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Abstract

We study the effect of ambiguity on timing decisions. An agent faces a stopping

problem with an uncertain stopping payoff and a stochastic time limit. The agent is

unsure about the correct model quantifying the uncertainty and seeks to maximize

her payoff guarantee over a set of plausible models. As time passes and the agent

updates, the worst-case model used to evaluate a given strategy can change, creating

a problem of dynamic inconsistency. We characterize the stopping behavior in this

environment and show that, while the agent’s myopic incentives are fragile to small

changes in the set of considered models, the best consistent plan from which no future

self has incentives to deviate is robust.
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1 Introduction

Decisions on when to act are critical in many situations of everyday life: a person trying to

buy a house decides how long to bargain before making a purchase, small investors “riding

a bubble” decide when to sell their stocks, companies developing a product (a new drug or

an innovative technology) decide how much time and resources to invest before bringing it

to the market. Also governments face various timing decisions, sometimes with significant
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implications. Policymakers confronted with climate crisis decide how fast to switch to green

energy,1 authorities facing a viral outbreak decide when to shut down certain parts of public

life, and so on. While these problems differ on many important dimensions, they also share

two core characteristics: 1) acting too early or too late can lead to significant losses, and 2)

experience with the decision at hand may be limited.

This paper explores the implications of these features by studying the timing problem of

a decision maker (DM) who does not have sufficient past data to assess the relevant odds

confidently. The DM’s timing problem is described by a time-dependent stopping payoff and

a stochastic time limit. At each point in time, the DM decides whether to act or wait, with

the goal of acting as late as possible but before reaching the time limit. If the DM misses

her opportunity to act in time, she receives a (low) outside option. Our key assumption

is that the DM seeks to maximize her payoff guarantee over multiple plausible models of

the world quantifying the decision problem. She thus follows a maxmin decision criterion

(Gilboa and Schmeidler, 1989). Each model specifies a distribution over the remaining time

and a conditional expected stopping payoff.

To fix ideas, consider the example of a start-up company developing an innovative product

and deciding when to bring it to the market. The firm understands that there are many

potential competitors and that there is a significant first-mover advantage, for instance, due

to network effects in digital platform competition or intellectual property rights in traditional

R&D races. Launching the product later allows the firm to improve the product features and

reduce the chances of potential hazards. However, the longer the firm waits and improves

the design, the higher the chance of being preempted by a competitor and missing the

opportunity to collect the benefits of being the incumbent. The firm entertains multiple

plausible models about the demand for the product and the potential competition, which

may be interpreted as estimates coming from different market experts or consultancy firms.

This gives rise to uncertainty about the likelihood of being preempted by a competitor and

the conditional expected payoff from being the first in the market.

We assume that, as the DM waits and time progresses, she updates her beliefs about

the expected stopping payoff and the remaining time via Bayes rule for each model, to

then evaluate her strategy with the conditional worst case over all models (Full Bayesian

Updating). As we will see, the conditional worst-case scenario for any given strategy—as

described by one of the models—can depend on the time at which the strategy is considered.

1For example, many governments are currently engaged in public debates on when to ban combustible
motors, close down coal plants, etc.

2



When this is the case, and the worst-case scenario changes over time, there is no guarantee

that the optimal plan with respect to the initial worst-case model is still optimal at later

points in time. Our DM may thus be dynamically inconsistent. Given this, we are interested

in the role of the DM’s sophistication in her timing decision and focus on two polar cases:

myopic (naive) and forward-looking (sophisticated) decision-making. A myopic DM acts

according to the optimal plan under the current worst-case scenario but may fail to carry

out the plans of her previous selves. On the other hand, a forward-looking DM foresees

potential conflicts with her future selves and chooses the best consistent plan, i.e., the best

plan from which no future self has incentives to deviate.

We analyze the DM’s timing decision in this environment and show that the presence

of uncertainty over the DM’s conditional stopping payoff crucially affects her short-term

incentives to shorten or lengthen the waiting time with respect to the ex-ante optimum.

To this end, we first consider the case where models only differ in their description of the

stochastic time limit but agree on the DM’s expected payoff from acting at any given time. In

the start-up example, we imagine a situation where the first-mover advantage—i.e., the payoff

from preempting potential competitors at any given stage of the development process—is

well understood, whereas the remaining time is ambiguous.

We show that when ambiguity only concerns the time horizon, the DM—whether myopic

or forward-looking—waits if and only if this is optimal with respect to all models in the set.

In other words, the DM acts as soon as acting is optimal under one of the models, even if all

other models call for a longer waiting period. Whether this timing decision coincides with

the ex-ante optimal stopping rule depends on the stochastic relation of the models in the set.

We show that if there is a model whose distribution over the remaining time is hazard-rate

dominated by the distributions of all other models, the DM’s choice of timing is optimal

from an ex-ante perspective. The hazard rate captures the likelihood of reaching the time

limit if the DM waits a vanishingly small period. Due to the DM’s robustness concerns, her

short-term incentives are guided by the model with the highest hazard rate, i.e., the model

that maximizes the chance of missing the opportunity to act if the DM waits a little longer. If

there is a model that is hazard-rate dominated—that is, a model that maximizes the hazard

rate throughout—then this model always describes the worst-case scenario, so the DM is in

fact dynamically consistent. We also show that the hazard-rate condition is tight: when it

fails, we can find a stopping payoff function such that, in the absence of commitment, the

DM acts strictly before the ex-ante optimal time.

Having established this benchmark, we show that the described solution is fragile to
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introducing (an arbitrarily small amount of) uncertainty over the conditional expected stop-

ping payoff. In particular, we find that when the stopping payoff varies with the model, the

DM’s short-term incentives are dictated by the model minimizing the conditional expected

stopping payoff rather than the model maximizing the hazard rate. The DM’s short-term

incentives may now go in the opposite direction: pessimism about the conditional stopping

payoff increases the DM’s willingness to wait, even when this comes at a heightened risk of

missing the opportunity to act in time.

In contrast to the previous case, where later selves would stop too soon from the perspec-

tive of earlier selves, the DM’s stopping behavior now crucially depends on her sophistication.

While being unable to prevent later selves from acting prematurely, the DM has the power to

avoid excessive delay by exerting self-control and stopping preemptively. Preemptive stop-

ping has to occur, however, at a point in time when it would be better for the current self

to wait. Intuitively, the DM is willing to act sooner than would be optimal according to

her preferences in order to avoid costly procrastination afterward. We characterize the best

consistent plan for the forward-looking DM and show that it can be described by a finite

sequence of preemption points at which the DM would act if she were to reach those points.

The earliest point in this sequence is the time at which the DM actually acts.

To reconcile the solutions for the two cases, we consider the limit when uncertainty over

the stopping payoff vanishes. While the behavior of the myopic DM changes discontinuously,

from early stopping when the conditional expected stopping payoff is the same under all

models to excessive waiting when the stopping payoff is ambiguous, we show that this is not

the case for the forward-looking DM: as the uncertainty over the conditional stopping payoff

vanishes, the earliest preemption point in the sequence converges to the stopping time we

found for the first case where ambiguity only affects the remaining time. Hence, the solution

of the simplified model without stopping payoff uncertainty approximates well the behavior

of a forward-looking DM in settings where models differ in their prediction of the stopping

payoff, but this difference is small.

We study two extensions of our framework. First, we relax the assumption that the DM

considers the conditional worst-case scenario over all models at all points in time. Indeed,

as time progresses and the time limit is not reached, some models seem more plausible than

others. To capture this consideration, we consider a version of our problem where at any

point in time, the DM maximizes her payoff guarantee only over those models that explain

the data sufficiently well. In our setting, these are the models that have a sufficiently low

probability of an early time limit. We show that such updating increases the DM’s short-
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term incentives to wait but has a non-monotonic effect on the long-term incentives of a

forward-looking DM.

Second, we show that our analysis easily translates to settings where the DM faces a

perseverance problem rather than a preemption problem. In this case, the time limit can

be interpreted as a breakthrough or some other desirable event, and waiting is costly. The

DM thus decides for how long to persist before giving up. We show that, after a suitable

modification, the characterization of the stopping behavior in the baseline model extends to

this case.

Related literature. The current paper considers optimal stopping under ambiguity and

prior-by-prior updating. Some of the first papers studying this problem are Riedel (2009) and

Cheng and Riedel (2013). In contrast to our work, these papers, and the literature following

them, adopt a “rectangularity” assumption on the DM’s set of priors, which precludes the

possibility of changes in the worst-case scenario and dynamic inconsistency. Taking a positive

rather than a normative perspective, we do not seek to rule out dynamic inconsistency but

want to study its behavioral implications on stopping behavior under uncertainty.

Closer to our paper, Auster et al. (2023) consider a canonical Wald problem under ambi-

guity and prior-by-prior updating, allowing for dynamic inconsistency. Auster et al. (2023)

show that a DM facing ambiguity has incentives to prolong the learning phase relative to the

Bayesian benchmark, but—to counter-act severe over-experimentation—may stop learning

prematurely when the uncertainty is greatest. Hence, as in our model, preemptive stopping

may arise. Our setting requires a novel approach to identify the decision-maker’s stopping

rule. The flexibility of this approach allows us to consider a rich class of sets of priors,

thereby enabling us to study the structure of ambiguity and its effect on the DM’s stopping

incentives. Other papers have studied the role of dynamic inconsistency arising from am-

biguity for particular applications. For instance,Bose and Daripa (2009), Bose and Renou

(2014), Ghosh and Liu (2021) and Auster and Kellner (2022)2 consider auctions/mechanisms

with ambiguity-averse agents, while Kellner and Le Quement (2018) and Beauchêne et al.

(2019) study ambiguity and updating in communication and persuasion settings.

The time limit in our setting can be interpreted as introducing a certain type of discount

factor. The fact that in the simplified setting, the DM optimizes against the distribution

with the highest hazard rate implicitly leads to overproportional discounting of the immediate

2In our previous work, we study a Dutch auction in an independent private value setting. Taking the
strategy of other bidders as given, each bidder faces a stopping problem that is a special case of the problem
studied in Section 3.2.
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future and thus has some resemblance with (quasi-)hyperbolic discounting. Timing problems

with such preferences have been studied by O’Donoghue and Rabin (1999); Fudenberg and

Levine (2006); Miao (2008), among others. Under a different behavioral approach, Barberis

(2012), Xu and Zhou (2013), Ebert and Strack (2015, 2018), and Henderson et al. (2017)

analyze optimal stopping with prospect theory. Compared with this literature, the main

focus in the current paper lies on ambiguity as the source of dynamic inconsistency, with

the goal of understanding how the structure and information feedback shapes the conflict

between the different selves of the DM.

2 The Model

Timing decision. Time is continuous, and the DM faces the following stopping problem.

At each point in time t ≥ 0, the DM can either wait or act as long as she does not reach

an exogenous time limit. The DM obtains a one-time payoff after acting and there is no

(explicit) discounting. If, however, the DM misses her opportunity to stop before the time

is up, she obtains an outside option, which we normalize to zero. The DM’s goal is to act as

late as possible but before reaching the time limit.

