 , E =


e1

e2
...

e2N

 , X =


x1

x2
...

x2N

 , S =


s1

s2
...

s2N

 . (6.1)

Assume that the vectors in Eq. (6.1) are normalised, i.e.
∑

vi = ∑
ei = ∑

xi = ∑
si = 1, where

i = 1, ...,2N . The working of the standard protocol assumes the existence of a 2N ×2N matrix
M such that

ME =V . (6.2)

The matrix M is sometimes named the complete assignment matrix [Nat+21]. Other names
are used in gate set tomography [Gre15]. Although not used in its current form, Eq. (6.2)
serves as a good starting point to understand the basic idea of the protocol. Note that M
is the identity matrix when the quantum computer is not error prone. For an error prone
computer, M has non-zero off-diagonal entries. For a computer in which errors dominate
significantly, all the matrix entries can be expected to be similar in magnitude, suggesting
that the computer was working as a random number generator. These distinctions can serve
as a basis for the benchmarking of quantum computers. The standard protocol uses the cal-
ibration circuits Cc to fill the matrix M and use it for error mitigation.

Calibration matrix

Determination of the calibration matrix requires 2N circuits given an application using N
qubits. The procedure is as follows. Prepare different circuits where the qubits are initialised
in all possible 2N (independent) initial states. Each such circuit is a calibration circuit. Mea-
sure each circuit. Enter the obtained frequencies from each calibration circuit into columns
of M , where the j th column, starting from left, takes output frequencies from the circuit
whose state is given by the binary representation of j , for all j = 1, ...,2N .

The matrix M can now be used to mitigate (errors in) the relative frequencies V obtained
from the primary circuit Cg . We rewrite Eq. (6.2) in terms of the mitigated and emulated
frequencies, such that MX = V , where X representing the mitigated frequencies may not
always be exact (i.e. equal to E). There is a problem if we proceed to solve for X using
X = M−1V . Since we are dealing with normalised relative frequencies constrained to be in
the interval [0,1], an inverse of M to solve for X can lead to values in X outside this inter-
val [MZO20; Gel20]. This is a problem because neither probabilities nor frequencies can be
negative. The problem can be circumvented by minimising least squares, also termed as con-
strained optimal likelihood estimation [Gre15]. The task is changed to finding the minimum
of the function

f =
2N∑
i=1

(vi − (M ·X )i )2, (6.3)

given the constraints 0 ≤ xi ≤ 1 and
∑

xi = 1 summed over all i = 1, ...,2N . The vector X is ini-
tialised at random and we use the Sequential Least Squares Quadratic Programming (SLSQP)
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[Kra88] algorithm. Note that while Eq. (6.2) cannot be used in some cases, using Eq. (6.3) is
always possible.

Quantifying improvement

The error mitigated frequencies X can be compared to the frequencies S obtained from an
ideal emulator (see Eq. (6.1)). To test the protocol we define a quantitative test of improve-
ment as follows. Let the root mean square errors between the mitigated and ideal frequencies
be given by

∆X =
√√√√ 2N∑

k=1

(
xk − sk

)2, (6.4)

and between the measured frequencies and the ideal frequencies,

∆V =
√√√√ 2N∑

k=1

(
vk − sk

)2. (6.5)

By defining ∆Q =∆V −∆X , we have the possibilities

∆Q


> 0, for positive mitigation.

< 0, for negative mitigation.

= 0, for no mitigation.

(6.6)

Note that ∆Q only represents the overall error in all the states and does not suggest the indi-
vidual differences. It is possible to envision that all but one state contributes to a positive or
negative value of ∆Q . Despite this drawback, ∆Q is a valuable metric represented by a single
scalar value. An ideal error mitigation protocol should obtain large and positive ∆Q . Addi-
tionally, ∆Q equal to zero or close to zero is not acceptable since a large number of resources
may have been spent in creating M . In the worst case, it is possible that ∆Q < 0 which indi-
cates that the error mitigation protocol worsened the outcome.

Drawbacks

Most algorithms of practical interest do not use circuits considered by the standard protocol.
In general, several quantum gate operations form the basis of the underlying benefits that
can be reaped from quantum computers. If several hundred gates are involved, state prepa-
ration and measurement errors are likely negligible compared to the overall errors. Since the
standard protocol only fulfils requirements 2, 5, and 7, it is of interest to develop an improved
protocol that ameliorates the shortcomings of the standard protocol.

6.4 Improved protocol

Quantum circuits often contain many gates. The errors in computation will accumulate if
the gate operations are prone to errors. Therefore, in general, we wish to mitigate the effects
of errors that arise not only due to state preparation and measurement but potentially due
to other sources, i.e. erroneous gate operations. Often we do not know a priori what error
sources will contribute to or dominate in any practical computation. One should include
all potential error sources. To this end, a general protocol to mitigate errors in a quantum
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circuit has been proposed [Jat+20]. This general protocol has been independently used in
mitigating errors in a BB84 quantum key distribution scheme [Gho+21] and in simulating the
time evolution of open systems [TGH22].

The general protocol improves the standard protocol using a simple idea. To mitigate er-
rors in a given circuit Cg with N qubits of depth D :

1. Similar to the standard protocol, prepare the calibration circuits in all possible 2N states,
but twice.

2. Consider all the gates of the circuit Cg up to depth D/2 (if D is even) or (D −1)/2 (if
D is odd), and add them to the calibration circuits. The reasons for this choice are
practical considerations regarding current quantum computers and are discussed in the
next section.

3. Add inverse gates of the gates added in step 2, in reverse order. Measure the calibration
circuits and record the observed frequencies in the calibration matrix M1. The entry of
the frequencies in the matrix is the same as the standard protocol.

4. Repeat steps 2 and 3 for the remaining half of the gates in the circuit Cg for the remain-
ing calibration circuits, and name the new matrix M2.

5. Calculate the average of the above matrices, M = (M1 +M2)/2.

After M is obtained, the remaining steps are the same as for the standard protocol. The
difference in the improved and the standard protocol originates from considering the gates
in the computation as crucial sources of error.

