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Chapter 1

Introduction

This thesis is a general work in the field of data science that cannot be assigned to any spe-
cific application context. Rather, contributions are made to several topics. Common to all
contributions in this work is the focus on the statistical analysis of data sets by supervised
learning. In the second chapter of their book The Elements of Statistical Learning, Hastie
et al. (2001) define this term as follows:

"[...] there is a set of variables that might be denoted as inputs, which are measured or
preset. They have some influence on one or more outputs. [...] the goal is to use the inputs
to predict the values of the outputs. This exercise is called supervised learning."

A closer look at this very general problem reveals several challenges: On one hand, it must
be clarified how exactly the influence of the input on the output should be modeled. In mod-
ern data analysis, classical statistical approaches compete with machine learning methods.
On the other hand, possible difficulties at the level of the input and the output itself have
to be addressed: In situations of high-dimensional data sets with a large number of possible
input variables, a decision must be made as to which variables have a relevant influence on
the target variable. What is more, when a binary output one class is observed highly rarely
compared to the other class, serious problems for the data analysis can occur. This work
wants to take a stand on these general challenges and develop possible solutions.
In total, the present work includes three independent essays: The second chapter is a co-
authored paper with Rainer Dyckerhoff, while chapters three and four are works with sole
authorship. The respective chapters are briefly introduced below:
The second chapter corresponds to the paper Depth-based support vector classifiers to detect
data nests of rare events by Dyckerhoff and Stenz (2021) and designs a hybrid classification
method: Instead of carrying out a classification directly on a data set with a binary target
variable, the data is transferred to a DD-Plot (depth-versus-depth Plot) in a first step. For
each data point, this plot depicts the data depth for both classes. A high-dimensional data
set is thus transformed into a two-dimensional data set on which support vector machines
(svm) as a machine learning technique are used in a second step. In the event that the
target variable is only rarely observed and is also structurally present as a data nest, it
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can be analytically proven that the separation of the data in the DD-Plot increases with
an increase in the dimension in the original data set. Simulation studies substantiate these
findings. The idea of combining the DD-Plot with the svm came from Rainer Dyckerhoff.
He also developed the general structure of the article. In addition, he contributed the proof
of the first part of Corollary 1. I carried out the remaining work on the project.
The third chapter provides a generalization of the approach of supervised factor models.
These models are primarily used to forecast macroeconomic variables and are based on the
idea that a large number of predictors can be combined into a smaller number of factors.
The target variable is then regressed on these factors. Supervised factor models also include
the target variable in the factor estimation and assume that all factors are relevant to the
target variable. The present work drops this assumption and divides the set of factors into
two groups: One factor that summarizes all effects that are relevant for the prognosis of the
target variable and the other factors that only serve to explain the predictors. The advan-
tage of such a division lies in overcoming the two-stage nature of conventional approaches:
Instead of first estimating the factors and then regressing the target variable on these factors
and other external variables, the factor estimation and regression of the target variable can
take place simultaneously. The procedure underlying this estimation is derived as well as
its algorithmic implementation. A simulation study serves to demonstrate the strength of
this approach when compared to traditional approaches.
While the first chapters do not include empirical applications, the fourth and final chapter
is a purely empirical project: A data mining analysis is performed on medical billing data
with the aim of determining the possibility of algorithmic pre-screening for birth defects
in newborn children. The analysis uses variants of the random forest as well as logistic
regression. Some variants take up concepts from chapter two but others apply additional
approaches. The focus of this empirical work is on the rare event problem and on the ques-
tion of whether the decision-making calculus of a human decision-maker can be replicated
algorithmically.
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Chapter 2

Depth-based support vector machines to
detect data nests of rare events

2.1 Introduction

As mentioned in the title, this chapter’s approach to classification is based on data depth:
Given a sample or "cloud" X of data points x1, . . . , xN in Rd, a data depth is a function
D (z|X) : Rd → [0, 1] that describes how "deep" z lies in X: Values near to 0 mean that z is
far away from the center of X and values close to 1 signify that z is located in or next to the
center of X. The relevant literature consists of many research contributions relating to data
depths. The different approaches range from the development of individual depths such as
the "Mahalanobis depth" (see Mahalanobis (1936)) or the "halfspace depth" (see Donoho and
Gasko (1992)) over the formalization and systematization of certain depth characteristics
(see e.g. Dyckerhoff (2004)) to using data depths for classification purposes.
Concerning the latter approach, the work of Li et al. (2012), which developed the DD-
classification as a new classification method based on data depths, is worth mentioning:
They analyze the quantity (D (zk|X) ,D (zk|Y )) ∈ [0, 1]2 k = 1, . . . , N , the so called DD-
Plot, for given training points z1, . . . , zN . The aim is to construct a decision rule based on
the DD-Plot instead of using the initial data points for reference. After determining the
depths x∗ = D (z∗|X) and y∗ = D (z∗|Y ), a new data point z∗ can thus be classified by
applying this decision rule to (x∗, y∗). In recent years, scientists took a number of different
approaches as to how a decision rule based on the DD-Plot can be constructed: While Li
et al. (2012) applied polynomial dividing lines, Mozharovskyi (2014) among others uses a
non-parametric approach in his DD-α-procedure.
This project aims to take up the approach of Kim et al. (2018). It is based on the applica-
tion of support vector machines (svm) in the DD-Plot meaning that the different points of
the DD-Plot are separated with the help of separating hyperplanes employing kernels. In
doing so, one expects that the use of svm will allow for the construction of a decision rule
that will produce precise results even in the event of overlapping cases. For this project,
the main interest and focus is on the detection of rare events: Such data structures play
a significant role in churn prediction analyses (see Reuß and Zwiesler (2006)) and credit
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default or fraud management, for example. Therefore, this application serves as a potential
but not sole motivation to analyze the central issue of how to predict the likelihood of a
customer’s churn or default given that the training set contains merely a very limited num-
ber of these customers in comparison to "normal" customers. It is very well possible that
such churn or default customers deviate on average only very little from others but that
they are nevertheless clustered in certain segments. As a consequence, there is a difference
in dispersion rather than in location of the set X (normal customers) and Y (churn/default
customers). As X is additionally much bigger than Y , this data structure can be described
as a "data nest" of Y located in X.
From an analytical point of view, this project strives to demonstrate that under the assump-
tion of an elliptical distribution, the separability in the DD-Plot will increase with increasing
data dimension if the characteristics of data nests are fulfilled. It may seem intuitive to as-
sume that access to more information will allow for a more precise classification. However,
the observation that the structure of the data itself seems to be the reason that makes this
classification possible deserves further investigation: Due to applying a data depth transfor-
mation and transferring the structure into the DD-Plot, the number of possible dimensions
is drastically reduced from d to 2. What is more, this transformation is irreversible. Yet, the
question whether important information is actually lost or rather compressed when carrying
out this process remains. Ultimately, using the DD-Plot results in a radical simplification,
thus in a trade-off between a loss of information and a reduction of complexity. The latter
aspect in particular is of great significance in a big data context.
This chapter is structured as followed: After this Section serving as an introduction, Section
2 will discuss the basic concepts and ideas. In Section 3, the analytical results will be out-
lined and Section 4 will present the simulation studies before the conclusion and summary
of the results will be given in the fifth and last Section.

2.2 Basic ideas

2.2.1 Data depth

There is a range of approaches that make the concept of data depth accessible and many
of them can be found in the literature. For introductory purposes, the first part touched
upon the question which insights into specific data sets data depths can offer. But there
is also the possibility of an axiomatic illustration of data depth functions, which was first
carried out by Liu (1990) and also Zuo and Serfling (2000). Following this approach the
data depths functions can be defined either on samples X in Rd or upon the underlying
probability distributions of these samples (see Dyckerhoff (2004)). Since it is sufficient to
look at specific data sets for the objective of this paper, the first approach will be employed:
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(i) Affine invariant: D (Az + b|AX + b) = D (z|X) for all b ∈ Rd and regular A ∈ Rd×d.

(ii) Null at infinity: lim||z||→∞D (z|X) = 0.

(iii) Monotone on rays: For z∗ with D (z∗|X) = maxz∈Rd D (z|X) and any α > 0 and r
out of the unit sphere Sd−1, D (z∗ + αr|X) decreases in α in a weak sense.

(iv) Upper semi continuous: The upper level sets Dα (X) := {z ∈ Rd : D (z|X) ≥ α}
are closed for all α.

Axiom (i) will play a crucial role for our analytic view: It implies that the data depth values
of individual points do not depend on the choice of a specific coordinate system, so changing
that system has no influence whatsoever on the depth relations between individual points.
Axioms (ii) and (iii) refer to the initial idea that data depths are intended to reflect the
centrality of points in a set: If a point’s distance from the center of the set is significant, its
depth should tend towards zero (axiom (ii)). Correspondingly, the data depth of points is
decreasing in a weak sense when those points are moving away from a point with maximum
depth (axiom (iii)). As opposed to that, axiom (iv) is of a mere technical nature.
Taking into account the numerous different existing data depths, it needs to be said that,
for the vast majority of them, an exact depth value in high dimensions is very difficult or
even impossible to calculate with simple computing capacity. In this case, "high" means
d > 5 (see Mozharovskyi (2014)), meaning that one would actually have to completely
refrain from using data depths in the context of big data problems. The Mahalanobis
depth, which goes back to the work of Mahalanobis (1936), is a noteworthy exception: This
data depth function, referred to as DM (z|X) from now on, can be computed in O (n) for
every dimension and is based on the well-known Mahalanobis distance:

DM (z|X) =
(
1 + (z − µX)>Σ−1

X (z − µX)
)−1

(2.2.1)

Here µX denotes the empirical mean and ΣX the empirical covariance matrix of X. The
Mahalanobis depth is a so-called convex depth as it fulfills not only axioms (i) to (iv) but
also an additional fifth axiom (see Dyckerhoff (2004)):

(v) Quasiconcavity: The upper level sets Dα (X) are convex for all α.

Figure 2.2.1 is an example of visualization of the Mahalanobis depth: In the x1-x2-plane,
set X containing 150 realizations of a random variable X ∼ N (µX ,ΣX ) with µX = (0, 0)>

and ΣX = ( 3 1
1 2 ) are depicted in red. The depth function DM (z|X), which was calculated

on the basis of the empirically determined mean value µX and the empirically determined
covariance matrix ΣX , rises above the x1-x2-plane in gray. The highest point of the function
is located above the center of X and from there, it drops fast in all directions. The resulting
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x1

x2

D
(z|X

)

Figure 2.2.1: Mahalanobis depth (grey) on a set in R2 (red).

funnel structure of the function has elliptical contour sets. With the help of this example,
two major weaknesses of the Mahalanobis depth can be pointed out: First of all, DM (z|X)
would take exactly the same course on another, non-identical set Y , which would show the
same empirical first and second moments as X. This is due to the fact that the function
depends solely on the first two empirical moments. On the other hand, due to its elliptical
contour sets, this depth function is well-suited to depict in particular those data which are
based on an elliptical distribution, such as the normal distribution. Among others, these
two mentioned weak points of the Mahalanobis depth are the reasons why researchers have
refrained from using this depth (see, for example, Mosler (2013)) in recent times. However,
we restrict ourselves to the use of this depth function for the time being.

2.2.2 Depth based classification

Subsequent to this, we want to understand how to use data depths for the classification
of (binary) data. With regard to this issue, Vencálek (2017) provides a detailed depiction
of the research results in the field of depth-based classification of the past 20 years: His
paper uses the term "advanced depth-based classifiers" for those methods that resort to the
DD-Plot, an abbreviation for "depth-versus-depth"-Plot (see Li et al. (2012)), thus replacing
the actual data set. How such a DD-Plot can be applied to binary classification problems
has already briefly been mentioned in the introduction and will now be reviewed again in a
formal definition:
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Definition 1. Let z1, . . . , zN ∈ Rd be a sample of data points with known outcomes wk ∈
{−1, 1}. Then we define classes

X =
(
zi ∈ Rd|wi = −1, i ∈ {1, . . . , N}

)
Y =

(
zj ∈ Rd|wj = 1, j ∈ {1, . . . , N}

)
to get the the two-dimensional DD-Plot

V =
(
vk = (xk, yk) ∈ R2|xk = D (zk|X) , yk = D (zk|Y ) , k ∈ {1, . . . , N}

)
.

Of course {0, 1} instead of {−1, 1} for the range of wk is suitable, but later on we will see
why this type of coding is especially useful.

 

Figure 2.2.2: X (black) and Y (red) in R3 (left) and their DD-Plot (right).

A DD-Plot is exemplarily shown in Figure 2.2.2: In the left panel, two sets are depicted
in R3, the set X (black, "negative-class") and Y (red, "positive-class"). Both sets follow a
normal distribution with different center points but equal covariance matrix. Accordingly,
the two data sets barely overlap. The DD-Plot corresponding to these sets can be found in
the right panel: In this plot, there is hardly any superimposition of the data points either.
The majority of those points are arranged along the two axes. Points which belong to the set
X (black) are arranged along the x-axis (D (z|X)) of the DD-Plot, while the arrangement of
the points belonging to Y (red) is diametrically opposed, namely along the y-axis (D (z|Y )).
The DD-Plot thus condenses the given information from the original sets to determine X
and Y ’s location, meaning that all available information is reduced to the question of where
those points are located in the coordinate system and in relation to the total amount of all
points. If a point is located deeper in X than in Y , it is bound to have a high x-value and
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a low y-value in the DD-Plot, and vice versa. It is important to note that the resulting
image in the DD-Plot attempts to map as precisely as possible the locational relationship,
and nothing else but this locational relationship, for each point on the basis of the given set
of constellations. The fact that this mapping depends on the choice of the data depth used
and that it is accompanied by a reduction of the dimension from d to 2, is obvious.
In order to be able to use a DD-Plot for the classification, three steps are needed:

• Step 1: Calculate on given training sets a DD-Plot.

• Step 2: Construct a decision rule based on this Plot.

• Step 3: Classification of a new data point: Calculate its depth values and use the
constructed decision rule on these values.

 

Figure 2.2.3: Same sets and DD-Plot like in Figure 2.2.2. The decision rule (light blue
dotted) is just the line x = y and the point of interest (dark blue) is classified
to Y by this rule.

Aside from the choice of the data depth, which is crucial for the appearance of the DD-Plot,
the real difficulty of this method lies in the choice of the decision rule: A very simple decision
rule could be, for example, that a point in the DD-Plot is always assigned to that set in
which its depth is maximal. Such a rule would graphically correspond to the main diagonal
in the DD-Plot, as shown in Figure 2.2.3, a copy of Figure 2.2.2, in the right panel (in light
blue). If a point, such as the point highlighted in dark blue in the right panel, was located
above the main diagonal, it would accordingly be assigned to the red set Y . This decision
rule may be ideal for the given sets. Applying the same rule to other set constellations,
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however, does by no means guarantee that comparably good classification results will be
achieved. In a nutshell, it can thus be said that for a given set or data scenario, a new
search for the best decision must be carried out in each case.
How a decision rule for the respective DD-Plot can be efficiently constructed is the subject
of a large number of publications of the past five years. In Vencálek (2017), the DD-α-
procedure of Mozharovskyi (2014) and Lange et al. (2014) is named as one of the best
methods currently available to construct a decision rule on the DD-Plot quickly and effi-
ciently: The idea of this method is based on the additional construction of a "feature" space
by using the coordinates of the DD-Plot to form features for different k, l > 0 of the form
D (z|X)k D (z|Y )l. In this feature-space, the separating hyperplane, which produces the
lowest classification error, then needs to be found. In order to be able to do so, said features
have to be calculated explicitly as they are required to determine the hyperplane.
In contrast, the approach taken by Kim et al. (2018), that uses depth-based classifications
to predict bankruptcy, relies on support vector machines. As will become evident in the
next Section, features built on the DD-Plot are also used but only in implicit instead of
explicit form. This method will be called Depth based support vector classifiers or Depth
based support vector machines, in short DD-svm (cf. Kim et al. (2018)).

2.2.3 Support Vector Classifiers

Support vector machines, svm from hereon, are among those classification methods which
are described in great detail in the literature (see, for example, Hastie et al. (2001)). Vapnik
(1995) first introduced svm in his theory of statistical learning, and in the years that followed,
this method was used in various areas of statistical research and practice (see Smola and
Schölkopf (2004)). The core idea of svm is the construction of a separating hyperplane on
a training data sample T = ((v1, w1) , . . . , (vN , wN )). In this sample, w1, ..., wN ∈ {−1, 1}
are the observed outcomes of the points v1, ..., vN ∈ V ⊂ Rd, mentioned at the beginning
of Section 2.2. These outcomes are now estimated by the expression f̂ . It uses the (for the
time being linear) hyperplane 〈β, v〉+ β0 in Rd with β ∈ Rd and β0 ∈ R:

f̂ (v) = sign (〈β, v〉+ β0) (2.2.2)

The use of function sign(·) corresponds to the coding of wk in {−1, 1}. First of all, let us
suppose that the samples XT = (vi|wi = −1) and Y T = (vj |wj = 1) are linearly separable
in Rd. In that case, there would be at least one combination of β and β0 such that for
k = 1, . . . , N , the following applies:

wk (〈β, vk〉+ β0) ≥ 1⇒ wkf̂ (vk) = 1 (2.2.3)

In order to find the "best" combination of β and β0 among these possible combinations,
there exist several approaches. One possible approach is the minimization of ||β|| (or as in
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this example 1
2 ||β||

2). Combined with condition 2.2.3, this results in a convex optimization
problem:

min
β,β0

1
2 ||β||

2 w.r.t. wk (〈β, vk〉+ β0) ≥ 1 for k = 1, . . . , N (2.2.4)

If XT and Y T overlap, which is almost always the case, there are two possibilities that
can be combined with each other: On the one hand, the optimization problem 2.2.4 is
complemented by slack variables ξ1, . . . , ξN :

min
β,β0

1
2 ||β||

2 + C
N∑
k=1

ξk w.r.t.
{
wk (〈β, vk〉+ β0) ≥ 1− ξk

ξk ≥ 0, C ≥ 0

}
for k = 1, . . . , N (2.2.5)

The parameter C is referred to as the cost parameter: The larger this parameter is, the
more important it is to ensure that as few points vk as possible lie on the "wrong" side of
the hyperplane (if this was possible for all vk, as in the case of linear separability of the sets
XT and Y T , C = ∞ could be set). The solutions

(
β̂, β̂0

)
for 2.2.5 can now be determined

by using Lagrangian multipliers (see, for example, Gill et al. (1981)):

β̂0 = α0, β̂ =
N∑
k=1

αkwkvk ⇒ f̂ (v) = sign
(

N∑
k=1

αkwk〈vk, v〉+ α0

)
(2.2.6)

On the other hand, it is also possible to transfer the space V into a higher-dimensional feature
space by means of a map φ : V → RD (D > d) in order to be able to solve the optimization
problem from 2.2.5. Hastie et al. (2001) for example show that such a solution, similar to
2.2.6, depends solely on the inner products of individual vectors:

f̂ (v) = sign
(

N∑
k=1

α̂kwk〈φ (vk) , φ (v)〉+ α̂0

)
(2.2.7)

What is more, in order to determine 2.2.7, one exclusively needs information about inner
products of vectors and not about the vectors themselves. Put differently, this means that in-
stead of φ (v∗) and φ (v), only 〈φ (v∗) , φ (v)〉 plays a role in the calculations. Accordingly, the
individual features do not have to be calculated explicitly but the inner product in the fea-
ture space can be implicitly determined by using a kernel function K (v∗, v) = 〈φ (v∗) , φ (v)〉
to arrive at the following solution:

f̂ (v) = sign
(

N∑
k=1

α̂kwkK (vk, v) + α̂0

)
(2.2.8)

Those vk with α̂k 6= 0 are called support vectors. The solution parameters {α̂0, . . . , α̂N}
depend on the choice of the kernel function, but also on the height of the cost parameter C.
An often used kernel function (see Hsu et al. (2003)) is the radial basis function (RFB):

K (v∗, v) = exp
(
−γ ||v∗ − v||2

)
(2.2.9)
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Using 2.2.9, the solution parameters {α̂0, . . . , α̂N} in 2.2.8 thus correspond to a parameter
pair (C, γ). On a given training sample, a specific validation method via this parameter
pair can be used by carrying out a grid search in order to determine the best solution for
the specific classification problem. A possible validation method could, for example, be the
cross validation method (see Hastie et al. (2001)).
The idea of svm and the classification by means of a DD-Plot can now be combined to form
the hybrid classification method DD-svm, comprising the following steps:

• Step 1: Given T = ((z1, w1) , . . . , (zN , wN )) with zk ∈ Rd and wk ∈ {−1, 1},
calculate with X =

(
zi ∈ Rd|wi = −1

)
and Y =

(
zj ∈ Rd|wj = 1

)
the DD-Plot

V =
(
vk = (xk, yk) ∈ R2|xk = D (zk|X) , yk = D (zk|Y ) , k ∈ {1, . . . , N}

)
.

• Step 2: Using a reasonable validation method, do a grid search on (C, γ) to find
optimal {α̂k}Nk=0 on the training sample T for a decision rule
f̂ (v) = sign

(∑N
k=1 α̂kwk exp

(
−γ ||vk − v||2

)
+ α̂0

)
.

• Step 3: To classify new data z∗, calculate v∗ = (D (z∗|X) ,D (z∗|Y )), then one can
classify z∗ with w∗ = f̂ (v∗) ∈ {−1, 1}.

2.2.4 Data nests of rare events

When using a hybrid method, it is crucial to clarify why a combination of two different
methods leads to better results than the use of one method by itself: Applied to the present
analysis, this means that one has to analyze why DD-svm should provide better results than
just using svm without data depth transformation. Accordingly, the aim of this paper is to
provide extrinsic motivation for the use of DD-svm by pointing to a concrete data structure
in which it can be assumed that a hybrid method of data depths and svm makes sense:

Definition 2. Let X = (x1, . . . , xn) be an iid sample of the random vector X with mo-
ments (µX ,ΣX ) and Y = (y1, . . . , ym) an iid sample of the random vector Y with moments
(µY ,ΣY), both located in Rd. Then Y is a data nest of rare events with respect to X if
both of the following conditions are fulfilled:

(1) m << n.

(2) ΣX − ΣY is positive semi definite.

For the last condition we write ΣX ≥ ΣY . This means that Y has less dispersion than X .

Figure 2.2.4 serves to illustrate this definition: The left panel shows two samples in R3,
which are based on normal distributions and satisfy both conditions of Definition 2: Of the
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Figure 2.2.4: A data nest (red) in R3 (left) and its DD-Plot (right).

