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ABSTRACT
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Environmental Policy and  
Gender Health Gap*

Utilizing a nationally representative panel data of middle-aged and elder individuals from 

China, we assess the health impact of environmental policies, with special attention paid to 

gender disparities within their effects. This study utilizes thermal inversions to address the 

endogeneity of air pollution and constructs a fixed effects model. Our findings highlight that 

the negative impact of air pollution on female health is significant, particularly for females 

in the middle of the health distribution. Notably, the implementation of environmental 

policies leads to health improvements in females and plays a key role in bridging the health 

gap between genders. These findings provide compelling evidence of the importance of 

environmental policy in promoting health equity.
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1. Introduction 

Research has indicated that air pollution has negative impacts on physical health (Chay and 

Greenstone, 2003; Deryugina et al., 2019), mental health (Buoli et al., 2018; Shuai Chen et al., 

2018), cognition (Ebenstein et al., 2016), worker productivity (Chang et al., 2019; Graff Zivin 

and Neidell, 2012; Hanna and Oliva, 2015), income and employment (Borgschulte et al., 2022), 

which can cause various socioeconomic issues both in the short- and long-term. Among them, 

particulate matter 2.5 (PM2.5) is recognized as a crucial risk factor for mortality and 

hospitalization resulting from respiratory and cardiovascular diseases (Brunekreef and 

Holgate, 2002). The air pollution issue is severe in developing countries, such as China (Xu et 

al., 2013). Outdoor air pollution, particularly PM2.5, exceeds the World Health Organization’s 

recommended air quality levels of 10.0μg/m3 by more than four times (WHO, 2018), and a 

number of studies have shown that outdoor air pollution has a notable impact on individual 

physical health. For instance, the winter heating system in areas north of the Huai River had a 

large negative impact on life expectancy (Ebenstein et al., 2017; Xu et al., 2013). A quarter of 

the premature deaths worldwide (i.e., approximately 1 million) due to outdoor air pollution in 

2016 took place in China (WHO, 2018). Air pollution can exacerbate existing inequalities 

among people with different incomes and socioeconomic statuses. Those who have to live in 

polluted areas or lack environmental awareness may be particularly vulnerable to the health 

effects of air pollution, leading to a widening of the inequality gap. 

 

To address the issue of widespread air pollution, the Chinese central government has 

implemented a range of environmental protection laws and regulations. Measuring the human 

capital benefits of these policies is essential for evaluating their effectiveness. Overestimating 

these benefits may lead to a lack of attention to air pollution issues, while underestimating them 

could result in excessive regulation. A vast amount of literature attempts to explain how air 
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pollution brings negative impacts on individual, household-level and city-level decision-

making and performance (Yang and Zhang, 2018; Zhang et al., 2018). For example, the 

increase in air pollution levels could prompt changes in human behavior, such as the increased 

purchase of masks, air purifiers and reduced purchase of houses (Chay and Greenstone, 2003; 

Ito and Zhang, 2020; Zhang and Mu, 2018). The objective of this study is to investigate an 

alternative explanation for the effect of air pollution by taking into account the consistent 

reduction in air pollution resulting from environmental policy. Considering the gender 

differences in genetic vulnerability to illness, reproductive and hormonal factors (Vlassoff, 

2007), as well as possible different roles in society, we examine the effect of environmental 

policy on air pollution induced health status across gender and measure the gender physical 

health gap. We delved deeper into the reasons for the reduction in the gender health gap by 

examining the effects of air pollution that can be explained and those that cannot be explained. 

Our research differs from previous studies by examining the impact of environmental policy 

on physical health across different distribution points for gender, rather than just focusing on 

the average gender differential. We also use nationally representative individual microdata to 

strengthen the evidence in this area of literature. 

 

More specifically, we employ high-resolution satellite data from the National Aeronautics and 

Space Administration (NASA) and a dataset of individual-level physical health with geocoding 

to explore the impact of environmental policy on the gender health gap. The selection of this 

data has several reasons. First, due to the possibility of data manipulation in Chinese local air 

pollution data (i.e., performance evaluations of local government officials are related to 

compliance with environmental standards), we choose NASA (i.e., an independent agency of 

the United States) satellite data of global air pollution. Second, physical health is one element 

of human capital and one of the central drivers for sustainable growth and poverty reduction of 
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human beings (World Bank, 2020). An individual’s physical health assets might be able to 

accumulate and have significant impacts on personal performance. Lastly, this individual-level 

dataset is focused on people who are aged equal to or above 45 years old. It is valuable to 

measure the outcomes of environmental policy on middle-aged and older adults as older adults 

tend to be more vulnerable to air pollution - a growing problem as the aging population has 

increased in many countries. If environmental policy benefits the aging population’s physical 

health, their longevity becomes a valuable resource because healthy older people will keep 

contributing to society. Individuals in our sample do not migrate to new places in all survey 

years and hence the estimates are not biased by the migration tendency. 

 

Our results show that females are more likely to be affected by air pollution before than after 

environmental policy, especially in the middle of the distribution. For females, a one standard 

deviation increase in air pollution leads to a 73.7% decrease in physical health before policy 

implementation, whereas it reduces by 35.6% in physical health after policy implementation. 

Moreover, females have a lower level of physical health compared to males. Except for females 

at the high end of the distribution, the gender health gap becomes smaller for the average 

population at the low end or middle of the distribution after the policy. The larger gender health 

gap at the high end of the distribution is caused by different increased rates of the negative 

impact of air pollution across gender. The increased rate of the negative impact of air pollution 

on physical health is relatively lower for females than males, especially in the high end of the 

distribution, but environmental policy will decrease the differences in increased rates. In 

addition, we investigate the impact of environmental policy on the gender health inequality 

gap. We also perform a number of robustness checks, which confirm that the results are 

consistent.  
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We divide the sample into the pre-policy cohort and post-policy cohort to compare the 

variations in physical health and gender health gap in response to air pollution. We follow the 

Recentered Influence Function (RIF) method and two-stage least squares (2SLS) regression 

analysis to generate unconditional quantile estimates and partial conditional quantile 

regressions. We apply Recentered Influence Function-Oaxaca-Blinder (RIF-OB) 

decomposition to decompose the gender health gap at different quantiles into explained and 

unexplained components, which in turn are decomposed into the contribution of explanatory 

variables (Firpo et al., 2018). The decomposition procedures contain the construction of 

counterfactual health distribution if females have received the same returns to personal 

characteristics as males and look at the explained and unexplained effects into the contribution 

of explanatory variables. We also adopt difference-in-differences (DID) estimation to quantify 

policy effects. 

 

The predicted annual average PM2.5, based on the annual average of thermal inversion, wind 

speed and wind direction, is used as an instrumental variable for air pollution. In recent 

literature, the number of thermal inversion days (Arceo et al., 2016; Shuai Chen et al., 2018; 

Fu et al., 2021; Jans et al., 2018), thermal inversion values (Chen et al., 2022) and wind 

direction (Deryugina et al., 2019) are widely used to construct instrumental variables for air 

pollution. Some researchers utilize the predicted values based on both the number of thermal 

inversion days, thermal inversion values, wind direction and wind speed as instrumental 

variables for air pollution (He et al., 2019; Liu and Salvo, 2018; Qin et al., 2019). These studies 

show that a 10 μg/m3 increase in PM2.5 reduces the daily output of workers by 1% (He et al., 

2019), and children’s school attendance (Liu and Salvo, 2018) and housing purchasing 

behaviors (Qin et al., 2019) will be negatively affected by severely polluted days. Average 

strengths of thermal inversions in the previous five years have also been used in research related 
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to the net outmigration of counties (Chen et al., 2022). The research we conducted provides 

additional support for the correlation between air pollution and physical health and delves 

deeper into the effects of environmental policy and gender disparities in this connection. 

 

Overall, the findings suggest that environmental policy has a positive impact on the health of 

individuals, especially for females in the low end or middle of the health distribution. 

Environmental policies can have a greater impact on human well-being than previously 

anticipated, as improved physical health can lead to better personal performance. The findings 

of this study contribute to the existing literature on the evaluation of environmental policies 

and highlight the importance of considering gender differences in the impact of such policies. 

This evidence can help formulating effective environmental policies that address the needs of 

vulnerable populations. Such policies are particularly necessary to protect females, who are 

more likely to be exposed to other types of air pollution, such as indoor air pollution. 

 

The rest of the paper is arranged as follows. The second section describes the relevant 

background. The third section elaborates on the empirical strategy and describes the variables 

used in the study. The fourth section presents the results of the empirical analysis. The fifth 

section provides the results of robustness checks. The sixth section concludes. 

 

2. Background 

2.1. Environmental policies in China 

The Chinese government formally participated in environmental protection in 1973 by 

promulgating “Several provisions on the protection and improvement of the environment”. The 

government included environmental protection in the Constitution in 1982, and paying 

attention to the importance of environmental protection was also identified as a basic national 
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policy in 1983. Nonetheless, some of these policies are not strict enough, and local 

governments and sectors may ignore the importance of environmental protection in the pursuit 

of economic benefits. In recent years, the Chinese central government has become more aware 

of the severity of air pollution issues and proposed more stringent environmental policies to 

address them. 

 

In 2012, the Ambient Air Quality Standards was reviewed, and the scope of air quality 

monitoring started to include PM2.5. In September 2013, China’s Air Pollution Action Plan 

(i.e., China’s Clean Air Act) was released. It is the toughest-ever and most influential 

environmental policy. It set aside funding to reduce ambient air pollution and set concrete goals 

for the reduction of PM2.5 and PM10. Some regions with particularly severe air pollution 

problems have been allocated more resources and have higher targets for reducing air 

pollutants than other regions. In early 2014, the Chinese government announced a strong 

commitment to tackling air pollution. This announcement was followed by the amendment of 

the Environmental Protection Law, originally proposed in 1989, with the revised law scheduled 

to come into effect in the next year. The government’s efforts to reduce pollution also included 

the gradual replacement of coal with clean energy in the winter heating system in northern 

China. 

 

Overall, these measures reflect China has implemented considerable measures to combat the 

issue of air pollution since 2013, offering a rare opportunity to examine the impact of air quality 

interventions and make causal inferences after addressing any potential issues of residual 

confounding. As far as we know, there is limited research on the effects of air pollution policy. 

There is a related study in the United States that examines the link between long-term 

cumulative exposure to air pollution and the risk of developing Alzheimer’s disease or related 
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dementias (Bishop et al., 2018). The limitations of the study include the lack of consideration 

of time-varying variables that could potentially affect the results over the long study period, 

which could introduce bias. Additionally, a study conducted in China with a relatively shorter 

timeframe evaluated the impact of the Air Pollution Action Plan on the cognitive function of 

individuals aged 65 years and above, but it did not explore potential differences in effects 

across different population groups (Yao et al., 2022). 

 

2.2. Environmental policy, physical health and gender differences 

Air pollution poses a grave threat to human health and overall well-being, inducing harmful 

effects on various body organs and contributing to numerous diseases, ranging from respiratory 

conditions such as pneumonia, chronic obstructive pulmonary disease, and asthma, to 

metabolic diseases like diabetes (Fang et al., 2012; Gehring et al., 2013; Vella et al., 2015). 