Calibration circuits

This section discusses the reasons for the choice of step 2 in the improved protocol. To re-
produce errors occurring in Cg , one should ideally use Cg also as the calibration circuit(s).
The circuit depths of both circuits would be approximately the same. We say approximately
because one often needs an extra gate for the state preparation in Cc . This approach is not
possible because a priori we do not know the outputs of the circuit Cg . Knowing these out-
puts would violate requirement 7. In this case, the matrix M will not necessarily have a diag-
onal structure, even for an ideal quantum computer. As an alternative, we propose to use a
circuit similar to Cg for which the outputs are always known, which is the identity circuit, e.g.

C2c ≈ C †
g Cg (see [Jat+20] for a pictorial view). The new circuit then has double the depth of

Cg . By using this approach, we approximate the errors produced in Cg of depth D with errors
produced in C2c of depth 2D . While working with error prone quantum computers of IBM
Q, we found that circuits with different depths exhibit different errors. Therefore, doubling
the depth is likely to reduce the protocol’s efficacy and include errors unaccounted for by the
matrix M . For this reason, we divide Cg in half and then take Cc ≈C †

g /2Cg /2 to keep the cir-
cuit depth of the calibration circuit(s) Cc and the given circuit Cg very close. A drawback of
the improved protocol is that it requires twice the amount of circuit executions required by
the standard protocol. The benefit is that it captures the gate operation errors.

6.5 Experimental demonstration

Several random circuits are generated and their outputs mitigated to test the effectiveness of
the improved protocol. Some of these were also compared with the standard protocol. To
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Applied Gate Basis Gate
ID ID

U1(θ) U1(θ)
X U3(π,0,π)
Y U3(π,π/2,π/2)
Z U1(π)
H U2(0,π)
S U1(π/2)

S† U1(−π/2)
T U1(π/4)

T† U1(−π/4)
CNOT(c→t) CNOT(c→t)

TABLE 6.1: The applied gates in the protocols are the gates that were added to the
generated circuits. The basis gates are their corresponding gates actually imple-

mented on the quantum computer.
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FIGURE 6.1: (a) Normalised frequencies of all the states obtained from an emula-
tor, quantum computer, and after error mitigation using the improved protocol.

(b) Same as (a) except for a different circuit.

get a quantitative estimate of the ability of the improved protocol, it is applied to randomly
generated circuits for a large number of cases. Although the improved protocol is indepen-
dent of the set of gates used, we use only a subset of all possible gates for practical reasons.
The gates we used form a universal gate set. These are: {Id, U1, X, Y, Z, H, S, S†, T, T†,
CNOT}. These gates are transpiled into quantum computer compatible gates, as supported by
different architectures shown in Table 6.1. For our experiments, we used the following IBM Q
quantum computers: Burlington [5-qb], Ourense [5-qf], and Armonk [1-q].

The relevant details of the conducted experiments are as follows. Random circuits were
created respecting the physical connectivity of the qubits on the device. Each circuit and
its mitigation were repeated ten times to observe statistical deviations. The range of circuit
depths for each N was chosen keeping in mind the actual device performance. ∆V was used
as an approximate indicator of device performance. Total samples for all experiments were
kept at 213 per experiment, the maximum supported by all the devices. The emulator results
were obtained using 213 ×100 samples. The measurement gate is not included in the circuit
depth.
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6.5.1 Improved protocol

The error mitigation results for two different 2 qubits circuits are shown in Fig. 6.1. These two
circuits have been hand picked to show the two possible extremes of error mitigation using
the improved protocol. Figure 6.1(a) shows positive mitigation, where the blue bar represents
the frequencies obtained using an emulator [Ale+], the red bar shows the output obtained
from a quantum computer, and the green bar the error mitigated results using the improved
protocol. In this case, the mitigation is positive since the result from the protocol is closer to
the true result than the quantum computer. On the contrary, Fig. 6.1(b) shows negative mit-
igation where the protocol makes the output from the quantum computer worse. A pattern
of positive and negative mitigations was observed in a large number of randomised experi-
ments, which shows the trend that the mitigation is always positive if the (ideal) output states
are directly represented in the matrix M (i.e. 01 in Fig. 6.1(a)). The mitigation fails if the ideal
output is an equal superposition of all possible computational states.

In Fig. 6.2, we plot the average trend for 100 different experiments each repeated 10 times
for different N . We present the data for the experiments in ascending order of the average
∆V for better readability. Recall from Eq. (6.6) that we are interested in ∆Q > 0 since this
implies positive mitigation. Some of these results can be directly compared to those shown in
[Jat+20] where only the ∆X and ∆V are shown. In Fig. 6.2(a), a large number of experiments
numbered up to 40 have ∆Q < 0. By looking at these cases individually, we notice that these
experiments belong to the category where the ideal states are similar to the case shown in
Fig. 6.1(b). For the plots (a), (c), and (e) in Fig. 6.2, several ∆Q exist which are negative or
close to zero. These cases mean the protocol was unable to mitigate the errors. However,
most experiments show ∆Q > 0 and hence positive error mitigation. For the plots (b), (d),
and (f) in Fig. 6.2, the gate set for the generation of the random circuits did not include the
H gate and, therefore, only those states are observed that exist in M . Since we know the
improved protocol works best in this case, we observe large positive mitigation. However,
such cases are unlikely to occur in practical quantum algorithms.

Calibration matrix

The matrix M plays a central role in standard and improved mitigation protocols. Both proto-
cols differ in how the circuits are designed to fill the matrix. This matrix can also offer other
insights before it is used for mitigation. The standard and improved protocols can work for
arbitrary depth circuits if the quantum computer produces distinguishable column entries
in the calibration matrix. By observing if the entries within each column of the matrix are
all nearly equal, we can infer that the quantum computer worked completely randomly if
the output was (unintentionally) uniform over all states. In such a case, we do not expect
positive mitigation. Alternatively, positive error mitigation may be expected if the matrix’s
columns contain distinguishable (e.g. dominant diagonal) entries.