Models. The DM faces uncertainty over the remaining time and the time-dependent payoff

she obtains from acting. From the DM’s point of view, there are different plausible models of

the world. Each model describes a stopping payoff for the DM and a distribution over how

much time is left. The set of models is described using an index set M, which is a compact

subset of Rn.3 Under model m ∈ M, the probability of reaching the time limit before time

t is described by the cumulative distribution function Fm : [0,+∞) → [0, 1], assumed to be

differentiable on its support, with density function fm. Each model m ∈ M further describes

for each t ≥ 0 an expected stopping payoff um(t), obtained by the DM if she stops at time

t (conditional on still being active at that time).4 Let U denote the set of all differentiable

utility functions u : R+ → R that are positive and strictly increasing. We assume um ∈ U
for all m ∈ M and require Fm(t), fm(t), um(t), u

′
m(t) to be continuous in (m, t).

The DM’s expected ex-ante payoff under model m ∈ M as a function of the stopping

3The index vector could, e.g., represent various moments within a family of distributions.
4The decision maker will learn about the stopping payoff from the fact that the time limit has not been

reached but will not receive any other signals about its value. A special case of the model is the situation
where the stopping payoff increases deterministically over time.
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time t can then be written as

vm(t) = (1− Fm(t))um(t). (1)

With probability Fm(t), the DM reaches the time limit before t and receives the outside

option zero. With the complementary probability 1−Fm(t), the DM acts in time and obtains

a conditional expected payoff equal to um(t). We assume that, for each model m ∈ M, the

expected payoff vm(·) is strictly quasi-concave and has its peak at some finite time tm > 0.5

The optimal stopping time under model m ∈ M, denoted by tm, is then determined by the

first-order condition

u′
m(tm)− hm(tm)um(tm) = 0, (2)

where hm(t) :=
fm(tm)

1−Fm(tm)
is the hazard rate of Fm as a function of t.

Maxmin criterion. The DM does not know which of the models in M provides the most

accurate description of the world and seeks to maximize her payoff guarantee, assuming that

one of the models in M is correct. The DM thus optimizes against the worst-case scenario.

Looking at the DM’s problem from time t = 0, the ex-ante optimal stopping time solves

max
t≥0

min
m∈M

vm(t). (3)

Since for eachm ∈ M, vm(·) is strictly quasiconcave, the lower envelope minm vm(·) is strictly
quasiconcave as well. Let t∗ denote the unique solution of problem (3).

Updating. If the DM is still active at time t > 0, she knows that the time limit has yet

to be reached and updates her beliefs accordingly. We assume that the DM uses Bayes rule

to update the prior distributions over how much time remains for each model m ∈ M and

considers the minimum payoff over the set of updated distributions (called Full Bayesian

Updating). Since the stopping payoff is already expressed as a conditional expected value,

Bayesian updating simply entails truncating the distribution Fm at the current time. Under

5Quasi-concavity is, for instance, satisfied if for each m ∈ M the distribution Fm has a non-decreasing
hazard rate fm/(1 − Fm) and um is weakly concave. The non-decreasing hazard rate property is satisfied
by several important classes of distribution functions, e.g., the class of normal distributions, exponential
distributions, gamma distributions Γ(α, β) with α ≥ 1.
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model m ∈ M, the conditional payoff at time t associated to stopping time τ ≥ t is then

Vm(τ |t) :=
1− Fm(τ)

1− Fm(t)
um(τ).

Hence, the conditional payoff guarantee at time t associated to stopping time τ ≥ t is

V (τ |t) := min
m∈M

Vm(τ |t).

Full Bayesian Updating entails that at each point in time, the DM’s decision is guided by

the current worst-case scenario over all models she viewed initially possible. In principle,

the worst-case model attributed to some stopping time τ at time t > 0 may differ from the

worst-case model attributed to τ at time zero. When such changes in the worst-case scenario

occur, the DM’s ex-ante optimal plan may no longer be optimal at later points in time, and

the DM is faced with a problem of dynamic inconsistency.

We are interested in the role of the DM’s sophistication in stopping behavior. To this

end, we compare two extreme cases: a myopic (or naive) DM, who fails to foresee future

preference reversals, and a forward-looking DM, who understands the incentives of future

selves and deals with dynamic inconsistency in a rational manner. In the latter case, the

DM’s problem is to find the best consistent plan that her future selves are willing to follow

through.

Strategies. Strategies (or stopping rules) will be represented by a set of stopping points

X ⊆ [0,+∞), interpreted as the points in time where the DM would stop if she ever reached

them. We require that X can be written as a collection of disjoint left-closed intervals in

[0,∞). This admissibility restriction guarantees that stopping times are well-defined.

A myopic DM chooses at each point in time t ≥ 0 the optimal plan with respect to her

current preferences—as if she had commitment—but may fail to carry out the plans of her

earlier selves. Accordingly, the myopic DM finds it optimal to wait at time t if there is some

τ such that V (τ |t) ≥ V (t|t). Conversely, the DM prefers to act at time t if there is no

future stopping time τ > t that promises a higher conditional expected payoff than acting

immediately.
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Definition 1 (Myopic DM). A stopping rule X is myopically optimal if

t ∈ X ⇒ V (t|t) = max
τ≥t

V (τ |t),

t ̸∈ X ⇒ ∃ τ > t s.t. V (τ |t) ≥ V (t|t).

In contrast to the myopic DM, a forward-looking DM anticipates potential future pref-

erence reversals and views a strategy as implementable if and only if following it through

is in the best interest of her future selves. At each point t ≥ 0, she then maximizes V (τ |t)
subject to the constraint that acting at τ is indeed optimal at time τ and that there is no

point in time before τ at which the DM strictly prefers to act immediately over waiting for

τ . Whether or not the first requirement is satisfied, i.e., whether acting is optimal at time

τ , depends on when the DM expects to act if she fails to act immediately. This is why a

strategy must be described as a set of stopping points rather than just the set’s smallest

element. For each strategy X and each time t, let us then define

tX(t) := min(X ∩ [t,∞))

as the next stopping point according to strategy X if the DM were to reach t. Given a

strategy X, the DM’s payoff from following this strategy at time t is thus given by V (tX(t)|t).
Consistency of X clearly requires that at each date t, the DM finds it optimal to follow X

at the current time conditional on following X in the future. Moreover, for X to be the

best consistent plan, it must be the case that at no date t, the DM can find an alternative

plan that is preferred to X at t and all dates after t. Thus, the consistent planning solution

we solve for requires that neither instantaneous deviations nor joint deviations with future

selves are profitable.

Definition 2 (Forward-Looking DM). A stopping rule X is a best consistent plan if there

is no pair (t′, X ′) such that for all t ≥ t′,

V (tX′(t)|t) ≥ V (tX(t)|t),

with strict inequality for t = t′.
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3 Characterization

To derive the myopic solution and the best consistent plan, it is useful to first consider the

DM’s local incentives. The goal is to understand which model dictates the DM’s incentives

to postpone acting for a small amount of time. Fixing a point in time t, the marginal

benefit/cost of waiting is captured by the right derivative of V (τ |t) in τ evaluated at τ = t.

A direct application of an envelope theorem by Milgrom and Segal (2002), Corollary 4(ii),

yields the following.

Lemma 1. The DM’s maxmin payoff satisfies

d+V (τ |t)
dτ

∣∣∣∣
τ=t

= min
m∈M∗(t)

(u′
m(t)− hm(t)um(t)) , (4)

where M∗(t) = argminm∈M um(t).

The lemma shows that the DM evaluates the change in payoff locally with a model that

minimizes her stopping payoff at the current time. If multiple models in M yield the same

minimal stopping payoff, the DM uses the model with the highest hazard rate hm(t) relative

to the slope of the stopping payoff, u′
m(t). The lower the slope of the stopping payoff, the

lower the gain from waiting for a small amount of time. Likewise, the higher the hazard

rate, the higher the probability of reaching the time limit within that period of time.

In what follows, we will focus on two special but instructive cases. We will first consider

a setting where the DM faces no uncertainty over the stopping payoff but only over the

remaining time. In this case, we have um(·) = u(·) for all m ∈ M and M∗(t) = M for

all t ≥ 0. The DM’s payoff from immediate acting is then model-independent and local

incentives to wait are entirely determined by the model that features the highest hazard

rate. The second case we consider is where stopping payoffs differ across models, and there

exists a model m ∈ M that minimizes the DM’s stopping payoff at all points in time. Under

this restriction, we have M(t) = {m} for all t ≥ 0, so local incentives are always dictated

by the same model m.

3.1 Time Window Uncertainty

Suppose the stopping payoff is model-independent so that the DM only faces ambiguity about

how much time she has available. The following result shows that the DM’s sophistication

plays no role in this case: whether myopic or forward-looking, the DM waits when waiting
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is beneficial under all models in M and acts as soon as it becomes optimal under one of the

models. The DM thus stops at the earliest potentially optimal time.6

Proposition 1. Assume um = u for all m ∈ M. The myopically optimal stopping rule is

X = [tmin,+∞), where

tmin := min
m∈M

tm.

This stopping rule is also the best consistent plan.

The proof of Proposition 1 is straightforward. Since the model m prescribing the earliest

stopping time minimizes the DM’s stopping payoff at time tm = tmin, and since under this

model the continuation payoff is strictly decreasing in the waiting time, the DM’s payoff

guarantee cannot be increasing. Hence, if the DM reaches time tmin, she will act indepen-

dently of whether she is myopic or forward-looking. At earlier points in time, acting at

time tmin yields a strictly higher expected payoff than acting immediately under all models.

Anticipating that she will act at tmin, waiting at earlier points is then not only myopically

optimal but also constitutes the best consistent plan.

Even though acting at time tmin is optimal when the DM reaches tmin, the optimal plan

from an ex-ante perspective, as we will see, may entail a longer waiting period. Before we

provide general conditions under which tmin is (or is not) ex-ante optimal, let us introduce

two examples to illustrate the different cases that can arise.

Example 1 (No conflict with later selves). Consider a DM consulting two experts: M = {b, r}
(b=blue, r=red). Both experts model the stochastic time limit as truncated normals on

[0,∞), derived from normal distributions with means µb and µr and variances σb and σr.

Expert b is more pessimistic about how much time is left before the time limit will be reached.

Specifically, let µb < µr and σb = σr. Under this specification, Fr hazard rate dominates

Fb (hb > hr),
7 and the optimal stopping time under model b is strictly smaller than under

model r. We thus have tmin = tb. From an ex-ante perspective, the worst-case scenario

associated with stopping time τ ≥ 0 is determined by the model with the highest value of

the cumulative distribution function (CDF) Fm(τ), as can be seen from expression (1). Since

hazard-rate dominance implies first-order stochastic dominance, we have

min
m∈{b,r}

Vm(τ |0) = min
m∈{b,r}

(1− Fm(τ))u(τ) = (1− Fb(τ))u(τ), ∀τ ≥ 0,

6All proofs are in the Appendix.
7Note that truncation on the left does not change the hazard rates.
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as can be seen in Figure 1. Ex-ante considerations are thus entirely driven by model b, which

means that the optimal ex-ante stopping time is indeed tmin = tb.

trtb
τ

Vb(τ|t)

Vr (τ|t)

Figure 1: Example 1—expected payoffs Vb(τ |t) and Vr(τ |t) at time t = 0.

Example 2. We consider the same setup as in Example 1 but assume that experts agree on

the mean of the distribution (µb = µr) and disagree on the variance. In particular, Expert r

views the remaining time as more uncertain than Expert b: σb < σr. The CDFs Fb and Fr

now have a single crossing point, as do the model-dependent payoffs Vb(τ |0) and Vr(τ |0) (see
Figure 2). The ex-ante payoff under model r is smaller than the ex-ante payoff under model

b for low values of τ and larger for higher values of τ . Let us assume that Vb(·|0) has its

peak to the left of the intersection, while Vr(·|0) has its peak to the right of the intersection.

