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On the functional form of short-term electricity demand response -
insights from high-price years in Germany

Fabian Arnold∗

Institute of Energy Economics at the University of Cologne, Vogelsanger Str. 321a, 50827 Cologne, Germany

Abstract

Demand response is crucial for balancing supply and demand in the presence of intermittent elec-

tricity generation, particularly during scarcity situations with high prices. In 2021/2022, wholesale

power prices in Germany have been dramatically higher than ever before, which offers the oppor-

tunity to investigate the demand response in high-price situations. This paper, thus, discusses the

applicability of the two common functional forms of demand response under these circumstances,

namely linear and log-log. Using a two-stage least squares approach, the short-term own-price elas-

ticity of electricity demand in Germany is estimated for the period from 2015 to 2022, employing

the two assumptions for the functional form of the demand function. The day-ahead forecast of

wind power generation serves as an instrumental variable for the day-ahead price. The analysis

shows that for low prices, the linear assumption tends to yield similar average elasticities to the

constant elasticity obtained from the log-log specification. However, estimators based on linear

functions exhibit significant variations depending on whether low or high prices are considered.

This discrepancy arises from the observation that remaining demand at high prices tends to have

limited flexibility, leading to distinct estimations. In contrast, the log-log approach provides smaller

differences between estimates based on low and high prices. The exponential nature of the log-log

function effectively captures the decrease in absolute demand response at high prices, resulting in

more consistent estimations across the price range.
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1. Introduction

In traditional, centralized power systems, demand is matched by supply from conventional and

dispatchable electricity generation units. In this system, the potential of demand reacting flexibly

to prices at short notice has played a subordinate role. With the increase in intermittent generation

and the declining capacity of dispatchable power plants, understanding the short-term own-price

elasticity of electricity demand becomes increasingly important in understanding market realities.

Demand response becomes more relevant in the high-frequency matching of supply and demand as

supply from intermittent generating units fluctuates.

Obtaining accurate estimates of short-term own-price elasticities of electricity demand is, therefore,

important in planning the future electricity system. Assumptions on how electricity demand reacts

to prices in peak load situations influence the extent of future capacity needs. Assumed short-term

elasticities thus influence the design of capacity mechanisms such as capacity markets or payments.

In addition, reliable information about the demand response in the electricity market can improve

operational decisions, e.g. in grid operation or the dispatch of generation units.

Both in the case of medium and long-term planning decisions and the case of short-term opera-

tional decisions, elasticity information is incorporated into quantitative models. Various models,

e.g. electricity market models, price forecast models, infrastructure models or general-equilibrium

models, exist in academia and the industry that inform policy and business decisions. All these

models require precise information on price elasticities.

The level of short-run own-price elasticities of electricity demand1 is of particular interest in high-

price situations. In the last two years, prices in Germany have been drastically higher and more

volatile than historically. The corresponding availability of new observations on demand response

offers the opportunity to update estimates of demand elasticity, with a specific focus on situations

characterized by high prices. Furthermore, this provides a chance to explore the functional rela-

tionship between demand response and price levels. By incorporating these new observations, a

more refined understanding of how demand responds to varying price levels can be attained. So

1Since the present paper deals with own-price elasticities, for simplicity, "price elasticity" or "elasticity" is used
synonymously with "own-price elasticity of electricity demand" in the remainder of the paper.
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far, there are no estimates of short-term elasticities that include data from these high-price years

or any other information concerning comparably high prices.

Demand responses are commonly characterized using either linear or exponential price-demand

relationships. The latter is modeled by applying the natural logarithm to both variables and implies

a constant elasticity (log-log specification). While the disparities between these two approaches are

likely small at lower price levels, the question arises as to their compatibility with the observed

wide-ranging price dispersion. Since the shape of the demand curve is unknown ex-ante, this

research aims to address the superiority of one assumption over the other, drawing upon theoretical

expectations derived from the electricity market under consideration and the available data. In

the course of this, this study will explore the extent to which estimates of demand elasticities,

considering the newly available data on high prices, differ from existing estimates.

Consequently, the present study firstly discusses the two distinct functional forms of demand-price

response against the background of the German electricity market. Based on the insights gained

from this examination, hypotheses are formulated for the empirical study. Subsequently, short-

term own-price elasticities are estimated using data spanning the years 2015-2022 in the German

wholesale electricity market, employing both functional forms. Recognizing the endogeneity issue

between demand and prices, a two-stage least squares approach (2SLS) is employed, utilizing the

day-ahead forecast of wind power generation as an instrumental variable for day-ahead electricity

prices. Particular attention is paid to whether the short-term elasticity changed in 2021 and 2022

when consumers faced higher prices. To facilitate this examination, the analysis is divided into two

distinct periods: the "low-price years" 2015-2020 and the "high-price years" 2021-2022.

Three hypotheses are put forward and then empirically confirmed: Firstly, in low-price years, the

assumption of a linear relationship between demand and price yields similar average elasticities as

the assumption of constant elasticities. This similarity, however, is not clear-cut and does not hold

in high-price years. Secondly, when assuming a linear relationship between price and demand, the

estimates for the demand response to a price increase of 1EUR/MWh differ significantly between

high- and low-price years (–34.3 MW/(EUR/MWh) vs –109.4 MW/(EUR/MWh)). The discrep-

ancy arises, as the linear specification cannot account for decreasing absolute demand flexibility
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with increasing prices. Lastly, under the log-log specification, which assumes a constant elasticity,

estimates are much closer together (–5.3 % vs –4.2%). The exponential nature of the log-log func-

tion accounts for the decline in absolute demand response (per price change of 1 EUR/MWh) at

high prices, resulting in more consistent estimations across the price range.

The paper is organized as follows. Section 2 provides an overview of the empirical literature on

short-term (hourly) price elasticity estimation and the contribution of the paper at hand. Section 3

outlines basics of the German wholesale electricity market. Further, the Section introduces the

two assumptions for the functional form of the demand function, discusses their properties and

formulates hypotheses for the empirical study. Section 4 introduces the empirical strategy, drawing

on the findings from Section 3, while Section 5 presents the data set utilized. The empirical results

are shown and discussed in Section 6 before the paper concludes with Section 7.

2. Literature review and contribution

There is a wide range of literature on empirical estimation of price elasticities in the energy and

electricity sectors. A general distinction is made between self-elasticity or own-price elasticity, i.e.

the elasticity of demand to changes in the price of the good itself, and cross-price elasticities, i.e. the

response of demand for one good to changes in the price of another good (in the case of electricity,

for example, the price of electricity at other points in time (e.g. Filippini (2011)) or the price of

natural gas (e.g. Woo et al. (2018) or Gautam and Paudel (2018)). Most papers, like the one at

hand, deal with own-price elasticities. For readers who are interested in existing elasticity estimates,

papers with comprehensive summaries of elasticity estimates and estimation methods have been

published (Boogen et al., 2017; Andruszkiewicz et al., 2019; Ciarreta et al., 2023). In addition,

explicit meta-studies have been conducted to review the state of research (Espey and Espey, 2004;

Labandeira et al., 2017).

This paper seeks to estimate short-term price elasticities. Here, "short-term" refers to the hourly

price reactions of consumers. The estimation and analysis of demand reactions in an hourly res-

olution (sometimes also called "real-time" elasticities (Lijesen, 2007)) constitutes a much smaller

strand of literature. In this context, a distinction can be made between papers whose analyses are

based on individual consumer consumption data and those that draw on aggregated data.
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Taylor et al. (2005), Wolak (2011), Cosmo et al. (2014), and Fabra et al. (2021) use individual

measurement data to examine the hourly demand response of individual consumers to various

dynamic, time-of-use, or real-time pricing tariffs in different countries. These studies can be used,

for example, to assess the impact and reactions of customers to the introduction of new price

regulations. In contrast, there are studies that do not focus on individual consumers but on the

overall demand response at the system level. As in the present paper, the goal is not to find out

how pricing or taxation schemes affect individual consumers but rather to determine what demand

reactions are caused by prices at the national level in the status quo. The first paper addressing

this question for the Netherlands, based on data for the year 2003, is Lijesen (2007). He utilizes

the lagged electricity price as instrumental variable to account for the simultaneity issue between

price and demand. He estimates the price elasticity based on a linear specification of the demand

curve to be –0.0013 and based on a logarithmic form to be –0.0043 . These values are very low and

imply an almost completely inelastic demand in the short run. Hirth et al. (2023), however, argue

that the exogeneity assumption for the use of lagged prices as an instrumental variable, given the

strong serial correlation and intertemporal interrelations, is unlikely to hold.