6.5.2 Standard protocol

We also present results for comparison of the standard and improved protocols. We apply the
standard protocol to 100 different experiments each repeated 10 times for N = 2 and N = 3.
The results are shown in Fig. 6.3(a-b). We plot the root mean square deviation ∆Q for the
averages of ∆V and ∆X over the 10 repetitions. The data is shown in the increasing values
of ∆V . The shown results correspond to N = 2 with depths in the range [72,80], and N = 3
with depths in the range [7,11]. By comparing the standard protocol data from Fig. 6.3(a)
with the improved protocol data from Fig. 6.2(b), we observe that the ∆Q are much more
positive for the improved protocol. This result signifies that the improved protocol can take
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(a) (b)

(c) (d)

(e) (f)

FIGURE 6.2: ∆Q for the improved protocol experiments sorted by the increasing
values of ∆V (cf. Fig. 6 in [Jat+20]). The data corresponds to (a) N = 2 and depths
[16,20]; (b) N = 2 and [74,80]; (c) N = 3 and [6,10]; (d) N = 3 and [47,56]; (e) N = 4

and [6,10]; and (f) N = 4 and [53,66].
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(a) (b)

FIGURE 6.3: ∆Q for the standard protocol experiments sorted by the increasing
values of ∆V . The data corresponds to (a) N = 2 and depths [72,80], and (b) N = 3

and depths [7,11].

into account and mitigate errors better than the standard protocol. Similarly, for the 3 qubits
case, comparing the standard protocol data from Fig. 6.3(b) with improved protocol data from
Fig. 6.2(c), we observe that although there are some negative values of ∆Q for both, successful
positive mitigation using the improved protocol mitigates the errors to a greater extent than
the standard protocol.

6.6 Benchmarking

Testing prototype quantum computers through benchmarking is an important field in com-
puting. Recent developments include comparing the superconducting and ion trap based
quantum computers [Lin+17], generating maximally entangled states [CLLG19], application
motivated circuit classes [Mil+21], quantum volume as a single number metric [Cro+19], vi-
sual benchmarking circuits [CBG21], scalable identity circuit operations [Mic+17; Pro+22], etc.
The matrix M serves the purpose of error mitigation and benchmarking the quantum com-
puters since all circuits used for the error mitigation are identity circuits composed of random
gates. Since for an error prone quantum computer M has non-zero off-diagonal elements, by
looking at M we can make rough estimates of the amount of errors involved in a quantum
computer. The diagonal entries of the matrix can help identify a bias or preference towards
certain states and the off diagonal entries bit flip or other errors. The matrix M does not
capture phase related errors.

All the conducted experiments use 213 samples for a given number of qubits in a given
range of circuit depths. In each experiment, a circuit with random gates is split in half and
made into an identity circuit as outlined in the improved mitigation protocol in section 6.4.
We start with all possible (computational) initial states of the quantum computer for each
experiment and apply an identity circuit. For an error-free quantum computer, we would
expect the same initial state to be measured at the end of the computation. However, due
to errors, it is possible that other states are also measured. The matrix M , the average of the
two matrices corresponding to each half of the identity circuits for an experiment, shows the
other states obtained as non-zero off-diagonal elements. We calculate a matrix M ′ which is
the average of the matrices from all the different random circuits.

In Fig. 6.4, we plot the matrix M ′ for a different number of qubits and range of circuit
depths. Plots show M ′ in three dimensions where the height of a bar is the value of the
corresponding element in the matrix. Shown in Fig. 6.4(a) are averaged results that are a
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIGURE 6.4: Normalised frequencies as a function of the states of a quantum computer. Data shows the values
in the matrices in a three dimensional plot where the z-axis shows the frequencies. (a) N = 2 and depth [8,10]; (b)
N = 2 and depth [16,20]; (c) N = 2 and depth [35,40]; (d) N = 2 and depth [74,80]; (e) N = 3 and depth [6,10]; (f)

N = 3 and depth [47,56]; (g) N = 4 and depth [6,10]; (h) N = 4 and depth [53,66].



6.6. Benchmarking 109

total of 100 experiments carried out for N = 2 with circuits depths in the range 8 to 10. We
observe the presence of small but finite off-diagonal entries. The errors in this depth range
are relatively small given the relatively better performance of the quantum computer due to
the small depth of the circuits. Observe that the amplitude of the off-diagonal elements is
larger when they are one bit-flip away from the diagonal, i.e. 01 is one bit-flip away from 11.
Similarly, the amplitude is smaller if a bitstring is two flips away. This behaviour is intuitive
because a single bit-flip (error) is more likely than two single bit-flips.

In Fig. 6.4(b-d), we increase the circuit depth ranges (for N = 2) in plots (b) 16 to 20, (c) 35
to 40, and (d) 74 to 80, respectively. We carry out a total of 100 experiments and repeat each
experiment 10 times each with 213 samples. The M ′ is then the average of all these experi-
ments. The amplitude of the off-diagonal elements increases as the depth is increased with a
proportional decrease in the amplitude of the diagonal elements. Entries that are one bit-flip
away are present in (b) but slowly disappear as the depth decreases in (d). This behaviour
suggests that the output tends to become random and thus equally distributed as depth is
increased.

In Fig. 6.4(e-f), we show the results for N = 3 and depths 6 to 10 and 47 to 56, where 100
different experiments are repeated 10 and 3 times, respectively. The one bit-flip errors are
more clearly visible in the plot (e), having relatively large amplitudes than other off-diagonal
entries. Interestingly, some single bit-flip errors are more dominant than others, e.g. 011 vs
101, although both are one bit-flip away from 111. This shows the presence of other kind
of errors. As the circuit depths increase for the N = 3 case, the same behaviour is observed
where the diagonal elements decrease in amplitude as was observed for N = 2.

In Fig. 6.4(g-h), we show the results for N = 4 and depths 6 to 10 and 53 to 66, where
100 different experiments are repeated 10 and 3 times, respectively. Similar to Fig. 6.4(e), the
single bit-flip errors are dominant. Although the depths for Fig. 6.4(g) are lower than the cor-
responding N = 3 case (Fig. 6.4(e)), the amplitude of the diagonal entries is still smaller. For
the last plot (h), there is a dramatic decrease in the amplitudes of the diagonal elements, sug-
gesting a large presence of errors in the IBM Q quantum computer. In summary, the matrix
M ′ gives a good pictorial representation for the presence of some type of errors in a quantum
computer, at least for small systems.