The ex-ante optimal stopping time t∗ is then given by the intersection point of the two

payoff functions. Intuitively, acting at the intermediate point t∗ hedges the DM against the

uncertainty over which of the two models describes the true probability law more accurately.

By Proposition 1, we know that the DM will not wait until t∗ but act at tmin = tb. The

discrepancy arises because, viewed from time zero, the worst-case model associated with the

stopping time tb is model r rather than model b. Fr has thicker tails and thus maximizes the

probability of reaching the time limit before tb. Having arrived at tb, the DM no longer cares

about the left tail of the distribution, and the worst-case model becomes model b, which

maximizes the hazard rate at tb and thus the probability of missing the opportunity to act

if the DM waits a little longer.

We now characterize the cases in which the DM’s stopping time is optimal from an ex-ante

point of view for the general model. The following result shows that dynamic (in)consistency
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trtb t*
τ

Vb(τ|t)

Vr (τ|t)

Figure 2: Example 2—expected payoffs Vb(τ |t) and Vr(τ |t) at time t = 0.

trtb t*
τ

Vb(τ|t)

Vr (τ|t)

Figure 3: Example 2—expected payoffs Vb(τ |t) and Vr(τ |t) at time t = tb.

is intimately linked to the hazard-rate properties of M: if there is a hazard-rate dominated

distribution in the set {Fm}m∈M, as in Example 1, then ex-ante optimality holds. Conversely,

if the hazard-rate condition fails, as in Example 2, then we can find a utility function u ∈ U
for which the DM acts too early from the ex-ante perspective.

Proposition 2. Assume um = u for all m ∈ M.

a) The DM’s stopping time tmin is ex-ante optimal, i.e. tmin = t∗, if there is some m ∈ M
such that for all m′ ∈ M, Fm is hazard-rate dominated by Fm′.

b) Whenever no distribution in {Fm}m∈M is hazard-rate dominated, then there is a stopping

payoff function u ∈ U such that tmin < t∗.
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If there is a model m ∈ M whose distribution Fm is hazard-rate dominated by the other

distributions in the set, then m always minimizes the DM’s conditional payoff. This property

is a direct consequence of the equivalence between hazard-rate dominance and conditional

first-order stochastic dominance. For each m′ ∈ M, t ≥ 0 and τ ≥ t, we thus have

Vm(τ |t) =
1− Fm(τ)

1− Fm(t)
u(τ) ≤ 1− Fm′(τ)

1− Fm′(t)
u(τ) = Vm′(τ |t).

Since the DM’s conditional preferences are determined by a single model, dynamic incon-

sistency does not arise. The ambiguity-averse DM thus behaves like a Bayesian DM, whose

single prior is described by the model maximizing the hazard rate at every point in time.

Let us illustrate the converse result for the case where [0,∞) can be partitioned into a

finite number of intervals on which a single distribution maximizes the hazard rate.8 We can

then find some t̄ and some models m and m′ such that m maximizes the hazard rate for all

t ≤ t̄ and m′ maximizes the hazard rate on a right neighborhood of t̄. Since

1− Fm(t) = exp

(
−
∫ t

0

hm(u)du

)
< exp

(
−
∫ t

0

hm′(u)du

)
= 1− Fm′(t),

there exists a neighborhood of t̄, Bε(t̄), such that Vm(τ |0) < Vm′(τ |0) for all τ ∈ Bε(t̄). We

thus have a time interval to the right of t̄, where model m′ maximizes the hazard rate but

not the ex-ante payoff. We can then consider a stopping payoff u ∈ U such that u′/u crosses

hm′ in that interval, as illustrated in Figure 4. This crossing point constitutes tm′ = tmin.

Since, however, m′ does not minimize the DM’s ex-ante payoff at tmin, the worst-case payoff

V (τ |0) is strictly increasing at τ = tmin. The ex-ante optimal stopping time t∗ thus lies

strictly to the right of tmin.

3.2 Stopping Payoff Uncertainty

Moving to the case where the stopping payoff is model-dependent, we will focus on sets M
that contain some model m that uniquely minimizes the stopping payoff um(t) across M for

all t. We thus assume M∗(t) = {m} for all t. In contrast to the previous case, the DM’s

local incentives are now guided by m rather than the model with the highest hazard rate (see

Lemma 1). Before we derive the solution for this specification of uncertainty, we illustrate

the setting again in an example with two models.

8See the proof for the general argument.
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Figure 4: Stopping payoff u(·) such that DM acts too soon from an ex-ante perspective.

Example 3. Consider the specification of Example 1, with M = {b, r}, µb < µr and σb = σr,

but assume there is some ∆ > 0 such that ur(t) = ub(t)−∆ for all t. In this case, Expert r

not only predicts that there is relatively more time left but also that the loss from missing the

opportunity to act in time is relatively low. We thus have m = r. Compared to Example 1,

the expected payoff under model r is scaled down by the payoff difference ∆, as illustrated in

Figure 5. As a result, model b no longer minimizes the DM’s ex-ante payoff throughout but

only for stopping points above a threshold. This feature arises because the DM is concerned

about two possibilities: 1) obtaining a relatively low payoff from acting and 2) running out

of time early. For stopping times below the threshold, the first concern dominates (model

r minimizes the DM’s expected payoff), while for stopping times above the threshold, it is

the second concern that dominates (model b minimizes the DM’s payoff). In Figure 5, the

threshold at which the two payoffs intersect is also the ex-ante optimal stopping time t∗.

Myopic DM. Consider first the case of the myopic DM. At each point in time, the DM

follows the plan that is optimal with respect to her current preferences without realizing

that she may fail to carry out this plan at later points in time. It is easy to see that a

myopic agent acts at time tm, i.e., at the time that is optimal with respect to the model

that minimizes her stopping payoff. First, the DM will not wait beyond tm because at time

tm, model m minimizes her payoff associated with acting immediately and according to this

model, her payoff is strictly decreasing in the time she waits after tm. Having arrived at time

tm, the DM’s payoff guarantee is thus declining in the waiting time. Second, considering a
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Figure 5: Example 3—expected payoffs Vb(τ |t) and Vr(τ |t) at time t = 0.

time t < tm, we know from Lemma 1 that the DM’s maxmin payoff is locally increasing in

the waiting time:

d+V (τ |t)
dτ

∣∣∣∣
τ=t

=
v′m(τ)

1− Fm(t)
> 0. (5)

Hence, at each point in time t < t∗m, the myopic agent strictly prefers to wait a small amount

of time. Summarizing this:

Observation. Assume M∗(t) = {m} for all t. The myopically optimal stopping rule is

X = [tm,+∞).

Note that the characterization of the myopic stopping rule does not depend on how

much stopping payoff uncertainty the DM faces. Even when the functions (um(·))m∈M are

arbitrarily close to each other, the myopic DM—rather than acting at the earliest potential

point tmin—acts at tm, which may very well be the last potential stopping time, maxm∈M tm.

The myopically optimal stopping rule may thus change drastically under a small perturbation

of the setting, as we illustrate in the two-model example.

Example 3 (continued). Consider time tb where acting would be optimal under model b. We

see in Figure 6 that the DM’s payoff guarantee is strictly increasing at this point. In contrast

to the case without stopping payoff uncertainty, the DM now uses model r rather than model

b to evaluate her expected payoff from waiting and, according to model r, waiting is in fact

preferable. The myopically optimal stopping time after updating—at the intersection of the

conditional payoff functions Vb(·|tb) and Vr(·|tb)— moves to the right of t∗. Compared to
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ex-ante preferences, the DM thus prefers to wait longer. A qualitatively similar picture arises

at t∗ and, in fact, at any point in time after t∗, until we reach tr, where the DM finally acts.

Hence, in contrast to the case of pure time window uncertainty, the myopic agent delays

acting rather than anticipating it.

trtb t*
τ

Vb(τ|t)

Vr (τ|t)

Figure 6: Example 3—expected payoffs Vb(τ |t) and Vr(τ |t) at time tb.

Forward Looking DM. The sophisticated DM understands the incentives of future selves

to repeatedly postpone acting until tm is reached. From an earlier point of view, the stopping

time tm can be rather unattractive, especially if one of the models in M predicts a high

probability of reaching the time limit before tm. Crucially, in contrast to the case where

future selves act too early from the perspective of earlier selves, the DM can now mitigate the

problem by acting preemptively at a point strictly before tm. Preemption requires, however,

that the DM acts sufficiently early, before her preferences switch to those preferring to wait

until tm. The latest possible point t for stopping earlier than tm is when the DM is exactly

indifferent between acting immediately with payoff um(t) and waiting until tm with payoff

V (tm|t). If such a point in time exists, we go further back in time to check whether an earlier

self wants to preempt the later self’s stopping time at t in order to act even earlier. This

procedure is repeated until a stopping time τ is found such that for all t < τ , um(t) < V (τ |t)
holds.

To state the result formally, let us define for each stopping time τ the set of earlier points

in time at which the DM prefers to act immediately over waiting for time τ .

T (τ) := {t < τ : V (τ |t) ≤ um(t)}
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We can then show that, as long as the set of models M is finite, the solution for the forward-

looking DM takes a simple recursive form.

Proposition 3. Assume M is finite and M∗(t) = {m} for all t ≥ 0. The best consistent

plan is

X = {τN} ∪ {τ1} ∪ ...[tm,∞),

recursively defined by τ0 = tm and for n = 1, ..., N ,

τn = sup T (τn−1), (6)

with N ≥ 0 as the largest number such that T (τN−1) ̸= ∅.

According to Proposition 3, the best consistent plan is described by a sequence of stopping

points below tm at which the DM would act if she were to reach that point. The main

technical challenge is to show that the recursion stops after a finite number of steps and

to deal with the issue of tie-breaking in favor of immediately preceding selves. Assuming

a finite set M ensures that model m not only constitutes the worst-case model for the

decision to stop immediately at any time t, but also on a left neighborhood of t. This, in

turn, guarantees that the recursion specified in Proposition 3 results in a finite number of

preemption points. Next, we need to take care of the possibility that for some n, the set

T (τn−1) consists only of points where the defining inequality holds as equality.9 Proposition

3 then requires the DM to stop at time τn. This conforms to consistent planning if stopping

at time τn is in the interest of the selves immediately preceding τn. We show that, as long

as such selves evaluate acting at τn with model m, indifference at time τn between acting

immediately and waiting for τn−1 implies a strict preference for acting at τn at all times

preceding τn. Intuitively, waiting becomes increasingly attractive the closer the DM gets to

the intended stopping point.

We illustrate the recursive procedure for deriving the sequence of stopping points in the

context of the previous example.

Example 3 (continued). Let us consider the DM’s conditional payoff Vb(tr|t) under model

b associated to waiting until time tr = tm. Clearly, Vb(tr|t) = vb(tr)/(1 − Fb(t)) is strictly

increasing in t and satisfies

Vb(tr|tr) = ub(tr) > ur(tr).

9This arises most naturally in the case where T (τn) is a singleton.
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Figure 7: Recursive derivation of the stopping point; here with two steps.

For ∆ sufficiently small, we can then find a point τ1 < tr such that Vb(tr|τ1) = ur(τ1), as

illustrated in Figure 7. Next, we consider Vb(τ1|t) and repeat the procedure until there is

no more intersection between the conditional payoff under model b and the stopping payoff

under model r. The index N denotes the total number of steps in the procedure. In Figure

7, the number of steps is N = 2.