5000 data points that make up X (black) and Y (red), only 50 are attributable to sample Y .
Accordingly, Y accounts for only 1% of the total data points. Condition 1 is thus satisfied.
In addition, ΣX = Id, but for ΣY = Q>diag[ϕ1 . . . , ϕd]Q with a orthogonal matrix Q

the eigenvalues ϕ1, . . . , ϕd are randomly drawn from the interval [0.05, 0.15]. Consequently,
because ϕk < 1 for all k, ΣX−ΣY = Q>diag[1−ϕ1 . . . , 1−ϕd]Q is positive definite, therefore
condition 2 is also satisfied. The corresponding DD-Plot shown on the right panel will be
discussed later in this Section.
In the literature, a term similar to "data nest of rare events" can be found: Reuß and Zwiesler
(2006) speak about so-called "churn nests" in the framework of churn prediction analyses.
This term is used to describe the phenomenon that cancellation customers in relation to the
set of all customers are frequently located in certain segments, as has already been briefly
mentioned at the beginning of this paper. The reasons for this can be manifold: Customers
who have not been affiliated with a given company for an extended amount of time are
more likely to resign than those who have long since been a part of the company’s customer
base, for example (see Kahlenberg (2005)). This higher degree of similarity of cancellation
customers with each other could mathematically be described with a lower variance within
the cancellation customer segment compared to the normal customer segment. Moreover, in
a "healthy" company, the number of loyal customers, i.e. those who stay with the company,
by far exceeds the number of customers leaving the company in a given period. It can
therefore be assumed that there are significantly more normal customers than cancellation
customers in the entire customer segment. As a result, a rare event problem exists and a
"churn nest" corresponds exactly to Definition 2.
Why data nests of rare events can be considered data structures that motivate the use of
a hybrid method such as DD-svm will become evident in the following discussion. For this
purpose, the detection of "churn nests" needs to be put in the big data context. For each
customer, there is a variety of information and thus different variables available, which is
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why high-dimensional data structures are present in this case. Both the findings in the
literature (see, for example, Hastie et al. (2001)) and the following simulation studies make
it clear that it is difficult to apply svm in the high-dimensional case: Although accurate
results can still be achieved, this can only be done at the cost of excessive calculation times.
This problem can only be solved by variable selection (see Hsu et al. (2003)). However, such
a selection would in itself produce new challenges. Ultimately, the classification problem is
thus rendered increasingly complex and more difficult to solve.
In contrast, this problem does not occur when using DD-svm on high-dimensional data
nest structures: In this case, a special property of the data-depth transformation even leads
to a simplification of the classification problem. To understand this, the DD-Plot from
Figure 2.2.4 needs to initially be considered. It has been generated on a three-dimensional
data nest. As one might expect, most points from X accumulate along the x-axis and have
a very low y-value. This reflects that hardly any points from X are deep in the data nest
Y . Conversely, there are definitely points from Y with high x-values since the data nest is
located near the center of X. Their y-values, however, are higher than the y-values of the
X points. This is true even if, in absolute terms, more points from X than points from Y

have a high y-value. In this regard, it is important to keep in mind the small share of Y of
all points together.

 

Figure 2.2.5: A DD-Plot of a data nest in R30 (left) with a zoom into the interesting region
next to the origin (right).

Figure 2.2.5 shows a DD-Plot which was created on a thirty-dimensional data nest structure:
The first important observation is that all points are concentrated in the lower left part of
the DD-Plot. Compared to the low-dimensional case, the data points have "migrated" to
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the origin. Even more importantly though, the points from the data nest migrate "more
slowly", meaning that their y- as well as their x-values in the DD-Plot decrease more slowly
with increasing data dimension than the corresponding values of the remaining points from
X. As a result, a linearly separable data set is obtained in the DD-Plot, as shown in the
plot itself (left) or in the zoom (right) of Figure 2.2.5. svm can thus be applied very easily
and without much computational effort on this DD-Plot for the purpose of classification.
Consequently, using a hybrid approach makes sense (see e.g. Kim et al. (2018)).
The aim of the analytic approach in the next Section is to mathematically comprehend this
property of the data depth transformation, which contributes decisively to the simplification
of the classification problem. In fact, it is not easy to understand why the data points migrate
with different velocities in the DD-Plot. Especially the fact that this implies that points
from the data nest Y are not only deeper in their own set but even deeper in the set X than
points from X itself, needs clarification.

2.3 Analytical results

In order to be able to make analytical assessments, different restrictions must be made with
regard to the distribution of the data sets. This Section solely focuses on the case of elliptical
distributed data sets. It has already been mentioned in the beginning that the Mahalanobis
depth DM (z|·) can best be applied to such data sets. Following this line of thought, the
term "elliptical distribution" will be formally defined at first. This definition, following The-
orem 2.1 in Fang et al. (1990), will also include the definition of spherical distributions:

Definition 3. Let X and Y be random vectors in Rd.

(1) X is said to have a spherical distribution if its characteristic function ψX (t) has
the following form:

ψX (x) = Γ
(
x>x

)
.

The scalar function Γ (·) is called characteristic generator of the spherical distri-
bution and therefore we write X ∼ Sd (Γ).

(2) Y is said to have an elliptical distribution with parameters µ ∈ Rd and Ω ∈ Rd×d,
where rank (Ω) = k, if it has the same distribution as

µ+A>Z

where Z ∼ Sk (Γ) and for A ∈ Rk×d holds: A>A = Ω. For the case rank (Ω) = d

A = Ω
1
2 is set. In all cases we write Y ∼ ECd (µ,Ω,Γ).

The following propositions along with their proofs can also be found in Fang et al. (1990)
as a corollary of Theorem 2.2 in section 2.3:
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Proposition 1. Let X ∼ Sd (Γ) and Y ∼ ECd (µ,Ω,Γ) with rank (Ω) = d defined on the
same characteristic generator Γ (·). Then for a randomly drawn x from X and y from Y
with corresponding z ∼ Sd (Γ) we have the stochastic representation

x = ||x|| x

||x||
d= rdu

(d) and y = µ+ ||z||Ω
1
2
z

||z||
d= µ+ rdΩ

1
2u(d)

with x
||x||

d= u(d) d= z
||z|| be uniformly distributed on the unit sphere Sd−1 and independent of

r.v. ||x|| d= rd
d= ||z|| ≥ 0. rd is called generating variate and identified by Γ (·) and d.

x
d= y denotes here, that both r.v. are identical distributed. Elliptical can thus be traced

back to a combined distribution of the uniformly distributed random variable u(d) and the
generating variate rd ≥ 0. The existence of E

(
r2
d

)
has consequences for the existence of the

first two moments of the distribution:

Proposition 2. Let X ∼ Sd (Γ) and Y ∼ ECd (µ,Ω,Γ) with rank (Ω) = d and generating
variate rd. If E

(
r2
d

)
<∞ then the following holds:

µX = 0,ΣX = E
(
r2
d

)
d
Id and µY = µ,ΣY = E

(
r2
d

)
d

Ω.

Also the relationship between generating variates of different dimensions can be clarified:

Proposition 3. Let rd1 and rd2 be two generating variates of different dimensions, but
related to the same characteristic generator Γ (·). If d1 < d2, then it holds:

rd1
d= rd2b

with b2 ∼ Beta
(
d1
2 ,

d2−d1
2

)
independent of rd2. Therefore, if E

(
r2
d2

)
<∞ also E

(
r2
d1

)
<∞,

and we get:
E
(
r2
d1

)
= E

(
r2
d2b

2
)

= E
(
r2
d2

) d1
d2
.

We will later use this proposition for comparing elliptical distributions of different dimen-
sions. For now, however, a simple lemma will be considered:

Lemma 4. Let X ∗ ∼ ECd (µX ∗ ,ΩX ∗ ,Γ) with rank (ΩX ∗) = d and Y∗ ∼ ECd (µY∗ ,ΩY∗ ,Γ)
also with rank (ΩY∗) = d. Furthermore, for the generating variate rd ≥ 0 holds E

(
r2
d

)
<∞.

For an iid sample X∗ = (x∗1, . . . , x∗n) from X ∗ and an iid sample Y ∗ = (y∗1, . . . , y∗m) from Y∗

the two samples X = (x1, . . . , xn) and Y = (y1, . . . , ym) are defined by xi = Ω−
1
2
X ∗ (x∗i − µX ∗)

for all 1 ≤ i ≤ n and yj = Ω−
1
2
X ∗
(
y∗j − µX ∗

)
for all 1 ≤ j ≤ m. For these samples holds:

(1) X is an iid sample from the r.v. X ∼ Sd (Γ) and Y is an iid sample from the
r.v. Y ∼ ECd (µ,Ω,Γ) with µ = Ω−

1
2
X ∗ (µY∗ − µX ∗) and Ω = Ω−

1
2
X ∗ΩY∗Ω

− 1
2
X ∗ .
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(2) The samples (X∗, Y ∗) and (X,Y ) have the same DD-Plot, so for any z∗ ∈ Rd and
z = Ω−

1
2
X ∗ (z∗ − µX ∗) holds: D (z∗|X∗) = D (z|X) and D (z∗|Y ∗) = D (z|Y ).

(3) ΣX ∗ ≥ ΣY∗ ⇔ ΣX ≥ ΣY ⇔ 0 < ϕk ≤ 1 for all eigenvalues ϕ1, . . . , ϕd of Ω.

The proof of Lemma 4 can be found in the appendix. Thanks to this lemma, w.l.o.g. it
suffices to assume a spherically distributed data set X and an elliptically distributed data
set Y in the following analytical considerations as well as in the later simulation studies.

Lemma 5. Let X = (x1, . . . , xn) be an iid sample from r.v. X and Y = (y1 . . . , ym) an
iid sample from r.v. Y. Futhermore let DM (z|X ) =

(
1 + (z − µX )>Σ−1

X (z − µX )
)−1

and

DM (z|Y) =
(
1 + (z − µY)>Σ−1

Y (z − µY)
)−1

be the Mahalanobis depth functions on the
theoretical moments instead the empirical moments. Then, the following holds:

P
[
lim
n→∞

sup
z∈Rd

|DM (z|X)−DM (z|X )| = 0
]

= 1 = P
[
lim
m→∞

sup
z∈Rd

|DM (z|Y )−DM (z|Y)| = 0
]
.

Lemma 5 can be found with its proof in Dyckerhoff (2016) as example 4.1 of corollary 4.1.
Although in practice we compute all depths w.r.t. the given samples (DM (z|X) and
DM (z|Y )), in the following discussion we will focus on depth w.r.t. the underlying dis-
tribution (DM (z|X ) and DM (z|Y)). This is sufficient, because the empirical depth values
converge uniformly to the theoretical depth values:

Theorem 6. Let X ∼ Sd (Γ) and Y ∼ ECd (µ,Ω,Γ) with following properties:

• X and Y have the same characteristic generator Γ (·) and rank (Ω) = d.

• E
(
r2
d

)
<∞ for the generating variate rd ≥ 0 related to Γ (·) and ΣX ≥ ΣY .

Then Ω = Q>DQ with orthogonal Q ∈ Rd×d and D = diag[ϕ1, . . . , ϕd], where 0 < ϕk ≤ 1
for all 1 ≤ k ≤ d, and for randomly drawn x from X and y from Y holds:

• DM (x|X ) =
(
1 + ||x||2

(
E
(
r2

1
))−1)−1

.

• DM (x|Y) =
(

1 +
(
||x− µ||2 +

∣∣∣∣∣∣√(Id −D)D−1Q (x− µ)
∣∣∣∣∣∣2) (E (r2

1
))−1

)−1
.

• DM (y|X ) =
(
1 + ||y||2

(
E
(
r2

1
))−1)−1

.

• DM (y|Y) =
(

1 +
∣∣∣∣∣∣√D−1Q (y − µ)

∣∣∣∣∣∣2 (E (r2
1
))−1

)−1
.

• DM (x|X ) d= DM (y|Y).

Here r1 ≥ 0 is the generating variate related to the same characteristic generator Γ (·).

16



Thanks to Theorem 6, whose proof can be found in the appendix, conclusions can now be
drawn regarding the "migration" of the points of a DD-Plot of data nests by focus on points
randomly drawn from X and Y. The corresponding proof of these corollaries can also be
found in the appendix:

Corollary 1. Let X and Y be r.v. in Rd satisfying all properties of Theorem 6 and
{ϕk}dk=1 the eigenvalues of corresponding matrix Ω. If the cdf Fr2

d
(·) is continuous and

strictly monotone, then the following holds for a randomly drawn x from X as well as
randomly drawn y from Y for increasing d:

plim
d→∞

DM (x|X ) = 0 = plim
d→∞

DM (y|Y) and plim
d→∞

DM (x|Y) = 0 = plim
d→∞

DM (y|X ).

The migration of the points of the DD-Plot to the origin therefore directly depends on the
dimension of the original data or, looking at the distribution itself, on the dimension of X
and Y. The following corollaries will focus on the different "speeds" of said migration:

Corollary 2. Let X and Y be r.v. in Rd satisfying all properties of Theorem 6 and
{ϕk}dk=1 the eigenvalues of corresponding matrix Ω. If the cdf Fr2

d
(·) is continuous and

strictly monotone, then the following holds for a randomly drawn x from X and randomly
drawn y from Y(

1 + (||x||+ ||µ||)2

ϕ−d E
(
r2

1
) )−1

≤ DM (x|Y) ≤
(

1 + (||x|| − ||µ||)2

ϕ+
d E

(
r2

1
) )−1

with ϕ+
d = max{ϕk}dk=1 and ϕ−d = min{ϕk}dk=1. Moreover, for any 0 < α < 1 holds:

E
(
r2

1
)

E
(
r2

1
)

+ ||µ||2
pd

≥ α⇒ P
[
DM (x|Y) < α

]
≥ P

[
DM (y|Y) < α

]

with pd = min{ϕ+
d ,

(
1−

√
ϕ+
d

)2
}.

If E(r2
1)

E(r2
1)+ ||µ||

2
pd

is close to 1, most α will satisfy the inequatlity of the corollary. This inequality

tells us that the probability of a low depth-value for x w.r.t. Y is higher than for y w.r.t. Y:
So in the y-direction of the DD-Plot points from X go faster to 0 than points from Y.
In which cases will E(r2

1)
E(r2

1)+ ||µ||
2

pd

be close to 1? First, if ||µ|| is very small, which mean that

we have a huge overlapping of X and Y. Second, if pd = min{ϕ+
d ,

(
1−

√
ϕ+
d

)2
} is as large

as possible. This is the case if the following holds:

ϕ+
d =

(
1−

√
ϕ+
d

)2
⇔ 2

√
ϕ+
d = 1 ⇔ ϕ+

d = 1
4 = 0.25

17



So, all eigenvalues should be bounded by 0.25 and therefore the data nest characteristic of
Y is strong. If we have such a situation, then also in the x-direction points from X will go
faster to 0 than points from Y in the DD-Plot as is shown in the following corollary:

Corollary 3. Let X and Y be r.v. in Rd satisfying all properties of Theorem 6 and
{ϕk}dk=1 the eigenvalues of corresponding matrix Ω. If the cdf Fr2

d
(·) is continuous and

strictly monotone, then the following holds for randomly drawn x from X and randomly
drawn y from Y with corresponding z d= x ∼ Sd (Γ):1 +

(√
ϕ+
d ||z||+ ||µ||

)2

E
(
r2

1
)


−1

≤ DM (y|X ) ≤

1 +

(√
ϕ−d ||z|| − ||µ||

)2

E
(
r2

1
)


−1

with ϕ+
d = max{ϕk}dk=1 and ϕ−d = min{ϕk}dk=1. Moreover, for any 0 < α < 1 holds:

E
(
r2

1
)

E
(
r2

1
)

+ ||µ||2(
1−
√
ϕ+
d

)2

≥ α⇒ P
[
DM (x|X ) < α

]
≥ P

[
DM (y|X ) < α

]
.

We get the same inequality as in corollary 2 by setting pd =
(

1−
√
ϕ+
d

)2
. Overall, for Y

with strong data nest characteristic in an overlapping setting, we get a different "migration
speed" of the points in the DD-Plot. This is even more interesting because situations of
overlapping data nests result in a non tivial classification problem.
In corollary 2 and corollary 3 it would be nice to show some more properties in cases of
a different behavior of ||µ||, but for this we need more information about the structure of
Fr2

d
(·), which can be easily seen by looking at the proof in the appendix.

2.4 Simulation study

2.4.1 Data generating process

To compare the hybrid method DD-svm with simple svm by means of a simulation study,
both models should be trained on the same data nest

(
XT , Y T

)
, i.e. the training set,

in order to measure their respective performance on a new data nest
(
XV , Y V

)
, i.e. the

validation set. Both sets should be identical distributed. Hereafter, X is meant to be
understood as synonymous to sets XT and XV and correspondingly, Y to sets Y T and
Y V . When generating the data, the analytical results should be taken into account: X is
spherically and Y elliptically distributed, which is sufficient according to Lemma 4. Since
data dimension d and center distance ||µ|| affect the points in the DD-Plot, 100 differ-
ent data nests are generated according to following description in a Monte-Carlo-procedure:
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DGP I

• Step 1: Choose dimension d ∈ {5, 10, . . . , 30} and ν ∈ {0, 0.5, 1}.

• Step 2: Generate 100 iid samples XT =
(
xT1 , . . . , x

T
n

)
and XV =

(
xV1 , . . . , x

V
n

)
with

n = 9900 points xl1, . . . , xln
iid∼ N (0, Id) for l ∈ {T, V } by Monte-Carlo-procedure.

• Step 3: Also by Monte-Carlo-procedure, generate 100 random orthogonal matrices
Q ∈ Rd×d and diagonal-matrices D = diag[ϕ1, . . . , ϕd] with ϕ1, . . . , ϕd

iid∼ U (0, 1) to
get iid samples Y T =

(
yT1 , . . . , y

T
m

)
and Y V =

(
yV1 , . . . , y

V
m

)
with m = 100 points

yl1, . . . , y
l
m

iid∼ N
(
µ,Q>DQ

)
where µ =

(√
ν
d , . . . ,

√
ν
d

)>
∈ Rd for l ∈ {T, V }.

In this context, 0 denotes the zero vector Rd. For all data nest scenarios, Y makes up 1%
of the total 100 + 9900 = 10000 data points, meaning that the first condition for data nests
is fulfilled. The second condition is also satisfied because of Lemma 4, since with every
new data nest Y , the eigenvalues of the covariance matrix are uniformly drawn from the
interval [0, 1]. In addition, the individual covariance matrices differ in that the orthogonal
matrix Q is also randomly generated for each data nest Y . Furthermore, it will be tested
how DD-svm behaves in relation to svm in those cases in which, judging by the structure,
a data nest is present even though there are no elliptically distributed data sets. For this,
data sets were generated according to the following description:

DGP II

• Step 1: Choose dimension d ∈ {5, 10, . . . , 30} and τ ∈ {0, 0.075, 0.15}.

• Step 2: Generate 100 iid samples XT =
(
xT1 , . . . , x

T
n

)
and XV =

(
xV1 , . . . , x

V
n

)
with

n = 9900 points xl1, . . . , xln
iid∼ Betad (3,3), for l ∈ {T, V } by Monte-Carlo-procedure.

• Step 3: With T = 28
(
0.25− τ2

d

)
− 1, generate also by Monte-Carlo-procedure 100

vectors t ∈ Rd with t1, . . . , td
iid∼ U (T, 5T ). With these generate p = t

(
0.5 + τ√

d

)
and q = t

(
0.5− τ√

d

)
. Y T =

(
yT1 , . . . , y

T
m

)
and Y V =

(
yV1 , . . . , y

V
m

)
with m = 100

points are then generated iid by yl1, . . . , ylm
iid∼ Betad (p,q) for l ∈ {T, V }.

In this context, 3 denotes vector (3, . . . , 3) ∈ Rd and Betad (p,q) stands for:

z ∼ Betad (p,q)⇔ zk ∼ Beta (pk, qk) , z1, . . . , zd are independent.