6.6.1 Detecting bias

In the previous section, we used the off diagonal entries of the matrix to interpret errors in a
quantum computer. In this section, we use the diagonal entries for yet another purpose. As a
common practice in quantum computing, the state of all qubits is set to |0〉 before any com-
putation is carried out. Very often, the first step of variational algorithms is to change this
initial state to some other initial state that offers an accelerated performance for the vari-
ational optimisation. For example, single Hadamard gates can be applied to all the qubits
to set the quantum computer into a uniform superposition of all basis states. For the algo-
rithms used in this work, initial states often represent the number of spins on a lattice or the
occupational number of an atom or molecule. Such initial states are seldom a uniform su-
perposition but often some combination of the computational states |0〉 or |1〉. Benchmarking
experiments on initial states which are a uniform superposition of computational (or basis)
states, have led to the conjecture that some IBM quantum computers have a bias towards be-
ing in a particular state compared to others [Mic+19]. It is, therefore, interesting to question
if such a bias also exists for initial states relevant for variational algorithms used in this work.

The experiments performed in [Mic+19] used a single layer of Hadamard gates to prepare
the quantum computer in a uniform superposition of computational states before measure-
ment. The analysis consisted of observing the weighted average of the relative frequency of
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FIGURE 6.5: Normalised frequencies of obtaining a final state that is the same as the initial
state as a function of the computational states for circuits consisting of several layers of ran-
domly generated gates that perform an identity operation. The horizontal lines indicate the
ideal outcome. The tilted lines and corresponding negative numbers are the linear fittings to
the data points indicating the negative slope. Problems sizes and devices are listed in the leg-

end along with the connection to Fig. 6.4.

the computational states as a function of the number of ones in the computational states.
The experiments showed that the tested quantum computers had a preference (or bias) to-
wards qubits being in the state |0〉. The benchmarking performed in this chapter differs as
follows. Circuits consist of several layers of randomly generated gate operations that ulti-
mately perform an identity operation, thus (ideally) matching the final and initial states. The
total number of benchmarking circuits evaluated per experiment is 2N . The benchmark is
an average over several different experiments. Our benchmarking techniques are similar in
the sense that one seeks to quantify any bias in the quantum computer when observing the
number of ones in the measured states. To achieve this objective, it is sufficient to observe
the diagonal entries of the matrices.

The diagonal entries reflect the frequency of obtaining a final state that is the same as the
initial state. The normalised frequency of all diagonal entries should be unity on an ideal
quantum computer. However, an error prone quantum computer can deviate from the ideal
outcome. In Fig. 6.5, we plot diagonal entries of the matrices considered for benchmarking.
The legend shows the names and number of qubits of the different quantum computers used
and connection to a previous figure (if existing). The architectures of the quantum comput-
ers are shown in Fig. 6.6. The data shows the normalised frequencies of finding the same
final state initialised as a function of the computational states, labelled by a number corre-
sponding to their binary representation. We observe that the outcomes are not ideal. The
ideal outcome is a flat line y = 1. The frequency to obtain the same initial state decreases in
proportion to the increasing binary number representation of the computational states across
the different number of qubits, circuit depths, and quantum computers. A linear fitting to the
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FIGURE 6.6: Different architectures of IBM Q quantum computers with 5 qubits
used to produce results shown in this chapter. (a) IBMQX2 [5-qd]. (b) Burlington
[5-qb], Ourense [5-qf], Essex [5-qc]. (c) Manila [5-qe]. The circles represent the

qubits and the arrows the connections between them.

data points having negative slopes is suggestive to the naked eye of a consistent bias. The ef-
fect of increasing circuit depths is also visible as the data points for each N are lower for
the larger circuit depths. These results imply that there are different error rates in terms of
the appearance of unwanted bitstrings when initialising from different computational states.
While the quantitative values differ slightly, all IBM Q devices show a bias towards states that
contain more zeros than ones. This is consistent with the findings of [Mic+19].

We found an exceptional case of N = 4 on the computer IBMQX2. We observed some-
thing more than an expected decline in the normalised frequencies as the binary number
representation of the computational states increases. There is a sudden and significant dip in
the normalised frequencies in a total of four states corresponding to binary representations
4,5,12 and 13. Given that the data is averaged over a large number of experiments shows that
this behaviour appears systematic in the computer. IBMQX2 is no longer accessible so this
dip’s cause remains unknown.

6.6.2 Mean field model

Quantum computing benchmarks often use random circuits. One reason for that is the ab-
sence of interesting problems that can be solved using a very low number of gates supported
by current quantum computers. In this section we develop a benchmarking problem that
is based on a physical problem. We use the mean field model defined by the Hamiltonian
given in Eq. (5.7) with Jαα

i j = 1 for all α ∈ {x, y, z}. This is essentially a solvable problem whose
ground state energy is easy to compute. The ground state energy is given by the expression
3(a −N )/2 where a = 1 for odd N and a = 0 for even N [HD00].

After several trials we found an ansatz which is able to solve this problem using a circuit
of only depth five [Jat+22b]. The reason why the ansatz has a low circuit depth is that it can
be constructed from a set of operators instead of a sum of operators. The latter is difficult to
implement on a quantum computer due to the large circuit depths that may be required. In
contrast, the former is implementable with significantly lower depths. Specifically, the ansatz
is given by the set of operators

A = {σx
kσ

y
k+1;k = 1,3,5, . . . , N }, (6.7)
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FIGURE 6.7: Circuit implementation for finding the ground state energy of the
mean field Hamiltonian (see Eq. (5.7)) when N = 4.

FIGURE 6.8: Energy landscapes for the mean field Hamiltonian (see Eq. (5.7)). The
x and y axes show the parameter values and the z axis the energy scale. The data is
obtained from (a) an ideal emulator, (b) IBM Q Manilla [5-qe], (c) IBM Q Belem [5-qa].

which are exponentiated to give the product

U (θ) =∏
k

e−iθkσ
x
kσ

y
k+1 . (6.8)

The corresponding initial state is
|Ψ0〉 = |. . .0101〉 , (6.9)

where the odd and even indexed qubits need to be initialized in the state |0〉 and |1〉, respec-
tively. The circuit implementation for N = 4 is shown in Fig. 6.7. Clearly, entanglement of all
the qubits of a quantum computer is not required. Furthermore, the benchmark is scalable
since the circuit depth is independent of N . The ground state is located at θ = π/2. Note
that such an ansatz also finds the ground state energy of the Majumdar-Ghosh Hamiltonian
[Maj70] where the ground state contains pairs of nearest-neighbour singlets [CEM84].