Remark 1. We restrict attention to deterministic stopping rules and thus rule out random-

ization. Whether or not the DM can gain from randomization depends on her internal view

on how the unknown probability law is determined. A popular approach is to interpret the

DM’s maxmin problem as a zero-sum game against an adversarial nature. If the DM per-

ceives this game as a simultaneous move game, she believes that nature cannot condition her

choice on the realization of the DM’s mixed strategy. Under this subjective timing, random-

ization can sometimes eliminate the ambiguity over payoffs (see Saito (2015) for a detailed

discussion).10 If instead the DM perceives the game against nature as a sequential move

game where nature moves after the DM, nature can condition her choice on the outcome

of the DM’s randomization, thereby rendering it unattractive. Ke and Zhang (2020) dub

this internal view on ambiguity as Ex Post MEU. By restricting the DM to deterministic

strategies, we implicitly adopt the latter view. In Appendix 6.8, we consider the alternative

setting where the DM gains from randomization and characterize the solution for the special

case where M contains two models, which can be ranked by their hazard rates and stopping

payoffs. Rather than having a sequence of preemption points, the stopping behavior of the

10The equilibrium is a saddle point in mixed strategies in this case.
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forward-looking DM is then described by a final stopping point tm and an interval [t, t] with

0 ≤ t < t < tm on which the DM randomizes between acting and waiting according to a

continuous distribution, as in Auster et al. (2023).

Vanishing payoff uncertainty. At first glance, the best consistent plans for the case

of no stopping payoff uncertainty (Propositions 1) and (small) stopping payoff uncertainty

(Proposition 3) look rather distinct. This raises the question of whether the solution to the

problem has a discontinuity at the point where uncertainty over the conditional expected

stopping payoff disappears, as, in fact, it does when the DM is myopic. To answer this

question, let M be a set of finitely many models without stopping payoff uncertainty. That

is, there is some u ∈ U such that um = u for all m ∈ M. Now, for any m ∈ M, consider

a sequence {mk} which converges to m and denote by {Mk} the corresponding sequence of

sets of models (so that mk ∈ Mk). Note that every set Mk may well feature stopping payoff

uncertainty.

Proposition 4. Let Xk denote the best consistent plan given the set of models Mk in the

sequence {Mk}. Then
lim
k→∞

minXk = min
m∈M

tm.

The result shows that as payoff uncertainty disappears, the difference between the actual

stopping point under the best consistent plan and the point where the first model suggests

stopping vanishes. Indeed, as the difference in conditional stopping payoffs across models

becomes smaller, the total number of preemption steps grows while the time intervals be-

tween the preemption points shrink. Intuitively, as payoff uncertainty vanishes, the DM’s

preferences become increasingly dictated by the distribution with the highest hazard rate:

at points in time after tmin, the DM is willing to wait only if she can rely on her future self

to act soon after that time. The intervals between preemption points thus become smaller

and, in the limit, fill the space between tmin and tm. Figure 8 illustrates the change in the

solution after a reduction in the payoff difference.

4 Extensions

4.1 Updating on Models

Full Bayesian Updating entails that the DM updates each prior in the set and optimizes

with respect to the set of all posteriors obtained in this way. Translated to our problem,
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Figure 8: Recursive derivation of the stopping point; here with nine steps.

this means that upon not staying active in the game, the DM updates her beliefs for each

model in M but never updates on the set of models itself. Yet, as time passes by and the

time limit is not reached, some models in M may seem more plausible than others. In this

section, we relax the assumption of Full Bayesian Updating to show how learning about M
can be incorporated into our framework and to discuss the main behavioral implications.

A popular alternative to Full Bayesian Updating isMaximum Likelihood Updating (Gilboa

and Schmeidler, 1993). Under the latter rule, the DM only pays attention to those models

in the initial set that explain the data best. Since, however, the model maximizing the like-

lihood is often unique, Maximum Likelihood Updating often comes with the drawback that

ambiguity disappears after the first instance of time. Epstein and Schneider (2007) consider

a generalized version of this rule, nesting both Full Bayesian Updating and Maximum Like-

lihood Updating as special cases. Specifically, given some data, the DM only retains those

models in the initial set under which the likelihood of observing the data is at least α ∈ [0, 1]

times the maximum likelihood among all models in the set. If α = 0, we are back to Full

Bayesian Updating (the DM will never discard any model); if α = 1, we have Maximum

Likelihood Updating.

Adapting this rule to our setting, we get the following decision criterion. At each point

in time t ≥ 0, conditional on not having reached the time limit, the DM’s expected payoff

associated with stopping time τ ≥ t is

V α(τ |t) = min
m∈Mα(t)

Vm(τ |t) (7)
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where

Mα(t) :=

{
m ∈ M : 1− Fm(t) ≥ α max

m′∈M
(1− Fm′(t))

}
.

Under model m, the probability of reaching time t is 1− Fm(t). Hence, conditional on still

being active in time t, the model that explains this observation best is argmaxm(1−Fm(t)).

The rule says that for a model m to be considered by the DM at time t > 0, the associated

distribution Fm must assign a sufficiently high probability to the time limit being greater

than t. The larger α is, the higher this probability has to be.

To illustrate how the set Mα(·) evolves over time, consider the case where all models in

M can be ordered according to their hazard rates. The following result shows that, in this

case, the set of model Mα(t) becomes progressively smaller as time t grows.

Proposition 5. Suppose the models in M are hazard-rate ordered. Then for all α ∈ [0, 1],

t1 < t2 implies Mα(t2) ⊆ Mα(t1).

When M is hazard-rate ordered, the model that explains the data best is always the

one with the lowest hazard rate, as the model with the lowest hazard rate hm yields the

largest survival probability 1− Fm. The hazard-rate ordering further implies that the ratio

of any two survival functions in the set is monotonic, so once a model is eliminated from the

consideration set, it will not re-enter at a later point. Finally, given α ∈ [0, 1], for each t,

there exists some model m̄t ∈ M such that Mα(t) includes m̄t and all models m such that

hm ≤ hm̄t . In other words, the models with the highest hazard rates are the first to go.

When the models in M cannot be ordered by their hazard rates, it is possible that the

updated set Mα(·) shrinks and expands over time. To see this, consider Example 2, where

M = {b, r} with µb = µr and σb < σr. For times t below the mean µb = µr it is model b that

maximizes the survival probability 1− Fm(t), whereas for times above the mean it is model

r that maximizes this probability. If α is sufficiently large, there are then two thresholds s1

and s2 with s1 < s2 < µb = µr such that model r is excluded from Mα(t) at the threshold

t = s1 and included again at the threshold t = s2 (see Figure 9). This is because model b has

relatively little mass in the tails, so after an initial amount of time has passed and the time

limit has not been reached, model b becomes considerably more plausible than model r. Yet,

when time progresses further and approaches the mean µr = µb (where the CDFs in Figure 9

cross), both models become again equally convincing, so model r re-enters the consideration

set. Finally, moving beyond the point where t = µb = µr, r is the model maximizing the

survival probability, so there is a third threshold s3 above which model b is excluded from

the consideration set.
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Figure 9: Updating on models: two models M = {b, r} with the same mean (µb = µr = 0.5)
and different variances (σb = 0.1 and σr = 1). We indicate the CDF of models belonging to
Mα(t), α = 0.8 as solid curves and those of models not belonging to Mα(t) as dotted curves.

Next, we study the behavioral implications of the generalized updating rule. To this end,

we again distinguish the cases where the stopping payoff is model-dependent and where it

is not. Most of the discussion will focus on the simpler case where M can be hazard-rate

ordered and the set Mα(·) shrinks over time.

Time window uncertainty. To recall, under Full Bayesian Updating and the assumption

that the DM faces no ambiguity about the stopping payoff, her choice at every point in time

is guided by the model in M with the highest hazard rate at that point. Moreover, when M
can be hazard-rate ranked, the DM’s stopping time tmin is, in fact, ex-ante optimal. Assume

now the DM updates on the set of models according to the rule we introduced. We argued

above that the models with the highest hazard rates are the first to be eliminated. Hence, if

models in M are ranked by their hazard rates, and α is sufficiently large, then by the time

the DM reaches the intended stopping time tmin, she will have discarded the hazard-rate

maximizing model, which means that she will have strict incentives to continue. Again, the

DM faces a problem of dynamic inconsistency, but this time her future selves’ incentives to

deviate from the ex-ante optimal plan go in the opposite direction: future selves want to

continue at points where earlier selves want to stop. In contrast to the case of Section 3.2,

this discrepancy is not driven by the future selves’ pessimism about the stopping payoff but

by future selves discarding some scenarios earlier selves are concerned about. The larger α

is, the larger is the disagreement between the different selves, which suggests that a higher

value of α will be associated with a later (naive) stopping time. Our next result confirms

this intuition. Notably, the result requires no assumptions on the hazard rates of models
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belonging to M.

Proposition 6. Consider the generalized decision rule (7) and assume um = u ∈ U for all

m ∈ M. The stopping time for the naive DM is weakly increasing in α.

Stopping payoff uncertainty. When there is ambiguity about the stopping payoff, dis-

carding the least plausible models over time has two countervailing effects on the DM’s

stopping behavior. Since the models with relatively high hazard rates are the models that

predict a relatively early time limit, discarding them reduces the DM’s incentives for pre-

emptive stopping. Hence, there is a direct effect from learning going in favor of later stopping

times. However, viewed from an even earlier perspective, where the DM still entertains most

of the models of the original set, the failure of intermediate selves to preempt later selves

may be problematic. In particular, if early selves cannot rely on intermediate selves to stop

in time, they may see themselves forced to stop even before the intermediate preemption

point. The anticipation of certain scenarios being discarded in the future may thus lead the

DM to stop earlier than she would when all models remain under consideration.

To illustrate the two effects, let us return to Example 3, where M = {b, r} with hb(t) >

hr(t) and ur(t) = ub(t)−∆,∆ > 0 for all t ≥ 0. Since Fr hazard rate dominates Fb, model

r maximizes the likelihood of not having reached the time limit by time t for any t ≥ 0.

Hence, for each α > 0, there is a threshold t̄(α), implicitly defined by

1− Fb(t̄)

1− Fr(t̄)
= α,

such that Mα(t) = {b, r} if t ≤ t̄(α) and Mα(t) = {r} if t > t̄(α). The function t̄(α) is

strictly decreasing in α.11 Hence, the larger α, the earlier model b will be discarded.

Suppose now that the stopping payoff difference ∆ is such that the solution for the case

of Full Bayesian Updating (α = 0) has a single preemption point τ1 < tr. To recall, at τ1

the DM’s expected payoff from immediate stopping under model r is equal to her expected

payoff from waiting for time tr under model b: ur(τ1) = Vb(tm|τ1). Indifference thus requires
that the DM entertains both models b and r at time τ1. If, however, α is sufficiently large

such that t̄(α) < τ1, the DM will have discarded model b by the time she reaches time τ1.

Once model b is eliminated, the DM simply maximizes her expected payoff under model r,

11As we show in the proof of Proposition 5, due to the hazard-rate order, the ratio 1−Fb(t̄)
1−Fr(t̄)

is strictly

decreasing in t.

24



minT(tr ) trτ1t(α)
t

Vr (tr |t)

Vb(tr |t)

ub(t)

ua(t)

T(tr )

Figure 10: The case t̄(α) ∈ (minT (tr), τ1). The green dotted curve represents V α(tr|t).

which entails that she waits all the way until tr. For α sufficiently large, her incentives for

preemption at τ1 have thus vanished.

