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Abstract

We study a generalization of the classical monopoly insurance problem under

adverse selection (see Stiglitz [1977]) where we allow for a random distribution

of losses, possibly correlated with the agent’s risk parameter that is private

information. Our model explains patterns of observed customer behavior and

predicts insurance contracts most often observed in practice: these consist of

menus of several deductible-premium pairs, or menus of insurance with coverage

limits-premium pairs. A main departure from the classical insurance literature

is obtained here by endowing the agents with risk-averse preferences that can be

represented by a dual utility functional (Yaari [1987]).

1 Introduction

A robust empirical finding in various insurance markets is that even moderate risks

are often insured via contracts with low deductibles, or with full coverage up to high

limits. In a famous early study, Mossin [1968] (page 558) observed:

“...the conclusion that full coverage is never optimal seems quite plausible,

at least when considered as a normative guideline. Casual empirical evi-
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dence seems to contradict the conclusion, however; some of our best friends

take full coverage.”

Customers purchase insurance contracts with high coverage despite premium costs

that are significantly above the value of the expected loss (see Barseghyan et al. [2013],

[2016], Cohen and Einav [2007] and Sydnor [2010], among others). For example, Syd-

nor [2010] describes a large data set of more than 50, 000 households that choose among

deductibles {$100, $250, $500, $1000} for home insurance. About 48% households chose

the $500 deductible paying an average premium of $715, yet these all rejected a $1000

deductible whose average premium was just $615. Interestingly enough, the average

claim rate for this group is only 4.3%. Thus, a reduction in deductible worth less than

($1000 − $500) · 0.043 = $21.5 in expected terms is purchased by a large number of

households who pay $100 on average for it. Another 35% households held the $250

deductible and have an average claim rate of about 5%, and on average paid an extra

$87 over the premium for the $500 deductible. These households were willing to pay

$87 to protect against an expected loss of $12.5. Barseghyan et al. [2013], [2016]

describe another large data set of car and home insurance, and find similar patterns

of households’ deductible choices.

Behavior as described above - for which very large degrees of risk aversion can

be inferred - is hardly consistent with postulating that agents are expected utility

maximizers: plausible calibrations of expected utility theory generally lead to risk-

neutral behavior over small stakes (see, e.g., Rabin [2000]).1 In his survey about the

econometric analysis of insurance data, Chiappori [2000] remarked:

“ Finally, a better understanding of actual behavior is likely to require new

theoretical tools. The perception of accident probabilities by the insurees,

for instance, is a very difficult problem on which little is known presently.

Existing results, however, strongly suggest that standard theoretical mod-

els relying on expected utility maximization using the ‘true’ probability

distribution may fail to capture some key aspects of many real-life situa-

tions.”

Several authors, e.g., Sydnor [2010], Barseghyan et al. [2013] [2016], have indeed

shown that the insurance patterns in their data sets are consistent with alternative

explanations based on theories of non-expected utility that involve probability weight-

ing.

Our main purpose in this paper is to provide a convenient analytic model that

explains both the patterns of observed customer behavior as above, and the pattern

1Besides empirical findings, there is ample laboratory evidence that expected utility theory does
not perform well in explaining agents’ risk attitudes over small or modest stakes.
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of insurance contracts most often observed in practice: these consist of simple menus

of several deductible-premium pairs or menus of full insurance with coverage limits-

premium pairs.

Our model departs from the classical insurance literature in two main directions:

First, we assume that agents are endowed with risk-averse preferences represented by a

dual utility functional (Yaari [1987]) that incorporates a non-linear function distorting

probabilities rather than payoffs.2 An alternative interpretation is that agents have a

distorted belief that overweights more adverse events, leading to non-linear probability

weighting. Second, we allow for a much more general version of the classical monopoly

insurance problem under adverse selection (see Stiglitz [1977]):3 our framework al-

lows for a random distribution of losses that may be correlated with the agent’s risk

parameter, the latter being the agent’s private information.

