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ABSTRACT

IZA DP No. 16342 JULY 2023

Nighttime Light Pollution and Economic 
Activities:
A Spatio-Temporal Model with Common 
Factors for US Counties
Excessive nighttime light is known to have detrimental effects on health and on the 

environment (fauna and flora). The paper investigates the link between nighttime light 

pollution and economic growth, air pollution, and urban density. We propose a county 

model of consumption which accounts for spatial interactions. The model naturally leads 

to a dynamic general nesting spatial model with unknown common factors. The model 

is estimated with data for 3071 continental US counties from 2012–2019 using a quasi-

maximum likelihood estimator. Short run and long run county marginal effects emphasize 

the importance of spillover effects on radiance levels. Counties with high levels of radiance 

are less sensitive to additional growth than low-level counties. This has implications for 

policies that have been proposed to curtail nighttime light pollution.
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1. Introduction

Nighttime lighting is intimately related to economic development and growth. Satel-

lite recordings are now widely used by social scientists and development economists as

proxies for human development and wealth in subnational regions of developing countries.

In developed economies, though, night light is often perceived as a nuisance. Indeed, the

presence of unwanted, inappropriate or excessive artificial lighting has been coined “night-

light pollution”. Falchi et al. (2016) and Kyba et al. (2017) have estimated that 83% of

the world’s population is a↵ected by nighttime lighting and that as much as 23% of the

earth’s terrestrial surface is covered by night light.

Night light pollution can take many forms: light trespass, glare, over-illumination,

light clutter, sky glow, etc.1 Its impact on the health and well-being of human (Sager,

2019), animal and vegetal lifeforms has become a major concern in recent years. Humans

have always evolved in an environment with a clear distinction between night and day.

Ubiquitous electric lighting at home and at the workplace, and the use of light-emitting

electronic devices at night, have blurred this distinction (Cain et al., 2020). People now

spend most waking hours surrounded by artificial lighting, reduced sunlight exposure

and relatively bright nighttime lighting (Goulet et al., 2007; Martinez-Nicolas et al.,

2019). Excessive nighttime light exposure can reduce circadian amplitude which has

been associated with greater incidence of depressions (Jewett et al., 1994; Burns et al.,

2021).

Excessive nightlight has also been shown to increase atmospheric pollution since it

prevents nighttime chemical reactions that normally reduce the smog produced by the

fumes emitted from cars and factories (see Stark et al., 2011; CIRES, 2011). In addition,

Ściȩżor and Czaplicka (2020) have shown that various types of aerosols, both of natural

and anthropogenic sources, exacerbates sky glow. Particulate matter (PM) related to the

combustion of solid fuels in the winter as well as mists and haze are considered important

light scattering sources. Anthropogenic particulate matter has the greatest impact on

the brightness of the cloudless night sky glow in winter. In areas heavily polluted with

light, fogs and mist are particularly important.

1Light trespass occurs when spill light, which is light that falls outside the area intended to be lit,
is cast where it is not wanted. A typical light trespass problem occurs when a strong light enters the
window of one’s home from the outside. Glare is when light strikes your eyes directly from the source.
Over-illumination is the excessive use of lighting, such as leaving lights on when they are not being used
or using poorly designed lighting that illuminates areas that do not need to be illuminated. Light clutter
refers to excessive groupings of lights, especially bright or flashing lights, which can generate confusion or
accidents. Sky glow is the illumination of the night sky, most referred to as the “glow” e↵ect that appears
over populated areas at night. Sky glow is mainly a combination of reflected light from illuminated areas
and badly directed light escaping into the sky, where it is scattered by the atmosphere and redirected
back at the ground. If the sky glow is generally observed at distances lower than 100 km, some of them
can be seen at more than 400 Km of distance. This is the case for example of the lights of Las Vegas
and Phoenix in the US (Duriscoe et al., 2014).
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Numerous studies have recently investigated the link between air pollution and several

categories of crime. Thus Burkhardt et al. (2019) report evidence that exposure to PM2.5

increases violent crimes at the county level while Jones (2022) finds strong evidence

that dust storm activity is associated with violent crimes also at the county level in

the US. Herrnstadt et al. (2021) find similar results for the City of Chicago using PM10

exposure. Kuo and Putra (2021) (New South Wales, Australia) and Bondy et al. (2020)

(London, England) also report positive impacts of air pollution on crime. Many have

also investigated the link between night light per se and crime. The empirical evidence

brought to bear is rather ambiguous. Absence of street lighting has been found to reduce

car theft and burglaries in the UK (Tompson et al., 2022) but to have opposite short-run

(Chalfin et al., 2022) and long-run (Mitre-Becerril et al., 2022) e↵ects in New-York. The

latter results are based on a randomized experiment of street lighting in public housing

developments. Doleac and Sanders (2015) use daily saving time (DST) to estimate the

causal impact of light on criminal activity. Their results are consistent with those of

Chalfin et al. (2022),Mitre-Becerril et al. (2022) and Sager (2019): The switch to DST

reduces robberies during the hours with extended daylight.

The detrimental consequences of nightlight pollution has lead many to advocate elim-

inating or reducing it as much as possible. For example, Tucson (Arizona) has recently

reduced sky glow by 7% percent after converting street lights. At least 18 states, the

District of Columbia and Puerto Rico now have laws in place to reduce light pollution.

The majority of states that have enacted so-called “dark skies” legislation have done so

to promote energy conservation, public safety, aesthetic interests and astronomical re-

search capabilities. Municipalities in a number of states have also been active on this

issue, adopting light pollution regulations as part of their zoning. More and more cities

are adopting policies to drastically reduce or even switch o↵ public lighting during cer-

tain hours of the night (Dizon and Pranggono, 2022). Since the beginning of the war

in Ukraine, faced with soaring energy prices, European cities are turning o↵ their lights.

Spain has made these measures compulsory, ordering stores to turn o↵ their lights at

night. Berlin has turned o↵ the floodlights that illuminate 200 of its historic buildings

and monuments, and a number of cities in Austria, Germany and Italy have reduced street

lighting or switched o↵ commercial signs. In France, many municipalities have taken steps

to switch o↵ street lighting completely between midnight and 5 am each night (quoted

by Politico, August 3, 2022). These commitments are in line with the Green New Deal

for Europe proposed by the European Commission to make the EU’s climate, energy,

transport and taxation policies fit for reducing net greenhouse gas emissions by at least

55% by 2030, compared to 1990 levels (European Commission, 2021).

Research suggests that light pollution is an issue primarily in industrialized countries.

Gallaway et al. (2010) found that those with high rates of resource extraction typically

have high levels of light pollution. Likewise, countries with high GDP and dense urban
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and suburban areas also had the highest rates of light pollution. Over the past decade,

and since the seminal papers of Chen and Nordhaus (2011) and Henderson et al. (2011,

2012), the links between light pollution and economic activities have been extensively

investigated (see Zhao et al., 2019; Addison and Stewart, 2015, for a survey). Among the

many studies, two main approaches can be distinguished: those that use satellite night-

time lights data as a proxy of GDP or to explain urban sprawl, especially for countries

with poorly developed national accounting systems (see, e.g., Chen and Nordhaus, 2011;

Henderson et al., 2012; Addison and Stewart, 2015; Keola et al., 2015; Bickenbach et al.,

2016; Chen and Nordhaus, 2019; Goldblatt et al., 2020; Gibson and Boe-Gibson, 2021;

Ch et al., 2021). And those less numerous, which, on the contrary, use economic data

(GDP, population,. . . ) to model nightlight pollution (Hu and Yao, 2022).