Moreover, air pollution can also trigger hyperleptinemia, a condition associated with potential 

trajectories towards premature cardiovascular diseases, addictive behaviors, cognitive 

impairment, and Alzheimer’s disease (Calderón-Garcidueñas et al., 2015). This detrimental 

relationship between air pollution and physical health has been corroborated in multiple 

studies, including research conducted in China (Chen et al., 2018; Qiu et al., 2019). 

 

Personal behavioral modifications can help mitigate the harmful effects of air pollution. 

However, the efficacy of such changes often hinges on cost-effectiveness, limiting their utility 

(Janke, 2014). Consequently, environmental policies emerge as a powerful instrument in 

promoting physical health by regulating significant contributors to air pollution such as 

vehicles, cooking, and industrial processes. Evidence from research indicates that the 

promotion of clean energy and the adoption of improved biomass stoves can enhance the 
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physical health of residents, with an apparent impact seen among Chinese populations (Mueller 

et al., 2013). 

 

Despite the substantial body of research on the broad health implications of air pollution, 

studies exploring the confluence of gender differences and air pollution’s health outcomes 

remain scant. This presents a significant knowledge gap, given the critical role gender plays in 

shaping the adverse outcomes of air pollution. A handful of studies have established the 

necessity of robust environmental policies to protect vulnerable groups like fetuses, children, 

pregnant women, and older adults from the harmful effects of air pollution. Specifically, air 

pollution has been associated with heightened infant mortality rates (Arceo et al., 2016), DNA 

damage in fetuses (Perera et al., 2005), brain damage in children (Brockmeyer and D’Angiulli, 

2016; Rice and Barone Jr., 2000), mental health issues in pregnant women (Kanner et al., 2021) 

and older adults (WHO, 2017). Relative to other demographic cohorts, the elderly population 

may be at a heightened risk for serious mental health conditions due to immunosenescence, 

pre-existing medical conditions and stressful life events (WHO, 2017). This suggests that more 

comprehensive environmental policies are necessary, particularly in countries like China, 

where the aging population is growing rapidly (Yao et al., 2022). 

 

Due to the inherent biological and social differences between genders, susceptibility, exposure, 

and responses to pollutants can vary, leading to dissimilar impacts of environmental policies 

on men and women. Studies have highlighted neurological differences between sexes, 

suggesting that women may be more susceptible to certain adverse effects of air pollution 

(Gallart-Palau et al., 2016). Thus, females tend to have a higher burden of disease compared to 

males (Nebel et al., 2018). Furthermore, occupational exposures, residential environments, and 

lifestyle factors might also influence the exposure to air pollution and subsequent health 
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outcomes differently in men and women. Sociocultural norms in many developing countries 

can compound these effects, placing women in more vulnerable positions due to gender-

prescribed roles (Clougherty, 2010). 

 

While cognitive and educational gender disparities among younger Chinese cohorts are 

narrowing, significant differences persist among individuals aged 45 and above, particularly in 

traditional impoverished communities. Women in these communities often lack access to 

quality education and nutrition compared to men due to persisting son preference and the 

financial constraints associated with having more children (Lei et al., 2014; Zhang et al., 2015). 

Furthermore, older men tend to have more access to pension and medical benefits due to their 

historical advantage in education, income, and employment. In contrast, older women in China 

cannot claim pension or unemployment compensation based on their husbands’ work histories, 

unlike their counterparts in the United States (Zhan, 2005). This disparity can lead to long-

lasting health implications, with research suggesting that middle-aged and older women are 

more susceptible to several diseases including diabetes, heart disease, hypertension, disability 

in daily living activities, and depressive symptoms (Anson and Sun, 2002; Guo et al., 2021; 

Peng et al., 2021). 

 

In conclusion, although the health impact of air pollution has been extensively studied, the 

literature lacks a comprehensive exploration of the health benefits resulting from improved air 

quality, particularly in relation to environmental policy implementation. Additionally, the 

current literature on environmental policy has generally not considered potential gender 

differences in outcomes. These limitations point towards the need for more gender-specific 

research on the health effects of air pollution and the impact of environmental policies on 
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different genders. By understanding these disparities, policymakers can devise more equitable 

and effective environmental regulations. 

 

3. Empirical strategy and data  

3.1. Empirical strategy 

We take three steps to measure the impact of environmental policy on the gender health gap. 

First, we estimate the effects of air pollution on physical health by gender across distributions 

before and after the policy. We use RIF unconditional quantile regressions to measure an 

increase in air pollution on unconditional statistics of physical health in different durations. 

This method allows us to obtain unconditional quantile partial effects.1 It is analogous to the 

OLS regression, which assumes a linear correlation between the dependent variable and 

independent variable, but the coefficient represents the marginal effects of the independent 

variable on a quantile, i.e., how much the quantile of marginal dependent variable distribution 

is influenced by a shift to the right in the distribution of the independent variable. The results 

of RIF regressions with the mean statistic are identical to the results of ordinary least-squares 

(OLS) regression (Firpo et al., 2009). Second, we measure the variations in the gender health 

gap across distributions before and after the policy. We use partial conditional RIF regressions 

to check the changes in the gender health gap on quantiles. The coefficient of the condition, 

i.e., whether the individual is female, is used to estimate RIF and represents the physical health 

differences between females and males. This regression with binomial gender could be viewed 

as an OLS alternative to Oaxaca-Blinder (OB) decomposition. In the third step, we decompose 

the gender health gap across distributions into contributions of explanatory variables. The 

 
1 We adopt Gaussian kernel to smooth the data. Due to the possible lack of information on the conditional 
distribution of the transformed cut-points, we defined the low, medium, and high quantiles as the 10th, 50th, and 
90th quantiles, respectively. We avoid using extreme quantiles such as the 1st and 99th due to the statistical 
uncertainty associated with them. In the robustness checks, we employ methods based on Bayesian quantile 
regression for ordinal outcomes to ensure the consistency of the results. 
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method is RIF-OB decompositions, which rely on the RIF regression estimates and OB 

decomposition (Jann, 2008). For the pre-policy and post-policy cohort, we estimate RIF 

unconditional quantile regressions for females, males and counterfactual health distributions 

(i.e., assume that for females, the returns of explanatory variables are the same as males). Then 

we could obtain the differences between males and females in the returns of explanatory 

variables. The differentials at each quantile include explained effect (i.e., namely composition 

effect or explained by discrimination, the gender health gap at a quantile is attributed to 

endowment differentials in explanatory variables, assuming the same returns for males and 

females) and unexplained effect (i.e., structure effect, the gender health gap at a quantile is due 

to different returns of explanatory variables for females and males) (Firpo et al., 2018). 

Furthermore, relevant work in China utilizes DID analysis to measure the impact of 

environmental policy on physical health. The DID estimator is based on the year dummy (2014 

= 0, 2018 = 1) and locations with higher targets of Air Pollution Action Plan for local 

governments (provinces with 5% or below the target of PM2.5 reduction is viewed as a control 

group and others are intervention group) (Yao et al., 2022). Following this study, we utilize 

DID estimation to quantify policy effects for general population, females and males, 

respectively. 

 

3.2. Data 

The data utilized in this study is the China Health and Retirement Longitudinal Study 

(CHARLS), which is a nationally representative longitudinal survey of the population aged 

equal to or above 45 years of old in China. This survey collects health, economic and social 

information of these people and their spouses. The survey was conducted by Peking University 

in China in 2011, 2013, 2015 and 2018. This survey applies systematic probability proportional 
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to size sampling method and uses implicit stratification by administrative boundary and 

socioeconomic status. 

 

The detailed geographic location information of this data enables us to merge air pollution and 

other city-level attributes with it. Air pollution data comes from NASA Socioeconomic Data 

and Applications Center at Columbia University. 2  This data measures annual mean 

concentrations of ground-level PM2.5 (Hammer et al., 2021, 2022). 

 

The dependent variable in the analysis is the self-rated health status. in the survey. We rescale 

the original variable and define an indicator for health that is the higher the score, the healthier 

(very poor=1, poor=2, fair=3, good=4, very good=5). We adopt air pollution as our 

independent variable in both pre-policy and post-policy regressions. Air pollution is measured 

by city-level annual mean PM2.5. Considering the possible endogenous problem of air 

pollution from sorting, pollution avoidance behaviors, and the correlation between air pollution 

and economic activities, we adopt predicted PM2.5 based on thermal inversions from 1000-

975 and 975-950 hPa and wind speed at the ground level as an instrumental variable of PM2.5.3 

The construction of predicted PM2.5 is as follows: 

𝑃𝑀_𝑓𝑖𝑡2.5𝑡,𝑗 = ∑ 𝛾1𝑡,𝑗𝐼𝑛𝑣𝑒𝑟𝑉𝑎𝑙𝑢𝑒𝑡,𝑗
𝑡,𝑗
0 + ∑ 𝛾2𝑡,𝑗,𝑙𝑊𝑆𝑡,𝑗,𝑙

𝑡,𝑗,𝑙
0 + ∑ 𝛾3𝑡,𝑗,𝑙 𝐼𝑛𝑣𝑒𝑟𝐷𝑎𝑦𝑡,𝑗,𝑙

𝑡,𝑗,𝑙
0 + 𝜀𝑡,𝑗,𝑙                        (1) 

where 𝑃𝑀_𝑓𝑖𝑡2.5𝑡,𝑗 represents the fitted value of PM2.5 at time 𝑡 in city 𝑗. 𝐼𝑛𝑣𝑒𝑟𝑉𝑎𝑙𝑢𝑒𝑡,𝑗 is the 

value of thermal inversions at time 𝑡 in city 𝑗. 𝑊𝑆𝑡,𝑗,𝑙 and 𝐼𝑛𝑣𝑒𝑟𝐷𝑎𝑦𝑡,𝑗,𝑙 indicate wind speed 

and the number of occurrences of thermal inversions at time 𝑡 in city 𝑗 at layer 𝑙, respectively. 

 

 
2 The air pollution data can be found at the website: https://beta.sedac.ciesin.columbia.edu/data/set/sdei-global-
annual-gwr-pm2-5-modis-misr-seawifs-aod-v4-gl-03. 
3 The data can be found at https://disc.sci.gsfc.nasa.gov/datasets/M2I6NPANA_5.12.4/summary?keywords=M2I
6NPANA 
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With respect to covariates, we include a set of individual-level and city-level characteristics: 

age, marital status (never married=1, separated, divorced, widowed=2, married with spouse 

present, or married but not living with spouse temporarily for reasons such as work=3), number 

of living children, number of living parents, real gross domestic product per capita (thousand 

RMB), population density (per km2), number of industrial firms per thousand people, ground-

level temperature (°C), rainfall (106 kg/m2*s), wind speed (m/s) and indicators for whether the 

individual is female (yes=1), has high school or above education (yes=1), migrated to other 

provinces (yes=1), has non-agricultural hukou (yes=1), has smoking behavior (yes=1), is 

included in the urban sample (yes=1) and lived in the city with high variance of PM2.5 within 

the city (yes=1).  