We performed the benchmarking on IBM Q quantum computers for N = 5. Since only two
parameters were involved we scanned the entire energy landscape on a 16×16 grid. The re-
sults are shown in Fig. 6.8(b-c). For comparison, results of an ideal emulator are shown in
Fig. 6.8(a). The first benchmark is performed on IBM Q Manila which has a linear structure
(see Fig. 6.6(c)). This device has a quantum volume of 32 and is qualitatively able to repro-
duce the energy landscape obtained from the emulator. The landscape is smooth, as should
be expected. The shape of the landscape deteriorates when using the IBM Q Belem, which
has a quantum volume of 16, as shown in Fig. 6.8(b). The landscape is no longer smooth
and has irregularities that may make the traversing of an optimisation algorithm difficult on
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the landscape. The change in the shapes can be ascribed to errors in the quantum comput-
ers. It appears that computers that offer a higher quantum volume perform better on our
benchmark.

6.7 Scalable mitigation

The standard and the improved protocols, as presented in this chapter until now, cannot be
used for mitigating errors in quantum computers with a large number of qubits. The reason
for the non-scalability of both protocols is the use of the matrix that requires an exponentially
increasing number of entries to store the mitigation information. It is due to this that both
the protocols do not satisfy requirement four from section 6.2. The protocols are not practi-
cally realisable in two aspects: (1) The storage space for the matrix grows exponentially with
the number of qubits and, therefore, the protocols are not suitable for medium and large
scale quantum computers of the near future, (2) a disproportionately large number of cali-
bration circuit evaluations, in comparison to the circuit whose errors are to be mitigated, are
required to fill all the elements of the matrix. Therefore, it is of interest to make the protocols
scalable enough to go beyond small scale proof of concept demonstrations.

After the completion of the work presented until now in this chapter, a new technique was
recently published in [Nat+21] that proposes a solution based on some reasonable assump-
tions which might be fulfilled for most practical circuits. This technique allows the standard
protocol to be scalable. The technique can also be used for the improved protocol since the
improved protocol builds upon the standard protocol. The technique is described in what
follows.

6.7.1 Subspace reduction

The idea is to reduce the working subspace of the error mitigation protocol. Since the to-
tal number of states grows exponentially with the number of qubits, the protocol becomes
intractable beyond a small number of qubits. In an error free quantum computer, only the
intended states will appear as we sample the final state at the end of the computation. How-
ever, in error prone quantum computers, these states will be accompanied by some other
states that may not be relevant for the computation and, therefore, render the computation
erroneous. The idea is to restrict the focus on a limited number of states rather than all of
them. In this section, we discuss techniques to achieve that aim.

Sparse matrix

The idea of subspace reduction essentially refers to reducing the size of the matrix by reduc-
ing the non-zero entries or setting several of its entries to zero. The resulting matrix will then
be sparse and could be easily stored and used for mitigation. Such a sparse matrix overcomes
the scaling problem of both the standard and the improved protocols. The guiding principle
for reducing the entries of the mitigation matrix is to observe the noisy output of the quan-
tum computer and create calibration circuits only for those bitstrings that appear in the noisy
output.

For example, consider a circuit whose (error free) output state is 0110. We expect only this
bitstring when sampling an ideal quantum computer. However, a noisy quantum computer,
which the bit flip error model can describe, say for Hamming distance one, will also produce
0010,0100,0111, and 1110. Previously, without the subspace reduction, one would generate
24+1 calibration circuits to fill each column of the matrix M . Using the error model, one
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FIGURE 6.9: Visual representation of the sparse matrix created using the subspace
reduction technique.

would need to use only 2×(4+1) circuits, as shown in Fig. 6.9. The sparsity of the matrix due
to the reduction is visible.

An essential question is if error models can be used for quantum computers to help expect
a certain kind of behaviour in the output. We discuss the following error model that fulfils
the criterion.

Bit flip error model

An error model consisting of bit flip errors can be used to describe the error prone quantum
computer. A bit flip error occurs when one of the bits in a bitstring undergoes a NOT trans-
formation (flips). The concept of bit flips can be generalised in terms of Hamming distance.
The Hamming distance between two bitstrings is the number of positions at which the cor-
responding bits are different. For example, the Hamming distance for a single bit flip is 1, for
two bit flips is 2, and so on.

The evidence that the bit flip error model is a reasonable model for the IBM quantum com-
puters is discussed in the benchmarking results of section 6.6. As expected, we observed that
single bit flips are more frequent than double bit flips, which are in turn more frequent than
triple bit flips, and so on. Therefore, we can expect that the noisy bitstrings from a quantum
computer described by the bit flip error model are within a certain Hamming distance from
the original error free bitstring. The number of possible bitstrings within a finite Hamming
distance to a bitstring scale polynomially.

It is possible that bitstrings appear in the output of the calibration circuits that are not
within a certain Hamming distance from the original bitstring. This is due to the fact that
the new bitstrings are within (not within) a certain Hamming distance from the output of the
calibration (original) circuits. For example, in Fig. 6.9, 1010 can appear when using the cali-
bration circuit intended to output 0010. We will ignore such bitstrings and set their frequen-
cies as zero in the matrix, even if they appear in a small but finite number of samples. This
step will be undertaken using a threshold value that decides what entries will be set to zero.
Each matrix column represents the sum of all the (normalised) frequencies and should sum
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FIGURE 6.10: Comparison of mitigation as a function of sorted experiment num-
bers using sparse (squares) or complete (crosses) matrices. (a) N = 3, depth in

range [6,10], and s = 4. (b) N = 4, depth in range [6,10], and s = 4.

to unity. By selectively removing some entries or setting them to zero, the columns should
then be renormalised for consistency of Eq. 2.5. From an error mitigation perspective, renor-
malisation is unimportant, and we do not perform it. However, it would be interesting to
investigate to what extent the renormalised or the not renormalised matrices would change
the mitigation.