This paper is cast within the second strand of the literature. It investigates the links

between economic activities (GDP) and light pollution at the county level across the

US. As per the literature, the analysis accounts for population level, urban density, air

pollution, etc. Physical data (night light, urban density and PM2.5) are drawn from the

Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi satellite.2 Data

on county-level GDP and population estimates are drawn from the Bureau of Economic

Analysis (Aysheshim et al., 2020).3 The purpose of the paper is to determine the short

and long-run local sensitivity of light pollution to economic growth (GDP) and other

conditioning variables. Policies to mitigate light pollution may indeed be more e�cient

in certain areas and less so elsewhere, and may also undermined by local economic growth.

In order to achieve this, we extend the spatial urban models developed by Glaeser et al.

(1995) and Brueckner (2003) in Section 2.4 The manner in which we account for spatial

interaction e↵ects between the dependent and the explanatory variables leads to the so-

called dynamic general nesting spatial model with common factors (Shi and Lee, 2017;

Elhorst, 2021). This is detailed in Section 3. Section 4 gives the results and Section 5

concludes.

2. A spatial urban model of nighttime lights pollution and economic activities

Following Firmino Costa da Silva et al. (2017), we assume that the total output of

county i(= 1, ..., N) at time t(= 1, ..., T ) is given by a Cobb-Douglas production function:

Qit = AitL
�L
it
K
�K
it

Z
1��L��K
i

,

2VIIRS nighttime light data have been included in the AidData geoquery tool to allow extraction at
subnational levels (see Goodman et al., 2019).

3For population estimates, see BEA Methods Statement v2021.
4See also Debarsy et al. (2012) and Firmino Costa da Silva et al. (2017).
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where Lit represents the population size of the county which proxies the number of work-

ers, Kit denotes the traded capital and Zi is fixed non-traded capital. Ait is the total

factor productivity (TFP) which we assume depends on the TFP of other counties but

whose intensity decreases with distance. More formally, let

Ait = ait

NY

j( 6=i)=1

a
⌘wij

jt
,

where the TFP Ait is a function of county and time-specific labor productivity and

technology, ait, as well as those of neighboring counties, ajt j ( 6= i). The parameter ⌘

(0 < ⌘ < 1) captures the degree of interdependence among them. Although ⌘ is assumed

to be constant, the interactions between counties depends on the relative location of each,

wij, which are elements of a (N ⇥ N) neighborhood matrix WN such that 0  wij  1

and wii = 0.

Normalizing the price of capital to one, the first-order conditions with respect to

capital and labor yields the following labor demand equation:

sit = A

1
1��K
it

�L�

�K
1��K
K

L

�L+�K�1
1��K

it
Z

1��L��K
1��K

i
, (1)

where sit is the wage rate (see section A in the supplementary material).

Consumers in county i are assumed to have a Cobb-Douglas utility function for trad-

able goods, Cit, and housing, Hit. Following Brueckner (2003), it is further assumed that

the utility level is weakly separable in both the local and distant county (dis)amenities.

The latter include tra�c congestion, nighttime light pollution, Rit, air pollution, Pit, etc.

According to Glaeser et al. (1995), potential (dis)amenities can be proxied by population

size since it may be argued that quality of life is inversely related to it. Formally, we gen-

eralize the Cobb-Douglas utility functions proposed by Brueckner (2003), Glaeser et al.

(1995) and Firmino Costa da Silva et al. (2017) and write:

Uit = C
1�↵
it

H
↵

it

0

@R
� 
it

NY

j( 6=i)=1

R
�⇣wij

jt

1

A

0

@P
�
it

NY

j( 6=i)=1

P
�⇠wij

jt

1

AL
�'
it

NY

j( 6=i)=1

L
�⌫wij

jt
,

where  > 0, ⇣ > 0,  > 0, ⇠ > 0, ' > 0 and ⌫ > 0. Consumers maximize their utility

subject to the following budget constraint:

Cit + pHitHit = sitLit

by choosing Cit and Hit, where the price of the tradable good is normalized to 1 and the

housing price is given by pHit . The housing demand is then given by (see section A in
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the supplementary material):

Hit =
↵sitLit

pHit

.

As underlined by Firmino Costa da Silva et al. (2017), spatial equilibrium conditions

insures that utility equalizes across space if labor is mobile: Higher wages are required to

o↵set local negative attributes (pollution, crime, etc.). Let the common utility level at a

particular point in time be denoted as Vt. In equilibrium, the indirect utility function is

given by

Vt = ↵
↵ (1� ↵)1�↵ sitp

�↵
Hit

0

@R
� 
it

NY

j( 6=i)=1

R
�⇣wij

jt

1

A

0

@P
�
it

NY

j( 6=i)=1

P
�⇠wij

jt

1

AL
1�'
it

NY

j( 6=i)=1

L
�⌫wij

jt

(2)

Following Firmino Costa da Silva et al. (2017) and Glaeser and Gottlieb (2009), housing

floor space is produced competitively either by land (l) or by height (h). If the supply

of land at a particular location is fixed, or becomes available only gradually, the prices

of land (pl) and housing (pH) are endogenous, and thus the cost of producing hl units of

structure on top of l units of land is given by c0h
�
l, where � > 1. If developer maximizes

profits, the housing supply is given by (see section A in the supplementary material):

hl = (pHit/�c0)
1

��1 l

Housing prices equation is achieved by the housing market equilibrium (see section A in

the supplementary material):

pHit =

✓
↵sitLit

l

◆ ��1
�

(�c0)
1
� (3)

Solving the system formed by labor demand (1), indirect utility (2) and housing prices

(3) for the (dis)amenities Rit yields:

logRit =
1

 

2

6664

n
�(1�↵)+↵
�(1��K)

o
logAit +⇥ logLit �

NP
j( 6=i)=1

⌫wij logLjt �
NP

j( 6=i)=1

⇣wij logRjt

� logPit �
NP

j( 6=i)=1

⇠wij logPjt + �it

3

7775

�it is a rather cumbersome function of individual specific e↵ects through logZi and time

e↵ects through log Vt (⇥ and �it are detailed in section A in the supplementary material).
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Since

logAit = (1� �K) logQit � �L logLit + (�K � 1) ⌘
NX

j( 6=i)=1

wij logQjt

+�L⌘
NX

j( 6=i)=1

wij logLjt +Dit

Dit is a rather cumbersome function of individual specific e↵ects through logZi,
NP

j( 6=i)=1

logZj

and time e↵ects through
NP

j( 6=i)=1

log ajt (see section A in the supplementary material). We

can write

logRit =
1

 

2

66666664

n
�(1�↵)+↵
�(1��K)

o
(1� �K) logQit +

n
�(1�↵)+↵
�(1��K)

o
(�K � 1) ⌘

NP
j( 6=i)=1

wij logQjt

+
⇣
⇥� �L

n
�(1�↵)+↵
�(1��K)

o⌘
logLit +

⇣
�L

n
�(1�↵)+↵
�(1��K)

o
� ⌫

⌘ NP
j( 6=i)=1

wij logLjt

�
NP

j( 6=i)=1

⇣wij logRjt �  logPit �
NP

j( 6=i)=1

⇠wij logPjt + �it +Dit

n
�(1�↵)+↵
�(1��K)

o

3

77777775

Pooling the N individuals for one time period (i.e., dual pooling), we get

✓
IN +

⇣

 
WN

◆
logRt =

0

@

n
�(1�↵)+↵
�(1��K)

o
(1� �K)