The variables of all dimensions are thus beta-distributed and independent of each other.
While all variables follow the same beta distribution with respect to X, the parameters of
the beta distributions for Y do not only differ between the different data nests but also
between the different variables. For the value of T in step 3 and to illustrate that data nests
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are actually generated by DGP II, a corresponding proof can be found in the appendix.
On each of these respective 100 samples, which accordingly differ with regard to the dimen-
sion of the data d, the distance of the center points µ as well as the underlying distribution
type, the respective model is first trained on the training set by performing a 5-fold cross
validation via a grid of the parameters (C, γ). The combination of parameters with the high-
est true positive rate (TPR) is regarded as ideal in this context. This is due to the fact that
the focus lies on the prognosis of the rare events. Once the respective optimal parameters
have been found on the respective training quantities, the performance of the models, which
have been trained in this manner, is measured on the corresponding validation quantities
and the average of all 100 scenarios is calculated for each parameter variation. The following
quantities are collected in the process:

• The average true positive rate (TPR) in percentage [%]

• The average true negative rate (TNR) in percentage [%]

• The average accuracy (ACC) in percentage [%]

• The average computational time (t) in seconds [s]

With this approach, attention should be paid to the grid on which the training takes place:
Following to Hsu et al. (2003), CI =

(
2−5, 2−2, . . . , 215) and for γI =

(
2−15, 2−12, . . . , 23)

are chosen for svm and DD-svm. For DD-svm, the grid CII =
(
2−6, 2−4, . . . , 216) and

γII =
(
2−16, 2−14, . . . , 26), which is much wider, is additionally tried out. The reason for

taking a wider grid is the fact that DD-svm have a much lower computational time as we
will see. Therefore more combinations of C and γ can be tried out.
Also, a light model variant of DD-svm is tested: In order to slow down the "migration
speed" as a whole, the entire DD-Plot should be logarithmized before applying svm to it.
This approach is intended to counteract a too rapid concentration at the origin, which could
negatively influence the training of the svm. This issue will be the focus of the next Section.
By taking logarithm, values close to 0 will decrease to infinity but in doing so, the separability
of the point may also increase. This model variant, also referred to as log-DD-svm, is also
trained on the two grid types. Therefore, five different models are tested:

• svm on grid (CI , γI), referred as svm

• DD-svm on grid (CI , γI), referred as DD-svm-I

• DD-svm on grid (CII , γII), referred as DD-svm-II

• log-DD-svm on grid (CI , γI), referred as log-DD-svm-I

• log-DD-svm on grid (CII , γII), referred as log-DD-svm-II
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2.4.2 Results

The means of the collected indicators are listed in tables: Tables 2.1 and 2.2 refer to data
nests that were generated in accordance with DPG I. Accordingly, the nests are normally
distributed. By contrast, Tables 2.3 and 2.4 build on data nests generated pursuant to
DGP II and therefore, they consist of independent variables that are beta-distributed. In
addition, the results from Tables 2.2 and 2.4 are graphically shown in Figures 2.4.6 and
2.4.7. Three central observations are worth mentioning: First, the models do not differ
significantly with regard to ACC and TNR. Comparing the values in Tables 2.1 and 2.3, all
values are close to 100%, regardless of the underlying distribution, dimension, or distance
of the centers. This was to be expected because rare events are present which means that
TNR and ACC, if no sampling methods are used, naturally assume high values. This, in
turn, weakens the significance of these values (see chp. 4 for more discussion). In addition,
the focus is on the rare events, which is why the TNR is of no relevance in the context of
the research question. Consequently, these indicators should not matter in the assessment.
Secondly, the TPR only corresponds to some extent to the analytical considerations in the
hybrid models: With increasing dimensions, the TPR does certainly increase, however, the
rate of this increase decreases more and more. In some cases, one can even observe a de-
crease of the TPR in high dimensions (see Figure 2.4.6 and 2.4.7). The reason for this could
be the concentration towards the origin and the associated obstruction of the training of the
models. This is supported by the fact that in logarithmised models, this effect of the weak-
ening of the TPR in high dimensions is less pronounced. With a larger center distance, the
increase but also the weakening of this increase of the TPR is stronger in high dimensions.
Again, this suggests that too fast a concentration obstructs the training of models. Finally,
a higher ||µ|| increases the probability that low depth values occur in at least one direction
of the DD-Plot. Overall, it should be noted that svm has the highest TPR values, followed
by log-DD-svm and DD-svm. Differences in the hybrid models with respect to the different
grids are negligible. In the beta-distributed data, the distance of the TPR values of the svm
to the other models is very strong, while the normally distributed data show little difference,
at least in low dimensions or with high center distances. This coincides with the fact that
the Mahalanobis depth is best applied to elliptical distributions (see end of Section 2.2.1).
Thirdly, it can be observed that the behavior of the average computational time is very
different: In all cases, the calculation time for svm increases almost linearly with the dimen-
sion of the data. In the hybrid models, however, it drops exponentially. With an increase
of the distance between the centers, the computation time drops drastically even in small
dimensions in the hybrid models, whereas no change is observable in svm. The hybrid mod-
els that are trained on the finer grid require more computation time than the other hybrid
models, which can easily be attributed to the greater complexity of the grid search.
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DGP I svm DD-svm-I log-DD-svm-I DD-svm-II log-DD-svm-II
τ d ACC TNR ACC TNR ACC TNR ACC TNR ACC TNR

0

5 97.60 98.52 98.84 99.81 98.98 99.97 98.40 99.35 98.05 98.99
10 97.75 98.55 98.84 99.71 98.94 99.83 98.65 99.51 98.51 99.35
15 98.29 98.98 98.99 99.72 99.06 99.80 98.94 99.67 98.85 99.57
20 98.73 99.32 99.18 99.81 99.23 99.84 99.18 99.80 99.16 99.76
25 98.89 99.42 99.34 99.89 99.35 99.90 99.34 99.89 99.34 99.88
30 99.07 99.56 99.42 99.95 99.45 99.95 99.41 99.95 99.45 99.95

0.5

5 98.08 98.89 98.75 99.63 98.90 99.79 98.50 99.35 98.39 99.23
10 98.99 99.45 99.28 99.78 99.29 99.77 99.26 99.76 99.26 99.75
15 99.46 99.74 99.62 99.90 99.63 99.91 99.62 99.90 99.63 99.91
20 99.66 99.83 99.74 99.95 99.76 99.96 99.74 99.95 99.75 99.95
25 99.79 99.90 99.78 99.99 99.81 99.99 99.78 99.99 99.81 99.99
30 99.86 99.93 99.78 100.00 99.84 100.00 99.78 100.00 99.84 100.00

1

5 98.64 99.28 98.96 99.64 99.03 99.72 98.86 99.54 98.90 99.56
10 99.56 99.79 99.67 99.88 99.68 99.89 99.66 99.88 99.67 99.89
15 99.82 99.91 99.86 99.97 99.87 99.97 99.86 99.97 99.87 99.97
20 99.92 99.96 99.92 99.99 99.94 99.99 99.92 99.99 99.94 99.99
25 99.97 99.99 99.92 100.00 99.96 100.00 99.92 100.00 99.96 100.00
30 99.98 99.99 99.91 100.00 99.97 100.00 99.91 100.00 99.97 100.00

Table 2.1: The average ACC in [%] and TNR in [%] of all models for increasing dimension
d of data generated by DGP I.

DGP I svm DD-svm-I log-DD-svm-I DD-svm-II log-DD-svm-II
τ d TPR time TPR time TPR time TPR time TPR time

0

5 6.51 469.02 2.87 730.28 1.31 482.67 4.12 2524.66 5.54 2891.62
10 18.70 736.01 13.06 378.11 11.19 266.42 13.41 1187.93 15.20 1085.88
15 30.42 1309.62 26.48 175.82 26.22 139.59 26.51 564.17 28.06 553.98
20 40.20 1636.12 37.57 116.80 38.54 90.39 38.09 420.15 39.49 418.61
25 46.27 1715.80 44.93 101.75 45.66 74.86 44.73 378.32 46.16 395.62
30 50.51 2159.81 46.44 99.35 50.17 72.03 46.41 362.53 50.41 395.09

0.5

5 17.83 242.88 11.83 405.93 10.69 308.05 13.91 1250.35 15.27 1263.24
10 53.05 849.63 49.96 108.77 51.08 98.00 49.97 429.82 50.73 436.11
15 72.07 1306.94 71.87 93.60 72.08 73.18 71.41 376.93 71.85 387.85
20 82.42 1699.75 78.50 90.32 79.69 64.31 78.47 356.29 79.86 384.74
25 89.25 2085.00 79.47 91.92 82.46 71.35 79.46 342.67 82.58 407.99
30 93.50 2355.95 78.62 97.00 84.54 72.46 78.43 342.60 84.44 392.04

1

5 35.38 215.97 31.24 190.05 31.31 152.66 31.88 581.33 32.93 793.18
10 77.00 890.88 78.11 92.25 78.24 70.45 78.24 348.51 78.22 382.83
15 91.25 1264.32 89.27 83.70 90.33 61.82 89.77 332.47 90.32 374.58
20 95.92 1808.83 92.63 84.42 94.57 67.43 92.70 310.28 94.65 376.81
25 98.31 2153.41 92.27 88.20 96.16 66.18 92.39 309.65 96.22 389.60
30 99.03 2485.25 90.61 90.85 97.31 68.05 90.86 318.47 97.38 382.09

Table 2.2: The average TPR in [%] and computational time in [s] of all models for increasing
dimension d of data generated by DGP I.
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DGP II svm DD-svm-I log-DD-svm-I DD-svm-II log-DD-svm-II
ν d ACC TNR ACC TNR ACC TNR ACC TNR ACC TNR

0

5 97.44 98.36 98.83 99.82 98.97 99.97 98.35 99.32 98.13 99.08
10 97.71 98.54 98.80 99.72 98.90 99.83 98.68 99.59 98.54 99.43
15 98.44 99.11 98.91 99.72 98.97 99.77 98.90 99.71 98.81 99.60
20 98.87 99.40 99.14 99.82 99.15 99.82 99.14 99.81 99.13 99.80
25 99.15 99.58 99.28 99.89 99.30 99.90 99.28 99.89 99.30 99.89
30 99.36 99.72 99.36 99.94 99.39 99.95 99.36 99.94 99.40 99.95

0.075

5 97.56 98.47 98.72 99.69 98.89 99.87 98.41 99.36 98.23 99.17
10 98.06 98.82 98.81 99.68 98.87 99.74 98.60 99.46 98.61 99.45
15 98.87 99.42 99.09 99.77 99.10 99.77 99.08 99.76 99.04 99.71
20 99.20 99.59 99.30 99.85 99.31 99.85 99.30 99.85 99.30 99.84
25 99.46 99.74 99.43 99.92 99.43 99.92 99.43 99.91 99.42 99.91
30 99.63 99.84 99.46 99.97 99.47 99.97 99.46 99.97 99.47 99.97

0.15

5 98.04 98.87 98.72 99.61 98.83 99.75 98.48 99.35 98.33 99.19
10 99.08 99.55 99.23 99.78 99.24 99.78 99.20 99.76 99.22 99.77
15 99.56 99.78 99.59 99.89 99.60 99.89 99.59 99.89 99.60 99.89
20 99.76 99.88 99.73 99.95 99.74 99.96 99.73 99.95 99.74 99.95
25 99.87 99.93 99.77 99.99 99.79 99.99 99.76 99.99 99.79 99.99
30 99.93 99.97 99.75 100.00 99.80 100.00 99.75 100.00 99.79 100.00

Table 2.3: The average ACC in [%] and TNR in [%] of all models for increasing dimension
d of data generated by DGP II.

DGP II svm DD-svm-I log-DD-svm-I DD-svm-II log-DD-svm-II
ν d TPR time TPR time TPR time TPR time TPR time

0

5 5.82 450.72 1.74 785.27 0.46 503.47 2.98 2632.38 3.85 2920.96
10 16.02 728.67 7.89 428.77 7.36 311.78 8.53 1308.14 10.03 1209.62
15 31.22 1305.72 19.14 177.39 19.68 152.83 18.83 545.42 20.20 547.51
20 46.54 1600.47 32.50 116.23 32.77 92.27 32.46 402.06 32.70 404.84
25 56.65 1666.52 39.05 102.61 40.46 76.65 39.12 366.49 40.60 387.21
30 63.83 2088.66 41.33 99.26 44.07 71.33 41.63 352.90 44.21 382.76

0.075

5 7.95 374.55 3.16 745.64 1.54 479.98 4.43 2314.56 5.32 2105.98
10 22.64 758.68 13.09 250.78 13.16 208.20 13.04 890.77 15.25 799.57
15 43.78 1323.40 31.97 127.96 32.90 105.88 32.27 451.75 32.78 428.75
20 60.50 1574.88 45.00 104.17 46.01 77.73 45.02 393.98 45.63 401.98
25 71.18 1813.61 50.88 98.38 51.00 75.85 51.12 372.40 51.10 411.29
30 79.41 2299.25 48.93 102.06 50.11 74.36 48.86 371.57 49.90 392.16

0.15

5 16.03 226.82 9.92 411.15 8.56 294.10 11.86 1217.72 13.65 1481.23
10 52.86 880.48 43.99 126.09 45.12 97.95 44.09 434.68 45.25 428.93
15 77.56 1229.76 69.98 97.01 70.89 71.71 69.93 384.15 70.74 398.55
20 88.02 1713.99 77.91 91.12 78.27 71.32 78.13 350.30 78.62 391.97
25 93.56 2121.35 77.80 93.09 80.05 68.51 77.64 346.25 80.10 403.19
30 96.17 2457.86 75.30 94.85 80.07 69.90 75.04 351.36 79.76 395.06

Table 2.4: The average TPR in [%] and computational time in [s] of all models for increasing
dimension d of data generated by DGP II.
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Figure 2.4.6: The average TPR in [%] (left panel) and computational time in [s] (right
panel) of all models for increasing dimension d of data generated by DGP I
with ν = 0 (1st line), ν = 0.5 (2nd line) and ν = 1 (3rd line).
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Figure 2.4.7: The average TPR in [%] (left panel) and computational time in [s] (right panel)
of all models for increasing dimension d of data generated by DGP II with
τ = 0 (1st line), τ = 0.075 (2nd line) and τ = 0.15 (3rd line).
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Overall, it can thus be said that in comparison to svm, the hybrid model approach generates
slightly weaker TPR values in the case of an elliptical distribution and significantly weaker
ones in the case of a non-elliptical distribution. However, the enormous computational
efficiency with which the results are generated predominates. Therefore, in the case of a
"moderate" dimension, i.e. between d = 10 and d = 20, hybrid methods should be used
when dealing with elliptically distributed data nests as these work fast and efficiently and
produce comparably good results as simple svm.

2.5 Conclusion

Hybrid methods such as the DD-svm presented in this chapter are very popular in the
context big data applications (see e.g. Min et al. (2006)). Combining data depths and svm
as first proposed by Kim et al. (2018) is advantageous, especially when data sets are present
in nest structures. Such data nests appear to be plausible, for example, in the case of
cancellation analyses. Based on the individual customer characteristics, one can assume
that the degree of homogeneity between cancellation customers is higher than that between
the other customers (see Kahlenberg (2005)). The fact that the cancellation customers
consequently accumulate in certain segments and thus form nests (see Reuß and Zwiesler
(2006)) increases – according to the data depth transformation – the separability of the data,
which is why svm can be used more efficiently on the DD-Plot than on the original data.
However, this advantage, which makes use of the nest structure of the data, can be lost in
too large dimensions. As the data dimension grows, the points of the DD-Plot concentrate
at the origin, making the use of svm more difficult. Therefore, with application in practice,
it will be essential to pre-select the data characteristics to be considered in order to not only
avoid "too high" dimensions but above all to guarantee distinctly strong nest structures.
The DD-svm presented here is not only advantageous when comparing it to svm but also
in comparison to conventional methods which are applied in the case of rare events: While
common methods are based on a sampling approach, meaning that they manipulate the
data either by under- or oversampling, DD-svm exploits the presence of rare events in the
form of data nests and renounces sampling entirely. As a result, a manipulation of the data
does not take place; all available information is used and processed. It would, therefore, be
of interest to analyze how a comparison between DD-svm and other methods using various
sampling approaches would turn out (see chp. 4).
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Chapter 3

Estimating factor models with generalized
supervision

3.1 Introduction

Factor models are attractive for analysing high-dimensional data sets. The reason for this
is that the use of factor models can make a decisive contribution to dimension reduction
by replacing the many observable predictors of a model with a few non-observable diffusion
indices, which we will simply refer to as factors in this chapter. Employing factor models in
forecasting is typically performed in two steps. First, a small number of factors is extracted
from a large set of predictors. In the second step, a dynamic regression represents the link
between the target variable and the factors. Among the numerous methods of estimation,
principal component analysis (PCA) is particularly popular. However, if the intended use
of the model is the forecasting of a certain target variable, the PCA-based approach reveals
weaknesses. The reason for this is the need for a two-stage approach: This approach only
promises to be efficient enough on condition that all factors estimated from the data are
also relevant for the target variable though (see, e.g., Stock and Watson (2006)). When only
part of the estimated factors are of relevance to the forecast, it is of utmost importance,
when estimating the factors, to consider not only the available data on possible predictors
but also, and even more importantly, the target variable itself (see e.g. Bai and Ng (2008)).
Factor models achieving precisely that are called supervised factor models.
In this chapter, we propose a general framework for a supervised factor model that is based
on a particular rotation of the factor space that results in an optimal forecast. The main
idea is to decompose the set of common factors into factors relevant to forecasting and the
remaining redundant factors from the predictor space. We show that the set of relevant
factors can always be combined to a single factor and, therefore, prediction based on that
single factor can be shown to be optimal. This allows us to reduce the forecast exercise to
finding the single relevant factor within a large set of predictors. An important advantage
of our general version of a supervised factor model is that it also allows us to conveniently
augment the factor model by additional variables that are not included in the factor space
(e.g., the lags of the target variable).
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In the following section, we offer a precise derivation of this model and illustrate how it
relates to conventional approaches, in particular to the PCA approach. In doing so, the
strengths of this model approach will become obvious. After that, the estimation of the
model by iteratively reweighted sequential least squares (IRSLS) and the algorithmic imple-
mentation of such an estimation process will be discussed in the third section. The fourth
section contains a simulation study that we use to compare our method of modeling to
related approaches. By means of Monte-Carlo-experiments, we demonstrate the benefits
of supervised forecasting based on a large set of predictors. The chapter concludes with a
discussion of the results in the last section.

3.2 Factor models with generalized supervision

All factor models are based on the assumption that at every point in time t = 1, . . . , T , the
common component of a variable xit is generated from r factors ft = (f1t, . . . , frt)> ∈ Rr

and loading vector λi = (λi1, . . . , λir)> ∈ Rr:

xit = λ>i ft + uit (3.2.1)

The idiosyncratic component uit as an error term is independent and identically distributed
with E(uit) = 0 and E(uitft) = 0. The extent of the influence of a single factor fkt on a
variable xit depends on the loading λik determining how much variation is passed on from
a factor to the respective variable. (3.2.1) can be represented as a matrix equation for
X = (x1, . . . , xn) ∈ RT×n with xi = (xi1, . . . , xiT ) ∈ RT through the help of the matrices
F = (f1, . . . , fT )> ∈ RT×r, Λ = (λ1, . . . , λn)> ∈ Rn×r and U = (u1, . . . , un) ∈ RT×n with
ui = (ui1, . . . , uiT )> ∈ RT :

X = FΛ> + U (3.2.2)

Through insertion of an arbitrary regular matrix Q ∈ Rr×r in (3.2.2), the common com-
ponent can be rewritten in such a way that FΛ> = FQ−1QΛ> = FQ−1(ΛQ>)> = F ′Λ′>

applies. Consequently, the same data matrix can also be generated by the factor matrix
F ′ = FQ−1 and the loading matrix Λ′ = ΛQ>. Therefore, futher restictions are needed to
identify F and Λ. Bai and Li (2012) provide a good overview of some possible restrictions
and their consequences for the estimation of factors. If F>F is diagonal and Λ>Λ = Ir
are chosen as restrictions, one can obtain the PC estimator Λ̂ for the loading matrix by
applying OLS to (3.2.1) or (3.2.2): The columns of Λ̂ are equal to the first r eigenvectors
of 1

T

∑T
t=1(xt − x)(xt − x)>, the covariance matrix of X, and F̂ = XΛ̂>. For the selection

of r, i.e., the number of factors, one has to use certain criteria (see Bai and Ng (2002) for
some examples). Given the factors, they can be used together with additional variables
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Z = (z1, . . . , zT )> ∈ Rm×T with zt = (z1t, . . . , zmt)> ∈ Rm to forecast yt+h:

yt+h = α>zt + β>ft + εt+h (3.2.3)

y = Zα+ Fβ + ε (3.2.4)

In (3.2.3), εt+h is, again as an error term, independent and identically distributed with
E(εt+h) = 0 and E(εt+hzt) = 0 such as E(εt+hft) = 0. h corresponds to the forecast horizon
for y = (y1+h, . . . , yT+h) ∈ RT . The associated parameter vectors α = (α1, . . . , αm)> ∈ Rm

and β = (β1, . . . , βr)> ∈ Rr can only be estimated from (3.2.3) or (3.2.4) if the corresponding
factors are given. However, these factors first have to be estimated. The two-step approach
of first estimating the factors from the data matrix X using PCA and then regressing y on
these factors along with Z does have one major disadvantage though: It is not guaranteed
that all factors relevant for X are also relevant to y. More particularly, it is possible that
some factors are able to explain the data in X very well but have nothing to contribute to
the explanation of y. It would, therefore, be more appropriate to only take those factors for
forecasting into account which explain y.
In order to overcome this disadvantage, it is advisable to implement a form of supervision
when estimating the factors. This means that the factor estimation is carried out under si-
multaneous consideration of the target variable y. de Jong and Kiers (1992) put forward one
approach of how such a supervised factor model can be designed: In the Principal Covariate
Regression (PCovR), the values for F , Λ and β are estimated using a so-called criterion func-
tion. This function summarizes (3.2.2) or (3.2.4) without considering additional variables
Z:

Cθ(F,Λ, β) = θ
(y − Fβ)>(y − Fβ)

||y||2
+ (1− θ)tr

{
(X − FΛ>)>(X − FΛ>)

||X||2

}
(3.2.5)

The selection of the supervision parameter θ reflects the trade-off between the simpler re-
gression of y on the factors (θ → 1) and PCA (θ → 0). However, in the extreme case (θ = 1),
this results in an inability to estimate the factors themselves because no information about
the data X is included in their estimation. Conversely, a mere PC estimate (θ = 0) would
disregard supervision from y. Once θ has been selected, the minimization of (3.2.5) subject
to the normalization restriction T−1F>F = Ir results in the calculation of the eigenvalues
of the following matrix:

θ
(X>X)−1(y>X)>y>X

||y||2
+ (1− θ) X

>X

T ||X||2
(3.2.6)

Let Cr be the matrix constructed from the first r eigenvectors of this matrix. In that case,
the supervised factor estimation holds that F̂ = XCr. Also Λ̂ and β̂ can be estimated by
a regression of X and y on F̂ (see de Jong and Kiers (1992) for details). To calculate a
solution in (3.2.6), θ has to be selected. Umbach (2020) proposed a criterion for this selection.
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However, it is inherently based on the assumption that all factors from X are also relevant
to y. This is also the reason why this criterion is a basis for decision-making not only for the
selection of θ but also for the selection of the number of factors r (see Umbach (2020) for
details). Moreover, the influence of additional variables Z on y is disregarded in PCovR since
the part Zα of the predictive regression in (3.2.4) cannot be implemented in the criterion
function (3.2.5) without taking into account that α is also unknown. Therefore, Cθ(F,Λ, β)
becomes Cθ(F,Λ, β, α) and the optimization problem is no longer solvable by the methods
proposed in de Jong and Kiers (1992). Alternative approaches based on singular value
decomposition (SVD, see Heij et al. (2007) for details) also failed in calculating a solution
in this situation. The only way of integrating Z is again a two-stage approach: After the
estimation of the factors F̂ , the parameters α̂ can be estimated like β̂ by a regression of y
on additional variables Z and F̂ . This leads to the question how these additional variables
could be integrated in a supervised factor model in a more elegant way.
We propose a supervised factor model that aims to completely eliminate both disadvantages:
On the one hand, the supervision will be designed in such a way that, when estimating the
factors, a distinction is made on the basis of whether a factor from X is of relevance to y
or not. On the other hand, the additional variables contained in Z will also be included
directly in the factor estimation without losing the one-stage construction. To achieve the
first goal, factor matrix F is set to matrix F =

(
f G

)
with the first vector of factors

f = (f1, . . . , fT )> ∈ RT representing all time-varying effects that are relevant for y and
simultaneously affect X. The remainder matrix G =

(
g1 . . . gs

)
∈ RT×s with factor-

vectors gk = (gk1, . . . , gkT )> ∈ RT summarizes the other s = r − 1 factors that are only
relevant for X. Accordingly, only the factor f is used for the predictive regression of y:

X =
(
f G

) (
ϕ Φ

)>
+ U (3.2.7)

y = Zα+ fγ + ε =
(
Z f

)(α
γ

)
+ ε (3.2.8)

Here, the loadings Λ are set to Λ =
(
ϕ Φ

)
as well. While ϕ = (ϕ1, . . . , ϕn)> ∈ Rn

contains those loadings that correspond to factor f , Φ =
(
φ1 . . . φs

)
∈ Rn×s with

φk = (φk1, . . . , φkn)> ∈ Rn summarizes all other loadings of all the rest of factors G. This
representation or the use of only one factor and corresponding one-dimensional parameter
γ ∈ R in the regression of y is possible because (3.2.7) and (3.2.8) are generated by a simple
rotation: As already mentioned, in the representation (3.2.2) a regular matrix Q ∈ Rr×r

can always be inserted. It is easy to show that a simple rotation matrix R ∈ Rr×r exists for
which FR =

(
f G

)
and ΛR =

(
ϕ Φ

)
applies. The proof of existence of such a rotation

matrix R can be found in this chapter’s appendix. When estimating factor f , the vari-
ables of Z should be taken into account simultaneously to avoid the second disadvantage.
Such simultaneous estimation can be derived when putting (3.2.7) and (3.2.8) in one system:
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(
X y

)
=
(
Z f G

)
0 α

ϕ> γ

Φ> 0


︸ ︷︷ ︸

:=Ψ

+
(
U ε

)
(3.2.9)

The key to the supervision of the factor model is the design of the matrix Ψ ∈ R(m+1+s)×(n+1)

in (3.2.9): By positioning the zeros in a block-wise fashion, it ensures that both the equations
with respect to X and the equations with respect to y take into account the vector f of
factors. In contrast, the additional variables Z are only included in the y-equations, just as
the other factors G are only considered in the X-equations. While Z is thus only fitted to y
and G only to X, f is fitted to both, y and X. This constitutes an essential difference to the
PCovR approach: The supervision is not induced by an information criterion from "outside"
which assumes a trade-off between fitting to y and fitting to X for all factors. Rather, all
time-varying effects that affect y and X in the same way are summarized in the factor f
at the model level, while the other factors are freed from the mentioned trade-off between
fitting to y and X. In addition, the fitting of factor f to y is "relieved" by adding further
variables Z as part of the variance in y can also be explained by Z and does not necessarily
have to be explained by factors from X alone. In this sense, such a model-based supervision
"from within" generalizes the concept of supervised factor models since all factors estimated
from the predictor space no longer necessarily have to be fitted to X and y at the same
time. Instead, the factors that have to be fitted to both X and y are combined into one
factor. Also, additional factors that only need to explain X can be included in the model.
The scope of supervision is thus limited to what is necessary while the basic structure of a
simple unsupervised factor model is retained to the extent possible.