The question is then how earlier selves of the DM react when the preemption point τ1

is no longer feasible. The answer to this question depends on whether or not t̄(α) belongs

to the set T (tr), i.e., whether or not the DM discards model b at a time where her payoff

from stopping immediately under model r is greater than her payoff from waiting until time

tr under model b. If t̄(α) belongs to the interior of T (tr), there is a left neighborhood of

t̄(α) on which the DM strictly prefers preemptive stopping over waiting until tr. The last

feasible stopping time before tr is then t̄(α), i.e., the last point in time at which model b is

still considered. Stopping at t̄(α) indeed constitutes the best consistent plan for the DM in

this example.

We illustrate this case in Figure 10. The grey shaded area indicates the times belonging

to the set T (tr), where the stopping payoff under model r (red line) is higher than the

expected payoff from waiting until time tr under model b (grey curve). The time at which

model b is discarded from the set Mα(·), t̄(α), lies in the interior of this region. The green

curve shows V α(tr|t), the DM’s worst-case payoff from waiting till time tr as a function of

t. Below t̄(α), this payoff coincides with Vb(tr|t), but above t̄(α) it is equal to Vr(tr|t), as
model b is no longer considered. This implies that t̄(α) is the last point t < tr at which ur(t)

is weakly higher than V α(tr|t) and hence the last point at which the DM is willing to stop

preemptively.

If α is instead sufficiently large such that t̄(α) ≤ minT (tr), then V α(tr|t) ≥ ur(t) holds

for all t < tr, so the DM is never willing to stop before tr. This is because she discards
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Figure 11: Sophisticated stopping time as a function of α

model b at a time where immediate stopping is still dominated by waiting until tr under

both models. The DM’s timing decision is then entirely guided by model r, even if for a

short amount of time, she also considers model b.

Taken together, we can distinguish three parameter regions. Let us define α1 as the

threshold for α such that t̄(α1) = τ1 and α̂ as the threshold such that t̄(α̂) = minT (tr).
12 If

α ≤ α1, then model b is not discarded before the preemption point τ1, so the solution is the

same as under Full Bayesian Updating where α = 0. If α ∈ (α1, α̂), then the DM stops at

the last potential preemption point t̄(α) before model b is eliminated. This stopping point

is strictly decreasing in α. Finally, if α ≥ α̂, model b is deemed implausible early on, so the

DM’s stopping decision is entirely guided by model r. Across regions, the stopping time is

thus non-monotonic in the updating parameter α with an upward jump at α̂, as illustrated

in Figure 11.

Note that, in the example considered here, the learning parameter α does not affect the

stopping behavior of the naive DM. Model r minimizes the DM’s conditional stopping payoff

and thus guides the DM’s stopping behavior as long as it belongs to Mα(·). Since model r

dominates in the hazard-rate order, it will not be discarded in the learning process, so the

latter requirement is satisfied for all t. Given that model b is irrelevant to the DM’s timing

decision, it clearly does not matter at which point it is being eliminated.

12Since minT (tr) < τ1 and t̄(·) is strictly decreasing, we have α1 < α̂.
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4.2 Perseverance problems

Our framework captures a class of preemption problems, where the DM’s goal is to act as late

as possible but before reaching a stochastic time limit. There is a mirror class of stopping

problems, where the time limit is a desirable event, but waiting is costly: the DM faces

a perseverance problem, deciding how long to hold out before giving up. As an example,

think of an early-stage investor funding a start-up business. The investment pays off if the

start-up has a breakthrough but the investor faces uncertainty over how much time it may

take for the breakthrough to occur. The investor must decide for how long, in the absence

of a breakthrough, to fund the startup before shutting down the financing.

This problem can be formalized as follows. For each model, m ∈ M, let the stopping

payoff um(t) be strictly decreasing in t. In the example, um(t) describes the monetary

loss when the investor abandons the start-up funding at time t without having achieved a

breakthrough. The payoff gain when a breakthrough materializes is b > 0, so the investor’s

net payoff after a breakthrough at time t is given by um(t)+b. The investor’s maxmin payoff

associated with stopping time τ when the current time is t ≤ τ is then given by

V (τ |t) = min
m∈M

Vm(τ |t), (8)

where

Vm(τ |t) =
1

1− Fm(t)

(∫ τ

t

(um(x) + b)dFm(x) + (1− Fm(τ))um(τ)

)
. (9)

Let us assume again that for each m ∈ M, Vm(τ |0) is single-peaked in τ , with Vm(0|0) = 0

and an interior maximizer tm. For example, suppose each model specifies a constant arrival

rate of breakthrough (for each m, hm(t) = λm ∈ R+ for all t) and a convexly increasing

cost of staying in the game (um, u
′
m, u

′′
m < 0). The DM thus faces ambiguity about how

fast the project will deliver a breakthrough and, potentially, how costly the effort will be.

Considering the DM’s local incentives, we can easily adapt Lemma 1.

Lemma 2. The DM’s maxmin payoff, as specified in (8-9), satisfies for all t ≥ 0,

d+V (τ |t)
dτ

∣∣∣∣
τ=t

= min
m∈M∗(t)

(u′
m(t) + hm(t)b) ,

where M∗(t) = argminm∈M um(t).

Focusing first on the case where the DM only perceives uncertainty over the stochastic
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process governing the timing of the breakthrough, we set um = u for all m ∈ M. In the

example, this assumption describes a situation where the investor fully understands the

opportunity costs of investing in the start-up but faces model uncertainty over the expected

time it takes to get a breakthrough. It is easy to see from Lemma 2 that local incentives are

now guided by the model with the lowest hazard rate rather than the highest: for all t ≥ 0,

d+V (τ |t)
dτ

∣∣∣∣
τ=t

= u′(t) + min
m∈M

hm(t)b.

At time t, the hazard rate hm(t) captures the likelihood of reaching a breakthrough in the

next instant of time. Since a breakthrough is a desirable event in the current setting, the local

worst-case scenario is described by the model that minimizes the chance of breakthrough in

the near future, hence, the model with the lowest hazard rate. Despite this difference to the

baseline model, the implications for the DM’s stopping behavior are the same as before. The

smaller the chances of a breakthrough in the immediate future, the less the DM is inclined

to continue. By focusing on the smallest hazard rate, the DM’s incentives to wait are thus

minimized: as before, she stops as soon as this becomes optimal under one of the models.

This stopping time is optimal from an ex-ante perspective if there is a model in M that

minimizes the hazard rate—and thus locally describes the worst-case scenario—at all points

in time. For the converse statement, we need slightly more structure than in Proposition

2. This is because the ex-ante payoff under model m from stopping at time τ not only

depends on Fm(τ) but on the whole distribution over [0, τ ]. Yet, if we restrict attention to

situations where the hazard-rate minimizing model switches a finite number of times over

the support, we can show that if there is at least one such switch—that is, if no model in M
hazard-rate dominates all other models—we can find a stopping payoff function such that

the DM’s stopping time is too early from an ex-ante perspective.

Proposition 7. Consider the perseverance problem with um = u for all m ∈ M. The

myopically optimal stopping rule is X = [tmin,+∞), where

tmin = min
m∈M

tm.

This stopping rule is also the best consistent plan. Moreover:

a) The DM’s stopping time tmin is ex-ante optimal, i.e. tmin = t∗, if there is some m ∈ M
such that for all m′ ∈ M, Fm hazard-rate dominates Fm′.
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b) Whenever there is a finite partition of [0,∞) such that there is a unique m ∈ M min-

imizing the hazard rate on the interior of each cell and such partition has at least two

cells, then there is a decreasing stopping payoff function u such that tmin < t∗.

The case with stopping payoff uncertainty is analogous to the baseline model. If there

is a model m ∈ M that uniquely minimizes the stopping payoff at all points in time, the

myopically optimal stopping time is tm. When tm > tmin, then the sophisticated DM may

have strict incentives to deviate from the myopically optimal plan by preemptively stopping

before tm. The preemption points under the best consistent plan can be derived by the same

procedure as described in Proposition 3.

5 Conclusion

This paper considers timing decisions in situations where the DM views multiple models of

the world as plausible and seeks to maximize her payoff guarantee across these models. We

show how the structure of ambiguity affects the DM’s short-term incentives and long-term

response: as long as models agree on the conditional expected stopping payoff, ambiguity

about the remaining time leads the DM to shorten the waiting period and act prematurely;

once ambiguity also affects the stopping payoff, the short-term incentives are reversed and

the DM’s sophistication becomes key. We extend our analysis in two directions. First, we

study how updates on the set of models affect the DM’s timing decision. Second, we show

how the results can be mapped to a mirror class of timing decisions, where the DM faces a

perseverance problem rather than a preemption problem.

In our setting, the DM faces at each point in time a simple binary choice between im-

plementing an irreversible action and waiting. An interesting question is how this paper’s

method extends to richer dynamic decision problems, such as dynamic investment decisions,

dynamic portfolio choice, or experimentation. A key step in our approach is Lemma 1, which

characterizes the DM’s short-term incentives. Once these short-term incentives are pinned

down, the best consistent plan for the forward-looking DM can be derived via backward

induction. Lemma 1 relies on a very general envelope theorem that can be applied to a large

class of value functions. While the derivative obtained from this theorem will depend on the

details of the decision problem, we believe that the general approach is sufficiently flexible

to be applicable beyond the class of stopping problems studied here.

Another interesting question for future research is how ambiguity affects strategic timing

decisions in dynamic games with multiple players. For instance, we can imagine an R&D
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race between two firms facing ambiguity about the research progress of their competitor.

Ambiguity about the remaining time then arises endogenously through the competitor’s

strategy and private information about their progress. In this case, the players’ incentives

to shorten or lengthen the research phase in response to model uncertainty may reinforce

each other, thereby exacerbating the effect of ambiguity on the timing of both firms. This

reinforcement effect is indeed what we find in our study of dynamic auctions with ambiguity-

averse bidders (Auster and Kellner, 2022). It will be interesting to explore the interaction

between ambiguity and strategic complementarity in other applications in future research.
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Beauchêne, D., Li, J., and Li, M. (2019). Ambiguous persuasion. Journal of Economic

Theory, 179:312–365.

Bose, S. and Daripa, A. (2009). A dynamic mechanism and surplus extraction under ambi-

guity. Journal of Economic theory, 144(5):2084–2114.

Bose, S. and Renou, L. (2014). Mechanism design with ambiguous communication devices.

Econometrica, 82(5):1853–1872.

Cheng, X. and Riedel, F. (2013). Optimal stopping under ambiguity in continuous time.

Mathematics and Financial Economics, 7(1):29–68.

Ebert, S. and Strack, P. (2015). Until the bitter end: On prospect theory in a dynamic

context. American Economic Review, 105(4):1618–33.

Ebert, S. and Strack, P. (2018). Never, ever getting started: On prospect theory without

commitment. Available at SSRN 2765550.

30



Epstein, L. G. and Schneider, M. (2007). Learning under ambiguity. The Review of Economic

Studies, 74(4):1275–1303.

Fudenberg, D. and Levine, D. K. (2006). A dual-self model of impulse control. American

economic review, 96(5):1449–1476.

Ghosh, G. and Liu, H. (2021). Sequential auctions with ambiguity. Journal of Economic

Theory, 197:105324.

Gilboa, I. and Schmeidler, D. (1989). Maxmin expected utility with non-unique prior. Jour-

nal of Mathematical Economics, 18(2):141–153.

