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“[...] To some degree we resemble the isolated tribe in New Guinea that in the 1940s
encountered a crashed airplane and studied it without comprehending its primary
function. Nevertheless, we can learn from the engineers: we should try to state the
brain’s primary goal and basic performance specifications. We should try to intuit a
role for each part. By placing the data in some framework, we can begin to evaluate
how well our device works and begin to consider the why of its design. We will make
this attempt, even though it will be incomplete, and sometimes wrong.”

— Sterling and Laughlin (2015), Principles of Neural Design.





SUMMARY

The brain uses intricate biological mechanisms and principles to solve a variety of
tasks. These principles endow systems with self-learning capabilities, efficient energy
usage, and high storage capacity. A core concept that lies at the heart of brain
computation is sequence prediction and replay. This form of computation is essential
for almost all our daily tasks such as movement generation, perception, and language.
Understanding how the brain performs such a computation advances neuroscience
and paves the way for new technological brain-inspired applications.

In the first part of this thesis, we propose a sequence learning model that explains how
biological networks learn to predict upcoming elements, signal non-anticipated events,
and recall sequences in response to a cue signal. The model accounts for anatomical
and electrophysiological properties of cortical neuronal circuits, and learns complex
sequences in an unsupervised manner by means of known biological plasticity and
homeostatic control mechanisms. After learning, it self-organizes into a configuration
characterized by a high degree of sparsity in connectivity and activity allowing for
both high storage capacity and efficient energy usage.

In the second part, we extend the sequence learning model such that it permits
probabilistic sequential memory recall in response to ambiguous cues. In the absence
of noise, the model deterministically recalls the sequence shown most frequently during
training. We investigate how different forms of noise give rise to more exploratory
behavior. We show that uncorrelated noise averages out in population based encoding
leading to non-exploratory dynamics. Locally coherent noise in the form of random
stimulus locking to spatiotemporal oscillations addresses this issue. Our results show
that depending on the amplitude and frequency of oscillation, the network can recall
learned sequences according to different strategies: either always replay the most
frequent sequence, or replay sequences according to their occurrence probability during
training. The study contributes to an understanding of the neuronal mechanisms
underlying different decision strategies in the face of ambiguity, and highlights the
role of coherent network activity during sequential memory recall.

Finally, we investigate the feasibility of implementing the sequence learning model
on dedicated hardware mimicking brain properties. Here, we focus on a type of
hardware where synapses are emulated by memristive devices. As a first step in this
direction, we replace the synapse dynamics of the original model with dynamics
describing the phenomenological behavior of memristive elements, and demonstrate
resilience with respect to different device characteristics. In this thesis, we further
describe how the sequence learning model can be adapted at the algorithmic level
to foster an implementation in a full electronic circuit centered around a memristive
crossbar array.

Overall, this thesis sheds light on the key mechanisms underlying sequence learning,
prediction, and replay in biological networks and demonstrates the feasibility of
implementing this type of computation on neuromorphic hardware.
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ZUSAMMENFASSUNG

Das Gehirn nutzt komplexe biologische Mechanismen und Prinzipien, um eine Vielzahl
von Aufgaben zu lösen. Diese Prinzipien verleihen den Systemen selbstlernende
Fähigkeiten, sowie eine hohe Energieffizienz und Speicherkapazität. Ein zentrales
Konzept, bei der Informationsverarbeitung im Gehirn, ist die Sequenzvorhersage und
-wiedergabe. Diese Form der Berechnung ist essenziell für fast alle täglichen Aufgaben
wie Sinneswahrnehmung, Bewegungsausführung und Sprache. Zu verstehen wie das
Gehirn eine solche Berechnung durchführt, treibt die Neurowissenschaft voran und
ebnet den Weg für neue technologische, vom Gehirn inspirierte Anwendungen.

Im ersten Teil dieser Arbeit schlagen wir ein Modell zum Sequenzenlernen vor,
das erklärt, wie biologische Netzwerke lernen können, nachfolgende Elemente vor-
herzusagen, nicht erwartete Ereignisse zu signalisieren und Sequenzen als Reaktion
auf ein Hinweis-Signal abzurufen. Das Modell berücksichtigt anatomische und elek-
trophysiologische Eigenschaften kortikaler neuronaler Netzwerke und lernt komplexe
Sequenzen auf unüberwachte Weise mittels bekannter biologischer Plastizität und
homöostatischer Kontrollmechanismen. Während des Lernens organisiert es sich selbst
in eine Konfiguration, die sich durch einen hohen Grad an Spärlichkeit in der Kon-
nektivität und Aktivität auszeichnet, was sowohl eine hohe Speicherkapazität und
Energieeffizienz zur Folge hat.

Im zweiten Teil erweitern wir das Modell so, dass es einen probabilistischen se-
quentiellen Gedächtnisabruf als Reaktion auf mehrdeutige Hinweise ermöglicht. In
Abwesenheit von Rauschen ruft das Modell deterministisch die im Training am häu-
figsten gezeigte Sequenz ab. Wir untersuchen, wie verschiedene Formen von Rauschen
zu einem explorativeren Verhalten führen. Wir zeigen, dass sich unkorreliertes Rau-
schen bei populationsbasierter Kodierung wegmittelt, was zu einer nicht-explorativen
Dynamik führt. Dieses Problem wird durch lokal kohärentes Rauschen in Form einer
zufälligen Stimuluskopplung an intrinsische, raum-zeitliche Oszillationen behoben.
Unsere Ergebnisse zeigen, dass das Netzwerk, je nach Amplitude und Frequenz der Os-
zillation, gelernte Sequenzen gemäss verschiedener Strategien abrufen kann: entweder
wird immer die häufigste Sequenz wiedergegeben, oder Sequenzen werden entspre-
chend ihrer Auftrittswahrscheinlichkeit beim Training abgespielt. Die Studie trägt
zum Verständnis der neuronalen Mechanismen bei, die verschiedenen Entscheidungs-
strategien zugrunde liegen, und unterstreicht die Rolle kohärenter Netzwerkaktivität
bei sequenziellem Gedächtnisabruf.

Schließlich untersuchen wir die Realisierbarkeit der Implementierung des Sequenz-
verarbeitungsmodells auf einer speziellen Hardware, welche Eigenschaften des Gehirns
imitiert. Hier konzentrieren wir uns auf eine Art von Hardware, bei der die Synapsen
durch memristive Bauteile emuliert werden. Als ersten Schritt in diese Richtung
ersetzen wir die Synapsen-Dynamik des ursprünglichen Modells durch eine Dynamik,
die das phänomenologische Verhalten von memristiven Elementen beschreibt, und
demonstrieren Robustheit der Vorhersagen bei Variation verschiedener Hardware-
Eigenschaften. In dieser Arbeit beschreiben wir außerdem, wie das Sequenzlernmodell
auf algorithmischer Ebene angepasst werden kann, um eine Implementierung in ei-
ne vollelektronische Schaltung basierend auf einem memristiven Crossbar-Array zu
ermöglichen.
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Insgesamt wirft diese Arbeit Licht auf die prinzipiellen Mechanismen, dem Lernen,
der Vohersage und dem Abruf von Sequenzen in biologischen Netzwerken zugrunde
liegen, und demonstriert die Realisierbarkeit der Implementierung dieser Art von
Berechnung auf neuromorpher Hardware.
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1INTRODUCTION

Short excerpts of this chapter are based on the following publication:
Bouhadjar, Y., Diesmann, M., Wouters, D. J., & Tetzlaff, T. (2022). Sequence
learning, prediction, and replay in networks of spiking neurons. PLOS Computational
Biology 18 (6), e1010233.
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2 introduction

Prediction, almost continually
operative at conscious and reflex levels,
is pervasive throughout most, if not
all, levels of brain function.

Llinás (2002)

The brain is a complex network of nerve cells, which carries out cognitive com-
putation in a distributed and energy-efficient manner. It uses intricate biological
mechanisms and principles to solve a wide spectrum of problems ranging from per-
ception and action to high-order cognitive functions such as planning and reasoning.
Understanding the brain machinery is essential for driving new advances in neuro-
science and for developing new real-world applications. A primary function performed
by the brain is sequence prediction and recall. In this thesis, we aim at identifying
the neural mechanisms and principles essential for this type of computation and
determining hardware primitives that implement these concepts. To provide an answer
to these questions, we follow a multidisciplinary approach following these four steps:

• Describe the task solved by the biological system using knowledge from behav-
ioral neuroscience and psychophysics.

• Investigate the neuronal implementation of this task using knowledge from
biology.

• Develop mathematical models describing the biological implementation and test
these using computer simulations.

• Propose dedicated hardware implementation of the proposed models.

The introduction clarifies these steps and gives the reader an overview of the
topics involved in this thesis. It starts with lying down a set of arguments of why
sequence prediction and recall might be a central computation performed by the brain.
Section 1.2 explains the organizational principles and components of a structure in the
brain known as the neocortex. The following section 1.3 introduces the Hierarchical
Temporal Memory (HTM) model, which links the working principles of the neocortex
and sequence processing tasks. Section 1.4 discusses emerging neuromorphic hardware
with a focus on that based on memristive devices. Finally, section 1.5 outlines the
scope of the thesis and the questions addressed.

1.1 sequence prediction and replay

Learning and processing sequences of events, objects, or percepts are fundamental
computational building blocks of cognition (Lashley, 1951; Hawkins and Blakeslee,
2007; Dehaene et al., 2015; Clegg et al., 1998). Data processed by mammals and many
other living organisms is often sequential. This holds true for all types of sensory
input data as well as motor output activity. Being able to form memories of such
sequential data, predict future sequence elements, and replay learned sequences is a
necessary prerequisite for survival.

Prediction was suggested to be the primary computation performed by the neocortex
(Hawkins and Blakeslee, 2007; Bar, 2007; Llinás, 2002). As we move in our environment,
we are constantly making predictions about what we are going to experience next.
We effortlessly detect surprising, non-anticipated events and adjust our behavior
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accordingly. When listening to a familiar melody, we can predict the next note before
it has been played. We can even anticipate what someone is about to say before
they have finished (Hawkins and Blakeslee, 2007). We can also make predictions
across different sensory modalities. Listening to the voice of someone can trigger a
rich repertoire of visual or even somatosensory memories. Often we are not aware
of these predictions till some event violates our expectations and then we become
immediately attentive. For instance, as we casually lift a cardboard box. Our brains
predict what force is required to carry the box. If our prediction is wrong and the
box suddenly becomes heavier, we notice the difference and correct immediately our
behavior (Llinás and Roy, 2009; Hawkins and Blakeslee, 2007).

The ability to form predictions is not restricted only to sensory processing but
also a component in higher cognitive functions such as planning and language (Bar,
2007). Often, these predictions are made in a context-dependent manner (Bar, 2004).
In language, for example, we use context to disambiguate a sentence (Bod et al.,
2003). Other cognitive processes use the context for fast and efficient interaction
with the world. Take visual processing for instance: our environment dictates specific
expectations of what we are about to see, for example, when we are in the library, we
expect to see a specific set of objects such as bookshelves, desks, books, etc.

Predictions are often embedded and occur within sequences. Listening to a melody
for instance evokes a series of predictions of what are the most likely next notes.
In many situations, we cannot make predictions if the received information is non-
sequential. For example, if we put our hands on an object, we would not recognize its
texture only when we start moving our hands (Hawkins and Blakeslee, 2007). Our
sensory organs are tuned to detect changes in the stimuli rather than capturing static
inputs. When we look at a picture our eyes typically do not stand still but explore
the picture following small movements known as saccades (Yarbus, 1967). They fixate
on one position, and then suddenly jump to another one. They keep moving, even if
we think they are fixating on a certain part of the image. The brain receives these
sequences of information, makes sense of them, and then gives rise to the perception
of the standing still image. If the eye saccades are artificially eliminated, the vision
fades (Riggs and Ratliff, 1952; Martinez-Conde et al., 2004).

As we can carry out sequential predictions, we also manage to replay learned
sequences, for example, when generating motor behavior or replaying sequential
memories. These forms of processing have been studied extensively in a number of
experimental works on sensory processing (Gavornik and Bear, 2014; Xu et al., 2012),
motor production (Hahnloser et al., 2002), and decision making (Harvey et al., 2012).

The underlying mechanisms for sequence prediction and recall in the brain remain
largely unknown. As pointed out by Lashley (1951), understanding how this type of
processing is implemented by the brain is essential for understanding the working
principles of the neural system.

1.2 the neocortex

Sequence prediction and recall are principal computations performed by the brain
and an integral part of cognition. These types of computations are implemented by a
number of structures in the brain (Clegg et al., 1998). In this thesis, we investigate
its neural circuitry in the neocortex.

The neocortex is believed to be the seat of intelligence in the brain. It allows for
planning, thinking, and reasoning about the world. When hearing a tone, seeing an
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object, or touching a cup, the sensory information is received by our sensory organs,
preprocessed, packed, and sent via electrical pulses to the brain (Kandel et al., 2000;
Bear et al., 2007). The sensory information is further processed by a number of
structures in the brain till it reaches the neocortex. The neocortex then makes sense
of the incoming sensory data giving rise to perception and other cognitive processes.
Before discussing how sequence learning contributes to these abilities, we first dive
into the organizing principles of the neocortex and its main components 1.

1.2.1 Organization of the neocortex

The neocortex is the outer region of the mammalian brain. In humans, it has a thickness
of a few millimeters, a surface of around ∼2600 cm2 (Mountcastle, 1997), and a total
of 16 billion cortical neurons, each receiving up to 10.000 connections (Abeles, 1991).
It is composed of two hemispheres, each subdivided into four lobes: frontal, parietal,
temporal, and occipital (Fig. 1.1A). These lobes have been associated with different
functions (Kandel et al., 2000). The frontal lobe is responsible for movement generation
and high-order cognitive functions such as planning and decision-making. The other
lobes are associated with sensory processing such as somatic sensation (parietal),
vision (occipital), and hearing (temporal). In the early twentieth century, Korbinian
Brodmann came up with a more detailed division of the neocortex. He divided it into
52 areas using its different morphological and cellular organization (Brodmann, 1909).
These areas have been linked later on to specific functions (Payne and Peters, 2002).
For example, areas 1, 2, and 3 are located in the parietal lobe and responsible for
somatosensory processing, and area 22 is located in the temporal lobe and responsible
for auditory processing.

Figure 1.1: Neocortical tissue. The neocortex occupies the outer surface of the brain and
is composed of four cortical lobes (A), each of which is constituted of repetitive
structures known as macrocolumns or columns (B). Main figures in A and B
are adapted from (Gray, 1918). The inset in B is adapted from (Ramon y Cajal,
1899).

hierarchies In the neocortex, the areas are organized into a hierarchy. The
processed information is communicated between lower and higher areas using feedfor-
ward and feedback connections (Felleman and Van Essen, 1991). The primary sensory
areas first receive the information and then send it to higher areas in the hierarchy.
Neurons across the different areas respond to different stimuli in the environment, i.e.,
a neuronal characteristic known as a receptive field (Hubel and Wiesel, 1962). Lower

1 See also (Thiboust, 2020) for a brief and concise summary of key insights on the structure and
function of the neocortex.
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areas detect simple features in the sensory stimuli. Detected features become more
abstract the higher the level in the hierarchy. For example, neurons in the primary
visual cortex (or V1 cortex) receive information from the eyes and can detect simple
features such as lines and edges (Hubel and Wiesel, 1962, 1968). Neurons in the next
areas further process this information giving rise to more complex features (Milner
and Goodale, 2006) such as colors and shapes (V2 area), visual motion (MT area),
and object selectivity (IT area). Higher-level regions are known by their ability to
form invariant representations (DiCarlo et al., 2012; Hawkins and Blakeslee, 2007).
Unlike low-level regions, they can detect and recognize complex objects, regardless of
environmental conditions such as lightning, position, or orientation.

minicolumn The anatomical organization of the neocortex is very regular. Each
one of the cortical areas is composed of a number of columnar structures, called
minicolumns (Mountcastle, 1997; Braitenberg and Schüz, 1998). This structure repeats
itself throughout the whole cortical sheet (Fig. 1.1B). Conventionally, the minicolumns
are divided into six layers, with layers 2 and 3 often considered to constitute the same
layer 2/3 (Fig. 1.2). However, layer thickness, neuronal types, and neuronal densities
differ across the cortical areas. Adjacent minicolumns are innervated by the same
axons. They form larger structures known as columns or macrocolumns (Horton and
Adams, 2005; Thiboust, 2020). Each one of the minicolumns contains around 100
neurons (Mountcastle, 1997).

Figure 1.2: Cortical layers. Left: neurons in the visual, motor, and infant cortex, respectively,
drawn by (Ramon y Cajal, 1899). Right: pyramidal neuron with its extended
dendritic tree. Reprinted with permission from (Braitenberg and Schüz, 1991).

connectivity A detailed dissection of the cortical connectivity reveals a unique
connectivity pattern, both horizontally and vertically (Shipp, 2007). A variant of the
same motif is reproduced in all cortical areas giving rise to the concept of the canonical
circuit (Thomson et al., 2002; Douglas and Martin, 2004; Harris and Shepherd, 2015).
Each cortical area interacts with other areas and subcortical structures with an
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abundant fiber of coated myelin traveling underneath the neocortex in the white
matter (Debanne, 2004). The neocortex is connected to the outside world through the
thalamus, which acts as a gateway for both input and output. It innervates cortical
areas via layers 4 and 3 and receives feedback connections from layer 5 (Thomson
and Bannister, 2003). In the neocortex, the inputs from lower areas to higher areas
first make contact with layer 4 and then project to layers 2 and 3 within the same
cortical column. The information is subsequently transmitted to the next level of the
cortical hierarchy. The feedback connections from higher-level areas to lower areas
take a different path. The information is propagated from layer 6 in the upper cortical
area to layer 1 in the lower areas and then sent to layers 2 and 3. This in turn excites
cells in layers 5 and 6 (Hawkins and Blakeslee, 2007). Layer 5 closes the loop by
innervating back the thalamus and other subcortical structures. Cortical neurons make
also extensive lateral connections, especially in layers 2 and 3 (Binzegger et al., 2004).
The connections appear to be mostly patchy in appearance, i.e., neurons with similar
receptive fields connect to each other (Vanni et al., 2020) and are distance-dependent
(Jiang et al., 2015; Boucsein et al., 2011). Distant cortical areas also connect to each
other using long range myelinated fibers (Vanni et al., 2020).

1.2.2 Neurons and synapses

The neurons are electrically excitable cells and communicate with each other using
voltage excursions called action potentials or spikes (Humphries, 2021, Fig. 1.3A).
They are composed of a soma (or cell body), dendrites, and an axon. At reset, the soma
maintains a gradient of ionic concentration between the intracellular and extracellular
spaces resulting in a resting potential of about −70mV (Dayan and Abbott, 2001). The
soma collects inputs from other neurons using dendrites and generates a spike in case
of sufficient stimulation. The spike travels across the axon till it reaches the synapses,
where the spike from one neuron is transmitted to another neuron. The arrival of the
spike at the synapse causes a release of neurotransmitters into the synaptic cleft. Most
neurons in the cortex tend to release the same type of neurotransmitter on all their
synapses with either an inhibitory or excitatory effect (see Dale’s law, Eccles et al.,
1954). An excitatory neurotransmitter such as glutamate depolarizes the recipient
neuron making the membrane potential less negative. The neuron generates a spike
if it is sufficiently depolarized. An inhibitory neurotransmitter, on the other hand,
such as gamma-aminobutyric acid (GABA) causes a hyperpolarization making the
membrane potential of the recipient cell more negative (Kandel et al., 1991). The
amount of this synaptic release and the density of the receptor on the postsynaptic
neurons dictate the synaptic strength of the connection, which is often referred to as
the synaptic weight. The majority of neurons in the cortex are excitatory (85% of
which 75% are pyramidal neurons), while the remaining 15% are inhibitory (Abeles,
1991).

pyramidal neurons Pyramidal neurons are the primary source of excitation
in the cerebral cortex. They can form not only connections within the same column
but also with other columns or even other cortical areas. They populate all cortical
layers (except layer 1), with the largest numbers in layers 6 and 5, and can exhibit
different morphologies (Ledergerber and Larkum, 2010). Their cell body is roughly
pyramid shaped, hence their name. They are characterized by a distinct dendritic arbor
composed of basal and apical dendrites (Spruston, 2008). Basal dendrites are close
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Figure 1.3: Action potentials. A) Simulated intracellular recording of the soma (top
electrode) and the axon at a certain distance from the soma (bottom electrode) as
well as an extracellular recording (middle electrode). Reprinted with permission
from (Dayan and Abbott, 2001). B) The shape of three types of action potentials:
sodium (black), calcium (blue), and NMDA spikes (red), as well as their initiation
sites. Adapted figure from (Augusto and Gambino, 2019).

to the soma and apical dendrites can extend much further reaching the pial surface.
Throughout the dendritic arbor, the pyramidal neuron collects its inputs coming from
other neurons. Coincident activation of a cluster of 8−20 synapses localized on the
same dendritic branch can trigger a dendritic action potential (dAP, for reviews, see
Stuart and Spruston, 2015; Major et al., 2013; London and Häusser, 2005). There are
three types of dendritic action potentials: sodium, calcium, and NMDA spikes. These
active processes exhibit different temporal profiles. For example, the activation of the
NMDA dAP results in strong and prolonged depolarization of the soma (∼50–200ms).
Sodium and calcium spikes are less extended and can be activated for a duration
of about 2ms and 50ms, respectively. They also occupy different regions within the
dendritic arbor. NMDA and sodium spikes tend to be located on the basal and apical
dendrites. Calcium spikes populate the apical trunk (Fig. 1.3B).

inhibitory neurons Inhibitory neurons populate all cortical layers and release
the neurotransmitter GABA (Tremblay et al., 2016). Unlike pyramidal neurons,
their activity remains local within the cortical column. They are highly diverse in
morphology, firing patterns, and connectivity. The main function of inhibitory neurons
is to balance excitation in cortical activity, coordinate the propagation of excitation in
neuronal networks, and forge out stimulus-selective neuronal ensembles (Khan et al.,
2018).

1.2.3 Plasticity

The neocortex rewires itself in the face of the ever-changing world, an ability known
as neuronal plasticity (Buonomano and Merzenich, 1998). In an experiment, neuro-
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scientists rewired the brain of a ferret such that the auditory region receives signals
from the retina (von Melchner et al., 2000). This region was able to restructure itself
to process the incoming information. Consequently, the ferret was able to perceive
the visual data using the auditory cortex. Neuronal plasticity manifests itself also in
almost everything we do. Our brains effortlessly retain information as we encounter
new experiences, learn new concepts, or memorize a passage in a book.

The main mechanism behind plasticity is the brain’s ability to change the synaptic
connections between the neurons (Martin et al., 2000). There are two forms of this
synaptic change either structural or functional, realized via the creation and removal
of synapses (Lamprecht and LeDoux, 2004) or the strengthening and depression of
the synaptic strength (Citri and Malenka, 2007). Both structural and functional
plasticity can be momentarily or long-lasting (Zucker and Regehr, 2002; Bear and
Malenka, 1994). Both processes rely on morphological changes of the synapses (Stettler
et al., 2006) or the density regulation of glutamate receptors such as NMDA and
AMPA receptors (Anggono and Huganir, 2012; Yashiro and Philpot, 2008). The
synaptic plasticity is influenced by the presynaptic activity, the postsynaptic activity,
neuromodulatory signals or combinations thereof (Magee and Grienberger, 2020).
The simplest form of synaptic plasticity is known as Hebbian learning (Hebb, 1967).
It postulates that when two neurons fire close to each other in time their synaptic
strength increases. This form of learning is often summarized as “cells that fire together
wire together” (Shatz, 1992). There is a plethora of synaptic learning rules and their
role can never be underestimated. In this thesis, we employ two learning rules known
as spike-timing-dependent plasticity and homeostatic control (Abbott and Nelson,
2000).

spike-timing-dependent plasticity. Since the first mention of Hebbian
plasticity in 1949, a series of experimental works have been conducted to explore
whether a similar mechanism exists in the neuronal system. The experiment by
Markram et al. (1997) and Bi and Poo (1998) demonstrated a plasticity rule aligning
with Hebb’s postulates called spike-timing-dependent plasticity (STDP). STDP posits
that the timing between the generated spikes of the presynaptic and postsynaptic
neurons influences the amount of synaptic change. It shows that if the postsynaptic
spike follows after the presynaptic spike, the synaptic strength is increased, and
decreased otherwise. Various types of STDP have been identified (Feldman, 2012),
where the influence of the pre- and postsynaptic firing activity on the synaptic change
can take different forms (Fig. 1.4). A structural form of STDP is also known from the
literature (Liao et al., 1995; Wu et al., 1996).

homeostatic plasticity. Hebbian plasticity alone can either cause the
strengthened synapses to become even more strengthened or depressed synapses to
become more depressed (Abbott and Nelson, 2000). This positive feedback can result
in a detrimental increase or decrease in the postsynaptic firing rates. To stabilize
the learning and maintain a healthy working regime, the biological system employs
additional processes known as homeostatic plasticity, which regulate the synaptic
strength or neuronal excitability based on the postsynaptic firing rate or the total
level of synaptic efficacy (Abbott and Nelson, 2000). Another benefit of homeostatic
plasticity is that its combination with Hebbian plasticity can introduce competition
between synapses (Tetzlaff et al., 2011). This combination causes the neurons to
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develop different receptive fields, as neurons learn to become responsive to specific
features of the input and unresponsive to others.

A

B C

Figure 1.4: Spike-timing-dependent plasticity (STDP) and its different forms. A)
Sketch of pre- and postsynaptic neurons with their corresponding spikes. B) The
relative timing of pre- and postsynaptic spikes dictates the amount of the weight
change. The data are adapted from (Bi and Poo, 1998). C) Different forms of
STDP by Shouval, 2010. Reprinted with permission from (Kuzum et al., 2013).

1.2.4 Cortical activity

Neurons in cortical networks communicate with each other using sequences of spikes.
This spiking activity is highly irregular (Shadlen and Newsome, 1998). In repeated
experiments, the same stimulus can cause the same set of neurons to generate a
varying number of spikes. Spiking activity in the cortex is not only irregular, but
also asynchronous, i.e., the average level of synchrony for randomly chosen pairs of
neurons is low (Ecker et al., 2010; Renart et al., 2010). Note, however, that as a
response to behaviorally relevant events, neurons may synchronize their firing with
millisecond precision (Riehle et al., 1997). Cortical activity is also characterized by
a high degree of sparsity in space and time (Barth and Poulet, 2012; Shoham et al.,
2002). The average firing rate, i.e, spike counts per unit time, of cortical neurons
in different areas can range between < 1 and 30 spikes/s. A rate of 30 spikes/s is
however rare. The bulk of the distribution is at smaller rates of 1 spikes/s or below
(Swadlow, 1988; de Kock and Sakmann, 2009). This highly sparse code is thought to
enhance the capacity of the biological network and the robustness against noise and
failure (Olshausen and Field, 2004) as well as to optimize energy-usage (Attwell and
Laughlin, 2001; Laughlin and Sejnowski, 2003).

The cooperative firing of neurons results in a rich repertoire of spatiotemporal
patterns such as oscillations. They can be detected with non-invasive methods, like elec-
troencephalography (EEG). Invasive methods recording electrocorticography (ECoG)
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using electrodes at the surface of the cortical tissue or local field potentials (LFPs)
using implanted electrodes can detect signals with a higher spatial resolution (Fig. 1.5,
see also Buzsaki et al., 2004). These measurements reveal oscillatory activity over a
broad range of frequencies (Buzsáki and Draguhn, 2004) including the theta (4−10Hz),
the beta (10−30Hz), and the gamma bands (30−80Hz). These oscillations have been
linked to different behavioral and cognitive states (Buzsáki, 2006). For example, theta
and gamma oscillations are involved in memory formation and retrieval (Ward, 2003),
whereas beta oscillations are observed during movement initiation (Denker et al.,
2018).

Figure 1.5: Neural activity. A) Electroencephalography (EEG; black), electrocorticography
(ECoG; blue), local field potential (LFP) recordings. B) A combination of LFP
and extracellular action potentials (EAPs), EAP, and intracellular recordings. For
details on the experimental procedure see (Obien et al., 2015). Reprinted with
permission from (Obien et al., 2015).

1.3 the hierarchical temporal memory model

The remarkable uniformity of the neocortex is a well-established concept backed by a
wealth of literature. As we have seen, the neocortical tissue is a collection of repetitive
columns. Mountcastle (1978) suggested that each one of these columns might be
implementing the same algorithm. He argued that understanding this algorithm would
pave the way to discerning how the neocortex works. Inspired by these observations,
Hawkins and Blakeslee (2007) proposed that learning and recalling sequences of
patterns is the fundamental computation performed by the neocortex and laid down
its cortical implementation. Later, Hawkins and his colleagues formulated the ideas
of the book in a model called the Hierarchical Temporal Memory (HTM) model
(Hawkins et al., 2011). In the following, we give a brief overview of the HTM model.

1.3.1 HTM regions and columns

Similar to the neocortex, an HTM network consists of regions organized in a hierarchy
(Fig. 1.6). Each one of the regions comprises a sheet of interconnected cells arranged
vertically in minicolumns. An HTM region implements a sequence memory and
prediction algorithm. By combining past and current input, the region forms a
prediction of what is likely to come next. Different regions receive different types
of inputs and thus make specific predictions about the type of input they receive,
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for example, visual regions make predictions about shapes, colors, etc, and auditory
regions make predictions about tones, sounds, etc Hawkins and Blakeslee (2007). The
hierarchical organization of the regions further promotes the formation of compositional
sequences, which is critical for making predictions from sequence to sequence. To
illustrate this, I borrow an example from (Hawkins and Blakeslee, 2007): vocal
information reaching the auditory cortex is first decomposed to phonemes by the
lower regions of the hierarchy and passed to the next level. The next higher region
groups the sequences of phonemes to create words. Words are grouped into phrases
by the next higher region and form our perception of the vocal information. The
information can also flow downward from higher level regions to lower ones. This
flow of information unfolds the phrases into sequences of phonemes, which can be
passed to the motor cortex commanding the muscles to make sounds. The hierarchical
organization of the processing makes a rich repertoire of predictions from either
low-level sensory details to complex features or vice versa. For example, the top-down
flow of information influences predictions in lower regions. As the information in
higher regions is invariant with respect to environmental and external conditions, it
can elucidate a more accurate expectation of what is likely to happen next. In an
HTM network, the information does not move only within a particular sensory region,
but can also travel to other sensory regions. For example, auditory information can
make a prediction in the visual domain or other domains (Fig. 1.6).

The HTM model receives continuous inputs from the surrounding environment and
learns in an unsupervised manner (Hawkins et al., 2011). It exploits the structure in
the environment by grouping patterns that belong together. These patterns could for
example reflect inputs from the same object or events unfolding in close proximity
(Hole, 2016). Throughout the learning process, the model creates new representations
and forgets old ones. The representations are invariant with respect to environmental
conditions. A face is recognized as a face irrespective of external factors such as the
lighting or the position. This way, the model is able to form predictions in novel
situations. We discuss the learning algorithm in more detail in section 1.3.3.

auditory inputvisual input

Figure 1.6: HTM regions and columns. A) HTM regions specialized for different sensory
modalities (visual and auditory processing) are organized in a hierarchy. B) Each
one of the HTM regions is composed of a set of minicolumns with active and silent
cells shown in dark and light gray, respectively. Adapted figure from (Hawkins
et al., 2011).
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1.3.2 HTM neurons and synapses

In the HTM model (Hawkins and Ahmad, 2016), excitatory (pyramidal) neurons are
described as abstract three-state systems that can assume an active, a predictive,
or a non-active state (see Fig. 1.7). State updates are performed in discrete time.
The current state is fully determined by the external input in the current time step
and the network state in the previous step. Each HTM neuron is equipped with a
number of dendrites (segments), modeled as coincidence detectors. The dendrites are
grouped into distal, proximal, and apical dendrites. Distal dendrites receive inputs
from other neurons in the local network, whereas proximal dendrites are activated
by external sources. Inputs to proximal dendrites have a large effect on the soma
and can easily trigger the generation of action potentials. Individual synaptic inputs
to a distal dendrite, in contrast, have no direct effect on the soma. If the total
synaptic input to a distal dendritic branch at a given time step is sufficiently large, the
neuron becomes predictive. These dynamics mimic the generation of dendritic action
potentials (dAPs), NMDA spikes (Antic et al., 2010; Schiller et al., 2000; Larkum
et al., 2009), which result in a strong, long-lasting depolarization (∼50–500ms) of
the somata of neocortical pyramidal neurons. Apical dendrites are similar to distal
dendrites but they receive inputs from higher-level regions and encode top-down
expectations.

Synapses on any one of the dendrites have a binary weight and their maturity is
characterized by an additional parameter called permanence. Throughout the learning
process, the permanence value is incremented and decremented using a Hebbian-
like rule. If the permanence is above a certain threshold the synapse is considered
connected (or mature) and otherwise not connected (or immature). For a dendritic
segment to be active, it requires a set of co-located mature synapses (typically 15–20)
simultaneously receiving inputs from a subset of active presynaptic cells.

Feedback Feedback

Context

Context

Feedforward Feedforward

A B

Figure 1.7: HTM neuron. A) A neocortical pyramidal neuron has three sources of inputs:
feedforward (proximal dendrite), context (basal dendrite), and feedback (apical
dendrite). Each dendrite is composed of thousands of excitatory synapses (inset).
B) An HTM neuron with an array of coincident detectors each mimicking the
different pyramidal dendrites. Adapted figure from (Hawkins and Ahmad, 2016).
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1.3.3 HTM cortical learning algorithm

In a first step, an HTM network learns how to map inputs in the environment to
the different minicolumns (see the Spatial Pooler (SP) algorithm in Hawkins et al.,
2011). An external input is connected to proximal dendrites and causes a sparse set
of minicolumns to become active. This set is selected by means of a winner take all
mechanism, i.e., the minicolumns with the strongest input strength activate first and
inhibit the minicolumns with smaller input strength (Hole, 2016). All cells in the
corresponding minicolumns become active as they share the same receptive field. The
algorithm strengthens the permanence between the activated minicolumns and the
corresponding input pattern and decrements the permanence otherwise. This way
similar input patterns get connected to the same set of minicolumns fostering an
invariant representation.