 
IN +

n
�(1�↵)+↵
�(1��K)

o
(�K � 1) ⌘

 
WN

1

A logQt +

0

@
⇥� �L

n
�(1�↵)+↵
�(1��K)

o

 
IN +

�L

n
�(1�↵)+↵
�(1��K)

o
� ⌫

 
WN

1

A logLt �

✓


 
IN +

⇠

 
WN

◆
logPt + �t +Dt

⇢
� (1� ↵) + ↵

� (1� �K)

�
(4)

where logRt, logQt, logLt and logPt are (N ⇥ 1) vectors, IN is an (N ⇥N) identity

matrix and WN is the (N ⇥N) spatial weight matrix. �t is the (N ⇥ 1) vector of �it

and Dt is the (N ⇥ 1) vector of Dit. Equation (4) gives the static desired level of the

(log) nighttime lights pollution of the own economy (i) and of its neighbors (j) linked to

explanatory variables and can be simply written as

Y
⇤
t
= Xta+WNXtb+ µt

where Yt =
⇣
IN + ⇣

 
WN

⌘
logRt, Xt = [logQt, logLt, logPt], and WNXt = [WN logQt,

WN logLt,WN logPt]. Furthermore, µt (= �t +Dt (� (1� ↵) + ↵) / (� (1� �K))) defines

individual and time specific e↵ects through functions of logZi,
NP

j( 6=i)=1

logZj and time
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e↵ects through log Vt and
NP

j( 6=i)=1

log ajt. The vectors of parameters are given by

a =

0

@

n
�(1�↵)+↵
�(1��K)

o
(1� �K)

 
,

⇥� �L

n
�(1�↵)+↵
�(1��K)

o

 
,�

 

1

A

0

and b =

0

@

n
�(1�↵)+↵
�(1��K)

o
(�K � 1) ⌘

 
,

�L

n
�(1�↵)+↵
�(1��K)

o
� ⌫

 
,� ⇠

 

1

A

0

Over time, counties face adjustment costs due to growth in population, economic

activities, and related (dis)amenities. Thus, as in the literature on factor demands, one

can assume a partial adjustment process. Whether expectations are adaptive or rational,

a dynamic process of the following form is assumed (see e.g. Kennan, 1979; Hendry et al.,

1984; Bresson et al., 1996; Blundell et al., 1996):

Yt � Yt�1 = (1� �) (Y ⇤
t
� Yt�1) + ut

where 0 < � < 1 and ut is a (N ⇥ 1) vector of idiosyncratic shocks, leading to

logRt =�WN logRt + � logRt�1 + ⇢WN logRt�1 + �1 logQt + ✓1WN logQt+ (5)

�2 logLt + ✓2WN logLt + �3 logPt + ✓3WN logPt + �µt + ut

with

� = � ⇣

 
, ⇢ =

�⇣

 
, �1 = (1� �)

n
�(1�↵)+↵
�(1��K)

o
(1� �K)

 
, �2 = (1� �)

⇥� �L

n
�(1�↵)+↵
�(1��K)

o

 
,

�3 = � (1� �)


 
, ✓1 = (1� �)

n
�(1�↵)+↵
�(1��K)

o
(�K � 1) ⌘

 
, ✓2 = (1� �)

�L

n
�(1�↵)+↵
�(1��K)

o
� ⌫

 
,

✓3 = � (1� �)
⇠

 

The parameter �µt in (5) captures both the individual and time specific e↵ects. To

take into account the fact that they are intertwined, we incorporate common the corre-

lated e↵ects �ft, where ft is a (m⇥ 1) vector of m unknown common factors and � is a

(N ⇥m) matrix of factor loadings. We further assume that the i.i.d idiosyncratic error

ut, with components "t ⇠ (0, �2
IN), possesses a spatial structure fWN , which may or may
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not be the same as WN :

logRt = �WN logRt + � logRt�1 + ⇢WN logRt�1 + �1 logQt + ✓1WN logQt (6)

+�2 logLt + ✓2WN logLt + �3 logPt + ✓3WN logPt + �ft + ut

with ut = ⌧fWNut + "t

In the spatial econometrics literature, such a specification is known as a dynamic general

nesting spatial model with common factors (Shi and Lee, 2017; Elhorst, 2021).

In the empirical analysis, Rit corresponds to the monthly average nigthtime lights per

square km of county i for year t, expressed in watt per square kilometer steradian, Qit

is be the GDP, expressed in millions of chained 2012 dollar per square km, Lit is the

population density (population per square km) or the urban density (urban area of the

county divided by the county area) and Pit is be the mean particulate matter (PM2.5)

concentration expressed in microgram per cubic meter (µg/m3).

3. Data and empirical strategy

3.1. Data and prima facie evidence

The analysis is based upon data drawn from two di↵erent sources. The physical data

(nighttime light, PM2.5 and urban density) were extracted from the from AidData geo-

query tool (Goodman et al., 2019).5 Data on county-level GDP, population, etc. were

provided by the Bureau of Economic Analysis (BEA) using its Data Retrieval Application

Programming Interface (API).6,7 The two datasets were merged using FIPS codes (Fed-

eral Information Processing System) and cover all N = 3071 continental U.S. counties

for the 2012–2019 period.

Nighttime lighting corresponds to the average monthly radiance (or energy luminance)

measured in watt per square kilometer steradian (Watt/km
2
/sr. See Elvidge et al., 2017,

2021).8 Satellite readings are provided several times a day. They are usually filtered to

obtain images such as the one in Figure 1, which depicts detailed point estimates of light

pollution.9 These data are then processed to obtain the average monthly radiance per

county and included in the AidData geoquery tool.

Put Figure 1 here.

5https://www.aiddata.org/geoquery
6BEA Data Retrieval Application Programming Interface (API).
7See the appendix for a detailed description of all variables.
8The steradian (sr) is a unit derived from the meter (m). Its expression, in base units, is sr =

m
2 ·m�2. It is thus a dimensionless unit. The energy intensity is expressed in watt per steradian and

the radiance, in watt per square meter steradian. The original data in the AidData geoquery tool was
measured in nanoWatt/cm

2
/sr which we converted into Watt/km

2
/sr.

9See https://www.nasa.gov/mission pages/NPP/news/earth-at-night.html for details.
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The top panel of Figure 2 shows the county-wise distribution of average monthly night-

time lights, R, for the year 2012. Not surprisingly, most densely populated cities/counties

have high levels of radiance.10 Yet, close inspection of the data reveals that a number of

small counties are also plagued by intensive nighttime lighting.11 The bottom panel of the

figure depicts the average variation in monthly radiance between 2012 and 2019. Over

that period, the average US-wide annual growth rate was 2.28%. This has translated into

increased radiance in most counties, but not all. Furthermore, the intensification is far

from being uniform across counties. To gain some insight into the relation between night-

time lighting, R, and GDP, Figure 3 plots state-level means over the entire 2012–2019

period. The relationship between the two appears to be log-linear.12 As per Figure 2,

there is considerable heterogeneity across states. In particular, the District of Columbia

(Washington DC) has a radiance level (785.695 Watt/km
2
/sr) that is 49 times higher

than the national mean level and a GDP per square km that is 104 time higher than the

national average. Likewise, while the states of New York, New Jersey, Massachusetts and

Maryland have both high levels of radiance and GDP per sq. km, at the other extreme,

the states of Montana, Wyoming, North & South Dakota, and Idaho have low values for

both.

Put Figures 2 and 3 here.