For Germany, three papers estimate hourly price elasticities of electricity demand. The first is Bönte

et al. (2015). The paper uses ask prices from the EPEX SPOT power exchange for 2010-2014 to

estimate a short-term elasticity of –0.43 . This approach fundamentally differs from the one used

in the present paper, as I utilize day-ahead prices and data on the realized aggregated demand.

In contrast to the realized aggregated demand, the demand curves of the power exchange do not

include the entirety of demand. However, they do include power traded over several markets and

financial stages (Hirth et al., 2023) as well as prior internal matching of supply and demand of the

market participants (Knaut and Paulus, 2016) (see Section 3.1).

The two papers that are methodologically closest to the one at hand are Knaut and Paulus (2016)

and Hirth et al. (2023). Both papers use wind power generation as instrumental variable to estimate

the hourly price elasticity of electricity demand in Germany. Knaut and Paulus (2016) estimate

the elasticity, based on data for 2015, to be between –0.02 and –0.13 , depending on the time of

day. They assume a linear demand curve. Hirth et al. (2023) use data from 2015-2019 to estimate
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the average elasticity at –0.051 , assuming a linear price-demand relationship. The results are thus

consistent with those of Knaut and Paulus (2016). The paper further includes regression models

assuming a log-linear relationship2 as well as non-parametric models and various sensitivities and

robustness checks.

The present work adds to the literature in two ways. First, no previous work includes data from

2021 and 2022, the years in which prices were significantly higher than historically. The observations

from recent years provide an opportunity to gain a better understanding of the demand response at

high prices. Therefore, the analysis focuses on the two most commonly assumed functional forms of

the demand curve: linear and log-log. While Lijesen (2007) uses both variants but does not discuss

the differences in estimates, Bönte et al. (2015) uses only the log-log variant, Knaut and Paulus

(2016) only the linear approximation, and Hirth et al. (2023) the linear, a log-linear, and non-

parametric forms, but not the usual log-log variant. Given the wide dispersion of prices in recent

years the implicit differences between the approaches could become more pronounced. Therefore,

a well-founded discussion of the differences, implications and validity of both assumptions under

current circumstances is needed.

3. Background

To support the interpretation of the applied method and results, this Section defines the estimated

elasticities and explains the basics of the German wholesale electricity market and the demand

response to be measured. Subsequently, the two applied assumptions for the functional form of the

demand function are introduced, their properties are discussed, and hypotheses are formulated for

the empirical study.

3.1. Short-term elasticity and wholesale prices

Price elasticity can be defined for different time scales. Long-run elasticity usually refers to de-

mand adjustments over several years and thus include adjustments of the capital stock. Short-run

elasticity is often defined as adjustments within one year (Labandeira et al., 2017). In the present

2Log-linear here means that the dependent variable (demand) was logarithmized, but not the explanatory vari-
ables. Alternatively, this procedure is also referred to as semi-log or log-level, while confusingly log-linear can also
refer to models in which the explanatory variables are also logarithmized (here refered to as log-log).
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analysis, short-term refers to an even shorter time scale: the demand response on an hourly basis.

Sometimes this is also referred to as real-time elasticity (Lijesen, 2007; Hirth et al., 2023). Own-

price elasticity of demand, the kind of elasticity covered in this paper, denotes the relative change

in demand for a relative change in price for the product. As elasticities are not necessarily constant

for all price-demand combinations, the own-price elasticity of demand (ϵ) can be calculated based

on the absolute changes at a specific combination of price and demand using Equation 1.

ϵ =
%∆demand

%∆price
=

∆demand

∆price
· price

demand
(1)

In order to estimate the elasticity according to Equation 1, one needs information on price and

demand. For the price, I rely on the hourly day-ahead prices from the German wholesale electricity

market (EPEX SPOT). Via an auction, supply and demand are traded daily at noon for each hour

of the following day. Not all electricity volumes are procured on the power exchange. Alternatively,

there is the option of bilateral trading or own-generation of required electricity quantities. Never-

theless, the day-ahead prices can be seen as relevant benchmarks for the other procurement options,

as they form the opportunity costs for consumers and producers. Two aspects have to be consid-

ered further to interpret the estimated short-term price elasticities when using wholesale day-ahead

prices. First, not all consumers are exposed to the hourly variation of electricity exchange prices.

Residential electricity customers, for example, usually purchase their electricity at a fixed price

per kWh from their electricity supplier. Other consumers acquire their electricity demand directly,

such as energy-intensive industries. These are exposed to electricity price variations. Accordingly,

the estimated demand response measures the demand response of these electricity consumers only.

Second, electricity consumers are confronted with other price components besides the wholesale

electricity price, such as taxes and surcharges, as well as regulatory incentives. Accordingly, the

elasticity estimates are dependent on the existing regulatory background.

For the demand I utilize data on the hourly realized aggregated electricity demand in Germany. As

described, while not all of the realized demand is traded at the day-ahead market, the day-ahead

price is still a valid benchmark for the procurement cost of the entire demand. However, it should

be emphasized that after the day-ahead prices are set, there is still continuous intraday trading that
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can affect realized demand. The estimate cannot reflect corresponding dynamics, e.g. triggered by

unexpected events such as power plant outages (Lijesen, 2007).

As an alternative to using the day-ahead price and realized demand, it is also conceivable to use

the aggregated hourly demand curves based on ask bids at the power exchange, e.g. EPEX SPOT,

to estimate the price elasticities. Knaut and Paulus (2016) argue, however, that this is not easily

possible, as market participants already match parts of their demand and supply internally before

submitting their bids, which distorts the observable demand curve in the market. Furthermore, the

observable demand curve on the wholesale market does not correspond to the real demand curve

because it only reflects the volumes traded on the wholesale market and includes electricity that is

traded over several market and financial stages (Hirth et al., 2023).

3.2. Functional forms of demand-price response and hypotheses

The actual demand curve in the electricity market is not known ex ante. When estimating elas-

ticities, different functional forms of the demand-price relationship can be assumed. Two central

options are the linear price-demand relationship and the exponential relationship described via

constant elasticities (log-log specification).

In the literature, the linear approximation of the demand function according to Equation 2 is applied

for example in Lijesen (2007); Knaut and Paulus (2016); Hirth et al. (2023); Fabra et al. (2021).

demand = b · price+ a (2)

When estimating the demand response based on the linear formulation, one estimates the slope b of

the demand-price curve. This slope is constant across all price levels. The elasticity corresponding

to Equation 1 then varies depending on the point on the curve, since the absolute demand response

∆demand
∆price is constant, but the price-demand combination price

demand is different at each point of the

curve. The elasticity is then lower for low and higher for high prices. The results of this estimation

are often communicated as average elasticity ϵ, calculated with Equation 3. This approach is
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convenient, but one must keep in mind that this average elasticity value is only valid for a single

point on the linear demand-price curve (see Figure 1 (a)).

ϵ = b · price

demand
(3)

Alternatively, the demand function is often assumed to have a log-log functional form according

to Equation 4 (e.g. Lijesen (2007); Bönte et al. (2015); Boogen et al. (2017)). This specification

is based on the formation of the natural logarithm for both the dependent and the explanatory

variables. The assumed relationship between demand and price is exponential. Confusingly, the

term log-linear is also used to describe this specification. However, since this can lead to confusion

with specifications in which only the dependent variable is logarithmized (also called semi-log or

log-level), I use the term log-log specification in this paper, following Wooldridge (2013).

ln(demand) = c · ln(price) + d (4)

The parameter c, when estimated based on the assumption of a log-log demand function, can

then be directly interpreted as a constant price elasticity of demand (see Figure 1 (a)). Using the

approximation that log(1 + x) ≈ x for small x, the parameter c expresses the percentage change

in demand for a one percent change in price, independent of the price level (Wooldridge, 2013).

Thus, the log-log functional form assumes that the absolute effect of a price change on demand

decreases with the price. Accordingly, the absolute demand response differs between linear and

log-log specification, particularly at the edges of the curve, i.e. at very high prices.