3.3 The estimation process

3.3.1 Iteratively reweighted sequential least squares (IRSLS)

Breitung and Eickmeier (2016) use the sequential least squares (SLS) method in their paper:
They are concerned with the simultaneous estimation of factors that reflect different kinds
of influences on a target variable. They differentiate between so-called "global" factors
that exert an influence in every region of the target variable and the factors designated
as "regional" which only affect the target variable in certain regions. Correspondingly, the
associated loading matrix is built up in blocks, similar to Ψ in (3.2.9). Instead of estimating
both factor types consecutively (e.g., first global, then regional), starting values are selected
for each of the factors which are then used to estimate a loading matrix with OLS. In a
second step, that loading matrix is taken as the starting point and new factor values are
determined by means of an OLS estimation. With these new factor values, new loadings
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are now determined again, etc., until the residual sum of squares of the OLS estimation no
longer improves and the algorithm has thus converged (cf. Breitung and Eickmeier (2014)).
Considering the model here, the loadings ϕ and Φ as well as the parameter vector α and
parameter γ can be estimated using (3.2.7) and (3.2.8), when the factors f and G are given.
On the other hand, if all loadings and parameters and, consequently, Ψ is given, Zα is
known and (3.2.9) can be rewritten using ỹ := y − Zα:

(
X ỹ

)
=
(
f G

)(ϕ> γ

Φ> 0

)
+
(
U ε

)
(3.3.1)

Setting ỹt+h := yt+h − α>zt one can rewrite (3.3.1) in long version:

( x11 ··· xn1 ỹ1+h
... . . . ...

...
xT1 ··· xnT ỹT+h

)
=
( f1 g11 ··· gs1

...
... . . . ...

fT g1T ··· gsT

) ϕ1 ··· ϕn γ
φ11 ··· φ1n 0
... . . . ...

...
φs1 ··· φsn 0

+
( u11 ··· un1 ε1+h

... . . . ...
...

u1T ··· unT εT+h

)

In this SLS approach, it should be noted that both loadings and factors are fitted to a
target variable in each step. The target variable’s error term is assumed to display variance
homogeneity, i.e., the variance of the error term is identical in each region. As Breitung
and Eickmeier note, this is done for purposes of simplification, but can be dropped without
losing the consistency of the estimator. The authors refer to Wang (2010) who, in his
iterative PC approach, allows different variances in the respective error terms in the different
regions of the target variable. However, compared to Breitung and Eickmeier, he iterates
his estimation in a different way: First, Wang chooses suitable starting values for the global
factors and the associated loadings. Then, he subtracts the product of the associated global
factors and loadings from the target variable for each region. He uses PCA to estimate the
respective regional factors and loadings from the resulting residual term. In a second step,
he subtracts the product of these regional factors and loadings from the target variable in all
regions. This generates new values for the global factors and associated loadings from this
residual term using PCA estimation. With these new values, Wang starts another iteration,
repeating this process until the residual sum no longer improves at the global level. The
lack of variance homogeneity is thus compensated by an iterative change between global
and regional estimation. This chapter’s model allows σU and σε to differ. However, it is
not possible to compensate for this difference in variance by iterative PC estimations as in
Wang (2010): Even though the factor f can be interpreted "globally" due to the supervision
with regard to X and y, the factor f itself may only consist of a linear combination w of the
variables x1, . . . , xn, just like the other factors G are also only linear combinations Ω of X:

(
f G

)
= X

(
w Ω

)
(3.3.2)
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However, this precludes a PC estimation of f because this would include y, which, in turn,
would render the use of f for purpose of estimation for yt+h impermissible. Instead, we will
make use of Breitung and Eickmeier’s SLS approach and insert (3.3.2) in (3.3.1):

(
X ỹ

)
= X

(
w Ω

)(ϕ> γ

Φ> 0

)
+
(
U ε

)
(3.3.3)

⇔


x1
...
xn

ỹ

 =
((

ϕ Φ
γ 0

)
⊗X

)
w

ω1
...
ωs

+


u1
...
un

ε

 (3.3.4)

The proof of equivalence between (3.3.3) and (3.3.4) can be found in the appendix. In order
to achieve the auxiliary assumption of variance homogeneity of the error terms as seen in
Breitung and Eickmeier (2014), it is sufficient to substitute X by X∗ = ρX with ρ = σε

σU

on both sides of (3.3.4) and to estimate (3.3.4) with SLS. According to lemma 7, such a
substitution is equivalent to an estimation with weighted sequential least squares (WSLS):

Lemma 7. Let X in (3.3.4) be substituted by X∗ := ρX with ρ 6= 0 on both sides. If ϕ̂∗,
Φ̂∗, γ̂∗, ŵ∗ and Ω̂∗ are the OLS-estimates of (3.3.4), it holds:

(I) If f̂ = Xŵ and Ĝ = XΩ̂ are given, the OLS-estimates ϕ̂∗, Φ̂∗ and γ̂∗ are:

(
ϕ̂∗ Φ̂∗

)>
=
((
f̂ Ĝ

)> (
f̂ Ĝ

))−1 (
f̂ Ĝ

)>
X =

(
ϕ̂ Φ̂

)>
γ̂∗ = ρ−1γ̂

(II) If ϕ̂, Φ̂ and γ̂ are given, the OLS-estimates ŵ∗ and Ω̂∗ are:
ŵ∗

ω̂∗1
...
ω̂∗s

 =

((ϕ̂ Φ̂
γ̂ 0

)
⊗X

)>
Wρ

((
ϕ̂ Φ̂
γ̂ 0

)
⊗X

)−1((
ϕ̂ Φ̂
γ̂ 0

)
⊗X

)>
Wρ


x1
...
xn

y − Zα̂


Here, ϕ̂, Φ̂, γ̂, ŵ and Ω̂ are the OLS-estimate of (3.3.4), if X is not substituted and the

matrixWρ := I(n+1)T

(
ρ2 . . . ρ2︸ ︷︷ ︸

=nT

1 . . . 1︸ ︷︷ ︸
=T

)>
∈ R(n+1)T×(n+1)T is the weight-matrix of a WLS-

estimation using X.

The proof can be found in the appendix. σε or σU must first be estimated. This estimation
can also be done iteratively: In a first run, the model is assumed to exhibit variance homo-
geneity (σε= σU ), which is equivalent to ρ := 1. After arriving at a solution using SLS, the
variances s2

y and s2
X of the respective residuals have to be determined. The residual vari-

ances generate an estimator for ρ and for X∗ and another run can be started. After WSLS
generates a solution for this run, the residual variances are determined again and ρ and X∗
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is re-estimated before another run is initiated. Accordingly, the corresponding weights are
determined before each WSLS run. This process is repeated until the solution of the respec-
tive runs no longer changes due to a given tolerance rate. Such an iterative re-weighting
corresponds to the conventional iteratively reweighted least squares (IRLS) approach except
that a SLS (instead of a LS) method is used in the optimization. To emphasize this differ-
ence, this estimation method is referred to as iteratively reweighted sequential least squares
(IRSLS). This term also highlights that the method runs through two iterative or sequential
loops: An "inner" loop in which the SLS-estimation of the linear combinations and other
parameters is determined for a given ρ, and an "outer" loop that readjusts ρ based on the
respective SLS solutions. The following subsection describes in detail how such an IRSLS
estimation can be implemented.

3.3.2 The algorithmic implementation

Implementation of IRSLS

(I) Start with PCA-solution
(
ŵ∗0 Ω̂∗0

)
and set ρ̂1 := 1.

(II) For k = 1, 2, . . . set X∗ := ρ̂kX and do for i = 0, 1, 2, . . . :

(i) Calculate
(
f̂∗i+1 Ĝ∗i+1

)
= X∗

(
ŵ∗i Ω̂∗i

)
(ii) Calculate Mi+1 :=

((
ϕ̂∗i+1 Φ̂∗i+1
γ̂∗i+1 0

)
⊗X∗

)
with(

α̂i+1

γ̂∗i+1

)
=
((
Z f̂∗i+1

)> (
Z f̂∗i+1

))−1 (
Z f̂∗i+1

)>
y and

(
ϕ̂∗i+1 Φ̂∗i+1

)>
=
((
f̂∗i+1 Ĝ∗i+1

)> (
f̂∗i+1 Ĝ∗i+1

))−1 (
f̂∗i+1 Ĝ∗i+1

)>
X∗

(iii) Calculate
(
ŵ∗i+1 Ω̂∗i+1

)
using the values from (ii):

ŵ∗i+1
ω̂∗1i+1
...

ω̂∗si+1

 =
(
M>i+1Mi+1

)−1
M>i+1


x∗1
...
x∗n

y − Zα̂i+1


(iv) If

(
ŵ∗i+1 Ω̂∗i+1

)
is different from

(
ŵ∗i Ω̂∗i

)
due to a tolerance rate, go to (i).

(III) Calculate the residual variance ŝ2
X from (3.2.7) and ŝ2

y from (3.2.8) and set
ρ̂k+1 := ŝy

ŝX
.

(IV) If ρ̂k+1 is different from ρ̂k due to a tolerance rate, go to (II).

(V) Set the iterative solution as the final solution.

Some comments on this implementation: Lemma 7 suggests two alternatives for implement-

34



ing the IRSLS algorithm, either an OLS estimate with X∗ or a GLS estimate with X and
the weight matrix Wρ. Due to the fact that the weight matrix has a very high dimension
((n+ 1)T × (n+ 1)T ) and storing it temporarily would, therefore, require a lot of storage
space, it is numerically more stable to do OLS with X∗. In contrast,

(
ϕ̂ Φ̂
γ̂ 0

)
⊗X∗ is of lower

dimension ((s+ 1)T × (s+ 1)T ) as long as s << n holds. Likewise, as a termination crite-
rion, the minimization of the residual sum of squares did not turn out to be as numerically
stable as might have been expected: Due to the adjustment of the weighting via ρ, the
residual square sums are no longer strictly decreasing as opposed to the SLS algorithm. On
the other hand, as is common with the IRLS algorithm, the intermediate results approach
the optimal solution in each iteration step. Therefore, when the intermediate results no
longer differ due to a certain tolerance rate, the algorithm can be suspended.

3.4 Simulations study

3.4.1 Data generating process

It has already been mentioned that the generalized supervised factor model as proposed here
only takes those factors from X which are useful to forecast the target variable into consid-
eration. Consequently, one advantage of this method should always become apparent when
these relevant factors for y are "hidden" in X in the sense that these factors are only a subset
of all factors that explain X. This simulation study reconstructs such situations by adding
additional factors when generating X. These factors are not included in the generation of
y and are, consequently, superfluous for the target variable. The other advantage of the
proposed approach is the ability of integrating additional variables directly into the model,
wherever PCA and PCovR needs a two-step estimation to do so, namely some regression of
y by these variables and the estimated factors. Consequently, the data generating processes
(DGPs) will be extended by a different type of additional variables:

(I) Variables Z, which are independent of X

(II) Lags of y

Especially lag variables are of importance for the usage in a macro-economic context. A
short remark on these processes: By drawing factor p, the autocorrelation of the individual
variables/factors becomes randomly more or less pronounced. However, the selection of the
variance in the error terms εt occurs in such a way that the variance adds up to a total of 1
for all t (see Umbach (2020)). By introducing factor η, the signal-to-noise-ratio of X̃ varies,
whereas σ2

u = 1 remains the same. In all scenarios of DGP I, m = 3 and k = 3 weaning
that values yt are generated from three variables zt and three factors ft from xt.
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DGP I

• Step 1: Choose the number L of irrelevant factors, number k of relevant factors
and number m of additional variables. Choose also parameter vectors α ∈ Rm and
β ∈ Rk, the dimensions n and T and the signal-to-noise-ratio η.

• Step 2: Generate matrix Q = (qij)i,j=1,...,n ∈ Rn×n with qij ∼ U [0, 1] to compute
loadings Λ ∈ Rn×k and Φ ∈ Rn×L as the first k+L eigenvectors of Q>Q. Draw anew
each time p ∼ U [0, 1] to generate z1, . . . , zT+1 ∈ Rm and factors f1, . . . , fT+1 ∈ Rk

and g1, . . . , gT+1 ∈ RL as simple AR(1)-processes:

(i) zj1 ∼ N (0, 1)⇒ zjt = pzjt−1 + εt with εt
iid∼ N (0, 1− p2) for j = 1, . . . ,m

(ii) fj1 ∼ N (0, 1)⇒ fjt = pfjt−1 + εt with εt
iid∼ N (0, 1− p2) for j = 1, . . . , k

(iii) gj1 ∼ N (0, 1)⇒ gjt = pgjt−1 + εt with εt
iid∼ N (0, 1− p2) for j = 1, . . . , L

• Step 3: For t = 1, . . . , T+1 draw iid ut ∈ Rn from a multivariate normal distribution
with µ = 0 ∈ Rn and Σ = In and εt ∼ N (0, 1) to compute y ∈ Rt and data matrix
X̃ =

(
x̃1 . . . x̃n

)
∈ R(T+1)×n with

x̃t = η (Λft + Φgt) + ut

yt = α>zt + β>ft + εt

• Step 4: Standardize X̃ to get X.

• Step 5: Repeat Step 2 to Step 4 N -times to get Monte-Carlo-Simulations(
X(1), y(1)

)
, . . . ,

(
X(N), y(N)

)

The corresponding parameter vectors α = (1.2, 0.8,−0.4)> and β = (−0.7, 1.3,−0.9)> are
fixed as well whereas the number L of irrelevant factors gt varies: The higher this number,
the more irrelevant factors for yt are used to generate xt. In DGP II the first lag of yt is
used instead of zt with δ = 0.8. Considering the variances of the error-terms in both DGPs,
σ2
ε = 1 is set to be constant, but different values for the variances of the error-terms in X

are generated by standardizing X̃. Only three factors are ever relevant for the value of the
y-variable. As a consequence, the first three factors, which correspond to the highest eigen-
values of the loading matrix, were always included in the estimation for all models. Since
the loading matrix was generated randomly, it may well be the case that precisely those
factors that are relevant for y are not selected due to this selection criterion. However, this
often occurs in practice if only those factors are taken into account that are, as measured
by the associated eigenvalues, of the greatest relevance for X. Our study will therefore also
examine how the models react to such a misspecification.
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DGP II

• Step 1: Choose the number L of irrelevant factors, number k of relevant factors and
number m of additional variables. Choose also parameter vectors δ ∈ R and β ∈ Rk,
the dimensions n and T and the signal-to-noise-ratio η.

• Step 2: Generate matrix Q = (qij)i,j=1,...,n ∈ Rn×n with qij ∼ U [0, 1] to compute
loadings Λ ∈ Rn×k and Φ ∈ Rn×L as the first k+L eigenvectors of Q>Q. Draw anew
each time p ∼ U [0, 1] to generate factors f1, . . . , fT+1 ∈ Rk and g1, . . . , gT+1 ∈ RL as
simple AR(1)-processes:

(i) fj1 ∼ N (0, 1)⇒ fjt = pfjt−1 + εt with εt
iid∼ N (0, 1− p2) for j = 1, . . . , k

(ii) gj1 ∼ N (0, 1)⇒ gjt = pgjt−1 + εt with εt
iid∼ N (0, 1− p2) for j = 1, . . . , L

• Step 3: For t = 1, . . . , T+1 draw iid ut ∈ Rn from a multivariate normal distribution
with µ = 0 ∈ Rn and Σ = In and εt ∼ N (0, 1) to compute y ∈ Rt and data matrix
X̃ =

(
x̃1 . . . x̃n

)
∈ R(T+1)×n with

x̃t = η (Λft + Φgt) + ut

yt = δyt−1 + β>ft + εt

For initial value draw y0 ∼ N (0, 1).

• Step 4: Standardize X̃ to get X.

• Step 5: Repeat Step 2 to Step 4 N -times to get Monte-Carlo-Simulations(
X(1), y(1)

)
, . . . ,

(
X(N), y(N)

)

For each number L = 0, 1, . . . , 9 and η = 0.25, 0.50, 0.75, 1, Monte-Carlo-simulations were
carried out with N = 1, 000 runs. In each run, a sample of T = 200 observations and
n = 50 different variables in X are generated as well as a sample of the target variable y.
To measure the forecasting accuracy, xT+1 and yT+1 are generated in each case and each
run. Therefore, the one-step-ahead mean squared error (MSE) or out-of-sample-MSE can
be evaluated on the basis of 1, 000 different runs. The in-sample-R2 is evaluated in each run
and averaged in the end as well. While this is of less interest when focusing on forecasting,
it may be helpful to interpret the results.

37



DGP I Average in-sample-R2

IRSLS SLS PCA PCovR with θ =
η L 0.2 0.4 0.6 0.8

0 0.405 0.482 0.385 0.502 0.505 0.505 0.505
1 0.414 0.489 0.390 0.504 0.506 0.506 0.506
2 0.420 0.494 0.393 0.505 0.507 0.507 0.507
3 0.424 0.493 0.397 0.503 0.505 0.505 0.505

0.25 4 0.432 0.499 0.403 0.509 0.510 0.510 0.510
5 0.432 0.501 0.404 0.508 0.509 0.509 0.509
6 0.440 0.507 0.411 0.510 0.511 0.511 0.511
7 0.448 0.507 0.419 0.512 0.513 0.513 0.513
8 0.446 0.509 0.417 0.510 0.511 0.511 0.511
9 0.452 0.513 0.422 0.513 0.514 0.514 0.514
0 0.462 0.550 0.403 0.551 0.552 0.551 0.551
1 0.473 0.548 0.411 0.552 0.553 0.553 0.552
2 0.480 0.555 0.417 0.553 0.554 0.554 0.554
3 0.483 0.555 0.425 0.553 0.554 0.553 0.553

0.50 4 0.491 0.557 0.432 0.558 0.558 0.558 0.558
5 0.491 0.557 0.434 0.556 0.557 0.557 0.556
6 0.501 0.561 0.444 0.559 0.560 0.559 0.559
7 0.502 0.563 0.449 0.560 0.560 0.560 0.560
8 0.504 0.565 0.453 0.560 0.560 0.560 0.560
9 0.507 0.566 0.460 0.563 0.563 0.563 0.563
0 0.564 0.617 0.457 0.608 0.607 0.606 0.605
1 0.565 0.616 0.469 0.610 0.608 0.607 0.607
2 0.567 0.617 0.475 0.610 0.609 0.609 0.608
3 0.569 0.617 0.484 0.611 0.610 0.609 0.608

0.75 4 0.574 0.623 0.493 0.615 0.614 0.613 0.613
5 0.570 0.620 0.495 0.613 0.612 0.612 0.611
6 0.574 0.617 0.506 0.616 0.615 0.615 0.614
7 0.576 0.620 0.511 0.616 0.616 0.615 0.615
8 0.577 0.621 0.516 0.617 0.617 0.616 0.616
9 0.580 0.624 0.521 0.620 0.619 0.619 0.618
0 0.642 0.672 0.551 0.660 0.656 0.654 0.653
1 0.643 0.669 0.557 0.661 0.658 0.656 0.655
2 0.642 0.674 0.560 0.662 0.659 0.657 0.656
3 0.639 0.671 0.565 0.662 0.660 0.658 0.657

1.00 4 0.642 0.674 0.573 0.666 0.663 0.662 0.661
5 0.633 0.670 0.572 0.664 0.662 0.661 0.660
6 0.638 0.668 0.580 0.667 0.665 0.663 0.663
7 0.638 0.668 0.583 0.667 0.665 0.664 0.663
8 0.639 0.672 0.588 0.668 0.666 0.665 0.665
9 0.640 0.672 0.591 0.668 0.666 0.665 0.665

Table 3.1: Average in-sample-R2 of N = 1, 000 draws given η and L
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DGP II Average in-sample-R2

IRSLS SLS PCA PCovR with θ =
η L 0.2 0.4 0.6 0.8

0 0.842 0.858 0.837 0.850 0.850 0.850 0.850
1 0.841 0.854 0.835 0.847 0.847 0.847 0.847
2 0.842 0.856 0.836 0.848 0.848 0.848 0.848
3 0.847 0.860 0.840 0.851 0.851 0.851 0.851