 

Summary statistics of variables by gender and policy cohorts are reported in Table 1. Although 

males might be more likely to live in places with higher air pollution than females, males tend 

to have better health status than females. Gender differences in physical health decline after 

the implementation of environmental policy. Females have a lower level of education, are more 

likely to migrate to other provinces and need to take care of many living parents and children. 

Finally, females are less likely to have smoking behaviors and the proportion of individuals 

having smoking behaviors decreases after policy. Table 2 presents females’ and males’ mean 

physical health in pre-policy and post-policy cohorts. The ratio of females’ physical health to 

males’ physical health increased from 94.5% to 94.8%, suggesting a decrease in the gender 

physical health gap. Females with high school or above education tend to have a higher level 

of health compared to females with below high school education. Females living in big cities 

and female entrepreneurs also have a higher level of health status compared to those who live 

in non-big cities and non-entrepreneur females. Environmental policy will help to decrease the 

gender health gap for all populations but might not be able to decrease the inequality in females 
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or in males. The descriptive results indicate that gender health disparity is larger for females 

with lower education and socioeconomic status, suggesting the existence of discrimination in 

obtaining good health. The environmental policy might be helpful for the reduction of the 

gender health gap but may not change the inequality level for each gender. 

 

4. Empirical results 

The coefficient estimates of RIF unconditional quantile regressions at mean without (or with) 

an instrumental variable are the same as the OLS (or 2SLS) estimates. Table 3 shows the OLS, 

2SLS and ordered logistic estimates of the impact of air pollution on physical health. The OLS 

results show a negative but statistically insignificant effect of air pollution on physical health 

for the full sample. However, considering the biased results of the OLS model, we utilize an 

instrumental variable of air pollution in the regression. According to the 2SLS results, at the 

mean, a unit increase in air pollution will cause a 1.1% reduction in the physical health of 

females. In alternative words, a one standard deviation increase in air pollution will cause a 

24.6% reduction in the physical health of females. The instrument’s Kleibergen-Paap RK Wald 

F statistic is larger than ten and the t-statistic is larger than the threshold of 3.43 (Lee et al., 

2022), suggesting no weak instrument variable issues. The estimates from the ordered logistic 

regression reveal similar findings. They are not reported because their parameter estimates are 

not directly comparable to linear models. 

 

Panel A-D of Table 4 presents the estimates of separate RIF unconditional quantile regression 

estimates by gender at mean, low, medium and high quantiles for pre-policy (i.e., 2011, 2013) 

and post-policy cohorts (i.e., 2015, 2018). The coefficient estimates show that air pollution has 

different effects on females and males. The negative returns of air pollution are larger and more 

significant for females, whereas they are statistically insignificant for males. For instance, at 
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the mean, before the issue of environmental policy, a unit increase in air pollution will lead to 

an 8.3% reduction in the physical health of females, whereas the effects become 7.7% after the 

policy implementation. In alternative words, a one standard deviation increase in air pollution 

will lead to a 204.0% reduction in the physical health scores of females, whereas the effects 

become 130.7% after the policy implementation. The effects are not significant for males. In 

2011 and 2013, at the median, females who lived in places with one unit (or one standard 

deviation) increase of air pollution had 3.0% (or 73.7%) fewer physical health scores. In 

contrast, males do not experience negative and significant impacts from air pollution. In 2015 

and 2018, at the median, females with one unit (or one standard deviation) increase of air 

pollution in their living places had 2.1% (or 35.6%) fewer physical health scores.  

 

The results suggest that the negative impact is significant for the female sample, and that 

environmental policy brings health benefits for females since it reduces the negative returns of 

air pollution on their physical health. The results also suggest that environmental policy might 

help to reduce gender health differences in response to air pollution. We further check the 

effects of air pollution on the dispersion of physical health for the pre- and post-policy cohorts. 

These show that the increase in air pollution might lead to less dispersion of physical health 

for females, and that the introduction of environmental policy might eliminate this effect. It is 

likely that the increased rate of the negative impact of air pollution is relatively lower if females 

live in polluted areas. The immune responses stimulated by severe air pollution might generate 

a protective effect to help them survive in environmental adversity. Panel E and Panel F of 

Table 4 report the estimation results of partial conditional regressions on gender. These suggest 

that females have a lower level of physical health compared to males. Except for females at the 

high end of health distribution, the gender health gap becomes smaller for the average 

population in the low end or middle of distribution after the implementation of environmental 
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policy. In terms of the dispersion of physical health, females tend to have less health inequality 

compared to males before the policy, and the health inequality of females is reduced more than 

males after the policy. 

 

As is shown in Table 5, we decompose the differences between females and males across 

distributions into explained and unexplained components. For each cohort, we generate a 

counterfactual distribution of physical health if females have identical returns of explanatory 

variables as males. First, the coefficients of gender difference suggest that the gender health 

gap is smaller after policy. The results are consistent with the partial conditional regressions 

estimates on gender, which show that environmental policy brings more health benefits for 

females. Second, the significant coefficients of the unexplained component indicate that the 

gender health gap mainly comes from the unexplained part (i.e., the differences between the 

female’s actual distribution and the female’s counterfactual distribution), which decreases after 

the implementation of the policy. Thirdly, health return to air pollution is larger for females 

than for males (i.e., the increase rate of the negative impact of air pollution on health is lower 

for females than males), especially at the high end of the distribution. Yet, the environmental 

policy will reduce the differences in the increased rates of the negative impact of air pollution 

on health between females and males. Thus, the reduction in the differences of the increase rate 

might cause an identical and larger gender health gap at the high end of the distribution. We 

also check the variations of physical health inequality for females and males. The coefficients 

of gender difference are positive, suggesting that males tend to have larger health inequality 

than females. The increase in the coefficient of gender difference after the issue of policy 

represents the gender health inequality gap larger after the policy. The results are also 

confirmed by results of partial conditional regressions that environmental policy will help to 

reduce more health inequality among females than among males. The negative coefficient of 
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unexplained air pollution shows that health inequality return to air pollution is larger for 

females than for males (i.e., the increase rate of the negative impact of air pollution on health 

dispersion is lower for females than males). Environmental policy will increase the differences 

in the increase rate of the negative impact of air pollution on health dispersion, which might 

provide an explanation for the occurrence of the larger gender health inequality gap. 

 

Furthermore, we test the physical health benefits of environmental policy. The year dummy in 

our study is defined by whether the survey year belongs to the post-policy cohort (2011 or 2013 

= 0, 2015 or 2018 = 1). The intervention group indicator is a categorial variable where 

provinces with 0%, 5% and above 5% target of PM2.5 reduction are equal to 0, 1 and 2, 

respectively. Table 6 displays the results and finds that after the implementation of 

environmental policy, high target PM2.5 reduction will lead to high physical health scores and 

this positive effect is significant for females rather than males.4 Specifically, a one standard 

deviation increase in environmental policy stringency will increase health scores of the general 

population and females by 5.7% and 7.3%, respectively. 

 

5. Robustness checks 

Up to now, our sample has focused on differences between females and males. We next check 

the robustness of the results for specific groups of people. According to “the double burden 

hypothesis”, the combination of being an employee and a parent will lead to high work strain 

and risks of absence and sickness (Floderus et al., 2008; Nilsen et al., 2017). People without 

children might have positive self-identities from the freedom of making their own life choices, 

 
4 We utilize the seemingly unrelated estimation to test whether or not the coefficients for females and males are 
equal. The results cannot be calculated in the pre-policy cohort and are not significant for the post-policy cohort. 
Then, we test the gender differences in the impact of air pollution on physical health and find that the differences 
are significant in the pre-policy cohort and not significant in the post-policy cohort. These findings are consistent 
with our previous results. 
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especially single women (Addie and Brownlow, 2014). Yet, people without children 

approaching middle age without age might have more physical health issues. For instance, the 

negative effect of having children for females will decrease for people after age 35 since the 

problems caused by having children will be modified by age (i.e., as mothers’ ability to cope 

with parenthood by increasing age). Childlessness might also be associated with less support 

from family and social networks (Gironda et al., 1999; Graham, 2018). Having children for 

relatively older parents is more important in China due to the strong social norm of filial 

responsibility that adult children need to serve their parents well (Wang et al., 2021). We 

generate an interaction to measure whether environmental policy brings health benefits to 

populations without children. The interaction effects in Table A1 find that after the 

environmental policy, females without children still experienced the negative impacts of air 

pollution, whereas the impacts were not significant for males without children. 

 

In the previous environmental performance, reduction in air pollution and stringent level of 

pollution control might be different in some areas. The Air Pollution Action Plan in 2013 

emphasized the importance of reducing air pollution in three key regions (i.e., Beijing-Tianjin-

Hebei, Yangtze River Delta and the Pearl River Delta) and planned to decrease PM2.5 

concentrations by 25 percent, 20 percent and 15 percent in these regions, respectively. Beijing-

Tianjin-Hebei region has the highest level of air pollution before and after the implementation 

of the environmental policy. The Pearl River Delta has the lowest air pollution level compared 

to the other two regions in almost all years. Table A2 report the estimation results for people 

living in these three key regions after environmental policy. In highly polluted areas such as 

cities in the Beijing-Tianjin-Hebei region, the negative impact of air pollution on males and 

females still exists after the implementation of environmental policy. Females living in the 

Yangtze River Delta also experienced adverse health outcomes from air pollution after 
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environmental policy. Individuals, communities and governments need to make more effort to 

reduce air pollution in highly polluted areas and pay attention to the vulnerability of females 

to air pollution.  

 

Environmental policies such as the Air Pollution Action Plan in 2013 might also bring benefits 

for climate change due to the actions of using clean energy to replace traditional energy. In 

order to examine the effect of greenhouse gas on the relationship between environmental policy 

and physical health, we use ozone as an independent variable in health regressions before and 

after environmental policy. The results in Table A3 show that greenhouse gas emissions harm 

the physical health of females before environmental policy and the negative impact is not 

significant after environmental policy, which is similar to our main results. The results also 

suggest that air pollution and climate change are linked issues and the environmental policy 

helps to avoid dangerous climate change when reducing air pollution exposure.  

 

Considering that we assume conditional expectation is linear in the previous estimation, Table 

A4 adopts a logit re-weighting approach as in DiNardo et al. (1996) to estimate partial 

conditional regressions on gender and RIF-OB decomposition across policy cohorts. The 

advantage of applying reweighting method is that it is suitable for more general distributional 

statistics. The first step of reweighting procedure is to obtain inverse probability weights. We 

regress the gender variable on a set of control variables by using logit regression. The second 

step is to use weights in the estimation of average treatment effects and identification of the 

counterfactual distributions. Reweighting errors are small compared to total differences. They 

are nonsignificant in the pre-policy cohort but significant in the post-policy cohort (i.e., the 

regression might not be correctly reweighted, and reweighting has an undue effect on estimates 

in the post-policy cohort). In terms of explained and unexplained components, although the 
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size and significance level of variables for the post-policy cohort alter in the weighted model, 

the significant impact of unexplained components and unexplained PM2.5 remain significant. 