As we explain in Section 2.1, Köszegi and Rabin’s [2006] loss-averse preferences

with linear utility over outcomes form a special case of Yaari’s dual utility, and are

thus covered by our model. In addition, we note that, for the special, classical case

with adverse selection and with a unique, fixed level of insured loss (see Rotshchild

and Stiglitz [1976] and Stiglitz [1977]), our results apply more generally to the class of

non-expected utility displaying Constant Risk Aversion (CRA) (see Safra and Segal

[1998]). This class includes instances of many well-known utility formulations that

have been proposed in the literature. Examples include Gul’s [1991] and Loomes and

Sugden’s [1986] disappointment aversion theories with a linear utility over outcomes

and mean-dispersion utility of the type used in the macro and finance literature (e.g.,

Rockafellar et al [2006]) - see online Appendix C for details.

One of the main features that distinguishes dual utility (and its many variants and

generalizations) from expected utility is first-order risk aversion (see Segal and Spivak

[1990] for definitions and a discussion of the various orders of risk aversion): in the limit

where the stakes become small, the risk premium vanishes linearly in the size of the

risk. This is in stark contrast to any EU preference represented by a twice differentiable

utility function, that exhibits second-order risk aversion: in the small stakes limit, EU

agents become risk neutral and the risk premium they demand vanishes quadratically

in the size of the risk. This difference can have far-reaching implications for behavior.4

2Guriev [2001] offers a “micro-foundation” for dual utility: a risk neutral agent who faces a bid-ask
spread in the credit market will behave as if he were dual risk averse. This can be directly applied to
insurance markets if credit is needed to cover accidental losses. The same happens if gains are taxed
but losses are not.

3A large empirical evidence suggest that market power is prevalent in the insurance industry (see
Dafny [2010], Robinson [2004] and Trish and Herring [2015], among others). For example, India’s
largest life insurer has a market share of 64%.

4For example, Epstein and Zin [1990] argue that dual utility can resolve the equity premium puzzle:
faced with small-stakes lotteries, a dual risk-averse (EU risk-averse) agent requires a risk premium
proportional to the standard deviation (variance) of the lottery. Since for small risks the standard

3



For example, under expected utility, full insurance is Pareto-optimal if and only if

the premium is actuarially fair (Mossin [1968]), i.e. if the cost of providing insurance

equals the premium. In contrast, assuming complete information, Segal and Spivak

[1990] showed that full insurance may be Pareto-optimal under first-order risk-aversion

even if the exogenous insurance premium is higher than fair. In our model, incomplete

information and the associated possibility to screen agents endogenize the insurance

premia and cause an inefficiency in the form of partial insurance being offered to some

types.

Our main results characterize the incentive compatible, individually rational and

profit maximizing menus of insurance contracts. Each contract consists of an indemnity

in case of loss (this depends on the loss and induces a retention share for the agent)

and of a corresponding premium that must be paid up-front. A main assumption

underlying our analysis and often made in the finance and insurance literatures is

that both indemnity and retention functions are increasing in the value of the loss

(double-monotonicity). This assumption corresponds to so called ex-post moral hazard

condition ensuring that the agent benefits neither from increasing the loss (arson) nor

from hiding part of the loss.

Under a regularity condition, the optimal scheme is a layer contract: for each risk

type, it consists of alternating intervals of losses where the agent’s retention function

has either slope zero or slope one. We also offer sufficient conditions under which the

optimal contract consists either of a menu of deductibles or a menu of coverage lim-

its with different premia, one for each risk type. The analysis allows us to distinguish

structural differences between optimal contracts for the case where private information

is about the probability of a loss (where we get deductibles) and the case where private

information is about the loss magnitudes (where we get coverage limits). Other com-

monly used instruments such as coinsurance are not optimal in pure adverse selection

frameworks.