6.7.2 Demonstration

We demonstrate the subspace reduction technique for the improved mitigation protocol. We
apply the technique to the data on which the improved protocol was used. By reusing the
available data, a better comparison is possible. The subspace reduction technique can be
called successful if the error mitigation using the sparse matrix offers similar results com-
pared to the complete matrix. The results consider the subspace reduction technique when
no renormalisation of the sparse matrix column vectors is used.

We apply the technique to the available data (see Fig. 6.4). We only show two plots as
examples, but the subspace reduction works for all cases. The technique generates a sparse
matrix with substantially fewer memory requirements than the complete matrix. In Fig. 6.10
we compare the strength of mitigation, as measured by ∆Q when either the complete matrix
(crosses) or the sparse matrix (crosses) is used. In Fig. 6.10(a-b), we observe that the crosses
and the squares overlap in a majority of the experiments. This overlap suggests no significant
difference in the error mitigation outcomes using either the complete or the sparse matrices.
The difference is minimal when there is no complete overlap. Overall, both plots in Fig. 6.10
show that the sparse matrices produced indistinguishable error mitigation results compared
to the mitigation using complete matrices. This suggests that the subspace reduction tech-
nique was able to reproduce the results of the improved protocol. We thus obtain the benefit
of having reduced memory storage that no longer scales exponentially with N with no sub-
stantial difference in error mitigation. It is important to note that since the improved protocol
remains a heuristic, there is no guarantee that the sparse matrix will always produce positive
error mitigation.
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FIGURE 6.11: Scaling behaviour of the positive outcome of error mitigation in
terms of the number of non zero entries in complete (crosses) or sparse (squares)

matrices for 100 different experiments per case (A1,...,C2, for details see text).

Threshold selection

A vital element of this quantitative assessment is the appropriate choice of the threshold
value which determines the values that appear in the sparse matrix. Values below the thresh-
old will be set to zero when filling the columns of the sparse matrix. It is essential to select
an appropriate value. The threshold should be chosen by taking into account the magnitude
of noise in a quantum computer.

We choose the threshold of our experiments as follows. Prepare a circuit such that only
one bitstring (state) should ideally be output during measurement. Other bitstrings in a noisy
quantum computer will also appear along with the ideal output due to errors. The threshold
should then be such that all other noisy bitstrings not intended to appear in the output are
set to zero. Note that setting the threshold arbitrarily high would be disadvantageous because
it may then include those bitstrings that are part of the output and not noise. We choose the
threshold depending on the actual performance of the quantum computer by multiplying
the standard deviation associated with the measurement process with an appropriate natural
number. The measurements for our data were performed using 213 samples. The threshold
was then set to s/

p
8192, where s is the natural number.

Scaling behaviour

In this section we quantify the improvement using the subspace reduction technique. We
analyse the available data from the experiments performed in the previous sections. To study
the improvement, we compare the number of non-zero entries in the matrices corresponding
to either using the complete matrix or using the sparse matrix.

After setting an appropriate value of s, we compare the number of non-zero entries in the
complete and sparse matrices that would be required for all the experiments. For example, in
theory, if 100 experiments are performed for N = 2, the maximum number of non-zero entries
required is 16×100. In practice, it is possible that some bitstrings do not appear and therefore
appear as zeros in the complete matrix. In the data we present, we count the actual number
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of non-zero entries that appear in the complete matrix and not the theoretical value. The
data is illustrated in Fig. 6.11. Cases A1 and A2 correspond to data collected on 100 random
experiments for N = 2, averaged over 10 repetitions for depth ranges [16,20] and [35,40], with
the choices of s = 10 and s = 12, respectively. Since the underlying matrices are of size 4×4,
one should not expect a large difference in the number of non-zero entries per experiment
between the sparse and complete matrices. We observed only a small difference in the data.
However, the difference starts to widen as N increases. Cases B1 and B2 correspond to data
collected on 100 random experiments for N = 3, averaged over 10 and 3 repetitions for depth
ranges [6,10] and [47,56], with the choices of s = 4 and s = 8, respectively. Similarly, cases
C1 and C2 correspond to data collected on 100 random experiments for N = 4, averaged over
5 and 10 repetitions for depth ranges [4,6] and [6,10], with the choices of s = 2 and s = 4,
respectively. The appropriateness of different choices of s for each case was justified by veri-
fying that there was no distinguishable difference in the mitigation outcomes using either the
complete or the sparse matrices. The number of non-zero entries in the complete matrices,
as shown by the logarithmic scale in Fig. 6.11, grows exponentially. In contrast, the number
of non-zero entries in the corresponding sparse matrices appears to grow only polynomially.

6.7.3 Discussion

In this section, we demonstrated a scalable error mitigation protocol. It overcomes the draw-
backs of the improved protocol (section 6.3) in two ways: (1) The storage space for the matrix
no longer grows exponentially with the number of qubits and, therefore, the protocols that
employ subspace reduction are suitable for medium and large scale quantum computers of
the near future, (2) a proportionate number of calibration circuits evaluations are sufficient
in practical cases to fill all the relevant elements of the matrix.

It turns out that the threshold is an important element of the subspace reduction tech-
nique. For a relatively small threshold, almost all values in the complete matrix will be used
and the new matrix will not be sufficiently sparse. Without sufficient sparsity, the protocol
will not be scalable. On the other hand, for relatively larger threshold, even those values
which are part of the intended output will be neglected and the computation will exclude
bitstrings relevant for the circuit being mitigated. It is difficult to determine a priori a fixed
value of the threshold that works for a large number of cases. It is more practical to deter-
mine the threshold by performing benchmarking experiments, e.g. that output a single state.