In a second step, the algorithm learns the temporal order of the input patterns
and associates the patterns that occur close to each other in time (see the Temporal
Memory (TM) algorithm in Hawkins et al., 2011). The lateral connectivity between
neurons belonging to the different minicolumns is subject to a form of Hebbian
structural plasticity. Repetitive and consistent sequential presentation of sequence
elements turns immature connections between successively activated minicolumns into
mature connections and hence leads to the formation of sequence-specific subnetworks.

During the learning process, the number of mature connections grows to a point
where the activation of a certain minicolumn by an external input activates the distal
dendrites in a subset of cells in the subsequent minicolumn. The cells with active
distal dendrites are referred to as predictive cells. When receiving an external input,
only predictive cells become active. If no predictive cells exist within the minicolumn,
then all the cells become active. The subset of activated cells is specific to the context,
i.e., activity depends on the entire (or parts of the) stimulus history, and predicts by
activating again a specific subset of distal dendrite in the next minicolumns. In the
presence of a non-anticipated, non-predicted stimulus, the cells in the corresponding
minicolumn fire collectively in a non-sparse manner, thereby signaling a “mismatch”.

HTM cortical algorithm also provides an explanation of how feedback connections
influence the prediction (Hawkins et al., 2011). It proposes that inputs coming
from higher-level cortical areas are integrated by the apical dendrite. These inputs
implement a top-down prediction and constrain the network to adopt a particular
interpretation (Hawkins and Ahmad, 2016). This is in line with a number of studies
suggesting that feedback connections implement a form of expectation (Lamme et al.,
1998).

1.3.4 Functional role of the cortical layers

Hawkins et al. (2011) hypothesize that a variation of the same algorithm is implemented
by the different cortical layers. Here, we give a brief summary of these hypotheses. The
algorithm implemented by layers 2 and 3 is the closest to the HTM cortical learning
algorithm discussed in section 1.3.3. Similar to an HTM network, the receptive fields
of neurons in layer 3 of the primary visual cortex (V1) are known to be context-specific
and can differentiate by using the temporal context. For example, they exhibit a
receptive field that is direction-selective, i.e., subsets of neurons become active when
a line is moving toward the left, and other subsets become active as a response to a
line moving right (Hubel and Wiesel, 1965). Other layers are thought to run a variant
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of the same cortical learning algorithm. Layer 4 learns first-order sequences, i.e., does
not account for the context of prior inputs. It learns to associate similar inputs to the
same set of minicolumns. This form of sequence learning is critical for the formation
of invariant representations, for example against spatial transformations. Neurons
exhibiting such behavior are known in the neuroscience literature as complex cells
(Hubel and Wiesel, 1968). Layer 5 possesses similar learning capabilities as layer 3, but
in addition, it can predict not only “what” will happen next but also “when” it happens.
This is in line with experimental data showing that layer 5 controls movement where
the timing aspect is very critical. Learning the time is also crucial for other tasks such
as replaying music or recognizing spoken words. In contrast to other layers, layer 6 is
the origin of axons that feedback to lower regions.

1.4 neuromorphic hardware

The growing knowledge of neuroscientific concepts and principles has led to a surge
of brain-inspired algorithms able to solve complex problems with minimal energetic
usage (Roy et al., 2019). For example, the Hierarchical Temporal Memory (HTM)
model learns complex sequences and is able to detect anomalies in the data. The
learning in HTM is continuous, unsupervised, and less prone to errors as compared to
conventional computing paradigms (Cui et al., 2016).

This type of algorithm often relies on complex dynamics and is built using a large
number of units with dense connectivity. Implementing these algorithms on traditional
computers requires a substantial amount of energy and long simulation times (Mehonic
and Kenyon, 2022). These issues are also hindering research in neuroscience (Kunkel
et al., 2014). Nowadays, the modeling and the simulation of brain dynamics and
functions are carried out on traditional computers. Simulations of large-scale networks
with plastic, natural density connectivity run on even advanced supercomputers are
substantially slower than biology. Studying biological processes such as learning and
brain development that unfold on long timescales of hours, days, or more by means of
computer simulations, therefore, remains challenging.

One of the main obstacles limiting the efficiency of traditional computers is the
physical separation of memory and data processing. Conventional computers rely
on the von-Neumann architecture, where the central processing unit (CPU) and the
memory are physically separated (von Neumann, 1993). The CPU fetches the data
from memory, executes the corresponding operations, and stores the results back in
the memory. The transfer of the data between the CPU and the memory creates the so-
called memory bottleneck (Mahapatra and Venkatrao, 1999). In the neuronal system,
the memory and the computation are co-located on the same substrate allowing
faster processing of the data and thus enabling superior performance compared to
conventional computers.

An emerging type of hardware that holds promise for efficiently running brain-
inspired algorithms is known as neuromorphic hardware. It mimics the way the brain
processes information and borrows from its mechanisms and computational principles
to realize highly efficient computers (Mead, 1990). This type of hardware allows for
compact and low-power intelligent systems that can be integrated into smartphones or
other devices such as brain-machine interfaces and it can aid neuroscience research by
accelerating the simulation of large-scale networks. Current neuromorphic hardware
is either designed in the digital domain such as SpiNNaker (Furber et al., 2014),
TrueNorth (Merolla et al., 2014), and Loihi (Davies et al., 2018), or in the mixed
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analog/digital domain such as BrainScaleS (Schemmel et al., 2010), Neurogrid (Ben-
jamin et al., 2014), and DYNAPs (Moradi et al., 2018). See the reviews by Schuman
et al. (2017); Shrestha et al. (2022). Most of these architectures rely on CMOS circuits.
While these types of circuits are mature and robust, they are not particularly suited
for neuromorphic computing. The hardware components implementing the neurons
and synapses are often realized using complex circuitry and do not implement learning
rules by themselves. To give an example, in contrast to a biological synapse, which
occupies a surface of 0.001µm2, a CMOS-based synapse occupies 400 times larger
surface (Xia and Yang, 2019).

To overcome these issues, memristive devices were proposed as bioinspired elements
that can directly mimic neurons and synaptic functionalities (Yang et al., 2013; Ielmini
and Wong, 2018; Wang et al., 2020). By integrating these devices into large and
dense networks, neuromorphic hardware offers a possible solution for the emulation
of the connectivity and processing capabilities of biological neural networks. In
contrast to complex CMOS-based synaptic circuits, memristive devices offer a simpler
hardware solution and can be substantially faster than their biological counterpart.
Its programmable non-volatile conduction shows long term potentiation (LTP) and
long term depression (LTD). Furthermore, this type of device is inherently noisy and
heterogeneous. Developing neural network models of biological computation in the
face of noise and heterogeneity enables us to better understand their role in nature.

1.4.1 Memristive devices

The term memristive device was introduced by Chua and Kang (1976) as a theoreti-
cal electrical component that exhibits resistive and memory effects. Later, Strukov
et al. (2008) demonstrated that TiO2-oxide based redox-based random access memory
(ReRAM, Waser et al., 2009) devices show switching characteristics similar to the
theoretically predicted memristor (Chua, 1971). Although the physical mechanism
and the detailed switching mechanisms differ substantially (Valov and Kozicki, 2013),
the term memristive device nowadays is used for a whole family of resisting switch-
ing devices, including ReRAM, phase change memory (PCM, Raoux et al., 2009),
magnetoresistive random access memory (MRAM, Hosomi et al., 2005), and floating
gate transistors (Hasler et al., 1994). The reviews by Wang et al. (2020); Zhu et al.
(2020) give a summary of the different mechanisms exploited in these devices. ReRAM
devices stand out at many aspects, they are highly scalable, energy-efficient, fast, and
can be used to mimic learning mechanisms in the brain. In section 1.4.3, we give an
overview of the different types of ReRAM devices and their working principles.

Memristive devices are, typically, composed of a metal-dielectric-metal stack (Wang
et al., 2020). Similar to biological synapses, their resistance is plastic, non-volatile, and
exhibits a response to the stimulus that is history-dependent. They can be programmed
into different states (e.g., resistance), where the data is stored and represented. Due
to their small size and scalability, these devices are highly suitable for integration
into densely packed 2D or 3D crossbar arrays, which has resulted in their adoption in
various neuromorphic applications (Pedretti et al., 2017; Wang et al., 2018).

Memristive devices are known, however, by their nonideal behavior including
variability and nonlinearity in the update curves as well as limited resistance range
and precision (Zhao et al., 2020; Fouda et al., 2020). These nonidealities can be
detrimental if incorporated into networks (Fouda et al., 2020), such as Artificial
Neural Networks (ANNs). A number of training algorithms have been developed to
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mitigate these issues (Chen et al., 2015a; Gokmen and Haensch, 2020). However,
since these imperfections are characteristics of biological synapses, current research is
investigating how the biological system carries out reliable computation despite this
latter. A prominent idea is the use of variability for probabilistic sampling (Neftci
et al., 2016).

A B

Figure 1.8: Memristive technologies. A) Sketches of different memristive devices: PCM,
RRAM, STT-MRAM, and floating-gate transistor. B) Crossbar array of memris-
tive devices. Figures in panels A and B are reprinted with permission from (Roy
et al., 2019).

1.4.2 Crossbar arrays

The neocortex is known by its massive and dense connectivity. Each neuron has on
average 10.000 synapses (Abeles, 1991). The field of neuromorphic hardware proposes
that such connectivity may be realized using a dense network of memristive devices,
i.e., an architecture known as crossbar arrays (see Fig. 1.8B). Due to the energy
efficiency of memristive devices, this approach has also the potential to close the gap
between the energy consumption of computers and the brain (Burr et al., 2016; Xia
and Yang, 2019).

In the biological network, the information travels from one neuron to the next via
synapses. The crossbar array mimics this operation by a multiplication between the
presynaptic input delivered as a voltage pulse and the conductance of the memristive
device, which acts as a synapse. More specifically, crossbar arrays consist of multiple
intersecting horizontal and vertical lines. The current flowing through the memristive
device in each cross point, is determined by Ohm’s law expressed as a multiplication
between the input voltage and the memristive conductance. By means of Kirchhoff’s
law, the current induced at each vertical line is summed across all currents flowing
through the memristive elements (Ielmini and Wong, 2018; Xia and Yang, 2019). Unlike
von Neumann type of computing, a crossbar array can perform this computation in
one pass without a transfer of any memory making them fast and energy efficient.
Moreover, the small size of memristive elements allows for highly scalable hardware.
In recent crossbar architectures, a CMOS transistor is connected in series with the
memristive element (1T1R architecture). The additional transistor permits precise
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operation and control of the memristive devices and helps suppress the sneak path
effect, i.e., the current flowing through unselected cells (Xia and Yang, 2019).

The conception and development of crossbar arrays are still facing a number of
challenges. Fabrication of large scale arrays is currently not possible due to device
variations and technological limitations (Xia and Yang, 2019; Li et al., 2021). Moreover,
the crossbar arrays rely on digital, peripheral circuits for updating and controlling
the memristive synapses. This additional circuitry increases substantially the energy
consumption and slows down the processing time. Future works aim at upscaling
these arrays, while efficiently integrating the peripheral circuitry.

1.4.3 Redox-based random access memory devices

Redox-based random access memory (ReRAM) devices are composed of a resistive
metal oxide “I” sandwiched between two metal conductors “M” functioning as electrodes
(Waser, 2012b). After an initial electroforming cycle, the device can switch between
two or more resistance states, either from high to low, i.e., SET operation, or from
low to high, i.e., RESET operation. The switching procedure of the device can be
either unipolar or bipolar. In bipolar type devices, the SET and RESET operations
require different voltage polarities. In unipolar devices, the same voltage polarity can
be used for both the SET and RESET operations. Typically, ReRAM plasticity is
recorded as the change in resistance as a function of the amplitude of an applied
voltage pulse. For example, the ReRAM device can be used to emulate STDP, by
appropriate shaping of the pre- and postsynaptic action potentials, i.e., the applied
pulse forms (Zamarreño-Ramos et al., 2011; Wang et al., 2015). Alternatively, the
device resistance can be recorded based on the number of identical voltage pulses.

The mechanisms of this resistance modification are governed by electrochemical pro-
cesses and the movement of metal ions or oxygen vacancies (Waser, 2012a; Abbaspour
et al., 2018). The type of resistive switching mechanism in ReRAMs is influenced by
the material composition of each layer in the stack and can be driven by electrochem-
ical metallization memory effect (ECM), valence change memory effect (VCM), or
thermochemical memory effect (TCM). In the following, we give an overview of the
mechanism involved in these devices, for details see (Waser, 2012b; Valov, 2013). In
ECM cells, the SET process causes the metal ions to move from an electrochemically
active electrode (such as Ag) to the counter electrode. Upon arrival, the ions reduce
into atoms forming a filament extending toward the active electrode. To RESET the
device, a negative voltage is applied, which breaks the filament (Valov and Kozicki,
2013; Waser and Aono, 2007). On the other hand, in VCM ReRAM, the filaments
are formed by extracting oxygen vacancies from the I layer. The conductivity of the
device can be modulated by changing the electronic properties of the interface between
the filament and the active electrode. The polarity of the SET or RESET pulses
increases or decreases the concentration of oxygen vacancies, and thus, an increase
or decrease of the conductivity (Waser, 2012b). In contrast to VCM and ECM cells,
the switching of TCM cells is unipolar, i.e., the SET and RESET operations use the
same voltage polarity. During the SET, the flow of current in the cell causes the cell
to heat up. The current is further increased by the heat, which leads to a positive
feedback loop between these two quantities leading to a thermoelectric breakdown
event (Waser, 2012a). This results in local redox reactions and the formation of a
conducting filament turning the cell into the ON-state. During RESET, the conducting
filament is dissolved due to a substantial increase in the temperature caused by a high
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current flow resulting from an application of a voltage (Ielmini et al., 2011; Waser,
2012a).

In this thesis, we focus on VCM ReRAMs as synaptic elements in neuromorphic
hardware and give more details on their switching mechanisms in the next section.

1.4.4 Valance change memory devices

The VCM ReRAM device consists of a thin (3–10 nm) insulating metal-oxide film
sandwiched between a low workfunction, ohmic electrode (e.g., Zr), and a high
workfunction, blocking Schottky-interface electrode (e.g., Pt). An initial electroforming
step results in the formation of conducting filaments composed of oxygen vacancies.
This step requires a high voltage, which extracts the oxygen atoms from the oxide layer
creating oxygen vacancies. The filaments, referred in the literature as the plug, extend
from the ohmic electrode toward the blocking interface, where they leave a gap called
the disc (Fig. 1.9). The gap is initially fully oxidized creating an energy barrier, which
gives rise to the OFF state (Waser, 2012a). During further operation, the movement
of the oxygen vacancies in the disc area changes the device’s electrical properties.
Applying a SET operation increases the concentration of oxygen vacancies at the
blocking interface, which lowers the energetic barrier and increases the conductivity.
On the other hand, the RESET process repels the oxygen vacancies from the interface
and decreases the conductivity again. Recording the voltage at the active interface
during the SET and RESET processes results in a switching polarity known as the
counter-eight-wise shape (see Fig. 1.9).

In another type of VCM device, the switching occurs homogeneously over the whole
electrode/oxide interface (Sawa, 2008). The oxide is initially conductive and forms an
energetic barrier at the interface. The applied voltage causes the oxygen ions to drift
toward or away from the interface. This results in changing the height of the energetic
barrier and thus modulation of the resistance. This type of switching is observed in
perovskite-type devices such as PCMO (Li et al., 2009).

1.5 scope and structure of this thesis

The primary focus of this thesis is to uncover the potential mechanisms underlying
sequence prediction and recall in the neocortex and develop a mapping of these mech-
anisms on neuromorphic hardware. Throughout the thesis, we answer the following
questions.

Is it possible to implement the Temporal Memory (TM) component of
the HTM model using biological ingredients in continuous time dynamics?
The TM model proposed by Hawkins and Ahmad (2016) constitutes a sequence
processing algorithm inspired by the cortical circuitry. It learns high-order sequences
in an unsupervised, continuous manner using local learning rules. Its capacity benefits
from sparsity in the activity, and therefore provides a highly energy-efficient sequence
learning and prediction mechanism. In its original implementation, however, the TM
model is based on abstract neuron and synapse models updated in discrete time.
Furthermore, some of its learning dynamics can hardly be reconciled with biology. A
verification of this model by experimental data is therefore limited. Chapter 2 seeks
to fill this gap by providing a biologically inspired, continuous-time implementation of
the TM model. We further assess whether we can replace its learning rules with more
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Figure 1.9: The SET and RESET processes of VCM device. The insets A to D
depict the switching behavior of a Pt/ZrOx/Zr stack, where Pt depicts the active
electrode (AE) and Zr the ohmic electrode (OE). The oxygen vacancies and
Zr ions are shown using green and purple spheres, respectively. Reprinted with
permission from (Waser, 2012a).

biologically plausible plasticity mechanisms. By mapping the TM model ingredients
and observables to those known from biology, we seek to foster its verifiability based
on electrophysiological and behavioral data. This investigation identifies biological
mechanisms and principles crucial for sequence processing. In the following, we refer
to our reformulated model as the spiking Temporal Memory (spiking TM) model.

Can the spiking TM model replay learned sequences in response to an
ambiguous cue using different strategies? Animals rely on different decision
strategies when faced with ambiguous or uncertain cues. Depending on the context,
decisions may be biased towards events that were most frequently experienced in
the past, or be more explorative. A particular type of decision making central to
cognition is sequential memory replay in response to ambiguous cues. In response
to an ambiguous cue, the spiking TM model deterministically replays the sequence
shown most frequently during training. Chapter 3 investigates how different replay
strategies can be achieved by adjusting the noise characteristics. We study two types of
noise: random synaptic bombardment and random stimulus locking to spatiotemporal
oscillations.

Is it possible to use memristive devices as a replacement of the biological
synapses in the spiking TM model? Memristive devices have been identified as
potential synaptic elements in neuromorphic hardware. They permit scalability, are
energy efficient and fast, and can be used to implement biological plasticity rules. As
a step towards a memristive hardware implementation of the spiking TM, chapter 4
assesses the performance of the model by adapting its plasticity curves to those
observed in memristive devices. The investigation includes two types of memristive
devices: (i) an analog switching memristive device, where the conductance gradually
changes between a low conductance state (LCS) and a high conductance state (HCS),
and (ii) a binary switch memristive device, where the conductance abruptly changes
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between the LCS and the HCS. We study the performance characteristics of the
sequence learning model as a function of different device properties.

What algorithmic adaptations are needed for a full electronic circuit
implementation of the spiking TM model, where the synaptic connectivity
is realized by a memristive crossbar array? For a full electronic circuit implemen-
tation of the model, it is not sufficient to show only that synapses can be replaced by
memristive devices (chapter 4). Memristive devices can emulate only certain aspects of
the synapse dynamics. A full implementation of the plasticity dynamics, for example,
requires additional hardware. A priori it is not clear whether the original model can
be mapped to such hardware in a one-to-one manner. Certain hardware constraints
may require certain adaptations. We address these points in chapter 5.

Chapter 6 provides short summarizing answers to each of the questions above and
discusses future work. Chapter 7 includes further experiments assessing the spiking
TM model performance and provides model parameters.
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2.1 introduction

The majority of existing biologically motivated models of sequence learning addresses
sequence replay (Maes et al., 2020; Klos et al., 2018; Cone and Shouval, 2021; Klampfl
and Maass, 2013). Sequence prediction and mismatch detection are rarely discussed.
The Hierarchical Temporal Memory (HTM) (Hawkins et al., 2011) combines all three
aspects: sequence prediction, mismatch detection and replay. Its Temporal Memory
(TM) model (Hawkins and Ahmad, 2016) learns complex context-dependent sequences
in a continuous and unsupervised manner using local learning rules (Cui et al., 2016),
and is robust against noise and failure in system components. Furthermore, it explains
the functional role of dendritic action potentials (dAPs) and proposes a mechanism
of how mismatch signals can be generated in cortical circuits (Hawkins and Ahmad,
2016). Its capacity benefits from sparsity in the activity, and therefore provides a
highly energy efficient sequence learning and prediction mechanism (Ahmad and
Hawkins, 2015).

The original formulation of the TM model is based on abstract models of neurons and
synapses with discrete-time dynamics. Moreover, the way the network forms synapses
during learning is difficult to reconcile with biology. Here, we propose a continuous-
time implementation of the TM model derived from known biological principles such as
spiking neurons, dAPs, lateral inhibition, spike-timing-dependent structural plasticity,
and homeostatic control of synapse growth. This model successfully learns, predicts
and replays high-order sequences, where the prediction of the upcoming element is
not only dependent on the current element, but also on the history. Bringing the
model closer to biology allows for testing its hypotheses based on experimentally
accessible quantities such as synaptic connectivity, synaptic currents, transmembrane
potentials, or spike trains. Reformulating the model in terms of continuous-time
dynamics moreover enables us to address timing-related questions, such as the role of
the sequence speed for the prediction performance and the replay speed.

The study is organized as follows: the Methods describe the task, the network
model, and the performance measures. The Results illustrate how the interaction of
the model’s components gives rise to context dependent predictions and sequence
replay, and evaluate the sequence processing speed and prediction performance. The
Discussion finally compares the spiking TM model to other biologically motivated
sequence learning models, summarizes limitations, and provides suggestions for future
model extensions.

2.2 methods

In the following, we provide an overview of the task and the training protocol, the
network model, and the task performance analysis. A detailed description of the model
and parameter values can be found in Tables 2.1 and 7.1.

2.2.1 Task and training protocol

In this study, we develop a neuronal architecture that can learn and process an
ensemble of S sequences si = {ζi,1, ζi,2,. . . , ζi,Ci} of ordered discrete items ζi,j with
Ci ∈ N+, i ∈ [1, . . . , S]. The length of sequence si is denoted by Ci. Throughout this
study, the sequence elements ζi,j ∈ {A,B,C, . . .} are represented by Latin characters,
serving as placeholders for arbitrary discrete objects or percepts, such as images,
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numbers, words, musical notes, or movement primitives (Fig. 2.1A). The order of the
sequence elements within a given sequence represents the temporal order of item
occurrence.

The tasks to be solved by the network consist of

i) predicting subsequent sequence elements in response to the presentation of other
elements,

ii) detecting unanticipated stimuli and generating a mismatch signal if the predic-
tion is not met, and

iii) autonomously replaying sequences in response to a cue signal after learning.

The architecture learns sequences in a continuous manner: the network is exposed
to repeated presentations of a given ensemble of sequences (e.g., {A,D,B,E} and
{F,D,B,C} in Fig. 2.1B). In the prediction mode (task i) and ii)), there is no distinction
between a “training” and a “testing” phase. At the beginning of the learning process, all
presented sequence elements are unanticipated and do not lead to a prediction (diffuse
shades in Fig. 2.1B, left). As a consequence, the network generates mismatch signals
(flash symbols in Fig. 2.1B, left). After successful learning, the presentation of some
sequence element leads to a prediction of the subsequent stimulus (colored arrows
in Fig. 2.1B). In case this subsequent stimulus does not match the prediction, the
network generates a mismatch signal (red arrow and flash symbol in Fig. 2.1B, right).
The learning process is entirely unsupervised, i.e., the prediction performance does
not affect the learning. As described in section 2.3.4, the network can be configured
into a replay mode where the network autonomously replays learned sequences in
response to a cue signal (task iii)).

In general, the sequences in this study are “high-order” sequences, similar to those
generated by a high-order Markov chain; the prediction of an upcoming sequence
element requires accounting for not just the previous element, but for (parts of) the
entire sequence history, i.e., the context. Sequences within a given set of training data
can be partially overlapping; they may share certain elements or subsequences (such
as in {A,D,B,E} and {F,D,B,C}). Similarly, the same sequence element (but not the
first one, see section 6.2.2) may occur multiple times within the same sequence (such
as in {A,D,B,D}). Throughout this work, we use two sequence sets:

sequence set i: For an illustration of the learning process and the network
dynamics in the prediction (section 2.3.1) and in the replay mode (section 2.3.4),
as well as for the investigation of the sequence processing speed (section 2.3.3), we
start with a simple set of two partially overlapping sequences s1 = {A,D,B,E} and
s2 = {F,D,B,C} (see Fig. 2.1B).

sequence set i i: For a more rigorous evaluation of the sequence predic-
tion performance (section 2.3.2), we consider a set of S = 6 high-order sequences:
s1 = {E,N,D,I,J}, s2 = {L,N,D,I,K}, s3 = {G,J,M,C,N}, s4 = {F,J,M,C,I}, s5 =
{B,C,K,H,I}, s6 = {A,C,K,H,F}, each consisting of C = 5 elements. The complexity
of this sequence ensemble is comparable to the one used in (Hawkins and Ahmad,
2016), but is more demanding in terms of the high-order context dependence.

Results for two additional sequence sets are summarized in the Supporting informa-
tion. The set used in Fig. 7.2 is composed of sequences with recurring first elements.
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In Fig. 2.10, we show results for longer sequences with a larger number of overlapping
elements.
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Figure 2.1: Sketch of the task and the learning protocol. A) The neuronal network
model developed in this study learns and processes sequences of ordered discrete
elements, here represented by characters “A”, “B”, “C”, . . . . Sequence elements may
constitute arbitrary discrete items, such as musical notes, numbers, or images.
The order of sequence elements represents the temporal order of item occurrence.
B) After repeated, consistent presentation of sets of high-order sequences, i.e.,
sequences with overlapping characters (here, {A,D,B,E} and {F,D,B,C}), the
model learns to predict subsequent elements in response to the presentation of
other elements (blue arrows) and to detect unanticipated elements by generating
a mismatch signal if the prediction is not met (red arrows and flash symbols). The
learning process is continuous and unsupervised. At the beginning of the learning
process, all presented elements are unanticipated and hence trigger the generation
of a mismatch signal. The learning progress is monitored and quantified by the
prediction error (see section 2.2.3).

2.2.2 Network model

network structure. The network consists of a population E of NE excitatory
(“E”) and a population I of NI inhibitory (“I”) neurons. The neurons in E are randomly
and recurrently connected, such that each neuron in E receives KEE excitatory inputs
from other randomly chosen neurons in E . Note that these “EE” connections are
potential connections in the sense that they can be either “mature” (“effective”) or
“immature”. Immature connections have no effect on target neurons (see below). In
the neocortex, the degree of potential connectivity depends on the distance between
the neurons (Stepanyants et al., 2007). It can reach probabilities as high as 90% for
neighboring neurons, and decays to 0% for neurons that are farther apart. In this work,
the connection probability is chosen such that the connectivity is sufficiently dense,
allowing for the formation of specific subnetworks, and sufficiently sparse for increasing
the network capacity (see paragraph “Constraints on potential connectivity” below).
The excitatory population E is subdivided into M non-overlapping subpopulations
M1, . . . ,MM , each of them containing neurons with identical stimulus preference
(“receptive field”; see below). Each subpopulation Mk thereby represents a specific
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element within a sequence (Figs 2.2A and 2.2B). In the original TM model (Hawkins
and Ahmad, 2016), a single sequence element is represented by multiple (L) subpopu-
lations (“minicolumns”). For simplicity, we identify the number M of subpopulations
with the number of elements required for a specific set of sequences, such that each
sequence element is encoded by just one subpopulation (L = 1). All neurons within a
subpopulation Mk are recurrently connected to a subpopulation-specific inhibitory
neuron k ∈ I. The inhibitory neurons in I are mutually unconnected. The subdivi-
sion of excitatory neurons into stimulus-specific subpopulations defines how external
inputs are fed to the network (see next paragraph), but does not affect the potential
excitatory connectivity, which is homogeneous and not subpopulation specific.

external inputs. During the prediction mode, the network is driven by an
ensemble X = {x1, . . . , xM} of M external inputs, representing inputs from other brain
areas, such as thalamic sources or other cortical areas. Each of these external inputs
xk represents a specific sequence element (“A”, “B”, . . . ), and feeds all neurons in the
subpopulation Mk with the corresponding stimulus preference. The occurrence of a
specific sequence element ζi,j at time ti,j is modeled by a single spike xk(t) = δ(t− ti,j)
generated by the corresponding external source xk. Subsequent sequence elements
ζi,j and ζi,j+1 within a sequence si are presented with an inter-stimulus interval
∆T = ti,j+1 − ti,j . Subsequent sequences si and si+1 are separated in time by an
inter-sequence time interval ∆Tseq = ti+1,1− ti,Ci . During the replay mode, we present
only a cue signal encoding for first sequence elements ζi,1 at times ti,1. Subsequent
cues are separated in time with an inter-cue time interval ∆Tcue = ti+1,1 − ti,1. In the
absence of any other (inhibitory) inputs, each external input spike is strong enough to
evoke an immediate response spike in all target neurons i ∈ Mk. Sparse activation of
the subpopulations in response to the external inputs is achieved by a winner-take-all
mechanism implemented in the form of inhibitory feedback (see section 2.3.1).

neuron and synapse model. In the original TM model (Hawkins and
Ahmad, 2016), excitatory (pyramidal) neurons are described as abstract three-state
systems that can assume an active, a predictive, or a non-active state. State updates
are performed in discrete time. The current state is fully determined by the external
input in the current time step and the network state in the previous step. Each TM
neuron is equipped with a number of dendrites (segments), modeled as coincidence
detectors. The dendrites are grouped into distal and proximal dendrites. Distal
dendrites receive inputs from other neurons in the local network, whereas proximal
dendrites are activated by external sources. Inputs to proximal dendrites have a large
effect on the soma and trigger the generation of action potentials. Individual synaptic
inputs to a distal dendrite, in contrast, have no direct effect on the soma. If the total
synaptic input to a distal dendritic branch at a given time step is sufficiently large, the
neuron becomes predictive. This dynamic mimics the generation of dendritic action
potentials (dAPs), NMDA spikes (Antic et al., 2010; Schiller et al., 2000; Larkum
et al., 2009)), which result in a long-lasting depolarization (∼50-500ms) of the somata
of neocortical pyramidal neurons.

In contrast to the original study (see section 1.3.2), the model proposed here
employs neurons with continuous-time dynamics. For all types of neurons, the temporal
evolution of the membrane potential is given by the leaky integrate-and-fire model
Eq (2.10). The total synaptic input current of excitatory neurons is composed of
currents in distal dendritic branches, inhibitory currents, and currents from external
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sources. Inhibitory neurons receive only inputs from excitatory neurons in the same
subpopulation. Individual spikes arriving at dendritic branches evoke alpha-shaped
postsynaptic currents, see Eq (2.12). The dendritic current includes an additional
nonlinearity describing the generation of dAPs: if the dendritic current IED exceeds a
threshold θdAP, it is instantly set to a the dAP plateau current IdAP, and clamped
to this value for a period of duration τdAP, see Eq (2.16). This plateau current leads
to a long lasting depolarization of the soma (see Fig. 2.3B). The dAP threshold
θdAP is chosen such that the co-activation of γ neurons with mature connections to
the target neuron reliably triggers a dAP. In this work, we use a single dendritic
branch per neuron. However, the model could easily be extended to include multiple
dendritic branches. External and inhibitory inputs to excitatory neurons as well as
excitatory inputs to inhibitory neurons trigger exponential postsynaptic currents, see
Eq (2.13–2.15). Similar to the original implementation, an external input strongly
depolarizes the neurons and causes them to fire. To this end, the external weights JEX
are chosen to be supra-threshold (see Fig. 2.3A). Inhibitory interactions implement
the WTA described in section 2.3.1. The weights JIE of excitatory synapses on
inhibitory neurons are chosen such that the collective firing of a subset of ρ excitatory
neurons in the corresponding subpopulation causes the inhibitory neuron to fire. The
weights JEI of inhibitory synapses on excitatory neurons are strong such that each
inhibitory spike prevents all excitatory neurons in the same subpopulation that have
not generated a spike yet from firing. All synaptic time constants, delays and weights
are connection-type specific (see Table 2.1).

plasticity dynamics. Both in the original (Hawkins and Ahmad, 2016) and
in our model, the lateral excitatory connectivity between excitatory neurons (EE
connectivity) is dynamic and shaped by a Hebbian structural plasticity mechanism
mimicking principles known from the neuroscience literature (Liao et al., 1995; Wu
et al., 1996; Lüscher et al., 2000; Nevian and Sakmann, 2004; Deger et al., 2012). All
other connections are static. The dynamics of the EE connectivity is determined by the
time evolution of the permanences Pij (i, j ∈ E), representing the synapse maturity,
and the synaptic weights Jij . Unless the permanence Pij exceeds a threshold θP, the
synapse {j → i} is immature, with zero synaptic weight Jij = 0. Upon threshold
crossing, Pij ≥ θP, the synapse becomes mature, and its weight is assigned a fixed value
Jij = W (∀i, j). Overall, the permanences evolve according to a Hebbian plasticity
rule: the synapse {j → i} is potentiated, i.e., Pij is increased, if the activation of the
postsynaptic cell i is immediately preceded by an activation of the presynaptic cell j.
Otherwise, the synapse is depressed, i.e., Pij is decreased. At the beginning of the
learning process or during relearning, the activity in the individual subpopulations is
non-sparse. Hebbian learning alone would therefore lead to the strengthening of all
existing synapses between two subsequently activated subpopulations, irrespective of
the context these two subpopulations participate in. After learning, the subsets of
neurons that are activated by a sequence element recurring in different sequences would
therefore largely overlap. As a consequence, it becomes harder to distinguish between
different contexts (histories) based on the activation patterns of these subsets. The
original TM model (Hawkins and Ahmad, 2016) avoids this loss of context sensitivity
by restricting synaptic potentiation to a small subset of synapses between a given
pair of source and target subpopulations: if there are no predictive target neurons,
the original algorithm selects a “matched” neuron from the set of active postsynaptic
cells as the one being closest to becoming predictive, i.e., the neuron receiving the



2.2 methods 27

largest number of synaptic inputs on a given dendritic branch from the set of active
presynaptic cells (provided this number is sufficiently large). Synapse potentiation is
then restricted to this set of matched neurons. In case there are no immature synapses,
the “least used” neuron or a randomly chosen neuron is selected as the “matched” cell,
and connected to the winner cell of the previously active subpopulation. Restricting
synaptic potentiation to synapses targeting such a subset of “matched” neurons is
difficult to reconcile with biology. It is known that inhibitory inputs targeting the
dendrites of pyramidal cells can locally suppress backpropagating action potentials
and, hence, synaptic potentiation (Müllner et al., 2015). A selection mechanism based
on such local inhibitory circuits would however involve extremely fast synapses and
require fine-tuning of parameters. The model presented in this work circumvents
the selection of “matched” neurons and replaces this with a homeostatic mechanism
controlled by the postsynaptic dAP rate. In the following, the specifics of the plasticity
dynamics used in this study are described in detail.