(a) (b)

Figure 1: Stylized demand-price functions: linear (a) and log-log (b)
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As previously discussed, not all electricity market participants are confronted with the wholesale

electricity price signal, resulting in a portion of demand that is completely unresponsive to short-

term price changes. Figure 2 presents a highly stylized depiction of the composition of electricity

demand during a specific hour. The total demand is divided into segments based on the maximum

price that consumers are willing to pay before they curtail or shift their consumption. The shaded

segment (< d1) represents the perfectly inelastic portion of demand, such as the demand from

household customers not exposed to price signals. Additionally, there are demand segments com-

prising customers who can adjust their consumption in response to wholesale market price signals

(yellow areas). The extent to which these customers reduce or shift their consumption depends on

their flexibility and opportunity costs. The figure illustrates this flexible demand using six equally

sized demand shares. Starting from the bottom, the first segment represents industrial companies

that only modify or shift their production at very high electricity prices (p1). This is followed by

increasingly flexible industrial and service applications, ultimately leading to flexible consumers

such as storage units that curtail consumption even at relatively low prices. The size and number

of these segments, the extent of demand reduction at different price levels, and, thus, the actual

shape of the demand function are, in reality, unknown.

Function D1(p) serves as an illustrative linear demand function that captures the demand behavior

in the low price range (< p1). However, at high prices, the linear demand function deviates

significantly from the assumed demand structure. Increasing the slope of the function may improve

its representation of the low demand response to high prices, but this improvement comes at the

cost of accurately depicting the demand response at low prices.

In contrast, Function D2(p) represents an exemplary log-log demand function. It maintains simi-

larity to the linear description in the low price range, effectively capturing the demand structure.

However, the model exhibits a good fit for the price range characterized by predominantly inelastic

demand, thanks to its exponential characteristics that effectively capture the diminishing demand

response as prices increase.

Certainly, there are other possible functional forms for the demand curve, such as piecewise linear

functions, that can accurately represent these relationships. However, for the purpose of this paper,
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I focus on the two central options presented. In doing so, I aim to capture the fundamental charac-

teristics of the demand response to price changes without delving into the complexities introduced

by alternative functional forms.

Three hypotheses are derived from these observations, which will be substantiated in the following

through empirical estimation:

Hypothesis 1: At low prices, estimates based on both assumptions yield similar results. The

average elasticity based on the linear assumption will be similar to the constant elasticity derived

from the log-log description.

Hypothesis 2: The estimators based on linear functions will exhibit significant differences de-

pending on whether low or high prices are considered. This discrepancy arises from the observation

that demand at high prices tends to have limited flexibility, leading to distinct estimations.

Hypothesis 3: Estimators using the log-log approach will demonstrate smaller differences between

estimates based on low and high prices. This is because the exponential nature of the log-log function

takes into account the decrease in absolute demand response (per price change of 1 EUR/MWh)

at high prices, leading to more consistent estimations across the price range.

Figure 2: Stylized demand structure.
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4. Empirical strategy

The objective of the analysis is to estimate the short-term (i.e. hourly) response of electricity

demand in Germany to changes in electricity prices. Equation 5 shows the estimated relationship

as a linear regression model.

Demandt = α0 + α1 · Pricet +α2 ·Xt + ϵt (5)

The variable Demandt represents the hourly realized electricity demand in Germany, while the

variable Pricet represents the deflated (real) hourly day-ahead electricity price in the German

electricity market. Xt denotes a vector of covariates.

The interaction of demand and supply endogenously determines price and realized demand. Due to

this simultaneity, the explanatory variable Pricet is endogenous: In a linear regression model (as

shown in Equation 5), the Pricet is correlated with the error term ϵt. An estimation of the response

of demand to changes in price using a common linear regression model is therefore biased.3

To handle the simultaneity issue, I apply a two-stage least squares (2SLS) approach, using an

instrumental variable (IV) for the endogenous explanatory variable of the electricity price. As

IV, I utilize the grid operators’ day-ahead wind power generation forecast. Figure 3 illustrates the

relationship between the outcome Demandt, the central explanatory variable, or treatment, Pricet,

and the IV day-ahead forecast of wind power generation Windt.

The chosen IV meets the three criteria central to an appropriate instrument choice: The relevance

and exogeneity criteria as well as the exclusion restriction (indicated in Figure 3). First, Windt

is relevant as an instrument for the treatment variable Pricet as it is correlated with Pricet:

electricity generation from wind has, ceteris paribus, a negative effect on the price of electricity

because electricity from wind turbines is offered in the market at marginal costs close to zero. As

a result, more expensive forms of generation, such as coal or gas-fired power plants, are priced

out of the market equilibrium. In Section 6, it is shown quantitatively that Windt has significant

and high explanatory power for Pricet. Since day-ahead prices are determined by auction at noon

3In Appendix A, the main model results of this paper are compared to the results of an OLS estimation to show
magnitudes of bias.
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Figure 3: Instrumental variable estimation approach.

the day before delivery, they are not driven by the realized wind generation but rather by the

market participants’ expectation of the wind generation of the following day. The grid operators in

Germany are obliged to publish a forecast for the wind power generation of the following day.4 The

forecast is transmitted daily at 6 pm. Thus, it represents the best publicly available approximation

of the generation expectation at the time of price formation and is therefore used as IV.5.

As the second criterion, the IV must be exogenous with respect to the instrumented and explained

variables. The wind power generation forecast is unaffected by price and demand changes. It

depends only on the installed capacity of the wind turbines and the weather forecast for the delivery

time.

Third, the exclusion restriction must apply to the IV. That is, the wind power generation forecast

does not affect electricity demand in any way other than through the price of electricity. This

should be true in principle, but there might be correlations between wind power generation and

electricity demand due to weather coincidences. For example, it is conceivable that periods of high

wind generation (i.e. in winter) coincide with periods of increased electricity demand for heating

applications. To isolate these weather correlations from the estimation, dummies for months and

hours of a day as well as heating and cooling degrees are introduced in the estimation model.

4Art. 14 Par. 1 c) Commission Regulation (EU) No. 543/2013
5Alternatively, using the realized wind power generation as IV would also be possible (e.g., Hirth et al. (2023))

However, the actual wind power generation is unknown at the moment of pricing. Also, data on actual generation
includes curtailment, e.g. due to grid congestion. However, using actual wind power generation as IV hardly changes
the results of the present analysis, as is shown in Appendix B
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As an alternative or addition to the selected IV, day-ahead wind generation forecast, one could

utilize the photovoltaic (PV) generation or the day-ahead PV generation forecast as instruments.

However, there are two reasons to assume that the exclusion restriction of a valid IV is not met

for PV generation (and the forecast of it). First, small rooftop PV systems do not consistently

provide hourly metering data, so the grid operators’ data are partly based on estimates. Therefore,

measurement errors that correlate with prices are conceivable and would distort the price-demand

response estimation (Hirth et al., 2023). Second, Frondel et al. (2022) show that there exists a

so-called solar rebound effect, i.e. more electricity is consumed when solar electricity is generated.

A potential correlation between PV generation and demand would violate the exclusion restriction.

However, to account for the potential correlation between solar generation and demand, the day-

ahead PV generation forecast is included in the model as a control variable.6

Equation 6 and 7 show the simultaneous equation model. Here a linear relationship between

Demandt and Pricet is assumed. As alternative model specification logarithmized variables are

utilized, following the discussion in Section 3.2.

Pricet = γ0 + γ1 ·Windt + γ2 ·Ct + γ3 ·Dt + ϵt (6)

Demandt = β0 + β1 · Pricet + β2 ·Ct + β3 ·Dt + µt (7)

Due to the simultaneity of the two equations, the model is solved via the two-stage least squares

(2SLS) approach. In the first stage, Pricet is the response variable, and the IV Windt is the primary

explanatory variable. In the second stage, Pricet is then replaced with the predicted values from

the first stage to estimate the causal effect of Pricet on Demandt. In both stages, there are further

controls included in the model. Ct is a vector of covariates, including the hourly day-ahead forecast

for PV generation, daily deflated gas, coal and European emission allowances (EUA) prices, as well

as hourly heating and cooling degrees. Dt is a vector of dummy controls. Yearly dummies account

for changes in generation capacity over time, while monthly dummies correct for seasonal effects in

6As a sensitivity analysis, in Appendix B, the estimations are run with the day-ahead PV generation forecast as
an additional instrument. The results differ only slightly from the main result, with the estimators for the demand
response being slightly lower.
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demand and prices. Dummies for the different days of the week and for the different hours of a day

control for varying demand structures over time.7 ϵt and µt are error terms.