Similar results prove the robustness of previous findings. 

 

We adopt the Juhn-Murphy-Pierce (JMP) method to check the impact of environmental policy 

on the gender health gap and disentangle the unexplained effect into a residual portion and 

residual inequality.5 (Juhn et al., 1991). Table A5 reports that the gender health gap decreased 

after the implementation of the environmental policy, and the impact is mainly from the 

residual gap rather than the predicted gap. The predicted gap is explained component of the 

differential and indicates there are differences in observed quantities (i.e., endowments) and 

observed prices (i.e., coefficients or returns). The residual gap is the unexplained part of the 

differential and suggests that there are differences in unobserved quantities and prices. From 

the results, we find the decrease in the gender health gap mainly due to the unexplained quantity 

effect (i.e., true female-specific effect). It represents that there are changes in the groups’ 

differences in residual positions, such as changes in the group differences in unobserved 

quantities and discrimination. In alternative words, the environmental policy reduces the 

gender health gap because the percentile rankings of the females’ residual health distribution 

changed when male residual health inequality remained the same. 

 

To confirm the consistency of the role of air pollution in the relationship between 

environmental policy and the gender health gap, we adopt the model in long differences before 

and after environmental policy to look at historical trends and smooth measurement errors 

(Michaels et al., 2014). The two dependent variables, the independent variable and instrumental 

 
5 The RIF-OB method used in this paper does not identify the role of health structure on health gaps before and 
after environmental policy (i.e., changes in health inequality over time). 
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variable are the differences in physical health, gender health gap, air pollution and thermal 

inversion-induced air pollution before and after environmental policy, respectively. 6  The 

results in Table A6 show that the increase in air pollution will lead to lower female physical 

health and a larger gender health gap. 

 

Following the Bayesian quantile regression for ordinal outcomes, we focus on the individuals 

might at the middle of the health distribution and utilize Bayesian estimation regression with 

Gibbs sampling and Metropolis-Hastings (MH) algorithm to confirm the consistency of results 

(Rahman, 2016). We drop the initial 2500 burn-in iterations and utilize the remaining 10000 

Markov chain Monte Carlo (MCMC) iterations to generate the outcomes. Table A7 shows the 

posterior mean and standard deviation of the air pollution, and the sign and magnitude of the 

estimates are similar to that obtained from quantile regressions. 

 

Considering the dependent variable in our study is based on self-reported physical health scores 

and might be highly skewed variables (e.g., people are more likely to report healthy), we check 

the distributions of the dependent variable in Figure A1. The figure indicates that the dependent 

variable is distributed relatively normally, with a significant peak at the mean of 3, i.e., most 

of the individuals in our sample have fair health scores for both pre-policy cohort (kernel = 

gaussian, bandwidth = 0.083) and post-policy cohort (kernel = gaussian, bandwidth = 0.111). 

It confirms that our results are not biased by the distribution of the dependent variable. 

 

6. Conclusions 

 
6 The differences in 2011 are measured by the average differences between 2011 and 2015 as well as between 
2011 and 2018, and the differences in 2013 are calculated by the average differences between 2013 and 2015 as 
well as between 2013 and 2018. 
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Utilizing a national representative sample of China in 2011, 2013, 2015 and 2018, we 

investigate the impact of environmental policy on the gender health gap. Our findings indicate 

that environmental policy implementation can help mitigate the adverse effects of air pollution, 

particularly for females in the middle of the health distribution. Although males generally have 

better physical health, environmental policy can still play a role in reducing gender-based 

health disparities, especially for individuals in the lower and middle segments of the health 

distribution. The unexplained effects of air pollution could potentially account for some of the 

observed reductions in the gender health gap. Furthermore, environmental policy is likely to 

have a more pronounced impact on reducing health inequalities among females compared to 

males.  

 

Our findings hold relevant implications for explicating the drivers behind the amelioration of 

gender-based health inequities. In light of the varying rates at which air pollution detrimentally 

affects females and males, the aggregate gender health gap decreases for the broader populace. 

Our findings also suggest that environmental policy yields greater health benefits for females 

at the middle ends of the health distributions. However, further careful analysis is required to 

explore the relatively lower health benefits conferred by environmental policy at the higher 

end of the health distribution. 

 

We acknowledge that our study has a primary limitation in that it solely examines the 

disparities between males and females in their reaction to air pollution and environmental 

policy, without exploring the potential pathways through which environmental policy impacts 

the gender-based health gap. It builds on prior research on physical health, in which we 

presume that both males and females are not independent of the influence of air pollution and 

environmental policy. Yet, our findings suggest that males in our sample may be less impacted 
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by environmental policies, whereas females may be more susceptible to their influence. This 

discrepancy could potentially stem from differences in immune function, with males 

potentially exhibiting a superior ability to mitigate the negative impact of environmental 

pollutants. Consequently, by leveraging data from medical sciences, we may gain insights into 

how best to enhance the immune defense of females and promote gender parity in this regard. 

Another potential explanation for this disparity is the existence of differences in social norms, 

whereby females may experience more severe indoor air pollution due to traditional energy 

usage and exposure to secondhand smoke from their spouses. Additional investigation is 

imperative to scrutinize the precise mechanisms underlying these effects and how 

environmental policies are executed, especially in relation to industries and regions that have 

a higher concentration of female employees. 

 



25 

References 

Addie, E., Brownlow, C., 2014. Deficit and asset identity constructions of single women 
without children living in Australia: An analysis of discourse. Feminism & 
Psychology 24, 423–439. https://doi.org/10.1177/0959353514539463 

Anson, O., Sun, S., 2002. Gender and health in rural China: Evidence from HeBei province. 
Social Science & Medicine 55, 1039–1054. https://doi.org/10.1016/S0277-
9536(01)00227-1 

Arceo, E., Hanna, R., Oliva, P., 2016. Does the effect of pollution on infant mortality differ 
between developing and developed countries? Evidence from Mexico city. The 
Economic Journal 126, 257–280. https://doi.org/10.1111/ecoj.12273 

Bishop, K.C., Ketcham, J.D., Kuminoff, N.V., 2018. Hazed and confused: The effect of air 
pollution on dementia (No. w24970). National Bureau of Economic Research, 
Cambridge, MA. https://doi.org/10.3386/w24970 

Borgschulte, M., Molitor, D., Zou, E., 2022. Air pollution and the labor market: Evidence 
from wildfire smoke (No. 29952). National Bureau of Economic Research, Cambridge, MA. 
https://doi.org/10.3386/w29952 
Brockmeyer, S., D’Angiulli, A., 2016. How air pollution alters brain development: The role 

of neuroinflammation. Translational Neuroscience 7, 24–30. 
https://doi.org/10.1515/tnsci-2016-0005 

Brunekreef, B., Holgate, S.T., 2002. Air pollution and health. Lancet 360, 1233–1242. 
https://doi.org/10.1016/S0140-6736(02)11274-8 

Buoli, M., Grassi, S., Caldiroli, A., Carnevali, G.S., Mucci, F., Iodice, S., Cantone, L., 
Pergoli, L., Bollati, V., 2018. Is there a link between air pollution and mental 
disorders? Environment International 118, 154–168. 
https://doi.org/10.1016/j.envint.2018.05.044 

Calderón-Garcidueñas, L., Franco-Lira, M., D’Angiulli, A., Rodríguez-Díaz, J., Blaurock-
Busch, E., Busch, Y., Chao, C., Thompson, C., Mukherjee, P.S., Torres-Jardón, R., 
Perry, G., 2015. Mexico City normal weight children exposed to high concentrations 
of ambient PM2.5 show high blood leptin and endothelin-1, vitamin D deficiency, and 
food reward hormone dysregulation versus low pollution controls. Relevance for 
obesity and Alzheimer disease. Environmental Research 140, 579–592. 
https://doi.org/10.1016/j.envres.2015.05.012 

Chang, T.Y., Graff Zivin, J., Gross, T., Neidell, M., 2019. The effect of pollution on worker 
productivity: Evidence from call center workers in China. American Economic 
Journal: Applied Economics 11, 151–172. https://doi.org/10.1257/app.20160436 

Chay, K.Y., Greenstone, M., 2003. The impact of air pollution on infant mortality: Evidence 
from geographic variation in pollution shocks induced by a recession. The Quarterly 
Journal of Economics 118, 1121–1167. https://doi.org/10.1162/00335530360698513 

Chen, Siyu, Guo, C., Huang, X., 2018. Air pollution, student health, and school absences: 
Evidence from China. Journal of Environmental Economics and Management 92, 
465–497. https://doi.org/10.1016/j.jeem.2018.10.002 

Chen, S., Oliva, P., Zhang, P., 2022. The effect of air pollution on migration: Evidence from 
China. Journal of Development Economics 156, 102833. 
https://doi.org/10.1016/j.jdeveco.2022.102833 

Chen, Shuai, Oliva, P., Zhang, P., 2018. Air pollution and mental health: Evidence from 
China (No. 24686). National Bureau of Economic Research, Cambridge, MA. 
https://doi.org/10.3386/w24686 



26 

Clougherty, J.E., 2010. A growing role for gender analysis in air pollution epidemiology. 
Environmental Health Perspectives 118, 167–176. 
https://doi.org/10.1289/ehp.0900994 

Deryugina, T., Heutel, G., Miller, N.H., Molitor, D., Reif, J., 2019. The mortality and 
medical costs of air pollution: Evidence from changes in wind direction. American 
Economic Review 109, 4178–4219. https://doi.org/10.1257/aer.20180279 

DiNardo, J., Fortin, N.M., Lemieux, T., 1996. Labor market institutions and the distribution 
of wages, 1973-1992: A semiparametric approach. Econometrica 64, 1001–1044. 
https://doi.org/10.2307/2171954 

Ebenstein, A., Fan, M., Greenstone, M., He, G., Zhou, M., 2017. New evidence on the impact 
of sustained exposure to air pollution on life expectancy from China’s Huai River 
Policy. Proceedings of the National Academy of Sciences 114, 10384–10389. 
https://doi.org/10.1073/pnas.1616784114 

Ebenstein, A., Lavy, V., Roth, S., 2016. The long-run economic consequences of high-stakes 
examinations: Evidence from transitory variation in pollution. American Economic 
Journal: Applied Economics 8, 36–65. https://doi.org/10.1257/app.20150213 

Fang, S.C., Mehta, A.J., Alexeeff, S.E., Gryparis, A., Coull, B., Vokonas, P., Christiani, 
D.C., Schwartz, J., 2012. Residential black carbon exposure and circulating markers 
of systemic inflammation in elderly males: The normative aging study. Environmental 
Health Perspectives 120, 674–680. https://doi.org/10.1289/ehp.1103982 

Firpo, S., Fortin, N.M., Lemieux, T., 2009. Unconditional quantile regressions. Econometrica 
77, 953–973. 