Within the interval [Pmin,ij , Pmax], the dimensionless permanences Pij(t) evolve
according to a combination of an additive spike-timing-dependent plasticity (STDP)
rule (Morrison et al., 2008) and a homeostatic component (Abbott and Nelson, 2000;
Tetzlaff et al., 2011):

P−1
max

dPij

dt
= λ+

∑
{t∗i }′

xj(t)δ(t− [t∗i + dEE])I(t
∗
i ,∆tmin,∆tmax)

− λ−
∑
{t∗j}

yiδ(t− t∗j )

+ λh
∑
{t∗i }′

(
z∗ − zi(t)

)
δ(t− t∗i )I(t

∗
i ,∆tmin,∆tmax).

(2.1)

At the boundaries Pmin,ij and Pmax, Pij(t) is clipped. While the maximum permanences
Pmax are identical for all EE connections, the minimal permanences Pmin,ij are
uniformly distributed in the interval [P0,min, P0,max] to introduce a form of persistent
heterogeneity. The first term on the right-hand side of Eq (2.1) corresponds to the
spike-timing-dependent synaptic potentiation triggered by the postsynaptic spikes
at times t∗i ∈ {t∗i }′. Here, {t∗i }′ = {t∗i |∀t∗j : t∗i − t∗j + dEE ≥ ∆tmin} denotes the set of
all postsynaptic spike times t∗i for which the time lag t∗i − t∗j + dEE exceeds ∆tmin for
all presynaptic spikes t∗j . The indicator function I(t∗i ,∆tmin,∆tmax) ensures that the
potentiation (and the homeostasis; see below) is restricted to time lags t∗i − t∗j + dEE
in the interval (∆tmin,∆tmax) to avoid a growth of synapses between synchronously
active neurons belonging to the same subpopulation, and between neurons encoding
for the first elements in different sequences; see Eq (2.17). Note that the potentiation
update times lag the somatic postsynaptic spike times by the delay dEE, which is here
interpreted as a purely dendritic delay (Morrison et al., 2007, 2008). The potentiation
increment is determined by the dimensionless potentiation rate λ+, and the spike
trace xj(t) of the presynaptic neuron j, which is updated according to

dxj
dt

= −τ−1
+ xj(t) +

∑
t∗j

δ(t− t∗j ). (2.2)

The trace xj(t) is incremented by unity at each spike time t∗j , followed by an exponential
decay with time constant τ+. The potentiation increment ∆Pij at time t∗i therefore
depends on the temporal distance between the postsynaptic spike time t∗i and all
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presynaptic spike times t∗j ≤ t∗i (STDP with all-to-all spike pairing; (Morrison et al.,
2008)). The second term in Eq (2.1) represents synaptic depression, and is triggered
by each presynaptic spike at times t∗j ∈ {t∗j}. The depression decrement yi = 1 is
treated as a constant, independently of the postsynaptic spike history. The depression
magnitude is parameterized by the dimensionless depression rate λ−. The third term
in Eq (2.1) corresponds to a homeostatic control triggered by postsynaptic spikes at
times t∗i ∈ {t∗i }′. Its overall impact is parameterized by the dimensionless homeostasis
rate λh. The homeostatic control enhances or reduces the synapse growth depending on
the dAP trace zi(t) of neuron i, the low-pass filtered dAP activity updated according
to

dzi
dt

= −τ−1
h zi(t) +

∑
k

δ(t− tkdAP,i). (2.3)

Here, τh represents the homeostasis time constant, and tkdAP,i the onset time of
the kth dAP in neuron i. According to Eq (2.1), synapse growth is boosted if the
dAP activity zi(t) is below a target dAP activity z∗. Conversely, high dAP activity
exceeding z∗ reduces the synapse growth (Fig. 2.4). This homeostatic regulation of the
synaptic maturity controlled by the postsynaptic dAP activity constitutes a variation
of previous models (Abbott and Nelson, 2000; Tetzlaff et al., 2011) describing ’synaptic
scaling’ (Turrigiano et al., 1998; Turrigiano and Nelson, 2004; Turrigiano, 2008). It
counteracts excessive synapse formation during learning driven by Hebbian structural
plasticity. In addition, the combination of Hebbian plasticity and synaptic scaling can
introduce a competition between synapses (Abbott and Nelson, 2000; Tetzlaff et al.,
2011). Here, we exploit this effect to ensure that synapses are generated in a context
specific manner, and thereby reduce the overlap between neuronal subpopulations
activated by the same sequence element occurring in different sequences. To this end,
the homeostasis parameters z∗ = 1 and τh are chosen such that each neuron tends to
become predictive, i.e., generate a dAP, at most once during the presentation of a
single sequence ensemble of total duration ((C−1)∆T +∆Tseq)S (see Network model).
The time constant τh is hence adapted to the parameters of the task. For sequence sets
I and II and the default inter-stimulus interval ∆T = 40ms, it is set to τh = 440ms
and τh = 1560ms, respectively. In section section 2.3.3, we study the effect of the
sequence speed (inter-stimulus interval ∆T ) on the prediction performance for a given
network parameterization. For these experiments, τh = 440ms is therefore fixed even
though the inter-stimulus interval ∆T is varied.

The prefactor P−1
max in Eq (2.1) ensures that all learning rates λ+, λ− and λh are

measured in units of the maximum permanence Pmax.

constraints on potential connectivity. The sequence processing
capabilities of the proposed network model rely on its ability to form sequence specific
subnetworks based on the skeleton provided by the random potential connectivity.
On the one hand, the potential connectivity must not be too diluted to ensure that a
subset of neurons representing a given sequence element can establish sufficiently many
mature connections to a second subset of neurons representing the subsequent element.
On the other hand, a dense potential connectivity would promote overlap between
subnetworks representing different sequences, and thereby slow down the formation
of context specific subnetworks during learning (see section 2.3.1). Here, we therefore
identify the minimal potential connection probability p guaranteeing the existence of
network motifs with a sufficient degree of divergent-convergent connectivity.



2.2 methods 29

Consider the subset Pij of ρ excitatory neurons representing the jth sequence
element ζij in sequence si (see Task and training protocol and Network model). During
the learning process, the plasticity dynamics needs to establish mature connections
from Pij to a second subset Pi,j+1 of neurons in another subpopulation representing the
subsequent element ζi,j+1. Each neuron in Pi,j+1 must receive at least c = ⌈θdAP/W ⌉
inputs from Pij to ensure that synchronous firing of the neurons in Pij can evoke a
dAP after synapse maturing. For a random, homogeneous potential connectivity with
connection probability p, the probability of finding these c potential connections for
some arbitrary target neuron is given by

q(c; ρ, p) =

ρ∑
k=c

(
ρ

k

)
pk(1− p)ρ−k. (2.4)

For a successful formation of sequence specific subnetworks during learning, the sparse
subset Pij of presynaptic neurons needs to recruit at least ρ targets in the set of nE
neurons representing the subsequent sequence element (Fig. 2.5A). The probability of
observing such a divergent-convergent connectivity motif is given by

u(ρ; c, p, nE) =

nE∑
l=ρ

(
nE

l

)
ql(1− q)nE−l. (2.5)

Note that the above described motif does not require the size of the postsynaptic
subset Pi,j+1 to be exactly ρ. Eq (2.5) constrains the parameters p, c, nE and ρ to
ensure such motifs exist in a random network. Fig. 2.5B illustrates the dependence of
the motif probability u on the connection probability p for our choice of parameters
nE, c, and ρ. For p ≥ 0.2, the existence of the divergent-convergent connectivity motif
is almost certain (u ≈ 1). For smaller connection probabilities p < 0.2, the motif
probability quickly vanishes. Hence, p = 0.2 constitutes a reasonable choice for the
potential connection probability.

network realizations and initial conditions. For every network
realization, the potential connectivity and the initial permanences are drawn randomly
and independently. All other parameters are identical for different network realizations.
The initial values of all state variables are given in Table 2.1 and Table 7.1.

simulation details. The network simulations are performed in the neural
simulator NEST (Gewaltig and Diesmann, 2007) under version 3.0 (Hahne et al., 2021).
The differential equations and state transitions defining the excitatory neuron dynamics
are expressed in the domain specific language NESTML (Plotnikov et al., 2016;
Nagendra Babu et al., 2021) which generates the required C++ code for the dynamic
loading into NEST. Network states are synchronously updated using exact integration
of the system dynamics on a discrete-time grid with step size ∆t (Rotter and Diesmann,
1999). The full source code for the implementation with a list of other software
requirements is available at Zenodo: https://doi.org/10.5281/zenodo.5578212.

2.2.3 Task performance measures

To assess the network performance, we monitor the dendritic currents reporting
predictions (dAPs) as well as the somatic spike times of excitatory neurons. To
quantify the prediction error, we identify for each last element ζi,Ci in a sequence si all

https://doi.org/10.5281/zenodo.5578212
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excitatory neurons that have generated a dAP in the time interval (ti,Ci −∆T, ti,Ci),
where ti,Ci and ∆T denote the time of the external input corresponding to the last
sequence element ζi,Ci and the inter-stimulus interval, respectively (see Task and
training protocol and Network model). All subpopulations Mk with at least ρ/2
neurons generating a dAP are considered “predictive”. The prediction state of the
network is encoded in an M dimensional binary vector o, where ok = 1 if the kth
subpopulation is predictive, and ok = 0 else. The

prediction error =
1

L

√√√√ M∑
k=1

(ok − vk)2 (2.6)

is defined as the Euclidean distance between o and the binary target vector v
representing the pattern of external inputs for each last element ζi,Ci , normalized by
the number L of subpopulations per sequence element. Furthermore, we assess the

false positive rate =
1

L

M∑
k=1

Θ(ok − vk) (2.7)

and the

false negative rate =
1

L

M∑
k=1

Θ(vk − ok), (2.8)

where Θ(·) denotes the Heaviside function. In addition to these performance measures,
we monitor for each last sequence element the level of sparsity by measuring the
ratio between the number of active neurons and the total number LnE of neurons
representing this element. During learning, we expose the network repetitively to the
same set {s1, . . . , sS} of sequences for a number of training episodes K. To obtain
the total prediction performance in each episode, we average the prediction error, the
false negative and false positive rates, as well as the level of sparsity across the set of
sequences.
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Figure 2.2: Sketch of the network structure. A) The architecture constitutes a recurrent
network of excitatory and inhibitory neurons. Excitatory neurons are stimulated
by external sources providing sequence-element specific inputs “A”,“D”, etc. The
excitatory neuron population is composed of subpopulations containing neurons
with identical stimulus preference (gray circles). Connections between and within
the excitatory subpopulations are random and sparse. Inhibitory neurons are
mutually unconnected. Each neuron in the inhibitory population is recurrently
connected to a specific subpopulation of excitatory neurons. B) Initial connec-
tivity matrix for excitatory connections to excitatory neurons (EE connections).
Target and source neurons are grouped into stimulus-specific subpopulations
(“A”,. . . ,“F”). Before learning, the excitatory neurons are sparsely and randomly
connected via immature synapses (light gray dots). C) During learning, sequence
specific, sparsely connected subnetworks with mature synapses are formed (light
blue arrows: {A,D,B,E}, dark blue arrows: {F,D,B,C}). D) EE connectivity ma-
trix after learning. During the learning process, subsets of connections between
subpopulations corresponding to subsequent sequence elements become mature
and effective (light and dark blue dots). Mature connections are context specific
(see distinct connectivity between subpopulations “D” and “B” corresponding to
different sequences), thereby providing the backbone for a reliable propagation of
sequence-specific activity. In panels B and D, only 5% of sequence non-specific
EE connections are shown for clarity. Dark gray dots in panel D correspond to
mature connections between neurons that remain silent after learning. For details
on the network structure, see Table 2.1 and Table 7.1.
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Figure 2.3: Effect of dendritic action potentials (dAP) on the firing response to an
external stimulus. Membrane-potential responses to an external input (blue
arrow, A), a strong dendritic input (brown arrow, B) triggering a dAP, and a
combination of both (C). Black and gray vertical bars mark times of excitatory
and inhibitory spikes, respectively. The horizontal dashed line marks the spike
threshold θE. The horizontal light blue lines depict the dAP plateau. D) Magnified
view of spike times from panels A and C. A dAP preceding the external input
(as in panel C) can speed up somatic, and hence, inhibitory firing, provided the
time interval between the dAP and the external input is in the right range. The
excitatory neuron is connected bidirectionally to an inhibitory neuron (see sketch
on the right).
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Figure 2.4: Homeostatic regulation of the spike-timing-dependent structural plas-
ticity by the dAP activity. Evolution of the synaptic permanence (gray) and
weight (black) during repetitive presynaptic-postsynaptic spike pairing for differ-
ent levels of the dAP activity. In the depicted example, presynaptic spikes precede
the postsynaptic spikes by 40ms for each spike pairing. Consecutive spike pairs
are separated by a 200ms interval. In each panel, the postsynaptic dAP trace is
clamped at a different value: z = 0 (left), z = 1 (middle), z = 2 (right). The dAP
target activity is fixed at z∗ = 1. The horizontal dashed and dotted lines mark
the maximum permanence Pmax and the maturity threshold θP , respectively.

Figure 2.5: Existence of divergent-convergent connectivity motifs in a random
network. A) Sketch of the divergent-convergent potential connectivity motif
required for the formation of sequence specific subnetworks during learning. See
main text for details. B) Dependence of the motif probability u on the connection
probability p for nE = 150, c = 5, and ρ = 20 (see Table 7.1). The dotted vertical
line marks the potential connection probability p = 0.2 used in this study.
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2.2.4 Model tables

Summary

Populations excitatory neurons (E), inhibitory neurons (I), external spike sources (X ); E and I
composed of M disjoint subpopulations Mk and Ik (k = 1, . . . ,M)

Connectivity
• sparse random connectivity between excitatory neurons (plastic)

• local recurrent connectivity between excitatory and inhibitory neurons (static)

Neuron model
• excitatory neurons: leaky integrate-and-fire (LIF) with nonlinear input integra-

tion (dendritic action potentials)

• inhibitory neurons: leaky integrate-and-fire (LIF)

Synapse model exponential or alpha-shaped postsynaptic currents (PSCs)

Plasticity homeostatic spike-timing-dependent structural plasticity in excitatory-to-excitatory
connections

Populations

Name Elements Size

E = ∪M
i=kMk excitatory (E) neurons NE

I = ∪M
i=kIk inhibitory (I) neurons NI

Mk excitatory neurons in subpopulation k,
Mk ∩Ml = ∅ (∀k ̸= l ∈ [1,M ])

nE

Ik inhibitory neurons in subpopulation k,
Ik ∩ Il = ∅ (∀k ̸= l ∈ [1,M ])

nI

X = {x1, . . . , xM} external spike sources M

Connectivity

Source pop-
ulation

Target pop-
ulation

Pattern

E E random; fixed in-degrees Ki = KEE, delays dij = dEE, synaptic time constants
τij = τEE; plastic weights Jij ∈ {0, JEE,ij} (∀i ∈ E , ∀j ∈ E ; “EE connections”)

Mk Ik all-to-all; fixed delays dij = dIE, synaptic time constants τij = τIE, and weights
Jij = JIE (∀i ∈ Ik, ∀j ∈Mk, ∀k ∈ [1,M ]; “IE connections”)

Ik Mk all-to-all; fixed delays dij = dEI, synaptic time constants τij = τEI, and weights
Jij = JEI (∀i ∈Mk, ∀j ∈ Ik, ∀k ∈ [1,M ]; “EI connections”)

Ik Ik none (∀k ∈ [1,M ]; “II connections”)

Xk = xk Mk one-to-all; fixed delays dik = dEX, synaptic time constants τij = τEX, and weights
Jik = JEX (∀i ∈Mk, ∀k ∈ [1,M ]; “EX connections”)

no self-connections (“autapses”), no multiple connections (“multapses”)

all unmentioned connections Mk → Il, Ik →Ml, Ik → Il, Xk →Ml (∀k ̸= l) are absent

Continued next page
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Neuron and synapse

Neuron

Type leaky integrate-and-fire (LIF) dynamics

Description dynamics of membrane potential Vi(t) and spiking activity si(t) of neuron i:

• emission of the kth spike of neuron i at time tki if

Vi(t
k
i ) ≥ θi (2.9)

with somatic spike threshold θi

• spike train: si(t) =
∑

k δ(t− tki )

• reset and refractoriness:

Vi(t) = Vr ∀k, ∀t ∈
(
tki , t

k
i + τref,i

]
with refractory time τref,i and reset potential Vr

• subthreshold dynamics:

τm,iV̇i(t) = −Vi(t) +Rm,iIi(t) (2.10)

with membrane resistance Rm,i =
τm,i

Cm,i
, membrane time constant τm,i, and

total synaptic input current Ii(t) (see Synapse)

• excitatory neurons: τm,i = τm,E, Cm,i = Cm, θi = θE, τref,i = τref,E (∀i ∈ E)
• inhibitory neurons: τm,i = τm,I , Cm,i = Cm, θi = θI, τref,i = τref,I (∀i ∈ I)

Continue next page.
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Synapse

Type exponential or alpha-shaped postsynaptic currents (PSCs)

Description
• total synaptic input currents:

excitatory neurons: Ii(t) = IED,i(t) + IEX,i(t) + IEI,i(t), ∀i ∈ E
inhibitory neurons: Ii(t) = IIE,i(t), ∀i ∈ I

(2.11)

with dendritic, external, inhibitory and excitatory input currents IED,i(t),
IEX,i(t), IEI,i(t), IIE,i(t) evolving according to

IED,i(t) =
∑
j∈E

(αij ∗ sj)(t− dij) (2.12)

with αij(t) = Jij
e

τED
te−t/τEDΘ(t) and Θ(t) =

1 t ≥ 0

0 else
,

τEXİEX,i = −IEX,i(t) +
∑
j∈X

Jijsj(t− dij), (2.13)

τEIİEI,i = −IEI,i(t) +
∑
j∈I

Jijsj(t− dij), (2.14)

τIEİIE,i = −IIE,i(t) +
∑
j∈E

Jijsj(t− dij) (2.15)

with τEX, τEI, and τIE synaptic time constants of EX, EI, and IE connections,
respectively, and Jij the synaptic weight

• suprathreshold dynamics of dendritic currents (dAP generation):
– emission of kth dAP of neuron i at time tkdAP,i if IED,i(t

k
dAP,i) ≥ θdAP

– dAP current plateau:

IED,i(t) = IdAP ∀k, ∀t ∈
(
tkdAP,i, t

k
dAP,i + τdAP

)
(2.16)

with dAP current plateau amplitude IdAP, dAP current duration τdAP,
and dAP activation threshold θdAP

– reset: IED,i(t
k
dAP,i + τdAP) = 0 (∀k)

– reset and refractoriness in response to emission of lth somatic spike of
neuron i at time tli: IED,i(t) = 0 ∀l, ∀t ∈

(
tli, t

l
i + τref,i

)
Continued next page
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Plasticity

Type spike-timing-dependent structural plasticity and dAP-rate homeostasis

EE synapses
• dynamics of synaptic permanence Pij(t) (synapse maturity):

P−1
max

dPij

dt
= λ+

∑
{t∗i }

′

xj(t)δ(t− [t∗i + dEE])I(t
∗
i ,∆tmin,∆tmax)

− λ−
∑
{t∗j }

yiδ(t− t∗j )

+ λh

∑
{t∗i }

′

(
z∗ − zi(t)

)
δ(t− t∗i )I(t

∗
i ,∆tmin,∆tmax)

with
– list of presynaptic spike times {t∗j},
– list of postsynaptic spike times {t∗i }′ = {t∗i |∀t∗j : t∗i − t∗j + dEE ≥ ∆tmin}
– indicator function

I(t∗i ,∆tmin,∆tmax) = R(t∗i − t+j + dEE)

with R(τ) =

1 ∆tmin < τ < ∆tmax

0 else,

(2.17)

– maximum permanence Pmax, potentiation and depression rates λ+, λ-,
homeostasis rate λh, delay dEE, depression decrement yi, minimum ∆tmin

and maximum ∆tmax time lags between pairs of pre- and postsynaptic
spikes at which synapses are potentiated, t+j is the nearest presynaptic
spike time preceding t∗i ,

– spike trace xj(t) of presynaptic neuron j, evolving according to

dxj

dt
= −τ−1

+ xj(t) +
∑
t∗j

δ(t− t∗j )

with presynaptic spike times t∗j and potentiation time constant τ+,
– dAP trace zi(t) of postsynaptic neuron i, evolving according to

dzi
dt

= −τ−1
h zi(t) +

∑
k

δ(t− tkdAP,i)

with onset time tkdAP,i of the kth dAP, homeostasis time constant τh, and
– target dAP activity z∗

• dynamics of synaptic weights JEE,ij :

JEE,ij(t) =

W if Pij(t) ≥ θP (mature synapse)

0 if Pij(t) < θP (immature synapse)

with weight of mature EE connections W and synapse maturity threshold θP

(for an algorithmic implementation of the plasticity dynamics, see Algorithm 1)

all other synapses non-plastic

Continued next page
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Input

• prediction mode
– repetitive stimulation with the same set S = {s1, . . . , sS} of sequences si = {ζi,1, ζi,2,. . . , ζi,Ci}

of ordered discrete items ζi,j with number of sequences S and length Ci of ith sequence
– presentation of sequence element ζi,j at time ti,j modeled by single spike xk(t) = δ(t − ti,j),

generated by the corresponding external source xk

– inter-stimulus interval ∆T = ti,j+1 − ti,j between subsequent sequence elements ζi,j and ζi,j+1

within a sequence si

– inter-sequence time interval ∆Tseq = ti+1,1 − ti,Ci between subsequent sequences si and si+1

– example sequence sets:
∗ sequence set I: S={{A,D,B,E}, {F,D,B,C}}
∗ sequence set II: S={{E,N,D,I,J}, {L,N,D,I,K}, {G,J,M,C,N}, {F,J,M,C,I}, {B,C,K,H,I},
{A,C,K,H,F}}

• replay mode
– presentation of a cue encoding for first sequence elements ζi,1 at ti,1

– inter-cue time interval ∆Tcue = ti+1,1 − ti,1 between subsequent cues ζi,1 and ζi+1,1

Output

• somatic spike times {tki |∀i ∈ E , k = 1, 2, . . .}
• dendritic currents IED,i(t) (∀i ∈ E)

Initial conditions and network realizations

• membrane potentials: Vi(0) = Vr (∀i ∈ E ∪ I)
• dendritic currents: IED,i(0) = 0 (∀i ∈ E)
• external currents: IEX,i(0) = 0 (∀i ∈ E)
• inhibitory currents: IEI,i(0) = 0 (∀i ∈ E)
• excitatory currents: IIE,i(0) = 0 (∀i ∈ I)
• synaptic permanences: Pij(0) = Pmin,ij with Pmin,ij ∼ U(P0,min, P0,max) (∀i, j ∈ E)
• synaptic weights: JEE,ij(0) = 0 (∀i, j ∈ E)
• spike traces: xi(0) = 0 (∀i ∈ E)
• dAP traces: zi(0) = 0 (∀i ∈ E)
• potential connectivity and initial permanences randomly and independently drawn for each network

realization

Simulation details

• network simulations performed in NEST (Gewaltig and Diesmann, 2007) version 3.0 (Hahne et al.,
2021)

• definition of excitatory neuron model using NESTML (Plotnikov et al., 2016; Nagendra Babu et al.,
2021)

• synchronous update using exact integration of system dynamics on discrete-time grid with step size
∆t (Rotter and Diesmann, 1999)

• source code underlying this study: https://doi.org/10.5281/zenodo.5578212

Table 2.1: Description of the network model. Parameter values are given in Table 7.1.

https://doi.org/10.5281/zenodo.5578212
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Algorithm 1 Algorithmic description of the plasticity model, based on the algorithm
proposed in (Morrison et al., 2007).

Update of permanence Pij and synaptic weight JEE,ij at time tkj of the kth spike of
presynaptic neuron j:

xj ← get trace of presynaptic neuron j ▷ last update at time tk−1
j

Lpost, Zpost ← get lists of postsynaptic spike times and corresponding dAP traces in the interval
(tk−1

j − dEE, t
k
j − dEE]

for ti, zi in Lpost, Zpost do
if ∆tmin < ti − tk−1

j + dEE < ∆tmax then
Pij ← Pij + λ+ · Pmax · xj · exp

(
−(ti − tk−1

j + dEE)/τ+
)

▷ potentiation
Pij ← Pij + λh · Pmax · (z∗ − zi) ▷ homeostasis

end if
end for

Pij ← Pij − λ− · Pmax · yi ▷ depression

if Pij > θP then
JEE,ij ←W ▷ mature synapse

else
JEE,ij ← 0 ▷ immature synapse

end if

xj ← xj · exp
(
(tk−1

j − tkj )/τ+
)
+ 1 ▷ update of presynaptic spike trace

Note: the clipping of the permanence Pij at the boundaries of the interval [Pmin,ij , Pmax] is not
included here for clarity.

2.3 results

2.3.1 Sequence learning and prediction

According to the Temporal Memory (TM) model, sequences are stored in the form of
specific paths through the network. Prediction and replay of sequences correspond
to a sequential sparse activation of small groups of neurons along these paths. Non-
anticipated stimuli are signaled in the form of non-sparse firing of these groups. This
subsection describes how the model components introduced in Network model interact
and give rise to the network structure and behavior postulated by TM. For illustration,
we here consider a simple set of two partly overlapping sequences {A,D,B,E} and
{F,D,B,C} corresponding to the sequence set I (see Fig. 2.1B).

The initial sparse, random and immature network connectivity (Fig. 2.2A,B) con-
stitutes the skeleton on which the sequence-specific paths will be carved out during
the learning process. To guarantee a successful learning, this initial skeleton must
be neither too sparse nor too dense (see Methods). Before learning, the presentation
of a particular sequence element causes all neurons with the corresponding stimulus
preference to reliably and synchronously fire a somatic action potential due to the
strong, suprathreshold external stimulus (Fig. 2.3A). All other subpopulations remain
silent (see Fig. 2.6A,B). The lateral connectivity between excitatory neurons belonging
to the different subpopulations is subject to a form of Hebbian structural plasticity.
Repetitive and consistent sequential presentation of sequence elements turns immature
connections between successively activated subpopulations into mature connections,
and hence leads to the formation of sequence-specific subnetworks (see Fig. 2.2C,D).
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Synaptic depression prunes connections not supporting the learned pattern, thereby
reducing the chance of predicting wrong sequence items (false positives).

During the learning process, the number of mature connections grows to a point
where the activation of a certain subpopulation by an external input generates
dendritic action potentials (dAPs), a “prediction”, in a subset of neurons in the
subsequent subpopulation (blue neurons in Fig. 2.6C). The dAPs generate a long-
lasting depolarization of the soma (Fig. 2.3B). When receiving an external input,
these depolarized neurons fire slightly earlier as compared to non-depolarized (non-
predictive) neurons (Fig. 2.3A,B,D). If the number of predictive neurons within a
subpopulation is sufficiently large, their advanced spikes (Fig. 2.3C) initiate a fast
and strong inhibitory feedback to the entire subpopulation, and thereby suppress
subsequent firing of non-predictive neurons in this population (Fig. 2.6C,D). Owing
to this winner-take-all dynamics, the network generates sparse spiking in response to
predicted stimuli, i.e., if the external input coincides with a dAP-triggered somatic
depolarization. In the presence of a non-anticipated, non-predicted stimulus, the
neurons in the corresponding subpopulation fire collectively in a non-sparse manner,
thereby signaling a “mismatch”.

In the model presented in this study, the initial synapse maturity levels, the per-
manences, are randomly chosen within certain bounds. During learning, connections
with a higher initial permanence mature first. This heterogeneity in the initial per-
manences enables the generation of sequence specific sparse connectivity patterns
between subsequently activated neuronal subpopulations (Fig. 2.2D). For each pair of
sequence elements in a given sequence ensemble, there is a unique set of postsynaptic
neurons generating dAPs (Fig. 2.6D). These different activation patterns capture the
context specificity of predictions. When exposing a network that has learned the two
sequences {A,D,B,E} and {F,D,B,C} to the elements “A” and “F”, different subsets of
neurons are activated in “D” and “B”. By virtue of these sequence specific activation
patterns, stimulation by {A,D,B} or {F,D,B} leads to correct predictions “E” or “C”,
respectively (Fig. 2.6C–F).

Heterogeneity in the permanences alone, however, is not sufficient to guarantee
context specificity. The subsets of neurons activated in different contexts may still
exhibit a considerable overlap. This overlap is promoted by Hebbian plasticity in the
face of the initial non-sparse activity, which leads to a strengthening of connections
to neurons in the postsynaptic population in an unspecific manner (Fig. 2.7A,B).
Moreover, the reoccurrence of the same sequence elements in different co-learned
sequences initially causes higher firing rates of the neurons in the respective populations
(“D” and “B” in Fig. 2.7). As a result, the formation of unspecific connections would
even be accelerated if synapse formation was driven by Hebbian plasticity alone. The
model in this study counteracts this loss of context specificity by supplementing the
plasticity dynamics with a homeostatic component, which regulates synapse growth
based on the rate of postsynaptic dAPs. This form of homeostasis prevents the same
neuron from becoming predictive multiple times within the same set of sequences,
and thereby reduces the overlap between subsets of neurons activated within different
contexts (Fig. 2.7C, Fig. 7.3). To further aid the formation of context specific paths,
the density of the initial potential connectivity skeleton is set close to the minimum
value ensuring the existence of the connectivity motifs required for a faithful prediction
(see Methods).
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Figure 2.6: Context specific predictions. Sketches (left column) and raster plots of network
activity (right column) before (top row) and after learning of the two sequences
{A,D,B,E} and {F,D,B,C} (middle and bottom rows). In the left column, large
light gray circles depict the excitatory subpopulations (same arrangement as in
Fig. 2.2). Red, blue and gray circles mark active, predictive and silent neurons,
respectively. In the right column, red dots and blue lines mark somatic spikes and
dAP plateaus, respectively. Type and timing of presented stimuli are depicted by
black arrows. A,B) Snapshots of network activity upon subsequent presentation
of the sequence elements “A” and “D” (panel A), and network activity in response
to presentation of the entire sequence {A,D,B,E} (panel B) before learning. All
neurons in the stimulated subpopulations become active.

2.3.2 Prediction performance

To quantify the sequence prediction performance, we repetitively stimulate the network
with the sequences in sequence set I (see Task and training protocol), and continuously
monitor the prediction error, the false-positive and false-negative rates, as well as
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Figure 2.7: dAP-rate homeostasis enhances context specificity. A) Sketch of subpop-
ulations of excitatory neurons representing the elements of the two sequences
{F,D,B} and {A,D,B}, depicted by light and dark blue colors, respectively. Before
learning, the connections between the subpopulations are immature (gray lines).
Hence, for each element presentation, all neurons in the respective subpopula-
tions fire (filled circles). B) Hebbian plasticity drives the formation of mature
connections between subpopulations representing successive sequence elements
(colored lines), and leads to sparse firing. The sets of neurons contributing to the
two sequences partly overlap. C) Incorporating dAP-rate homeostasis reduces
this overlap in the activation patterns.

the fraction of active stimulated neurons as a measure of encoding sparsity (Fig. 2.8;
section 2.2.3). To ensure the performance results are not specific to a single network,
the evaluation is repeated for a number of randomly instantiated network realizations
with different initial potential connectivities. At the beginning of the learning process,
all neurons of a stimulated subpopulation collectively fire in response to the external
input. Non-stimulated neurons remain silent. As the connectivity is still immature at
this point, no dAPs are triggered in postsynaptic neurons, and, hence, no predictions
are generated. As a consequence, the prediction error, the false-negative rate and the
number of active neurons (in stimulated populations) are at their maximum, and the
false positive rate is zero (Fig. 2.8). During the first training episodes, the consistent
collective firing of subsequently activated populations leads to the formation of mature
connections as a result of the Hebbian structural plasticity. Upon reaching of a critical
number of mature synapse, first dAPs (predictions) are generated in postsynaptic
cells (in Fig. 2.8, this happens after about 10 learning episodes). As a consequence, the
false negative rate decreases, and the stimulus responses become more sparse. At this
early phase of the learning, the predictions of upcoming sequence elements are not yet
context-specific (for sequence set I, non-sparse activity in “B” triggers a prediction in
both “E” and “C”, irrespective of the context). Hence, the false-positive rate transiently
increases. As the context specific connectivity is not consolidated at this point, more
and more presynaptic subpopulations fail at triggering dAPs in their postsynaptic
targets when they switch to sparse firing. Therefore, the false-positive rate decreases
again, and the false-negative rate increases. In other words, there exists a negative
feedback loop in the interim learning dynamics where the generation of predictions
leads to an increase in sparsity which, in turn, causes prediction failures (and, hence,
non-sparse firing). With an increasing number of training episodes, synaptic depression
and homeostatic regulation increase context selectivity and thereby break this loop.
Eventually, sparse firing of presynaptic populations is sufficient to reliably trigger
predictions in their postsynaptic targets. For sequence set I, the total prediction error
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becomes zero and the stimulus responses maximally sparse after about 30 training
episodes (Fig. 2.8). For a time resolved visualization of the learning dynamics, see
Video 7.1.

Up to this point, we illustrated the model’s sequence learning dynamics and
performance for a simple set of two sequences (sequence set I). In the following, we
assess the network’s sequence prediction performance for a more complex sequence
set (II) composed of five high-order sequences (see Task and training protocol),
each consisting of five elements. This sequence set is comparable to the one used
in (Hawkins and Ahmad, 2016), but contains a larger amount of overlap between
sequences. The overall pattern of the learning dynamics resembles the one reported
for sequence set I (Fig. 2.9). The prediction error, the false-positive and false-negative
rates as well as the sparsity measure vary more smoothly, and eventually converge at
minimal levels after about 40 training episodes. To compare the spiking TM model
with the original, non-spiking TM model, we repeat the experiment based on the
simulation code provided in (Hawkins and Ahmad, 2016), see Table 7.2. With our
parameterization, the learning rates λ+ and λ− of the spiking model are by a factor
of about 10 smaller than in the original model. As a consequence, learning sequence
set II with the original model converges faster than with the spiking model (compare
black and gray curves in Fig. 2.9). The ratio in learning speeds, however, is not larger
than about 2. Increasing the learning rates, i.e., the permanence increments, would
speed up the learning process in the spiking model, but bears the risk that a large
fraction of connections mature simultaneously. This would effectively overwrite the
permanence heterogeneity which is essential to form context specific connectivity
patterns (see section 2.3.1). As a result, the network performance would decrease. The
original model avoids this problem by limiting the number of potentiated synapses in
each update step (see “Plasticity dynamics” in Network model).