0.25 4 0.846 0.858 0.839 0.850 0.850 0.850 0.850
5 0.846 0.858 0.840 0.850 0.850 0.850 0.850
6 0.851 0.863 0.843 0.853 0.854 0.853 0.853
7 0.855 0.866 0.848 0.857 0.857 0.857 0.857
8 0.854 0.865 0.847 0.856 0.857 0.857 0.857
9 0.851 0.862 0.844 0.853 0.854 0.854 0.854
0 0.856 0.875 0.842 0.860 0.860 0.860 0.860
1 0.854 0.871 0.840 0.858 0.857 0.857 0.857
2 0.856 0.873 0.841 0.858 0.858 0.858 0.858
3 0.861 0.877 0.846 0.862 0.862 0.862 0.862

0.50 4 0.860 0.875 0.846 0.861 0.861 0.861 0.861
5 0.861 0.873 0.847 0.861 0.861 0.861 0.861
6 0.864 0.877 0.851 0.864 0.864 0.864 0.864
7 0.868 0.881 0.855 0.868 0.868 0.868 0.868
8 0.867 0.880 0.856 0.868 0.868 0.868 0.867
9 0.865 0.877 0.853 0.865 0.865 0.865 0.865
0 0.880 0.892 0.854 0.875 0.874 0.873 0.873
1 0.877 0.890 0.853 0.872 0.871 0.871 0.871
2 0.878 0.889 0.856 0.873 0.872 0.872 0.872
3 0.882 0.893 0.860 0.877 0.876 0.876 0.875

0.75 4 0.880 0.891 0.860 0.876 0.875 0.875 0.875
5 0.879 0.890 0.861 0.876 0.875 0.875 0.875
6 0.883 0.892 0.865 0.879 0.879 0.878 0.878
7 0.885 0.895 0.870 0.883 0.883 0.882 0.882
8 0.885 0.894 0.870 0.882 0.882 0.882 0.881
9 0.883 0.891 0.868 0.880 0.880 0.880 0.880
0 0.900 0.907 0.877 0.890 0.888 0.887 0.886
1 0.897 0.904 0.875 0.888 0.886 0.885 0.885
2 0.898 0.904 0.877 0.889 0.887 0.886 0.886
3 0.900 0.906 0.880 0.892 0.890 0.890 0.889

1.00 4 0.900 0.906 0.882 0.893 0.891 0.891 0.891
5 0.897 0.903 0.881 0.891 0.890 0.889 0.889
6 0.898 0.906 0.884 0.894 0.893 0.892 0.892
7 0.901 0.907 0.888 0.897 0.896 0.895 0.895
8 0.901 0.907 0.888 0.897 0.896 0.895 0.895
9 0.898 0.905 0.886 0.895 0.894 0.894 0.894

Table 3.2: Average in-sample-R2 of N = 1, 000 draws given η and L
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DGP I Out-of-sample-MSE
IRSLS SLS PCA PCovR with θ =

η L 0.2 0.4 0.6 0.8
1 0.684 0.740 0.691 0.813 0.828 0.833 0.835
2 0.665 0.724 0.669 0.818 0.840 0.847 0.850
3 0.655 0.707 0.672 0.776 0.794 0.800 0.802

0.25 4 0.674 0.762 0.692 0.837 0.854 0.860 0.862
5 0.703 0.781 0.710 0.854 0.869 0.874 0.876
6 0.746 0.826 0.754 0.877 0.894 0.900 0.903
7 0.680 0.745 0.690 0.800 0.814 0.819 0.821
8 0.640 0.717 0.646 0.768 0.783 0.788 0.790
9 0.687 0.752 0.706 0.798 0.808 0.811 0.813
0 0.626 0.636 0.638 0.695 0.715 0.721 0.724
1 0.657 0.687 0.669 0.752 0.769 0.774 0.777
2 0.633 0.669 0.645 0.756 0.779 0.787 0.791
3 0.622 0.640 0.642 0.710 0.730 0.736 0.739

0.50 4 0.644 0.695 0.665 0.771 0.790 0.796 0.799
5 0.670 0.711 0.681 0.781 0.798 0.803 0.806
6 0.706 0.722 0.714 0.789 0.807 0.813 0.816
7 0.693 0.732 0.723 0.772 0.784 0.788 0.790
8 0.612 0.665 0.618 0.696 0.710 0.715 0.718
9 0.642 0.663 0.660 0.719 0.731 0.736 0.738
0 0.549 0.540 0.590 0.601 0.623 0.631 0.635
1 0.587 0.585 0.610 0.666 0.687 0.694 0.698
2 0.561 0.585 0.570 0.671 0.698 0.707 0.711
3 0.552 0.550 0.578 0.625 0.647 0.654 0.658

0.75 4 0.582 0.607 0.599 0.683 0.703 0.710 0.713
5 0.603 0.606 0.615 0.686 0.705 0.712 0.716
6 0.626 0.624 0.635 0.678 0.698 0.704 0.708
7 0.632 0.643 0.649 0.670 0.683 0.688 0.690
8 0.553 0.568 0.560 0.610 0.626 0.631 0.634
9 0.584 0.580 0.583 0.629 0.644 0.649 0.651
0 0.469 0.457 0.485 0.513 0.539 0.548 0.553
1 0.494 0.497 0.511 0.584 0.611 0.621 0.626
2 0.487 0.499 0.479 0.584 0.614 0.625 0.631
3 0.472 0.472 0.482 0.545 0.570 0.579 0.584

1.00 4 0.513 0.524 0.508 0.594 0.616 0.624 0.628
5 0.519 0.505 0.522 0.596 0.619 0.628 0.632
6 0.521 0.505 0.501 0.566 0.585 0.592 0.596
7 0.554 0.547 0.552 0.584 0.600 0.605 0.608
8 0.517 0.495 0.505 0.549 0.566 0.572 0.575
9 0.524 0.526 0.502 0.573 0.590 0.596 0.599

Table 3.3: Out-of-sample-MSE based on N = 1, 000 draws given η and L
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DGP II Out-of-sample-MSE
IRSLS SLS PCA PCovR with θ =

η L 0.2 0.4 0.6 0.8
0 0.184 0.187 0.185 0.202 0.204 0.205 0.205
1 0.179 0.187 0.179 0.201 0.203 0.203 0.204
2 0.187 0.197 0.188 0.210 0.212 0.213 0.213
3 0.180 0.195 0.182 0.201 0.203 0.204 0.204

0.25 4 0.195 0.211 0.197 0.229 0.231 0.232 0.232
5 0.178 0.190 0.178 0.197 0.199 0.200 0.200
6 0.169 0.185 0.171 0.188 0.190 0.190 0.191
7 0.181 0.193 0.185 0.205 0.206 0.207 0.207
8 0.180 0.204 0.186 0.198 0.200 0.201 0.201
9 0.160 0.173 0.167 0.183 0.183 0.184 0.184
0 0.177 0.180 0.182 0.195 0.198 0.199 0.199
1 0.173 0.177 0.175 0.193 0.196 0.197 0.197
2 0.178 0.180 0.181 0.201 0.204 0.205 0.206
3 0.175 0.183 0.178 0.193 0.196 0.197 0.197

0.50 4 0.190 0.199 0.194 0.222 0.225 0.226 0.226
5 0.170 0.177 0.170 0.188 0.191 0.191 0.192
6 0.162 0.173 0.164 0.176 0.178 0.179 0.179
7 0.175 0.183 0.179 0.194 0.196 0.196 0.196
8 0.174 0.186 0.181 0.194 0.195 0.196 0.196
9 0.189 0.202 0.191 0.222 0.225 0.227 0.227
0 0.161 0.161 0.166 0.180 0.184 0.186 0.187
1 0.156 0.155 0.164 0.179 0.183 0.184 0.185
2 0.161 0.157 0.162 0.183 0.188 0.189 0.190
3 0.161 0.161 0.165 0.179 0.183 0.184 0.184

0.75 4 0.175 0.178 0.181 0.204 0.208 0.209 0.210
5 0.156 0.153 0.156 0.172 0.175 0.176 0.177
6 0.147 0.148 0.148 0.159 0.161 0.162 0.162
7 0.163 0.169 0.161 0.176 0.178 0.178 0.179
8 0.163 0.168 0.168 0.179 0.182 0.182 0.183
9 0.175 0.176 0.174 0.204 0.208 0.209 0.210
0 0.143 0.140 0.140 0.163 0.170 0.172 0.173
1 0.138 0.133 0.139 0.161 0.167 0.169 0.170
2 0.139 0.139 0.137 0.164 0.170 0.172 0.173
3 0.145 0.147 0.143 0.161 0.166 0.168 0.169

1.00 4 0.139 0.139 0.134 0.157 0.162 0.163 0.164
5 0.141 0.140 0.139 0.154 0.158 0.159 0.160
6 0.131 0.125 0.126 0.140 0.143 0.145 0.145
7 0.143 0.144 0.146 0.160 0.163 0.164 0.165
8 0.146 0.150 0.147 0.160 0.163 0.164 0.165
9 0.157 0.150 0.150 0.181 0.185 0.187 0.188

Table 3.4: Out-of-sample-MSE based on N = 1, 000 draws given η and L
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3.4.2 Results

The average in-sample-R2 values are summarized in Tables 3.1 and 3.2. The value of R2

clearly increases on average when the signal-to-noise ratio increases. Increasing the number
of additional factors has the same effect as this also makes the signal-to-noise ratio larger.
This was to be expected since a stronger signal in X allows for a better estimation of the
factors. Between the models, the PCovR models and the simple SLS method perform better
than IRSLS and PCA with regard to the R2.
This changes when considering the results of the out-of-sample-MSE, which are summarized
in Tables 3.3 and 3.4. Here, IRSLS, SLS and also PCA perform significantly better than
PCovR. If, in addition, the factor η is small (0.25 and 0.50), the IRSLS model proves to be
the strongest model compared to not only SLS but also PCA. However, this prevalence is
not as pronounced for high values of η (0.75 and 1.00) as there are some cases where PCA
in particular produces better results. It can thus be concluded that a high signal-to-noise
ratio favors the classic PCA approach whereas the IRSLS approach works better than other
estimation approaches with a low signal-to-noise ratio.

3.5 Conclusion

The present chapter examines a factor model with a form of supervision that can be un-
derstood as a generalization of supervised factor models: All factors that are relevant for
the target variable are combined into one factor and estimated simultaneously using X

and y and additional variables z. The two-stage approach from classic factor analysis is
thus avoided. In addition to the derivation of the model, the IRSLS approach, which is
to be understood as a combination of the classic IRLS estimation and the SLS estimation,
presents an estimation method for this model and also the algorithmic implementation. A
simulation study also shows situations in which this model approach generates better out-
of-sample results than classic methods. In particular, the results of the simulation study
illustrate that the generalized form of supervision outperforms the PCovR approach and is,
therefore, preferable.
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Chapter 4

Algorithmic pre-screening for birth defects
using medical invoice data

4.1 Introduction

The provision of midwifery care is an integral part of a society’s healthcare system. Despite
the ongoing medical progress and the new technical possibilities of diagnostics, in rare cases,
severe human error can occur in this field that causes the newborn child to suffer health
damages and permanent impairments from the birth process. Such damages, which cannot
be attributed to genetic or physiological malformations in the womb, but to misconduct on
the part of the person providing obstetrics, are called birth defects in the narrower sense.
In a welfare state, it goes without saying that those affected are adequately cared for or
compensated in such cases and that, in addition to damage prevention measures, provisions
are also made to settle possible damages. The different payers in the healthcare system
pursue this mandate. While better healthcare reduces the frequency of damage in the field
of obstetrics, the simultaneous increase in life expectancy of the children affected and the
associated longer duration of expenditures for therapy, loss of earnings and compensation for
pain and suffering, has brought about a substantial rise in costs when damage does occur.
For example, the Association of German Insurers (GDV) states that for the years 2003
to 2020 alone, the average claims expenditure for severe birth defects more than doubled
from EUR 1.5 million to EUR 3.7 million per damaged child1. Detecting birth defects and
correctly classifying them is, therefore, not only in the interest of those involved as well as
the general public so that further preventive measures can be developed, but also affects the
economic interests of all payers in the healthcare system.
The aim of this work is to discuss the possibility of an algorithmic pre-screening for birth
defects using medical invoice data. So far, a preliminary check in the sense of a preselection
based on these data is carried out manually by a human decision-maker. However, there
are some works in the literature that address the possibility of an algorithmic replication
of human decisions, above all, but not only, in economic business processes. In the field of

1https://www.gdv.de/de/themen/news/behandlungsfehler-warum-die-
schicksalsschlaege-immer-hoehere-kosten-verursachen-84998
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machine learning in particular, there are numerous papers that even propagate an improved
decision-making process through the use of algorithmic structures, or at least suggest that
such structures can map the human decision-making calculus sufficiently well and can thus
contribute to gains in efficiency. One example is the work of Harding and Vasconcelos
(2022). It provides evidence that bank managers’ decisions on credit risk assessment issues
can be replicated using machine learning methods. The present work follows a very similar
approach but pays special attention to two aspects: On one hand, the special structure of
the invoice data analyzed here entails some challenges and peculiarities. On the other hand,
as explained in the introduction, birth defects are rare events. This aspect is of central
importance to the modeling. Before discussing these aspects, we focus contextualizing the
term ’data mining’ in the existing literature and describing it in more detail with the help of a
process model in the second section. The subsequent two sections are based on the phases of
this process model and refer back to the two aspects already mentioned: In particular, after
the specification of the research question in the third section, strategies and modifications
of algorithms, which can favor the prognosis of rare events, are shown in the fourth section.
Furthermore, the various possible algorithms are applied to the correspondingly prepared
data and a performance comparison is carried out. The fifth and last section closes with a
brief summary and assessment of the results.

4.2 Data Mining as generic cyclical model

Figure 4.2.1: CRISP-DM, figure taken from Chapman et al. (2000).
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Data mining processes are the subject of numerous scientific works. Due to the growing
importance of data, they have also increasingly come into focus of companies’ economic
interests. This is not surprising provided that data mining processes are meant to describe
the algorithmic "mining" of information from data. In a second step, this information serves
as the basis for economic decision-making. With the model of the cross-industry standard
process for data mining (abbreviated ’CRISP-DM’), a standardized method for data mining
in an economic context was developed in the late 1990s. It is shown in Figure 4.2.1. This
draft model is the starting point for many further developments in the field of data mining.
However, due to the fact that it is a highly idealized model, which one has to deviate from
in practice for various reasons, some modifications of CRISP-DM exist in the literature. In
this work, we refer to the modification of Reuß and Zwiesler (2006) who embed the data
mining process in a generic cyclical model and apply it to a industry case study. They
convert the various work steps of CRISIP-DM into four working phases:

(I) Specification of the research question

(a) Specification of the goals and framework conditions

(b) Analysis of the data basis

(II) Execution of the data mining analysis

(a) Pre-processing of the data

(b) Model-based Analysis of the data

(c) Evaluation of the results

(III) Conversion of the findings into actionable steps (measures)

(a) Derivation of appropriate actionable steps

(b) Implementation of appropriate actionable steps

(IV) Measurement and evaluation of the results

Phase (III) includes interventions in the operative businesses of the different payers in the
healthcare system and phase (IV) concerns the measurement and evaluation of these inter-
ventions. Therefore, this work can only discuss phases (I) and (II) because they can run
independent of the different business processes as well as different types of payers in the
healthcare system. In addition, phase (I) deals solely with the data basis and its interaction
with the underlying business question while phase (II) addresses further aspects such as
model selection and the associated rare event problem.
These first two phases of the circular model by Reuß and Zwiesler (2006) are adapted to
the problem at hand and combined to form a separate process model:
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(1) Defining the research question

(a) Defining the research question based on the business process

(b) Defining the research question based on the database

(2) Data mining analysis

(a) Data preparation

(b) Modeling

(c) Evaluation

The second phase of this modification is more strongly oriented towards CRISP-DM again.
In contrast, the first phase takes up the suggestions of Reuß and Zwiesler (2006) (i) to narrow
down the question, (ii) to include the definition of the goals of a data mining analysis as
a separate step in the process and (iii) to link it to the initial analysis of the database.
Since the underlying business process in the detection of birth defects and the use of invoice
data from the medical field are associated with some challenges and restrictions, such an
independent consideration is worthwhile here as well.

4.3 Defining the research question

4.3.1 Defining the research question based on the business process

The economic importance of pre-screening for birth defects has already been explained in the
introduction. This section discusses the concrete implementation of such a screening in the
business process in more detail. Said implementation is shown schematically in Figure 4.3.2.
In a first step, if an employee of a payer in the healthcare system discovers anomalies in
the invoice data of a newborn or is persuaded to do so by external sources (e.g., by a call
from the parents), she or he notes that the newborn child in question should be examined
further for possible birth defects (Notice). The subsequent steps, namely contacting the
parents (Inform) and initiating an official examination for birth defects (Investigate) do not
necessarily have to follow the first step. They are also not documented in the data on which
this work is based. This results in the decisive limitation for the objective of algorithmic
pre-screening for birth defects: Such a screening cannot be carried out to determine whether
birth defects really exist or not. Instead, it determines whether or not a human decision-
maker would recommend further testing for birth defects in a given case. Due to this
limitation resulting from the database, the actual goal is to replicate human decision-making
in a given case as precisely as possible rather than improving it.

46



 

Step I: 
Notice

Step II: 
Inform

Step III: 
Investigate

 

 

………………………

………………………

………………………

………………………

………………………

………………. § 
Figure 4.3.2: Detection of birth defects

4.3.2 Defining the research question based on the database

We analyze invoices of over 30,000 children born between October 2019 and December 2020.
During this period, there were fewer than 750 children who received a note and had billing
data at all, but more than 100 children with a note but no bills. The assumption here is
that the human decision-maker did not base his decision on invoice data but on external
sources. However, the data analyzed in this work does not conclusively prove this. Limiting
the analysis to an informative database, i.e., from the 30,000 to the 25,000 children for
whom any billing data are available, demonstrates that the existence of a note regarding
birth defects is a highly rare occurrence: Less than 3% of the children were issued such a
note. Said billing data includes the following information per bill for each child:

• Amount to pay [EUR]

• Days in Hospital [0,1,2...]

• Treatment [Different categories]

• Diagnoses [ICD-10-Codes]

• Quality of these diagnoses [sure/unsure]

• Months between birth and treatment [0,1,2...]

• Months between birth and payment [0,1,2...]

Only the payment amount and the temporal variables are scaled numerically; the diagnoses,
types of treatment and the variable that reflects the quality of the diagnosis are categorical
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variables. While an invoice is always assigned to only one type of treatment, it can have
multiple diagnosis codes. Regarding the temporal variables, the number of months between
the child’s birth and the payment of the bill contains a key piece of information: It specifies
the point in time - relative to the birth of the respective child - at which a payer in the
healthcare system finds out about the treatment for which it has to pay. This is more infor-
mative than the moment of treatment itself as solely the facts known to the employee of the
respective payer in the healthcare system when making the decision determine the outcome.
Therefore, the number of months between payment and birth rather than the number of
months between treatment and birth is considered for the purposes of this analysis. Just
like the billing information, the birth defect notes also document the number of months
between the note and the birth for each child. Figure 4.3.3 shows the number of entries
made until the respective month after the birth of the child in question relative to all entries:
It is noteworthy that two-thirds of all entries are made within the first quarter after the
birth of the respective child. Almost 95% of all entries are made within the first six months
after the birth of the respective child. In other words, in the event of a child receiving a
birth defect note, the probability that this occurs within the first six months of the child’s
life is extremely high. This would justify a simple cross-sectional as opposed to a panel
data structure: For each child, the billing data of all bills that were incurred in the first
six months after birth could be summarized. Based on these aggregated values, a decision
could then be made as to whether or not a note should be made regarding birth defects.
Taking this in account, the number of invoices which have to be analyzed is still over 140,000.

Figure 4.3.3: Ratio of detections in a given month after birth relative to all detections.

Before this invoice data information is processed further in the course of the subsequent data
mining analysis (phase (2)), something fundamental about this database must be noted:
Concluding from such invoice data whether there may be birth defects assumes that the

48



bills provide information on the child’s health. This assumption can be viewed critically:
On one hand, it must be clarified whether the number of days spent in the hospital, the
respective treatment group and, in particular, the diagnoses that are made really adequately
reflect the child’s medical condition. On the other hand, and more generally speaking, the
quality of the data, i.e., whether the specified values really correspond to the actual values,
has to be determined. At least with regard to the diagnoses, arguments that substantiate
the basic assumption of a connection between the children’s billing and health data can be
found for both sides. There already is some literature that successfully draws conclusions
regarding a diagnosed person’s medical condition through analyzing diagnoses in the form
of ICD-10-Codes (e.g., Baumel et al. (2018), Sailer et al. (2015) or Burkul et al. (2020)):
Burkul et al. (2020), for example, performed a decision tree-based analysis of ICD-10-Codes
to further investigate the relationship between mortality and the medical equipment used
that poses a risk of infection. Their goal is to use data mining analysis to make more precise
predictions as to which devices pose a higher risk of infection, measured with regard to
the disease the patient has been diagnosed with. They also use machine learning methods
and reconstruct the patient’s medical condition from the ICD-10-Codes. With regard to
the data quality, the information about the degree of certainty with which a diagnosis was
made is another piece of meaningful information. It can decisively relativize or correct the
informative value of the diagnosis. Nonetheless, the question whether the computational
data can really measure what it is intended to remains a valid point of discussion, even
though it should be noted (once more) that the goal has been limited to the replication, and
not improvement, of human decision-making. Therefore, the data are meaningful as long as
they are able to accurately replicate the human decision-making process, regardless of how
precise the human decision in relation to issuing birth defect notes actually is.