Firpo, S.P., Fortin, N.M., Lemieux, T., 2018. Decomposing wage distributions using 
recentered influence function regressions. Econometrics 6, 28. 
https://doi.org/10.3390/econometrics6020028 

Floderus, B., Hagman, M., Aronsson, G., Marklund, S., Wikman, A., 2008. Self-reported 
health in mothers: The impact of age, and socioeconomic conditions. Women & 
Health 47, 63–86. https://doi.org/10.1080/03630240802092308 

Fu, S., Viard, V.B., Zhang, P., 2021. Air pollution and manufacturing firm productivity: 
Nationwide estimates for China. The Economic Journal 131, 3241–3273. 
https://doi.org/10.1093/ej/ueab033 

Gallart-Palau, X., Lee, B.S.T., Adav, S.S., Qian, J., Serra, A., Park, J.E., Lai, M.K.P., Chen, 
C.P., Kalaria, R.N., Sze, S.K., 2016. Gender differences in white matter pathology 
and mitochondrial dysfunction in Alzheimer’s disease with cerebrovascular disease. 
Molecular Brain 9, 27. https://doi.org/10.1186/s13041-016-0205-7 

Gehring, U., Gruzieva, O., Agius, R.M., Beelen, R., Custovic, A., Cyrys, J., Eeftens, M., 
Flexeder, C., Fuertes, E., Heinrich, J., Hoffmann, B., de Jongste, J.C., Kerkhof, M., 
Klümper, C., Korek, M., Mölter, A., Schultz, E.S., Simpson, A., Sugiri, D., 
Svartengren, M., von Berg, A., Wijga, A.H., Pershagen, G., Brunekreef, B., 2013. Air 
pollution exposure and lung function in children: The ESCAPE project. 
Environmental Health Perspectives 121, 1357–1364. 
https://doi.org/10.1289/ehp.1306770 

Gironda, M., Lubben, J.E., Atchison, K.A., 1999. Social networks of elders without children. 
Journal of Gerontological Social Work 31, 63–84. 
https://doi.org/10.1300/J083v31n01_05 

Graff Zivin, J., Neidell, M., 2012. The impact of pollution on worker productivity. American 
Economic Review 102, 3652–3673. https://doi.org/10.1257/aer.102.7.3652 

Graham, M., 2018. The influence of social support on health and wellbeing among women 
with and without children. Journal of Social Inclusion 9, 22. 
https://doi.org/10.36251/josi.135 



27 

Guo, L., An, L., Luo, F., Yu, B., 2021. Social isolation, loneliness and functional disability in 
Chinese older women and men: a longitudinal study. Age and Ageing 50, 1222–1228. 
https://doi.org/10.1093/ageing/afaa271 

Hammer, M.S., van Donkelaar, A., Li, C., Lyapustin, A., Sayer, A.M., Hsu, N.C., Levy, R.C., 
Garay, M.J., Kalashnikova, O.V., Kahn, R.A., Brauer, M., Apte, J.S., Henze, D.K., 
Zhang, L., Zhang, Q., Ford, B., 2022. Global annual PM2.5 grids from MODIS, 
MISR and SeaWiFS aerosol optical depth (AOD), 1998-2019, V4.GL.03. 
https://doi.org/10.7927/fx80-4n39 

Hammer, M.S., van Donkelaar, A., Li, C., Lyapustin, A., Sayer, A.M., Hsu, N.C., Levy, R.C., 
Garay, M.J., Kalashnikova, O.V., Kahn, R.A., Brauer, M., Apte, J.S., Henze, D.K., 
Zhang, L., Zhang, Q., Ford, B., Pierce, J.R., Martin, R.V., 2020. Global estimates and 
long-term trends of fine particulate matter concentrations (1998–2018). 
Environmental Science & Technology 54, 7879–7890. 
https://doi.org/10.1021/acs.est.0c01764 

Hanna, R., Oliva, P., 2015. The effect of pollution on labor supply: Evidence from a natural 
experiment in Mexico City. Journal of Public Economics 122, 68–79. 
https://doi.org/10.1016/j.jpubeco.2014.10.004 

He, J., Liu, H., Salvo, A., 2019. Severe air pollution and labor productivity: Evidence from 
industrial towns in China. American Economic Journal: Applied Economics 11, 173–
201. https://doi.org/10.1257/app.20170286 

Ito, K., Zhang, S., 2020. Willingness to pay for clean air: Evidence from air purifier markets 
in China. Journal of Political Economy 128, 1627–1672. 
https://doi.org/10.1086/705554 

Janke, K., 2014. Air pollution, avoidance behaviour and children’s respiratory health: 
Evidence from England. Journal of Health Economics 38, 23–42. 
https://doi.org/10.1016/j.jhealeco.2014.07.002 

Jann, B., 2008. The Blinder–Oaxaca decomposition for linear regression models. The Stata 
Journal 8, 453–479. https://doi.org/10.1177/1536867X0800800401 

Jans, J., Johansson, P., Nilsson, J.P., 2018. Economic status, air quality, and child health: 
Evidence from inversion episodes. Journal of Health Economics 61, 220–232. 
https://doi.org/10.1016/j.jhealeco.2018.08.002 

Juhn, C., Murphy, K.M., Pierce, B., 1991. Accounting for the slowdown in black-white wage 
convergence, in: Marvin Kosters (Eds), Workers and their wages. Washington, DC: 
1991. p. 107–143. 

Kanner, J., Pollack, A.Z., Ranasinghe, S., Stevens, D.R., Nobles, C., Rohn, M.C.H., 
Sherman, S., Mendola, P., 2021. Chronic exposure to air pollution and risk of mental 
health disorders complicating pregnancy. Environmental Research 196, 110937. 
https://doi.org/10.1016/j.envres.2021.110937 

Lee, D.S., McCrary, J., Moreira, M.J., Porter, J., 2022. Valid t-ratio inference for IV. 
American Economic Review. https://doi.org/10.1257/aer.20211063 

Lei, X., Smith, J.P., Sun, X., Zhao, Y., 2014. Gender differences in cognition in China and 
reasons for change over time: Evidence from CHARLS. The Journal of the 
Economics of Ageing 4, 46–55. https://doi.org/10.1016/j.jeoa.2013.11.001 

Liu, H., Salvo, A., 2018. Severe air pollution and child absences when schools and parents 
respond. Journal of Environmental Economics and Management 92, 300–330. 
https://doi.org/10.1016/j.jeem.2018.10.003 

Michaels, G., Natraj, A., Van Reenen, J., 2014. Has ICT polarized skill demand? Evidence 
from countries over twenty-five years. The Review of Economics and Statistics 96, 
60–77. https://doi.org/10.1162/REST_a_00366 



28 

Mueller, V., Pfaff, A., Peabody, J., Liu, Y., Smith, K.R., 2013. Improving stove evaluation 
using survey data: Who received which intervention matters. Ecological Economics 
93, 301–312. https://doi.org/10.1016/j.ecolecon.2013.06.001 

Nebel, R.A., Aggarwal, N.T., Barnes, L.L., Gallagher, A., Goldstein, J.M., Kantarci, K., 
Mallampalli, M.P., Mormino, E.C., Scott, L., Yu, W.H., Maki, P.M., Mielke, M.M., 
2018. Understanding the impact of sex and gender in Alzheimer’s disease: A call to 
action. Alzheimer’s & Dementia 14, 1171–1183. 
https://doi.org/10.1016/j.jalz.2018.04.008 

Nilsen, W., Skipstein, A., Østby, K.A., Mykletun, A., 2017. Examination of the double 
burden hypothesis—a systematic review of work–family conflict and sickness 
absence. European Journal of Public Health 27, 465–471. 
https://doi.org/10.1093/eurpub/ckx054 

Peng, S., Wang, S., Feng, X.L., 2021. Multimorbidity, depressive symptoms and disability in 
activities of daily living amongst middle-aged and older Chinese: Evidence from the 
China Health and Retirement Longitudinal Study. Journal of Affective Disorders 295, 
703–710. https://doi.org/10.1016/j.jad.2021.08.072 

Perera, F., Tang, D., Whyatt, R., Lederman, S.A., Jedrychowski, W., 2005. DNA damage 
from polycyclic aromatic hydrocarbons measured by benzo[a]pyrene-DNA adducts in 
mothers and newborns from Northern Manhattan, the World Trade Center Area, 
Poland, and China. Cancer Epidemiology Biomarkers & Prevention 14, 709–714. 
https://doi.org/10.1158/1055-9965.EPI-04-0457 

Qin, Y., Wu, J., Yan, J., 2019. Negotiating housing deal on a polluted day: Consequences and 
possible explanations. Journal of Environmental Economics and Management 94, 
161–187. https://doi.org/10.1016/j.jeem.2019.02.002 

Qiu, Y., Yang, F.-A., Lai, W., 2019. The impact of indoor air pollution on health outcomes 
and cognitive abilities: Empirical evidence from China. Population and Environment 
40, 388–410. https://doi.org/10.1007/s11111-019-00317-6 

Rahman, M.A., 2016. Bayesian quantile regression for ordinal models. Bayesian Analysis 11, 
1–24. https://doi.org/10.1214/15-BA939 

Rice, D., Barone Jr., S., 2000. Critical periods of vulnerability for the developing nervous 
system: Evidence from humans and animal models. Environmental Health 
Perspectives 108, 511–533. https://doi.org/10.1289/ehp.00108s3511 

Vella, R.E., Pillon, N.J., Zarrouki, B., Croze, M.L., Koppe, L., Guichardant, M., Pesenti, S., 
Chauvin, M.-A., Rieusset, J., Géloën, A., Soulage, C.O., 2015. Ozone exposure 
triggers insulin resistance through muscle c-Jun N-terminal kinase activation. 
Diabetes 64, 1011–1024. https://doi.org/10.2337/db13-1181 

Vlassoff, C., 2007. Gender differences in determinants and consequences of health and 
illness. Journal of Health, Population and Nutrition 25, 47–61. 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3013263/ 

Wang, Y., Wan, G., Gu, Y., 2021. Consistency and transformation of filial responsibility 
attitudes in China: Evidence from panel study of family dynamics of 2004 and 2017. 
Journal of Family Issues https://doi.org/10.1177/0192513X211048475 

WHO, 2018. Greater cooperation needed to win the war on pollution. 
https://www.who.int/china/news/detail/08-05-2018-greater-cooperation-needed-to-
win-the-war-on-pollution (accessed 6.3.22). 

WHO, 2017. Mental health of older adults. https://www.who.int/news-room/fact-
sheets/detail/mental-health-of-older-adults (accessed 6.4.22). 

World Bank, 2020. The human capital index 2020 update: Human capital in the time of 
COVID-19. World Bank, Washington, DC. https://doi.org/10.1596/34432 



29 

WHO, 2018. WHO issues latest global air quality report: Some progress, but more attention 
needed to avoid dangerously high levels of air pollution. 
https://www.who.int/china/news/detail/02-05-2018-who-issues-latest-global-air-
quality-report-some-progress-but-more-attention-needed-to-avoid-dangerously-high-
levels-of-air-pollution (accessed 6.3.22). 