The usage of the subspace reduction can be envisioned for three cases. First, consider the
case of a circuit which produces a single output state. Error mitigation protocols presented
in this chapter show that there is a near perfect mitigation in such cases. However, such
cases are often not of practical interest since entanglement is essential to many quantum
algorithms. Second, consider circuits which produce states polynomial in number compared
to the total number of possible states. The scalable mitigation idea rests on the premise that
the total number of sampled states relevant in computation for a given circuit Cg do not
scale exponentially. It is assumed that only a polynomial number of states are sufficient for
implementing an algorithm. These cases are of practical interest, and our results show that
the subspace reduction technique offers indistinguishable performance using a much sparser
matrix allowing scalability. Third, consider circuits which produce states distributed over a
large majority of all possible states. We observe that error mitigation protocols fail in this
case. However, this case is not of practical interest because if an algorithm produces such a
distribution, then such an algorithm will require an impractically large number of samples,
making them useless for quantum computing.
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6.8 Summary

In this chapter, we introduced, demonstrated, and assessed the quality of a scalable error
mitigation protocol. A set of seven criteria was introduced for error mitigation protocols. The
demonstrated protocol was developed in view of the criteria. The requirement 1 was fulfilled
numerically in the sense that several different experiments were considered to infer efficacy
of the protocol inductively. No theoretical guarantees were argued in favour of the protocol.
We also did not show that such a guarantee does not or cannot exist. Thus, the protocol
remains a heuristic. A useful side product of the introduced protocol was its ability to bench-
mark devices, which is of independent interest. We also demonstrated benchmarking results
using a mean field model. Given the various benefits of the error mitigation protocol intro-
duced in this chapter, it can be concluded that it is a useful heuristic.
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Chapter 7

Conclusion and outlook

Hybrid variational methods

The aim of the work presented in this dissertation was to develop methods that can make
use of current and near-future quantum computers. These computers are noisy and cannot
accommodate large depth circuits common to conventional quantum algorithms. Building on
the framework of variational methods, we developed hybrid algorithms that are noise tolerant
and can be run on current quantum computers. Successful completion of these objectives
required finding problem-specific ansätze, initial states, and optimisation algorithms. Briefly
summarised below are the efforts undertaken, and lessons learnt.

The efforts

We outlined a systematic way to build circuits given an ansatz in the Pauli basis. Using that,
we investigated an adaptive ansatz construction method applied to the Heisenberg model to
predict a set of unitary operators that is likely to reasonably approximate the model’s ground
state energy as the problems are scaled up. This adaptive method can be used for other
problems as well. We numerically demonstrated the ability of the ansatz to find the ground
state energy of one-, two-, and three-dimensional antiferromagnetic Heisenberg models.

We were able to set up and use an ansatz to estimate the ground state energy of some
molecules and the Hubbard model. This was achieved with the help of open-source packages.
We demonstrated a prototype case of finding the dissociation energy of the Li-Li molecule.
For a few molecules we also timed the amount of classical computation required to prepare
the problem before it can be solved by the quantum computer. Afterwards, we determined
the time taken by a quantum computer emulator to calculate the energy once for relatively
large molecules.

Another aim of this dissertation was to study the effect of noise when using variational
methods. We introduced noise to the simulations to study its effect on the ability of varia-
tional methods to find the ground state energy. The relevant questions addressed were re-
garding the accuracy of the final energy obtained and the effect of noise on the ability of the
optimisation algorithms to navigate the landscape. We tested the former and the latter when
finding the ground state energy of the water molecule and the Heisenberg model, respec-
tively.

The lessons

The flexibility of using any ansatz offered by the variational principle must be balanced by a
proper choice that fulfils the following two criteria; (a) the ansatz should be able to express
the true ground state of the model, and (b) the energy landscape should be navigable enough
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for an optimisation algorithm to converge close to the global minimum. For (a), the adap-
tive method we employed does not guarantee that a sufficiently expressive ansatz can always
be found. Therefore, clever and intuitive choices are highly relevant for the performance of
variational methods. For (b), the energy landscape becomes fixed when a decision for the
ansatz and problem Hamiltonian has been made. It is known that classical optimisation is
a hard problem in itself. Therefore, since the landscape cannot be changed, it is important
that a good starting point is found from for which a navigable path exists toward the global
minimum. Preferably, such a path should not have local minima in which the optimisation
algorithms get trapped. We learnt that obtaining performance guarantees for (a) and (b) in
general is difficult.

We learnt that the optimisation algorithm plays a crucial role in the ability to find the
ground state energy. In this regard, the choice of quasi-Newton methods is suitable when
gradient computation is feasible. Additionally, the choice of an ansatz is highly relevant. Not
only should the total number of gates be as low as possible, but the connectivities between
the qubits should take into account the physical connectivities in the hardware.

As expected, the presence of noise makes the energy landscape harder to navigate, leading
to poor approximations of the ground state energy. We found that although variational meth-
ods are resistant to noise, the loss in accuracy of the results may be beyond what can be
tolerated in practical applications. For example, in the case of the water molecule, we found
that the final energy was no longer within chemical accuracy when realistic gate errors were
introduced. For practical applications, the ground state energy will be unknown, and there
is no way to ascertain a priori that the minimum energy found is within chemical accuracy.
The tolerance for the loss of accuracy is problem-dependent.

In summary, we learnt the lesson that variational methods will not always be successful
without sufficient background knowledge about the problem. Specific settings and tuning
from the user are helpful but do not guarantee the accurate estimation of ground state ener-
gies at the first attempt.

The drawbacks

The general benefits obtained from variational methods are accompanied by the correspond-
ing drawbacks. While they give the benefit of lower circuit depths and can potentially be run
on near-term noisy hardware, the drawback is the loss of guarantee of finding the ground
state energy. As mentioned above, the loss of guarantee arises from the inability to find a
sufficiently expressive ansatz and the inability to navigate through a rugged energy landscape.
To avoid the problem for the Heisenberg model, we prepared the initial state according to the
Néel state and found that the path towards a minimum appears navigable for the cases we
tested. Similarly, classical approximations to the ground state for the water molecule and the
Hubbard model are helpful.

In line with the proposed aims, we identified two major problems faced by variational al-
gorithms; (a) we numerically demonstrated the existence of local minima for the Heisenberg
model and the water molecule, and (b) we found evidence of Barren plateaus in the energy
landscape of a large three-dimensional isotropic antiferromagnetic lattice. In both cases, the
optimisation algorithm becomes trapped in the energy landscape and cannot make downhill
progress, a necessity to improve the ground state energy estimate in the context of variational
methods.
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The improvements

The main contribution reported in this dissertation is the development of the quasi-dynamical
evolution, which systematically improves the ground state energy estimate of our problems.
To overcome the deficiencies mentioned above, the new approach helps making downhill
progress even after standard variational algorithms get stuck in local minima. Quasi-dynamical
evolution is inspired by quantum annealing. The quasi-dynamics helps to build a ’trajectory’
towards the ground state by adding new operators to an ansatz. There is no restriction on the
number or type of unitary operators allowed to be added for each cycle. We call this tech-
nique a heuristic because we currently do not have a method to find the most suitable set of
unitary operators for each evolution cycle.