As argued above, the heterogeneity in nighttime light exposure is very likely related

to the cross-county variations in GDP as well as other factors. Table 1 reports the de-

scriptive statistics of the main variables included in the econometric model. All variables

exhibit wide variations, even when normalized by county surface. Thus, GDP (in 106’s

of chained 2012$/km2), Q, population density/km2, L, urban rates (urban area/county

area in percent) and air pollution (PM2.5 concentration in microgram/meter3), P , vary

considerably across counties.

Put Table 1 about here.

As is customary with panel data, we have computed a series of CIPS unit root tests

on the dependent variable as well as all exogenous variables (see Table B1 in the sup-

plementary material).13 The null assumption of unit roots can not be rejected for log-R

10This includes the Northeast region between Washington and Boston, coastal Florida, the regions
of Chicago, San Francisco, Los Angeles, but also Las Vegas, Phoenix, Houston, Dallas, Denver, Seattle,
Salt Lake City, . . .

11For example, the counties of McKenzie, Mountrail, and Williams in North Dakota, the county of
Bernalillo in New Mexico, the counties of Modland, Ector, Winkler in Texas and the counties of Ada,
Canyon in Idaho, etc.

12The same applies for population density, urban density, and air pollution (see Figures B1 to B3 in
the supplementary material).

13Cross-sectional augmented IPS (CIPS) unit root test (Pesaran, 2007) allows for cross-sectional
dependence by augmenting the Im-Pesaran-Shin (IPS) unit root test (Im et al., 2003) with a cross-
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(radiance), log-Q (GDP/km2) and urban rate. Conversely, trend stationary processes are

not rejected at the 5% level for log-L (population density) and the log-P (air pollution).

The e↵ect of these unit roots is likely to be neutralized by the incorporation of common

correlated factors in the econometric specification. Additional unit root tests will be

conducted on the estimated residuals to validate this.

For estimation purposes, we computed a spatial matrix based on Haversine distances

(in km) between county centroids using their latitudes and longitudes.14 The distances

range between 6.23 km and 3686.92 km, with an average of 1366.36 km. These are

unreasonably large (quartiles Q1 = 766.96 km and Q3 = 1230.61 km). Thus we have

resorted to use a spatial distance matrix based on the 15 nearest neighboring counties.

Doing so yields a mean distance of 73.67 km, and 10th percentile = 37.22 km, Q1 = 48.43

km, Q3 = 86.96 km and 90th percentile = 117.88 km. These are more in line with sky

glow radiance which are between 6.23 km and 401.02 km (see Duriscoe et al., 2014).

From this spatial matrix, we define the row-normalized Haversine inverse distance matrix

(WN) which has a non-sparsity rate of 0.488% and whose non-zero weights (wij) range

between 0.0229 and 0.3283 with an average of 0.0666 (see Figure B4 in the supplementary

material).

3.2. The econometric methodology

The model we specify belongs to the class of dynamic general nesting spatial models

with common factors and can be estimated using the quasi maximum likelihood (QML)

estimation method of Shi and Lee (2017). Indeed, the specification in equation (6) is of

the form:

Yt = �WNYt + �Yt�1 + ⇢WNYt�1 +Xt� + �ft + ut (7)

with ut = ⌧fWNut + "t

where Yt is an N-dimensional column vector of observed dependent variables and Xt is

an (N ⇥ (K � 2)) matrix of exogenous regressors, so that the total number of right-hand

section average. The IPS and CIPS tests relax the assumption of a common autoregressive parameter
in the augmented Dickey-Fuller (ADF) specification contrary to other standard tests such as the Levin-
Lin-Chu, Harris-Tzavalis or Breitung tests.

14The county distances are great-circle distances calculated using the Haversine formula based on
internal points in the geographic area. The Haversine formula is given by

d = 2r arcsin

 s

sin2
✓
�2 � �1

2

◆
+ cos�1 cos�2 sin

2

✓
⇤2 � ⇤1

2

◆!
.

d is the distance between the two points along a great circle of the sphere (Earth). It is the spherical
distance (i.e., the shortest distance between two points on the surface of a sphere). r is the radius of the
sphere (637.8137 km for Earth). �1 and �2 are the latitudes of points 1 and 2 in radians, respectively.
Likewise, ⇤1 and ⇤2 are the longitudes of points 1 and 2 in radians, respectively .
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side variables is equal to K (Yt�1, WNYt�1, Xt).15 The advantage of this model is that it

accommodates two types of cross sectional dependences, namely, local dependence and

global (strong) dependence. Individual units are potentially impacted by time varying

unknown common factors ft, which captures global (strong) dependence. The number

of unobserved factors is assumed to be a fixed constant r that is much smaller than

N and T . The matrix of (N ⇥ r) factor loadings � and the (T ⇥ r) factors FT =

(f1, f2, · · · , fT )0 are not observed and are treated as parameters. The (N ⇥ N) spatial

weights matrices WN and fWN are used to model spatial dependences. The term �WNYt

describes the contemporaneous spatial interactions, �Yt�1 captures the pure dynamic

e↵ect and ⇢WNYt�1 is a spatial time lag of interactions that captures di↵usion. � is the

spatial dependence parameter, � is the autoregressive time dependence parameter and ⇢

is the spatio-temporal di↵usion parameter. As stated above, the idiosyncratic error ut

depends on "t which are assumed i.i.d.(0, �2
IN), where IN is a (N ⇥N) identity matrix.

ut also possesses a spatial error component structure fWN , which may or may not be the

same as WN . The parameters of (7) are ✓ = (�0,�, ⌧)0 with � = (�, ⇢, �0)0, �2, � and

FT . The predetermined and the exogeneous variables are collected in a (N ⇥K) matrix

Zt = [Yt�1,WNYt�1, Xt]. Denote S(�) = IN � �WN and M(⌧) = IN � ⌧fWN . The sample

averaged quasi-log likelihood function is

logQL

�
✓, �

2
,�, FT

�
= �1

2
log 2⇡ � 1

2
log �2 +

1

N
log |S(�)M(⌧)|

� 1

2�2NT

TX

t=1

(S(�)Yt � Zt� � �ft)
0

⇥M
0(⌧)M(⌧) (S(�)Yt � Zt� � �ft) (8)

Concentrating out �2 from the objective function (8) and dropping the constant terms

leads to

logQL

⇣
✓, e�, FT

⌘
=

1

N
log |S(�)M(⌧)|

�1

2
log

(
1

NT

P
T

t=1

⇣
M(⌧) (S(�)Yt � Zt�)� e�ft

⌘0

⇥
⇣
M(⌧) (S(�)Yt � Zt�)� e�ft

⌘
)

15In our case, the X = [xt,WNxt] matrix contains both unspatialized (xt) and spatialized (WNxt)
exogeneous variables where xt = [logQt, urban ratet, logPt].
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where e� = M(⌧)�. Shi and Lee (2017) concentrate out the factors and their loadings

using the principal component theory to get the following concentrated log-likelihood:16

logQL (✓) = max
FT ,e�

logQL

⇣
✓, e�, FT

⌘

=
1

N
log |S(�)M(⌧)|� 1

2
logLT (✓)

with

logLT (✓) =
1

NT

NX

i=r+1

$i

 
M(⌧)

⇣
S(�)Y �

P
K

k=1 Zk�k

⌘

⇥
⇣
S(�)Y �

P
K

k=1 Zk�k

⌘0
M

0(⌧)

!

where Y (resp. Zk) is the (N ⇥ T ) matrix of the dependent variable (resp. of the kth

explanatory variable). The estimate for e� can be obtained as the eigenvectors associated

with the first r largest eigenvalues ofM(⌧)
⇣
S(�)Y �

P
K

k=1 Zk�k

⌘ ⇣
S(�)Y �

P
K

k=1 Zk�k

⌘0

M
0(⌧). By inverting N and T , the estimate for FT can be similarly obtained.