Xu, P., Chen, Y., Ye, X., 2013. Haze, air pollution, and health in China. Lancet 382, 2067. 
https://doi.org/10.1016/S0140-6736(13)62693-8 

Yang, J., Zhang, B., 2018. Air pollution and healthcare expenditure: Implication for the 
benefit of air pollution control in China. Environment International 120, 443–455. 
https://doi.org/10.1016/j.envint.2018.08.011 

Yao, Y., Lv, X., Qiu, C., Li, J., Wu, X., Zhang, H., Yue, D., Liu, K., Eshak, E.S., Lorenz, T., 
Anstey, K.J., Livingston, G., Xue, T., Zhang, J., Wang, H., Zeng, Y., 2022. The effect 
of China’s Clean Air Act on cognitive function in older adults: a population-based, 
quasi-experimental study. The Lancet Healthy Longevity 3, e98–e108. 
https://doi.org/10.1016/S2666-7568(22)00004-6 

Zhan, H.J., 2005. Aging, Health care, and elder care: Perpetuation of gender inequalities in 
China. Health Care for Women International 26, 693–712. 
https://doi.org/10.1080/07399330500177196 

Zhang, H., Bago d’Uva, T., van Doorslaer, E., 2015. The gender health gap in China: A 
decomposition analysis. Economics & Human Biology 18, 13–26. 
https://doi.org/10.1016/j.ehb.2015.03.001 

Zhang, J., Mu, Q., 2018. Air pollution and defensive expenditures: Evidence from 
particulate-filtering facemasks. Journal of Environmental Economics and 
Management 92, 517–536. https://doi.org/10.1016/j.jeem.2017.07.006 

Zhang, Xin, Chen, X., Zhang, Xiaobo, 2018. The impact of exposure to air pollution on 
cognitive performance. Proceedings of the National Academy of Sciences 115, 9193–
9197. https://doi.org/10.1073/pnas.1809474115 

 

 



 

30 

Table 1  
Descriptive Statistics. 

Panel A: by gender 
Full sample Male Female Welch’s t-

statistic 
Gender gap 

Mean SD Mean SD Mean SD Value Ratio 
Dependent variable            
Physical health 3.035  0.974  3.121  0.980  2.954  0.962  22.774*** 0.167  5.7% 
Independent variable          
PM2.5 (µg/m3) 52.773  22.373  52.953  22.407  52.603  22.340  2.073** 0.350  0.7% 
Instrumental variable          
Predicted PM2.5 (µg/m3) 52.491  10.009  52.475  10.020  52.505  9.998  -0.401 -0.030  -0.1% 
Control variables          
Age 60.042  9.775  60.339  9.670  59.765  9.865  7.783*** 0.574  1.0% 
Female (yes=1) 0.517  0.500  0.000  0.000  1.000  0.000  n.a. n.a. n.a. 
High school of above (yes=1) 0.120  0.326  0.159  0.366  0.084  0.277  30.706*** 0.075  89.3% 
Migrated to other provinces (yes=1) 0.077  0.266  0.066  0.249  0.086  0.281  -9.958*** -0.020  -23.3% 
Non-agricultural hukou (yes=1) 0.227  0.419  0.246  0.430  0.210  0.407  11.063*** 0.036  17.1% 
Marital status 2.984  0.124  2.982  0.134  2.987  0.113  -5.433*** -0.005  -0.2% 
Smoking behavior (yes=1) 0.265  0.442  0.524  0.499  0.048  0.214  154.652*** 0.476  991.7% 
Number of living children 2.623  1.401  2.542  1.372  2.699  1.422  -14.923*** -0.157  -5.8% 
Number of living parents 0.371  0.629  0.352  0.620  0.389  0.637  -7.960*** -0.037  -9.5% 
Urban sample (yes=1) 0.399  0.490  0.392  0.488  0.407  0.491  -4.067*** -0.015  -3.7% 
Real gross domestic product per capita 
(thousand RMB) 

7.590  4.885  7.567  4.897  7.612  4.873  -1.238  -0.045  -0.6% 

Population density (per km2) 469.936  312.629  470.313  313.193  469.563  312.100  0.318  0.750  0.2% 
Number of industrial firms per 
thousand people 

2.614  2.551  2.614  2.573  2.614  2.530  0.013  0.000  0.0% 

Ground-level temperature (°C) 14.973  5.106  14.976  5.077  14.970  5.133  0.166 0.006  0.0% 
Rainfall (106 kg/m2*s) 32.406  15.612  32.341  15.563  32.467  15.658  -1.072 -0.126  -0.4% 
Wind speed (m/s) 2.994  2.379  2.985  2.382  3.001  2.376  -0.896 -0.016  -0.5% 
High variance of PM2.5 within city 
(yes=1) 

0.117  0.321  0.118  0.322  0.116  0.320  0.698 0.002  1.7% 
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Panel B: pre-policy cohort, by 
gender 

Pre-policy cohort Pre-policy cohort, 
male 

Pre-policy cohort, 
female Welch’s t-

statistic 

Gender gap 

Mean SD Mean SD Mean SD Value Ratio 
Dependent variable          
Physical Health 2.996  0.938  3.084  0.943  2.913  0.925  16.862***  0.171  5.9% 
Independent variable          
PM2.5 (µg/m3) 60.750  24.571  60.910  24.563  60.597  24.580  1.177  0.313  0.5% 
Instrumental variable          
Predicted PM2.5 (µg/m3) 52.549  10.038  52.520  10.051  52.577  10.025  -0.525 -0.057  -0.1% 
Control variables          
Age 59.449  9.753  59.749  9.582  59.165  9.903  5.509*** 0.584  1.0% 
Female (yes=1) 0.514  0.500  0.000  0.000  1.000  0.000  n.a. -1.000  -100.0% 
High school or above (yes=1) 0.128  0.334  0.168  0.374  0.090  0.287  21.437*** 0.078  86.7% 
Migrated to other provinces (yes=1) 0.065  0.246  0.055  0.229  0.074  0.261  -6.884*** -0.019  -25.7% 
Non-agricultural hukou (yes=1) 0.229  0.420  0.247  0.431  0.213  0.410  7.378*** 0.034  16.0% 
Marital status 2.985  0.120  2.983  0.130  2.988  0.108  -4.060*** -0.005  -0.2% 
Smoking behavior (yes=1) 0.251  0.433  0.521  0.500  0.047  0.212  101.082*** 0.474  1008.5% 
Number of living children 2.641  1.440  2.557  1.409  2.721  1.465  -10.521*** -0.164  -6.0% 
Number of living parents 0.404  0.648  0.381  0.637  0.426  0.658  -6.294*** -0.045  -10.6% 
Urban sample (yes=1) 0.402  0.490  0.393  0.488  0.410  0.492  -3.254*** -0.017  -4.1% 
Real gross domestic product per capita 
(thousand RMB) 

6.859  5.108  6.836  5.142  6.880  5.076  -0.790 -0.044  -0.6% 

Population density (per km2) 468.171  309.371  468.719  308.815  467.609  309.893  0.330 1.110  0.2% 
Number of industrial firms per 
thousand people 

2.560  2.595  2.558  2.614  2.562  2.576  -0.162 -0.004  -0.2% 

Ground-level temperature (°C) 14.481  5.179  14.496  5.158  14.467  5.199  0.506 0.029  0.2% 
Rainfall (106 kg/m2*s) 29.957  13.325  29.913  13.266  29.999  13.381  -0.592 -0.086  -0.3% 
Wind speed (m/s) 3.064  2.432  3.051  2.436  3.076  2.428  -0.914 -0.025  -0.8% 
High variance of PM2.5 within city 
(yes=1) 

0.169  0.375  0.169  0.374  0.169  0.375  -0.057 0.000  0.0% 
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Panel C: post-policy cohort, by 
gender 

Post-policy cohort Post-policy cohort, 
male 

Post-policy cohort, 
female Welch’s t-

statistic 

Gender gap 

Mean SD Mean SD Mean SD Value Ratio 
Dependent variable          
Physical Health 3.071  1.006  3.156  1.012  2.992  0.993  15.554***  0.164  5.5% 
Independent variable          
PM2.5 (µg/m3) 45.326  17.010  45.448  17.047  45.212  16.976  1.325 0.236  0.5% 
Instrumental variable          
Predicted PM2.5 (µg/m3) 52.436  9.982  52.433  9.991  52.439  9.973  -0.059 -0.006  0.0% 
Control variables          
Age 60.594  9.764  60.892  9.720  60.317  9.797  5.621*** 0.575  1.0% 
Female (yes=1) 0.519  0.500  0.000  0.000  1.000  0.000   -1.000  -100.0% 
High school or above (yes=1) 0.113  0.317  0.151  0.358  0.078  0.268  21.961*** 0.073  93.6% 
Migrated to other provinces (yes=1) 0.088  0.283  0.077  0.266  0.098  0.297  -7.154*** -0.021  -21.4% 
Non-agricultural hukou (yes=1) 0.224  0.417  0.244  0.430  0.206  0.405  8.262*** 0.038  18.4% 
Marital status 2.983  0.128  2.981  0.138  2.986  0.118  -3.668*** -0.005  -0.2% 
Smoking behavior (yes=1) 0.278  0.448  0.525  0.499  0.049  0.215  116.851*** 0.476  971.4% 
Number of living children 2.607  1.362  2.528  1.337  2.679  1.382  -10.610*** -0.151  -5.6% 
Number of living parents 0.340  0.609  0.324  0.602  0.356  0.615  -5.037*** -0.032  -9.0% 
Urban sample (yes=1) 0.397  0.489  0.390  0.488  0.403  0.491  -2.518** -0.013  -3.2% 
Real gross domestic product per capita 
(thousand RMB) 

8.272  4.562  8.255  4.549  8.288  4.575  -0.708 -0.033  -0.4% 

Population density (per km2) 471.576  315.622  471.809  317.250  471.361  314.115  0.136 0.448  0.1% 
Number of industrial firms per 
thousand people 

2.664  2.508  2.668  2.532  2.662  2.486  0.221 0.006  0.2% 

Ground-level temperature (°C) 15.432  4.993  15.429  4.958  15.435  5.026  -0.098 -0.006  0.0% 
Rainfall (106 kg/m2*s) 34.693  17.167  34.631  17.144  34.750  17.189  -0.661 -0.119  -0.3% 
Wind speed (m/s) 2.928  2.327  2.923  2.328  2.933  2.326  -0.405 -0.010  -0.3% 
High variance of PM2.5 within city 
(yes=1) 

0.068  0.252  0.070  0.255  0.067  0.250  0.957 0.003  4.5% 

Notes: SD is the standard deviation. Welch’s t-statistics are presented for the differences between male and female. Value and ratio of gender gap indicates male-
female mean values gap and the ratio of male-female mean values gap to mean value of females, respectively. 
∗ p <.10, ∗∗ p <.05, *** p <.01 
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Table 2 
Descriptive Gender Physical Health Gap. 
 Pre-policy cohort Post-policy cohort 
 Male Female F/M Male Female F/M 
Mean physical health 3.084  2.913  0.945  3.156  2.992  0.948  
Physical health by education level       
High school or above 3.285  3.208  0.977  3.302  3.249  0.984  
Below high school 3.043  2.883  0.947  3.130  2.970  0.949  
Physical health by city performance       
Big city 3.195  3.033  0.949  3.288  3.134  0.953  
Non-big city 3.081  2.910  0.944  3.144  2.979  0.948  
Physical health by occupation       
Agricultural work 3.103  2.935  0.946  3.120  2.991  0.959  
Non-agricultural employed 3.432  3.243  0.945  3.422  3.280  0.959  
Non-agricultural self-employed 3.349  3.181  0.950  3.430  3.292  0.960  
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Table 3 
The Impact of Air Pollution on Physical Health. 
 