For a precise understanding and interpretation of the model results, it is crucial to acknowledge

the presence of autocorrelation in variables within the model. The selected estimation model

does not only estimates the demand response to the price in a specific hour but also implicitly

includes intertemporal cross-price elasticities with the preceding and subsequent hours (Hirth et al.,

2023). This implies that the effects of price fluctuations extend beyond a single hour, capturing

interdependencies across time. For instance, due to the possibility of load shifts, the expectation of

high prices in a particular hour may influence demand in preceding and subsequent hours.

Following the discussion in Section 3.2, the model is further estimated with logarithmized variables,

namely as a log-log specification. For heating and cooling degrees as well as PV generation, a

constant of 1 is added beforehand, owing to the presence of zero values. Since the natural logarithm

of negative and zero values is not defined, respective data points of negative prices are removed.

This eliminates 1.4% (909) of the data points under consideration. Thus, information about demand

response to negative prices is lost. However, this is not a problem since the present analysis focuses

on demand response when prices are high.

To account for the serial correlation in the data, heteroscedasticity and autocorrelation (HAC)

robust standard errors are calculated, for all model specifications. Specifically, the standard errors

are calculated using Newey-West kernel with automatic bandwidth selection.8.

5. Data

The basis of the analysis is an hourly data set for 2015-2022, with a total of 70,024 observations.9

To ensure that special effects of public holidays and bridge days do not distort the estimation,

corresponding data points and the period between Christmas and New Year were removed from the

data set, leaving 65,920 observations.

The hourly values of the dependent variable Demandt are taken from the Total Load timeseries

published by the European Network of Transmission System Operators (ENTSO-E)(ENTSO-E,

7Appendix C shows the effect of adding each dummy control to the model
8Estimates are carried out using ivregress from StataCorp (2021).
9The data set does not include the first 96 hours of 2015, as data on day-ahead electricity prices is not available.
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2023).10 Figure 4 depicts the temporal variation in German electricity demand in the dataset.

Over the course of a day demand is highest around 11:00 am and lowest at night at around 2:00

am. Demand is lower at weekends than on weekdays and lowest on Sundays. The electricity demand

also shows a seasonal trend, with demand being higher in winter than in summer. When comparing

the years, two years, 2020 and 2022, stand out, in which the median electricity demand deviates

downward from the other years. For 2020, the effect of the Covid-19 pandemic can be assumed as

the cause; for 2022, the reason could be the energy crisis and the associated high electricity prices.

Figure 4: Temporal variation in the variable Demandt, 2015-2022, from (ENTSO-E, 2023).

Hourly day-ahead wholesale electricity prices Pricet are taken from Day-ahead prices timeseries

of ENTSO-E (2023). These prices are the result of the German day-ahead auction at the EPEX

power exchange. The nominal prices from ENTSO-E (2023) are deflated using the Consumer Price

Index (CPI) from (Destatis) to the level of January 2015 in order to account for the impact of

inflation and accurately assess the demand response without the confounding effects of rising prices

over time.11 In Figure 5, the variance of real prices over time is shown. With the exception of the

10All data from the ENTSO-E Transparency Platform used in this analysis is on country level "Germany" and was
downloaded on 28.02.2023. The latter is important as values are regularly updated, especially on electricity demand.
Information on the ENTSO-E data can be found at https://transparency.entsoe.eu/content/static_content/
Static%20content/knowledge%20base/knowledge%20base.html

11For the same purpose, other price data (gas, coal and EUA prices) are also adjusted for inflation using the
CPI. Thus, with the exception of the literature results, all EUR values presented reflect real values based on the
reference point of January 2015. The central results of the analysis remain unchanged even if nominal prices are
used. However, the linear estimates for the price variables are slightly lower in that case.
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annual figure, the price distributions are characterized by a large number of positive outliers. These

occur due to the extremely high electricity prices in 2021 and 2022 compared to previous years.

Prices above 100 EUR/MWh occurred very rarely in the years 2015 to 2020, which is evident in the

annual figure. Due to this significant difference in price levels and variance, the analysis performed

is based on the split of the data set into the low-price years (2015-2020) and high-price years (2021-

2022). According to the literature (e.g. Wolff and Feuerriegel (2017)), one would expect prices to

be higher in winter than summer, as demand increases and solar generation declines. Based on the

figure, this relationship can not be clearly demonstrated, due to the extremely high prices in July

to October 2022. Prices tend to be lower on weekends than during the week, and there are two

price peaks during the day, once at 8:00 am and once at 7:00 pm.

Figure 5: Temporal variation in the variable Pricet, 2015-2022, from (ENTSO-E, 2023).

As described in the methodological discussion in Section 4, the day-ahead wind generation forecast

of the grid operators Windt is used as IV for the endogenous variable Pricet. Together with the

forecast for solar generation, the forecast values are available from ENTSO-E (2023) as the hourly

time series Day-Ahead generation Forecast Wind and Solar. The forecast of solar generation PVt

is used as a covariate in the model, as PV generation is potentially correlated with the demand

(see Section 4). For both variables, a negative effect on the electricity price is to be expected.

Figure 6 shows the time variation of the two variables. Both variables show an increasing trend

over the past years, corresponding to the increase in generation capacities. However, due to the
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weather dependency, this is subject to a wide dispersion. Both variables also show a strong seasonal

structure: While electricity generation from wind is particularly high in winter, solar electricity

generation is high in summer. The intra-day structure is much more pronounced for solar electricity

than wind generation: while no PV electricity is generated at night, most electricity is generated

at noon.

Figure 6: Temporal variation in the variables Windt (top) and PVt (bottom), 2015-2022, from
(ENTSO-E, 2023).

Besides the day-ahead PV generation forecast, several additional covariates are used in the model.

Further covariates that affect the supply side of electricity pricing are fuel prices and prices for

emission allowances, which determine the marginal costs of conventional power plants. As they are

not available on hourly basis, they further do not qualify as IV in this setting. Since the marginal

cost of generating electricity in conventional power plants increases with the fuel and certificate

prices, a positive effect on the electricity price can be expected for all three variables. For the

coal price Coalt the daily prices for coal imports at the Amsterdam-Rotterdam-Antwerp (ARA)
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trading point are utilized.12 As gas price, the daily prices for natural gas at the reference trading

point TTF are included.13 Daily prices for European Emission allowances (EUA) are taken from

ICAP (2023). Figure 7 shows the deflated fuel and certificate prices compared to daily averages

of the deflated day-ahead electricity price. The increase in prices in 2021 and especially in 2022 is

particularly noteworthy. As a result of the war in Ukraine, gas prices in particular reached record

levels. The electricity price follows the development of the underlying fuel prices. The correlation

is particularly evident for the gas price.
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Figure 7: Daily average electricity price, gas, coal and EUA price in 2015-2022.

Heating and cooling degrees are used as covariates on the demand side. The need for heating or

cooling implies correspondingly higher electricity demand. Therefore, a positive correlation between

electricity demand and heating or cooling degrees can be expected. For the calculation of hourly

heating degrees and cooling degrees temperature data by region is taken from Copernicus Climate

12Coal (API2) CIF ARA (ARGUS-McCloskey).
13Dutch TTF Natural Gas Futures.
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Change Service (2020)14. By weighting the temperatures with the region specific population from

Eurostat (2023), I derive population weighted average temperatures for Germany. Hourly heating

and cooling degrees are then calculated based on a temperature threshold of 15 °C.

Table 1 gives an overview over descriptive statistics of the used data.