If we interpret the factors ft as omitted variables, an exploratory first stage regression

can be used to determine how many are likely present in the data. Several approaches

have been proposed to that end such as Cattell (1966)’s scree plot test, Bai and Ng

(2002)’s PC and IC criteria, Onatski (2010)’s edge distribution estimator and Ahn and

Horenstein (2013)’s eigenvalue ratio tests.17

4. Estimation results

In order to investigate the robustness of our results, we have estimated three di↵erent

specifications: (1) the dynamic spatial autoregressive model (DSAR) with fixed e↵ects,

(2) the dynamic spatial Durbin model (DSDM) with fixed e↵ects and (3) the dynamic

general nesting spatial panel model with common correlated e↵ects (DGNSP-CCE) as in

equation (6).18 Note that the DSAR and DSDM models are nested within the DGNSP-

16For an (N ⇥ T ) matrix HT :

min
FT ,e�

tr

✓⇣
HT � e�F 0

T

⌘⇣
HT � e�F 0

T

⌘0◆
=

NX

i=r+1

$i (HTH
0
T )

where $i(A) denotes the ith largest eigenvalue of an (N ⇥ N) symmetric matrix A with eigenvalues
listed in a decreasing order such that $N (A)  $N�1(A)  · · ·  $1(A).

17See Ditzen and Reese (2023) for a recent synthesis. Shi and Lee (2017) have proposed to start by
consistently estimate the regression coe�cients and then to determine the number of factors from the
residuals. This ensures the number is estimated consistently.

18The DSAR and DSDM specifications correspond to :

DSAR : Yt = �WNYt + �Yt�1 + ⇢WNYt�1 + xt� + ⇠ + "t

DSDM : Yt = �WNYt + �Yt�1 + ⇢WNYt�1 + xt� +WNxt� + ⇠ + "t
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CCE. As per the above discussion, we conducted a series of tests proposed by Cattell

(1966), Onatski (2010) and Ahn and Horenstein (2013). All concluded that the data was

compatible with r = 2 common factors (see Section C in the supplementary material).

Table 2 reports the parameter estimates of the three specifications as well as sev-

eral specification tests.19,20 As shown in the bottom panel, all three models satisfy the

the stationarity condition (� + � + ⇢ < 1) based on a �2(1) Wald test (see Yu et al.,

2008). Likewise, the data are consistent with the assumption that the spatio-temporal

di↵usion parameter is equal to the negative of the product of the spatial dependence

parameter and the autoregressive time dependence parameter (⇢ = ���). Parent and

LeSage (2011) have shown that the latter greatly simplifies the estimation of such models.

This is perhaps why it is customarily imposed in empirical work. Finally, the Juodis and

Reese (2022) cross-dependence test, CDW , confirms the independence of the estimated

residuals.21 The middle panel reports the R
2 statistics as well as the estimated variance

parameter, �2. Overall, the three specifications yield similar estimates of �2 and fit the

data relatively well.22

The main di↵erences between the models occur with respect to the slope parameters.

Though the DSAR and DSDM models yield similar estimates for �,� and ⇢, they di↵er

with respect to the direct impact of pollution on radiance. Whereas the DSAR model

finds no relation between the two, the DSDMmodel concludes the opposite. Note that the

parameter is negative, which implies that additional air pollution lowers local radiance.

Yet, the fact that the parameter of the spatialized air pollution (WN logP ) is positive

and statistically significant indicates that the spillover e↵ects are important. Thus, the

radiance level in county i increases with the PM2.5 concentration in county j. Taken

together, the two estimates suggest there is a positive link between air pollution and

local radiance as found by e.g. Ściȩżor and Czaplicka (2020). Finally, note that neither

specifications find a relation between urban rate and radiance, but that both imply that

where µ is the (N⇥1) vector of fixed e↵ects (see Lee and Yu, 2015). The QML estimation methods of the
DSDM and DSAR models are available in the R library SDPDmod. The Matlab code of the QML estima-
tion method of Shi and Lee (2017) is available on Wei Shi’s web page (https://sites.google.com/view/wei-
shi). His Matlab code was executed within our R code using the matlabr library, an interface that allows
system call to Matlab.

19For the sake of brevity, we do not report the estimates of the two common factors, ft, nor of the
matrix of the factor loadings, �.

20We tested di↵erent specifications in which the introduction of the variable log(population/km2)
(logL) always proved irrelevant whether the urban rate was present or not.

21We have used the CDW test instead of the CD test proposed by Pesaran (2004) because Juodis and
Reese (2022) have shown that the CD test tends to over reject the null in the presence of latent factors.
Juodis and Reese (2022) have instead proposed a randomized test statistic to correct for over-rejection
(see also Pesaran and Xie, 2021).

22While all three specifications fit the data relatively well, the DGNSP-CCE provides yet a better
fit for counties with values such as the District of Columbia: The estimated quantiles are closer to the
observed quantiles and the normal Q-Q plot of residuals highlights the very good fit of the DGNSP-CCE
model (see Figure D6 in the supplementary material).
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spatial dependence (�) is somewhat larger than persistence (�).

The last two columns of Table 2 report the parameter estimates and the T-statistics

of the DGNSP-CCE model. Contrary to the two other models, all the parameters are

significantly di↵erent from zero (except for the spatialized urban rate, WNUrban rate).

While the impact of the spatial dependence (� = 0.9584) is still sizable, the autoregressive

time dependence e↵ect has decreased significantly (� = 0.3375). As with the other

specifications, the temporal dynamics is less important than the spatial dynamics, albeit

both are much smaller in magnitude. The parameter estimates of GDP/km2, logQ,

and of air pollution, logP , are slightly larger in absolute value than their spatialized

counterparts. For reasons mentioned below, these can not be directly compared. Lastly,

note that the parameter estimate of ⌧ is significantly di↵erent from zero. Thus, the

DGSNP-CCE specification must be preferred to the other two. The incorporation of

a spatial error component structure in the disturbances ut as in equation (6) modifies

most slope parameters as well as their statistical significance. As mentioned above,

the null assumption of unit roots could not be rejected for certain covariates. When

computing IPS and CIPS unit root tests on the estimated residuals, as conjectured, the

null hypothesis is fortunately rejected in all three specifications (see Table D2 in the

supplementary material).

Put Table 2 here.

The parameter estimates of the DGNSP-CCE model do not correspond to marginal

e↵ects (see LeSage and Pace, 2009) and so may not be directly compared to those of the

DSAR or DSDM models. On the other hand, short and long run direct, indirect and total

e↵ects may be computed through impact multipliers. Thus, let @ logRti/@xk,ti represent

the contemporaneous direct e↵ect on county i’s average monthly radiance arising from a

change in its kth explanatory variable (see Debarsy et al., 2012; Elhorst, 2014). The cross-

partial derivative @ logRtj/@xk,ti measures the contemporaneous spatial spillover e↵ect on

county j, j 6= i, of an increase in i’s kth explanatory variable. Since the model is dynamic,

the partial derivatives of a change xk,ti may be computed for each county at various time

horizons t + s. Written in a matrix form, and following LeSage and Pace (2009), the

cumulative direct e↵ect (i.e., cumulative own-county impacts) is measured as the average

of the diagonal elements, while the cumulative indirect e↵ect (i.e., di↵usion over space

and time) is measured by the average of the row sums of the non-diagonal elements of

that matrix. Naturally, the cumulative total e↵ect is the sum of the cumulative direct

and indirect e↵ects (see Elhorst, 2021, and the supplementary material).