4.4 Data mining analysis

4.4.1 Data preparation

While the analysis of the data in the first working phase only served to define the research
question more precisely, the pre-processing of the data in the second working phase focuses
on the selection of the specific data mining method: The method to be chosen has to be
adjusted to the question as well as to the existing database (cf. Reuß and Zwiesler (2006)).
As already mentioned, the diagnoses documented on the invoices in the form of ICD-10 codes
are particularly suitable for assessing the state of health of the child in question. However,
the ICD-10 codes are categorical variables with a large number of characteristics and also
feature incorrect entries that arose from the digitization of the handwritten diagnoses by
doctors. This, in turn, must be taken into account when choosing the method: Some
algorithms are certainly capable of processing categorical variables. One could deal with
this problem by using dummy variables, an approach that is very common in these cases
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(cf. Hastie et al. (2001)). However, the number of diagnoses differs from one invoice to
the next. The difference in diagnoses documented could be informative with regard to the
child’s medical condition: A healthy child is likely to have fewer diagnoses documented than
a sick child. The invoice data should, therefore, be transformed in such a way that it reflects
this information. Coding using dummy variables can only achieve this to a limited extent.
Instead, a different transformation was carried out: To begin with, since the first digit of
the code corresponds to a specific disease category (all main disease categories according
to ICD-10 can be found in the appendix), the individual ICD-10-codes were summarized
in main diagnoses. After summarizing these main diagnoses, the number and the amounts
of all invoices for each child that were known to the respective payer within the first six
months after the birth of that child and carried the respective main diagnosis were added up.
Furthermore, the average quality per main diagnosis were determined by averaging the value
of a dummy variable 1/0 coding "sure"/"unsure" from all corresponding invoices. Instead of
a simple dummy variable, the result generated was the total medical cost associated with
a main diagnosis per child within the first six months after birth. Seven different main
diagnoses occur on the invoices with a relative frequency of > 3%:

• A/B: Certain infectious and parasitic diseases

• J: Diseases of the respiratory system

• M: Diseases of the musculoskeletal system and connective tissue

• P: Certain conditions originating in the perinatal period

• Q: Congenital malformations, deformations and chromosomal abnormalities

• R: Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere
classified

• Z: Factors influencing health status and contact with health services

The remaining diagnoses were summarized under "Rare" (see Figure 4.4.4). In doing so,
we generate 24 numerical variables (7 main diagnoses and Rare with 3 variables each) from
the database per child. However, in both groups of children (with/without note, coded by
1/0), there are still children with no registered diagnoses at all (see Table 4.1) but other
cases of an accumulation of invoices (and therefore registered diagnoses). As a consequence,
the total number of invoices is still higher than the total number of children (cf. 4.4.4).
Of these main diagnoses, category P is of particular interest as this code summarizes all
pathological conditions that record damage to the newborn that was caused during birth.
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Figure 4.4.4: Number of invoices per main diagnoses.

main diagnose with note [1] without note [0]
A/B 25.23% 18.03%
J 15.51% 11.18%
M 11.34% 11.99%
P 73.03% 14.99%
Q 30.32% 17.84%
R 32.18% 19.61%
Z 76.04% 55.66%

Rare 55.79% 33.48%
None 19.79% 35.33%

Table 4.1: Percentage of children (grouped by notes) with at least one invoice on which the
corresponding main diagnose is registered.

Accordingly, these could be birth defects in the narrower sense. Diagnosis Z, similar to
diagnosis R, is a quite unspecific term for all pathological conditions that lead to a strain
on or utilization of the health care system without the origin of the disease being clear. It
is precisely this diagnosis that is made most frequently in both groups (cf. 4.4.4). However,
a clear difference becomes apparent here as well: While slightly more than every other child
without a note has been diagnosed with Z, the diagnosis occurred in more than 75% of the
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children with a note. In addition, half of children with potential birth defects are diagnosed
with a rare diagnosis, compared to only one-third of children without birth defects. Also,
the proportion of children without any registered diagnosis in the group of children without
a note is almost twice as large as in those who received one. Accordingly, more diagnoses,
especially those falling in the P, Z and "Rare" categories, are documented for children with
possible birth defects than for children without a corresponding note. Examining the 24
diagnosis-specific variables exploratively confirms this finding: For each main diagnosis X,
Figures 4.4.6 and 4.4.5 below and Figures A.3.1 to A.3.6 in the appendix show the box plots
of the total invoice amount Sum.X, the number N.X of associated invoices and the average
measured quality n.X of the respective diagnosis. All boxplots were created separately for
both groups (1 = blue, 0 = white) based on the number of children who had at least one
invoice with the respective main diagnosis (i.e., those children whose share is registered in
Table 4.1). For the sake of clarity, outliers, i.e., values that exceed 1.5 times the upper
quartile, were excluded. However, the proportion of these outliers is negligible at less than
0.5% per diagnosis. Whereas for diagnosis M no differences between the two groups are
observable, the boxplots of the invoice amounts for diagnose P is clearly in the higher
numerical range for group 1 while the boxplots are almost completely at 0 for group 0.
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Figure 4.4.5: Boxplots of main diagnose M.
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Figure 4.4.6: Boxplots of main diagnose P.
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The same observation can be made for the boxplots on the average diagnosis quality. What
is more, the number of bills displays the same finding. Not only have children with a birth
defect been diagnosed more often than children without one, the associated invoice amounts
and the number of invoices per main diagnosis are also higher on average. This is also true
for the average quality of the diagnosis, i.e., the doctors are more certain of their diagnosis
when treating children with a note than when they treat those without one. What is shown
here for diagnose P can also be observed for diagnoses Z and "Rare" (see appendix).
The same was done with the types of treatment. Due to the manageable number of charac-
teristics, a total of nine categories, a pre-selection was not necessary:

• OT: Outpatient treatment

• MR: Medical remedies

• HP: Homeopathic practitioner

• MA: Medical aids

• RS: Rehabilitation stay

• MD: Medications

• CS: Care services

• IT: Inpatient treatment

• DT: Dental treatment

treatment with note [1] without note [0]
OT 66.44% 68.57%
MR 12.27% 5.12%
HP 20.37% 20.73%
MA 14.70% 6.93%
RS 0% 0%
MD 68.63% 67.60%
CS 3.82% 0.28%
IT 75.58% 18.58%
DT 0.93% 1.03%
None 16.55% 23.52%

Table 4.2: Percentage of children (grouped by notes) with at least one invoice on which the
corresponding treatment is registered.
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Figure 4.4.7: Number of invoices per treatment group.

With regard to these different types of treatment, differences can also be seen on an ex-
ploratory level. However, they are less stark than those that occur with the diagnoses
made: Just like with the diagnoses, the total invoice amount and the number of invoices
for the first six months after birth of a given child were determined. None of the children
had a rehabilitation stay (RS), therefore, this treatment will be dropped. Also, most of
the treatments seem to have no differences between both groups. However, looking at Ta-
ble 4.2, which, like 4.1, shows the proportion of children per group for whom there is at
least one invoice with the respectively associated type of treatment, it should be noted that
differences between the groups can be observed with regard to the medical remedies (MR)
and the medical aids (MA) as well as the inpatient treatments (IT). In those instances,
the differences are very apparent: Relatively speaking, children with a note need a medical
remedy or medical aid twice as often as those without one. With inpatient treatment, the
difference is even more significant: While in group 0, less than one in five children has an
invoice for an inpatient treatment, one was recorded for three out of four children with
a note. This trend continues in the exploratory analysis when looking at the boxplots in
Figures A.3.7 to A.3.13 in the appendix and in Figure 4.4.8 below:
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Figure 4.4.8: Boxplots of inpatient treatment (IT).

The total costs for inpatient stays are on average significantly higher, as is the total number
of bills. Children with possible birth defects are, therefore, treated more often in a hospital
and their stay is more expensive. The variable Days in Hospital whose boxplot can be
found in Figure 4.4.9 supports this finding: While children without a note spend almost no
day in the hospital within the first six months of their life, 50% of the children with a note
undergo almost 20 days of inpatient treatment.
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Figure 4.4.9: Boxplot of the Days in Hospital.

The exploratory analysis thus leads to the conclusion that the transformation of the database
or its transfer into 41 numerical variables (24 from the diagnoses, 8 treatments with 2
variables each and the variable Days in Hospital) provides a meaningful basis for further
model-based analysis. Before looking at this model-based analysis, it is important to point
to the correlation analysis of the diagnoses and types of treatment: Within the variables
that relate to the diagnoses or types of treatment, only low values can be observed (see
Figures A.3.14 and A.3.15 in appendix). Only the total invoice amount of the diagnoses P,
Z and Q and "Rare" show a stronger correlation. Between the diagnoses and the types of
treatment, there are sometimes strong correlations between the variables of the diagnoses P,
Q, R, Z and "Rare" (rows of Table 4.3) to the total invoice amount and number of inpatient
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treatments (IT) and Days in Hospital (columns of Table 4.3). The findings also allow
for a reconstruction of the children’s medical condition from the overall consideration of the
invoice data if a transformation with regard to the main diagnoses and types of treatment
takes place.

correlation Sum.IT N.IT Days in Hospital
Sum.P 0.770 0.260 0.665

N.P 0.684 0.549 0.739
n.P 0.418 0.647 0.527

Sum.Q 0.537 0.223 0.384
N.Q 0.263 0.253 0.228
n.Q 0.371 0.363 0.360

Sum.R 0.462 0.202 0.348
N.R 0.112 0.194 0.127
n.R 0.263 0.356 0.271

Sum.Z 0.737 0.289 0.646
N.Z 0.232 0.319 0.264
n.Z 0.397 0.650 0.479

Sum.Rare 0.579 0.222 0.435
N.Rare 0.273 0.370 0.274
n.Rare 0.308 0.460 0.323

Table 4.3: Correlation analysis of diagnoses P, Q, R, Z and "Rare" (rows) to the total in-
voice amount, number of inpatient treatments and Days in Hospital (columns).

4.4.2 Modeling

The exploratory analysis of the data allows for the conclusion that some variables, partic-
ularly those associated with the diagnosis P, can explain the target variable. This justifies
the use of regression-based models. The advantage of these models over alternative mod-
els is the possibility of evaluating the relevance of individual explanatory variables for the
target variable and, thus, deriving a possible factual connection from the model analysis.
Especially in this application context that aims to replicate the human decision algorithmi-
cally, the use of algorithms, which could also be interpreted, would be easier to justify. In
her fundamental article, Rudin (2019) explains that it makes more sense to use models that
can be interpreted directly, particularly when applied in the health sector, instead of using
black-box models such as artificial neural networks and striving to explain their results after
use. She further elaborates that a lack of interpretability of the models is not inevitably
compensated by better performance. The present work, therefore, deals, on the one hand,
with the application of different variations of logistic regression and uses, on the other hand,
variants of the random forest model, an algorithm from the field of machine learning, which
is also able to map the importance of the individual explanatory variables, as a benchmark.
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The different variations of these models also result from the necessity to address the rare
event problem: Many models used for binary classification are based on the fact that both
classes are observed with the same frequency or that the costs resulting from an incorrect
classification are the same. Neither is true in our case: On one hand, birth defects are noted
much less often. On the other hand, the scenario in which a child is mistakenly considered
healthy so that no examination for birth defects is carried out results in significantly higher
costs compared to the alternative in which a healthy child is examined for birth defects
unnecessarily. As a consequence, this work faces a classic rare event problem.
Krawczyk (2016) distinguishes between three approaches that can address such problems:

• Data-level methods

• Algorithm-level methods

• Hybrid methods

While sampling methods are mainly used at the data-level to artificially guarantee the bal-
ance of the data, the methods used at the algorithm-level aim to make the underlying model
cost-sensitive to the underrepresented class (see Krawczyk (2016) for more details). These
two approaches, considered individually, eliminate the inequality with regard to the obser-
vation of both classes or the inequality with regard to the costs of an incorrect classification.
In order to do justice to both aspects of the rare event problem, the third approach of hybrid
methods, in which sampling methods are combined with modifications of the algorithms,
might be an alternative.
Logistic regression is one of the most widely used classification methods in econometrics and
is also used as a benchmark model in many works examining the performance of machine
learning methods. The basis of logistic regression is the assumption of a probabilistic model:

F (β, xi) := P(yi = 1|xi) = 1
1 + exp(−x̃>i β)

for β ∈ Rm+1 with x̃i = (1, xi) ∈ Rm+1 (4.4.1)

Based on this model, the associated log-likelihood is numerically maximized:

L(β,X, y) = ΣN
i=1 (yi log (F (β, xi)) + (1− yi) log (1− F (β, xi))) (4.4.2)

Two problems arise from this approach against the background of the rare event problem:
First of all, only a few summands in Formula 4.4.2 are observed at all with the value yi = 1
(= child with a note), which raises the question of whether there are enough cases at all to
adjust the model accordingly. To solve this problem, it is advisable to use sampling methods
(data-level method). Secondly, Formula 4.4.2 suggests that a misclassification causes the
same costs in both classes. In their work, Günnemann and Pfeffer (2017) use the latter
issue as a starting point to proceed to present various cost-sensitive approaches on how
the log-likelihood can be adjusted in the case of rare events: The aim of their work is to
use this adjustment to better adapt the logistic regression model to the classification of
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the rare class (algorithm-level method). However, this only succeeds if the costs generated
by misclassifying the rare events are known or can be reasonably estimated (see Günne-
mann and Pfeffer (2017) for details). This is not possible in our case as no corresponding
data on children who erroneously did not receive a birth defect note exists. Instead, we
would like to further develop another approach that takes up the idea of adjusting the log-
likelihood: Shen et al. (2020) supplement the cost-sensitive log-likelihood with the AUC
value of the associated ROC curve. In order to find the optimal parameterization β that
minimizes the costs and maximizes the AUC value, Shen et al. (2020) employ a particle
swarm optimization algorithm. Although our approach is very similar, we do not adjust the
log-likelihood with regard to possible cost parameters since we could not estimate them from
the data. Hence, we only add two penalty terms to the log-likelihood: The AUC penalty
term ρ log (AUC(β,X, y)) and a LASSO penalty term λ‖β‖1 (cf. Hastie et al. (2001)) to
account for possible multicollinearity in β:

H(β,X, y, ρ, λ) = L(β,X, y) + ρ log (AUC(β,X, y))− λ‖β‖1 (4.4.3)

As in Shen et al. (2020), a swarm particle optimization algorithm is used to search for the
optimal parameterization β for certain values of ρ and λ. It is implemented as follows:

Particle swarm algorithm

(I) Draw particles B0 = {β0
1 , . . . , β

0
P } by taking P times vector β and setting randomly

90% of the entries of β to 0 (=less chance for correlation in X).

(II) Draw directions V = {v0
1, . . . , v

0
P } with v0

k
iid∼ N (0, Im+1) with 0 ∈ Rm+1.

(III) Set {β∗1 , . . . , β∗P } = B0 (individual optimum) and compute β∗, whereas
H(β∗, X, y, ρ, λ) ≥ H(β∗k, X, y, ρ, λ) ∀ k = 1, . . . , P (global optimum).

(IV) For k = 1, . . . , P do:

(i) βi+1
k = βik + vik.

(ii) If H(βi+1
k , X, y, ρ, λ) > H(β∗k, X, y, ρ, λ): β∗k = βi+1

k (individual update).

(iii) If H(βi+1
k , X, y, ρ, λ) > H(β∗, X, y, ρ, λ): β∗ = βi+1

k (global update).

(iv) vi+1
k = r1v

i
k + r2(β∗k − β

i+1
k ) + r3(β∗ − βi+1

k ) with rq ∼ U [0, 1
3 ] for q = 1, 2, 3.

(V) Repeat (IV) until β∗ does not change due to a tolerance rate and set β̂ = β∗.
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Figure 4.4.10: Visualization of a particle swarm optimization in R2.

Illustration 4.4.10 shows how the algorithm works in the case of two variables: After de-
termining the log-likelihood solution (step I, see (a)), the particles are generated by setting
different entries of β to the value 0 (step II and III, see (b)). After that, the individual
particles are updated step by step, with each particle moving in the direction of the global
and the individual optimum while taking into account a certain inertia (steps IV.i to IV.iv,
see (c) to (e)). Finally, all particles reach the point at which the individual and global
optimum no longer differ (step V, see (f)). The precise location of this solution depends on
the hyper-parameters ρ and λ. A grid search is used to determine which values of ρ and
λ lead to the best result (more on this in the next section). With regard to the logistic
regression, two model variants ensue: The first one is the simple logistic regression that
uses oversampling to address the rare event problem (data-level method). We decide to
use oversampling according to the findings of Marqués et al. (2013): In their work, they
provide evidence that oversampling of the data generates better results than undersampling
because no relevant information from the database is left out. Our second model is the
AUC-corrected logistic regression in which the model is adjusted to the classification of rare
events by supplementing corresponding penalty terms in the log-likelihood (algorithm-level
method). Aside from these model variants, we will also consider a third approach: Instead
of the AUC with regard to the ROC curve, the AUC with regard to the precision-recall
curve (short: PR curve) is used in (4.4.3). We expect this to account for the rare event
problem to an even larger extent as there are some articles in the literature that recommend
the use of the PR curve instead of the ROC curve in the case of rare events (e.g. Davis

59



and Goadrich (2006), Sofaer et al. (2019) and Ozenne et al. (2015), more on this in the
next section). In order to distinguish both model variants from each other, we will speak
of a ROC-AUC-corrected logistic regression versus a PR-AUC-corrected logistic regression.
However, besides using a different AUC, the implementation remains the same.
Random forest from the field of machine learning will serve as a benchmark for these mod-
els: This algorithm is often contrasted with logistic regression in application papers, such
as Couronné et al. (2018). The authors of this paper justify the comparison of both models
with the fact that logistic regression has been widely used in classical statistics. This model
allows an interpretation of the coefficients and thus the influence of the individual variables
on the target variable. In contrast, random forest to some extend is a sort of a black box
offering only limited possibilities for interpretation. However, in many cases random forest
performs better than logistic regression (see Couronné et al. (2018)). For a brief illustration
of the algorithm developed by Breiman (2001), see Figure 4.4.11:
In step (I), N sets of data are created by bootstrapping. In step (II), an unpruned CART
decision tree is created on these data sets. In this decision tree, only a certain number of
randomly selected features (instead of the whole set) generate a decision rule for each split.
A new data point passes through all the decision trees in step (III). The respective trees then
assign it to one of the two classes. The relative number of trees assigning the data point to
a particular class is set as the probability that this point belongs to the corresponding class
(see Breiman (2001) for details). Random forest and logistic regression both have a proba-
bility as output which provides another argument for the comparability of both models. In
addition, random forest can be easily adapted to the rare event problem as the developer
of random forest himself explains in his 2004 paper (see Chen et al. (2004) for details): As
a first possibility, a weight adjustment can be made in step (II) during tree creation which
results in weighing the misclassification error of the rare class more heavily than that of the
common class (weighted random forest). In contrast, there is also the possibility of pulling
the bootstrap samples in step (I) separately from both classes in order to create balanced
data sets overall on which the decision trees are generated (balanced random forest). While
the weighted random forest belongs to the group of algorithm-level methods, the balanced
random forest is a data-level method. However, the weighted random forest approach cannot
be pursued further for the same reasons that have already been discussed in the framework
of the cost-sensitive logistic regression: As long as the costs of misclassifying a child with
birth defects are not documented, these costs cannot be calculated from the available data.
For this reason, the balanced random forest approach is being pursued further.
Another modification of the method is to be tried out on the data as well: In accordance
with the hybrid classification approach of the first chapter of this work, the balanced ran-
dom forest is applied to a DD-Plot of the data by referring back to the Mahalanobis depth.
When creating this DD-Plot, the inclusion of those variables that are present in a data nest
structure (see chp.1 for details) is also made a priority.
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Figure 4.4.11: Steps of random forest in R2.
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Figure 4.4.12: DD-Plots for three different combination of 5, 10 and 20 variables.

Figure 4.4.12 shows three different DD-Plots based on different combinations of variables:
As is to be expected from the theoretical explanations in the first chapter, the DD-Plot col-
lapses as the dimension increases. Whether the separation of the data increases depends on
how strong the data nest structure is. Ideally, a DD-transformation of the data can therefore
support the classification of rare events. However, this only applies if the plot has not yet
collapsed to such an extent that separation is no longer possible. A data transformation
(data-level method) in combination with a balanced random forest (also data-level method)
thus produces a fifth model which can be attributed to the data-level methods with regard
to the rare events problem as well.

4.4.3 Evaluation

The rare event problem must also be taken into account when measuring the performance
of the models as not all measures are suitable in this case. In addition, it is important to
consider the background of the data analysis in this context: The aim is to identify those
children who would be selected to be screened for birth defects by a human decision-maker.
Since all models generate probabilities as output, it would be possible to measure perfor-
mance using a confusion matrix, as shown in Figure 4.4.13. The entries in the matrix would
be evaluated for a specific threshold value π, but weighting would have to be carried out
due to the rare event problem. However, since such weights would be difficult to estimate,
another measure is preferable: The area under the curve (AUC). This approach works both
with the ROC as well as the PR curve and can be determined independently of a specific
threshold. Such a threshold is not suitable for the present application since the goal is to
carry out a possible birth defect screening. Accordingly, it is sufficient to make a list of the
N children to be examined, with children at the top of this list for whom the algorithm
assumes with a high probability that a human decision-maker would carry out a birth de-
fect test. This list would then be processed starting from the top over the first n < N

children depending on the test capacity. Consequently, it is not necessary to determine a
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Figure 4.4.13: Confusion-matrix with True-Positives (T+
π ), False-Positives (F+

π ), False-
Negatives (F−π ) and True-Negatives (T−π ) depended on threshold π.

specific threshold but rather to check whether children with a higher probability do in fact
receive more birth defect notes. This is precisely what the AUC measure does. As Davis
and Goadrich (2006) elaborate in their paper, the ROC and PR curve are closely related.
But not every model that maximizes the ROC curve will also maximize the PR curve (see
Davis and Goadrich (2006) for details). In addition, the PR curve is better suited for rare
events than the ROC curve which is otherwise widely used in areas of machine learning.
Ozenne et al. (2015) highlight this in their work: They use a simulation study to show that
in the case of rare events, the ROC-AUC overestimates the performance of the models. In
contrast, the PR-AUC estimates the ability of the models to correctly forecast rare events
more realistically. Sofaer et al. (2019) provide additional empirical evidence that the PR
curve is better suited to measure the performance of a model than the ROC curve in the
case of rare events: Their work deals with statistical models that estimate the distribution
area of certain animal species in the United States based on data relating to their sighting
and additional geographic data. They find that a performance measurement using ROC-
AUC overestimates the distribution area precisely when it comes to rare animal species. In
contrast, a performance comparison using PR-AUC provides more accurate results in those
cases. In the case of rare events, a consideration of the PR curve in addition to the ROC
curve can therefore be quite advantageous following these research contributions. Another
advantage of the PR curve is that it is easy to interpret. In Figure 4.4.14 we have a PR
curve which was calculated on the training set using oversampled logistic regression: For all
thresholds, starting at 1 (violet) and continuing to 0 (red), the combinations of precision
and recall, also known as sensitivity or TPR (true positive rate, see chp. 1), are determined:

Recall(π) = T+
π

T+
π + F−π

Precision(π) = T+
π

T+
π + F+

π
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Figure 4.4.14: PR curve on the training set according to oversampled logistic regression.

Looking at a specific point on the PR curve, the number of children given a note by the
model can be deduced: The number of flagged children with a note is divided by the precision
value (y-axis) at that point. The resulting value encompasses all children that the model
flagged. The recall value (x-axis) then shows which percentage of the children who received
a note were identified by the model. The trajectory of a good PR curve ideally achieves
high precision and recall values at the same time. Such a trajectory appears when the AUC
value is close to 1. PR-AUC is therefore used when evaluating the results. For reason of
completeness, ROC-AUC will be used though. On top of that, precision and recall values
will be calculated for a certain n: Both values will show how the corresponding algorithm
will perform when only the first n children with the highest output are taken into account.
Said results were measured on a test set containing 20% (≈ 5, 000 / ≈ 150 ones) randomly
selected cases from the total data set. The remaining 80% (≈ 20, 000 / ≈ 600 ones) served
as a training set on which the models were tuned. Different tuning-approaches were applied:

• Oversampled logistic regression: The model was fitted on a training set that was
offset by oversampling (≈ 25, 000 / ≈ 5, 000 ones).