Table 1: Descriptive statistics, 2015-2022 (N = 65,920)

Variable Mean Median SD Min Max Source

Demand (MW) 57348 57393 9963 33542 81077 ENTSO-E
Price (EUR/MWh, 01/2015) 61.84 37.44 75.64 -127.35 732.52 ENTSO-E
Wind (GW) 11.95 9.17 9.39 0.24 47.23 ENTSO-E
PV (GW) 4.88 0.21 7.48 0 37.78 ENTSO-E
Gas (EUR/MWh, 01/2015) 31.02 17.55 37.33 3.25 285.27 ICE Dutch TTF
Coal (EUR/MWh, 01/2015) 11.98 8.88 9.37 4.71 49.13 API2 CIF ARA
EUA (EUR/tCO2, 01/2015) 24.46 19.19 21.73 3.81 84.68 ICAP
HD (°C) 5.84 4.86 5.63 0 27.04 CDS
CD (°C) 1.43 0 2.98 0 20.75 CDS

6. Empirical results

I estimate the short-run elasticity of electricity demand for Germany using the 2SLS approach

described in Section 4, both for the linear and the log-log model specification. First, the results for

the first stage are examined concerning the validity of the approach before the second-stage model

results are discussed. I distinguish between low-price and high-price years to investigate whether

the elasticities differ for the time periods and, thus, for the different price ranges. In addition,

further sensitivities are discussed.

6.1. First stage

Table 2 shows the results of the model in linear (1a) and log-log (1b) specification. In both variants,

the estimator for the instrumental variable Windt, i.e., the day-ahead wind generation forecast, is

significant. In the linear model, 1GW of additional wind generation, ceteris paribus, leads to a price

decrease of around 1.8 EUR/MWh. Similarly, the second model results state that a one percent

14Air temperature at an altitude of 2m for NUTS3 regions.
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increase in wind generation leads to a 0.31 % decrease in price.15 The partial R squared shows

for both models that Windt explains a relevant part of the variance of the price. In addition, the

Montiel-Pflueger robust weak instrument test was performed for both model specifications. The

F-statistics of the tests at 5% confidence level are 11,151 and 8,110, respectively, which is well

above the critical value of the test of 37.42. Based on the test result and the significance at the first

stage, I conclude that Windt is indeed a strong instrument for Pricet. The estimators of the other

covariates have the expected signs and magnitudes. PV power generation has a negative impact

on the electricity price, similar in magnitude to wind power generation. Fuel and certificate prices

enter positively, with the gas price having the largest effect on the price at 1.7EUR/MWh. This

order of magnitude is also intuitively plausible if one assumes that an average gas-fired power plant

has an efficiency of about 50%. When gas-fired power plants determine the price of electricity, an

increase in the price of gas of 1EUR leads to an increase in the price of electricity of 2 EUR. Since

gas-fired power plants do not determine the price at every hour, the estimated value is lower.

Table 2: First stage results
(1a) (1b)

linear log-log

Wind [GW] -1.765∗∗∗ [-1.80,-1.73] -0.314∗∗∗ [-0.32,-0.31]
PV [GW] -2.495∗∗∗ [-2.58,-2.41] -0.298∗∗∗ [-0.31,-0.29]
Gas [EUR/MWh] 1.707∗∗∗ [1.66,1.75] 0.537∗∗∗ [0.51,0.56]
Coal [EUR/MWh] 0.259∗∗ [0.10,0.41] 0.163∗∗∗ [0.13,0.20]
EUA [EUR/tCO2] 0.925∗∗∗ [0.84,1.01] 0.268∗∗∗ [0.24,0.30]
Heating degrees [°C] 0.555∗∗∗ [0.48,0.63] 0.079∗∗∗ [0.07,0.09]
Cooling degrees [°C] 1.341∗∗∗ [1.21,1.47] 0.061∗∗∗ [0.05,0.07]

Dummy variables
Hours Yes Yes
Weekdays Yes Yes
Months Yes Yes
Years Yes Yes

Fit statistics
Partial R2 Wind 0.215 0.187
Adjusted R2 0.869 0.684
Observations 65920 65011
95% confidence intervals in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
Coefficients of dummy variables can be found in Appendix E.

15The within-variance of the price, after accounting for the dummy control variables, is shown in Appendix D.
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6.2. Second stage
6.2.1. Linear model results

Table 3 shows the second stage results for the linear specification. For Model (2a), where data from

all eight years under consideration was utilized, the estimator for the linear demand response to

price is –61.81 , i.e. when the price increases by 1 EUR/MWh, demand decreases by 61.81 MW. In

contrast, the data set used in Model (3a) includes only the low-price years (2015-2020), and Model

(4a) includes only the high-price years (2021-2022). The estimation results differ significantly from

the results of the joint estimation. While the estimator for the low-price years is significantly higher

(–109.4 ), the estimator for the high-price years is lower (–34.35 ). The intuition behind this result

follows the explanations in Section 3.2. In contrast to the linear relationship between price and

demand assumed in the model, the absolute demand response decreases with the price level. At low

prices, a price increase of 1 EUR is relatively large, and consumers in the market are willing or able

to not consume or postpone their consumption at this price increase. In contrast, the same price

increase in years with high prices is relatively small. Consumers who buy electricity at the price

level of high price years have already exhausted their potential to reduce consumption: demand

can hardly be reduced any more, e.g. because the delivery is contractually fixed. Demand at this

price level is less flexible in absolute terms. Calculating demand response as a linear model across

all price levels ignores this decrease in absolute flexibility as prices rise. Therefore, the joint Model

(2a) estimate forms a weighted average over the demand flexibility of different price levels. The

results, thus, confirm Hypothesis 2.

Figure 8 illustrates the difference between the estimators via linear demand functions. The estimator

of the linear model corresponds to the slope of the function. In addition to the three estimated

values from Table 3, the figure includes linear estimators of the demand response from Hirth et al.

(2023) (–79.6 ) and based on Knaut and Paulus (2016) (–99.1 ).16 The estimations from Models

(2a)-(4a) and their confidence intervals differ substantially. The estimate based on Knaut and

Paulus (2016) aligns closely in magnitude with the estimate for the low-price years. This similarity

16In Knaut and Paulus (2016), the demand response is derived individually for the different hours of the day. The
values range from –42.1 at 10:00 am to –201.8 at 5:00 pm. For comparability, I assume the non-weighted daily
average of these values (–99.1 ).
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Table 3: Second stage results of the linear specification
(2a) (3a) (4a)

2015-2022 2015-2020 2021-2022

Price [EUR/MWh] -61.81∗∗∗ -109.4∗∗∗ -34.35∗∗∗
[-69.95,-53.66] [-123.75,-95.07] [-39.50,-29.21]

PV [GW] -204.0∗∗∗ -164.1∗∗∗ -211.8∗∗∗
[-231.02,-176.93] [-191.23,-137.00] [-248.38,-175.29]

Gas [EUR/MWh] 86.41∗∗∗ 226.5∗∗∗ 53.43∗∗∗
[65.83,106.98] [151.79,301.26] [39.21,67.65]

Coal [EUR/MWh] 61.79 76.99 83.41∗∗∗
[-3.53,127.12] [-77.66,231.64] [34.63,132.20]

EUA [EUR/tCO2] 150.8∗∗∗ 110.8∗∗ 140.0∗∗∗
[115.42,186.16] [37.22,184.30] [116.10,163.93]

Heating degrees [°C] 379.1∗∗∗ 351.3∗∗∗ 416.0∗∗∗
[337.44,420.73] [310.82,391.72] [357.24,474.71]

Cooling degrees [°C] 176.4∗∗∗ 144.0∗∗∗ 153.8∗∗∗
[140.67,212.10] [109.39,178.58] [81.72,225.81]

Dummy variables
Hours Yes Yes Yes
Weekdays Yes Yes Yes
Months Yes Yes Yes
Years Yes Yes Yes

Fit statistics
Adjusted R2 0.868 0.885 0.883
Observations 65920 49434 16486
95% confidence intervals in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
Standard errors are calculated as Newey-West HAC robust standard errors.
Coefficients of dummy variables can be found in Appendix E.

is not surprising, considering that the estimate is derived from 2015 data, which corresponds to the

low-price period. On the other hand, the estimate from Hirth et al. (2023) is, in absolute terms,

lower than the estimate for the low-price year, despite being based on data from 2015-2019. There

are two main reasons for this disparity. Firstly, the estimate does not include data from 2020, a

year characterized by exceptionally low prices. Secondly, the study does not account for inflation

in the price data, which, in comparison to my estimation, also leads to, in absolute terms, lower

demand response estimates.