Deductibles are common for medical and property insurance, and also for product

liability and professional liability policies for attorneys, accountants, corporate direc-

tors and officers. It is well known that a deductible contract is welfare-maximizing

for any risk-averse agent in the class of contracts with a fixed expected cost for the

insurer.5 Hence an insurance contract with a deductible is, in principle, consistent

with the idea that the insurer needs to generate high welfare in order to extract a

high revenue. As an illustration, consider the special case where the distribution of

losses is independent of the probability of accident, and where the losses can take a

deviation is considerably larger than the variance, this generates a higher equity premium.
5See for example Van Heerwarden et al [1989]. This result generalizes famous early results by

Arrow [1963] and Borch [1960] about variances of such contracts.
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finite number of values. Then, in our framework, the optimal menu consists of a basic

high deductible - low premium pair complemented by a ladder of additional fees that

gradually reduce the deductible until, possibly, full insurance. As mentioned above,

such a menu structure is ubiquitous in practice and taken almost for granted in most

of the empirical literature.

On the other hand, deductibles are not common for medical malpractice, where

rating based on the physician’s individual claim record is relatively limited (see Har-

rington and Danzon [2000]). Instead medical malpractice insurance uses menus of

limits on coverage as a preferred screening instrument. As an example, US medical

malpractice insurance typically offers doctors a choice between coverage with limits

such as US$ 100K, 200K, 500K, 1000K.6 Payments at these limits are often seen in

practice.7

The optimality of contracts with coverage limits under some of our model’s pa-

rameters is somewhat striking since we show that such a contract is worst for any risk

averse agent within the set of doubly monotonic contracts that yield the same expected

cost to the insurer.8 In other words, the benefits of screening via coverage limits can

be higher than the welfare loss from choosing an extremely sub-optimal allocation.

Technically, we study a principal-agent problem with interdependent valuations

and with type-dependent outside options. For each type of the agent, the allocation

is an entire retention function (i.e., for each possible loss, the part of the loss that

remains to be covered by the agent) rather than a scalar. Dual utility yields here, for

each risk type, a linear optimization problem. Hence, for each type, the optimum is

achieved at an extreme point of the set of feasible retention functions that satisfy the

ex-post moral hazard constraints. We then offer sufficient conditions that render the

obtained collection of retention functions, one for each risk type, incentive compatible.

Finally, we note that Yaari’s dual utility functionals also correspond to the so-

called distortion or spectral risk measures, such as expected shortfall, often used in the

finance and insurance literatures. These consist of weighted averages of the values at

risk (VaR) for each quantile.9 For the classical case with a unique insured loss, our

results apply more broadly to the class of law invariant, coherent risk measures that can

be derived as minima over averages of values at risk with respect to a set of distortions

6For example, Silver et al [2007] survey a very rich data set of Texas medical malpractice claims,
and find that 89% of policies have such limits. 6% of the policies have higher limits.

7For example, about 15% of all claims in the Texas malpractice data set are paid at the limit,
with the proportion rising to about 30% for those with limits less than US$ 500K. Special disciplines
such as perinatal medicine see about 40% of all claims paid at the limit (see Silver et al. [2007] and
Zeiler et al. [2015]).

8This should not be confused with the well-known “live-or-die” contract analyzed by Innes [1990].
Such contracts are not doubly-monotonic.

9For a good exposition, see for example Rüschendorf [2013], Chapter 7.
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(see Kusuoka [2001]). Thus, our methodology applies to an insurer-reinsurer relation

where the insurer (agent) uses such a risk measure to assess its portfolio.

The structure of the paper is as follows: We conclude this Section with a literature

review. In Section 2 we describe the risk environment, the agent’s preferences and

the insurance contracts. Section 3 describes the set of feasible mechanisms that satisfy

incentive compatibility and individual rationality constraints. In Section 4 we solve the

optimal insurance problem within the general class of deterministic insurance contracts

that respect two ex-post moral hazard conditions. We also offer conditions under which

simple contracts that consist either of menus of deductibles or menus of coverage limits

are optimal. All proofs are in the Appendix.

1.1 Related Literature

A large literature following Borch [1960] and Arrow [1963] focuses on models without

adverse selection and studies the welfare maximizing insurance policy under a pricing

formula where the premium for each policy is proportional to its cost. If the insurer

is willing to offer any insurance policy desired by the buyer at a premium that only

depends on the policy’s actuarial value, then the main finding is that the policy chosen

by a risk-averse buyer will take the form of full coverage above a deductible minimum.