Gilboa, I. and Schmeidler, D. (1993). Updating ambiguous beliefs. Journal of Economic

Theory, 59(1):33–49.

Henderson, V., Hobson, D., and Tse, A. (2017). Randomized strategies and prospect theory

in a dynamic context. Journal of Economic Theory, 168:287–300.

Ke, S. and Zhang, Q. (2020). Randomization and ambiguity aversion. Econometrica,

88(3):1159–1195.

Kellner, C. and Le Quement, M. T. (2018). Endogenous ambiguity in cheap talk. Journal

of Economic Theory, 173:1–17.

Miao, J. (2008). Option exercise with temptation. Economic Theory, 34(3):473–501.

Milgrom, P. and Segal, I. (2002). Envelope theorems for arbitrary choice sets. Econometrica,

70(2):583–601.

O’Donoghue, T. and Rabin, M. (1999). Doing it now or later. American economic review,

89(1):103–124.

Riedel, F. (2009). Optimal stopping with multiple priors. Econometrica, 77(3):857–908.

Saito, K. (2015). Preferences for flexibility and randomization under uncertainty. American

Economic Review, 105(3):1246–71.

Xu, Z. Q. and Zhou, X. Y. (2013). Optimal stopping under probability distortion. The

Annals of Applied Probability, 23(1):251–282.

31



6 Appendix

6.1 Proof of Proposition 1

Proof. Let m̄ denote the model that yields the lowest optimal stopping time minm∈M tm. By

single-peakedness of vm̄(·), for all t ≥ tmin, the conditional payoff under model m̄ evaluated

at time t, given by Vm̄(τ |t) = vm̄(τ)/(1− Fm̄(t)), is strictly decreasing in the stopping time

τ ≥ t. Since Vm(τ |t)|τ=t = u(t) for all m ∈ M, we can write for all t ≥ tmin and τ > t,

V (τ |t) ≤ Vm̄(τ |t) < u(t). (10)

A myopically optimal stopping rule X thus satisfies [tmin +∞) ⊆ X. Next for all t < tmin

and all m ∈ M, we have Vm(tmin|t) > u(t) = V (τ |t)|τ=t, i.e., waiting until tmin is strictly

preferred to acting immediately under all models. A naively optimal stopping rule thus

satisfies [0, tmin) ∩X = ∅.
To see that X = [tmin,∞) also constitutes the best consistent plan, notice that (10)

implies that there is no pair (X ′, t) with t ≥ tmin and tX′(t) > t such that V (tX′(t)|t) ≥
V (tX(t)|t). The best consistent plan X thus satisfies [tmin,∞) ⊆ X. Given that the DM

will act at tmin, the forward-looking DM finds it strictly optimal to wait at any point in time

before tmin.

6.2 Proof of Proposition 2

Proof. Assume there is some m̄ ∈ M such that for all m ∈ M, Fm̄ is hazard-rate domi-

nated by Fm, hence hm̄ ≥ hm. Since hazard-rate dominance implies first-order stochastic

dominance, we have Fm̄ ≥ Fm for all m ∈ M. This directly implies (1 − Fm̄(t))u(t) ≤
(1 − Fm(t))u(t) for all m ∈ M and all t ≥ 0. Hence, the DM’s ex-ante payoff is minimized

by m̄ for all t.

What remains to be shown is then m̄ = argminm∈M tm (see Proposition 1). Toward a

contradiction, suppose instead there is some m ∈ M such that tm < tm̄. Due to strict

quasi-concavity, there exists then some t ∈ (tm, tm̄) such that

u′(t)− hm̄(t)u(t) > 0 > u′(t)− hm(t)u(t),

but this contradicts hm̄ ≥ hm for all m ∈ M, establishing the claim.
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Assume next that there is no hazard-rate dominated distribution in {Fm}m∈M. Let

G(t) := 1− exp

(
−
∫ t

0

max
m

hm(x)dx

)
be the CDF of the distribution with hazard rate maxm hm(t). By the assumption that there

is no single distribution maximizing the hazard rate for all t, we can find a t′ such that for

all m ∈ M,

G(t′) = 1− exp

(
−
∫ t′

0

max
m′

hm′(x)dx

)
> 1− exp

(
−
∫ t′

0

hm(x)dx

)
= Fm(t

′),

and hence G(t′) > maxm Fm(t
′). This inequality implies that there exists some t̃ > 0 at which

the hazard rate of G exceeds the hazard rate of maxm∈M Fm. Note that maxm∈M Fm(·) may

not be differentiable everywhere. At points of non-differentiability, we define the hazard rate

by the ratio of the right derivative of maxm∈M Fm(·),

fmax(t) :=
d+maxm∈M Fm(t)

dt
,

and the survival function 1−maxm∈M Fm(·).
Let m̃ be such that Fm̃(t̃) = maxm∈M Fm(t̃). Notice that, since Fm̃(t̃) = maxm∈M Fm(t̃)

and Fm̃(·) bounds maxm∈M Fm(·) from below, we have fm̃(t̃) ≤ fmax(t̃) and thus

hm̃(t̃) =
fm̃(t̃)

1− Fm̃(t̃)
≤ fmax(t̃)

1−maxm∈M Fm(t̃)
< max

m∈M
hm(t̃) =

G′(t)

1−G(t)
.

Consider then a stopping payoff function u ∈ U such that u′(t̃)

u(t̃)
= maxm∈M hm(t̃), so that

the DM stops at time t̃. Since we have u′(t̃)

u(t̃)
> hm̃(t̃), according to the ex-ante worst-case

scenario, it would be strictly optimal to continue at t̃. Hence, tmin ̸= t∗.

6.3 Proof of Proposition 3

Lemma 3. Assume M is finite and M∗(t) = {m} for all t ≥ 0. For all 1 < n < N ,

τn+1 < τn.

Proof. Suppose not. Then, by the definition of τn+1 there is a sequence tk < τn such that

limk→∞ tk = τn and V (τn|tk) ≤ um(tk). However, by continuity and since M is finite, for

all k large enough, V (τn|tk) = Vm(τn|tk). Since Vm(τn|tk) is single peaked in τ , tk < tm
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and Vm(tk|tk) = um(tk), we have um(tk) < Vm(τn|tk) for k large enough, a contradiction to

V (τn|tk) ≤ um(tk).

Lemma 4. Assume M is finite and M∗(t) = {m} for all t ≥ 0. For all n < N , there exists

some ε > 0 such that for all t′ ∈ (τn − ε, τn), V (τn|t′) > V (τn+1|t′).

Proof. By the definition of τn+1 given τn , the previous lemma and continuity, V (τn+1|τn+1) =

V (τn|τn+1) . From the definition of τn+1 it also follows that

d+V (τn|t)
dt

∣∣∣
t=τn+1

≥ d+V (t|t)
dt

∣∣∣
t=τn+1

= u′
m(τn+1).

Given that V solves a minimization problem,

d−V (τn|t)
dt

∣∣∣
t=τn+1

≥ d+V (τn|t)
dt

∣∣∣
t=τn+1

.

Note that since τn+1 < τ0 = tm, Vm has not reached its single peak at τn+1, which implies

d−V (τn+1|t)
dt

∣∣∣
t=τn+1

=
fm(τn+1)

1− Fm(τn+1)
um(τn+1) < u′

m(τn+1).

Combining the three above inequalities, we conclude that

d−V (τn+1|t)
dt

∣∣∣
t=τn+1

<
d−V (τn|t)

dt

∣∣∣
t=τn+1

,

which proves the claim.

Lemma 5. Assume M is finite and M∗(t) = {m} for all t ≥ 0. Then N is well defined.

Suppose not. Then our definition defines a sequence {τn}∞n=0 with values in the bounded

set [0, t0]. As the sequence is decreasing, it converges to some point tl. Note that for all

n, V (τn|tn+1) = um(τn−1). As the set of models is finite, we can replace the sequence by a

subsequence with the same limit such that, for all n and some model m ̸= m, Vm(τn|τn+1) =

um(τn−1). Thus, also in the limit, Vm(tl|tl) = um(tl). But this implies um(tl) = um(tl), a

contradiction.

Outline. The proof is by contradiction. Suppose X is defined as above, but it is not a

best consistent plan. Then, there exists a pair (td, Xd) such that ∀t′ > td,

(a) V (tXd(t′)|t′) ≥ V (tX(t
′)|t′),
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with a strict inequality for t′ = t, i.e.,

(b) V (tXd(td)|td) > V (tX(t
d)|td).

We will now show that such a pair (td, Xd) does not exist by establishing contradictory

constraints on it. Each of the following steps begins with such a constraint and proves then

why it must hold. It considers progressively smaller values of td, each time establishing

additional properties of Xd.

1. td < tm.

Suppose instead: td ≥ tm. Note tX(t
d) = td. From b), tXd(td) > td. Since tm maximises

the single-peaked function Vm(τ |td) (over τ) and V (td|td) = Vm(t
d|td) we have

V (tX(t
d)|td) = Vm(tX(t

d)|td) > Vm(tXd(td)|td) ≥ V (tXd(td)|td).

A contradiction to (b).

2. If td ≤ tm, then Xd ∩ [tm,∞) = X ∩ [tm,∞) = [tm,∞).

Suppose instead Xd ∩ [tm,∞) ̸= Xd ∩ [tm,∞). Then, there is some t′ such that

tXd(t′) > t′ while tX(t
′) = t′. As in step 1, we can observe V (tX(t

′)|t′) = um(t
′) >

Vm((tXd(t′)|t′) ≥ V ((tXd(t′)|t′). This contradicts a). Thus, in all the cases below, we

can assume Xd ∩ [tm,∞) = X ∩ [tm,∞) implying that τ0 ∈ Xd (where τ0 = tm).

3. Xd ∩ (τ1, tm) = X ∩ (τ1, tm) = ∅ and thus td ̸∈ (τ1, tm).

Suppose not. Then there exists some τ ∈ Xd ∩ (τ1, tm). By a) we have V (τ |τ) ≥
V (tm|τ). This contradicts the definition of τ1.

4. td ̸= τ1.

Suppose not. Then, the previous step ensures tXd(τ1) equals either τ1 (as with X) or

τ0 and the definition of τ1 ensures a) cannot hold for tXd(τ1) = τ0.

5. If td < τ1, then τ1 ∈ Xd.

Assume td < τ1, but τ1 ̸∈ Xd. Now observe V (τ1|τ1) = V (tm|τ1). Note by continuity

there is an ε > 0 such that for all t ∈ [τ1 − ε, τ1) and τ ∈ [t, τ1) the model m is

still the worst case scenario. Thus, for all such τ, t we have V (tXd(τ), t) < V (τ1, t) if

tXd(τ) < τ1. Thus X
d ∩ [τ1 − ε, τ1) = ∅ in order for Xd to satisfy a).

By the previous step, either tXd(τ1) = τ1 or tXd(τ1) = τ0.
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The latter however would lead to a contradiction to a): By lemma 4, we can find

t′ ∈ (max{τ1 − ε, td}, τ1) such that V (τ1|t′) > V (τ0|t′) .

6. For each n ≤ N , if τn−1 ∈ Xd , then Xd ∩ (τn, τn−1) = X ∩ (τn, τn−1) = ∅ and thus

td ̸∈ (τn, τn−1).

Repeat 3 replacing τ1 with τn and tm = τ0 with τn−1.

7. For each n ≤ N if Xd ∩ (τn, τn−1] = X ∩ (τn, τn−1] and if τn ∈ Xd, then td ̸= τn.

Repeat 4 with τ1 replaced by τn and τ0 replaced by τn−1.