In all three model variants, the PV generation forecast enters negatively. A potential explanation

may be that small-scale PV generation volumes are partially estimated by the transmission system

operators (see Section 4). As a result, part of the small-scale PV generation appears as a reduction
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Note: For the illustration of the price-demand functions, an example intercept of 60,000 MW of demand
was assumed for a price of 0 EUR/MWh.

Figure 8: Linear demand functions based on estimation results from different models. The shaded
areas represent the 95%-confidence intervals of the estimators.

in Demandt. Moreover, the negative sign indicates that this effect of measurement errors dominates

a potential solar rebound effect in demand.17

6.2.2. Log-log model results and average elasticities

As discussed in Section 3.2, the log-log specification is a formulation of the demand function that

considers that the absolute demand response decreases with the price level. Models (2b)-(4b) are

based on logarithmized data for the variables. The estimator for the demand response in Model

(2b), i.e., using the entire data set, is –0.045 . This estimator can be directly interpreted as a

constant elasticity, i.e., for a price increase of 1 %, demand decreases by –4.5%. The elasticities

for the two subsets are –4.2% and –5.3 %, respectively. The differences between elasticities for the

low and high price years and the entire data set are much smaller than for the linear formulation.

A look at the confidence intervals shows that these even overlap significantly. A Chow test shows

that the estimators of the Models (3b) and (4b) differ at the 5% level but not at higher significance

levels.

17This is in line with findings in Hirth et al. (2023).
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In the linear formulation, estimation results exhibit a strong dependence on the subset of data con-

sidered, highlighting the sensitivity of the estimates to the price range. In contrast, the estimators

in the log-log specification demonstrate less pronounced variations. Consequently, when comparing

the two models that cover the entire data set, (2a) and (2b), the log-log formulation (2b) provides

a better representation of the underlying relationships across the entire price range. The empirical

findings, thus, align with Hypothesis 2, as they indicate that the log-log formulation captures the

true relationships more effectively than the linear specification when considering the entire data

set.

Table 4: Second stage results of the log-log specification
(2b) (3b) (4b)

2015-2022 2015-2020 2021-2022

Price [EUR/MWh] (log) -0.0455∗∗∗ -0.0418∗∗∗ -0.0533∗∗∗
[-0.05,-0.04] [-0.05,-0.04] [-0.06,-0.04]

PV [GW] (log+1) -0.0240∗∗∗ -0.0212∗∗∗ -0.0288∗∗∗
[-0.03,-0.02] [-0.02,-0.02] [-0.03,-0.02]

Gas [EUR/MWh] (log) 0.0355∗∗∗ 0.0722∗∗∗ 0.0401∗∗
[0.02,0.05] [0.06,0.09] [0.02,0.06]

Coal [EUR/MWh] (log) 0.0006 -0.0061 0.0353∗
[-0.02,0.02] [-0.03,0.01] [0.01,0.06]

EUA [EUR/tCO2] (log) 0.0400∗∗∗ -0.0034 0.0805∗∗∗
[0.02,0.06] [-0.02,0.01] [0.05,0.11]

Heating degrees [°C] (log+1) 0.0279∗∗∗ 0.0244∗∗∗ 0.0314∗∗∗
[0.02,0.03] [0.02,0.03] [0.03,0.04]

Cooling degrees [°C] (log+1) 0.0225∗∗∗ 0.0207∗∗∗ 0.0241∗∗∗
[0.02,0.02] [0.02,0.02] [0.02,0.03]

Dummy variables
Hours Yes Yes Yes
Weekdays Yes Yes Yes
Months Yes Yes Yes
Years Yes Yes Yes

Adjusted R2 0.885 0.895 0.880
Observations 65011 48670 16341
95% confidence intervals in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
Standard errors are calculated as Newey-West HAC robust standard errors.
Coefficients of dummy variables can be found in Appendix E.

Figure 9 shows the log-log demand functions based on the estimators from Table 4. The figure

also includes the average elasticities derived from the linear models of Knaut and Paulus (2016)

(–5.4 %) and Hirth et al. (2023) (–5.1 %) as well as average elasticities obtained from the results of
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the linear formulation (Table 3, Model (2a): –6.7 %, Model (3a): –6.4%, Model (4a): –8.9%).18 It

is evident that the curves are much closer to each other compared to the linear functions (Figure 8),

particularly at higher price levels. The plotted confidence intervals for models (2b)-(4b) overlap,

further highlighting the consistency of the log-log estimators. Moreover, the average elasticity

estimates from Knaut and Paulus (2016) and Hirth et al. (2023) fall within the range of values

obtained from the log-log specification.

The similarity between the average elasticities obtained through the linear formulation in these

studies and those derived from the log-log formulation supports Hypothesis 1. It suggests that, for

low price ranges, the linear approximation of the demand curve does not deviate too much from

the log-log formulation. The average elasticity based on the linear estimators of the models (2a)

and (3a) are somewhat higher, in absolute terms, than the corresponding constant elasticities of the

models (2a) and (2b). However, this contrasts with the average elasticity estimated using the linear

model specification for high prices (Model (4a)), which is considerably higher, in absolute terms,

than the constant elasticities determined with the log-log specification. This much larger disparity

arises because the assumption of a linear demand response is invalid, particularly at higher price

levels.

6.3. Further model specifications

A key aspect of the present analysis is the separation of the data into low-price and high-price

years. However, this separation is not perfectly unambiguous. As shown in Figure 5, the price of

electricity has increased steadily since the beginning of 2021. Alternative separation dates for the

start of the high-price period are, for example, after the first or second quarter of 2021. However,

choosing a separation date that differs from the one in the main specification does not drastically

affect the analysis results.19

In addition to the selected covariates, there may be other potentially beneficial covariates to be

added, particularly on the supply side. For example, the availability of hydroelectric or nuclear

power generation in Germany and neighbouring countries influences the electricity price, as does the

18The average elasticity is derived from the linear model specifications with Equation 3.
19Appendix F.1 contains the results for alternative separation dates. The results strengthen the validity of

statements based on the main model specifications.
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Note: For the illustration of the price-demand functions, an example intercept of 60,000 MW of demand
was assumed for a price of 0 EUR/MWh.

Figure 9: Log-log demand functions based on estimation results from different models. The shaded
areas represent the 95%-confidence intervals of the estimators.

available coal-fired power plant capacity. Including possible proxies for these influencing variables

hardly changes the results.20 That is because these effects are already absorbed by the corresponding

time dummy variables in the main model specification.

In similar price elasticity analyses, realized wind generation is used as the instrumental variable for

price instead of the day-ahead forecast (e.g., Hirth et al., 2023). However, this alternative model

specification does not greatly impact the model results.21

In the primary model specifications, fuel and certificate prices are utilized as covariates in both

estimation stages. This approach aims to enhance the precision of estimation in the first stage,

in identifying the relationship between the forecast of wind power generation and the electricity

price. However, the potential for endogeneity issues arises when incorporating these covariates in

the second stage: It is conceivable that electricity demand influences gas, coal, and EUA prices,

given the impact of electricity demand on the demand for these commodities. An alternative model

specification is employed to address this concern, wherein these price data are omitted from both

stages. Although this may reduce the precision of estimation in the first stage, the estimation

20Appendix F.2 contains the results for model specifications, including covariates for the availability of nuclear,
hydro and coal-fired power generation.

21Appendix B contains the results for model specifications using wind electricity generation as an instrument.
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remains fundamentally valid as long as the instrumental variable requirements are met, and a

strong relationship exists between the instrument and the variable being explained (Angrist and

Pischke, 2008). The corresponding model results (Appendix F.3) confirm the presented results

of the primary model specifications (Models 1 to 5). Even without the price covariates, the wind

energy forecast remains a strong instrument, and the estimated demand responses exhibit only

minimal changes. These results further validate the analysis presented, indicating that any potential

endogeneity concerns arising from the price covariates have negligible impact on the main findings.