We applied the heuristic to improve the previous ground state energy estimates obtained
for the antiferromagnetic Heisenberg model. We found that even a simple choice of the same
set of unitary operators for each new cycle helps improve the ground state energy estimate.
We compared the time taken by the emulator to find the ground state energy to the time
taken by a hypothetical fully functional quantum computer. We considered realistic gate exe-
cution times and the number of samples. Although it is clear that the hypothetical computer
will perform the task faster than any emulator, the former does not overtake an emulator for
up to 36 qubits.

Error mitigation and benchmarking

Another aim of the work presented in this dissertation was to develop error mitigation pro-
tocols for current and near-future quantum computers. In the current NISQ era of the hard-
ware, it makes more sense to implement error mitigation than error correction. To develop
effective mitigation protocols, we outlined seven criteria that any proper protocol to recover
the ideal results should fulfil. The standard matrix-based protocol mitigates state preparation
and measurement errors only. We proposed, implemented, and tested an improved proto-
col capable of capturing most other errors as well. These tests were performed on actual
quantum computers through cloud-based access. Our tests indicate that error mitigation is
not guaranteed by the protocol. Nevertheless, the mitigation was helpful in most of the ran-
domised circuits tested.

The matrix from the improved protocol also serves the purpose of benchmarking the quan-
tum computers. Different biases of the computer can be understood by looking at both diag-
onal and off-diagonal entries of the matrix. We also developed and implemented a mean-field
model based benchmarking test, a problem whose ground state energy is easy to calculate by
a circuit that is small enough to be implementable on current computers.

After others developed a scalable way to implement matrix-based protocols independently,
we incorporated it into our protocol, making it scalable. We demonstrated scalability on the
same data we collected for the improved protocol. Since our protocol does not completely
fulfil all the criteria for an ideal protocol, there is room for future work.

Outlook

Variational methods make current and near-term quantum computation possible. They offer
broad flexibility for solving problems. The flexibility also comes with a responsibility to iden-
tify those configurations that will produce reasonable results. It is in this direction that future
research should be directed.
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The variational principle does not require that the ansatz must be a well-defined circuit
made from the Pauli operators, as used in this dissertation. Additionally, cloud accessible
superconductivity based quantum computing platforms allow the user to send pulses to the
devices. Combining these two aspects, one can imagine defining an ansatz in terms of an
optimised set or series of parametrised pulses that act as the ansatz to find the ground state
energies.

In its current state of development, quasi-dynamical evolution remains a heuristic. The
reason is that it is unknown which set of unitary operators will bring the largest decrease
in the energy with each cycle. Future work should find a systematic way to choose sets of
operators that guarantee finding the ground state energy in a finite and reasonable number
of cycles.

Error correction and mitigation are often contrasted against each other. Instead, they may
be made complementary since their workings do not overlap, and they have a common goal
of reducing errors or noise.

In Wonderland*, the Duchess admonished Alice,
"Everything’s got a moral . . . ";

In Hilbert space, the author can suggest her this,
"Noisy quantum computers have purpose . . . ";

"if only you can find it".

*Quoted from [Car65].
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Appendix A

Sample files

Circuit preparation algorithm

Sample input file

Shown below is a sample input file that is given as input to the algorithm. It consists of three
columns, where S is the string, c is the coefficient, and p is the parameter index. Each row
represents an operator from Eq. (3.29).

1 S c p
2 IIIIIIIIXY 1.2 1
3 IIIIIIIXIY 0.4 1
4 IIIIIXIIYI 1.5 2
5 IIIIIXIYII 1.0 3
6 IIIIIXYIII 1.5 4
7 ...
8 IIIIXYIIII 1.0 5
9 YIIIXIIIII 0.5 6

10 YIIXIIIIII 0.7 7
11 YIXIIIIIII 1.3 6
12 YXIIIIIIII 1.5 4

The input file shows that each operator can be assigned an arbitrary coefficient and two op-
erators can share the same parameter.

Sample OpenQASM file

Shown below is a sample output file of the automatic circuit preparation algorithm that stores
the circuit information in a standard quantum assembly language. The header defines the
version of the language and declares the total number of qubits involved. The gate operations
start from line 5 in the example shown below.

1 OPENQASM 2.0;
2 include "qelib1.inc";
3 qreg q[16];
4 creg c[16];
5 u2(-pi/2,pi/2) q[0];
6 u2(pi/2,-pi/2) q[1];
7 u2(-pi/2,pi/2) q[2];
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8 u2(pi/2,-pi/2) q[3];
9 ...

Sample Hamiltonian file

Shown below is a sample Hamiltonian input file that looks similar to the input file of the
circuit preparation algorithm. The only difference lies in the fact that c and p are now the
real and imaginary coefficients of the string.

1 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXX 1. 0.
2 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYY 1. 0.
3 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZ 1. 0.
4 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIXXI 1. 0.
5 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIYYI 1. 0.
6 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZZI 1. 0.
7 ...
8 IIIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIIII 1. 0.
9 IIIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIIII 1. 0.

10 IIIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIIII 1. 0.
11 IIIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZIII 1. 0.
12 IIZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZII 1. 0.
13 IZIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIZI 1. 0.
14 XIIIIIIIIIIIIIIIIIIXIIIIIIIIIIIIIIIIIIII 1. 0.

The shown example is for a 40 qubits Hamiltonian. The emulator based on JUQCS also takes
this as an input file.
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Equivalence to parameter shift rule

The form of the function for each term in the ansatz is given by Eq. (4.26),

f (θ) = a sin(θ+φ)+ c. (B.1)

The same function gives
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By subtracting Eq. (B.3) from Eq. (B.2), we get
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Dividing by 2 on both sides of Eq. (B.4), we get
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= a cos(θ+φ) =∇ f . (B.5)
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