In sequence sets I and II, the maximum sequence order is 2 and 3, respectively.
For the two sequences {E,N,D,I,J} and {L,N,D,I,K} in sequence set II, for example,
predicting element “J” after activation of “I” requires remembering the element “E”,
which occured three steps back into the past. The TM model can cope with sequences
of much higher order. Each sequence element in a particular context activates a specific
pattern, i.e., a specific subset of neurons. The number of such patterns that can be
learned is determined by the size of each subpopulation and the sparsity (Ahmad and
Hawkins, 2016). In a sequence with repeating elements, such as {ABBBBBC}, the
maximum order is limited by this number. Without repeating elements, the order
could be arbitrarily high provided the number of subpopulations matches or exceeds
the number of distinct characters. In Fig. 2.10, we demonstrate successful learning
of two sequences {A,D,B,G,H,I,J,K,L,M,N,E}, {F,D,B,G,H,I,J,K,L,M,N,C} of order
10.

2.3.3 Dependence of prediction performance on the sequence speed

The reformulation of the original TM model in terms of continuous-time dynamics
allows us to ask questions related to timing aspects. Here, we investigate the sequence
processing speed by identifying the range of inter-stimulus intervals ∆T that permit a
successful prediction performance (Fig. 2.11). The timing of the external inputs affects
the dynamics of the network in two respects. First, reliable predictions of sequence
elements can only be made if the time interval ∆T between two consecutive stimulus
presentations is such that the second input coincides with the somatic depolarization
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Figure 2.8: Sequence prediction performance for sequence set I. Dependence of the
sequence prediction error (A), the false-positive and false-negative rates (B),
and the number of active neurons relative to the subpopulation size (C) on the
number of training episodes during repetitive stimulation with sequence set I
(see Task and training protocol). Curves and error bands indicate the median
as well as the 5% and 95% percentiles across an ensemble of 5 different network
realizations, respectively. All prediction performance measures are calculated as
a moving average over the last 4 training episodes. The dashed gray horizontal
line in panel C depicts the target sparsity level ρ/(LnE). Inter-stimulus interval
∆T = 40ms. See Table 7.1 for remaining parameters.

Figure 2.9: Sequence prediction performance for sequence set II and comparison
with original model. Same figure arrangement, training and measurement
protocol as in Fig. 2.8. Data obtained during repetitive stimulation of the network
with sequence set II (see Task and training protocol). Gray curves depict results
obtained using the original (non-spiking) TM model from (Hawkins and Ahmad,
2016) with adapted parameters (see Table 7.2). The dashed gray horizontal line
in panel C depicts the target sparsity level ρ/(LnE).

caused by the dAP triggered by the first stimulus. Second, the formation of sequence
specific connections by means of the spike-timing-dependent structural plasticity
dynamics depends on ∆T .

If the external input does not coincide with the somatic dAP depolarization, i.e.,
if ∆T is too small or to large, the respective target population responds in a non-
sparse, non-selective manner (mismatch signal; Fig. 2.11C), and in turn, generates
false positives (Fig. 2.11B). For small ∆T , the external stimulus arrives before the dAP
onset, i.e., before it is predicted. In consequence, the false negative rate is high. For large
∆T , the false negative rate remains low as the network is still generating predictions
(Fig. 2.11B). The inter-stimulus interval ∆T in addition affects the formation of
sequence specific connections due to the dependence of the plasticity dynamics on the
timing of pre- and postsynaptic spikes, see Eq (2.1) and Eq (2.2). Larger ∆T results
in smaller permanence increments, and thereby a slow-down of the learning process
(red curve in Fig. 2.11A).
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Figure 2.10: Prediction performance for a sequence set with 10 overlapping el-
ements. Dependence of the sequence prediction error (A), the false posi-
tive frequency, the false negative frequency (B), and the number of active
neurons relative to the subpopulation size (C) on the number of training
episodes for a set of two sequences s1 = {A,D,B,G,H,I,J,K,L,M,N,E} and
s2 = {F,D,B,G,H,I,J,K,L,M,N,C}. Curves and error bands indicate the me-
dian as well as the 5% and 95% percentiles across 5 different network realizations,
respectively. Inter-stimulus interval ∆T = 40ms. All prediction performance
measures are calculated as a moving average over the last 4 training episodes.
Parameters: ∆T = 40ms, λ+ = 0.39, λ− = 0.0057, λh = 0.034. See Table 7.1 for
remaining parameters.

Taken together, the model predicts a range of optimal inter-stimulus interval ∆T
(Fig. 2.11A). For our choice of network parameters, this range spans intervals between
10ms and 75ms. The lower bound depends primarily on the synaptic time constant
τEE, the spike transmission delay dEE, and the membrane time constant τm. The
upper bound is mainly determined by the dAP plateau duration τdAP.

Figure 2.11: Effect of sequence speed on network performance. Dependence of the
sequence prediction error, the learning speed (episodes-to-solution; A), the false-
positive and false-negative rates (B), and the number of active neurons relative
to the subpopulation size (C) on the inter-stimulus interval ∆T after 100 training
episodes. Curves and error bands indicate the median as well as the 5% and 95%
percentiles across an ensemble of 5 different network realizations, respectively.
Same task and network as in Fig. 2.8.

2.3.4 Sequence replay

So far, we studied the network in the predictive mode, where the network is driven by
external inputs and generates predictions of upcoming sequence elements. Another
essential component of sequence processing is sequence replay, i.e., the autonomous
generation of sequences in response to a cue signal (see Task and training protocol).
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After successful learning, the network model presented in this study is easily configured
into the replay mode by increasing the neuronal excitability, such that the somatic
depolarization caused by a dAP alone makes the neuron fire a somatic spike. Here, this
is implemented by lowering the somatic spike threshold θE of the excitatory neurons.
In the biological system, this increase in excitability could, for example, be caused
by the effect of neuromodulators (Atherton et al., 2015; Thomas, 2015), additional
excitatory inputs from other brain regions implementing a top-down control, e.g,
attention (Baluch and Itti, 2011; Noudoost et al., 2010), or propagating waves during
sleep (Buzsáki, 2006; Grosmark et al., 2012).

The presentation of the first sequence element activates dAPs in the subpopulation
corresponding to the expected next element in a previously learned sequence. Due to
the reduced firing threshold in the replay mode, the somatic depolarization caused
by these dAPs is sufficient to trigger somatic spikes during the rising phase of this
depolarization. These spikes, in turn, activate the subsequent element. This process
repeats, such that the network autonomously reactivates all sequence elements in the
correct order, with the same context specificity and sparsity level as in the predictive
mode (see Fig. 2.12A,B). The latency between the activation of subsequent sequence
elements is determined by the spike transmission delay dEE, the synaptic time constant
τEE, the membrane time constant τm,E, the synaptic weights JEE,ij , the dAP current
plateau amplitude IdAP, and the somatic firing threshold θE. For sequences that can
be successfully learned (see previous section), the time required for replaying the
entire sequence is independent of the inter-stimulus interval ∆T employed during
learning (Fig. 2.12C).

As shown in the previous section, sequences cannot be learned if the inter-stimulus
interval ∆T is too small or too large. For small ∆T , connections between subpopula-
tions corresponding to subsequent elements are strongly potentiated by the Hebbian
plasticity due to the consistent firing of pre- and postsynaptic populations during the
learning process. The network responses are, however, non-sparse, as the winner-take-
all mechanism cannot be invoked during the learning (Fig. 2.11C). In the replay mode,
sequences are therefore replayed in a non-sparse and non-context specific manner (left
gray region in Fig. 2.12C). Similarly, connections between subsequent populations are
slowly potentiated for very large ∆T . With sufficiently long learning, sequences can
still be replayed in the right order, but the activity is non-sparse and therefore not
context specific (right gray region in Fig. 2.12C).

2.4 discussion

2.4.1 Summary

In this work, we reformulate the Temporal Memory (TM) model (Hawkins and
Ahmad, 2016) in terms of biophysical principles and parameters. We replace the
original discrete-time neuronal and synaptic dynamics with continuous-time models
with biologically interpretable parameters such as membrane and synaptic time
constants and synaptic weights. We further substitute the original plasticity algorithm
with a more biologically plausible mechanism, relying on a form of Hebbian structural
plasticity, homeostatic control, and sparse random connectivity. Moreover, our model
implements a winner-take-all dynamics based on lateral inhibition that is compatible
with the continuous-time neuron and synapse models. We show that the revised TM
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Figure 2.12: Sequence replay dynamics and speed. Autonomous replay of the sequences
{A,D,B,E} (A) and {F,D,B,C} (B), initiated by stimulating the subpopulations
“A” and “F”, respectively. Red dots and blue lines mark somatic spikes and dAP
plateaus, respectively, for a fraction of neurons (30%) within each subpopulation.
During learning, the inter-stimulus interval ∆T is set to 40ms. C) Dependence
of the sequence replay duration on the inter-stimulus interval ∆T during learning.
Replay duration is measured as the difference between the mean firing times of
the populations representing the first and last elements in a given sequence. Gray
areas mark regions with low prediction performance (see section 2.3.3). Error
bands represent the mean ± standard deviation of the prediction error across 5
different network realizations. Same network and training set as in Fig. 2.8.

model supports successful learning and processing of high-order sequences with a
performance similar to the one of the original model (Hawkins and Ahmad, 2016).

A new aspect that we investigated in the context of our work is sequence replay.
After learning, the model is able to replay sequences in response to a cue signal. The
duration of sequence replay is independent of the sequence speed during training, and
determined by the intrinsic parameters of the network. In general, sequence replay
is faster than the sequence presentation during learning, consistent with sequence
compression and fast replay observed in hippocampus (Nádasdy et al., 1999; Lee and
Wilson, 2002; Davidson et al., 2009) and neocortex (Xu et al., 2012; Euston et al.,
2007).

Finally, we identified the range of possible sequence speeds that guarantee a
successful learning and prediction. Our model predicts an optimal range of processing
speeds (inter-stimulus intervals) with lower and upper bounds constrained by neuronal
and synaptic parameters (e.g., firing threshold, neuronal and synaptic time constants,
coupling strengths, potentiation time constants). Within this range, the number of
required training episodes is proportional to the inter-stimulus interval ∆T .

2.4.2 Relationship to other models

The model presented in this work constitutes a recurrent, randomly connected network
of neurons with predefined stimulus preferences. The model learns sequences in an
unsupervised manner using local learning rules. This is in essence similar to several
other spiking neuronal network models for sequence learning (Lazar et al., 2009;
Klampfl and Maass, 2013; Klos et al., 2018; Maes et al., 2020; Cone and Shouval, 2021).
The new components employed in this work are dendritic action potentials (dAPs) and
Hebbian structural plasticity. We use structural plasticity to be as close as possible to
the original model, and Hebbian forms of this are also known from the literature (Liao
et al., 1995; Wu et al., 1996; Deger et al., 2012). However, preliminary results show
that classical (non-structural) spike-timing-dependent plasticity (STDP) can yield
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similar performance (see Fig. 7.1). Dendritic action potentials are instrumental for
our model for two reasons. First, they effectively lower the threshold for coincidence
detection and thereby permit a reliable and robust propagation of sparse activity
(Jahnke et al., 2012; Breuer et al., 2014). In essence, our model bears similarities to the
classical synfire chain (Abeles, 1991), one difference being that our mature network
is not a simple feedforward network but has an abundance of recurrent connections.
As shown in (Diesmann et al., 1999), a stable propagation of synchronous activity
requires a minimal number of neurons in each synfire group. Without active dendrites,
this minimal number is in the range of ∼100 for plausible single-cell and synaptic
parameters. In our (and in the original TM) model, coincidence detection happens in
the dendrites. The number of presynaptic spikes needed to trigger a dAP is small, of
the order of ∼ 10 (Major et al., 2013; Mengual et al., 2020; Diesmann, 2002). This
helps to reduce redundancy (only a small number of neurons needs to become active)
and to increase the capacity of the network (the number of different patterns that can
be learned is increased with pattern sparsity; (Ahmad and Hawkins, 2016)). Second,
dAPs equip neurons with a third type of state (next to the quiescent and the firing
state): the predictive state, i.e., a long lasting (∼50-200 ms) strong depolarization of
the soma. Due to the prolonged depolarization of the soma, the inter-stimulus interval
can be much larger than the synaptic time constants and delays. An additional benefit
of dAPs, which is not exploited in the current version of our model, is that they equip
individual neurons with more possible states if they comprise more than one dendritic
branch. Each branch constitutes an independent pattern detector. The response of
the soma may depend on the collective predictions in different dendritic branches. A
single neuron could hence perform the types of computations that are usually assigned
to multilayer perceptrons, i.e., small networks (Gidon et al., 2020; Poirazi et al., 2003).

Similar to a large class of other models in the literature, the TM network constitutes
a recurrent network in the sense that the connectivity before and after learning forms
loops at the subpopulation level. Recurrence in the immature connectivity permits
the learning of arbitrary sequences without prior knowledge of the input data. In
particular, recurrent connections enable the learning of sequences with repeating
elements (such as in {A,B,B,C} or {A,B,C,B}). Further, bidirectional connections
between subpopulations are needed to learn sequences where pairs of elements occur
in different orders (such as in {A,B,C}, {D,C,B}). Apart from providing the capability
to learn sequences with all possible combinations of sequence elements, recurrent
connections play no further functional role in the current version of the TM model.
They may, however, become more important for future versions of the model enabling
the learning of sequence timing and duration (see below).

Most of the existing models have been developed to replay learned sequences in
response to a cue signal. The TM model can perform this type of pattern completion,
too. In addition, it can act as a quiet, sparsely active observer of the world that
becomes highly active only in the case of unforeseen, non-anticipated events. In
this work, we didn’t directly analyze the network’s mismatch detection performance.
However, this could be easily achieved by equipping each population with a “mismatch”
neuron that fires if a certain fraction of neurons in the population fires (threshold
detectors).In our model, predicted stimuli result in sparse firing due to inhibitory
feedback (WTA). For unpredicted stimuli, this feedback is not effective, resulting in
non-sparse firing indicating a mismatch. In (Schulz et al., 2021), a similar mechanism is
employed to generate mismatch signals for novel stimuli. In this study, the strength of
the inhibitory feedback needs to be learned by means of inhibitory synaptic plasticity.
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In our model, the WTA mechanism is controlled by the predictions (dAPs) and
implemented by static inhibitory connections. Furthermore, the model in (Schulz
et al., 2021) can learn a set of elements, but not the order of these elements in the
sequence.

In contrast to other sequence learning models (Maes et al., 2020; Cone and Shouval,
2021), our model is not able to learn an element specific timing and duration of
sequence elements. The model in (Maes et al., 2020) relies on a clock network, which
activates sequence elements in the correct order and with the correct timing. With
this architecture, different sequences with different timings would require separate
clock networks. Our model learns both sequence contents and order for a number of
sequences without any auxiliary network. In an extension of our model, similar to
(Maes et al., 2020) the timing of sequence element could be learned by additional plastic
recurrent connections within each subpopulation. For the model by Maes et al. (2020)
to serve as the basis of further research, in a recent Brief Report (Oberländer et al.,
2022), we assessed the reproducibility of the model by giving a detailed description of
its model description and pointed out missing elements, inconsistencies or errors in or
between the original paper and its reference implementation. The model in (Cone and
Shouval, 2021) can learn and recall higher-order sequences with limited history by
means of an additional reservoir network with sparse readout. The TM model presents
a more efficient way of learning and encoding the context in high-order sequences,
without prior assignment of context specificity to individual neuron populations (Maes
et al., 2020), and without additional network components (such as reservoir networks
in (Cone and Shouval, 2021)).

An important sequence processing component that is not addressed in our work
is the capability of identifying recurring sequences within a long stream of inputs.
In the literature, this process is refereed to as chunking, and constitutes a form of
feature segmentation (Dehaene et al., 2015). Sequence chunking has been illustrated,
for example, in (Asabuki and Fukai, 2020, 2021). Similar to our model, the network
model in (Asabuki and Fukai, 2020, 2021) is composed of neurons with dendritic
and somatic compartments, with the dendritic activity signaling a prediction of
somatic spiking. Recurrent connections in their model improve the context specificity
of neuronal responses, and thereby permit a context dependent feature segmentation.
The model can learn high order sequence, but the history is limited. Although not
explicitly tested here, our model is likely to be able to perform chunking if sequences
are presented randomly across trials and without breaks. If the order of sequences
is not systematic across trials, connections between neurons representing different
sequences are not strengthened by spike-timing-dependent potentiation. Consecutive
sequences are therefore not merged and remain distinct.

An earlier spiking neural network version of the HTM model has already been
devised in (Billaudelle and Ahmad, 2015). It constitutes a proof-of-concept study
demonstrating that the HTM model can be ported to an analog-digital neuromorphic
hardware system. It is restricted to small simplistic sequences and does not address
the biological plausibility of the TM model. In particular, it does not offer a solution
to the question of how the model can perform online learning by known biological
ingredients. Our study delivers a solution for this based on local plasticity rules and
permits a direct implementation on a neuromorphic hardware system.
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2.4.3 Conclusion

Our work demonstrates that the principal mechanisms underlying sequence learning,
prediction, and replay in the TM model can be implemented using biologically plausible
ingredients. By strengthening the link to biology, our implementation permits a more
direct evaluation of the TM model predictions based on electrophysiological and
behavioral data. Furthermore, this implementation allows for a direct mapping of the
TM model on neuromorphic hardware systems.
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3.1 introduction

The spiking Temporal Memory (spiking TM) model proposed in chapter 2 provides an
energy-efficient sequence processing mechanism with high storage capacity by virtue
of its sparse activity. It learns high-order sequences in an unsupervised, continuous
manner using biological, local learning rules. After learning, the model successfully
predicts upcoming sequence elements in a context-dependent manner and signals the
occurrence of non-anticipated stimuli. Moreover, it can autonomously recall learned
sequences in response to a cue stimulus.

In nature, cues are often incomplete or ambiguous, and it is not always clear what
sequence to recall given the current context. Despite this ambiguity, we usually come
to a clear decision on what sequence to recall. A key factor in decision-making is
reward (Cohen et al., 2007; O’Doherty et al., 2017). In this regard, the optimal
decision strategy is the one that maximizes the reward, and is hence referred to as the
maximization or exploitation strategy. A number of studies demonstrate that decisions
are often made in an apparently suboptimal manner, such as probability matching
(Vulkan, 2000; Myers, 2014). In binary choice tasks, for example, where the probability
of payoff is higher for one of the two possible choices, it appears most reasonable to
always decide for this high-payoff option. Instead, however, humans and other animals
often decide for each of the two choices with a probability that approximately matches
the payoff probability. While this behavior appears unreasonable at first glance, it may
in fact be optimal when taking into account previous (pre-experiment) experiences,
such as prior knowledge of changing reward contingencies. In cases where the reward
probability or amplitudes change over time, a more explorative behavior is beneficial
(Cohen et al., 2007; Shanks et al., 2002). Previous studies suggest that decisions are
not only determined by rewards, but also by the frequency of previously experienced
input patterns (Bod et al., 2003; Hansen et al., 2012). Accordingly, suboptimal decision
strategies may at least partly arise as a consequence of this additional influence of
occurrence frequencies.

A number of previous studies propose neuronal network models of decision making
in the face of ambiguous or incomplete stimuli. The majority of these models employ
some form of intrinsic stochastic dynamics or uncorrelated noise to generate explorative
behavior (Buesing et al., 2011; Legenstein and Maass, 2014; Hartmann et al., 2015;
Neftci et al., 2016; Jordan et al., 2019). Noise has been introduced in the form of
random or non-task-related synaptic background inputs (Jordan et al., 2019), or in
the form of synaptic stochasticity (Neftci et al., 2016). An alternative solution is
provided in the studies of Hartmann et al. (2015) and Dold et al. (2019), where the
“noise” is generated by the complex but deterministic dynamics of the functional
network itself, without any additional sources of stochasticity. In most models, the
noise targeting different neurons or synapses is effectively uncorrelated. Supplying each
element in a neuronal circuit with uncorrelated noise, however, does not necessarily
lead to exlorative dynamics: state variables arising from superpositions of many
noisy, uncorrelated components become effectively deterministic as a result of noise
averaging (Dold et al., 2019). The total input current of a neuron generated from
superpositions of many synaptic inputs, for example, is largely unaffected by the
variability in the individual synaptic responses. Similarly, in models where individual
states are encoded by the activity of neuronal populations (Legenstein and Maass,
2014), the state representations become quasi deterministic if the single-neuron noise
components are uncorrelated. Compensating this noise averaging effect by increasing
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the noise amplitude appears to be an obvious strategy, but may be hard to realize
by the biological system. Alternatively, noise averaging can be avoided by employing
correlated noise. As an analogy, consider a particle in a still fluid: despite the constant
bombardment by surrounding molecules, a large particle will hardly undergo any
Brownian motion, because the momenta of the impinging molecules largely average
out. Only if the molecules move in a coherent manner, such as in a turbulent fluid,
they can have a substantial influence on the particle’s motion.

In biological neuronal networks, coherent noise may arise by different mechanisms:
neighboring neurons typically receive inputs from partly overlapping presynaptic
neuron populations. The synaptic input currents to these neurons are therefore
correlated. In the literature, this type of correlation, which results from the anatomy
of neurons and neuronal circuits, is referred to as shared-input correlation (Kriener
et al., 2008; Tetzlaff et al., 2008). A second type of correlation in synaptic input
currents arises from correlations in the presynaptic spiking activity (Renart et al., 2010;
Tetzlaff et al., 2012; Helias et al., 2014). These dynamical correlations occur during
stationary network states, or can be generated by different types of nonstationary
activities, such as global oscillations in the population activity (Brunel and Hakim,
1999; Brunel, 2000) or traveling waves of activity propagating across the neuronal
tissue (Sato et al., 2012; Takahashi et al., 2015; Roxin et al., 2005; Senk et al., 2020).

This study addresses the problem of sequential decision making in the face of
ambiguity and the role of coherent noise in shaping decision strategies. We investigate
how the spiking TM model recalls sequences in response to ambiguous cues in the
presence of coherent noise, to what extent noise averaging can be overcome by
increasing the noise amplitude, and how different recall strategies can be achieved by
adjusting the noise characteristics. We further explore whether shared synaptic input
and random stimulus locking to spatiotemporal oscillations can serve as appropriate,
natural sources of coherent noise. In Methods, we provide a detailed description of
the task and the network model. For a first read, the main findings of the study can
be understood without Methods.

3.2 methods

In the following, we provide an overview of the task and the training protocol, the
network model, and the task performance analysis. A detailed description of the model
and parameter values is provided in Tables 3.1 and 7.3.

3.2.1 Learning protocol and task

During learning, the network is continuously exposed to repeated presentations of
an ensemble of S sequences si = {ζi1, ζi2,. . . , ζiCi} (Ci ∈ N+, i ∈ [1, . . . , S]) of
ordered discrete items ζij , The order of the sequence elements within a given sequence
represents the temporal order of the item occurrence. Each sequence si is presented
with a relative frequency pi in a given set of training data, where

∑S
i=1 pi = 1. After

successful learning, the presentation of some sequence element leads to a context
dependent prediction of the subsequent stimulus. In case the prediction is wrong
the network generates a mismatch signal. The network can also be configured into a
replay mode where it autonomously replays learned sequences in response to a cue
signal. We design the sequences such that they all start with the same two elements
ζ1 = ζ11 = ζ21 . . . ζi1 and ζ2 = ζ12 = ζ22 . . . ζi2 (i ∈ [1, . . . , S]). As a consequence,
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choosing the cue to be the first sequence element (ζ1) results in an ambiguity. Here,
we investigate the replay frequency of a given sequence si as a function of its training
frequency pi and study whether the network can choose between different replay
strategies.

3.2.2 Network model

network structure The network consists of a population E of NE excita-
tory (“E”) and a single inhibitory (“I”) neuron. The neurons in E are randomly and
recurrently connected, such that each neuron in E receives KEE excitatory inputs
from other neurons in E . Excitatory neurons are recurrently connected to the single
inhibitory neuron. The excitatory population E is subdivided into M non-overlapping
subpopulations M1, . . . ,MM , each of them containing neurons with identical stimulus
preference (“receptive field”). Each subpopulation Mk thereby represents a specific
element within a sequence.

external inputs during learning The network is driven by an ensemble
X = {x1, . . . , xNstim} of M external inputs. Each of these external inputs xk represents
a specific sequence element (“A”, “B”, . . . ), and feeds all neurons in the subpopulation
Mk with the corresponding stimulus preference. The occurrence of a specific sequence
element ζi,j at time ti,j is modeled by a single spike xk(t) = δ(t− ti,j) generated by
the corresponding external source xk. Subsequent sequence elements ζi,j and ζi,j+1

within a sequence si are presented with an inter-stimulus interval ∆T = ti,j+1 − ti,j .
Subsequent sequences si and si+1 are separated in time by an inter-sequence time
interval ∆Tseq = ti+1,1 − ti,Ci .

external inputs during replay After learning the set of sequences S, we
present a cue signal encoding for first sequence elements ζ1 at time tj for a number of
trials Nt, where j denotes the trial id (j ∈ [1, . . . , Nt]). Subsequent cues are separated
by an inter-trial interval ∆Tcue,j = tj − tj+1. In section 3.3.1, ∆Tcue,j is constant and
in section 3.3.4, ∆Tcue,j is randomly and uniformly distributed between umin ms and
umax.

During the replay, excitatory neurons are additionally driven by a background input
implemented either in the form of asynchronous irregular synaptic bombardment
(see section 3.3.1) or oscillatory inputs (see section 3.3.4). The first is realized using
ensembles of excitatory and inhibitory spike sources Qk and Vk (k ∈ [1, . . . ,M ]), each
composed of n elements. Each source is an independent realization of a Poisson point
process with a rate ν. Excitatory neurons in the same subpopulation Mk receive KEQ
inputs with weight JEQ from the ensemble Qk and KEV inputs with weights −JEV
from the ensemble Vk. Spikes from Qk and Vk give rise to a jump in the synaptic
current of the postsynaptic cell followed by an exponential decay with a time constant
τEQ and τEV, respectively. The time average input current of a neuron i is

µi = 0 (3.1)

and the variance across time

σ2
i =

τB
2

2K∑
k=0

J2
ikν, (3.2)

where J = JEQ = −JEV, τB = τEQ = τEV, and K = KEQ = KEV. Given that the
populations of background sources are of a finite size, there is a probability that two
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neurons in the same subpopulation to pick a certain number of identical sources, this
gives rise to the so called shared input correlation. The correlation coefficient in the
input current is governed by

c =
K

n
. (3.3)

With this relationship, we can now vary the correlation coefficient by fixing K and
varying n. For the special case where c is supposed to be zero, we assume that
each neuron has its own set of independent Poissonian sources. The second type
of background input is implemented using an ensemble G of M sinusoidal current
generators gk, each with a frequency f , amplitude a, and a phase ϕk (k ∈ [1, . . . ,M ]).
Excitatory neurons in the same subpopulation Mk receive oscillatory inputs from the
same source gk.

neuron and synapse model For all types of neurons, the temporal evolution
of the membrane potential is given by the leaky integrate-and-fire model Eq (3.6).
The total synaptic input current of excitatory neurons is composed of currents in
distal dendritic branches, inhibitory currents, and currents from external sources.
The inhibitory neuron receives only inputs from excitatory neurons. Individual spikes
arriving at dendritic branches evoke alpha-shaped postsynaptic currents, see Eq (3.8).
The dendritic current includes an additional nonlinearity describing the generation of
dendritic action potentials (dAPs): if the dendritic current IED exceeds a threshold
θdAP, it is instantly set to the dAP plateau current IdAP, and clamped to this value
for a period of duration τdAP, see Eq (3.12). This plateau current leads to a long
lasting depolarization of the soma. Inhibitory inputs to excitatory neurons as well as
excitatory inputs to inhibitory neurons trigger exponential postsynaptic currents, see
(3.9–3.10). The weights JIE of excitatory synapses on inhibitory neurons are chosen
such that the collective firing of a subset of ρ excitatory neurons in the corresponding
subpopulation causes the inhibitory neuron to fire. The weights JEI of inhibitory
synapses on excitatory neurons are strong such that each inhibitory spike prevents
all excitatory neurons in the network that have not generated a spike yet from firing.
External inputs are composed of currents resulting from the presentation of the
sequence elements or currents from background inputs (see Inputs in Table 3.1). All
synaptic time constants, delays, and weights are connection-type specific.

plasticity Only excitatory to excitatory (EE) synapses are plastic. All other
connections are static. The dynamics of the EE synaptic weights Jij evolve according to
a combination of an additive spike-timing-dependent plasticity (STDP) rule (Morrison
et al., 2008) and a homeostatic component (Abbott and Nelson, 2000; Tetzlaff et al.,
2011). During the replay mode, the plasticity is disabled and the EE weights are kept
constant (see Table 3.1 for details about the plasticity).

network realizations and initial conditions. For every network
realization, the connectivity and the initial weights are drawn randomly and inde-
pendently. All other parameters are identical for different network realizations. The
initial values of all state variables are given in Table 3.1 and Table 7.3.

simulation details The network simulations are performed in the neural
simulator NEST (Gewaltig and Diesmann, 2007) under version 3.0 (Hahne et al., 2021).
The differential equations and state transitions defining the excitatory neuron dynamics
are expressed in the domain specific language NESTML (Plotnikov et al., 2016;
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Nagendra Babu et al., 2021) which generates the required C++ code for the dynamic
loading into NEST. Network states are synchronously updated using exact integration
of the system dynamics on a discrete-time grid with step size ∆t (Rotter and Diesmann,
1999). The full source code for the implementation with a list of other software
requirements is available at Zenodo: https://doi.org/10.5281/zenodo.6378376.

3.2.3 Task performance measures

Consider the set S = {s1, s2, . . . , sS} of S sequences learned by the network. Let

P = {∅, {s1}, {s2}, . . . , {s1, s2}, {s1, s3}, . . . ,S}

denote the power set of S, i.e., the set of all subsets of S, including the empty set
and S itself. We define the relative replay frequency fPk

of each subset Pk ∈ P of
sequences as the normalized number of exclusive replays of this subset Pk, such that∑

Pk

fPk
= 1. (3.4)

For two sequences s1 and s2, for example, we monitor the four different replay
frequencies f∅ (no sequence is replayed), f{s1} (only s1 is replayed), f{s2} (only s2
is replayed), and f{s1,s2} (both s1 and s2 are replayed). In this work, we refer to f∅
as the “failure rate”. Simultaneous replay of both sequences (f{s1,s2}) refers to cases
where the network fails at coming to a unique decision.

https://doi.org/10.5281/zenodo.6378376
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3.2.4 Model tables

Summary
Populations excitatory neurons (E), inhibitory neurons (I), external spike sources (X ), background

inputs in the form Poissonian sources (Qk and Vk) or sinusoidal current generators
(G). E composed of M disjoint subpopulations Mk and (k = 1, . . . ,M)

Connectivity
• sparse random connectivity between excitatory neurons (plastic)

• local recurrent connectivity between excitatory and inhibitory neurons (static)

Neuron model
• excitatory neurons: Leaky Integrate-and-Fire (LIF) with nonlinear input inte-

gration (dendritic action potentials)

• inhibitory neurons: Leaky Integrate-and-Fire (LIF)

Synapse model exponential or alpha-shaped postsynaptic currents (PSCs)
Plasticity homeostatic spike-timing-dependent plasticity in excitatory-to-excitatory connections

Populations
Name Elements Size
E = ∪M

i=kMk excitatory (E) neurons NE

I inhibitory (I) neurons NI

Mk excitatory neurons in subpopulation k, Mk ∩Ml = ∅ (∀k ̸= l ∈ [1,M ]) nE

Qk excitatory Poisson generators, Qk ∩Ql = ∅ (∀k ̸= l ∈ [1,M ]) n

Vk inhibitory Poisson generators, Vk ∩ Vl = ∅ (∀k ̸= l ∈ [1,M ]) n

X = {x1, . . . , xM} external spike sources M

G = {g1, . . . , gM} sinusoidal current generators M

Connectivity
Source pop-
ulation

Target pop-
ulation

Pattern

E E random; fixed in-degrees Ki = KEE, delays dij = dEE, and synaptic time con-
stants τij = τEE, plastic synaptic weights Jij (∀i ∈ E , ∀j ∈ E ; “EE connections”)

E I all-to-all; fixed delays dij = dIE, synaptic time constants τij = τIE, and weights
Jij = JIE (∀i ∈ I, ∀j ∈ E ; “IE connections”)

I E all-to-all; fixed delays dij = dEI, synaptic time constants τij = τEI, and weights
Jij = JEI (∀i ∈ E , ∀j ∈ I; “EI connections”)

I I none (“II connections”)
Qk Mk random; fixed in-degrees Ki=KEQ, delays dij = dEQ, synaptic time constants

τij = τEQ, and weights Jij ∈ {0, JEQ} (∀i ∈ Mk, j ∈ Qk, ∀k ∈ [1,M ]; “EQ
connections”)

Vk Mk random; fixed in-degrees Ki=KEV, delays dij = dEV, synaptic time constants
τij = τEV, and weights Jij ∈ {0, JEV} (∀i ∈ Mk, j ∈ Vk, ∀k ∈ [1,M ]; “EV
connections”)

Xk = xk Mk one-to-all; fixed delays dij = dEX, synaptic time constants τij = τEX, and weights
Jij = JEX (∀i ∈Mk, j ∈ Xk, ∀k ∈ [1,M ]; “EX connections”)

Gk = gk Mk one-to-all; fixed synaptic weights Jij = JEG (∀i ∈Mk, j ∈ Gk, ∀k ∈ [1,M ]; “EG
connections”)

no self-connections (“autapses”), no multiple connections (“multapses”)
all unmentioned connections I → I, Vk → Vk, Qk → Qk . . .Xk →Ml (∀k ̸= l) are absent

Continued next page
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Neuron and synapse

Neuron

Type Leaky Integrate-and-Fire (LIF) dynamics

Description dynamics of membrane potential Vi(t) and spiking activity si(t) of neuron i:

• emission of the kth spike of neuron i at time tki if

Vi(t
k
i ) ≥ θi (3.5)

with somatic spike threshold θi

• spike train: si(t) =
∑

k δ(t− tki )

• reset and refractoriness:

Vi(t) = Vr ∀k, ∀t ∈
(
tki , t

k
i + τref,i

]
with refractory time τref,i and reset potential Vr

• subthreshold dynamics:

τm,iV̇i(t) = −Vi(t) +Rm,iIi(t) (3.6)

with membrane resistance Rm,i =
τm,i

Cm,i
, membrane time constant τm,i, and

total synaptic input current Ii(t) (see Synapse)

• excitatory neurons: τm,i = τm,E, Cm,i = Cm, θi = θE, τref,i = τref,E (∀i ∈ E)
• inhibitory neurons: τm,i = τm,I , Cm,i = Cm, θi = θI, τref,i = τref,I (∀i ∈ I)

Synapse

Type continuous, exponential, or alpha-shaped postsynaptic currents (PSCs)

Description
• total synaptic input current

excitatory neurons: Ii(t) = IED,i(t) + IEX,i(t) + IEI,i(t), ∀i ∈ E
inhibitory neurons: Ii(t) = IIE,i(t), ∀i ∈ I

(3.7)

with dendritic, inhibitory, excitatory, and external input currents IED,i(t),
IEI,i(t), IIE,i(t), IEX,i(t) evolving according to

IED,i(t) =
∑
j∈E

(αij ∗ sj)(t− dij) (3.8)

with αij(t) = Jij
e

τED
te−t/τEDΘ(t) and Θ(t) =

1 t ≥ 0

0 else

τEIİEI,i = −IEI,i(t) +
∑
j∈I

Jijsj(t− dij) (3.9)

τIEİIE,i = −IIE,i(t) +
∑
j∈E

Jijsj(t− dij) (3.10)

IEX,i(t) = IS,i(t) + IB,i(t) (3.11)

where IS,i(t) and IB,i(t) are the stimulus and the background input, respectively
(see input).