Raviv [1979] and Huberman et al. [1983] obtain optimality of policies using addi-

tional instruments such as upper limits on coverage only under exogenous constraints

such as a bankruptcy constraint on the insurer, or under a limited liability constraint

on the insuree created by legal provisions in personal bankruptcy law. Huberman et

al. [1983] also introduce restrictions on the retention and indemnity functions that

avert several moral hazard problems arising after a loss has already occurred. In order

to obtain the optimality of simple deductibles, Townsend [1979] assumes that the loss

can only be verified at a cost.

The above mentioned strand of the literature does not incorporate adverse selection.

Chade and Schlee [2012] offer a comprehensive and up-to-date study of monopolistic

profit maximization in an insurance market subject to adverse selection where the

agents are expected utility maximizers. Their model follows the pioneering work of

Rotshchild and Stiglitz [1976] and Stiglitz [1977] by assuming that the private informa-

tion pertains to the probability of an accident: all risk types in these models face the

same fixed loss in case of an accident. This also holds for Szalay’s [2008] alternative

analytic approach to the same problem. Contrasting our framework, the allocation

function for each risk type is then a scalar, i.e. the share of loss that is insured or

retained. Thus, in such models, every deterministic feasible policy can be described

in terms of a menu of deductibles - hence deductibles cannot be endogenously derived
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as being optimal. Chade and Schlee [2012] and Szalay [2008] exhibit some interesting

properties of the profit maximizing mechanism, but are able to analytically solve for

the optimum only for agents equipped with either exponential (CARA), or square-root

utility functions.

There is ample field and laboratory evidence showing that expected utility does

not perform well in explaining agents’ risk taking behavior (e.g. Johnson et al [1993]

and Sydnor [2010] for insurance markets, Snowberg and Wolfers [2010] and Chiappori

et al [2019] for horse betting markets and Bruhin, Fehr-Duda and Epper [2010] in

the lab). Many such papers argue that probability distortions play an important role

in explaining behavior (see the survey of Starmer [2000]). Some of them advocate

Yaari’s dual utility, or, more generally, a rank-dependent utility à la Quiggin [1982] as

an alternative to expected utility.

For instance, Barseghyan et al. [2013] analyze a large dataset obtained from a

large US property and casualty insurance company, and find that probability distor-

tions play an important role in explaining households’ deductible choices for auto and

house insurance. Looking at a subset of 3629 out of 4170 households,10 Barseghyan et

al. [2016] find that 80% of them make choices that are consistent with Yaari utility

preferences, while 85% make choices that are consistent with rank-dependent utility

preferences. Suhonen et al. [2018] find that dual utility well explains the behavior of

pari-mutuel gamblers in Finnish horse races.11

Goeree, Holt and Palfrey (2002) found that quadratic probability weighting, that

is a special case of dual utility,well explains bidding behavior in lab experiments. In

another experiment that derived the demand for insurance, Papon [2008] showed that

dual utility preferences describe the chosen insurance policies better than expected

utility. In Papon’s experiment a vast majority of the subjects chose either full insur-

ance or no-insurance, and only a small proportion selected partial insurance options.

Such choices are expected under complete information and dual utility (Doherty and

Eeckhoudt [1995]), but not under expected utility.

Chiappori et al [2019] also find that general models relying on rank-dependent util-

ity and that allow for distortions of both payoffs and probabilities work relatively well

in explaining betting data. But, in their data, and also in the laboratory experiment

conducted by Hey and Orme [1994] dual utility is dominated by expected utility.12

Several other empirical papers, for example Sydnor [2010] and Snowberg and

Wolfers [2010], advocate loss-aversion as an alternative explanation for behavior, and

show that models based on loss-averse preferences fit the data much better than ex-

10These households satisfy some consistency criteria.
11In pari-mutuel betting, odds are not fixed by a bookmaker, but rather represent the gamblers’

probability estimates of the winning horses.
12We note that the experiment had only 80 participants.
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pected utility. As we explain in Section 2.1, assuming linear utility over outcomes,

Köszegi and Rabin’s [2006] loss-averse preferences constitute a special case of Yaari’s

dual utility.