 

(1) 
Physical health 

(2) 
Physical health 

(3) 
Physical health 

PM2.5 (µg/m3) -0.000 (0.001) -0.011** (0.005) -0.026*** (0.010) 
Age -0.041*** (0.007) -0.040*** (0.007) -0.081*** (0.014) 
Age squared 0.000*** (0.000) 0.000*** (0.000) 0.000*** (0.000) 
Female (yes=1) -0.159*** (0.013) -0.157*** (0.013) -0.335*** (0.026) 
High school or above (yes=1) 0.111*** (0.018) 0.111*** (0.018) 0.247*** (0.036) 
Migrated to other provinces (yes=1) 0.042* (0.022) 0.042* (0.023) 0.078* (0.045) 
Non-agricultural hukou (yes=1) 0.085*** (0.018) 0.083*** (0.018) 0.188*** (0.038) 
Marital status 0.176*** (0.045) 0.179*** (0.045) 0.363*** (0.094) 
Smoking behavior (yes=1) 0.051*** (0.014) 0.052*** (0.014) 0.107*** (0.029) 
Number of living children -0.004 (0.005) -0.004 (0.006) -0.013 (0.012) 
Number of living parents 0.038*** (0.009) 0.038*** (0.009) 0.078*** (0.018) 
Urban sample (yes=1) 0.065*** (0.018) 0.066*** (0.018) 0.147*** (0.037) 
Real gross domestic product per capita (thousand RMB) -0.005** (0.002) -0.009*** (0.003) -0.020*** (0.006) 
Population density (per km2) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 
Number of industrial firms per thousand people 0.005 (0.012) 0.000 (0.012) -0.004 (0.024) 
Ground-level temperature (°C) -0.001 (0.008) 0.001 (0.008) -0.002 (0.016) 
Rainfall (103 kg/m2*s) -3.439*** (0.792) -3.175*** (0.809) -6.042*** (1.631) 
Wind speed (m/s) -0.003 (0.008) 0.005 (0.008) 0.020 (0.017) 
High variance of PM2.5 within city (yes=1) 0.001 (0.019) 0.086** (0.041) 0.204** (0.083) 
Constants 4.201*** (0.289)     
City fixed effect Yes  Yes  Yes  
Month fixed effect Yes  Yes  Yes  
Year fixed effect Yes  Yes  Yes  
Observations 51708  51708  51708  
Clusters 10373  10373  10373  
Kleibergen-Paap rk Wald F statistic   569.009    
t statistic (instrument)   23.85  23.85  
Method    OLS IV    Ologit-IV 

Notes: Robust standard errors are clustered by household and reported in parentheses. PM2.5 is the Particulate Matter 2.5. 
∗ p <.10, ∗∗ p <.05, *** p <.01 



 

35 

Table 4 
The Impact of Environmental Policy on Physical Health through Air Pollution by Gender. 
  
Panel A: male, pre-policy cohort 

(1) 
Physical health 

(2) 
Physical health 

(3) 
Physical health 

(4) 
Physical health 

(5) 
Physical health 

(6) 
Physical health 

PM2.5 0.032 (0.053) 0.023 (0.024) 0.008 (0.015) 0.021 (0.044) -0.002 (0.048) -0.069 (0.080) 
Control variables    Yes     Yes     Yes     Yes     Yes     Yes  
City, month and year fixed effects    Yes     Yes     Yes     Yes     Yes     Yes  
Observations 11052  11052  11052  11052  11052  11052  
Clusters 8112  8112  8112  8112  8112  8112  
Kleibergen-Paap rk Wald F 
statistic 22.438  22.438  22.438  22.438  22.438  22.438  

Sample mean RIF value 3.108  2.105  3.169  4.293  2.188  0.871  
Method    IV       IV  IV     IV       IV  IV  
Quantile Mean Low    Medium     High High-Low Variance 

 
 
Panel B: female, pre-policy 
cohort 

(1) 
Physical health 

(2) 
Physical health 

(3) 
Physical health 

(4) 
Physical health 

(5) 
Physical health 

(6) 
Physical health 

PM2.5 -0.083* (0.047) 0.017 (0.018) -0.030** (0.015) -0.063 (0.043) -0.080* (0.047) -0.072 (0.069) 
Control variables    Yes     Yes     Yes     Yes     Yes     Yes  
City, month and year fixed 
effects    Yes     Yes     Yes     Yes     Yes     Yes  

Observations 13589  13589  13589  13589  13589  13589  
Clusters 8259  8259  8259  8259  8259  8259  
Kleibergen-Paap rk Wald F 
statistic 28.951  28.951  28.951  28.951  28.951  28.951  

Sample mean RIF value 2.938  2.061  3.124  4.223  2.161  0.840  
Method    IV       IV  IV     IV       IV  IV  
Quantile Mean Low    Medium     High High-Low Variance 
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Panel C: male, post-policy cohort 

(1) 
Physical health 

(2) 
Physical health 

(3) 
Physical health 

(4) 
Physical health 

(5) 
Physical health 

(6) 
Physical health 

PM2.5 -0.037 (0.035) -0.014 (0.016) 0.001 (0.009) -0.033 (0.028) -0.019 (0.031) -0.028 (0.055) 
Control variables    Yes     Yes     Yes     Yes     Yes     Yes  
City, month and year fixed effects    Yes     Yes     Yes     Yes     Yes     Yes  
Observations 13610  13610  13610  13610  13610  13610  
Clusters 8061  8061  8061  8061  8061  8061  
Kleibergen-Paap rk Wald F 
statistic 79.192  79.192  79.192  79.192  79.192  79.192  

Sample mean RIF value 3.163  2.101  3.167  5.078  2.977  0.999  
Method    IV       IV  IV     IV       IV  IV  
Quantile Mean Low    Medium     High High-Low Variance 

 
 
Panel D: female, post-policy 
cohort 

(1) 
Physical health 

(2) 
Physical health 

(3) 
Physical health 

(4) 
Physical health 

(5) 
Physical health 

(6) 
Physical health 

PM2.5 -0.077** (0.039) -0.026 (0.017) -0.021* (0.011) -0.009 (0.031) 0.017 (0.035) 0.064 (0.061) 
Control variables    Yes     Yes     Yes     Yes     Yes     Yes  
City, month and year fixed 
effects    Yes     Yes     Yes     Yes     Yes     Yes  

Observations 13457  13457  13457  13457  13457  13457  
Clusters 8011  8011  8011  8011  8011  8011  
Kleibergen-Paap rk Wald F 
statistic 72.625  72.625  72.625  72.625  72.625  72.625  

Sample mean RIF value 3.006  2.064  3.134  5.019  2.955  0.965  
Method    IV       IV  IV     IV       IV  IV  
Quantile Mean Low    Medium     High High-Low Variance 
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Panel E: partial 
conditional on 
gender, pre-policy 
cohort 

(1) 
Physical health 

(2) 
Physical health 

(3) 
Physical health 

(4) 
Physical health 

(5) 
Physical health 

(6) 
Physical health 

Female  -
0.166*** (0.015) -

0.039*** (0.006) -
0.035*** (0.004) -

0.061*** (0.013) -
0.029** (0.013) -

0.054*** (0.021) 

PM2.5 -0.042 (0.035) 0.019 (0.015) -0.014 (0.011) -0.032 (0.032) -0.050 (0.034) -0.080 (0.054) 
Control variables    Yes     Yes     Yes     Yes     Yes     Yes  
City, month and year 
fixed effects    Yes     Yes     Yes     Yes     Yes     Yes  

Observations 24641  24641  24641  24641  24641  24641  
Clusters 9076  9076  9076  9076  9076  9076  
Kleibergen-Paap rk 
Wald F statistic 30.967  30.967  30.967  30.967  30.967  30.967  

Sample mean RIF 
value 3.014  2.082  3.147  4.260  2.173  0.854  

Method    IV       IV  IV     IV       IV  IV  
Quantile Mean Low    Medium     High High-Low Variance 
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Panel F: partial 
conditional on 
gender, post-policy 
cohort 

(1) 
Physical health 

(2) 
Physical health 

(3) 
Physical health 

(4) 
Physical health 

(5) 
Physical health 

(6) 
Physical health 

Female  -
0.150*** (0.016) -

0.031*** (0.006) -
0.028*** (0.004) -

0.071*** (0.012) -
0.040*** (0.013) -

0.070*** (0.022) 

PM2.5 -0.057** (0.027) -0.020* (0.012) -0.010 (0.007) -0.021 (0.022) -0.001 (0.024) 0.018 (0.042) 
Control variables    Yes     Yes     Yes     Yes     Yes     Yes  
City, month and year 
fixed effects    Yes     Yes     Yes     Yes     Yes     Yes  

Observations 27067  27067  27067  27067  27067  27067  
Clusters 8922  8922  8922  8922  8922  8922  
Kleibergen-Paap rk 
Wald F statistic 80.951  80.951  80.951  80.951  80.951  80.951  

Sample mean RIF 
value 3.085  2.083  3.150  5.049  2.966  0.982  

Method    IV       IV  IV     IV       IV  IV  
Quantile Mean Low    Medium     High High-Low Variance 

Notes: Robust standard errors are clustered by household and reported in parentheses. PM2.5 is the Particulate Matter 2.5. All specifications control for covariates 
as in Table 3. Full results are available from the authors. 
∗ p <.10, ∗∗ p <.05, *** p <.01 
  



 

39 

Table 5 
The Impact of Environmental Policy on Gender Physical Health Gap. 
  