• suprathreshold dynamics of dendritic currents (dAP generation):
– emission of kth dAP of neuron i at time tkdAP,i if IED,i(t

k
dAP,i) ≥ θdAP

– dAP current plateau:

IED,i(t) = IdAP ∀k, ∀t ∈
(
tkdAP,i, t

k
dAP,i + τdAP

)
(3.12)

with dAP current plateau amplitude IdAP, dAP current duration τdAP,
and dAP activation threshold θdAP

– reset: IED,i(t
k
dAP,i + τdAP) = 0 (∀k)

– reset and refractoriness in response to emission of lth somatic spike of
neuron i at time tli:

IED,i(t) = 0 ∀l, ∀t ∈
(
tli, t

l
i + τref,i

)
(3.13)
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– reset of IED,i in case of a strong inhibitory current:

IED,i(t
k
i ) = 0, if IEI,i(t

k
i ) < Iθ, (3.14)

where Iθ is the reset dAP current.

Plasticity

Type spike-timing-dependent plasticity and dAP-rate homeostasis

EE synapses
• dynamics of synaptic weight Jij(t) (EE connections):

J−1
max

dJij

dt
= λ+

∑
{t∗i }

′

xj(t)δ(t− [t∗i + dEE])− λ−yiJij

∑
{t∗j }

δ(t− t∗j )

+ λh

∑
{t∗i }

′

(
z∗ − zi(t)

)
δ(t− t∗i ).

with
– list of presynaptic spike times {t∗j},
– list of postsynaptic spike times
{t∗i }′ = {t∗i | ∃t∗j ∆tmin < t∗i − t∗j + dEE < ∆tmax},

– maximum weight Jmax, potentiation and depression rates λ+, λ-, home-
ostasis rate λh, delay dEE, depression decrement yi,

– spike trace of postsynaptic neuron i, evolving according to

dxj

dt
= −τ−1

+ xj(t) +
∑
t∗j

δ(t− t∗j )

with presynaptic spike times t∗j and potentiation time constant τ+,
– dAP trace of postsynaptic neuron i, evolving according to

dzi
dt

= −τ−1
h zi(t) +

∑
k

δ(t− tkdAP,i)

with onset time tkdAP,i of the kth dAP, homeostasis time constant τh, and
– target dAP activity z∗

all other synapses non-plastic

Continued next page
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Input

• prediction mode
– stimulus

∗ repetitive stimulation of the network using the same set S = {s1, . . . , sS} of sequences
si = {ζi,1, ζi,2,. . . , ζi,Ci} of ordered discrete items ζi,j with number of sequences S and
length Ci of ith sequence

∗ presentation of sequence element ζi,j at time ti,j modeled by a single spike xk(t) = δ(t−ti,j)
generated by the corresponding external source xk

∗ generated current as a response to the presentation of the sequence elements:

τSİS,i = −IS,i(t) +
∑
j∈X

Ji,jxj(t− dij) (3.15)

∗ inter-stimulus interval ∆T = ti,j+1 − ti,j between subsequent sequence elements ζi,j and
ζi,j+1 within a sequence si

∗ inter-sequence time interval ∆Tseq = ti+1,1 − ti,Ci between subsequent sequences si and
si+1

∗ example sequence sets:
· sequence set I: S={{A,F,B,D} and {A,F,C,E}}
· sequence set II: S={{A,F,C,E}, {A,F,B,D}, {A,F,G,H}}

• replay mode
– stimulus

∗ presentation of a cue encoding for first sequence elements ζ1 at time tj , where j denotes
the trial number (j ∈ [1, . . . , Nt]).

∗ inter-trial interval ∆Tcue = tj+1 − tj

– background input
∗ in the form of correlated Poissonian inputs

τBİB,i(t) = −IB,i(t) +
∑
j∈Q

Ji,jsj(t− d) +
∑
j∈V

Ji,jsj(t− d) (3.16)

with Poissonian spike trains sj(t) of rate ν, synaptic weight Ji,j ∈ {0, J} where J = JEQ =
−JEV, synaptic time constant τB = τEQ = τEV, and delay d = dEQ = dEV

· the variance of IB,i(t) across time:

σ2 = Var(IB,i(t)) = J2KντB, (3.17)

where K = KEQ = KEV is the number of either excitatory or inhibitory Poissonian
input per excitatory neuron

· the correlation coefficient of IB,i(t) and IB,j(t) across time:

c =
Cov(IB,i(t), IB,j)(t)

σ2
=

0 ∀i ∈Mk, ∀j ∈Ml (∀k ̸= l)

K
n
∀i ∈Mk, ∀j ∈Ml (∀k = l),

(3.18)

where n is the number of either excitatory or inhibitory Poissonian sources (see
Connectivity)

∗ or oscillatory current
IB,i(t) = JEG · a · sin(2πft+ ϕi) (3.19)

with amplitude a, frequency f , and population specific phase ϕi = ϕk (∀i ∈Mk)

Output

• somatic spike times {tki |∀i ∈ E , k = 1, 2, . . .}
• dendritic currents IED,i(t) (∀i ∈ E)

Continued next page
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Initial conditions and network realizations

• membrane potentials: Vi(0) = Vr (∀i ∈ E ∪ I)
• dendritic currents: IED,i(0) = 0 (∀i ∈ E)
• external currents: IS,i(0) = 0 and IB,i(0) = 0 (∀i ∈ E)
• inhibitory currents: IEI,i(0) = 0 (∀i ∈ E)
• excitatory currents: IIE,i(0) = 0 (∀i ∈ I)
• synaptic weights: Jij(0) ∼ U(J0,min, J0,max) (uniform distribution; ∀i, j ∈ E)
• spike traces: xi(0) = 0 (∀i ∈ E)
• dAP traces: zi(0) = 0 (∀i ∈ E)
• initial weights randomly and independently drawn for each network realization

Simulation details

• network simulations performed in NEST (Gewaltig and Diesmann, 2007) version 3.0 (Hahne et al.,
2021)

• definition of excitatory neuron model using NESTML (Plotnikov et al., 2016; Nagendra Babu et al.,
2021)

• synchronous update using exact integration of system dynamics on discrete-time grid with step size
∆t (Rotter and Diesmann, 1999)

• source code underlying this study: https://doi.org/10.5281/zenodo.6378376

Table 3.1: Description of the network model. Parameter values are given in Table 7.3.

https://doi.org/10.5281/zenodo.6378376
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3.3 results

3.3.1 A spiking neural network recalls sequences in response to ambiguous cues

In this section, we provide a brief overview of the model and the task, illustrate how
the network learns overlapping sequences occurring with different frequencies during
the training, and show how these occurrence frequencies are encoded in the network.
We then study the network responses to ambiguous cues and the influence of the
occurrence frequencies on the recall behavior in the absence or presence of noise.

The model consists of a randomly and sparsely connected network of NE excitatory
neurons (population E) and a single inhibitory neuron (Fig. 3.1A). Each excitatory
neuron receives KEE excitatory inputs from other randomly chosen neurons in E .
Excitatory neurons are subdivided into M subpopulations, each containing neurons
with identical stimulus preference: in the absence of any additional connections, all
neurons in a given subpopulation fire a spike upon presentation of a specific sequence
element. The inhibitory neuron is recurrently connected to the excitatory neurons. In
contrast to chapter 2 where each excitatory subpopulation is equipped with its own
inhibitory neuron, we here use a single inhibitory neuron to implement competition
between the subpopulations of excitatory neurons. The network is driven by external
inputs, each representing a specific sequence element (“A”, “B”, . . . ), and feeds all
neurons in the subpopulation Mk with the corresponding stimulus preference. The
model of the neurons and synaptic currents is similar to the one introduced in chapter 2.
Synapses between excitatory neurons are plastic and subject to spike-timing-dependent
plasticity and homeostatic control. Details on the network model are given in Methods.

During the learning, the network is exposed to repeated presentations of two
sequences {A,F,B,D} and {A,F,C,E}, where the first sequence is shown with a relative
frequency p and the second with 1− p (e.g., p = 0.2 in Fig. 3.2A). In the following, we
refer to {A,F,B,D} as sequence 1 and to {A,F,C,E} as sequence 2. Before learning,
presenting a sequence element causes all neurons in the respective subpopulation to fire.
During the learning process, the repetitive sequential presentation of sequence elements
increases the strength of connections between the corresponding subpopulations to a
point where the activation of a certain subpopulation by an external input generates
dAPs in a specific subset of neurons in the subpopulation representing the subsequent
element. The generation of the dAPs results in a long-lasting depolarization (∼50-
500ms) of the soma. We refer to neurons that generate a dAP as predictive neurons.
When receiving an external input, predictive neurons fire earlier as compared to
non-predictive neurons. When enough predictive neurons are present within a certain
subpopulation, their advanced spike initiates a fast and strong inhibitory feedback
to all excitatory neurons, ultimately suppressing the firing of non predictive neurons.
After learning, the model develops specific subnetworks representing the learned
sequences (Fig. 3.1B), such that the presentation of a sequence element leads to a
context dependent prediction of the subsequent element. As a result of Hebbian
learning, the synaptic weights in the subnetwork corresponding to the most frequent
sequence during learning are stronger than those for the less frequent sequence
(Fig. 3.1B, Fig. 3.3A, Fig. 3.4A). In the prediction mode, this asymmetry in synaptic
weights plays no role. For ambiguous stimuli, all potential outcomes are predicted,
i.e., the network predicts both “C” and “E” simultaneously in response to stimuli “A”
and “F”, irrespective of the training frequencies.
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Figure 3.1: Network structure. A) The architecture constitutes a recurrent network of
subpopulations of excitatory neurons (filled gray circles) and a single inhibitory
neuron (Inh). Each excitatory subpopulation contains neurons with identical
stimulus preferences. Excitatory neurons are stimulated by external sources
providing sequence-element specific inputs “A”,“F”, “B”, etc. Connections between
and within the excitatory subpopulations are random and sparse. The inhibitory
neuron is recurrently connected to all excitatory neurons. In the depicted example,
the network is repetitively presented with two sequences {A,F,C,E} (brown)
and {A,F,B,D} (blue) during learning. The sequence {A,F,C,E} occurs twice
as often as {A,F,B,D}. B) After learning, the networks forms sequence specific
subnetworks (blue and brown arrows representing {A,F,B,D} and {A,F,C,E},
respectively). The connections between subpopulations representing the sequence
shown more often are stronger (thick arrows). C) During the replay mode, the
network is presented with a cue stimulus representing the first sequence element
“A”. In addition, the excitatory subpopulations receive input from distinct sources
of background noise (gray traces).

The model can be configured into a replay mode, where the network autonomously
replays learned sequences in response to a cue stimulus. This is achieved by changing
the excitability of the neurons such that the activation of a dAP alone can cause the
neurons to fire. In the replay mode, we present ambiguous cues and study whether
the network can replay sequences following different strategies (Fig. 3.2B). We refer
to the “maximum probability” strategy (Fig. 3.2B, left) as the case where the network
exclusively replays the sequence with the highest occurrence frequency. “Probability
matching” is referred to when the replay frequency of a sequence matches its occurrence
frequency during training (Fig. 3.2B, middle). We call the strategy “full exploration”
when all sequences are randomly replayed with the same frequency, irrespective of
the occurrence frequency during training (Fig. 3.2B, right). In Fig. 3.3, we illustrate
the network’s decision behavior by presenting the ambiguous cue stimulus “A” three
times. In the absence of noise, the network adopts the maximum probability strategy
(Fig. 3.3B): as a result of the higher weights between the neurons representing the more
frequent sequence, the dAPs get activated earlier in these neurons, which advances
their somatic firing times with respect to the neurons of the less frequent sequence.
This advanced response time quickly activates the inhibitory neuron, which suppresses
the activity of the neurons representing the less frequent sequence.

To assess the replay performance quantitatively, we present the cue stimulus “A”
for Nt trials and examine the replay frequency of the two sequences {A,F,B,D} and
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Figure 3.2: Task. A) During learning, the model is exposed to two (or more) competing
sequences with different frequencies. Here, sequence 1 ({A,F,C,E}; blue) is shown
twice as often as sequence 2 ({A,F,B,D}; brown). The respective normalized oc-
currence frequencies 1/3 and 2/3 are depicted by the histogram. B) During replay,
the network autonomously recalls the sequences in response to an ambiguous cue
signal (first sequence element; black squares) according to different strategies.
Maximum probability (max-prob): Only the sequence with the highest occurrence
frequency during training is replayed. Probability matching (prob. matching): The
replay frequency of a sequence matches its occurrence frequency during training.
Full exploration: All sequences are randomly replayed with the same frequency,
irrespective of the occurrence frequency during training. Histograms represent
the replay frequencies.

{A,F,C,E} as a function of their occurrence frequencies during training. We define
the sequences {A,F,B,D} or {A,F,C,E} to be successfully replayed if more than 50%
of the neurons in the last subpopulations “E” or “D” have fired, respectively. In the
absence of noise, the network replays only the sequence with the highest occurrence
frequency p (Fig. 3.4E). For p < 0.5, the sequence {A,F,C,E} is the only one replayed
in all trials, and for p > 0.5 the sequence {A,F,B,D} becomes the dominant one. To
understand this behavior, we inspect the response latencies tB/C of the subpopulations
“B” and “C” as a function of the occurrence frequencies of the sequences {A,F,B,D} and
{A,F,C,E} (Fig. 3.4B). The mean of the response latency tB or tC is smaller for the
subpopulation participating in the sequence with the higher frequency. The response
latencies tB and tC decrease with increasing the respective occurrence frequencies. As
the network is here operating in the absence of noise, the distribution of the response
latencies tB/C across trials is narrow. Consequently, neurons representing the most
frequent sequence fire earlier in all trials. This advanced response quickly activates
the inhibitory neuron, which suppresses the activity of the neurons representing the
less frequent sequence. For training frequencies between 0.4 and 0.6, the difference
between tB and tC is small compared to the response latency of the WTA circuit.
Hence, both sequences are occasionally replayed simultaneously (Fig. 3.4E).

To foster exploratory behavior, i.e., to enable occasional replay of the low-frequency
sequence, we equip the excitatory neurons with noise. In this work, we investigate
two different forms of noise. Here, we first consider noise provided in the form of
stationary synaptic background input (see below for an alternative form of noise). Each
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Figure 3.3: Correlated noise enhances exploratory behavior. A) Sketch of subpopula-
tions of excitatory neurons (boxes) representing the elements of the two sequences
{A,F,C,E} (seq. 2) and {A,F,B,D} (seq. 1). The subpopulations “C” and “B” are
unfolded showing their respective neurons. The arrows depict the connections after
learning the two sequences. The line thickness represents the synaptic weight. The
presentation of the character “A” constitutes an ambiguous cue during replay. The
inhibitory neuron (Inh) mediates competition between subpopulations (WTA).
B, C, D) Spiking activity in the subpopulations depicted in panel A in response
to three repetitions of the ambiguous cue “A” (black triangles at the top and
vertical dotted lines) for three different noise configurations σ = 0 pA, c = 0 (B),
σ = 190 pA, c = 0 (C), and σ = 190 pA, c = 1 (D). Brown, blue, and silver dots
mark somatic spikes of excitatory neurons corresponding to sequence 1, sequence
2, and both, respectively. Red dots mark spikes of the inhibitory neuron. Network
size: number of subpopulations M = 8 and number of neurons per subpopulation
nE = 150. See Table 7.3 for remaining parameters.

subpopulation of excitatory neurons receives input from its private pool of independent
excitatory and inhibitory Poissonian spike sources (Fig. 3.1C). These background
inputs are parameterized by the noise amplitude σ (standard deviation of the synaptic
input current arising from these background inputs) and the noise correlation c
(see Fig. 3.1C and Methods). Only inputs to neurons of the same subpopulation are
correlated by an extent parameterized by c. Neurons in different subpopulations receive
uncorrelated inputs. The noise amplitude σ is chosen such the subthreshold membrane
potentials of the excitatory neurons are fluctuating without eliciting additional spikes.
As a consequence, the distributions of response latencies tB/C across trials may be
broadened and partly overlap (Fig. 3.4C,D). As we will show in the following, the
network can adopt different replay strategies (Fig. 3.2B) depending on the amount of
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this overlap. Note that noise is injected only during replay, but not during learning.
During training, the weak noise employed here hardly affects the network behavior as
the external inputs (stimulus) are strong and lead to a reliable, immediate responses.

With uncorrelated noise (c = 0), the replay behavior remains effectively non-
explorative, i.e., only the high-frequency sequence is replayed in response to the cue
(Fig. 3.3C). This is explained by the fact that each sequence element is represented by
a subset of ρ neurons. The response latency t corresponds to the population average
t = 1

ρ

∑ρ
i=1 ts,i of the response latencies ts,i (time of first spike after the cue) for each

individual neuron i within this subset. The across-trial variance

v = Var(t) =
1

ρ
vs +

ρ− 1

ρ
csvs (3.20)

of this population measure t is determined by the population size ρ, the population av-
eraged spike-time variance vs =

1
ρ

∑ρ
i Var(ts,i), and the population averaged spike-time

correlation coefficient cs = 1
ρ(ρ−1)vs

∑ρ
i

∑ρ
j ̸=i Cov(ts,i, ts,j), with Cov(ts,i, ts,j) denoting

the spike-time covariance for two neurons i and j. The response-latency statistics
vs and cs depend on the input noise statistics σ and c in a unique and monotonous
manner (Goedeke and Diesmann, 2008; De la Rocha et al., 2007). In the absence of
correlations (c = cs = 0), the across-trial variance v of t vanishes for large population
sizes ρ. For finite population sizes, v is non-zero but small (Fig. 3.4C). The effect of
the synaptic background noise on the variability of response latencies largely averages
out. Hence, the average advance in the response of the population representing the
high-frequency sequence cannot be overcome by noise; the network typically replays
only the sequence with the higher occurrence frequency during training (Fig. 3.4F). For
small differences in the occurrence frequencies (i.e., p ≈ 0.5), the network occasionally
fails to replay any sequence or replays both sequences. The mechanism underlying
this behavior is explained below.

Noise averaging is efficiently avoided by introducing noise correlations. For perfectly
correlated noise and, hence, perfectly synchronous spike responses (c = cs = 1), the
across-trial variance v of the response latency t is identical to the across-trial variance
vs of the individual spike responses, i.e., v = vs, irrespective of the population size ρ;
see Eq (3.20). For smaller but non-zero spike correlations (0 < cs < 1), the latency
variance v is reduced but doesn’t vanish as ρ becomes large. Hence, in the presence
of correlated noise, the across-trial response latency distributions for two competing
populations have a finite width and may overlap (Fig. 3.4D), thereby permitting
an occasional replay of the sequence observed less often during training (Fig. 3.4G).
Replay, therefore, becomes more exploratory, such that the occurrence frequencies
during training are gradually mapped to the frequencies of sequence replay. With
an appropriate choice of the noise amplitude and correlation, even an almost perfect
match between training and replay frequencies can be achieved (probability matching;
Fig. 3.4G).

The results presented so far can be extended towards more than two competing
sequences. As a demonstration, we train the network using three sequences {A,F,C,E},
{A,F,B,D}, and {A,F,G,H} presented with different relative frequencies. By adjusting
the noise amplitude σ and correlation c, the replay frequencies can approximate the
training frequencies (Fig. 3.5).
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Figure 3.4: Uncorrelated noise averages out in population based encoding. Depen-
dence of A) the compound weights (PSC amplitudes) wBF (brown) and wCF
(blue; see Fig. 3.3A), B–D) the population averaged response latencies tB and tC

(subpopulation averaged time of first spike after the cue) for subpopulations “B”
(brown) and “C” (blue), and E–G) the relative replay frequencies of sequences 1
(brown) and 2 (blue) along with the failure rate (gray) and the joint probability of
replaying both sequences (silver) on the occurrence frequency of sequence 1 during
training. Panels B–G depict results for three different noise parameterization
σ = 0 pA, c = 0 (B,E), σ = 190 pA, c = 0 (C,F), and σ = 190 pA, c = 1 (D,G). In
panel A, circles and error bars depict the mean and the standard deviation across
different network realizations. In panels B–D, circles and error bars represent
the mean and the standard deviation across Nt = 150 trials (cue repetitions),
averaged across 5 different network realizations. In panels E–G, circles represent
the mean across Nt = 150 trials, averaged across 5 different network realizations.
See Table 7.3 for remaining parameters.

3.3.2 Noise canceling cannot be overcome by increasing noise amplitude

For subpopulations of finite size ρ, the variance v of the response latency t remains
finite, and can be increased by scaling up the variance of the noise, even without
correlation; see Eq (3.20). However, this solution cannot be applied to network models
where a decision is mediated by a fast WTA circuit. In the presence of uncorrelated
noise with high amplitude, the spikes from all neurons, in all competing subpopulations,
are similarly dispersed. A large dispersion in spike times prohibits a fast and reliable
activation of inhibition by one of the competing subpopulations. The WTA mechanism,
therefore, fails at selecting a unique sequence. Consequently, both sequences run
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Figure 3.5: Multiple competing sequences are learned and replayed according to
their occurrence frequencies (probability matching). During learning,
three partly overlapping sequences {A,F,C,E}, {A,F,B,D}, and {A,F,G,H} are
repetitively presented with relative frequencies 0.2, 0.5, 0.3, respectively (dotted
red lines). After learning, the network autonomously replays the learned sequences
in response to the ambiguous cue “A” with frequencies depicted by the blue bars.
Noise parameters: σ = 190 pA, c = 1. See Table 7.3 for remaining parameters.

through in most of the trials (Fig. 3.6A). An additional problem of the uncorrelated
noise is that it impairs the propagation of the activity across the subpopulations of
neurons. As our model relies on the propagation of synchronously firing neurons, the
spike time dispersion resulting from the uncorrelated noise bears the risk that the
spikes generated may be too dispersed to trigger dAPs in the next subpopulation
(Fig. 3.6). As a result of these two problems, more explorative behavior cannot be
achieved by increasing the amplitude of uncorrelated noise. Instead, the probability
of simultaneous replay (no decision) and the failure rate increase (Fig. 3.6B).

Noise correlations lead to more synchronous responses, thereby reducing the overlap
between the within-trial latency distributions of the two competing populations “B”
and “C” (Fig. 3.3D). In each trial, the WTA dynamics is therefore triggered by just
one of the two populations, rather than by both. Further, synchronous firing leads
to a more robust activation of the subsequent subpopulation, and hence, a more
robust replay. Hence, noise correlations help not only in generating more explorative
behavior, but also in reducing replay failures and the chance of simultaneous activation
of competing sequences (Fig. 3.4G).

3.3.3 Noise amplitude and level of correlation control replay strategy

We know from psychophysics experiments that humans and animals are able to flexibly
change the strategy by which they select probabilistic outcomes (Shanks et al., 2002;
Cohen et al., 2007). Our model is also able to express these different strategies. For
small noise amplitudes and irrespective of the correlation level, the model replays
deterministically the frequent sequence (max-prob, see Fig. 3.7A). With increasing the
noise amplitude and sufficiently large correlation, the replay frequency approximately
matches the training frequency (probability matching, Fig. 3.7B). Increasing the noise
further leads to an even more explorative replay, where the replay frequencies become
less dependent on the training frequencies (Fig. 3.7C). Full exploration requires a large
amount of noise to overwrite the asymmetry in the synaptic weights. In the presence
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Figure 3.6: Winner-take-all mechanism fails when increasing the amplitude of the
uncorrelated noise. A) Brown, blue, and silver dots mark somatic spikes of
excitatory neurons belonging to sequence {A,F,B,D} (seq. 1), sequence {A,F,C,E}
(seq. 2), or both, respectively. Red dots mark spikes from inhibitory neurons. Each
trial is initiated by stimulating the first element in the sequence (“A”, see dark
arrows and vertical dashed lines). During training, the sequences 1 and 2 are
shown with relative frequencies 0.2 and 0.8, respectively. B) The relative replay
frequency of sequence 1 (brown) and sequence 2 (blue) along with the failure rate
(gray) and the joint probability of replaying both sequences (silver) are plotted as
a function of the relative training frequency of sequence 1. Circles represent the
mean across Nt = 150 trials averaged across 5 network realizations. Parameters:
σ = 537 pA and c = 0. See Table 7.3 for the remaining parameters.

of high-amplitude noise, neurons may become strongly hyperpolarized during stimulus
arrival, and hence, fail to respond. Further, strong noise induced depolarizations may
trigger spurious bursts of synchronous spikes.

In our work, it is also possible to change the replay strategy by changing the
correlation level (see Fig. 3.8). If the noise amplitude is well adjusted, a low correlation
level makes the dynamics non-explorative. With increasing the correlation level
dynamics become more explorative. This suggests, therefore, that the replay strategy
can be controlled by changing the noise amplitudes or the correlation level. Adjusting
noise amplitudes can be achieved in biology by changing the rate of the background
input or by changing the effective weights, which can be modulated by neuromodulation
(Atherton et al., 2015) or attention (Baluch and Itti, 2011). So far, we studied
correlations induced by shared presynaptic inputs. To achieve explorative dynamics,
shared input correlations need to be high (c ∼ 1). However, shared input correlations
resulting from the cortical anatomy are rather low (Abeles, 1991; Braitenberg and
Schüz, 1998; Shadlen and Newsome, 1998; Song et al., 2005). In the next section, we
therefore propose an alternative form of noise, where correlations are generated by
the network dynamics.
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Figure 3.7: Different replay strategies achieved by increasing the noise amplitude.
The relative replay frequency of sequence 1 (brown) and sequence 2 (blue) along
with the failure rate (gray) and the joint probability of replaying both sequences
(silver) are plotted as a function of the relative training frequency of sequence
1 for different noise amplitudes σ = 0 pA (A), σ = 190 pA (B), and σ = 537 pA
(C) with correlation coefficient c = 1. Circles represent the mean across Nt = 150
trials, averaged across 5 different network realizations. See Table 7.3 for remaining
parameters.

3.3.4 Random stimulus locking to spatiotemporal oscillations as natural form of
noise

So far, we have used shared synaptic background input in the form of stationary
Poissonian spikes as a source of correlated noise. Locally coherent noise may however
also be provided in the form of randomness in stimulus timing with respect to
spatiotemporal background oscillations. In the presence of traveling cortical waves, for
example, nearby neurons in a given subpopulation share the same oscillation phase,
whereas distant neurons belonging to different subpopulations experience different
phases (Fig. 3.9). At the time of stimulus arrival, the neurons in the up phase are
more excitable and tend to fire earlier than neurons in a down phase. Spatiotemporal
oscillations in cortical activity are ubiquitous and occur in different forms (Nauhaus
et al., 2009; Muller and Destexhe, 2012; Sato et al., 2012). In nature, external stimuli
are usually not consistently locked to such oscillations. It is therefore reasonable to
assume that the stimulus onset times are random with respect to the oscillation phase.

Here, we exploit this form of randomness to increase the trial-to-trial variability
during replay. To investigate its effect on the replay performance, we first train the
network in the absence of any background input using two sequences {A,F,C,E} and
{A,F,B,D} with relative training frequencies p and 1− p, respectively. During replay,
we inject an oscillating background current with amplitude a and frequency f into all
excitatory neurons (see section 3.2). Neurons within a given subpopulation share the
same oscillation phase. Phases for different subpopulations are randomly drawn from
a uniform distribution between 0 and 2π. The replay performance of the network is
assessed by monitoring the network responses to repetitive presentations of an external
cue “A” with random, uniformly distributed inter-cue intervals ∆Tcue ∼ U(umin umax).
We define sequences {A,F,B,D} or {A,F,C,E} to be successfully replayed if more than
50% of the neurons in the last subpopulations “E” or “D” have fired, respectively. The
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Figure 3.8: Adjusting level of correlation permits different replay strategies. The
relative replay frequencies of sequence 1 (brown, A) and 2 (blue, C) as a function
of the occurrence frequency of sequence 1 during training plotted for different
correlation levels (different markers: c = 0, c = 0.8, and c = 1). Contour plot
showing the dependence of the relative replay frequencies of sequences 1 (B) and 2
(D) on the training frequency of sequence 1 and different correlation levels. Noise
amplitude σ = 15 pA. The replay frequencies are computed as the mean across
Nt = 150 trials, averaged across 5 different network realizations. See Table 7.3 for
remaining parameters.

analysis is repeated for a range of training frequencies p, oscillation amplitudes a, and
frequencies f .

Depending on the choice of the oscillation amplitude a and frequency f , the network
replicates different replay strategies (Fig. 3.10). For low-amplitude oscillations, the
model replays only the sequence with the higher training frequency (max-prob). With
increasing oscillation amplitude, the model becomes more explorative and occasionally
replays the less frequent sequence. By adjusting the oscillation amplitude, the replay
frequency can be closely matched to the training frequency. In line with experimental
recording (Buzsáki, 2006; Buzsáki and Draguhn, 2004), this behavior is observed for
a range of physiological oscillation frequencies: alpha (10Hz), beta (30Hz), gamma
(70Hz). Due to the low-pass filtering of the neuronal membranes and synapses, higher
oscillation frequencies have a smaller effect. Consequently, increasing the oscillation
frequency leads to a more reliable replay of the frequent sequence. For slow oscillations
with long periods that are large compared to the average inter-cue interval, the
network responses in subsequent trials are more correlated. For sufficiently many
trials, however, the network can still explore different solutions.

3.4 discussion

This work proposes a spiking neural network model able to recall sequences in
response to ambiguous cues following different strategies. In this model, explorative
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Figure 3.9: Random locking of stimulus to global oscillations as a form of noise.
A) Snapshot of a wave of activity traveling across a cortical region at time t1 of
the 1st stimulus onset. Grayscale depicts wave amplitudes in different regions.
Brown and blue rectangles mark populations of neurons with stimulus preferences
“B” and “C”, respectively. B) Background inputs to neurons in populations “B”
and “C” at different times. Background inputs to each population “B” and “C”
at different times. Background inputs to neurons within each population are in
phase due to their spatial proximity. Background inputs to different populations
are phase shifted. Arrows on the top depict stimulus onset times. The times
t1, t2, . . . indicate input arrival to populations “B” and “C” (dashed vertical lines
are random not locked to the background activity).

recall strategies are achieved by providing the network with external coherent noise.
We explore two forms of coherent noise implemented either in the form of shared
synaptic input or a random stimulus locking to global spatiotemporal oscillations in
the neuronal activity. The model can switch between different replay strategies by
adjusting the noise characteristics such as the noise or oscillation amplitude, as well
as the noise correlation or oscillation frequency.

The sequence processing model proposed here relies on a form of population encod-
ing. In the absence of correlations, noise injected to single neurons therefore largely
averages out and leads to a quasi-deterministic and non-exploratory behavior. Locally
correlated noise, in contrast, permits an explorative recall behavior where the sequence
frequency during learning can be gradually mapped to the recall frequency. Further-
more, noise correlations foster synchronization between neurons within subpopulations,
and thereby lead to a more robust context-specific activation of sequences during
recall. The problem of noise averaging and the proposed solution are not unique to the
model presented here, but are generic for all systems where relevant state variables
arise from superpositions of many noisy, uncorrelated components. Fluctuations in the
total input current of a single neuron resulting from superpositions of thousands of
synaptic inputs, for example, can be efficiently controlled by the level of correlation in
the presynaptic activity (Salinas and Sejnowski, 2001). Similarly, explorative behavior
in other models of population based probabilistic computing (e.g. Legenstein and
Maass, 2014) can be enhanced by equipping neurons within each population with
correlated noise.