8. For each n ≤ N , if td < tn, X
d ∩ (τn, τn−1] = X ∩ (τn, τn−1] then τn ∈ Xd.

Repeat 5 replacing τ1 with τn and τ0 = tm with τn−1.

9. td ≥ τN .

Recall if td < τN , then τN ∈ Xd. By definition of τN , V (τN |t) > V (t|t),∀t < τN .

Thus V (tXd(td)|tXd(td)) < V (τN |tXd(td)) if tXd(td) < τN , contradicting b). Thus,

tXd(td) = τN . This also contradicts b) since tX(t
d) = τN .

In conclusion, there is no such (td, Xd).

6.4 Proof of Proposition 4

Proof. Fix ε > 0. Define tm̂ = minm∈M tm (i.e., the smallest peak over all limit models) and

let {m̂k} be a sequence of models such that tm̂k
→ tm̂, and m̂ the corresponding limit model

in M.

First, observe that there is a k1 such that for all k ≥ k1 all models mk will lead to ex-ante

payoff functions vmk
such that each vmk

is decreasing after tm + ε and all are decreasing

after maxm∈M tm + ε. To see this, note that for any m ∈ M, and k large enough, tmk
will

be below tm + ε. This is because, since vm(tm) > vm(tm + ε), above some threshold km,

vmk
(tm) > vmk

(tm) + ε. Thus, the maximizer of vmk
must be less then tm + ε due to the

single peakedness of vmk
. The value k1 corresponds to the maximum over all km for m ∈ M.

Thus, for k ≥ k1, [maxm∈M tm + ε,∞) ⊂ Xk . This further implies that Xk ∩ [tm̂,∞) is not

empty.

Define δ ≡ u(tm̂) − Vm̂(tm̂ + ε|tm̂) and recall Vm̂(tm̂|tm̂) = u(tm̂). Since vm̂, and thus

Vm̂, (·|tm̂), is single peaked, it must be that δ > 0. Let k2 > k1 be large enough such

that for all k ≥ k2, and all models mk, the two inequalities |umk
(tm̂) − u(tm̂)| < δ/2 and

|Vm̂k
(tm̂ + ε|tm̂)− Vm̂(tm̂ + ε|tm̂)| < δ/2 are satisfied.
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Fix k > k2 . Let t′ = min(Xk ∩ [tm̂,∞)) and suppose t′ ≥ tm̂ + ε. From the definition of

δ, in light of the previous two inequalities, it follows that (A) minm∈Mk
um(tm̂) > Vm̂k

(tm̂ +

ε|tm̂).Since k > k1, vm̂ is decreasing after tm̂+ ε and thus (B) Vm̂k
(tm̂+ ε|tm̂) ≥ Vm̂k

(t′|tm̂) >
minmk∈Mk

Vmk
(t′|tm̂). The last two inequalities (A) and (B) establish that there is a profitable

deviation from Xk in stopping at tm̂ rather than waiting for t′, a contradiction. Thus, for

k > k2, Xk ∩ [tm̂, tm̂ + ε) is non-empty.

Parallel to the proof of the initial observation, there is also a k3 > k2 such that for all

k > k3, vmk
is increasing until tm̂ − ε/2. For such k, this implies that all conditional utilities

(as well as their lower envelope) are strictly increasing, that is for t < tm̂, Vmk
(τ |t)− ε/2 is

increasing in τ for τ < tm̂−ε/2. For all large enough k, we will have that Xk∩ [0, tm̂−ε] = ∅.
Suppose not. Observe first that Xk ∩ [0, tm̂ − ε/2] is a singleton for each k > k3. (If it

were not a singleton, the DM would benefit from changing her strategy from stopping to

waiting at all but the largest element of the set.) Denote by {tk} the sequence defined by

tk ∈ Xk ∩ [0, tm̂ − ε/2]. By compactness, we can assume w.l.o.g. that {tk} is a convergent

sequence. Denote its limit by tl. If tl > tm̂ − ε, the result is established. So suppose

tl ≤ tm̂ − ε. Note that the limit payoff for stopping at tl converges to u(tl). The payoff for

continuing corresponds to minmk∈Mk
Vmk

(t′k|tl), where t′k is the next stopping point after tk

and thus at least tm̂ − ε/2.

Now note that, by the first part of the proof, and since there is only one stopping point

up to tm̂ − ε/2, we have that (where again convergence is without loss due to compactness)

lim
k→∞

min
mk∈Mk

Vmk
(t′k|tl) ∈ [min

m∈M
Vm(tm̂ − ε/2|tl), min

m∈M
Vm(tm̂|tl)].

Since Vm̂(·|tl) is increasing until tm̂ we get Vm̂(t
l|tl) = u(tl) < limk→∞minm∈Mk

Vmk
(t′k|tl).

Thus, for k large enough, since tk → tl, we have minmk∈Mk
umk

(tk) < minmk∈Mk
Vmk

(t′k|tk),
so that t′k cannot be the next stopping point after tk, a contradiction.

6.5 Proof of Proposition 5

Proof. Since the models inM are hazard-rate ordered, there is a model m̌ such that hm̌ ≤ hm

for all m ∈ M. Since hazard rate dominance implies first-order stochastic dominance, we

also have Fm̃ ≤ Fm for all m ∈ M and hence maxm∈M(1− Fm(t)) = 1− Fm̃(t) for all t ≥ 0.
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We can thus write

Mα(t) =

{
m ∈ M :

1− Fm(t)

1− Fm̃(t)
≥ α

}
.

Notice next, for all m ∈ M,

d
(

1−Fm(t)
1−Fm̌(t)

)
dt

=
1− Fm(t)

1− Fm̌(t)

(
fm̌(t)

1− Fm̌(t)
− fm(t)

1− Fm(t)

)
≤ 0.

Hence, for t1 < t2, m ∈ Mα(t2) implies m ∈ Mα(t1), or equivalently Mα(t2) ⊆ Mα(t1).

6.6 Proof of Proposition 6

Proof. Note that for each t ≥ 0, V α(τ |t) is the pointwise minimum of a set of strictly

quasi-concave functions and thus itself strictly quasi-concave. This implies that the naive

DM, as before, prefers to wait at time t if and only if d+V α(τ |t)
dτ

∣∣∣
τ=t

> 0 or equivalently

maxm∈Mα(t) hm(t) >
u′(t)
u(t)

.

Consider 0 ≤ α1 < α2 ≤ 1. For all t ≥ 0, we clearly have Mα2(t) ⊆ Mα1(t). Let the

naive stopping time associated to the parameters α1 and α2 be denoted, respectively, by tα1

and tα2 . For all t < tα1 , Mα2(t) ⊆ Mα1(t) then implies

max
m∈Mα2 (t)

hm(t) ≤ max
m∈Mα1 (t)

hm(t) <
u′(t)

u(t)
,

and hence tα2 ≥ tα1 .

6.7 Proof of Proposition 7

Proof. The proof of the claim that X = [tmin,+∞) describes the naively optimal stopping

rule and the best consistent plan is the same as the proof of Proposition 1. Indeed, the

argument only relies on the single-peakedness of the payoff for any given model and the

model independence of the stopping payoff. Both features are satisfied here.

Part a). To show the sufficiency of hazard-rate dominance of one model in M for the

ex-ante optimality of the stopping time tmin, we can use an argument analogous to the one

in Section 6.2. Assume there is some m̄ ∈ M such that for all m ∈ M, Fm̄ hazard-rate

dominates Fm (hm̄ ≤ hm,∀m ∈ M). This implies first-order stochastic dominance of the
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conditional distribution associated with m̄: for all t ≥ 0, τ ≥ t and m ∈ M,

Fm̄(τ)

1− Fm̄(t)
≤ Fm(τ)

1− Fm(t)
.

Since u(·) is a strictly decreasing function, it follows that the conditional payoff

Vm(τ |t) =
Fm(τ)

1− Fm(t)
b+

∫ τ

t

u(x)d

(
Fm(x)

1− Fm(t)

)
+

1− Fm(τ)

1− Fm(t)
u(τ)

is minimized by m̄. What remains to be shown is m̄ = argminm∈M tm. For each m ∈ M,

the m-optimal stopping time solves the first-order condition

u′(t) + hm(t)b = 0.

Single-peakedness implies u′(t) + hm̄(t)b ≥ 0 for all t ≤ tm̄ and hence u′(t) + hm(t)b > 0 for

all m ̸= m̄ and t ≤ tm̄. It follows tm̄ = minm∈M tm, establishing the claim.

Part b). Next, we want to show that if there is a finite partition of [0,∞) such that in the

interior of each cell, there is a single model minimizing the hazard rate, and such partition

has at least two cells, then there is a decreasing stopping payoff function u such that tmin is

not ex-ante optimal.

Let m1 be the model minimizing the hazard rate on a right neighborhood of zero and let

t1 := maxt{t ≥ 0 : hm1(t
′) ≤ hm(t

′) for all t′ ≤ t and m ∈ M} be the upper bound of the

first partition cell. Since for all m ̸= m1,

Fm1(t1) = 1− exp

(
−
∫ t1

0

hm1(t)dt

)
< 1− exp

(
−
∫ t1

0

hm(t)dt

)
= Fm(t1),

there exists some t̄ > t1 such that for all t ≤ t̄ and all m ̸= m1, the inequality Fm1(t) < Fm(t)

holds. For each decreasing function u and all τ ≤ t̄, the payoff

Vm(τ |0) = Fm(τ)b+

∫ τ

0

u(x)dFm(x) + (1− Fm(τ))u(τ)

is then uniquely minimized by m1. Next, letting m2 be the model that minimizes the hazard

rate on a right neighborhood of t1, we can find a negative (and decreasing) function u′ such

that

u′(t̃) + hm2(t̃)b = 0
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for some t̃ ∈ (t1, t̄) and

u′(t) + hm(t)b > 0

for all t < t̃ and all m ∈ M. We then have tmin = t̃ < tm1 and

V ′(τ |0)|τ=tmin
= V ′

m1
(τ |0)

∣∣
τ=tmin

= (1− Fm1(tmin))(u
′(tmin) + hm1(tmin)b) > 0,

so the ex-ante optimal stopping time t∗ = argmaxτ≥0 V (τ |0) is strictly greater than tmin.

6.8 Allowing the DM to Randomize

In the baseline model, we focus on the case where the DM is restricted to pure strategies.

This assumption is without loss of generality if the DM evaluates each realization of her

mixed strategy with the worst-case scenario. If, instead, she adopts an ex-ante perspective

and only evaluates the expected value of her mixed strategy, randomization can be strictly

beneficial for the DM, as it allows her to hedge against the ambiguity she perceives (see Saito

(2015); Ke and Zhang (2020)).

Analyzing this alternative version requires an adaption of the strategy space and solution

concept. Here we will use the notion of intrapersonal equilibrium introduced by Auster

et al. (2023). A strategy of the DM is now described by a distribution over stopping times.

Restricting attention to cumulative distribution functions that are differentiable outside their

points of discontinuity, Auster et al. (2023) describe such distributions by their mass points

and hazard rates as a function of t. Following this approach, we define the DM’s strategy

as a pair (s(t), σ(t))t≥0, specifying for each time t an instantaneous stopping probability

s(t) ∈ [0, 1] and a stopping rate σ(t) ∈ R+ with two restrictions: the set {t : s(t) ∈ (0, 1)} is

countable, and the set {t : s(t) = 1} is a collection of disjoint left-closed intervals, as before.