Put Table 3 here.

Table 3 reports the short and long run direct, indirect and total marginal e↵ects of

various covariates on the logarithm of average monthly radiance. The direct short run
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elasticities of average monthly radiance relative to GDP/km2 range between [0.026; 0.027]

while spillover e↵ects range between [0.001; 0.095] leading to total short run elasticities

comprised between 0.027 and 0.122 with a sample mean at 0.505. In the long run, the

total elasticities increase to [0.041; 1.54] with a mean at 0.069. Figure 4 reveals the spatial

and temporal di↵erences in the total marginal e↵ects of a 1% increase in GPD/km2.

Interestingly, the maps show that counties with highest short and long run elasticities

are not necessarily those the highest radiance. Thus, locations such as Los Angeles, Las

Vegas, Phoenix, Miami, Chicago, New York . . . are little impacted by a 1% increase in

their respective GDP/km2 (see Figure 2). It is as if their respective counties had reached

such a level of light pollution that any increase in economic activity could hardly have

any additional e↵ect. On the other hand, nighttime light pollution of large peri-urban

areas around large cities such as Seattle, San Francisco, Denver, . . . are very sensitive to

increases in GDP/km2. Likewise, clusters of counties located on the Utah-Idaho border or

the Washington-Idaho border, for example, are also highly sensitive. It is therefore in such

areas that pollution control policies may yield the greatest benefits. Interestingly, a one-

percentage point increase in urban rate increases radiance but by a much larger magnitude

than GDP/km2. In addition, spillover e↵ects are way more important than own-e↵ects,

and total e↵ects exhibit considerable heterogeneity in the long run ([0.029; 0.998]. See

Figure 5). Finally, air pollution is found to have the greatest impact on radiance. A 1%

increase in PM2.5 translates into increases in radiance anywhere between 0.29–3.82 (short

run) and 0.43–5.0 (long run) (see Figure 6). The direct e↵ects are relatively constant

and similar in the short and long run. The indirect e↵ects, on the other hand, increase

steadily as we move along the di↵erent quantiles and dominate the direct e↵ects almost

throughout.

Put Figures 4, 5 and 6 here.

5. Conclusion

Nighttime light pollution has been shown to impact health, to disturb fauna and flora,

and to impact crime among other things. In this paper, we seek to quantify the link

between economic growth and nighttime light pollution. To that end, we use detailed

economic and physical data for 3071 counties in continental USA over the 2012-2019

period. We extend a standard spatial urban model of consumption à la Firmino Costa da

Silva et al. (2017) to establish a link between the two. In particular, the model shows how

light pollution (radiance) depends upon wealth (GDP), urban density and air pollution.

The proposed spatial urban model additionally accounts for spatial interaction e↵ects

and leads to a dynamic general nesting spatial model with common factors. The model

is estimated using a QML estimator.
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According to our results, nighttime light pollution depends both upon own (direct)

GDP and that of neighboring counties (spillover e↵ects). Both the short and long run

marginal e↵ects emphasize the importance of spillover e↵ects on radiance levels. The same

applies to urban density and air pollution. Interestingly, our results unearth considerable

county-wise heterogeneity in radiance response: Those with high levels of radiance are

little a↵ected by further increases in wealth. Those with lower levels are much more

sensitive. It follows that policies to mitigate light pollution are likely to be more successful

in the former than in the latter.

The dynamic general nesting spatial models with common correlated factors (DGNSP-

CCE) nests both the Dynamic Spatial Autoregressive Model (DSAR) and the Dynamic

Spatial Durbin Model (DSDM). The DGNSP-CCE outperforms the other two despite

the fact that all three fit the data rather well. This is essentially due to the introduction

of the common factors. Yet, the model could eventually be enriched by introducing

additional covariates such as highway networks, transport flows, business centers, land

cover classification (urban area, cropland, grassland, wetland, forest, etc.). This will be

the subject of future research.
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Figure 1: Continental United States at night - April-October 2012.
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Figure 2: Average monthly nighttime lights per county in 2012 and variation between 2012 and 2019.
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Figure 3: Scatter plot of state means of average monthly radiance and GDP/km2.

Table 1: Descriptive statistics, N = 3071 US counties (2012-2019).

Mean Min Max Std.dev

Radiance 15.997 0.008 929.812 44.691
GDP 562.309 7.648 726943.301 24343.068
GDP/km2 6.384 0.026 7282.567 123.651
Population 103.615 0.008 10094.865 330.881
Population density 80.354 0.049 18769.750 486.056
Urban rate 2.748 0.000 85.912 7.901
PM2.5 8.916 3.333 19.501 2.139

Radiance: average monthly radiance in Watt/km
2
/sr.

GDP: in millions of chained 2012 dollar.
GDP/km2: in millions of chained 2012 dollar/km2.
Population: in thousands of inhabitants.
Population density: population/km2.
Urban rate: urban area/county area.
PM2.5: particulate matter (PM2.5) concentration in microgram
per cubic meter (µg/m3).
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Table 2: Dynamic spatial panel models of log-average monthly radiance
N = 3071 US counties, 2012� 2019

DSAR DSDM DGNSP-CCE

Coef. T-stat Coef. T-stat Coef. T-stat

� : WN logR 0.905 212.274 0.901 205.918 0.958 317.477
� : logR�1 0.748 120.529 0.747 119.708 0.338 47.014
⇢ : WN logR�1 -0.726 -97.051 -0.729 -95.530 -0.326 -42.345
Covariates:
logQ 0.033 5.304 0.033 4.657 0.026 3.320
logP 0.021 1.059 -0.350 -7.812 0.236 2.311
Urban rate 0.001 0.383 -0.003 -0.911 0.008 2.029

Spatialized covariates:
WN logQ -0.015 -1.085 -0.024 -2.014
WN logP 0.428 8.257 -0.188 -1.763
WN Urban rate 0.012 1.576 0.000 -0.673

Spatial error component:
⌧ -0.472 -17.256

�
2 0.055 0.066 0.064

R
2 0.978 0.974 0.974

Adjusted R
2 0.978 0.974 0.964

Tests: Test P-value Test P-value Test P-value
Wald: �+ �+ ⇢ = 1 210.255 0.000 229.523 0.000 60.470 0.000
Wald: ⇢ = ��� 0.000 0.999 0.000 0.999 0.906 0.341
CDW 0.061 0.952 0.082 0.935 0.254 0.800

DSAR: Dynamic Spatial AutoRegressive model with fixed e↵ects.
DSDM: Dynamic Spatial Durbin Model with fixed e↵ects.
DGNSP-CCE: Dynamic General Nesting Spatial Panel model with Common Cor-
related E↵ects.
CDW : Juodis and Reese (2022) cross-dependence test.
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Table 3: Short run and long run direct, indirect and total marginal e↵ects on
average monthly radiance

Min 10% 25% 50% 75% 90% Max Mean

GDP/km2

Short run Direct 0.026 0.026 0.026 0.026 0.026 0.026 0.027 0.026
Indirect 0.001 0.012 0.018 0.024 0.029 0.036 0.095 0.024
Total 0.027 0.038 0.045 0.050 0.055 0.062 0.122 0.050