7. Conclusion

In a power system with a large share of intermittent generators, it is increasingly important to un-

derstand how demand responds to price signals, especially when prices are high. Electricity prices

in 2021 and 2022 were higher than ever. This offers the opportunity to better understand how de-

mand responds under these circumstances. Against this backdrop, this paper focuses on examining

the short-term (hourly) elasticity of electricity demand in Germany. By analyzing the new observa-

tions of high prices, I aim to explore the functional relationship between demand response and price

levels across a broader range of price dispersion. I analyze both linear and log-log demand-price

relationships, exploring the dynamics and complexities of demand response to varying price levels.

To this end, I first examine the characteristics of the two functional forms of the demand curve

and establish three hypotheses for empirical analysis. I employ a two-stage least squares (2SLS)

approach to address the simultaneity between demand and prices. The hourly demand response to

hourly day-ahead prices is determined using the day-ahead wind power generation forecast as an

IV for the price. I calculate separate models for the entire 2015-2022 period, as well as subsets of

the high- and low-price years.

In the linear model that includes all observation years, an increase in price by 1EUR/MWh, all else

equal, leads to a decrease in demand of about 62MW. The estimate of the decrease in demand for

the low-price years is higher (–109.4 ) and lower (–34.35 ) for the high-price years. The estimates for

the different time subsets in the log-log model are closer together. All else equal, the 1 % increase

in price leads to a 4.5 % decrease in demand when considering all observations, 4.2 % for the low-
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price years, and 5.3 % for the high-price years. Whereby the confidence intervals of the individual

estimators overlap.

The quantitative findings provide confirmation for the formulated hypotheses. Consistent with

Hypotheses 1 and 2, the results demonstrate that while a linear relationship between demand and

price can yield similar average elasticities to the assumption of constant elasticities for low prices,

this is no longer the case for high-price years. The linear demand response decreases with the price.

Therefore, the linear estimators for the high-price and low-price years differ significantly, and this

also carries over to the average elasticity values derived from them. In contrast, as anticipated by

Hypothesis 3, the use of the log-log formulation effectively captures the decrease in absolute demand

response (per price change of 1 EUR/MWh), making it a preferable approach when dealing with

substantial price spreads.

For researchers and policymakers, the results imply that using elasticities based on the linear

approximation of the demand curve should be critically questioned. Possible applications for such

elasticity estimates could be electricity market, energy system or price forecasting models. In

particular, if the application purpose includes the occurrence of high prices, the decreasing linear

demand response to prices should be accounted for.

The estimated elasticity values can be used in further research, e.g. in electricity and energy market

models, to address diverse inquiries. In addition to the already mentioned example of estimating

necessary controllable capacities, this could also include other questions of infrastructure planning,

market design and operational decisions in the electricity sector. It is worth noting that the potential

influence of autocorrelation on the estimation results should be duly considered, as the estimators

capture time-crossing effects of price movements on demand. This presents an avenue for further

investigation into isolating the individual effects and quantifying their magnitude. This paper limits

its consideration to two possible assumptions for specifying the demand function, linear and log-log.

The idea behind this is that these two represent the most common specifications that are widely

used. However, both can, of course, only be approximations of reality. In further research, the

use of piece-wise linear models or quantile regression models would be conceivable to investigate

the dependence of the demand response on the price level in a more detailed way. Moreover, the
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present research is limited to the investigation of short-term elasticities. Long-term elasticities and

the extent to which they have changed as a function of price levels would be a promising topic for

further research.
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Appendix A. OLS estimation

Table A.5 shows the results of the main models (2a) and (2b) compared to the results of simple OLS

estimations. The results of the OLS estimation are biased due to the simultaneity issue between

demand and price. Accordingly, the estimators show non-intuitive results. Both OLS models

have positive estimated demand responses to a price increase. The results confirm that using an

instrumental variable or a comparable approach is necessary to obtain unbiased results.

Table A.5: Comparison of main model results and results for OLS estimation.
linear log-log

(2a) (5a) (2b) (5b)
2SLS OLS 2SLS OLS

Price [EUR/MWh] -61.81∗∗∗ 16.14∗∗∗ -0.0455∗∗∗ 0.0134∗∗∗
Wind [GW] 133.87∗∗∗ 0.0184∗∗∗
PV [GW] -204.0∗∗∗ -9.533∗∗ -0.0240∗∗∗ -0.0065∗∗∗
Gas [EUR/MWh] 86.41∗∗∗ -46.66∗∗∗ 0.0355∗∗∗ 0.0039∗∗
Coal [EUR/MWh] 61.79 41.60∗∗∗ 0.0006 -0.0089∗∗∗
EUA [EUR/tCO2] 150.8∗∗∗ 78.66∗∗∗ 0.0400∗∗∗ 0.0243∗∗∗
Heating degrees [°C] 379.1∗∗∗ 335.8∗∗∗ 0.0279∗∗∗ 0.0233∗∗∗
Cooling degrees [°C] 176.4∗∗∗ 71.83∗∗∗ 0.0225∗∗∗ 0.0188∗∗∗

Dummy variables
Hours Yes Yes Yes Yes
Weekdays Yes Yes Yes Yes
Months Yes Yes Yes Yes
Years Yes Yes Yes Yes

Fit statistics
Adjusted R2 0.868 0.914 0.885 0.914
Observations 65920 65920 65011 65011
95% confidence intervals in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Appendix B. Alternative IV specifications

Figure B.10 shows the estimators and confidence intervals for the main model specification and two

sensitivities. Adding the day-ahead PV generation forecast as IV does not fundamentally change the

results. Compared to the main model specification, the estimators of the price effect are slightly

lower in all models. This finding is consistent with Hirth et al. (2023). Using the actual wind

generation instead of the forecast hardly influences the model’s results.
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Figure B.10: Estimators for the price effect on demand for the linear (left) and log-log model
specification (right). Results are shown for the main model specification (Table 3 and Table 4)
(blue), a model specification where the day-ahead PV generation forecast was included as additional
IV (red) and a model specification where the actual wind generation was used instead of the forecast.
Whiskers indicate the 95% confidence interval.

Appendix C. Effect of dummy controls

Table C.6 shows the main model results of the linear model specification for the years 2015-2022

(2a) compared to the results of model specifications with less dummy control variables (6)-(9). The

model without dummy controls (6) does not produce plausible results, e.g. the influence of PV

generation on demand is strongly positive due to temporal correlation. Adding dummy controls

for the hour of a day (7) can partially correct for this: the sign of the estimator becomes negative.

Model (8) further includes dummies for the day of the week. Since there are major differences in

the demand structure of weekends and weekdays, the Adjusted R squared and, thus, the model’s fit

increase significantly. Adding monthly dummies to the adjustment for seasonal effects (8) reduces,

in particular, the estimated impact of weather effects (Heating and cooling degrees, PV generation).

Finally, the addition of the yearly dummies (main model (2a)) especially affects the estimators of

the impact of fuel and emission prices since the influence of changing power plant capacities over

time is captured in these dummies.
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Table C.6: Comparison of main linear model results for the years 2015-2022 and results of model
specifications with less dummy control variables.

(6) (7) (8) (9) (2a)

Price [EUR/MWh] -123.5∗∗∗ -72.71∗∗∗ -73.08∗∗∗ -58.98∗∗∗ -61.81∗∗∗
PV [GW] 472.4∗∗∗ -307.3∗∗∗ -289.6∗∗∗ -212.1∗∗∗ -204.0∗∗∗
Gas [EUR/MWh] 228.5∗∗∗ 108.5∗∗∗ 103.8∗∗∗ 80.38∗∗∗ 86.41∗∗∗
Coal [EUR/MWh] -172.7∗∗∗ -2.982 10.84 22.47∗∗∗ 61.79∗∗∗
EUA [EUR/tCO2] 23.72∗∗∗ 25.12∗∗∗ 26.39∗∗∗ 15.66∗∗∗ 150.8∗∗∗
Heating degrees [°C] 715.9∗∗∗ 560.2∗∗∗ 567.6∗∗∗ 389.2∗∗∗ 379.1∗∗∗
Cooling degrees [°C] 296.5∗∗∗ 227.0∗∗∗ 222.7∗∗∗ 190.4∗∗∗ 176.4∗∗∗

Dummy variables
Hours No Yes Yes Yes Yes
Weekdays No No Yes Yes Yes
Months No No No Yes Yes
Years No No No No Yes

Fit statistics
Adjusted R2 0.505 0.836 0.861 0.868
Observations 65920 65920 65920 65920 65920
95% confidence intervals in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Appendix D. Within-variance of the covariates