We restrict attention to the case with two models, M = {b, r}, which implies that any

distribution over models in the set is captured by a probability µ assigned to model b. Given

a strategy (s(·), σ(·)), let Φ(s,σ)(µ, t) denote the DM’s value under the strategy at time t

when the probability of model b is µ. Similarly, define U(µ, t) := µub(t) + (1 − µ)ur(t) as

the DM’s stopping payoff as a function of µ and t. Following Auster et al. (2023), we then

define an intrapersonal equilibrium as follows:

Definition 3. Assume M = {b, r}. The strategy (s(·), σ(·)) constitutes an intrapersonal
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equilibrium if there exists some µ : [0,∞) such that

µ(t) = argmin[µ′∈[0,1]]Φ
(s,σ)(µ′, t), (11)

and

U(µ(t), t) ≤ Φ(s,σ)(µ(t), t), (12)

holding as equality if max{s(t), σ(t)} > 0.

In addition to these conditions, Auster et al. (2023) require the DM’s strategy to satisfy

two “saddle point HJB equations”. This refinement of the intrapersonal equilibrium has a

micro foundation based on letting the DM commit to a strategy for a vanishing interval of

time.13 In our setting, the HJB conditions are:14

0 = max
s,σ

s[U(µ(t), t)− Φ(µ(t), t)] + (1− s) [σ(U(µ(t), t)− Φ(µ(t), t))

−(µ(t)hb(t)Φ(1, t) + (1− µ(t))hr(t)Φ(0, t)) + Φt(µ(t), t)] , (13)

0 = min
µ

s(t)[U(µ, t)− Φ(µ, t)] + (1− s(t)) [σ(t)(U(µ, t)− Φ(µ, t))

−(µhb(t)Φ(1, t) + (1− µ)hr(t)Φ(0, t)) + Φt(µ, t)] . (14)

We now show that there is an intrapersonal equilibrium satisfying the refinement. In

the intrapersonal equilibrium, deterministic preemption points are replaced by a continuous

stopping distribution on an interval of time. To state the result formally, let t̂ < tb denote

the point in time at which, under model b, stopping immediately yields the same payoff as

waiting until tr, i.e., ub(t̂) = Vb(tr|t̂), if such point exists and set t̂ = 0 otherwise.

Proposition 8. Assume M = {b, r} with ub(t) > ur(t) and hb(t) > hr(t) for all t ≥ 0.

There is an intrapersonal equilibrium (s, σ) satisfying conditions (13, 14) such that s(t) = 0

for all t < tr and s(t) = 1 for all t ≥ tr.

1. If Vb(tr|t) ≥ Vr(tr|t) for all t ∈ [t̂, tr], then σ(t) = 0 for all t

2. Otherwise, there exist two thresholds 0 < t < t < tr such that for all t ̸∈ [t, t], σ(t) = 0,

13See Auster et al. (2023), Appendix A.2, for details.
14See the proof of Proposition 8 for their derivation.
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and for all t ∈ [t, t],

σ(t) =
(hb(t)− hr(t))Φ̂(t)

ub(t)− ur(t)
,

where Φ(·) is the solution of the ordinary differential equation

Φ̂′(t)− Φ̂(t)
hb(t)

(
Φ̂(t)− ur(t)

)
− hr(t)

(
Φ̂(t)− ub(t)

)
ub(t)− ur(t)

= 0,

with boundary condition Φ̂(t) = Vr(tr|t).

Preliminaries. To derive the HJB conditions, let us write

Φ(s,σ)(µ, t) ≈ s(t)U(µ, t) + (1− s(t)) [σ(t)dtU(µ, t)

+ (1− σ(t)dt)
(
µ(1− hb(t)dt)Φ

(s,σ)(1, t+ dt) + (1− µ)(1− hr(t)dt)Φ
(s,σ)(0, t+ dt)

)]
.

When s(t) = 0, we have

− Φ(s,σ)(µ, t+ dt)− Φ(s,σ)(µ, t)

dt

≈ σ(t)
(
U(µ, t)− Φ(s,σ)(µ, t)

)
− (1− σ(t)dt)

(
µhb(t)Φ

(s,σ)(1, t+ dt) + (1− µ)hr(t)Φ
(s,σ)(0, t+ dt)

)
.

Taking the limit dt → 0, we obtain

0 = σ(t)
(
U(µ, t)− Φ(s,σ)(µ, t)

)
−
(
µhb(t)Φ

(s,σ)(1, t) + (1− µ)hr(t)Φ
(s,σ)(0, t)

)
+ Φ

(s,σ)
t (µ, t).

Case without randomization. Assume Vb(tr|t) ≥ Vr(tb|t) for all t ∈ (t̂, tr) and consider

the possibility that randomization does not arise in equilibrium. To this end, we fix a

candidate strategy (s, σ) with s(t) = σ(t) = 0 for all t < tr and s(t) = 1 for all t ≥ tr

(σ(t) is arbitrary in the last case). We specify µ(t) = 1 if t < tr and Vb(tr|t) < Vr(tr|t) and
µ(t) = 0 otherwise, thereby guaranteeing (11). Next, we verify condition (12) and the HJB

conditions.

t < tr: For all t such that Vr(tr|t) ≤ Vb(tr|t), we have µ(t) = 0 and hence Φ(s,σ)(µ(t), t) =

Vr(tr|t) > ur(t) = U(µ(t), t), where the inequality follows from Vr(·|t) having a single

peak at tr. For all t such that Vr(tr|t) > Vb(tr|t), we have µ(t) = 1 and t ≤ t̂, by
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assumption. Therefore, Φ(s,σ)(µ(t), t) = Vb(tr|t) ≥ ub(t) = U(µ(t), t), so the candidate

profile satisfies (12). As to the HJB conditions, notice that, since Φ(s,σ)(µ(t), t) ≥
U(µ(t), t) and

Φt(µ(t), t) = µ(t)hb(t)Vb(tr|t)︸ ︷︷ ︸
=

dVb(tr |t)
dt

+(1− µt)hr(t)Vr(tr|t)︸ ︷︷ ︸
=

dVr(tr |t)
dt

,

the coefficient of s and σ on the right-hand side of (13) is negative. Hence, (13) is

satisfied. Similarly, given s(t) = σ(t) = 0, the coefficient of µ on the right-hand side of

(14) is zero, so it holds for any choice of µ.

t ≥ tr: We now have µ(t) = 0 and Φ(s,σ)(µ, t) = U(µ, t). Condition (12) of Definition 3 is

clearly satisfied, so what remains to be checked are the HJB conditions. The right-

hand side of (13) simplifies to

(1− s)(−hr(t)ur(t) + u′
r(t)) = (1− s)(1− F (t))v′r(t).

Given t ≥ tr, the coefficient of (1 − s) is negative, so s = 1 satisfies (13). Condition

Φ(s,σ)(µ, t) = U(µ, t), together with s(t) = 1, implies that (14) is satisfied, independent

of the choice of µ.

Hence, if Vb(tr|t) ≥ Vr(tb|t) for all t ∈ (t̂, tr), the candidate strategy constitutes an intraper-

sonal equilibrium.

Case with randomization. Assume Vb(tr|t) < Vr(tr|t) for some t ∈ (t̂, tr) and let t :=

sup{t < tr : Vb(tr|t) < Vr(tr|t)}. Let t < t, where the exact value of t will be specified below.

t > t: The DM’s strategy and the worst-case belief µ(t) are the same as in the case above.

The verification of the equilibrium conditions for this region remains unchanged.

t ≤ t ≤ t: We have s(t) = 0 and σ(t) ∈ (0, 1)—the DM randomizes between stopping and contin-

uing at an interior rate. Letting Φ̂(·) be an increasing, differentiable function, we set

Φ(s,σ)(µ, t) = Φ̂(t) for all t ∈ [t, t] and all µ ∈ [0, 1]. For each t, the DM’s value will

thus be constant in µ. The stopping rate σ(·) and µ(·) are chosen to satisfy the two

HJB conditions. First, to satisfy condition (13), the coefficient of σ must vanish (the

43



DM is indifferent between continuation and stopping), which pins down µ(t):

µ(t)ub(t) + (1− µ(t))ur(t)︸ ︷︷ ︸
=U(µ(t),t)

−Φ̂(t) = 0 ⇔ µ(t) =
Φ̂(t)− ur(t)

ub(t)− ur(t)
.

To satisfy (14) for interior values of µ(t), the coefficient of µ in condition (14) must

vanish, too, so we have

σ(t)(ub(t)− ur(t))− (hb(t)− hr(t))Φ̂(t) = 0 ⇔ σ(t) =
(hb(t)− hr(t))Φ̂(t)

ub(t)− ur(t)
.

Substituting the solutions for σ and µ back into the HJB yields:

Φ̂′(t)− Φ̂(t)
hb(t)

(
Φ̂(t)− ur(t)

)
− hr(t)

(
Φ̂(t)− ub(t)

)
ub(t)− ur(t)

= 0,

with boundary condition Φ̂(t) = Vr(tr|t) ∈ (ur(t), ub(t)). Note that Φ̂(·) solving this

differential equation is indeed a strictly increasing function.15

We then define t as follows. If Φ̂(t) > ub(t) for all t ∈ [0, t], then t = 0; otherwise

t is the largest t < t such that Φ̂(t) = ub(t).
16 The equality Φ̂(t) = ub(t) requires

t < tb: since Φ̂(t) is some weighted average of the values {Vb(τ |t)}τ∈[t,t]∪{tr} and since

Vb(τ |t) < ub(t) for all τ > t > tb, the equality cannot be satisfied when t ≥ tb.

By construction, this specification of s(·), σ(·) and µ(·), together with Φ(s,σ)(µ, t) =

Φ̂(t), satisfies the HJB conditions. Moreover, by the specification of µ(·), we have

U(µ(t), t) = Φ(s,σ)(µ(t), t), so condition (12) of Definition 3 is satisfied. Likewise, since

Φ(s,σ)(µ, t) is constant in µ, condition (11) holds.

t < t: In this region, we have s(t) = σ(t) = 0 and the value function is given by

Φ(s,σ)(µ, t) =

(
µ
1− Fb(t)

1− Fb(t)
+ (1− µ)

1− Fb(t)

1− Fb(t)

)
ub(t).

15Since hb > hr and ub > ur, we have for all t ∈ [t, t]

hb(t)
(
Φ̂(t)− ur(t)

)
− hr(t)

(
Φ̂(t)− ub(t)

)
> 0.

16Note that Φ̂(t) cannot fall below ur, since for each t < t, Φ̂(t) is some weighted average of the values
{Vr(τ |t)}τ∈(t,t]∪{tr} and all of these values are greater than ur(t). We thus have µ(t) ∈ [0, 1] for all t ∈ [t, t].
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The property that Fr hazard-rate dominates Fb implies 1−Fb(t)
1−Fb(t)

< 1−Fb(t)
1−Fb(t)

for all t < t.

Φ(µ, t) is thus decreasing in µ. We then set µ(t) = 1, thereby satisfying condition (11)

of Definition 3. Given s(t) = σ(t) = 0, the coefficient of µ on the right-hand side of

(14) is zero, so the HJB condition holds for any choice of µ. Next, recalling t < tb, we

have Φ(s,σ)(µ(t), t) = Vb(t|t) > ub(t) = U(µ(t), t) for all t < t, so condition (12) holds

as well. The previous inequality further implies that the coefficient of s and σ on the

right-hand side of (13) is strictly negative (see above); hence, (13) is satisfied.
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