Long run Direct 0.039 0.040 0.040 0.040 0.040 0.040 0.041 0.040
Indirect 0.002 0.015 0.023 0.029 0.036 0.043 0.113 0.030
Total 0.041 0.055 0.062 0.069 0.075 0.083 0.154 0.069

Urban rate

Short run Direct 0.009 0.010 0.010 0.011 0.011 0.012 0.019 0.011
Indirect 0.011 0.093 0.142 0.183 0.225 0.275 0.733 0.186
Total 0.020 0.103 0.153 0.194 0.235 0.286 0.752 0.197

Long run Direct 0.013 0.015 0.016 0.016 0.017 0.018 0.028 0.016
Indirect 0.015 0.130 0.196 0.251 0.305 0.372 0.970 0.254
Total 0.029 0.145 0.212 0.267 0.322 0.390 0.998 0.271

PM2.5 concentration

Short run Direct 0.238 0.244 0.246 0.248 0.250 0.253 0.289 0.249
Indirect 0.052 0.449 0.685 0.884 1.083 1.324 3.535 0.898
Total 0.291 0.694 0.932 1.132 1.332 1.577 3.824 1.147

Long run Direct 0.360 0.368 0.370 0.373 0.376 0.380 0.429 0.374
Indirect 0.073 0.612 0.926 1.185 1.441 1.755 4.576 1.200
Total 0.432 0.982 1.297 1.558 1.816 2.138 5.005 1.574
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Figure 4: Short run and long run total marginal e↵ects of GDP/km2

on average monthly radiance.
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Figure 5: Short run and long run total marginal e↵ects of urban rate
on average monthly radiance.
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Figure 6: Short run and long run total marginal e↵ects of PM2.5 concentration
on average monthly radiance.
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A. Appendix. Data sources

A.1. Nighttime light & Air pollution

The physical data used in the paper were extracted using the AidData Geoquery

tool (Goodman et al., 2019).23 The dependent variable, nighttime light, comes from

the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band lights data. It

corresponds to the average monthly radiance (or energy luminance) measured in watt

per square kilometer steradian (Watt/km
2
/sr) (see Elvidge et al., 2017, 2021).24 The

Federal Information Processing System (FIPS) is used to map the VIIRS data at the

county level. Satellite data are provided several times a day and are filtered so as to

obtain detailed point estimates of light pollution.25 VIIRS high-resolution lighting data

are updated monthly and have the potential to create a new surge in nighttime light-

based studies that focus on social and economic activities. See NOAA Earth Observation

Group (VIIRS Nighttime Lights).

Urban area data are drawn from European Space Agency land cover program.26 As

many as 22 land cover classes per pixel, including urban areas, are defined using the

Land Cover Classification System (LCCS) developed by the United Nations Food and

Agriculture Organization. The LCCS categories were grouped according to their Inter-

governmental Panel on Climate Change (IPCC) classes. The full name of each class

can be found from land cover map user guide: http://maps.elie.ucl.ac.be/CCI/viewer/.

The underlying data has a resolution of roughly 350 meters (defined in degrees, not me-

ters). The data extracted from GeoQuery corresponds to the count of pixels in each unit

(county) associated with each land cover class. One can then multiply each count by the

resolution (350m x 350m) to get an approximate coverage estimate in square meters.

Particulate matter (PM2.5) estimates are based on prediction models that combine

satellite-based estimates and simulations based on the TM5-FASST model, an atmo-

spheric source–receptor model that analyses emission changes of air quality and short-

lived climate pollutants (see Van Dingenen et al., 2018).

23https://www.aiddata.org/geoquery.
24The steradian (sr) is a unit derived from the meter (m). Its expression, in base units, is sr =

m
2 ·m�2. It is thus a dimensionless unit. The energy intensity is expressed in watt per steradian and

the radiance, in watt per square meter steradian. The original data in the AidData geoquery tool was
in nanoWatt/cm

2
/sr and has been converted in Watt/km

2
/sr.

25Figure 1 represents the continental United States at night and is a composite assembled from data
acquired by the Suomi NPP satellite in April and October 2012. The image was made possible by the
satellite’s “Day/Night Band” of the Visible Infrared Imaging Radiometer Suite (VIIRS), which detects
light in a range of wavelengths from green to near-infrared and uses filtering techniques to observe dim
signals such as city lights, gas flares, auroras, wildfires and reflected moonlight. Credit: NASA Earth
Observatory/NOAA NGDC.

26See http://Aiddata.org/geoquery and https://www.esa-landcover-cci.org
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A.2. County GDP & Population

Data on yearly county-level domestic product (GDP) were extracted from the Bureau

of Economic Analysis’ web site: GDP by County, Metro, and Other Areas. GDP is

measured by the income approach, i.e. as the sum of compensation of employees, taxes

on production and imports less subsidies (SUB), and gross operating surpluses. Details

of the procedure can be found in Aysheshim et al. (2020).

Yearly county-level population estimates were drawn from the Census Bureau’s web

site: https://www.census.gov/data/datasets/time-series/demo/popest/2010s-counties-total.html.

Naturally, intercensal population counts are not available and must be estimated. The

Census Bureau uses a procedure that has been shown to be very accurate in the past (see

Yowell and Devine, 2013). The details of the procedure can be found here.
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A. Derivation of the spatial urban model of nighttime lights pollution and

economic activities

The first-order conditions of profit maximisation:
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The first-order conditions of utility maximisation, subject to the budget constraint:
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Di↵erentiating the profit function ⇡it = pHithl� c0h
�
l�pll with respect to height (h) and

solving the resulting first-order condition, yields:

@⇡it

@h
= pHitl � �c0h

��1
l = 0 ! h =

✓
pHit

�c0

◆ 1
��1

which implies that housing supply is given by

hl =

✓
pHit

�c0

◆ 1
��1

l

By comparing housing demand with housing supply leads to the housing price equation:

Hit = hl

↵sitLit

pHit

=

✓
pHit

�c0

◆ 1
��1

l

↵sitLit = pHit

✓
pHit

�c0

◆ 1
��1

l = p

�
��1

Hit
(�c0)

�1
��1 l

p

�
��1

Hit
=

↵sitLit

l (�c0)
�1
��1

pHit =

✓
↵sitLit

l

◆ ��1
�

(�c0)
1
� (A.4)

The system formed by labour demand (A.2), indirect utility (A.3) and housing prices
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(A.4) is given by:
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Derivation of the logarithm of the TFP

From the Cobb-Douglas production function:
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then,
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⌘
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Substituting (A.5) in (A.6) leads to

ait

NY

j( 6=i)=1

a
⌘wij

jt
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1��K
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L
��L
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Q
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L
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�⌘wij

j
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and

logAit = (1� �K) logQit � �L logLit +
NX

j( 6=i)=1

(�K � 1) ⌘wij logQjt

+
NX

j( 6=i)=1

�L⌘wij logLjt +Dit

with

Dit = log$i �
NX

j( 6=i)=1

⌘wij log$j + log #ijt

= log$i �
NX

j( 6=i)=1

⌘wij log$j

+
NX

j( 6=i)=1

2

4⌘wij + ⌘
2

0

@
NX

k( 6=j)=1

wkjwik

1

A log ajt

3

5

with $i =

✓
1

�K

◆�K
Z
�L+�K�1
i

Dit is a rather cumbersome function of individual specific e↵ects through logZi,
NP

j( 6=i)=1

logZj and time e↵ects through
NP

j( 6=i)=1

log ajt.
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B. Unit root tests and figures

Table B1: CIPS unit root tests

CIPS test

logR intercept -1.718
intercept and trend -2.209

logQ intercept -2.001
intercept and trend -2.432

logL intercept -1.919
intercept and trend -2.940(⇤)

urban rate intercept -0.907
intercept and trend -1.410

logP intercept -6.032(⇤)

intercept and trend -6.334(⇤)

R: radiance, Q: GDP/km2

L: population density, P : PM2.5 concentration.
H0: all panels contain unit roots,Ha: some panels are station-
ary.
Critical values for CIPS (N = 200,T = 10, Pesaran (2006,
2007)).
Intercept : -2.28 (1%), -2.10 (5%), -2.01 (10%).
Intercept + trend : -2.98 (1%), -2.75 (5%), -2.63 (10%).
(⇤): the test rejects the null hypothesis of unit roots at the
5% level.
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Figure B1: Scatter plot of state averages monthly radiance and population
density.