Correlation in neuronal firing can originate from both anatomical constraints or
network dynamics (Tetzlaff et al., 2012; Helias et al., 2014). In this study, we investigate
both types. The first type of noise is implemented in the form of irregular synaptic
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Figure 3.10: Background oscillations as a mean for changing the replay strategies.
The relative replay frequency of sequence 1 (brown) and sequence 2 (blue) along
with the failure rate (gray) and the joint probability of replaying both sequences
(silver) are plotted as a function of the relative training frequency of sequence
1 for different amplitudes a ∈ {0, 8, 16} and frequencies of the background
oscillations: f = 10Hz (B,C), f = 30Hz (A,D,E), and f = 70Hz (F,G). Circles
represent the mean across Nt = 150 trials, averaged across 5 network realizations.
See Table 7.3 for remaining parameters.

background input (Faisal et al., 2008; Fellous et al., 2004; Destexhe et al., 2001; Holt
et al., 1996), where the correlation between neurons of the same subpopulation is
resulting from shared presynaptic sources (Stroeve and Gielen, 2001; Kriener et al.,
2008). From an anatomical perspective, this is reasonable as neighboring neurons
indeed receive a considerable amount of inputs from identical presynaptic neurons.
However, we show that the level of shared-input correlation required for an effective
avoidance of noise averaging and maintenance of near synchronous activity is rather
high, which contradicts anatomical studies reporting small connection probabilities
in local cortical circuits, and hence, low levels of shared input correlation (Abeles,
1991; Braitenberg and Schüz, 1998; Song et al., 2005; Shadlen and Newsome, 1998).
We therefore propose a second, biologically more plausible type of coherent noise
resulting from a random stimulus locking to an intrinsic spatiotemporal coherent
activity pattern on a large spatial scale, such as waves of cortical activity. Coherent
spatiotemporal activity patterns in the cortex are observed in many different forms and
under various conditions, including different sleep states, but also in awake behaving
animals (Buzsáki, 2006; Buzsáki and Draguhn, 2004; Sato et al., 2012; Denker et al.,
2018). In such states, neighboring neurons receive coherent input with identical phase,
whereas distant neurons are exposed to different phases. Natural external stimuli such
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as cue signals are usually not systematically locked to this type of intrinsic activity
(unless stimuli are presented in closed-loop experiments). It is therefore reasonable
to assume that the stimulus onset is random with respect to the internal state. In
this study, we employ activity waves as a specific form of coherent spatiotemporal
activity, and show that explorative behavior is generated for a range of plausible
oscillation frequencies. We propose that a similar behavior can be achieved for other
non-oscillatory forms of coherent activity, such as transient propagating wave fronts
or bumps (Ermentrout, 1998; Coombes, 2005; Muller et al., 2018), as well as by other
factors modulating the excitability of neighboring neurons in a coherent manner, such
as transient neuromodulatory signals.

By changing the noise characteristics (such as the amplitude or frequency of the
background activity, or the level of correlation), the model proposed in this study can
replay competing sequences according to different strategies. For low levels of noise,
the network systematically replays the sequence that occurred most often during
learning (max-prob). For higher noise levels, it can match the replay frequency to the
occurrence frequency during training (probability matching), or become even more
explorative. This offers a potential mechanistic explanation of how animals can adjust
their decision strategy based on environmental conditions (Cohen et al., 2007). In the
living brain, the noise properties could be controlled by neuromodulatory signals or by
inputs from other brain areas (e.g., during attention; Cohen and Maunsell, 2009). Our
and many other studies predict that, in cases where the decision strategy is shifted
towards exploration, more energy needs to be provided for noise generation. In line
with this prediction, Daw et al. (2006) show that explorative behavior is accompanied
by an increase in the BOLD signal amplitude in cortical areas associated with decision
making.

A number of previous studies suggest that synaptic stochasticity, i.e., the variability
in postsynaptic responses including synaptic failure (Branco and Staras, 2009), may
constitute an efficient source of noise for probabilistic computations in neuronal
circuits (Maass, 2014; Neftci et al., 2016). The total input to a neuron resulting from
large ensembles of synapses, however, is likely to be subject to noise averaging, unless
the variability of synaptic responses is correlated across synapses. To date, it remains
unclear how such correlations could potentially arise. Localized neuromodulatory
signals or shared presynaptic spike histories may play a role in this. Hartmann et al.
(2015) demonstrate that a self-organizing recurrent neural network model can learn
sequence probabilities in the absence of any form of stochasticity. Similar to our work,
the model comprises recurrently coupled populations of excitatory and inhibitory
threshold units and learns via a combination of spike-timing-dependent plasticity
(STDP) and homeostatic plasticity mechanisms. The authors report that their model
tends to overrepresent the more frequent stimuli, but they do not discuss mechanisms
enabling a switching between different replay strategies. The ideas presented in our
work could possibly be applied to this model.

Overall, our work ties together concepts from sequence processing and decision
making in the face of ambiguity. It demonstrates that locally coherent noise is a
potential mechanism underlying exploratory behavior, and shows that a random
stimulus locking to macroscopic coherent activity patterns, e.g., traveling waves, can
constitute such a form of noise.
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4.1 introduction

In everyday’s tasks such as learning, recognizing, or predicting objects in a noisy,
ever-changing environment, brains outperform conventional computing systems and
deep learning algorithms at many aspects: it has a higher capacity to generalize,
can learn from small training examples, is robust with respect to perturbations and
failure, and is highly resource and energy efficient. To achieve this performance, it
uses intricate biological mechanisms and principles. Understanding these principles is
essential for driving new advances in neuroscience and for developing new real-world
applications. For instance, it is known that biological neural networks are highly sparse
in activity and connectivity and they can self-organize in the face of the incoming
sensory stimulus using unsupervised local learning rules. A number of biologically
inspired algorithms relying on these principles have been developed for sequence
prediction and replay (Lazar et al., 2009; Hawkins and Ahmad, 2016; Bouhadjar et al.,
2022b), pattern recognition (Masquelier and Thorpe, 2007; Payeur et al., 2021), and
decision making (Neftci and Averbeck, 2019). The spiking Temporal Memory (spiking
TM) network proposed in chapter 2 learns high-order sequences in an unsupervised,
continuous manner using local learning rules. Owing to its highly sparse activity
and connectivity, it provides an energy-efficient sequence learning and prediction
mechanism.

The spiking TM algorithm was implemented using the neural simulator NEST
(Gewaltig and Diesmann, 2007). While NEST provides a simulation platform optimized
for running large-scale networks efficiently in a reproducible manner, it is executed
on standard von-Neumann-type computers, i.e., on hardware that is not specifically
optimized for neuromorphic computing. This results in performance limitations as
the simulation time and the energy dissipation become substantially high for brain-
scale neural networks (Kunkel et al., 2014; Jordan et al., 2018). For using spiking
TM in edge-computing applications, more efficient hardware is therefore required.
Neuromorphic hardware, with dedicated solutions to the high demands imposed by
the natural-density connectivity of the brain and the resulting communication load, as
well as, specific circuit blocks emulating neuron and synapse functionalities, present a
potential solution for that. The local learning rules and the sparse neuronal activation
of the spiking TM model allow for efficient mapping of the algorithm on neuromorphic
hardware.

Memristive devices were suggested as components in such a hardware (Yang et al.,
2013; Ielmini and Wong, 2018; Yu, 2018). They can be used to emulate certain synaptic
functionalities using only a single device, by replacing more complex CMOS-based
circuits (Waser et al., 2009; Dittmann and Strachan, 2019). Their intrinsic dynamics
capture similar characteristics as the biological synapses such as variability, weight
dependence of the update, and nonvolatility. However, while single memristive devices
may readily emulate the inference function, they cannot emulate on their own plasticity
rules such as Spike-Timing-Dependent Plasticity (STDP) or homeostatic control. The
change of the memristive conductivity depends on the momentary voltage difference
between its two terminals, and the device has no memory of past spike events at
either of its terminals nor of their relative timing. Hebbian learning such as STDP
therefore can only be emulated using a memristive device by “reshaping” of the pre-
and post-synaptic spike events using complex voltage pulses, so that the spike-time
dependency is translated into a desired instantaneous voltage difference over the
device (Zamarreño-Ramos et al., 2011; Wang et al., 2015). As a result, the learning
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rule is controlled outside the actual device (see Fig. 4.1). As for implementing the
learning, instead of using complex voltage pulse shapes, it is more efficient to use
a controller to generate simple rectangular voltage pulses that can effectuate the
desired change of the device conductance in a better, more energy efficient, and also
more reliable way. The change of the device conductivity as a function of the number
of applied voltage pulses can hereby be seen as an intrinsic plasticity curve of the
device, where the actual pulse shape can be optimized towards desired potentiation
and depression characteristics.

In this work, we investigate how the intrinsic potentiation and depression character-
istics of memristive devices influence the learning of the model in chapter 2. Thereto,
we adapt the original neuroscientific synapse model to accommodate memristive-type
potentiation/depression characteristics. The performance of the system is assessed by
varying device characteristics such as conductance values and ranges, granularity of
conductance change, and device variability. In this work, we study a particular type
of memristive device known as the valence change memory (VCM) ReRAM device
(Waser, 2012b). We investigate its two operation modes (Cüppers et al., 2019): either
the continuous, analog mode, where the conductivity changes gradually between a low
conductance state (LCS) and a high conductance state (HCS), or the binary mode,
where the conductivity changes abruptly between the LCS and the HCS. The binary
switching is controlled by the value of an analog adaptable internal state variable
(Doevenspeck et al., 2018; Zhao et al., 2019; Suri et al., 2013; Yu, 2018). It resembles
the learning rule employed in chapter 2 and mimics a structural form of STDP known
in the neuroscientific literature.

Figure 4.1: ReRAM control circuit. Sketch depicting the synapse model including the
control circuit and the ReRAM model (red box). The circuit is composed of a
read/inference path (black arrows) and a write/programming path (gray arrows).
The device conductivity G is read out whenever a presynaptic neuron emits a spike,
which results in a postsynaptic current I(t) = G ·Vread. The device conductivity is
updated by the programming path. The controller receives pre- and postsynaptic
spikes and decides on applying either a depression or a potentiation event (or
both). In the next step, the model of device plasticity computes the conductance
increment/decrement ∆G.
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4.2 methods

The network structure, the external inputs, the neuron model, and the synaptic
currents are similar to the ones introduced in chapter 2. We summarize them again in
Table 4.1 and provide parameter values in Table 7.4. The main difference compared
to chapter 2 lies in the plasticity dynamics, which is explained in section 4.3.1 and
governs synapses from excitatory to excitatory neurons.

4.2.1 Model tables

Summary
Populations excitatory neurons (E), inhibitory neurons (I), external spike sources (X ); E and I

composed of M disjoint subpopulations Mk and Ik (k = 1, . . . ,M)
Connectivity

• sparse random connectivity between excitatory neurons (plastic)

• local recurrent connectivity between excitatory and inhibitory neurons (static)

Neuron model
• excitatory neurons: leaky integrate-and-fire (LIF) with nonlinear input integra-

tion (dendritic action potentials)

• inhibitory neurons: leaky integrate-and-fire (LIF)

Synapse model exponential postsynaptic currents (PSCs)
Plasticity homeostatic spike-timing-dependent plasticity in excitatory-to-excitatory connections

Populations
Name Elements Size
E = ∪M

i=kMk excitatory (E) neurons NE

I = ∪M
i=kIk inhibitory (I) neurons NI

Mk excitatory neurons in subpopulation k,
Mk ∩Ml = ∅ (∀k ̸= l ∈ [1,M ])

nE

Ik inhibitory neurons in subpopulation k,
Ik ∩ Il = ∅ (∀k ̸= l ∈ [1,M ])

nI

X = {x1, . . . , xM} external spike sources M

Connectivity
Source pop-
ulation

Target pop-
ulation

Pattern

E E random; fixed in-degrees Ki = KEE, delays dij = dEE, synaptic time constants
τij = dEE plastic weights Gij ∈ {0, Gij} (∀i ∈ E , ∀j ∈ E ; “EE connections”)

Mk Ik all-to-all; fixed delays dij = dIE, synaptic time constants τij = τIE, and weights
Gij = GIE (∀i ∈Mk, ∀j ∈ Ik, ∀k ∈ [1,M ]; “IE connections”)

Ik Mk all-to-all; fixed delays dij = dEI, synaptic time constants τij = τEI, and weights
Gij = GEI (∀i ∈ Ik, ∀j ∈Mk, ∀k ∈ [1,M ]; “EI connections”)

Ik Ik none (∀k ∈ [1,M ]; “II connections”)
Xk = xk Mk one-to-all; fixed delays dik = dEX, synaptic time constants τij = τEX, and weights

Jik = GEX (∀i ∈Mk, ∀k ∈ [1,M ]; “EX connections”)
no self-connections (“autapses”), no multiple connections (“multapses”)
all unmentioned connections Mk → Il, Ik →Ml, Ik → Il, Xk →Ml (∀k ̸= l) are absent

Continued next page
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Neuron and synapse

Neuron

Type leaky integrate-and-fire (LIF) dynamics

Description dynamics of membrane potential Vi(t) of neuron i:

• emission of the kth spike of neuron i at time tki if

Vi(t
k
i ) ≥ θi (4.1)

with somatic spike threshold θi

• reset and refractoriness:

Vi(t) = Vr ∀k, ∀t ∈
(
tki , t

k
i + τref,i

]
with refractory time τref,i and reset potential Vr

• subthreshold dynamics:

τm,iV̇i(t) = −Vi(t) +Rm,iIi(t) (4.2)

with membrane resistance Rm,i =
τm,i

Cm,i
, membrane time constant τm,i, and

total synaptic input current Ii(t)

• τm,i = τm,E, Cm,i = Cm, θi = θE, τref,i = τref,E (∀i ∈ E)
• τm,i = τm,I , Cm,i = Cm, θi = θI, τref,i = τref,I (∀i ∈ I)

Synapse

Type exponential or alpha-shaped postsynaptic currents (PSCs)

Description
• total synaptic input current

Ii(t) = IED,i(t) + IEX,i(t) + IEI,i(t), ∀i ∈ E
Ii(t) = IIE,i(t), ∀i ∈ I

(4.3)

with dendritic, inhibitory, external and excitatory input currents IED,i(t),
IEI,i(t), IEX,i(t), IIE,i(t) evolving according to

IED,i(t) =
∑
j∈E

(αij ∗ sj)(t− dij) (4.4)

with αij(t) = VreadGij
e

τED
te−t/τEDΘ(t) and Θ(t) =

1 t ≥ 0

0 else

τEIİEI,i = −IEI,i(t) + Vread

∑
j∈I

Gijsj(t− dij) (4.5)

τEXİEX,i = −IEX,i(t) + Vread

∑
j∈X

Gijsj(t− dij) (4.6)

τIEİIE,i = −IIE,i(t) + Vread

∑
j∈E

Gijsj(t− dij) (4.7)

with τEX, τEI, and τIE synaptic time constants of EX, EI, and IE connections,
respectively, Gij the synaptic weight, and V the read voltage

• presynaptic spike trains sj(t) =
∑

k δ(t− tjk)

• dAP generation:
– emission of lth dAP of neuron i at time tli if IED,i(t

l
i) ≥ θdAP

– dAP current plateau:

IED,i(t) = IdAP ∀l, ∀t ∈
(
tli, t

l
i + τdAP

]
(4.8)

with dAP current plateau amplitude IdAP, dAP current duration τdAP,
and dAP activation threshold θdAP.

Continued next page
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Plasticity

Type Hebbian-type plasticity and dAP-rate homeostasis

EE synapses
• Hebbian plasticity described in section 4.3.1

• homeostatic control:
– if zi(t) > z∗: a depression pulse is applied (see Eq (4.9) or Eq (4.11))
– if zi(t) ≤ z∗: a potentiation pulse is applied (see Eq (4.9) or Eq (4.11))

with the dAP trace zi(t) and target dAP activity z∗.

• dAP trace zi(t) of postsynaptic neuron i, evolving according to

dzi
dt

= −τ−1
h zi(t) +

∑
k

δ(t− tkdAP,i)

with onset time tkdAP,i of the kth dAP, homeostasis time constant τh

all other synapses non-plastic

Continued next page
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Input

• repetitive stimulation of the network using the same set S = {s1, . . . , sS} of sequences si =
{ζi,1, ζi,2,. . . , ζi,Ci} of ordered discrete items ζi,j with number of sequences S and length Ci of
ith sequence

• presentation of sequence element ζi,j at time ti,j modeled by a single spike xk(t) = δ(t− ti,j) generated
by the corresponding external source xk

• inter-stimulus interval ∆T = ti,j+1 − ti,j between subsequent sequence elements ζi,j and ζi,j+1 within
a sequence si

• inter-sequence time interval ∆Tseq = ti+1,1 − ti,Ci between subsequent sequences si and si+1

• example sequence sets:
– sequence set I: S={{A,D,B,E,I}, {F,D,B,E,C}, {H,L,J,K,D}, {G,L,J,K,E}}

Output

• somatic spike times {tki |∀i ∈ E , k = 1, 2, . . .}
• dendritic currents IED,i(t) (∀i ∈ E)

Initial conditions and network realizations

• membrane potentials: Vi(0) = Vr (∀i ∈ E ∪ I)
• dendritic currents: IED,i(0) = 0 (∀i ∈ E)
• external currents: IEX,i(0) = 0 (∀i ∈ E)
• inhibitory currents: IEI,i(0) = 0 (∀i ∈ E)
• excitatory currents: IIE,i(0) = 0 (∀i ∈ I)
• synaptic permanences: Pij(0) = Pmin,ij with Pmin,ij ∼ U(P0,min, P0,max) (∀i, j ∈ E)
• synaptic weights: Gij(0) = Gmin,ij with Gmin,ij ∼ U(G0,min, G0,max) (∀i, j ∈ E) (analog synapse)

• synaptic weights: Gij(0) = Gmin (∀i, j ∈ E) (binary synapse)

• spike traces: xi(0) = 0 (∀i ∈ E)
• dAP traces: zi(0) = 0 (∀i ∈ E)
• potential connectivity and initial permanences randomly and independently drawn for each network

realization

Simulation details

• network simulations performed in NEST (Gewaltig and Diesmann, 2007) version 3.0 (Hahne et al.,
2021)

• definition of excitatory neuron model using NESTML (Plotnikov et al., 2016; Nagendra Babu et al.,
2021)

• synchronous update using exact integration of system dynamics on discrete-time grid with step size
∆t (Rotter and Diesmann, 1999)

• source code underlying this study: 10.5281/zenodo.6754964

Table 4.1: Description of the network model. Parameter values are given in Table 7.4.

10.5281/zenodo.6754964
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4.3 results

4.3.1 ReRAM synapse model

In this section, we briefly review the ReRAM device dynamics, introduce our model of
the ReRAM device and its control circuitry (Fig. 4.1), and characterize the resulting
model dynamics.

As explained in section 1.4.4, the VCM ReRAM device is composed of a stack of
three materials: a metal-oxide film sandwiched between a low work function (WF)
and a high WF, blocking Schottky-interface electrode (see Fig. 4.2). In a first step,
a conductive filament is formed due to a high voltage applied across the device.
This filament consists of oxygen vacancies that act as local dopant elements in the
insulating metal-oxide matrix. During further operation, these oxygen vacancies can
be moved by means of a high electric field and a local Joule heating (as a function
of the polarity, either towards or away from the blocking electrode). The device
conductance is controlled by the concentration of oxygen vacancies NVO in a small
region (gap) near the electrical blocking electrode: at low NVO, the filament is “broken”,
which gives rise to a high conduction barrier between the high WF electrode and the
remaining filament (plug), i.e., the device is in the LCS. If NVO is high, we have a
“connecting” filament, where the high NVO lowers the conduction potential barrier at
the blocking electrode, i.e., the device is in the HCS. Hence, the concentration of the
oxygen vacancies NVO can be seen as an internal state variable of the device.

As mentioned above, depending on the initial resistance range and the voltage pulse
amplitude and width, a VCM ReRAM device can operate in two different modes, i.e.,
binary or analog (Cüppers et al., 2019). In the analog mode, the applied pulses result
in a gradual monotonous change of the device conductance, for both potentiation and
depression. This operation mode is suitable for the implementation of STDP-type
learning rules. It is, however, characterized by a limited conductivity range, and the
device switching characteristics may slowly drift away from the analog behavior to a
more abrupt conductivity change. In the binary mode, the conductivity can only be
switched between two values, the LCS and the HCS state. The switching between
these two states occurs abruptly. In previous works, the abrupt, binary switching is
achieved using single program pulses with a sufficiently large amplitude (Cüppers et al.,
2019). In contrast, here, we study the switching behavior of the device as a response
to a certain number of pulses of smaller amplitudes. As a response to these pulses,
an internal state variable NVO gradually increases (Fleck et al., 2016). Only when
this NVO exceeds a certain threshold value, a thermal runaway condition is reached
resulting in an abrupt switching event. Due to intrinsic ReRAM device variabilities
(Fantini et al., 2013), the number of pulses to reach this thermal runaway conditions
shows a strong device-to-device and cycle-to-cycle variation. During the depression,
the switching is intrinsically more gradual, due to the lack of an internal runaway
mechanism as present for the potentiation operation. Adding a series resistance (in or
outside the device) can provide such runaway mechanism due to a voltage divider
effect also in the RESET case (Hardtdegen et al., 2018). Hence, in both cases, the
switching behavior can be summarized as follow: at first only a gradual change of
the internal state variable NVO is observed, associated with only a minor change of
the device conductivity, followed by a strong switching effect (large change of NVO
as well as of the associated conductivity) when the internal state variable reaches a
certain threshold. This operation mode is of particular interest for this study, as it is
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similar to the structural STDP plasticity discussed and implemented in the original
spiking TM model (see chapter 2).

Previous studies suggested both physics-based and phenomenological models for
VCM type ReRAMs. Physics-based models such as the JART model (Bengel et al.,
2020) capture detailed physical characteristics and predict their specific experimental
behavior. They require however long simulation time and lead to convergence issues. On
the other hand, the more phenomenological models give a high-level description of the
operational characteristics, have good accuracy, are computationally less demanding,
and can hence be combined with large-scale network models. In this study, we opt
for a phenomenological model to implement both the analog and the binary ReRAM
device.

The synapses are either potentiated or depressed by following learning rules similar
to those outlined in the spiking TM model. The learning rules are implemented by
the control circuit (Fig. 4.1) as follows: the synapse is depressed slightly at every
presynaptic spike and potentiated if a postsynaptic spike follows after a presynaptic
spike. In contrast to the original spiking TM model, synapses are potentiated by a
fixed amount irrespective of the relative timing between the pre- and postsynaptic
spikes. The potentiation is however disabled if these spikes occur very close to each
other within the interval [0, ∆Tmin]. This prohibits synchronously firing neurons from
connecting to each other. The control circuit further implements a homeostatic control
mechanism (see section 4.3.2).

In the analog mode, the increment

∆Gi,j =


Gmax · λ+ ·

(
1− Gi,j

G∗

)µ+

+X for potentiation

−Gmax · λ− ·
(
Gi,j

G∗

)µ−

+X for depression
(4.9)

in the conductivity of the device (synapse) j → i following a potentiation or a
depression event is modeled as in (Fusi and Abbott, 2007), but with an additional
additive noise X. For each synapse and for each potentiation and depression step, the
noise X ∼ N (0, σ2

w) is randomly and independently drawn from a normal distribution
with zero mean and standard deviation σw. The conductance Gi,j evolves between a
lower and an upper bound Gmin and Gmax, and it is clipped at these boundaries, with
learning rates λplus and λminus and weight dependence exponents µ+ and µ−. The
conductance changes linearly with the internal state variable NVO, thus no specification
of the internal state variable is necessary. The initial conductance Gmin = Gij(0) is
drawn for every new device from a uniform distribution in the interval [G0,min, G0,max].

For the binary switching behavior, we use a similar model as the structural STDP
model proposed in chapter 2. The switching of the conductance between the LCS
and the HCS is controlled by a permanence P . The permanence plays the role of the
internal state variable NVO. If it is above a certain threshold θP, the conductance
Gi,j is set to Gmax, otherwise it is set to Gmin:

Gi,j(t) =

Gmax if Pij(t) ≥ θP

Gmin if Pij(t) < θP .
(4.10)

Similar to the analog synapse, the initial conductance Gmin is drawn for every new
device from a uniform distribution in the interval [G0,min, G0,max]. At each potentiation
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or depression step, the permanence P of the synapse j → i is incremented by an
amount

∆Pi,j =


Pmax · λ+ ·

(
1− Pi,j

Pmax

)µ+

+X for potentiation

−Pmax · λ− ·
(

Pi,j

Pmax

)µ−

+X for depression,
(4.11)

similar to the conductance increment of the analog synapse. It has a lower and an
upper bound Pmin and Pmax and it is clipped at these boundaries. While the maximum
permanences Pmax are identical for all EE connections, the minimal permanences
Pmin,ij are uniformly distributed in the interval [P0,min, P0,max].

In addition to the write noise introduced by means of the variable X, both the
analog and the binary synapse models incorporate a read noise. At each presynaptic
spike of neuron j, a noisy component Z is added to the synaptic current

Ii,j(t) = (Gi,j(t) + Z) · Vread(t) = Gi,j(t) · Vread(t), (4.12)

of neuron i, where Z ∼ N (0, σ2
r ) is randomly and independently drawn from a normal

distribution with zero mean and standard deviation σr, and Vread(t) is the applied
voltage. In the course of this article, we use G to denote the conductance incorporating
both the read and the write noise.

Fig. 4.3 shows an exemplary switching behavior of the analog and binary synapse
models for a specific set of parameters using 100 consecutive potentiation (i.e., SET)
and depression (i.e., RESET) updates. We choose different learning rates (λ+ and
λ−) for the two types of devices such that they switch from the LCS to the HCS state
(and back) at about the same number of updates. Under normal operation of the
spiking TM model, a potentiation update is always followed by a small depression
(Fig. 4.4A). In the case of the analog synapse, the total synaptic growth in the absence
of noise is therefore governed by

∆Gi,j = Gmax

[
λ+ ·

(
1− Gi,j

Gmax

)µ+

− λ− ·
(

Gi,j

Gmax

)µ−]
. (4.13)

The stationary solution of the device conductance (fixed point) G∗, obtained by
setting ∆Gi,j = 0, is always below the maximum conductance Gmax (Fig. 4.4B). The
permanence of the binary synapse is subject to this effect, too. After a number of
potentiation steps, it reaches a value P ∗ smaller than Pmax (see Fig. 4.4C). According
to Eq (4.10), the conductance can however still assume Gmax. Only if the depression is
too strong, the device may not reach the maturity threshold θP , and thus not switch
to the HCS state.

In the next sections, we evaluate the effects of different characteristics of the analog
and the binary switching dynamics such as the weight dependence of the device
update (µ+, µ−), the conductance range (Gmin, Gmax), the learning rates (λ+, λ−),
as well as the write and the read variability (σw, σr) on the learning process of the
spiking TM model.

4.3.2 A spiking neural networks with ReRAM synapses successful at sequence pre-
diction

Sequence learning and prediction are principal computations performed by the brain
and have a number of potential technological applications. The study of chapter 2
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Figure 4.2: ReRAM stack. Equivalent circuit diagram for JART VCM model describ-
ing the Pt/HfO2/TiOx/Pt (HOTO) device. Figure by Bengel et al. (2020)
licensed under a Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/).

Figure 4.3: Intrinsic dynamics of the ReRAM model (simulation results). A) Sketch
of the experimental protocol and mapping of pre- and postsynaptic spike timing
(top) to the corresponding SET (potentiation; black) and RESET (depression;
blue) operations (bottom). Evolution of the conductance G in response to 100 SET
(potentiation; black) updates, followed by 100 RESET (depression; blue) updates,
for the analog (B) and the binary ReRAM model (C). In C, the permanence of the
binary device is plotted in grey. Parameters: learning rates λ+ = 0.1, λ− = λ+/3
(analog synapse), λ+ = 0.04, λ− = λ+/3 (binary synapse), weight dependence
exponents µ+ = 0.5, µ− = 0.5, and noise amplitudes σr = 0.03, σw = 0.01. For
remaining parameters, see Table 7.4.

Figure 4.4: Dynamics of the ReRAM model in the spiking TM context. Same
figure arrangement as in Fig. 4.3. In the context of the spiking TM model, each
potentiation pulse is accompanied by a smaller depression pulse.

http://creativecommons.org/licenses/by/4.0/
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proposed a model of this type of computation known as the spiking Temporal Memory
(spiking TM) model. It consists of a sparsely and recurrently connected network
of spiking neurons and learns sequences continuously in an unsupervised manner
by means of known biological plasticity mechanisms. After learning, the network
successfully predicts and recalls complex sequences in a context-specific manner, and
signals anomalies in the data.

Here, we study the prediction performance for the network with either the binary or
the analog ReRAM synapses (Fig. 4.6). In contrast to chapter 2, The dAP threshold
θdAP of excitatory neurons is chosen such that the co-activation of γ presynaptic
neurons reliably triggers a dAP in the target neuron:

θdAP = G+ · γ · p. (4.14)

In the case of the analog synapse, G+ is taken to be the steady-state conductance G∗,
and in the case of the binary synapse, it is taken to be Gmax. We use the synaptic
parameters fitted from the exemplary data discussed in section 4.3.1. To quantify the
sequence prediction performance, we repetitively stimulate the network using the same
set of sequence {A,D,B,E,I}, {F,D,B,E,C}, {H,L,J,K,D}, {G,L,J,K,E} and assess the
prediction error (see section 2.2.3). In the following, we refer to these sequences as
sequence set I. To ensure the performance results are not specific to a single network,
the evaluation is repeated for a number of randomly instantiated network realizations
with different initial connectivities. After each new network instantiation, the initial
prediction error is at 1 (Fig. 4.6). With an increasing number of training episodes,
the prediction error for both networks with either the binary or the analog synapses
decreases to zero as both networks learn the sequences and develop context-dependent
pathways between successive sequence elements (see Fig. 4.5).

4.3.3 Influence of device characteristics on prediction performance

ReRAM devices reported in the literature exhibit different nonidealities, including
1) limited precision or the number of synaptic levels; 2) limited dynamic range; 3)
dependence of the synaptic updates on the weight; 4) device variability, including
read and write variability (see Zhao et al., 2020, for an overview). In this section, we
study how these nonidealities affect the prediction performance in the spiking TM
model.

4.3.3.1 Optimal prediction performance obtained for a broad range of on-off ratios
and learning rates

The dynamic range is defined as the on-off ratio between the minimum (Gmin) and
the maximum conductance (Gmax). Most ReRAM devices exhibit an on-off ratio in a
range of 2x to > 104x (Hong et al., 2018). Within the minimum and the maximum
conductance, the synaptic precision or the number of synaptic steps is limited. In
the synapse model proposed in section 4.3.1, we can influence the number of steps
by changing parameters such as the learning rates (λ+, λ−), weight dependence
exponents (µ+,µ−), and the on-off ratio. Given the difficulty to derive an analytical
solution of the number of steps as a function of these parameters, we restrict the
scope of the study in this section to investigating the influence of different learning
rates and on-off ratios on the prediction performance.

We vary the on-off ratio between 5 and 40 by keeping Gmin fixed and varying Gmax.
As Gmin is drawn from a uniform distribution in the interval [G0,min, G0,max], we
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Figure 4.5: Network structure. A) Sketch of the model architecture composed of a ran-
domly and sparsely connected recurrent network of excitatory and inhibitory
neurons. The excitatory neuron population is subdivided into subpopulations
according to stimulus preference (gray circles). During learning, sequence-specific,
sparsely connected subnetworks with mature synapses are formed (light and dark
blue arrows). For the example discussed in the main text and in panel B, the net-
work learns four high-order sequences {A,D,B,E,I}, {F,D,B,E,C}, {H,L,J,K,D}
and {G,L,J,K,E}. In panel A, only two of them are depicted for clarity. B) Con-
nectivity matrix of excitatory neurons after learning. Target and source neurons
are grouped into stimulus-specific subpopulations (“A”,. . . ,“F”). During the learn-
ing process, subsets of connections between subpopulations corresponding to
subsequent sequence elements become mature and effective ({A,D,B,E,I}: light
blue, {F,D,B,E,C}: dark blue, {H,L,J,K,D}: red, {G,L,J,K,E}: orange). Immature
synapses are marked by light gray dots. Dark gray dots in panel B correspond to
mature connections between neurons that remain silent after learning. Only 1%
of immature connections are shown for clarity.

Figure 4.6: Prediction error. Dependence of the prediction error on the number of training
episodes for the network with analog synapses (A) or binary synapses (B). Curves
and error bands indicate the median as well as the 5% and 95% percentiles across
an ensemble of 5 different network realizations, respectively. Same parameters as
in Fig. 4.3.



88 sequence learning in a spiking neural network with memristive synapses

compute the on-off ratio as Gmax/G
∗
min, where G∗

min = (G0,max + G0,min)/2. As we
change Gmax, we modify the dAP threshold, see Eq (4.14). In addition, we vary the
learning rate between 2% and 42% (Fig. 4.7). Parameters such as the read and write
variability and the weight dependence exponents are taken from the exemplary data
presented in section 4.3.1. We study the influence of the variability and the dependence
of the synaptic updates on the weight more systematically in the upcoming sections.
For the analog synapse, the prediction error converges to zero for an on-off ratio
between 15 and 40 and for a learning rate between 2% and 18%. For the binary
synapse, successful learning is obtained for an on-off ratio between 10 and 40 and for
a learning rate between 2% and 18% (Fig. 4.7A,B). For learning rates above 18%, the
prediction performance becomes less stable with sudden failures for some network
realizations. While decreasing the learning rate yields minimum prediction error,
the number of episodes-to-solution tends to increase as either the conductances or
permanences need more learning steps to reach their maximum value (Fig. 4.7C,D).
The learning in the network with binary synapses is faster due to the internal dynamics
of binary synapses, which has faster switching dynamics compared to analog synapses:
the permanence takes less number of update steps to reach the maturity threshold
(θP) compared to the number of update steps the conductance of the analog synapses
require to go from the LCS to the HCS.

In general, the on-off ratio in the spiking TM network is limited due to the following:
the transition of the network activity from being initially non-sparse to becoming
sparse after learning requires initial small conductances to avoid spurious activation of
the dAPs, but high conductances after learning to allow the sparse set of active neurons
to generate the dAP reliably. If the on-off ratio is too small this distinction between
high and small conductances cannot be realized. Moreover, for successful learning,
the network with analog synapses requires a higher on-off ratio compared to the
network with binary synapses. This is due to the effect described in section 4.3.1 below
equation Eq (4.13), which prohibits the conductance from reaching Gmax. Therefore,
the effective on-off ratio is reduced. The learning mechanisms of the spiking TM also
limit the range of possible learning rates. Increasing the learning rate bears the risk
that a large fraction of neurons reaches the dAP threshold at the same time. The
WTA mechanism selects then all neurons that generate dAP to become active. This
leads to a loss of sparseness, which results in impairing the prediction performance.
Decreasing the learning rate considerably is also not ideal as the network would learn
very slowly.