Panel A: pre-
policy cohort 

(1) 
Physical health 

(2) 
Physical health 

(3) 
Physical health 

(4) 
Physical health 

(5) 
Physical health 

(6) 
Physical health 

Gender 
difference 0.170*** (0.012) 0.040*** (0.004) 0.036*** (0.003) 0.064*** (0.010) 0.023** (0.010) 0.030* (0.016) 

Explained -0.021 (0.021) -0.014** (0.007) -0.008 (0.006) 0.000 (0.017) 0.014 (0.018) 0.054* (0.030) 
Explained: 
PM2.5 -0.002 (0.003) -0.000 (0.000) -0.000 (0.000) -0.002 (0.002) -0.002 (0.002) -0.003 (0.004) 

Unexplained 0.192*** (0.024) 0.054*** (0.008) 0.044*** (0.007) 0.064*** (0.020) 0.009 (0.020) -0.024 (0.034) 
Unexplained: 
PM2.5 -0.382** (0.172) -0.039 (0.054) -0.013 (0.047) -0.360** (0.149) -0.324** (0.154) -0.557** (0.250) 

Control 
variables    Yes     Yes     Yes     Yes     Yes     Yes  

City, month and 
year fixed 
effects 

   Yes     Yes     Yes     Yes     Yes     Yes  

Quantiles Mean  Low  Medium  High  High-
Low 

 Variance  
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Panel B: post-
policy cohort 

(1) 
Physical health 

(2) 
Physical health 

(3) 
Physical health 

(4) 
Physical health 

(5) 
Physical health 

(6) 
Physical health 

Gender 
difference 0.158*** (0.012) 0.037*** (0.004) 0.033*** (0.003) 0.060*** (0.010) 0.023** (0.010) 0.033* (0.017) 

Explained 0.009 (0.021) 0.000 (0.007) 0.006 (0.005) 0.000 (0.019) 0.000 (0.019) -0.011 (0.031) 
Explained: 
PM2.5 -0.000 (0.000) 0.000 (0.000) 0.000 (0.000) -0.001 (0.002) -0.001 (0.002) -0.001 (0.003) 

Unexplained 0.148*** (0.024) 0.037*** (0.008) 0.028*** (0.006) 0.059*** (0.021) 0.022 (0.022) 0.044 (0.035) 
Unexplained: 
PM2.5 -0.002 (0.142) 0.060 (0.048) 0.021 (0.035) -0.262** (0.125) -0.323** (0.130) -0.440** (0.208) 

Control 
variables    Yes     Yes     Yes     Yes     Yes     Yes  

City, month and 
year fixed 
effects 

   Yes     Yes     Yes     Yes     Yes     Yes  

Quantiles Mean  Low  Medium  High  High-
Low 

 Variance  

Notes: Robust standard errors are clustered by household and reported in parentheses. PM2.5 is the Particulate Matter 2.5. All specifications control for covariates 
as in Table 3. Full results are available from the authors. 
∗ p <.10, ∗∗ p <.05, *** p <.01 
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Table 6 
The Impact of Environmental Policy on Physical Health using DID Estimation. 
  
 

(1) 
Physical health 

(2) 
Physical health 

(3) 
Physical health 

Post-policy cohort * target level 0.033** (0.015) 0.042** (0.020) 0.024 (0.020) 
Control variables    Yes     Yes     Yes  
City, month and year fixed effects    Yes     Yes     Yes  
Observations 51708  27046  24662  
Clusters 10373  9505  9579  
Method    DID-OLS       DID-OLS  DID-OLS  
Sample Full sample Female Male 

Notes: Robust standard errors are clustered by household and reported in parentheses. All specifications control for covariates as in Table 3. Full results are 
available from the authors. 
∗ p <.10, ∗∗ p <.05, *** p <.01 
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Table A1 
Robustness Checks: The Impact of Environmental Policy on Physical Health for Population without Children. 
  
 

(1) 
Physical health 

(2) 
Physical health 

Population without children * Post-policy cohort -0.027 (0.165) -0.529*** (0.194) 
PM2.5 -0.005 (0.007) -0.015** (0.006) 
Control variables    Yes     Yes  
City, month and year fixed effects    Yes     Yes  
Observations 24662  27046  
Clusters 9579  9505  
Kleibergen-Paap rk Wald F statistic 516.178  528.303  
Sample mean RIF value 3.139  2.972  
Method    IV       IV  
Sample Male Female 

Notes: Robust standard errors are clustered by household and reported in parentheses. PM2.5 is the Particulate Matter 2.5. All specifications control for covariates 
as in Table 3. Full results are available from the authors. 
∗ p <.10, ∗∗ p <.05, *** p <.01 
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Table A2 
Robustness Checks: The Impact of Environmental Policy on Physical Health for Key Regions. 
 
 

(1) 
Physical health 

(2) 
Physical health 

(3) 
Physical health 

(4) 
Physical health 

(5) 
Physical health 

(6) 
Physical health 

Beijing-Tianjin-Hebei 
region * Post-policy cohort 

-
0.143** (0.073) -

0.165** (0.077)         

Yangtze River Delta region 
* Post-policy cohort     -0.037 (0.157) -

0.263** (0.111)     

Pearl River Delta region * 
Post-policy cohort         -0.088 (0.070) -0.070 (0.064) 

PM2.5 -0.005 (0.007) -
0.016** (0.007) -0.005 (0.007) -

0.016** (0.006) -0.005 (0.007) -
0.016** (0.006) 

Control variables    Yes     Yes     Yes     Yes     Yes     Yes  
City, month and year fixed 
effects    Yes     Yes     Yes     Yes     Yes     Yes  

Observations 24662  27046  24662  27046  24662  27046  
Clusters 9579  9505  9579  9505  9579  9505  
Kleibergen-Paap rk Wald F 
statistic 535.306  527.768  513.873  525.820  514.193  526.415  

Sample mean RIF value 3.139  2.972  3.139  2.972  3.139  2.972  
Method    IV       IV  IV     IV       IV  IV  
Sample Male Female Male Female Male Female 

Notes: Robust standard errors are clustered by household and reported in parentheses. PM2.5 is the Particulate Matter 2.5. All specifications control for covariates 
as in Table 3. Full results are available from the authors. 
∗ p <.10, ∗∗ p <.05, *** p <.01 
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Table A3 
Robustness Checks: The Impact of Environmental Policy on Physical Health through Greenhouse Gas Emissions by Gender. 
  
 

(1) 
Physical health 

(2) 
Physical health 

(3) 
Physical health 

(4) 
Physical health 

Ozone -0.013 (0.018) -0.026* (0.015) 0.052 (0.032) 0.025 (0.034) 
Control variables    Yes     Yes     Yes     Yes  
City, month and year fixed effects    Yes     Yes     Yes     Yes  
Observations 7328  9120  8946  8890  
Clusters 5478  5577  5406  5395  
Kleibergen-Paap rk Wald F statistic 2318.008  2989.398  18.288  13.905  
t statistic (instrument) -48.15  -54.68  4.28  3.73  
Method    IV       IV  IV     IV    
Sample Male, pre-policy Female, pre-policy Male, post-policy Female, post-policy 

Notes: Robust standard errors are clustered by household and reported in parentheses. All specifications control for covariates as in Table 3. Full results are 
available from the authors. 
∗ p <.10, ∗∗ p <.05, *** p <.01 
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Table A4 
Robustness Checks: The Impact of Environmental Policy on Physical Health and Gender Physical Health Gap using Logit Reweighting. 
  
Panel A: partial conditional on gender 

(1) 
Physical health 

(2) 
Physical health 

Female -0.176*** (0.017) -0.165*** (0.018) 
PM2.5 -0.024 (0.038) -0.083* (0.045) 
Control variables    Yes     Yes  
City, month and year fixed effects    Yes     Yes  
Observations 24641  27067  
Clusters 9076  8922  
Kleibergen-Paap rk Wald F statistic 36.453  42.639  
Sample mean RIF value 3.016  3.081  
Method    IV       IV  
Sample Pre-policy Post-policy 

 

 
Panel B: gender health gap 

(1) 
Physical health 

(2) 
Physical health 

Gender difference 0.170*** (0.012) 0.158*** (0.012) 
Explained -0.031** (0.013) -0.024* (0.014) 
Pure explained -0.040* (0.021) -0.016 (0.021) 
Specification errors 0.009 (0.023) -0.008 (0.023) 
Pure explained: PM2.5 -0.013* (0.007) -0.000 (0.002) 
Specification errors: PM2.5 -0.371** (0.162) -0.002 (0.137) 
Unexplained 0.201*** (0.014) 0.181*** (0.014) 
Pure unexplained 0.192*** (0.012) 0.163*** (0.012) 
Reweighting errors 0.010 (0.008) 0.018** (0.008) 
Pure unexplained: PM2.5 -0.447*** (0.169) -0.113 (0.109) 
Reweighting errors: PM2.5 0.013* (0.007) 0.001 (0.002) 
Control variables    Yes     Yes  
City, month and year fixed effects    Yes     Yes  
Sample Pre-policy Post-policy 

Notes: Robust standard errors are clustered by household and reported in parentheses. PM2.5 is the Particulate Matter 2.5. All specifications control for covariates 
as in Table 3. Full results are available from the authors. 
∗ p <.10, ∗∗ p <.05, *** p <.01  
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Table A5 
Robustness Checks: The Impact of Environmental Policy on Gender Physical Health Gap using JMP Method. 
  
 

(1) 
Physical health 

Difference in differentials -0.013 
Difference in predicted gap: total effect 0.020 
Difference in predicted gap: quantity effect 0.020 
Difference in predicted gap: price effect 0.000 
Difference in residual gap: total effect -0.033 
Difference in residual gap: quantity effect -0.033 
Difference in residual gap: price effect 0.000 
Control variables    Yes 
City, month and year fixed effects    Yes 

Notes: Robust standard errors are clustered by household and reported in parentheses. All specifications control for covariates as in Table 3. Full results are 
available from the authors. 
∗ p <.10, ∗∗ p <.05, *** p <.01 
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Table A6 
Robustness Checks: The Impact of Environmental Policy on Physical Health through Air Pollution using Long Difference Model. 
  
 

(1) 
∆Physical health 

(2) 
∆Physical health 

(3) 
∆Gender physical health gap 

∆PM2.5 0.000 (0.054) -0.128** (0.061) 0.057*** (0.011) 
Control variables    Yes     Yes     Yes  
City, month and year fixed effects    Yes     Yes     Yes  
Observations 7573  10037  24641  
Clusters 5393  5872  9076  
Kleibergen-Paap rk Wald F statistic 17.366  19.549  31.001  
t statistic (instrument) 4.17  4.42  5.57  
Method    IV       IV  IV  
Sample Male Female    Full sample 

Notes: Robust standard errors are clustered by household and reported in parentheses. PM2.5 is the Particulate Matter 2.5. All specifications control for covariates 
as in Table 3. Full results are available from the authors. 
∗ p <.10, ∗∗ p <.05, *** p <.01 
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Table A7 
Robustness Checks: The Impact of Environmental Policy on Physical Health through Air Pollution using Bayesian Regression. 
  
 

(1) 
Physical health 

(2) 
Physical health 

(3) 
Physical health 

(4) 
Physical health 

PM2.5 0.029 (0.005) -0.093 (0.005) 0.018 (0.009) -0.033 (0.009) 
Control variables    Yes     Yes     Yes     Yes  
City, month and year fixed effects    Yes     Yes     Yes     Yes  
Observations 9591  12008  11152  11289  
Method IV  IV  IV  IV  
Sample Male, pre-policy Female, pre-policy Male, post-policy Female, post-policy 

Notes: We provide the results of posterior mean of variable from the complete MCMC run. Posterior standard deviation is clustered by individual and reported 
in parentheses. We narrow our focus on individuals with poor, fair and good health status (i.e., might in the middle of health distribution). PM2.5 is the Particulate 
Matter 2.5. All specifications control for covariates as in Table 3. Full results are available from the authors. 
∗ p <.10, ∗∗ p <.05, *** p <.01 
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Figure A1 
Kernel Density Estimate of Distribution of Physical Health Scores. 

 

 