Figure B2: Scatter plot of state averages of monthly radiance and urban rate.
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Figure B3: Scatter plot of state averages of monthly radiance and PM25 con-
centration.

Figure B4: Row-normalized Haversine inverse distance matrix for the 15
nearest neighbors.
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C. Number of common factors: Selection methods of Cattell (1966), Onatski

(2010) and Ahn and Horenstein (2013)

Cattell (1966)’s approach to determining the number of common factors to include in

the regression consists in drawing a scree plot of the eigenvalues of the factors or the prin-

cipal components. Factors or components located to the left of the “elbow” where the plot

levels o↵ are included in the model. In Figure C5, di↵erent decision rules are presented.

The classical ones are the Kaiser rule, the parallel analysis, and the usual scree test. Non

graphical solutions to the Cattell subjective scree test are also proposed: an acceleration

factor (AF) and the optimal coordinates index (OC). The acceleration factor indicates

where the elbow of the scree plot is located. It corresponds to the acceleration of the curve,

i.e. the second derivative. The optimal coordinates are the extrapolated coordinates of

the previous eigenvalue that allow the observed eigenvalue to go beyond this extrapola-

tion. The Kaiser rule or a parallel analysis criterion (parallel) must also be simultaneously

satisfied to retain the components/factors, whether for the acceleration factor, or for the

optimal coordinates. Figure C5 shows that r = 2 factors could be retained as signifi-

cant for the matrix of observations [Y, Z] where Z = [WNY, Y�1,WNY�1, X,WNX] with

X = [logQ, logL, urban rate, logP ] and Y = logR.

The eigenvalue ratio method of Ahn and Horenstein (2013) and the eigenvalue dif-

ference method of Onatski (2010) are based on ratios and di↵erences of two adjacent

eigenvalues of a positive semi-definite matrix. Let A be a (N ⇥ T ) matrix of obser-

vations. The optimal number of factors of the eigenvalue ratio method brER is given

by brER = min
0rrmax

$r/$r+1, where $0 =
Pmin(N,T )

r=1 $r/ logmin(N, T ). And the op-

timal number of factors of the eigenvalue di↵erence method brED is given by brED =

max {r  rmax : $r �$r+1 � �}, where � is some fixed number. $r =  r(XX
0
/NT )

where  r(V ) denotes the rth largest eigenvalue of a positive semi-definite matrix V .

Using the matrix of observations [Y, Z], the number of factors from Onatski (2010)’s em-

pirical distribution of eigenvalues (resp. from Ahn and Horenstein (2013)’s eigenvalue

ratio method) is r = 2 (resp. r = 1). We therefore choose r = 2 factors for the estima-

tion of the dynamic general nesting spatial panel model with common correlated e↵ects

(DGNSP-CCE).
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Figure C5: Cattell (1966)’s scree test plot.
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D. Results

D.1. Tables and figures

Figure D6: Observed and estimated average monthly radiance. Density, quantiles
and Q-Q plot of residuals.
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Table D2: IPS and CIPS unit root tests on residuals

CIPS test IPS test p-value
DGNSP-CCE intercept -2.234(⇤) demean -71.839 0.000

intercept and trend -2.546 demean and trend -56.356 0.000
DSAR intercept -2.362(⇤) demean -98.653 0.000

intercept and trend -3.068(⇤) demean and trend -63.091 0.000
DSDM intercept -2.370(⇤) demean -98.334 0.000

intercept and trend -3.041(⇤) demean and trend -62.298 0.000
H0: all panels contain unit roots, Ha: some panels are stationary.
critical values for CIPS (N = 200,T = 10, Pesaran (2006, 2007)).
intercept : -2.28 (1%), -2.10 (5%), -2.01 (10%).
intercept + trend : -2.98 (1%), -2.75 (5%), -2.63 (10%).
(⇤): the test rejects the null hypothesis of unit roots at the 5% level.

D.2. Short run and long run direct, indirect and total e↵ects

Pooling the N counties, we can re-write the DGNSP-CCE specification as

Yt = �WNYt + �Yt�1 + ⇢WNYt�1 + xt� +WNxt� + �ft + ut , t = 1, ..., T, (D.1)

where Yt = logRt, xt = [logQt, urban ratet, logPt]. Then, we can write

Yt = Q
�1 [xt� +WNxt� + �ft + ut]

=
KX

k=1

Q
�1 [xk,t�k +WNxk,t�k] +Q

�1 [�ft + ut]

where xk,t is the kth variable of xt and with

Q =

0

BBBBBB@

B 0 0 · · · 0 0

A B 0 · · · 0 0

0 A B · · · 0 0

· · · · · · · · · · · · · · · · · ·
0 0 0 · · · A B

1

CCCCCCA
, A = � (�IN + ⇢WN) and B = (IN � �WN)

leading to (see Debarsy et al. (2012))

Q
�1 =

0

BBBBBB@

B
�1 0 0 · · · 0 0

D1 B
�1 0 · · · 0 0

D2 D1 B
�1 · · · 0 0

· · · · · · · · · · · · · · · · · ·
DT�2 DT�1 DT�3 · · · D1 B

�1

1

CCCCCCA
with Ds = (�1)s

�
B

�1
A
�s
B

�1
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Then, the ⌧ -period ahead (cumulative) impact arising from a permanent change at time

t in xk,t is

@E [Yt+⌧ ]

@x
0
k,t

=
⌧�1X

s=0

Ds [IN�k +WN�k]

and the impact multiplier (or short run e↵ect) is

@E [Yt]

@x
0
k,t

= B
�1 [IN�k +WN�k] = (IN � �WN)

�1 [IN�k +WN�k]

Since these (impact and cumulative) multipliers are (N ⇥ N) matrices, the (impact or

cumulative) direct e↵ect is the (N ⇥ 1) vector of the diagonal elements of these matrices.

The (impact or cumulative) indirect e↵ect is the (N ⇥ 1) vector of the row sums of the

non-diagonal elements of these matrices. And, the (impact or cumulative) total e↵ect is

the (N ⇥ 1) vector of the row sums of these matrices. The average direct, indirect and

total e↵ects are the averages of these (N ⇥ 1) vectors.

By considering the reduced form of the model (D.1)

Yt = (IN � �WN)
�1 (�+ ⇢WN) + (IN � �WN)

�1 (xt� +WNxt�)

+ (IN � �WN)
�1 (�ft + ut)

the long run e↵ect (⌧ ! 1) is given by (see Elhorst, 2021)

@E [Y1]

@x
0
k,t

=

✓
(1� �) IN � (�+ ⇢)WN

◆�1

[IN�k +WN�k]
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