4.3.3.2 Resilience of the model against weight dependence updates

The evolution of the conductance of realistic analog synapses grows in a nonlinear
manner as a function of the potentiation and depression updates. The synapse model
in section 4.3.1 captures this effect via the weight dependence factor controlled by
the exponents (µ+, µ−). During the potentiation process, the conductance tends to
change rapidly at the beginning but saturates at the end of the process (see Fig. 4.8A).
Similar behavior is also observed during the RESET. The potentiation and depression
operations have, however, different dependencies on the device conductance. For high
conductances, the potentiation increments are much smaller than the depression
decrements. This asymmetry in the behavior can be further enhanced if the learning
rates are different during the potentiation and depression operations. Similarly, it is
reasonable to assume that for the binary synapses the evolution of the permanence
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Figure 4.7: Effect of the on-off ratio and the learning rate on the prediction
performance. Dependence of the prediction error and episodes-to-solution on
the on-off ratio and the learning rate shown for the network with either analog
(A,C) or binary synapses (B,D). Data depicts the median across an ensemble of
5 different network realizations. Parameters: depression learning rate λ− = λ+/3,
weight dependence exponents µ+ = 0.5 µ− = 0.5, and variability amplitudes
σr = 0.03, σw = 0.01. For remaining parameters see Table 7.4.

may exhibit a nonlinear dependence on the synaptic updates and an asymmetric
behavior between the potentiation and depression dynamics (Fig. 4.8B).

Here, we first evaluate how the asymmetry in the learning rates between the
potentiation and depression operations (λ+ and λ−) affects the prediction performance.
To study this effect, we fix λ+ and vary λ− with the state dependence exponents
µ+ and µ− being set to zero. The prediction error remains high if λ− ≥ λ+ (see
Fig. 4.9). In the spiking TM model, the potentiation operation is applied only when
the postsynaptic spike follows after the presynaptic spike, in contrast, the RESET
operation is applied every time the presynaptic neuron generates a spike. Therefore,
for effective synaptic growth, the potentiation needs to be stronger than depression.

We assess, next, the prediction performance as a function of different weight
dependence exponents for both potentiation and depression (µ+ and µ−, respectively,
see Fig. 4.10). The results show that this latter has mild effects on the prediction error
(see Fig. 4.10A,B). For larger values of µ+, the learning speed slows down as it takes
longer for either the conductance or the permanence to reach their maximum values
(see Fig. 4.10C,D). In the binary case, the steady-state permanence P ∗ may end up
below the maturity threshold θP such that synapses can mature only due to the noise.
The learning is therefore slowed down for large values of µ+ or even not successful
if the devices do not switch to the HCS. In the model, θP could be adjusted to P ∗

(similarly to adjusting θdAP to G∗ in the analog synapse; see above). In this case, the
learning in the analog and the binary networks may be similarly fast. In the physical
device, however, the maturity threshold θP can hardly be changed.
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Figure 4.8: An exemplary potentiation and depression curves depicting different
levels of weight dependence updates. Dependence of the conductance G
on the number of either SET (potentiation; black) or RESET (depression; blue)
events as well as on different weight dependence exponents µ+ = µ− = 0 (large
dot), µ+ = µ− = 0.5 (small dot), and µ+ = µ− = 1 (tiny dot) plotted for the
analog (A) and the binary ReRAM models (B). In B, the permanence of the binary
device is plotted in grey. Parameters: learning rates λ+ = 0.1, λ− = λ+/3 (analog
synapse), λ+ = 0.04, λ− = λ+/3 (binary synapse), and variability amplitudes
σw = 0, σr = 0. For remaining parameters see Table 7.4.

Figure 4.9: Effect of the asymmetry in the learning rates on the prediction perfor-
mance. Dependence of the prediction error on the number of training episodes
for different ratios (β) between the depression and potentiation learning rates
(λ− = λ+/β), shown for the network with either analog (A) or binary (B)
synapses. The potentiation learning rate λ+ is fixed to 0.1 for the analog synapse
and to 0.04 for the binary synapse. Curves and error bands indicate the median
as well as the 5% and 95% percentiles across an ensemble of 5 different network
realizations, respectively. For remaining parameters see Table 7.4.

4.3.3.3 Resilience of the model against variability

The resistive switching process of ReRAM devices involves the drift and diffusion
of the ion vacancies. This phenomena is highly stochastic and shows considerable
variation from device to device, and even from pulse to pulse within one device.
In our work, we capture this effect by the read and write variability introduced in
section 4.3.1. The influence of the read and write variability on the conductance curves
are illustrated for both the analog and binary synapses in Fig. 4.11. For different trials,
the write variability results in different conductance trajectories as a function of the
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Figure 4.10: Effect of the weight dependence update on the prediction performance.
Dependence of the prediction error and episodes-to-solution on the weight
dependence exponents for both potentiation and depression (µ+ and µ−) shown
for the networks with either analog (A,C) or binary synapses (B,D). Data depicts
the median across an ensemble of 5 different network realizations. Parameters:
learning rates λ+ = 0.1, λ− = 0.03 (analog synapse), λ+ = 0.04, λ− = 0.01
(binary synapse), and variability amplitudes σw = 0.01, σr = 0.03. For remaining
parameters see Table 7.4.

applied potentiation or depression events. The read variability, on the other hand,
causes only a jitter in the conductance curves.

To study how the variability influences the prediction performance, we assess the
prediction error and episodes-to-solution for different magnitudes of the read and write
noise σr and σw, respectively. Both networks with either analog or binary synapses
allow similar read and write noise levels, with the binary synapse being slightly more
resilient toward the read noise (Fig. 4.12A,B). In both cases, the write noise is more
detrimental as it accumulates across the different learning episodes and can therefore
have a higher impact on the learning performance. The read noise tends to average
out as it is independent across the learning episodes. Concerning the learning speed,
the number of episodes-to-solution is similar for the different noise levels where the
learning is successful (Fig. 4.12C,D). Overall, increasing the read or write noise beyond
what is acceptable leads to a spurious activation of the dAPs, i.e., predictions, and a
decline in the prediction performance.

4.3.3.4 Robustness of the model against synaptic failure

When operating ReRAM devices, they risk failing by getting trapped in the HCS
state even after applying voltage pulses with the appropriate magnitude across them
(Kumar et al., 2017). To study how synaptic failure affects the prediction performance,
we first train the network till it reaches zero prediction error (after 150 episodes in
Fig. 4.13). Then, the conductance of a random fraction of synapses is set to the HCS.
We quantify the level of synaptic failure by the ratio between the number of failed
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Figure 4.11: An exemplary potentiation and depression curves in the presence of
read and write variability. Dependence of the conductance G on the number
of either potentiation (black) or depression (blue) events in the presence of
read noise (σr = 0.03, A,B) or write noise (σw = 0.01, C,D) plotted for the
analog (B) and the binary ReRAM models (C). In B and D, the permanence
of the binary device is plotted in gray. Parameters: learning rates λ+ = 0.1,
λ− = λ+/3 (analog synapse), λ+ = 0.04, λ− = λ+/3 (binary synapse), and
weight dependence exponents µ+ = 0.5, µ− = 0.5. For remaining parameters see
Table 7.4.

synapses and the total number of existing synapses. In the spiking TM model, a
neuron may falsely generate a dAP if a sufficient number of its synapses are randomly
switched to the HCS (∼θdAP/Gmax, where Wmax is the maximum conductance and
θdAP is the dAP threshold). This may result in generating false positives and thus
an increase in the prediction error. This is confirmed by our results presented in
Fig. 4.13A,B. At up to 15% synaptic failure no impact is observed on the prediction
performance (Fig. 4.13A,B). At greater than 15% synaptic failure the performance of
the network declines and does not recover.

In a second experiment, instead of turning a selection of random synapses to the
HCS state, we turn them to the LCS state. For the different levels of synaptic failures,
the performance of the network initially declines. Due to the failing synapses, which
are stuck at the LCS state, the neurons in certain subpopulations do not receive
enough current and are thus not able to generate dAPs, i.e., make predictions. After
further training episodes, the prediction errors converge back to zero as the network
relearns using other synapses (Fig. 4.13C,D).
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Figure 4.12: Effect of the variability on the prediction performance. Dependence of
the prediction error and episodes-to-solution on the read and write variability σr,
σw, shown for the networks with either analog (A,C) or binary synapse (B,D).
Data depicts the median across an ensemble of 5 different network realizations.
Parameters: learning rates λ+ = 0.1, λ− = λ+/3 (analog synapse), λ+ = 0.04,
λ− = λ+/3 (binary synapse), and weight dependence exponents µ+ = 0.5,
µ− = 0.5. For remaining parameters see Table 7.4.

4.4 discussion

4.4.1 Summary

In this work, we demonstrate that the learning rules of the spiking Temporal Memory
(spiking TM) model proposed in chapter 2 can be realized using memristive dynamics.
We investigate this for a particular type of memristive device known as VCM ReRAM.
To this end, we show that the spiking TM retains high prediction performance for a
broad range of on-off ratios and learning rates. The model is resilient toward the write
and read variability as well as the dependence of the synaptic updates on the weight.
Moreover, our results show that the VCM-type ReRAM device can be operated either
in the binary or the gradual switching regime without performance loss. This is in line
with the original spiking TM implementation, which shows that the learning rule can
either be implemented using structural plasticity where the weight abruptly changes
between two levels or a conventional form of STDP where the weight gradually changes
until it saturates. This suggests that the intrinsic dynamics of the VCM ReRAM
capture not only synaptic properties of biological synapses such as the variability and
the dependence of the synaptic updates on the weight but also can implement known
forms of plasticity in the neuroscientific literature. Our study, therefore, ties further
principles from the biological and the memristive synapses.

Ultimately, the goal is to implement the spiking TM model on a standalone
neuromorphic ship. In this chapter, we only investigate how the intrinsic properties of
the memristive device affect the learning in the spiking TM. In a neuromorphic ship
based on arrays of memristive devices, other factors should be taken into accounts
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Figure 4.13: Effect of synaptic failure on the prediction performance. Dependence of
the prediction error on the number of training episodes and different levels of
synaptic failure (red 10%, orange 20%, black 30%) shown for both the analog
(A, C) and the binary synapse (B, D). We implement the synaptic failure by
fixing a random selection of synapses to be stuck at the HCS state (ON stuck;
A and B) or stuck at the LCS state (OFF stuck; C and D). The synaptic failure
is introduced after episode 150. Curves and error bands indicate the median as
well as the 5% and 95% percentiles across an ensemble of 5 different network
realizations, respectively. Same parameters as in Fig. 4.3.

such as the interaction between the crossbar array and the peripheral circuitry. In the
study of the next chapter, we come up with a complete design of the neuromorphic
circuit implementing the different components of the spiking TM.

4.4.2 Relationship to previous models

There are a number of biologically motivated sequence learning models that are closely
related to the spiking TM, such as the self-organizing recurrent neural network model
(SORN, Lazar et al., 2009). Recent work incorporated memristive dynamics into
the synapses and neurons of the SORN model and showed that it retains successful
performance (Payvand et al., 2022). The authors studied the role of variability and
showed that it can improve prediction performance. However, the other memristive
nonidealities were not investigated systematically.

The work by Doevenspeck et al. (2018) is another study that implements a sequence
learning model using a memristive crossbar array. The memristive array consists of
1T1R elements and forms recurrent connections between the neurons. In contrast to
our work, the model by Doevenspeck et al. (2018) employs a complex look-ahead
algorithm to learn context-dependent sequences. Therefore, it disrupts the temporal
locality of learning and makes the realization of online learning difficult.
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4.5 conclusion

ReRAM devices were suggested as promising synaptic elements in neuromorphic
hardware due to their scalability and energy efficiency. In this work, we identified
that a type of ReRAM device operated in either an analog or binary fashion can be
used to implement well-known plasticity models from the neuroscientific literature.
We demonstrate that both the analog or the binary ReRAM switching dynamics
with their broad range of characteristics can be used as synaptic elements in the
biologically inspired spiking TM model.





5AN ALGORITHM FOR SEQUENCE LEARNING IN A
MEMRIST IVE CROSSBAR ARRAY

This chapter is based on the following preprint:
Siegel, S., Bouhadjar, Y., Tetzlaff, T., Waser, R., Dittmann, R., & Wouters D. J.
(2023). System model of neuromorphic sequence learning on a memristive crossbar
array. Under review.
Author contributions: All authors contributed to the conception of the work.
Sebastian Siegel conceived the overall circuit architecture and the detailed operation
mechanism, performed the simulations, analyzed and visualized the data, and wrote
the first draft of the manuscript. Younes Bouhadjar contributed to the discussions
on the algorithmic adaptations for a neuromorphic hardware implementation of
the spiking TM model. Tom Tetzlaff and Dirk Wouters overviewed the work and
were involved in the scientific discussions. All authors reviewed the manuscript. In
the following chapter, Younes Bouhadjar adapted and rewrote certain parts of the
manuscript.
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5.1 introduction

In the previous chapter, we show that the spiking TM model retains successful opera-
tion when incorporating memristive dynamics in its synapse model. Here, we further
assess the feasibility of implementing the model on memristive-based neuromorphic
hardware. We shortly present a derived full circuit implementation centered around
a memristive crossbar array. In the context of this thesis, we focus in particular on
presenting the architectural and algorithmic differences and similarities between the
original description of the spiking TM model and its hardware implementation (see
Table 5.1). For practical details about the implementation, we refer the reader to
(Siegel et al., 2023).

5.2 basic architectural concepts

5.2.1 Network structure

The connection matrix of the spiking TM network is realized using a memristive
crossbar array (Fig. 5.1A). Each synapse is represented by a memristive device (1R) in
series with a transistor (1T). The neurons are subdivided into subpopulations, where
each group of excitatory neurons shares an inhibitory neuron and the same source
of external input. The terminals of each 1T1R circuit are attached to a horizontal
input line and to a vertical output line. Neurons send pulses to the horizontal lines,
receive back inputs from the vertical lines, and can further control the transistors
gates. Recurrent connections of a neuron to itself are not realized.

5.2.2 Neuron functionality

In contrast to the original spiking TM algorithm, where the addition of the input
currents is performed by the neuron model, in the model presented here, they are
physically calculated in the array (using Kirchoff’s current law). Each vertical line can
be seen as a single dendrite connected to the respective neuron, which is populated
with a number of synaptic connections (i.e., memristive devices). This grouping of
connections in the array, can result in spurious signals (e.g. so-called sneak currents
Xia and Yang, 2019), but on the other hand, allows for efficient physical inference.

All other functionalities such as the generation of the spikes and the dendritic action
potential (dAP) are implemented in the neuron blocks. The neurons also contribute
to the implementation of the “synaptic” plasticity (see below). While it is possible to
map their required functionalities into an analog electronic circuit, we here opt for
implementation on a digital peripheral circuitry.

5.2.3 Synaptic functionality

As explained in section 4.3.1, a memristive device cannot emulate the complete
synapse functionality. Especially, it cannot implement self-learning rules such as
STDP, which is only enabled by a specific controller-memory function (see Fig. 4.2).
However, it is not practically possible to include such a controller-memory function
with each memristor device inside the array. A much more efficient implementation
is to foresee that function outside the array, where it can be also combined for the
different memristors in a row or column. In the proposed circuit, it is realized in



5.3 algorithmic adaptations 99

the functionality of the “neuron” blocks. The externalizing of this controller function,
however, requires external row/column selection possibilities, and hence the use of a
transistor selector for each memristor device resulting in a 1T1R array.

Summary

Spiking TM model Crossbar implementation

Populations excitatory neurons (E), inhibitory neu-
rons (I), external spike sources (X ); E
and I composed of M disjoint subpopu-
lations Mk and Ik (k = 1, . . . ,M)

same organization

Connectivity

• sparse random connectivity between
excitatory neurons (plastic)

• local recurrent connectivity between
excitatory and inhibitory neurons
(static)

• all-to-all connectivity possible via
memristive array, self-connections are
not present (not formed)

• inhibitory neuron circuit recurrently
connected with the respective subpop-
ulation

Neuron model

• excitatory neurons: leaky integrate-
and-fire (LIF) with nonlinear input
integration (dendritic action poten-
tials)

• inhibitory neurons: leaky integrate-
and-fire (LIF)

• excitatory neuron: linear integrate-
and-fire dynamics without leak, reset
after each time step

• inhibitory neuron: digital counter
emitting inhibition signal upon reach-
ing a threshold

Synapse model exponential postsynaptic currents
(PSCs)

memristive conductances

Plasticity homeostatic spike-timing-dependent
plasticity in excitatory-to-excitatory
connections

Hebbian learning and homeostasis con-
trolled implemented by the peripheral
neural circuitry

Table 5.1: Architectural and algorithmic differences between the original Spiking TM model
and proposed hardware implementation. Modified from (Siegel et al., 2023).

5.3 algorithmic adaptations

separation read and update phase The framework proposed here em-
ploys a global clock signal. The neurons receive alternating clock cycles. Each cycle of
the clock encompasses a READ and an update phase (Fig. 5.1B,C), which corresponds
to a single time step, i.e., a time step is equivalent to the presentation of a sequence
element. As mentioned earlier, the neuron block contributes to implementing the
learning rules. During the READ phase, the presentation of an external stimulus
causes a neuron to emit a spike. This is translated into a rectangular voltage pulse,
which is fed to the respective input of the horizontal line of the memristive array.
Based on the current at the array outputs, the postsynaptic neurons generate a spike
(or become predictive), and the controller decides on the update following the local
learning rules:
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Figure 5.1: System overview. A) Sketch of the memristive array and the peripheral circuit.
The peripheral circuit is composed of neurons ordered in subpopulations. Each
subpopulation shares an inhibitory neuron and an external stimulus input. The
neurons connect to the horizontal input lines of the memristive array and receive
back connections through the vertical lines. B) Neuron functionality in the
READ phase. Neurons generate spikes if they receive an external stimulus on the
condition that they are not inhibited. The inhibition can be bypassed if the neuron
is predicted. C) Neuron functionality in the Update phase. A presynaptic neuron
that generates a spike in the current READ phase opens its vertically connected
transistor gates for an update. If in addition, the postsynaptic neuron generates a
spike in the next time step, it sends a potentiation pulse to its horizontal input
line. A potentiation is caused only where a potentiation pulse coincides with an
open transistor gate. Modified from (Siegel et al., 2023).

• Hebbian learning: in the hardware implementation, the read pulse polarity and
amplitude are selected so that during the read phase all devices connected are
slightly depressed. Only when there follows a postsynaptic spiking event, a
(larger) potentiation pulse is applied.

• Homeostasis: in contrast to the original spiking TM algorithm, where the
homeostatic function regulates the synaptic weight based on the activity of the
neuron, here, in contrast, it allows each neuron to become predictive only once
per episode.

generation of prediction The neurons make predictions by generating
dAPs. In contrast to the spiking TM algorithm, where the dAP is reset after a certain
time period, here it is reset at the end of the READ phase in each step. This simplifies
the circuit implementation as we no longer need an additional timer for resetting the
dAP.

winner take all mechanism If a certain number of neurons become predic-
tive in the same subpopulation, they activate the inhibition, which hinders further
neurons from becoming predictive. This is different compared to the original spiking
TM algorithm, where the inhibitory neuron is activated by the somatic spikes and
not by the subthreshold currents associated with the prediction, i.e., the dAP. This
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allows for a more robust circuit implementation of the winner take all mechanism as
the dAP is long-lasting and easier to detect compared to the somatic spikes.

timescales In contrast to the original spiking TM model, where the sequence
processing speed is influenced by intrinsic timescales of neurons and synapses, which
are in the range of milliseconds, in the hardware-adapted model, the speed of processing
is determined by the period of the clock. The lower bound of the period depends on
the intrinsic timescales of the electronic circuit, which is in the range of nanoseconds.
The upper bound can be adjusted flexibly.

signals The signals in the hardware circuit are not spikes, but voltage pulses.

5.4 memristive synapse model

In chapter 4, we investigate “extreme” cases of ReRAM switching behavior, i.e., analog
or abrupt switching devices modeled by Eq (4.11) and Eq (4.9). In this work, ReRAM
devices are simulated using a physically based device compact model. While this
model reflects well the behavior of real devices, switching is typically intermediate
between these two boundary cases (analog and binary). Chapter 4 shows that over a
broad parameter range, both types of switching modes result in comparable successful
learning results. It is expected therefore that the behavior of the device employed
here to yield comparable performance (which is verified by the results below).

5.5 prediction performance results

In this section, we assess whether the proposed hardware architecture can learn
the high-order sequences {A,B,C,D} and {E,B,C,F} and compare results with the
prediction performance of the original spiking TM model. The hardware architecture
employs a 36-by-36 array using 36 excitatory neurons. These neurons are organized
into six subpopulations with one shared inhibitory neuron each representing the
characters “A” to “F”. In the array, 80% of the synapses are realized. Implementation
and simulations of the hardware architecture are performed using the software Cadence.
In this study, we downscaled the size of the original spiking TM model such that it
has the same network size and level of sparsity as the hardware-adapted model.

To quantify the sequence prediction performance, we repetitively stimulate the
network using the same set of sequences {A,B,C,D}, {E,B,C,F} and assess the pre-
diction performance (see Fig. 5.2). To ensure the performance results are not specific
to a single network, the evaluation is repeated for a number of randomly instantiated
network realizations with different initial connectivities. After each new network
instantiation, the initial prediction error and false negatives are at 1, and the false
positive is at zero (see Fig. 5.2). With an increasing number of training episodes,
the prediction error as well as the false negative and positive of both the original
spiking TM network and its hardware-adapted algorithm decrease and converge to
zero. The original spiking TM algorithm converges slightly faster compared to the
hardware-adapted algorithm.
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Figure 5.2: Sequence prediction performance of spiking TM model and its hardware
adapted model. Dependence of the sequence prediction error (A), the false
positive and false-negative rates (B) on the number of training episodes during
repetitive stimulation with sequence {A,B,C,D} and {E,B,C,F}. Curves indicate
the median across an ensemble of 10 different network realizations. The parameters
of the spiking TM model employed here are similar to the ones reported in
Table 7.1 for sequence set I, except the following parameters: nE = 6 (number of
neurons per subpopulation), M = 6 (number of subpopulation), ρ = 2 (number of
activate neurons per subpopulation), p = 0.8 (connection probability), λ+ = 0.02,
λh = 0.004 (potentiation and homeostatic learning rates). Data of the hardware-
adapted model are from (Siegel et al., 2023).

5.6 discussion

In this work, we present the architectural and algorithmic adaptations of the spik-
ing TM algorithm for implementation on neuromorphic hardware composed of a
memristive crossbar array and peripheral circuitry. The crossbar array implements
the synaptic weights and the peripheral circuitry implements the neuronal and the
learning dynamics. We show that the proposed architecture can learn high-order
sequences with similar prediction performance as the original spiking TM model.

The proposed hardware implementation around a memristive array offers interesting
prospects as such arrays allow for efficient analog computation, e.g., during the read
phase. It is expected that this hardware implementation can result in higher energy
efficiency for obtaining the same results as the initial model. Interestingly, the array
implementation enabled the incorporation of dendrites (vertical lines of the array),
which were simplified to a point neuron in the original model. This gives the prospect
for future work to expand this hardware model to multi-dendrite and possibly to
hierarchical models.

Throughout this thesis, we first devise a continuous-time implementation of the TM
algorithm by using biological ingredients such as spiking neurons. This translation
facilitates porting the TM algorithm into neuromorphic hardware as a) it identified
the biological ingredients that can implement the algorithm, which aided in finding
its counterpart in the neuromorphic hardware, and b) it replaces the original learning
rules, which are partially non-local, with hardware-friendly, fully local plasticity rules
(see Plasticity dynamics in section 2.2.2). In true neuromorphic hardware, we have an
ensemble of circuits each fully implementing the synapse or neuron functionalities, that
are then connected in a particular network structure depending on the application.
However, in our case, the hardware either does not emulate the complete functionality
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(e.g. as memristive devices can emulate only part of the synapse functionality), or
the function of different individual biological elements is grouped in a single (control)
circuit. As a consequence, this chapter introduces the various algorithmic adaptations.

In a recent study, we demonstrate the algorithm’s functionalities in a real hardware
system (Siegel et al., 2023). The memristive crossbar array is fabricated using 130nm
CMOS technology with HfO-based memristive devices (details on the process can be
found in (Garbin et al., 2015)) and the peripheral circuitry is implemented in external
digital hardware. The current implementation is limited to a small array size (8x8).
Future studies could scale up the size and study the sequence learning capacity.

5.7 conclusion

In this chapter, we present the algorithmic and architectural adaptations of the spiking
TM algorithm for implementation on dedicated neuromorphic hardware employing
memristive crossbar arrays to mimic the synaptic connectivity. The circuit-level
simulations demonstrate the feasibility of our design choices. This work is a guide
to future works aiming at integrating the architecture into a specialized electronic
circuit, which can be embedded in systems at the edge.





6DISCUSS ION

The section Limitation and extensions of the sequence learning model is based on the
following publication:
Bouhadjar, Y., Diesmann, M., Wouters, D. J., & Tetzlaff, T. (2022). Sequence learning,
prediction, and replay in networks of spiking neurons. PLOS Computational Biology
18 (6), e1010233.
Other sections use short excerpts from the publication above (Bouhadjar et al., 2022b)
or from (Bouhadjar et al., 2022a, Bouhadjar et al., 2022c).
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6.1 conclusion

In this thesis, we propose a neuronal network architecture able to learn, predict, and
replay sequences. This architecture provides an explanation of a number of biological
mechanisms and principles observed in biology. Furthermore, we propose an efficient
hardware implementation of these mechanisms using concepts from neuromorphic
engineering. In the following, we summarize our key findings.

In chapter 2, we devise a continuous-time implementation of the temporal-memory
(TM) component of the HTM algorithm (Hawkins and Ahmad, 2016), which is based
on a recurrent network of spiking neurons with biophysically interpretable variables
and parameters. The architecture learns high-order sequences by means of a structural
Hebbian synaptic plasticity mechanism supplemented with a rate-based homeostatic
control. In combination with nonlinear dendritic input integration and local inhibitory
feedback, this type of plasticity leads to the dynamic self-organization of narrow
sequence-specific subnetworks. These subnetworks provide the substrate for a faithful
propagation of sparse, synchronous activity, and, thereby, for a robust, context-
specific prediction of future sequence elements as well as for the autonomous replay of
previously learned sequences. By strengthening the link to biology, our implementation
facilitates the evaluation of the TM hypothesis based on experimentally accessible
quantities. The continuous-time formulation in particular allows us to study how
the sequence speed affects the prediction and replay performance. Furthermore, this
study identifies biological mechanisms essential for sequence prediction and replay. It
strengthens the concepts introduced in (Hawkins and Ahmad, 2016) and introduces
new ones. In the following we provide a summary of these mechanisms:

• Learning and storage of sequences: sequences are represented by specific subnet-
works embedded into the recurrent network. During the learning process, these
subnetworks are carved out in an unsupervised manner by a form of structural
Hebbian plasticity.

• Context specificity: learning of high-order sequences is enabled by a sparse,
random potential connectivity, and by a homeostatic regulation of synaptic
growth.

• Generation of predictions: neurons are equipped with a predictive state, im-
plemented by a nonlinear synaptic integration mimicking the generation of
dendritic action potentials (dAPs).

• Mismatch detection: only a few neurons become active if a prediction matches
the stimulus. In our model, this sparsity is realized by winner-take-all (WTA)
dynamics implemented in the form of inhibitory feedback. In the case of non-
anticipated stimuli, the WTA dynamics cannot step in, thereby leading to a
non-sparse activation of larger neuron populations.

• Sequence replay: an autonomous replay of learned sequences in response to a
cue signal is enabled by increasing neuronal excitability.

In chapter 3, we present an extension of the spiking TM model able to replay
sequences as a response to ambiguous cues following different strategies. The model in
its original version recalls only the sequence shown most frequently during training. We
introduce noise as a mechanism to achieve different replay strategies. To summarize
our key findings:
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• Uncorrelated noise, as used in many previous studies, averages out and is
ineffective if sequence elements are represented by the activity of neuronal
subpopulations, thereby leading to non-exploratory memory recall.

• Locally coherent noise permits explorative behavior without the need for unre-
alistically large noise amplitudes.

• Random stimulus locking to intrinsic spatiotemporal oscillations constitutes a
natural form of such noise.

• Decision strategies can be adjusted by modulations in the amplitude or frequency
of these oscillations.

In chapter 4, we investigate to what extent a type of memristive device known as
ReRAM devices can replace biological synapses in the spiking TM model. In the first
step, we implement a model of the ReRAM device in the neural simulator NEST. In
the second step, we integrate the ReRAM device model into the spiking TM network.
Our results demonstrate that successful learning is

• supported by both analog and binary ReRAM switching dynamics,

• obtained for a broad range of on-off ratios and learning rates,

• resilient with respect to device variability and synaptic failure, and

• robust with respect to weight dependence device updates.

In chapter 5, we describe what algorithmic and architectural changes of the spiking
TM model are required to port it in a full electronic circuit architecture centered
around a memristive crossbar array. The architecture is composed of a ReRAM
crossbar array and peripheral circuitry. The ReRAM crossbar array implements the
connectivity, where the synaptic elements are realized using a one-transistor-one-
ReRAM-device (1T1R) structure. The peripheral circuitry implements the neuron
model and facilitates the implementation of the learning rules. We assess our design
using circuit-level simulations and show that the system can successfully learn context-
dependent sequences.
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6.2 outlook

6.2.1 Testable predictions of the sequence learning model

The spiking Temporal Memory (spiking TM) model developed in this thesis combines
findings from both physiological-anatomical and behavioral data. It uses biological
ingredients such as spiking neurons and local learning rules to explain how cortical net-
works predict and replay sequences in a context-dependent manner. It further explains
how these networks replay sequences as a response to ambiguous cues. The model
makes a number of testable predictions that can be verified in electrophysiological
and behavioral experiments:

• Prediction and replay in the spiking TM model rely on the propagation of
activity across subpopulations of neurons, where the number of spikes in each
subpopulation is in the range ∼10–20. Detecting these patterns of activity using
extracellular recording is not possible due to subsampling. It may be possible to
detect such patterns using high-resolution calcium imaging (Grewe et al., 2010).

• The spiking TM network generates dendritic action potentials in a sparse subset
of neurons to signal anticipated stimuli. The dendritic action potential results in
a long-lasting depolarization of these neurons. In the case of correct predictions,
the sparse subset of depolarized neurons generates somatic spikes. Otherwise,
wrong predictions result in a non-sparse, synchronous somatic firing of neurons.
These set of mechanisms and principles could be tested in an electrophysiological
study using high-resolution calcium imaging.

• During the replay, the somatic depolarization due to a dendritic action potential
can alone cause the neuron to generate a spike. We achieve this by increasing
the excitability of the neurons, i.e., by decreasing the firing threshold. As
suggested in chapter 2, the source of such an increase in excitability remains to
be identified. Possible mechanisms could be a top-down signal delivered in the
form of a neuromodulatory, attentional signal or propagating spatiotemporal
oscillations (Atherton et al., 2015; Baluch and Itti, 2011; Noudoost et al., 2010;
Buzsáki, 2006).

• The sequence replay speed in the spiking TM model is faster and independent
of the sequence presentation speed during training. A number of studies have
already demonstrated fast replay in both the neocortex and the hippocampus
(Xu et al., 2012; Nádasdy et al., 1999). It remains to be determined whether the
replay speed is completely independent of the training speed or if there exists a
certain dependence.

• To foster context-dependent predictions, homeostatic control prevents the same
neurons from generating predictions in different sequences. If it were possible
to prevent the homeostasis mechanism, this would then increase the chance of
overlap between the neuronal populations representing sequence elements in
different contexts and may impair the prediction performance.

• In population-based encoding exploratory behavior is achieved by means of
locally coherent noise. Random stimulus locking to spatiotemporal oscillations is
a possible type of such noise: distant neurons see different phases, while close-by
neurons see the same phase. At the stimulus onset, the neurons in the up
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phase tend to fire earlier compared to neurons in the down phase. The stimulus
onset is typically not locked to the oscillation and thus can be a mechanism for
generating noise. In the biological system, if the neurons tuned to the different
sequences are determined, it may be possible to identify the sequence the animal
is about to recall by observing the phase of these neurons. This type of analysis
is identical to the one used by Arieli et al. (1996).

• Sequence processing speed (i.e., interstimulus intervals) that permits successful
learning has a lower and upper bound. Irrespective of the task complexity, the
sequence prediction performance becomes poor for sequence speeds outside
the optimal range. In addition, the number of training episodes required to
reach optimal performance is proportional to the sequence speed, i.e., fast
sequences with smaller interstimulus intervals can be learned faster, provided
that the interstimulus interval is in the optimal range. The dependence of
prediction performance on the processing speeds could be systematically tested
in a behavioral study.

Additional testable predictions related to the original TM model are listed in (Hawkins
and Ahmad, 2016).

6.2.2 Limitation and extensions of the sequence learning model

While the model is still fairly simplistic, it may provide the basis for a number of
future extensions. Our results on the sequence processing speed revealed that the
spiking TM model can process fast sequences with inter-stimulus intervals ∆T up to
∼75ms (see chapter 2). This range of processing speeds is relevant in many behavioral
contexts such as motor generation, vision (saccades), music perception and generation,
language, and many others (Mauk and Buonomano, 2004). However, slow sequences
with inter-stimulus intervals beyond several hundreds of milliseconds cannot be learned
by this model with biologically plausible parameters. This is problematic as behavioral
time scales are often larger (Mauk and Buonomano, 2004; Paton and Buonomano,
2018). By increasing the duration τdAP of the dAP plateau, the upper bound for
∆T could be extended to 500ms, and maybe beyond (Milojkovic, 2005). However,
for such long intervals, the synaptic potentiation would be very slow, unless the
time constant τ+ of the structural STDP is increased and the depression rate λ− is
adapted accordingly. Furthermore, while our model explains the fast replay observed
in the hippocampus and cortex, it is not able to learn an element-specific timing and
duration of sequence elements (Dave and Margoliash, 2000; Louie and Wilson, 2001;
Gavornik and Bear, 2014). This could be overcome by equipping the model with a
working memory mechanism, which maintains the activity of the subpopulations for
behaviorally relevant time scales (Maes et al., 2020; Tully et al., 2016).