• AUC-corrected logistic regression (PR and ROC): On the training set that
has not been sampled, a 3-fold-cross-validation was carried out on a grid for various
combinations of ρ and λ and a selection of the parameterization which led to the
highest averaged AUC value (see Figure 4.4.15) occurred (ρ = 100, 000 and λ = 1, 000
for PR-AUC-corrected, ρ = 100 and λ = 100 for ROC-AUC-corrected).
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• Balanced random forest: There are also two hyper-parameters; the number of trees
(ntree) and the number of variables selected randomly for a split generation (mtry).
The grid search occurred automatically using the R-function tuneRF based on the OOB
error and leads to mtry= 28, whereas ntree= 500 was chosen by default.

• DD-random forest: Since only two variables are available, i.e., mtry= 2, a grid
search was not necessary. The number of trees from balanced random forest was sim-
ply taken over whereas the variables belonging to diagnoses P and treatment IT as
well as Days in Hospital according to the exploratory analyses were used for the
DD-Plot. These variable selection also produced a DD-Plot which was not collapsed
(see Figure 4.4.16).

Figure 4.4.15: Rank-Heat-Plots based on a 3-fold-cross-validation of highest averaged AUC-
values. The Grid is built over λ (LASSO-Term) and ρ (AUC-Term) for the
PR-AUC-corrected logistic regression (left) and ROC-AUC-corrected logistic
regression (right). Highest AUC-value is cycled in black.

Figure 4.4.17 summarizes the results: In addition to the individual PR curves and ROC
curves, the AUC values of the models are also listed as well as the precision and recall
when n = 500. We chose this value for n to simulate the realistic scenario in which, for
capacity reasons, only 10% of the children can examined further for possible birth defects.
As a result, a user of these algorithms will only look on the first 500 children of the test set
with the highest outcome. The highest PR-AUC is achieved with the PR-AUC-corrected
logistic regression (47.45%), which beats both oversampled logistic regression (44.72%) and
ROC-AUC-corrected logistic regression (45.86%). Balanced random forest (39.86%) and
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Figure 4.4.16: DD-Plot on the training set using all variables belonging to diagnose P and
treatment IT as well as variableDays in Hospital.

DD-random forest (40.83%) are beaten by all logistic regression models. However, these
observations do not hold when looking at the precision and recall for n = 500: DD-random
forest generates the highest values (precision=24.40% / recall=82.43%), but still PR-AUC-
corrected logistic regression is the second best model (precision=24.20% / recall=81.76%).
ROC-AUC-corrected logistic regression (precision=23.60% / recall=79.73%) and balanced
random forest (precision=23.40% / recall=79.05%) have the lowest performance with these
values. When comparing the course of the ROC curves with the PR curves, it is noticeable
that almost no differences between the models can be observed if the ROC curve alone is
considered as a measure. The same applies to the AUC values. Such a comparison would,
therefore, not be very informative. Evidence from the literature, namely that the analysis
of the ROC curve loses its meaningfulness in the case of rare events, confirms this. The
PR curve, which allows for a clearer distinction between the models in terms of both the
course and the AUC values, proves to be significantly more meaningful. A comparison of the
respective models with regard to the underlying methods that were used to address the rare
event problem (data-level versus algorithm-level) leads to the following observation: When
using the more meaningful PR-AUC measure for comparison, the two best models are the
two AUC-corrected logistic regressions which are based on algorithm-level methods. The
other models, which perform worse, are based on data-level methods. Addressing the rare
event problem at the algorithm-level rather than at the data-level thus seems to generate
better results. However, looking at a specific value of precision and recall for a given n, PR-
AUC-corrected logistic regression still performances well but in this case, the DD-random
forest also promises to produce good results.
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Model PR-AUC ROC-AUC precision recall
balanced random forest 39.86% 92.13% 23.40% 79.05%

DD-random forest 40.83% 92.40% 24.40% 82.43%
oversampled logistic regression 44.72% 91.69% 24.00% 81.08%

PR-AUC-corrected logistic regression 47.45% 91.94% 24.20% 81.76%
ROC-AUC-corrected logistic regression 45.86% 90.99% 23.60% 79.73%

Figure 4.4.17: PR curves (top) and ROC curves (bottom) for all models. PR-AUC and
ROC-AUC are also listed as well as values of precision and recall for the
n = 500 children with the highest corresponding outcome.
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xi βi p-Value
Intercept −3.684 < 2 · 10−16 (***)

n.P 1.131 9.48 · 10−11 (***)
N.P 0.1122 5.47 · 10−9 (***)

Sum.IT 0.00002381 0.000244 (***)
Days in Hospital −0.01569 0.01986 (*)

Table 4.4: Most significant variables according PR-AUC-corrected logistic regression.

Despite the different model approaches and difference in performance, there are also com-
monalities in all models. This becomes apparent when looking at the balanced random
forest (lowest PR-AUC) and the PR-AUC-corrected logistic regression (highest PR-AUC),
for example: Table 4.4 shows the four variables (except for the constant) whose parameters
were significant. A comparison of these variables to the first ten entries of the variable
importance plot (Figure 4.4.18) of balanced random forest highlights that the variables for
diagnosis P (n.P/N.P/Sum.P) as well as Sum.IT andDays in Hospital can be observed
in both cases. This not only corresponds to the results of the exploratory data analysis but
also allows conclusions to be drawn about human decision-making: As already mentioned,
the diagnoses of group P point towards a complication in the birth process (see appendix).
In addition, there are high costs for inpatient treatment and a longer stay at the hospital
for a given child. These three variables are arguably also the crucial ones a human decision-
maker considers when deciding on whether to issue a birth defect note.
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Figure 4.4.18: Variable-Importance-Plot of balanced random forest for the 10 most impor-
tant variables according to the mean decrease of Gini.
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The data mining analysis deliberately contrasts model variants of the logistic regression
with the random forest ones. However, models are often combined in the specific application
context in order to improve performance (ensemble learning, see Hastie et al. (2001)). This
also applies in the present case: If the geometric mean is calculated from the outputs of
the DD-random forest (highest precision and recall at n = 500) and the output of the
PR-AUC-corrected logistic regression (highest PR-AUC), the resulting model has a better
course of the PR curve, a higher PR-AUC value (see Figure 4.4.19) and the highest values for
precision and recall at n = 500 (precision=24.6% / recall=83.11%). The same applies to the
ROC curve compared to the other models (see Figure 4.4.20). The combined model of DD-
random forest (data-level method) and PR-AUC-corrected logistic regression (algorithm-
level method) uses a hybrid model approach to overcome the rare event problem, which
could be an additional reason for the better performance.
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Figure 4.4.19: PR curve of the combined model.

Concerning the performance itself, it ultimately has to be concluded that even the best
model cannot precisely reproduce human decisions, even if the decision-making process is
based on a similar calculation. Once more, Figure 4.4.17 serves to highlight this: Following
the trajectory of the three highest PR curves, they would only have a precision of 20% with
a recall value of 90%. This means that if the models predicted 90% of the cases in which the
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Figure 4.4.20: ROC curve of the combined model.

human decision-maker would also issue a note, they would mark five times as many children
overall. Applied to this specific data set, this would mean that out of 25,000 children, the
models would identify around 3,400 children to have birth defects but fail to flag more than
70 children which would be issued a birth defect note by a human decision-maker. At the
same time, the models would flag 2,700 children who had not received a note from the human
decision-maker. With more than 10% of the children, an algorithmic pre-screening would,
therefore, trigger a false alarm. In addition, the algorithm would fail to detect 10% of the
children whom a human decision-maker had issued a note to. However, this point of view
could be criticized: A human decision-maker using these algorithms would not choose a point
on the PR or ROC curve but a number n of children that should be investigated further.
Taking this into account, the most reasonable value for interpretation is the precision and
recall given n = 500 as these values show how well a decision-maker will perform starting
at the top of the list of children with the corresponding highest outcomes. Looking from
this perspective, most models receive a recall of 80% meaning that four out of five children
who receive a note from the human decision-maker will also be flagged by the algorithms.
And because only n = 500 children will be flagged, the number of false alarms will be much
lower. This implementation of an algorithmic pre-screening is more realistic and suitable
for the use in practices.
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4.5 Conclusion

This chapter is dedicated to the question of whether an algorithmic pre-selection with regard
to possible birth defects in newborns can be carried out on the basis of medical invoice data.
For this purpose, we ran a data mining process in the form of a generic cycle model which
corresponds to the approach of Reuß and Zwiesler (2006). In the course of this evaluation,
the database was analyzed and the question was specified to allow for an algorithmic repli-
cation of the human decision-making calculation. We used a logistic regression model from
the field of classical statistics and a random forest model from the field of machine learning.
Both models were enriched with their own modifications. However, the PR-AUC-corrected
logistic regression combined with DD-random forest produced the best result. Both the
logistic regression and the random forest confirmed the insights gained from the exploratory
data analysis, namely that the main diagnosis P, the costs of inpatient treatment and the
number of days that a given child spent in the hospital are meaningful indicators for the
human decision-maker to determine whether to issue a birth defect note. For the implemen-
tation in practice, one should generate a list of children ordered by the highest corresponding
outputs. In a second step, the first n children of the list will be examined further for pos-
sible birth defects. n will be chosen by means of capacity. This implementation generates
models that show, when n = 500, a recall around 80% and a precision between 20% to 25%.
This might be caused by the fact that children without any invoices data still receive notes.
In conclusion, algorithmic pre-screening based on invoice data can only be recommended
as a supplementary, but not substitute, means of improving the detection of birth defects:
The two model types that achieved the best results when combined with each other seem
well-suited to support the human decision-making process or to interact with the human
decision-maker. For example, the human decision-maker can pass the variables which he
bases his decision on to the DD-random forest and thus consciously direct a machine trans-
lation of his decision-making process. Conversely, the PR-AUC correction of the logistic
regression places a special focus on the detection of rare events which counteracts the risk
that the human decision-maker overlooks critical cases. This last point should also be given
special attention when criticizing the models – the data makes it impossible to determine
whether the children which the models flagged but who did not receive a note from the
human decision-maker, are, in fact, children who should have actually received a note based
on the decision-making process. Future research in the field should, therefore, subject the
cases that were flagged algorithmically to a case-by-case examination. This analysis would
then allow for a final judgment as to whether algorithmic pre-screening using medical invoice
data to detect birth defects is possible and advisable.
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Appendix

A.1 Appendix of Chapter 2

Proof of Lemma 4:
For 1: With corresponding z ∼ Sd (Γ) we get for every 1 ≤ i ≤ n and 1 ≤ j ≤ m:

xi = Ω−
1
2
X ∗ (x∗i − µX ∗) = Ω−

1
2
X ∗

(
µX ∗ + Ω

1
2
X ∗z − µX ∗

)
= Ω−

1
2
X ∗Ω

1
2
X ∗z = z ∼ Sd (Γ) and

yj = Ω−
1
2
X ∗
(
y∗j − µX ∗

)
= Ω−

1
2
X ∗

(
µY∗ + Ω

1
2
Y∗z − µX ∗

)
= Ω−

1
2
X ∗ (µY∗ − µX ∗) + Ω−

1
2
X ∗Ω

1
2
Y∗z

= µ+
((

Ω
1
2
Y∗

)> (
Ω−

1
2
X ∗

)>)>
z = µ+

(
Ω

1
2
Y∗Ω

− 1
2
X ∗

)>
z ∼ ECd (µ,Ω,Γ)

because
(

Ω
1
2
Y∗Ω

− 1
2
X ∗

)>
Ω

1
2
Y∗Ω

− 1
2
X ∗ = Ω−

1
2
X ∗ΩY∗Ω

− 1
2
X ∗ = Ω. In 2 we just realize that Ω−

1
2
X ∗ ∈ Rd×d

is regular and −Ω−
1
2
X ∗ µX ∗ ∈ Rd, so we can use Axiom (i) of the data depth axioms. For 3:

ΣX ∗ ≥ ΣY∗ ⇔ ΣX ∗ − ΣY∗ is pos. semi. def. ⇔
E(r2

d)<∞
E
(
r2
d

)
d

(ΩX ∗ − ΩY∗) is pos. semi. def.

⇔ E
(
r2
d

)
d

Ω−
1
2
X ∗ (ΩX ∗ − ΩY∗) Ω−

1
2
X ∗ is pos. semi. def.

⇔ E
(
r2
d

)
d

(Id − Ω) is pos. semi. def. ⇔
E(r2

d)<∞
ΣX − ΣY is pos. semi. def.

⇔ 0 < ϕk ≤ 1 for all eigenvalues ϕ1, . . . , ϕd of Ω.

Proof of Theorem 6:
Let X = (x1, . . . , xn) be an iid sample drawn from a r.v. X ∼ Sd (Γ) and Y =

(y1, . . . , ym) an iid sample drawn from a r.v. Y ∼ ECd (µ,Ω,Γ). Furthermore, for the
generating variate rd ≥ 0 holds E

(
r2
d

)
<∞ and rank (Ω) = d. Because of Proposition 2 we

get:

µX = 0,ΣX = E
(
r2
d

)
d
Id and µY = µ,ΣY = E

(
r2
d

)
d

Ω.

Therefore, because ΣY has to be symmetric and so do Ω, we find orthogonal Q ∈ Rd×d for
Ω = Q>DQ and D = diag[ϕ1, . . . , ϕd] with eigenvalues ϕk. If Y is a data nest of rare events
w.r.t. X, 0 < ϕk ≤ 1 holds for 1 ≤ k ≤ d because of Lemma 4 (3). Moreover, the following

72



holds for randomly drawn x from X and y from Y because of Proposition 3:

DM (x|X ) =
(
1 + (x− µX )>Σ−1

X (x− µX )
)−1

=

1 + x>
(
E
(
r2
d

)
d
Id

)−1

x

−1

=
(

1 + d

E
(
r2
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) ||x||2)−1
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(
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E
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1
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d
||x||2
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=
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E
(
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1
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Here
√
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√
ϕ−1

1 , . . . ,
√
ϕ−1
d ] and

√
D for diag[√ϕ1, . . . ,

√
ϕd] and the term

D−1 for diag[ϕ−1
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d ] and therefore Ω−1 =
(
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= Q>D−1Q and what is even

more Ω−
1
2 =

(
Ω

1
2
)−1

=
(
Q>
√
DQ

)−1
= Q>

√
D−1Q.
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Here
√

(Id −D)D−1 stands for diag[
√

1−ϕ1
ϕ1

, . . . ,
√

1−ϕd
ϕd

]. Moreover because of Proposition 2
for z ∼ Sd (Γ) corresponding to y holds:
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So DM (x|X ) and DM (y|Y) are identical distributed.

Proof of the Corollary 1:

For DM (x|X ) d= DM (y|Y) holds for any ε > 0:
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Here Fr2
d

(·) denotes the cdf of r2
d. Accordingly to Proposition 3 holds for d1 < d2 and c ≥ 0:
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is true for any c ≥ 0. Therefore we get

0 = Fr2
d

(0) = lim
p→0

Fr2
d

(cp) ≥ aFb2 (p) d→∞−→ a⇒ lim
d→∞

Fr2
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for any c ≥ 0 if Fr2
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(·) is continuous, so a has to be 0. Therefore it holds:
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This shows the one part of corollary 1. To see the other part we derive a upper bound Uy|X
for DM (y|X ). Let therefore z ∼ Sd (Γ) be the corresponding r.v. to a randomly drawn y

from Y and eigenvalues ϕ1, . . . , ϕd of Ω with ϕ+
d = max{ϕk}dk=1 and ϕ−d = min{ϕk}dk=1:

DM (y|X ) =
(

1 + ||y||2

E
(
r2

1
))−1

=

1 +

∣∣∣∣∣∣Ω 1
2 z − (−µ)

∣∣∣∣∣∣2
E
(
r2

1
)


−1

≤

1 +

∣∣∣∣∣∣∣∣∣Q>√DQz∣∣∣∣∣∣− ||−µ||∣∣∣2
E
(
r2

1
)


−1

=

1 +

(∣∣∣∣∣∣√DQz∣∣∣∣∣∣− ||µ||)2

E
(
r2

1
)


−1

≤

1 +

(√
ϕ−d ||z|| − ||µ||

)2

E
(
r2

1
)


−1

= Uy|X .

⇒P
[
DM (y|X ) < ε

]
≥ P

[
Uy|X < ε

]
= P

[
1 +

(√
ϕ−d ||z|| − ||µ||

)2

E
(
r2

1
)


−1

< ε
]

= P
[(1
ε
− 1

)
E
(
r2

1

)
︸ ︷︷ ︸

Cε

<

(√
ϕ−d ||z|| − ||µ||

)2]

= P
[Cε
ϕ−d

<

||z|| − ||µ||√
ϕ−d

2]
= P

[Cε
ϕ−d

<

rd − ||µ||√
ϕ−d

2]
= P

[√Cε

ϕ−d
<

∣∣∣∣∣∣rd − ||µ||√
ϕ−d

∣∣∣∣∣∣]
= P

[ ||µ||+√Cε√
ϕ−d

< rd
]

+ I(√Cε<||µ||)P
[
rd <

||µ|| −
√
Cε√

ϕ−d

]

=1− P
[
r2
d <

(
||µ||+

√
Cε
)2

ϕ−d

]
+ I(√Cε<||µ||)P

[
r2
d <

(
||µ|| −

√
Cε
)2

ϕ−d

]
=1− Fr2

d

((
||µ||+

√
Cε
)2

ϕ−d

)
+ I(√Cε<||µ||)Fr2

d

((
||µ|| −

√
Cε
)2

ϕ−d

)
.
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Now we derive a upper bound Ux|Y for DM (x|Y):

DM (x|Y) =
(

1 + 1
E
(
r2

1
) (||x− µ||2 +

∣∣∣∣∣∣∣∣√(Id −D)D−1Q (x− µ)
∣∣∣∣∣∣∣∣2
))−1

≤

1 + 1
E
(
r2

1
)
||x− µ||2 +

∣∣∣∣∣
∣∣∣∣∣
√(

1− ϕ+
d

)
ϕ+
d
−1IdQ (x− µ)

∣∣∣∣∣
∣∣∣∣∣
2
−1

≤
(

1 + 1
E
(
r2

1
) (1 +

(
1− ϕ+

d

)
ϕ+
d
−1) (||x|| − ||µ||)2

)−1

=
(

1 + (||x|| − ||µ||)2

ϕ+
d E

(
r2

1
) )−1

= Ux|Y .

⇒P
[
DM (x|Y) < ε

]
≥ P

[
Ux|Y < ε

]
= P

[(
1 + (||x|| − ||µ||)2

ϕ+
d E

(
r2

1
) )−1

< ε
]

= P
[√
Cεϕ

+
d < |rd − ||µ|||

]
= P

[
||µ||+

√
Cεϕ

+
d < rd

]
+ I(√

Cεϕ
+
d
<||µ||

)P[rd < ||µ|| −√Cεϕ+
d

]
= 1− P

[
r2
d <

(
||µ||+

√
Cεϕ

+
d

)2]
+ I(√

Cεϕ
+
d
<||µ||

)P[r2
d <

(
||µ|| −

√
Cεϕ

+
d

)2]
= 1− Fr2

d

((
||µ||+

√
Cεϕ

+
d

)2
)

+ I(√
Cεϕ

+
d
<||µ||

)Fr2
d

((
||µ|| −

√
Cεϕ

+
d

)2
)
.

Let now 0 < ϕ−∞ = inf
d∈N

ϕ−d ≤ 1 and 0 < ϕ+
∞ = sup

d∈N
ϕ+
d ≤ 1 for d −→∞:

• lim
d→∞

||µ|| >
√
Cε ≥

√
Cεϕ

+
∞

⇒I(√
Cεϕ

+
d
<||µ||

) d→∞−→ I(√
Cεϕ

+
∞<||µ||

) ≥ I(√Cε<||µ||)
d→∞−→ 1

⇒ lim
d→∞

Fr2
d

((
||µ||+

√
Cε
)2

ϕ−d

)
= lim

d→∞
Fr2

d

((
||µ|| −

√
Cε
)2

ϕ−d

)

= lim
d→∞

Fr2
d

((
||µ||+

√
Cεϕ

+
d

)2
)

= lim
d→∞

Fr2
d

((
||µ|| −

√
Cεϕ

+
d

)2
)

= 0 (see (∗)) .

Therefore we get:

P
[
DM (y|X ) < ε

]
,P
[
DM (x|Y) < ε

] d→∞−→ 1⇒ plim
d→∞

DM (y|X ) = 0 = plim
d→∞

DM (x|Y) .

•
√
Cε ≥ lim

d→∞
||µ|| ≥

√
Cεϕ

+
∞

⇒I(√
Cεϕ

+
d
<||µ||

) d→∞−→ I(√
Cεϕ

+
∞<||µ||

) d→∞−→ 1 and I(√Cε<||µ||)
d→∞−→ 0
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⇒ lim
d→∞

Fr2
d

((
||µ||+

√
Cε
)2

ϕ−d

)

= lim
d→∞

Fr2
d

((
||µ||+

√
Cεϕ

+
d

)2
)

= lim
d→∞

Fr2
d

((
||µ|| −

√
Cεϕ

+
d

)2
)

= 0 (see (∗)) .

Therefore we get:

P
[
DM (y|X ) < ε

]
,P
[
DM (x|Y) < ε

] d→∞−→ 1⇒ plim
d→∞

DM (y|X ) = 0 = plim
d→∞

DM (x|Y) .

•
√
Cεϕ

+
∞ > lim

d→∞
||µ||

⇒I(√
Cεϕ

+
d
<||µ||

) d→∞−→ I(√
Cεϕ

+
∞<||µ||

) d→∞−→ 0 and I(√Cε<||µ||)
d→∞−→ 0

⇒ lim
d→∞

Fr2
d

((
||µ||+

√
Cε
)2

ϕ−d

)
= lim

d→∞
Fr2

d

((
||µ||+

√
Cεϕ

+
d

)2
)

= 0 (see (∗)) .

Overall we get for any z randomly drawn from X or Y:

plim
d→∞

DM (z|X ) = 0 = plim
d→∞

DM (z|Y) .