I exploit the within-variation of the explanatory variables after controlling for time effects when

estimating their impacts on the dependent variable. To this end, I include time-related dummy

controls in my model. I calculate the variation of the covariates after controlling for time effects

by regressing them on the control dummies. Table D.7 shows the standard deviations of the cor-

responding residuals, calculated for the linear model specification (2a) and the log-log specification

(2b). The within-variation is still considerable after controlling for the time effects. For example,

the standard deviation of the main explanatory variable, Pricet, is much bigger than the discussed

treatments of 1 EUR/MWh. The listed values in Table D.7 may support the interpretation of the

estimated treatment effects of the explanatory variables (Mummolo and Peterson, 2018).
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Table D.7: Within standard deviation of the variables

Model: (2a) (2b)

Price [EUR/MWh] 45.44 0.61
Wind [GW] 8.41 0.80
PV [GW] 3.88 0.45
Gas [EUR/MWh] 17.20 0.27
Coal [EUR/MWh] 3.58 0.20
EUA [EUR/tCO2] 4.55 0.15
Heating degrees [°C] 2.89 0.52
Cooling degrees [°C] 2.15 0.52

Appendix E. Estimators for dummy variables

Figure E.11: Time dummies in the linear first stage (1a)

Figure E.12: Time dummies in the log-log first stage (1b)
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Figure E.13: Time dummies in the linear second stage 2015-2022 (2a)

Figure E.14: Time dummies in the linear second stage 2015-2020 (3a)

Figure E.15: Time dummies in the linear second stage 2021-2022 (4a)

Figure E.16: Time dummies in the log-log second stage 2015-2022 (2b)
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Figure E.17: Time dummies in the log-log second stage 2015-2020 (3b)

Figure E.18: Time dummies in the log-log second stage 2021-2022 (4b)

Appendix F. Further estimation results

Appendix F.1. Models with alternative separation dates

Figure F.19 shows the estimators and confidence intervals for the main model specification and two

alternative models with differing separation dates (X) between the low price time period and high

price time period: after the first Quarter of 2021 (red) and after the first half of 2021 (green). The

choice of the separation date hardly changes the results. Since the choice of a later date increases

the price differences between the subsets, the linear estimates for the subsets diverge even further.

In comparison, the estimates for the subsets in the log-log models move closer together. The results

thus reinforce the validity of statements made based on the main model specifications.
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Figure F.19: Estimators for the price effect on demand for the linear (left) and log-log model
specification (right), separately for low and high price time subsets. Results are shown for the
main model specification (Table 3 and Table 4) (blue) and two model specifications with differing
separation dates (X) between the low price time period and high price time period. Whiskers
indicate the 95% confidence interval.

Appendix F.2. Models with further supply-side covariates

Figure F.20 shows the estimators and confidence intervals for the main model specification and

an alternative model specification that includes additional supply-side covariates representing Ger-

man and French available nuclear capacities and German available hydro-power and coal-power

capacities. As data on power plant capacities and availability are unavailable, I use proxies based

on the hourly generation data from ENTSO-E (2023). To approximate weekly/monthly available

capacities, I use the weekly/monthly generation maxima. I cannot use the hourly or even daily

values of generation directly as available capacities, as the generation output of these plants reacts

to electricity prices, which would lead to endogeneity issues. I use the weekly maximum for nuclear

and hydro generation, as the electricity generation from these plants is less reactive to prices. To

approximate the development of available coal-power capacities in Germany, I use the monthly

maximum generation values. Including these supply-side covariates hardly changes the results.
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Figure F.20: Estimators for the price effect on demand for the linear (left) and log-log model spec-
ification (right). Results are shown for the main model specification (Table 3 and Table 4) (blue),
and a model specification including additional supply-side covariates (red). Whiskers indicate the
95% confidence interval.

Appendix F.3. Models without price covariates

Table F.8 shows the estimators and confidence intervals for the first stage of model specifications

without the utilization of gas, coal and EUA prices as covariates. The estimators for the influence

of Windt on the Pricet are slightly higher than in the main model specifications (Model 1a and

1b). The partial R squared still shows for both models (linear and log-log) that Windt explains

a relevant part of the variance of the price. The F-statistics of the Montiel-Pflueger robust weak

instrument test at 5% confidence level are 9,254 and 7,924, respectively, which is well above the

critical value of the test of 37.42. Based on the test result and the significance at the first stage,

I conclude that also without the usage of the price covariates Windt remains a strong instrument

for Pricet.

The Tables F.9 and F.10 show the estimators and confidence intervals for the second stage of model

specifications without the utilization of gas, coal and EUA prices as covariates. The estimators of

the Models 11 to 13 are of very similar magnitudes to the estimators of the main model specifica-

tions (Model 3 to 5). The results thus confirm the analysis results, suggesting that any potential

endogeneity issue resulting from the price covariates is inconsequential.
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Table F.8: First stage results of model specifications without price covariates
(10a) (10b)
linear log-log

Wind [GW] -1.978∗∗∗ [-2.02,-1.94] -0.319∗∗∗ [-0.33,-0.31]
PV [GW] -2.482∗∗∗ [-2.59,-2.37] -0.300∗∗∗ [-0.31,-0.29]
Heating degrees [°C] 0.978∗∗∗ [0.87,1.09] 0.0897∗∗∗ [0.08,0.10]
Cooling degrees [°C] 1.734∗∗∗ [1.54,1.93] 0.0669∗∗∗ [0.06,0.08]

Dummy variables
Hours Yes Yes
Weekdays Yes Yes
Months Yes Yes
Years Yes Yes

Fit statistics
Partial R2 Wind 0.132 0.174
Adjusted R2 0.702 0.643
Observations 65920 65011
95% confidence intervals in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

Table F.9: Second stage results of the linear specification without price covariates
(11a) (12a) (13a)

2015-2022 2015-2020 2021-2022

Price [EUR/MWh] -56.33∗∗∗ -109.1∗∗∗ -34.14∗∗∗
[-64.28,-48.39] [-124.00,-94.26] [-40.61,-27.68]

PV [GW] -188.7∗∗∗ -171.0∗∗∗ -212.8∗∗∗
[-216.16,-161.21] [-199.52,-142.52] [-256.20,-169.46]

Heating degrees [°C] 390.9∗∗∗ 362.9∗∗∗ 435.2∗∗∗
[339.34,442.53] [322.40,403.47] [334.82,535.60]

Cooling degrees [°C] 190.4∗∗∗ 149.5∗∗∗ 274.6∗∗∗
[144.50,236.33] [112.24,186.85] [179.26,369.97]

Dummy variables
Hours Yes Yes Yes
Weekdays Yes Yes Yes
Months Yes Yes Yes
Years Yes Yes Yes

Fit statistics
Adjusted R2 0.844 0.881 0.836
Observations 65920 49434 16486
95% confidence intervals in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
Standard errors are calculated as Newey-West HAC robust standard errors.
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Table F.10: Second stage results of the log-log specification without price covariates
(11b) (12b) (13b)

2015-2022 2015-2020 2021-2022

Price [EUR/MWh] (log) -0.0454∗∗∗ -0.0421∗∗∗ -0.0536∗∗∗
[-0.05,-0.04] [-0.05,-0.03] [-0.06,-0.04]

PV [GW] (log+1) -0.0243∗∗∗ -0.0218∗∗∗ -0.0286∗∗∗
[-0.03,-0.02] [-0.03,-0.02] [-0.03,-0.02]

Heating degrees [°C] (log+1) 0.0285∗∗∗ 0.0252∗∗∗ 0.0331∗∗∗
[0.02,0.03] [0.02,0.03] [0.02,0.04]

Cooling degrees [°C] (log+1) 0.0228∗∗∗ 0.0210∗∗∗ 0.0266∗∗∗
[0.02,0.03] [0.02,0.02] [0.02,0.03]

Dummy variables
Hours Yes Yes Yes
Weekdays Yes Yes Yes
Months Yes Yes Yes
Years Yes Yes Yes

Adjusted R2 0.880 0.890 0.853
Observations 65011 48670 16341
95% confidence intervals in brackets. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
Standard errors are calculated as Newey-West HAC robust standard errors.
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