In the current version of the model, the number of subpopulations, the number of
neurons within each subpopulation, the number of dendritic branches per neuron, as
well as the number of synapses per neuron are far from realistic (Hawkins and Ahmad,
2016). The number of sequences that can be successfully learned in this network is
hence rather small. In addition, the current work is focusing on sequence processing at
a single abstraction level, not accounting for a hierarchical network and task structure
with both bottom-up and top-down projections. A further simplification in this work is
that the lateral inhibition within a subpopulation is mediated by a single interneuron
with unrealistically strong and fast connections to and from the pool of excitatory
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neurons. In future versions of this model, this interneuron could be replaced by a
recurrently connected network of inhibitory neurons, thereby permitting more realistic
weights, and simultaneously speeding up the interaction between inhibitory and
excitatory cells by virtue of the fast-tracking property of such networks (van Vreeswijk
and Sompolinsky, 1998). Similarly, the external inputs in our model are represented
by single spikes, which are passed to the corresponding target population by a strong
connection, and thereby lead to an immediate synchronous spike response. Replacing
each external input with a population of synchronously firing neurons would be a
more realistic scenario without affecting the model dynamics. The external neurons
could even fire in a non-synchronous, rate modulated fashion, provided the spike
responses of the target populations remain nearly synchronous and can coincide with
the dAP-triggered somatic depolarization (see Fig. 7.5). The current version of the
model relies on a nearly synchronous immediate response to ensure that a small set of
(∼20) active neurons can reliably trigger postsynaptic dAPs, and that the predictive
neurons (those depolarized by the dAPs) consistently fire earlier as compared to
the non-predictive neurons, such that they can be selected by the WTA dynamics.
Non-synchronous responses could possibly lead to a reliable generation of dAPs in
postsynaptic neurons, but would require large active neuron populations (loss of
sparsity) or unrealistically strong synaptic weights. The temporal separation between
predictive and non-predictive neurons becomes harder for non-synchronous spiking. In
future versions of the model, it could potentially be achieved by increasing the dAP
plateau potential, and simultaneously equipping the excitatory neurons with a larger
membrane time constant, such that non-depolarized neurons need substantially longer
to reach the spike threshold. Increasing the dAP plateau potential, however, makes
the model more sensitive to background noise (see below). Note that, in our model,
only the immediate initial spike response needs to be synchronous. After successfully
triggering the WTA circuit, the winning neurons could –in principle– continue firing in
an asynchronous manner (for example, due the working-memory dynamics mentioned
above). Similarly, long-lasting or tonic external inputs could lead to repetitive firing
of the neurons in the TM network. As long as these repetitive responses remain nearly
synchronous, the network performance is likely to be preserved.

In the predictive mode, the statistics of the spiking activity generated by our model
are primarily determined by the temporal structure of the external inputs. Upon
presentation of a sequence element, a specific subset of excitatory neurons fires a
single volley of synchronous spikes. If the stimulus is predicted, this subset is small.
The spike response is therefore highly sparse both in time and space, in line with
experimental findings (Barth and Poulet, 2012). For simplicity and illustration, the
sequences in this study are presented in a serial manner with a fixed order, and
fixed inter-sequence and inter-element (inter-stimulus) intervals. As a consequence,
the single-neuron spike responses are highly regular. The in-vivo spiking activity in
cortical networks, in contrast, exhibits a high degree of irregularity (Shadlen and
Newsome, 1998). A more natural presentation of sequences with irregular order and
timing trivially leads to more irregular spike responses in our model. As long as the
inter-stimulus intervals fall into the range depicted in Fig. 2.11, the model can learn
and predict irregular sequences. Spiking activity in the cortex is not only irregular,
but also fairly asynchronous in the sense that the average level of synchrony for
randomly chosen pairs of neurons is low (Ecker et al., 2010; Renart et al., 2010).
This, however, is not necessarily the case for any subset of neurons and at any point
in time. It is well known that cortical neurons can systematically synchronize their
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firing with millisecond precision in relation to behaviorally relevant events (see, e.g.,
(Riehle et al., 1997)). As demonstrated in (Schrader et al., 2008), synchronous firing
of small subsets of neurons may easily go unnoticed in the presence of subsampling.
The model proposed in this study relies on (near) synchronous firing of small subsets
of neurons. In cases where the model processes large sets of sequences in parallel, this
synchrony will hardly be observable if only a small fraction of neurons is monitored (see
Fig. 7.4). After learning, different sequences are represented by distinct subnetworks
with little overlap. Hence, the network can process multiple sequences at the same time
with little interference between subnetworks. The model could even learn multiple
sequences in parallel, provided there is no systematic across-trial dependency between
the sequences presented simultaneously. We dedicate the task of testing these ideas
to future studies. While the synchrony predicted by the TM model may hardly be
observable in experimental data suffering from strong subsampling, the predicted
patterns of spikes could be identified using methods accounting for both spatial and
temporal dependencies in the spike data (Schrader et al., 2008; Quaglio et al., 2017,
2018). There are other factors that may contribute to a more natural spiking activity
in extended versions of the model. First, equipping the model with a working memory
mechanism enabling the learning of slow sequences and sequence timing (see above)
would likely lead to sustained asynchronous irregular firing. Second, replacing the
inhibitory neurons with recurrent networks of inhibitory neurons (see above) would
generate asynchronous irregular activity in the populations of inhibitory neurons and
thereby contribute to variability in the spike responses of the excitatory neurons.
Third, the model proposed here may constitute a module embedded into a larger
architecture and receive irregular inputs from other components. As shown in Fig. 7.5
and Fig. 7.6, the spiking activity and the prediction performance of the TM model
are robust with respect to low levels of synaptic background activity, and, hence,
membrane potential fluctuations reminiscent of those observed in vivo (DeWeese
and Zador, 2006). For an increased level of noise, the learning speed decreases. For
high noise levels leading to additional, non-task related background spikes, the dAP
triggered plateau depolarization is overwritten, such that the WTA dynamics fail at
selecting predictive neurons, ultimately leading to a loss of context specificity in the
responses. Hence, the prediction performance degrades for large noise amplitudes.
A potential application of introducing background noise is to allow the network to
perform probabilistic computations (Jordan et al., 2019), such as replaying sequences
in the presence of ambiguous cues presented in section 3.3.1.

Similar to the original TM model, the response of the population representing the
first element in a sequence is non-sparse, indicating that the first sequence element is
not anticipated and can therefore not be predicted. If a given first sequence element
reoccurs within the same sequence (say, “A” in {A,B,A,C}) or in other sequences (e.g.,
in {D,E,A,F}), the non-sparse response of the respective population to a first sequence
element leads to a simultaneous prediction of all possible subsequent elements, i.e.,
the generation of false positives. These false predictions would lead to a pruning
of functional synapses as a response of the homeostatic regulation to the increased
dAP activity. This could be overcome by three possible mechanisms: a) synaptic
normalization avoiding excessive synapse growth (Turrigiano et al., 1998; Elliott,
2003), b) removing breaks between sequences, or c) sparse, sequence specific firing of
subpopulations representing first elements. Results of applying the last mechanism
are shown in Fig. 7.2, where dAPs are externally activated in random subsets of
neurons in the populations representing first elements. In a more realistic hierarchical



112 discussion

network, a similar effect could be achieved by top-down projections from a higher
level predicting sequences of sequences.

In the original model, synapses targeting silent postsynaptic cells are depressed,
even if the presynaptic neuron is inactive. This pruning process, the freeing of unused
synaptic resources, increases the network capacity while ensuring context sensitivity.
According to the structural plasticity dynamics employed in our study, synapse
depression is bound to presynaptic spiking, similar to other implementations of (non-
structural) STDP (Morrison et al., 2007). As a consequence, strong connections
originating from silent presynaptic neurons are not depressed (dark gray dots in
Fig. 2.2D). This may complicate or slow down the learning of new sequences, and
could be overcome by synaptic normalization.

For the dAP-rate homeostasis used in this study, the target dAP rate is set to one to
make sure that each neuron contributes at most one dAP during each training episode.
As a consequence, the time constant of the dAP-rate homeostasis is adapted to the
duration of a training episode, which is in the range of a few seconds in this work. We
are not aware of any biological mechanism that could account for such an adaptation.
dAP-rate homeostasis is mediated by the intracellular calcium concentration, which,
in turn, controls the synthesis of synaptic receptors, and hence, the synaptic strength.
It is therefore known to be rather slow, acting on timescales of many minutes, hours,
or days (Turrigiano and Nelson, 2004; Turrigiano, 2008). It is unclear to what extent
the use of long homeostatic time constants and increased dAP target rates would alter
the model performance. Alternatively, the dAP-rate homeostasis could be replaced by
other mechanisms such as synaptic normalization.

6.2.3 Prospects on neuromorphic computing

The field of neuromorphic computing promises to provide efficient solutions to real
world problems by taking inspiration from biology (Aimone, 2019). It strives to build
systems with similar capabilities as the brain including continuous, online learning
with efficient usage of energy and data resources. The progress on such an endeavor,
however, has been slowed down due to a lack of understanding of the mechanisms
underpinning neuronal computation. In this thesis, we follow a strategy similar to the
one proposed by Bouhadjar et al. (2022) to tackle this issue. By combining knowledge
of lower-level biological features such as dendritic computation and spiking neurons,
with insights from the top cognitive function, we are able to explain a number of
biological mechanisms and their role in computation. This allows us to devise a
sequence learning model able to learn continuously in an energy-efficient manner.
The model architecture is modular and allows the processing of data from different
modalities. It may constitute a building block in future models aiming at learning
tasks that require, for example, multisensory integration.

Brain-inspired algorithms run more efficiently on dedicated neuromorphic hardware.
A prerequisite for such hardware’s success is identifying hardware concepts and
devices that can best implement neuroscientific mechanisms and principles. The type
of neuromorphic hardware discussed in chapter 5 relies on analog components to
implement biological neurons and synapses. These components can be faster than their
biological counterparts, which foresee hardware that runs substantially faster than
biology. Due to the shared similarities between this type of hardware and the brain,
we could even use it as a platform to study neuroscientific questions. For example,
to date, there are only speculations on how the brain contributes to sensible and
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reliable behavior in the face of noisy and heterogeneous synapses. Throughout the
work on neuromorphic systems, we can develop intuitions of how biological synapses
counteract or even exploit these different characteristics for computation. Similar to
biological synapses, ReRAM devices are characterized by a read and write variability.
In the biological system, the read variability is analogous to the randomness in
the vesicle release, and the write variability corresponds to the randomness in the
density regulation of the postsynaptic receptors. So far, it is not clear how these
different characteristics contribute to the learning dynamics in the biological system.
Neuromorphic hardware can provide an environment where this question can be
studied.

In this work, we show that the spiking TM model is resilient toward synaptic
variability. Other works show that synaptic variability can even have a computational
benefit. In probabilistic computing frameworks, variability is considered a prerequisite
for probabilistic inference (Maass, 2014; Neftci et al., 2016). It allows the system to
explore the state space and come up with an estimate of how likely each solution
is. Similarly, chapter 3 shows that the spiking TM model can replay sequences
probabilistically by using noise. However, the study explores only additive noise.
Future work can shed light on the possibility of using ReRAM type of noise, i.e.,
multiplicative noise, as an alternative. A major challenge in this respect, however, is
to come up with a mechanism introducing correlated variability across neighboring
synapses. From chapter 3, we know that this is necessary to avoid the averaging effect.
Multiplicative noise suffers from averaging to the same extent as additive noise.

In artificial neural networks trained using gradient-based approaches, ReRAM
nonidealities can severely undermine the overall performance (Fouda et al., 2020).
Due to the ReRAM variability, devices can be hardly programmed to the desired
state, and the asymmetry in the conductance change can affect the propagation of
the gradient and lead to performance loss. Correcting for these nonidealities can be
costly and may require additional circuitry (Chen et al., 2015b; Agarwal et al., 2016;
Hong et al., 2018; Adnan et al., 2021). In the spiking TM and other brain-inspired
self-organizing networks, the ReRAM characteristics are not a nuisance and can be
even beneficial in certain applications. We know that the neuronal system carries out
accurate computations despite its nonideal synaptic characteristics such as variability.
This suggests the existence of biological principles accommodating for that, which
we need to understand and port for a successful implementation of neuromorphic
hardware. Spiking TM provides a step in this direction. It identifies a set of biological
concepts that might be at the heart of brain processing capabilities. For instance, its
highly sparse connectivity and activity are observed in biological networks and are
essential for increasing the capacity of the system and decreasing energy consumption.
Furthermore, it self-organizes by means of unsupervised learning rules without a
teaching signal. It remains to be answered how these learning rules can be efficiently
implemented in neuromorphic hardware. For example, in chapter 4, we stress that
memristive devices are not able to mimic biological learning rules without the help
of peripheral circuitry. Looking for ways to bring the learning rules closer to the
hardware, i.e., implemented directly by the synaptic elements, would allow for energy
efficient systems with online learning capabilities in edge applications.
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7.1 supporting information chapter 2

7.1.1 Model and simulation parameters

Name Value Description
Network

NE 2100 total number of excitatory neurons
NI 14 total number of inhibitory neurons
M A = 14 number of excitatory subpopulations (= number of exter-

nal spike sources)
nE NE/M = 150 number of excitatory neurons per subpopulation
nI NI/M = 1 number of inhibitory neurons per subpopulation
ρ 20 (target) number of active neurons per subpopulation after

learning = minimal number of coincident excitatory in-
puts required to trigger a spike in postsynaptic inhibitory
neurons

(Potential) Connectivity
KEE 420 number of excitatory inputs per excitatory neuron (EE

in-degree)
p KEE/NE = 0.2 probability of potential (excitatory) connections
KEI nI = 1 number of inhibitory inputs per excitatory neuron (EI

in-degree)
KIE nE number of excitatory inputs per inhibitory neuron (IE

in-degree)
KII 0 number of inhibitory inputs per inhibitory neuron (II in-

degree)
Excitatory neurons

τm,E 10ms membrane time constant
τref,E 10ms absolute refractory period
Cm 250 pF membrane capacitance
Vr 0.0mV reset potential
θE 20mV (predictive mode),

5mV (replay mode)
somatic spike threshold

IdAP 200 pA dAP current plateau amplitude
τdAP 60ms dAP duration
θdAP 59 pA (predictive mode),

41.3 pA (replay mode)
dAP threshold

Inhibitory neurons
τm,I 5ms membrane time constant
τref,I 2ms absolute refractory period
Cm 250 pF membrane capacitance
Vr 0.0mV reset potential
θI 15mV spike threshold

Continued next page
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Name Value Description

Synapse

γ 5 number co-active presynaptic neurons required to trigger
a dAP in the postsynaptic neuron

W 12.98 pA weight of mature EE connections (EPSC amplitude)

J̃IE 0.9mV (predictive mode),
0.12mV (replay mode)

weight of IE connections (EPSP amplitude)

JIE 581.19 pA (predictive mode),
77.49 pA (replay mode)

weight of IE connections (EPSC amplitude)

J̃EI −40mV weight of EI connections (IPSP amplitude)

JEI −12915.49 pA weight of EI connections (IPSC amplitude)

J̃EX 22mV weight of EX connections (EPSP amplitude)

JEX 4112.20 pA weight of EX connections (EPSC amplitude)

τEX 2ms synaptic time constant of EX connection

τEE 5ms synaptic time constant of EE connections

τEI 1ms synaptic time constant of EI connections

τIE 0.5ms synaptic time constant of IE connections

dEE 2ms delay of EE connections (dendritic)

dIE 0.1ms delay of IE connections

dEI {0.1, 0.2}ms delay of EI connections (non-default value used in Fig. 2.11
and Fig. 2.12)

dEX 0.1ms delay of EX connections

Plasticity

λ+ 0.08 (sequence set I),
0.28 (sequence set II)

potentiation rate

λ− 0.0015 (sequence set I),
0.0061 (sequence set II)

depression rate

θP 20 synapse maturity threshold

Pmin,ij ∼ U(P0,min, P0,max) minimum permanence

Pmax 20 maximum permanence

P0,min 0 minimal initial permanence

P0,max 8 maximal initial permanence

τ+ 20ms potentiation time constant

z∗ 1 target dAP activity

λh 0.014 (sequence set I),
0.024 (sequence set II)

homeostasis rate

τh 440ms (sequence set I),
1560ms (sequence set II)

homeostasis time constant

yi 1 depression decrement

∆tmin 4ms minimum time lag between pairs of pre- and postsynaptic
spikes at which synapses are potentiated

∆tmax 2∆T maximum time lag between pairs of pre- and postsynaptic
spikes at which synapses are potentiated

Continued next page
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Input

L 1 number of subpopulations per sequence element = number
of target subpopulations per spike source

S 2 (sequence set I),
6 (sequence set II)

number of sequences per set

C 4 (sequence set I),
5 (sequence set II)

number of elements per sequence

A 14 alphabet length (total number of distinct sequence ele-
ments)

∆T {2, . . . ,40, . . . , 90}ms inter-stimulus interval

∆Tseq max(2.5∆T , τdAP) inter-sequence interval

∆Tcue 80ms inter-cue interval

Simulation

∆t 0.1ms time resolution

K {80, 100} number of training episodes

Table 7.1: Model and simulation parameters. Parameters derived from other parameters are
marked in gray. Bold numbers depict default values.

Name Value Description

columnDimensions (M) 280 number of columns

numColumnsPerElement (L) 20 number of columns per element

cellsPerColumn (nE) 8 number of cells per column

initialPermanence (P0) [0.1, 0.3] initial permanence

connectedPermanence (θP ) 0.5 threshold at which a synapses is considered con-
nected

minThreshold 15 if the number of immature (potential) synapses
active on a segment is at least this threshold, it is
said to be “matching” and is eligible for learning.

maxNewSynapseCount 40 the maximum number of synapses added to a seg-
ment during learning

permanenceIncrement (λ+, λh) 0.1 amount by which permanences of synapses are in-
cremented during learning.

permanenceDecrement (λ−) 0.3 amount by which permanences of synapses are
decremented during learning.

activationThreshold (θdAP) 15 if the number of active connected synapses on a
segment is at least this threshold, the segment is
said to be active.

predictedSegmentDecrement 0.01 amount by which permanences of synapses are
decremented during learning.

Table 7.2: Adapted parameters of the original TM model used for Fig. 2.9.
Parameter names match those used in the original simulation code
(https://github.com/numenta/htmpapers/tree/master/frontiers/why_
neurons_have_thousands_of_synapses). Gray parameter names are those used
in the spiking TM model.

https://github.com/numenta/htmpapers/tree/master/frontiers/why_neurons_have_thousands_of_synapses
https://github.com/numenta/htmpapers/tree/master/frontiers/why_neurons_have_thousands_of_synapses
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Figure 7.1: Sequence prediction performance in the presence of conventional (non-
structural) spike-timing-dependent plasticity (STDP). Dependence of the
sequence prediction error (A), the false-positive and false-negative rates (B), and
the number of active neurons relative to the subpopulation size (C) on the number
of training episodes for sequence set II. Curves and error bands indicate the median
as well as the 5% and 95% percentiles across an ensemble of 5 different network
realizations, respectively. All prediction performance measures are calculated as a
moving average over the last 4 training episodes. In this experiment, structural
STDP is replaced by conventional STDP, i.e., the permanences Pij(t) and Pmax
in Eq (2.1) are replaced by the synaptic weights JEE,ij(t) and Jmax. The weights
JEE,ij are restricted to the interval [Jmin,ij , Jmax], and clipped at the boundaries.
The minimal weights Jmin,ij are randomly and independently drawn from a
uniform distribution between J0,min and J0,max. The performance characteristics
shown here are comparable to those obtained with structural STDP (see Fig. 2.9
in Prediction performance). Parameters: ∆T = 40ms, λ+ = 0.43, λ− = 0.0058,
λh = 0.03, J0,min = 0 pA, J0,max = 2 pA, Jmax = 12.98 pA. See Table 7.1 for
remaining parameters.

Figure 7.2: Prediction performance for a sequence set with recurring first items.
Dependence of the sequence prediction error (A), the false positive frequency, the
false negative frequency (B), and the number of active neurons relative to the
subpopulation size (C) on the number of training episodes for a set of sequences
s1 = {B,D,I,C,H}, s2 = {E,D,I,C,F}, s3 = {F,B,C,A,H}, s4 = {G,B,C,A,D},
s5 = {E,C,I,H,A}, s6 = {D,C,I,H,G} with recurring first items. Curves and
error bands indicate the median as well as the 5% and 95% percentiles across 5
different network realizations, respectively. As a solution to the issue discussed in
Limitation and extensions of the sequence learning model concerning the recurring
of first sequence elements in other sequences or within the same sequence, the
dAPs are externally activated in a random subset of neurons in the populations
representing first elements. Inter-stimulus interval ∆T = 40ms. All prediction
performance measures are calculated as a moving average over the last 4 training
episodes. Parameters: ∆T = 40ms, λ+ = 0.39, λ− = 0.0057, λh = 0.034. See
Table 7.1 for remaining parameters
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Figure 7.3: Effect of the dAP-rate homeostasis on the prediction performance.
Dependence of the prediction error (A) and the overlap in the activation pattern
between the neurons representing the sequence element “G” in the context of
sequences {A,D,B,G,H,E} and {F,D,B,G,H,C} (B) on the number of training
episodes explored for two values of the homeostasis rate (λh). Curves and error
bands indicate the median as well as the 5% and 95% percentiles across 5 different
network realizations, respectively. Disabling the homeostasis control (λh = 0.0)
increases the overlap in the “G” activation pattern, which leads to a lost of context
specificity and hence an increase in the prediction error (see Sequence learning
and prediction). The parameters of the plasticity are similar to the ones reported
in Table 7.1 for the sequence set I.
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Figure 7.4: Asynchronous irregular firing in a (hypothetical) network processing
multiple sequences in parallel. A: Artificial spike data mimicking activity of a
TM network processing S = 10 sequences in parallel. Each sequence (right y-axis)
is processed by a distinct subnetwork of 200 neurons, each composed of C = 10
subpopulations. The horizontal gray lines separate the different subnetworks.
Upon activation of a sequence element, ρ = 20 neurons in the corresponding
subpopulation synchronously fire a spike. Individual sequences are activated
independently with rate 1 s−1 at random times (Poisson point process with
200ms deadtime). Inter-element intervals ∆T ∼ U(10ms, 80ms) are randomly
drawn from a uniform distribution (cf. Fig. 2.11). The inset depicts a magnified
view of a single activation of sequence 2. B: Same data as in A after random
permutation of neuron identities. C: Spiking activity of a random subset of 100
neurons depicted in panel B. D–F: Distributions of single-neuron firing rates (D),
inter-spike-interval variation coefficients (E; ISI CV), and spike-count correlation
coefficients (F; binsize 10ms) obtained from subsampled data shown in panel C for
a total simulation time of 100 s (mean rate= 1 spikes/s, mean ISI CV = 0.8, mean
correlation= 0.01). The data and analysis results shown here demonstrate that i)
irregular sequence activation translates into irregular spiking, and ii) subsampling
and the absence of prior knowledge of the network structure hide synchrony
(but note the tiny peak at 1.0 in the distribution of correlation coefficients).
The combination of both effects hence leads to asynchronous irregular firing,
reminiscent of in-vivo cortical activity.
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Figure 7.5: Effects of background noise and non-synchronous stimulation on net-
work activity. A–F) Spiking activity before (panels A–C; 1st learning episode)
and after learning sequence set I (panels D–F; 600th learning episode) in response
to a presentation of sequence {A,D,B,E} without background noise (left) and
in the presence of moderate (middle) or high synaptic background noise (right).
External inputs are presented in the form of dispersed volleys of 50 spikes (black
vertical bars at the top). Each of these spikes triggers an exponential synaptic
input current in the target neurons with amplitude 134 pA and time constant 1ms.
Spike times in each spike volley are randomly drawn from a Gaussian distribution
(width 4ms), centered on the stimulus time. In each trial, all stimulated neurons
receive the same realization of the Gaussian spike packet. Red dots and blue
horizontal lines mark somatic spikes and dAPs, respectively. For clarity, only a
fraction of 50% of excitatory neurons and external spikes are shown. Background
noise to each excitatory neuron is provided in the form of balanced excitatory
and inhibitory synaptic inputs, generated by distinct uncorrelated Poissonian
spike sources (total rate per source ν = 10000 s−1). Background synapses are
modeled as exponential postsynaptic currents (time constant τB = 1ms) with
amplitudes J = 0 pA (left), 60 pA (middle), and 170 pA (right) for excitatory
inputs, and −J for inhibitory inputs, respectively. The mean background input
µ = τBν(J − J) = 0 to each neuron vanishes due to the asymmetry in excitatory
and inhibitory synaptic weights. The variance σ2 = τBνJ

2 of the synaptic back-
ground current is modulated by adjusting the synaptic weight J (left: σ = 0 pA,
middle: σ = 190 pA, right: σ = 537 pA). G,H,I) Membrane potential traces of
two neurons in the excitatory subpopulation “B” during the same time interval
depicted in panels D–E for three noise levels σ = 0 pA (G), 190 pA (H), and
537pA (I). One of the selected neurons (blue) is participating in the sequence,
i.e, it generates a dAP and a somatic spike in response to sequence elements “D”
and “B”. The other neuron (orange) is not part of the sequence. The horizontal
dashed lines and blue stars mark the threshold θE and the times of somatic
spikes, respectively. Parameters: ∆T = 40ms, λ+ = 0.05, λ− = 0.001, λh = 0.01,
W = 23.6 pA, ∆tmin = 20ms, τdAP = 40ms, τref,I = 20ms, JEI = −9686.62 pA.
See Table 7.1 for remaining parameters.
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Figure 7.6: Effects of background noise and non-synchronous stimulation on pre-
diction performance and sparsity for sequence set I. Dependence of the
sequence prediction error (A), the false positive and false negative rate (B), and
the sparsity (number of active neurons relative to the subpopulation size, C) on
the number of training episodes for three different noise amplitudes σ = 0 pA
(black), 190 pA (blue), and 537 pA (gray). See caption of Fig. 7.5 for details on
the implementation of external inputs and background noise. Curves and error
bands indicate the median as well as the 5% and 95% percentiles across 5 differ-
ent network realizations, respectively. All prediction performance measures are
calculated as a moving average over the last 4 training episodes. Same parameters
as in Fig. 7.5.

Video 7.1: Time resolved visualization of the learning dynamics: Network activity
(top) and connectivity (bottom) of the network during one learning episode. Each
frame corresponds to a new training episode. In each learning episode, each of
the two sequences {A,D,B,E} and {F,D,B,C} is presented once (black arrows in
the top panel). Top panel: Red dots and blue bars mark spike and dAP times
for each neuron. Neurons are sorted according to stimulus preference (vertical
axis). Bottom panel: Network connectivity before learning (left) and during the
current training episode (right). Light gray and black dots represent immature
and mature connections, respectively, for each pair of source and target neurons
(sorted according to stimulus preference; see Sequence learning and prediction).
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7.2 supporting information chapter 3

7.2.1 Model and simulation parameters

Name Value Description
Network

NE 1200 total number of excitatory neurons
NI 1 total number of inhibitory neurons
M 8 number of excitatory subpopulations (= number of exter-

nal spike sources)
nE NE/M = 150 number of excitatory neurons per subpopulation
ρ 20 (target) number of active neurons per subpopulation after

learning = minimal number of coincident excitatory in-
puts required to trigger a spike in postsynaptic inhibitory
neurons

n {100, . . . , 1000} number of excitatory or inhibitory Poissonian sources
Connectivity

KEE 240 number of excitatory inputs per excitatory neuron (EE
in-degree)

p KEE/NE = 0.2 connection probability
KEI NI = 1 number of inhibitory inputs per excitatory neuron (EI

in-degree)
KIE NE = 1200 number of excitatory inputs per inhibitory neuron (IE

in-degree)
KII 0 number of inhibitory inputs per inhibitory neuron (II in-

degree)
KEQ 100 number of excitatory Poissonian inputs per excitatory

neuron (EQ)
KEV KEQ = 100 number of inhibitory Poissonian inputs per excitatory

neuron (EV)
Excitatory neurons

τm,E 10ms membrane time constant
τref,E 20ms absolute refractory period
Cm 250 pF membrane capacity
Vr 0mV reset potential
θE 20mV (training),

7mV (replay)
somatic spike threshold

IdAP 200 pA dAP current plateau amplitude
τdAP 60ms dAP duration
θdAP 59 pA dAP threshold
Iθ −1000 pA reset dAP current

Inhibitory neurons
τm,I 5ms membrane time constant
τref,I 2ms absolute refractory period
Cm 250 pF membrane capacity
Vr 0mV reset potential
θI 15mV (training),

12mV (replay)
spike threshold

Continued next page
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Name Value Description

Synapse

JIE 581.19 pA weight of IE connections (EPSC amplitude)

JEI −12915.49 pA (training),
−2260.21 pA (replay)

weight of EI connections (IPSC amplitude)

JEX 4112.20 pA (training),
1962.64 pA (replay)

weight of EX connections (EPSC amplitude)

JEQ σ/
√

KEQντEQ weight of EQ connections (EPSC amplitude)

JEV −JEQ weight of EV connections (EPSC amplitude)

JEG 1 pA weight of EG connections (EPSC amplitude)

τEE 17ms synaptic time constant of EE connections

τEI 1ms synaptic time constant of EI connections

τEX 2ms synaptic time constant of EX connection

τIE 0.5ms synaptic time constant of IE connections

τEQ 2ms synaptic time constant of EQ connections

τEV τEQ = 2ms synaptic time constant of EV connections

dEE 2ms delay of EE connections (dendritic)

dIE 0.1ms delay of IE connections

dEI 0.1ms delay of EI connections

dEX 0.1ms delay of EX connections

dEQ 0.1ms delay of EQ connections

dEV dEQ = 0.1ms delay of EV connections

Plasticity

λ+ 0.001 potentiation rate

λ− 0.000013 depression rate

λh 0.0008 homeostasis rate

Jmin 0 pA minimum weight

Jmax 35 pA maximum weight

J0,min 0 pA minimal initial weight

J0,max 1 pA maximal initial weight

τ+ 20ms potentiation time constant

z∗ 10.35 target dAP activity

τh 2200ms homeostasis time constant

yi 1 depression decrement

Continued next page
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Input
S {2, 3} number of sequences per set
C 4 number of characters per sequence
A {6, 8} alphabet length
∆T 40ms inter-stimulus interval
∆Tseq 100ms inter-sequence interval
∆Tcue 140ms or

∼ U(umin umax)
inter-cue interval

umin 140ms minimal inter-cue interval
umax 280ms maximal inter-cue interval
σ {0, 190, 537} pA noise amplitude resulting from the Poissonian background

inputs
c

n

K
= {0, 1} noise correlation

ν 1000 s−1 rate of Poissonian background inputs
a {0, 8, 16} amplitude of the sinusoidal current generators
f {10, 30, 70}Hz frequency of the sinusoidal current generators

Simulation
∆t 0.1ms time resolution
K 350 number of training episodes
Nt 150 number of trials

Table 7.3: Model and simulation parameters. Parameters derived from other parameters are
marked in gray. Curly brackets depict a set of values corresponding to different
experiments.
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7.3.1 Model and simulation parameters

Name Value Description
Network

NE 1800 total number of excitatory neurons
NI 12 total number of inhibitory neurons
M 14 number of excitatory subpopulations (= number of exter-

nal spike sources)
nE NE/M = 150 number of excitatory neurons per subpopulation
nI NI/M = 1 number of inhibitory neurons per subpopulation
ρ 20 (target) number of active neurons per subpopulation after

learning = minimal number of coincident excitatory in-
puts required to trigger a spike in postsynaptic inhibitory
neurons

(Potential) Connectivity
KEE 450 number of excitatory inputs per excitatory neuron (EE

in-degree)
p KEE/NE = 0.25 probability of potential (excitatory) connections
KEI nI = 1 number of inhibitory inputs per excitatory neuron (EI

in-degree)
KIE nE number of excitatory inputs per inhibitory neuron (IE

in-degree)
KII 0 number of inhibitory inputs per inhibitory neuron (II in-

degree)
Excitatory neurons

τm,E 10ms membrane time constant
τref,E 20ms absolute refractory period
Cm 250µF membrane capacity
Vr 0mV reset potential
θE 30mV somatic spike threshold
IdAP 200µA dAP current plateau amplitude
τdAP 60ms dAP duration
θdAP see Eq (4.14) dAP threshold

Inhibitory neurons
τm,I 5ms membrane time constant
τref,I 2ms absolute refractory period
Cm 250µF membrane capacity
Vr 0.mV reset potential
θI 15mV spike threshold

Continued next page
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Name Value Description

Synapse

G̃IE 0.9mV weight of IE connections (EPSP amplitude)

GIE 581.19µS weight of IE connections (EPSC amplitude)

G̃EI −60mV weight of EI connections (IPSP amplitude)

GEI −19373.24µS weight of EI connections (IPSC amplitude)

G̃EX 33mV weight of EX connections (EPSP amplitude)

GEX 6168.31µS weight of EX connections (EPSC amplitude)

τEE 2ms synaptic time constant of EE connections

τIE 0.5ms synaptic time constant of IE connections

τEI 1ms synaptic time constant of EI connections

τEX 2ms synaptic time constant of EX connection

dEE 2ms delay of EE connections (dendritic)

dIE 0.1ms delay of IE connections

dEI 0.1ms delay of EI connections

dEX 0.1ms delay of EX connections

Plasticity

λ+ {0.02, . . . ,0.1, . . . , 0.42}
(analog synapse),
{0.02, . . . ,0.04, . . . , 0.42}
(binary synapse)

potentiation learning rate

λ− λ+/β depression rate

β {0.5, 1, 2,3} ratio between depression and potentiation learning rates

λh λ− homeostasis rate

µ+ {0,0.5, 1} weight dependence (potentiation) exponent (default pa-
rameter)

µ− {0,0.5, 1} weight dependence (depression) exponent (default param-
eter)

θP 10 synapse maturity threshold

Pmin,ij ∼ U(P0,min, P0,max) minimum permanence

Gmin,ij ∼ U(G0,min, G0,max) minimum conductance

Gmax {50, . . . ,300, . . . , 400}µS maximum conductance

G0,min 7.5µS minimal initial conductance

G0,max 12.5µS maximal initial conductance

P0,max 8 maximal initial permanence

P0,min 0 minimal initial permanence

P0,max 8 maximal initial permanence

σr {0, . . . ,0.03, . . . , 0.1} read noise

σw {0, . . . ,0.01, . . . , 0.25} write noise

z∗ 1.8 target dAP activity

τh 1040ms homeostasis time constant

Input
S 4 number of sequences per set

C 5 number of characters per sequence

A 12 alphabet length

∆T 40ms inter-stimulus interval

∆Tseq 100ms inter-sequence interval

Simulation

∆t 0.1ms time resolution

K 400 number of training episodes

Table 7.4: Model and simulation parameters. Parameters derived from other parameters are
marked in gray. Bold numbers depict default values. Curly brackets depict a set of
values corresponding to different experiments.
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