Proof of the Corollary 2:
Now we derive a lower bound Lx|Y for DM (x|Y):

DM (x|Y) =
(

1 + 1
E
(
r2

1
) (||x− µ||2 +

∣∣∣∣∣∣∣∣√(Id −D)D−1Q (x− µ)
∣∣∣∣∣∣∣∣2
))−1

≥

1 + 1
E
(
r2

1
)
||x− µ||2 +

∣∣∣∣∣
∣∣∣∣∣
√(

1− ϕ−d
)
ϕ−d
−1IdQ (x− µ)

∣∣∣∣∣
∣∣∣∣∣
2
−1

=
(

1 + 1
E
(
r2

1
) (1 +

(
1− ϕ−d

)
ϕ−d
−1) ||x− µ||2)−1

=
(

1 + ||x− µ||
2

ϕ−d E
(
r2

1
))−1

≥
(

1 + (||x||+ ||µ||)2

ϕ−d E
(
r2

1
) )−1

= Lx|Y .

This shows the first part of corollary 2. To see the second part we use our results from the
proof of corollary 1. Let therefore be 0 < α < 1, then in any dimension holds:

P
[
Ux|Y < α

]
≤ P

[
DM (x|Y) < α

]
≤ P

[
Lx|Y < α

]
with
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P
[
Ux|Y < α

]
= 1− Fr2

d

((
||µ||+

√
Cαϕ

+
d

)2
)

+ I(√
Cαϕ

+
d
<||µ||

)Fr2
d

((
||µ|| −

√
Cαϕ

+
d

)2
)
.

P
[
Lx|Y < α

]
= P

[(
1 + (||x||+ ||µ||)2

ϕ−d E
(
r2

1
) )−1

< α
]

= P
[( 1
α
− 1

)
E
(
r2

1

)
︸ ︷︷ ︸

Cα

<
(||x||+ ||µ||)2

ϕ−d

]
= P

[√
Cαϕ

−
d < ||x||+ ||µ||

]

= 1− I(√
Cαϕ

−
d
≥||µ||

)Fr2
d

((√
Cαϕ

−
d − ||µ||

)2
)
.

We rewrite these conditions on ||µ||:√
Cαϕ

−
d ≥ ||µ|| ⇔

( 1
α
− 1

)
E
(
r2

1

)
ϕ−d ≥ ||µ||

2 ⇔ E
(
r2

1
)

E
(
r2

1
)

+ ||µ||2

ϕ−
d

≥ α (I)

√
Cαϕ

+
d < ||µ|| ⇔

( 1
α
− 1

)
E
(
r2

1

)
ϕ+
d < ||µ||

2 ⇔ E
(
r2

1
)

E
(
r2

1
)

+ ||µ||2

ϕ+
d

< α (II)

We look now on two different cases:

(a) lim
d→∞

||µ|| =∞:
Then for any 0 < α < 1 we can find dimension D such that for any d ≥ D holds:

α >
E
(
r2

1
)

E
(
r2

1
)

+ ||µ||2

ϕ+
d

≥ E
(
r2

1
)

E
(
r2

1
)

+ ||µ||2

ϕ−
d

so (I) is false and (II) is true for any d ≥ D and we get:

P
[
DM (x|Y) < α

]
≥ 1−

(
Fr2

d

((
||µ||+

√
Cαϕ

+
d

)2
)
− Fr2

d

((
||µ|| −

√
Cαϕ

+
d

)2
))

⇔ P
[
DM (x|Y) < α

]
≥ 1− P

[(
||µ|| −

√
Cαϕ

+
d

)2
≤ r2

d ≤
(
||µ||+

√
Cαϕ

+
d

)2]
.

lim
d→∞

P
[(
||µ|| −

√
Cαϕ

+
d

)2
≤ r2

d ≤
(
||µ||+

√
Cαϕ

+
d

)2]
= 0 because lim

d→∞
||µ|| = ∞,

so we can find another d∗ ≥ D such that for all d ≥ d∗ holds:

P
[(
||µ|| −

√
Cαϕ

+
d

)2
≤ r2

d ≤
(
||µ||+

√
Cαϕ

+
d

)2]
< P

[
r2
d ≤ Cα

]
⇔ 1− P

[(
||µ|| −

√
Cαϕ

+
d

)2
≤ r2

d ≤
(
||µ||+

√
Cαϕ

+
d

)2]
> 1− P

[
r2
d ≤ Cα

]
⇔ 1−

(
Fr2

d

((
||µ||+

√
Cαϕ

+
d

)2
)
− Fr2

d

((
||µ|| −

√
Cαϕ

+
d

)2
))

> 1− Fr2
d

(Cα)

⇔ P
[
DM (x|Y) < α

]
> P

[
DM (y|Y) < α

]
.
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(b) lim
d→∞

||µ|| = 0:
Then for any 0 < α < 1 we can find dimension D such that for any d ≥ D holds:

α ≤ E
(
r2

1
)

E
(
r2

1
)

+ ||µ||2

ϕ−
d

≤ E
(
r2

1
)

E
(
r2

1
)

+ ||µ||2

ϕ+
d

so (I) is true and (II) is false for any d ≥ D and we get:

P
[
DM (x|Y) < α

]
≥ 1− Fr2

d

((
||µ||+

√
Cαϕ

+
d

)2
)

lim
d→∞

Fr2
d

((
||µ||+

√
Cαϕ

+
d

)2
)

= Fr2
d

(
Cαϕ

+
∞
)
≤ Fr2

d
(Cα) because lim

d→∞
||µ|| = 0, so we

can find another d∗ ≥ D such that for all d ≥ d∗ holds:

B If ϕ+
d < 1 for all d ≥ d∗ and Fr2

d
(·) continuous:

Fr2
d

((
||µ||+

√
Cαϕ

+
d

)2
)
≤ Fr2

d
(Cα)

⇒ P
[
DM (x|Y) < α

]
≥ 1− Fr2

d

((
||µ||+

√
Cαϕ

+
d

)2
)
≥ 1− Fr2

d
(Cα) = P

[
DM (y|Y) < α

]
.

B If ϕ+
d = 1 for all d ≥ d∗ and Fr2

d
(·) continuous:

Fr2
d

((
||µ||+

√
Cαϕ

+
d

)2
)

= Fr2
d

((
||µ||+

√
Cα
)2
)
≥ Fr2

d
(Cα) ,

so no conclusion is possible.

Proof of the Corollary 3:

Now we derive a lower bound Ly|X for DM (y|X ). Let z d= x ∼ Sd (Γ) be the corre-
sponding r.v. to the drawn y from Y. Then the following holds:

DM (y|X ) =
(

1 + ||y||2

E
(
r2

1
))−1

=

1 +

∣∣∣∣∣∣Ω 1
2 z + µ

∣∣∣∣∣∣2
E
(
r2

1
)


−1

≥

1 +

(∣∣∣∣∣∣Q>√DQz∣∣∣∣∣∣+ ||µ||)2

E
(
r2

1
)


−1

=

1 +

(∣∣∣∣∣∣√DQz∣∣∣∣∣∣+ ||µ||)2

E
(
r2

1
)


−1

≥

1 +

(√
ϕ+
d ||z||+ ||µ||

)2

E
(
r2

1
)


−1

= Ly|X .

This shows the first part of corollary 3. To see the second part we use our results from the
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proof of corollary 1. Let therefore be 0 < α < 1, then in any dimension holds:

P
[
Uy|X < α

]
≤ P

[
DM (y|X ) < α

]
≤ P

[
Ly|X < α

]
with

P
[
Uy|X < α

]
= 1− Fr2

d

((
||µ||+

√
Cα
)2

ϕ−d

)
+ I(√Cα<||µ||)Fr2

d

((
||µ|| −

√
Cα
)2

ϕ−d

)
.

P
[
Ly|X < α

]
= P

[
1 +

(√
ϕ+
d ||z||+ ||µ||

)2

E
(
r2

1
)


−1

< α
]

= P
[( 1
α
− 1

)
E
(
r2

1

)
︸ ︷︷ ︸

Cα

<

(√
ϕ+
d ||z||+ ||µ||

)2]

= P
[Cα
ϕ+
d

<

||z||+ ||µ||√
ϕ+
d

2]
= P

[Cα
ϕ+
d

<

rd + ||µ||√
ϕ+
d

2]

= P
[√Cα

ϕ+
d

< rd + ||µ||√
ϕ+
d

]
= I(√Cα<||µ||) + I(√Cα≥||µ||)P

[(√Cα − ||µ||)2
ϕ+
d

< r2
d

]

= I(√Cα<||µ||) + I(√Cα≥||µ||)

(
1− P

[(√Cα − ||µ||)2
ϕ+
d

≥ r2
d

])

= 1− I(√Cα≥||µ||)P
[
r2
d ≤

(√
Cα − ||µ||

)2
ϕ+
d

]
= 1− I(√Cα≥||µ||)Fr2

d

((√
Cα − ||µ||

)2
ϕ+
d

)
.

We rewrite the conditions on ||µ||:

√
Cα ≥ ||µ|| ⇔

( 1
α
− 1

)
E
(
r2

1

)
≥ ||µ||2 ⇔ E

(
r2

1
)

E
(
r2

1
)

+ ||µ||2
≥ α (I)

√
Cα < ||µ|| ⇔

( 1
α
− 1

)
E
(
r2

1

)
< ||µ||2 ⇔ E

(
r2

1
)

E
(
r2

1
)

+ ||µ||2
< α (II)

We look now again on two different cases:

(a) lim
d→∞

||µ|| =∞:
Then for any 0 < α < 1 we can find dimension D such that for any d ≥ D holds:

α >
E
(
r2

1
)

E
(
r2

1
)

+ ||µ||2

so (I) is false and (II) is true for any d ≥ D and we get:
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P
[
DM (y|X ) < α

]
≥ 1−

(
Fr2

d

((
||µ||+

√
Cα
)2

ϕ−d

)
− Fr2

d

((
||µ|| −

√
Cα
)2

ϕ−d

))

⇔ P
[
DM (y|X ) < α

]
≥ 1− P

[(||µ|| − √Cα)2
ϕ−d

≤ r2
d ≤

(
||µ||+

√
Cα
)2

ϕ−d

]
.

lim
d→∞

P
[(||µ||−√Cα)2

ϕ−
d

≤ r2
d ≤

(||µ||+√Cα)2

ϕ−
d

]
= 0 because lim

d→∞
= ∞, so we can find an-

other d∗ ≥ D such that for all d ≥ d∗ holds:

P
[(||µ|| − √Cα)2

ϕ−d
≤ r2

d ≤
(
||µ||+

√
Cα
)2

ϕ−d

]
< P

[
r2
d ≤ Cα

]
⇔ 1− P

[(||µ|| − √Cα)2
ϕ−d

≤ r2
d ≤

(
||µ||+

√
Cα
)2

ϕ−d

]
> 1− P

[
r2
d ≤ Cα

]
⇔ 1−

(
Fr2

d

((
||µ||+

√
Cα
)2

ϕ−d

)
− Fr2

d

((
||µ|| −

√
Cα
)2

ϕ−d

))
> 1− Fr2

d
(Cα)

⇔ P
[
DM (y|X )

]
> P

[
DM (x|X )

]
.

(b) lim
d→∞

||µ|| = 0:
Then for any 0 < α < 1 we can find dimension D such that for any d ≥ D holds:

α ≤ E
(
r2

1
)

E
(
r2

1
)

+ ||µ||2

so (I) is true and (II) is false for any d ≥ D and we get:

P
[
DM (x|Y) < α

]
≤ 1− Fr2

d

((√
Cα − ||µ||

)2
ϕ+
d

)

lim
d→∞

Fr2
d

(
(√Cα−||µ||)2

ϕ+
d

)
= Fr2

d

(
Cα
ϕ+
d

)
≥ Fr2

d
(Cα) because lim

d→∞
||µ|| = 0, so we can find

another d∗ ≥ D such that for all d ≥ d∗ holds:

B If ϕ+
d < 1 for all d ≥ d∗ and Fr2

d
(·) continuous: Fr2

d

(
(√Cα−||µ||)2

ϕ+
d

)
≥ Fr2

d
(Cα)

⇒ P
[
DM (x|Y) < α

]
≤ 1− Fr2

d

((√
Cα − ||µ||

)2

ϕ+
d

)
≤ 1− Fr2

d
(Cα) = P

[
DM (y|Y) < α

]
.

B If ϕ+
d = 1 for all d ≥ d∗ and Fr2

d
(·) continuous:

Fr2
d

((√
Cα − ||µ||

)2
ϕ+
d

)
= Fr2

d

((
||µ|| −

√
Cα
)2
)
≤ Fr2

d
(Cα) ,

so no conclusion is possible.
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Proof of DGP II :
We have to proof condition 2 for data nests because n = 9900 >> 100 = m, so

condition 1 is already satisfied. For this enough to focus on only one dimension d = 1,
so z ∼ Betad=1 (p, q) = Beta (p, q), because all generated variables are independent of each
other. It is true that

Z ∼ Beta (p, q)⇒ µZ = p

p+ q
and σ2

Z = pq

(p+ q + 1) (p+ q)2

and therefore we get: X ∼ Beta (3, 3)⇒ µX = 1
2 = 0.5 and σ2

X = 9
7 · 62 = 1

28 .

Now we check for p′ = t (0.5 + τ) and q′ = t (0.5− τ):

Y ∼ Beta
(
p′, q′

)
⇒ µY = p′

p′ + q′
= t (0.5 + τ)
t (0.5 + τ) + t (0.5− τ) = 0.5 + τ = µX + τ.

So we get: σ2
Y ≤ σ2

X ⇔
p′q′

(p′ + q′ + 1) (p′ + q′)2 ≤
1
28 ⇔

t2 (0.5 + τ) (0.5− τ)
(t+ 1) t2 ≤ 1

28

0.25− τ2 ≤ 1 + t

28 ⇔ 28
(
0.25− τ2

)
− 1 ≤ t⇔ T ≤ t.

So also the second condition for data nest holds because t ∼ U (T, 5T ).

A.2 Appendix of Chapter 3

Proof of the existence of rotation matrix R:
(3.2.4) and (3.2.8) are equal if Fβ = fγ ⇔ F 1

γβ = f . Scale factor f such that

( 1
γ
β)
>

( 1
γ
β) = 1⇔ γ =

√
β>β.

Then one can find vectors r1, . . . , rk−1 to construct the orthogonal matrix R ∈ Rk×k:

R =
(

β√
β>β

r1 . . . rk−1

)
such that R>R = Ik.

Now with
(
f G

)
= FR and ΛR =

(
λ Φ

)
we get

X = FΛ> + U = FRR>Λ> + U = FR(ΛR)> + U =
(
f G

) (
λ Φ

)>
+ U
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Proof of the equivalence between (3.3.3) and (3.3.4):
We start from (3.3.3):

(
X ỹ

)
= X

(
w Ω

)(ϕ Φ
γ 0

)>
+
(
U ε

)

⇔
(
x1 · · · xn ỹ

)
= X

(
w Ω

)

ϕ1 · · · ϕn γ

φ11 · · · φ1n 0
... . . . ...

...
φs1 · · · φsn 0

+
(
u1 · · · un ε

)

⇔ ỹ = y − Zα = X
(
w Ω

)

γ

0
...
0

+ ε ∧ ∀1 ≤ i ≤ n : xi = X
(
w Ω

)

ϕi

φ1i
...
φsi

 (∗)

Now we reorder
(
X ỹ

)
as in (3.3.4):

(∗)⇔


x1
...
xn

ỹ

 =



X
(
w Ω

)

ϕ1

φ11
...
φs1


...

X
(
w Ω

)

ϕn

φ1n
...
φsn



X
(
w Ω

)

γ

0
...
0





+


u1
...
un

ε



⇔


x1
...
xn

ỹ

 =


X (ϕ1w + φ11ω1 + · · ·+ φs1ωs)

...
X (ϕnw + φ1nω1 + · · ·+ φsnωs)
X (γw + 0ω1 + · · ·+ 0ωs)

+


u1
...
un

ε
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⇔


x1
...
xn

ỹ

 =


ϕ1X φ11X · · · φs1X
...

... . . . ...
ϕnX φ1nX · · · φsnX

γX 0X · · · 0X




w

ω1
...
ωs

+


u1
...
un

ε



⇔


x1
...
xn

ỹ

 =
((

ϕ Φ
γ 0

)
⊗X

)
w

ω1
...
ωs

+


u1
...
un

ε


Proof of Lemma 7:

Let X be substituted by X∗ := ρX in (3.3.4). To show (I) we plug in X∗ into (3.3.2)
and use ŵ and Ω̂ which are given:(

f̂∗ Ĝ∗
)

:= X∗
(
ŵ Ω̂

)
= ρX

(
ŵ Ω̂

)
= ρ

(
f̂ Ĝ

)
Now we plug in these factors in (3.2.7) to compute the OLS-estimate of ϕ̂∗ and Φ̂∗:

(
ϕ̂∗ Φ̂∗

)>
=
((
f̂∗ Ĝ∗

)> (
f̂∗ Ĝ∗

))−1 (
f̂∗ Ĝ∗

)
X∗

From there it follows:(
ϕ̂∗ Φ̂∗

)>
=
(
ρ
(
f̂ Ĝ

)>
ρ
(
f̂ Ĝ

))−1
ρ
(
f̂ Ĝ

)
ρX

=
(
ρ2
(
f̂ Ĝ

)> (
f̂ Ĝ

))−1
ρ2
(
f̂ Ĝ

)
X

= ρ−2
((
f̂ Ĝ

)> (
f̂ Ĝ

))−1
ρ2
(
f̂ Ĝ

)
X

=
((
f̂ Ĝ

)> (
f̂ Ĝ

))−1 (
f̂ Ĝ

)
X =

(
ϕ̂ Φ̂

)>
So the OLS-estimate of ϕ and Φ does not depend of ρ. To see the second part of (I) we
consider (3.2.8):

y = Zα+ fγ + ε = Zα+ ρfρ−1γ + ε = Zα+ f∗ρ−1γ + ε

Therefore, if the OLS-estimate of (3.2.8) is γ̂, γ̂∗ := ρ−1γ̂ is the OLS-estimate of (3.2.8)
where f is substituted by f∗ := ρf . To see (II) we use (3.3.4) substituting X by X∗ and
compute the OLS-estimate

(
ŵ ω̂1 . . . ω̂s

)>
:


ŵ∗

ω̂∗1
...
ω̂∗s

 =

((ϕ̂∗ Φ̂∗

γ̂∗ 0

)
⊗X∗

)>((
ϕ̂∗ Φ̂∗

γ̂∗ 0

)
⊗X∗

)−1((
ϕ̂∗ Φ̂∗

γ̂∗ 0

)
⊗X∗

)>


x∗1
...
x∗n

y − Zα̂
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ϕ̂, Φ̂ and γ̂ are given, therefore we get:(
ϕ̂∗ Φ̂∗

γ̂∗ 0

)
⊗X∗ =

(
ϕ̂ Φ̂

ρ−1γ̂ 0

)
⊗ (ρX)

=
((
In+1

(
1 . . . 1 ρ−1

)>)(ϕ̂ Φ̂
γ̂ 0

))
⊗
((
IT
(
ρ . . . ρ

)>)
X

)

=
((
In+1

(
1 . . . 1 ρ−1

)>)
⊗
(
IT
(
ρ . . . ρ

)>))((ϕ̂ Φ̂
γ̂ 0

)
⊗X

)

=

I(n+1)T

(
ρ . . . ρ︸ ︷︷ ︸

=nT

1 . . . 1︸ ︷︷ ︸
=T

)>((ϕ̂ Φ̂
γ̂ 0

)
⊗X

)


x∗1
...
x∗n

y − Zα̂

 =
(
I(n+1)T

(
ρ . . . ρ 1 . . . 1

)>)


x1
...
xn

y − Zα̂


Now we define:

Wρ :=
(
I(n+1)T

(
ρ . . . ρ 1 . . . 1

)>)(
I(n+1)T

(
ρ . . . ρ 1 . . . 1

)>)
Therefore we get:

ŵ∗

ω̂∗1
...
ω̂∗s

 =

((ϕ̂∗ Φ̂∗

γ̂∗ 0

)
⊗X∗

)>((
ϕ̂∗ Φ̂∗

γ̂∗ 0

)
⊗X∗

)−1((
ϕ̂∗ Φ̂∗

γ̂∗ 0

)
⊗X∗

)>
x∗1
...
x∗n

y − Zα̂



=

((ϕ̂ Φ̂
γ̂ 0

)
⊗X

)>
Wρ

((
ϕ̂ Φ̂
γ̂ 0

)
⊗X

)−1((
ϕ̂ Φ̂
γ̂ 0

)
⊗X

)>
Wρ


x1
...
xn

y − Zα̂



A.3 Appendix of Chapter 4

Main diseases categories according to ICD-10 (Version 2019):

Taken from website of WHO (https://icd.who.int/browse10/2019/en):

• A/B: Certain infectious and parasitic diseases

• C/D: Neoplasms and Diseases of the blood and blood-forming organs and certain
disorders involving the immune mechanism
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• E: Endocrine, nutritional and metabolic diseases

• F: Mental and behavioural disorders

• G: Diseases of the nervous system

• H: Diseases of the eye and adnexa and Diseases of the ear and mastoid process

• I: Diseases of the circulatory system

• J: Diseases of the respiratory system

• K: Diseases of the digestive system

• L: Diseases of the skin and subcutaneous tissue

• M: Diseases of the musculoskeletal system and connective tissue

• N: Diseases of the genitourinary system

• O: Pregnancy, childbirth and the puerperium

• P: Certain conditions originating in the perinatal period

• Q: Congenital malformations, deformations and chromosomal abnormalities

• R: Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere
classified

• S/T: Injury, poisoning and certain other consequences of external causes

• U: Codes for special purposes

• V/W/X/Y: External causes of morbidity and mortality

• Z: Factors influencing health status and contact with health services
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Figure A.3.1: Boxplots of main diagnose A/B.
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Figure A.3.2: Boxplots of main diagnose J.
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Figure A.3.3: Boxplots of main diagnose Q.
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Figure A.3.4: Boxplots of main diagnose R.
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Figure A.3.5: Boxplots of main diagnose Z.
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Figure A.3.6: Boxplots of main diagnose ’Rare’.
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Figure A.3.7: Boxplots of outpatient treatment (OT).
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Figure A.3.8: Boxplots of medical remedies (MR).
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Figure A.3.9: Boxplots of homeopathic practitioner (HP).
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Figure A.3.10: Boxplots of medical aids (MA).
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Figure A.3.11: Boxplots of medications (MD).
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Figure A.3.12: Boxplots of care services (CS).
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Figure A.3.13: Boxplots of main dental treatment (DT).
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Figure A.3.14: Correlation analysis of the sum of amount (left) and number of invoices
(right) for all main diagnoses, ordered by with / without notice (1/0).

Figure A.3.15: Correlation analysis of the sum of amount (left) and number of invoices
(right) for all treatment groups, ordered by with / without notice (1/0).
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