Finally, some papers do not support one formal model over others, but argue instead

that the probability weighting function takes an “inverse S” shape (e.g., Bruhin, Fehr-

Duda and Epper [2010], Dimmock et al [2021]). That is, agents tend to overweight

small probability tail events. Our model can incorporate this possibility because in

real life insurance data the probability of loss is relatively small.

Dual utility replaces the classical von Neumann-Morgenstern independence axiom

behind expected utility (EU) with another axiom about mixtures of comonotonic ran-

dom variables. It belongs to the family of rank-dependent utility functions. The idea

of theoretically studying insurance markets while assuming that agents have a rank-

dependent utility function is not new. Most of the relevant finance/insurance literature

focus on the related distorted or spectral risk measures.

In early work, Doherty and Eeckhoud [1995] study a model without adverse selec-

tion. Following Arrow [1963], they are interested in maximizing the agent’s welfare

under actuarial fair pricing plus a markup, and focus solely on simple (not necessarily

optimal) mechanisms such as coinsurance or deductibles.

Bernard et al. [2015] and Xu et al. [2019] focus on the optimization of the agent’s

welfare under a random loss, but without adverse selection, i.e., there is a unique risk

type. Thus, in their model premia are ”exogenous” as there is no incentive constraint

binding them to insurance level. In the same model without adverse selection, Xu et

al. [2019] impose conditions that constrain the agent’s ability to manipulate the loss

ex-post - we impose analogous conditions here.

Assuming that the insuree has a dual utility function, Hindriks and De Donder

[2003] add adverse selection a la Stiglitz [1977] to a model where the insuree has dual

utility: the private information is about the probability of an accident, and the loss in

case of accident has a fixed magnitude, independently of the probability of having an

accident. They show that a profit-maximizing monopolistic insurer offers full insurance

to relatively high risk types while leaving relatively low risk types uninsured. Liang

et al. [2022] show that this result is not robust to the presence of random losses: in

their model there are two risk types and the lower risk type is only partially insured.

Finally, Gershkov et al. [2022] analyze optimal auctions in a framework where

bidders’ preferences are represented by a non-expected utility functional that exhibits

constant risk aversion. Contrasting the present framework, their bidders face binary

lotteries, and the optimal mechanism offers full insurance while distorting the alloca-

tion via endogenous randomization.
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2 The Insurance Environment

An agent faces a random loss L distributed on the interval [0, L), where the maximal

loss L̄ can be finite or infinite. The agent’s private information, his type θ ∈ [θ, θ] = Θ,

parametrizes the distribution of losses Hθ : R+ → [0, 1] he faces. The distribution

Hθ is increasing in first-order stochastic dominance, such that higher types face a

stochastically larger loss. We assume that Hθ is uniformly Lipschitz-continuous in θ

with constant c < ∞. We denote by E[L(θ)] the expected loss of type θ, and we assume

that this is finite.13 Finally, we denote by F : Θ → [0, 1] the distribution of types and

by f : Θ → (0,∞) its density.

To illustrate the generality of the above setup, consider two important special cases:

Asymmetric Information about Loss Probabilities Consider first the extreme

case where the type θ represents the probability of an accident, and where the distri-

bution of losses conditional on an accident is given by a fixed distribution Q, indepen-

dently of type. We obtain that

Hθ(l) = (1− θ) + θ Q(l) . (1)

This specification naturally captures health insurance where some agents face a greater

risk of requiring certain medical procedures. Almost all of the insurance literature

following Stiglitz’s [1977] adverse selection model has focused on the special case where

Q(l) = 1l≥l∗ puts probability 1 on a single, deterministic loss l∗ > 0.

Asymmetric Information about Loss Size Consider another extreme case where

the agent’s type influences the size of the loss, but not its probability. For example

consider L = θK, whereK is a random variable with support [0,∞), so that the agent’s

type multiplies an exogenous damage K distributed according to Q, independently of

the agent’s type. For this example, we obtain that

Hθ(l) = Q(l/θ).

Here all types face the same probability of accident, but some face higher losses in

case of an accident. For example, the probability of an earthquake is the same for all

agents, but an agent with a higher house value may face a higher damage should his

house be destroyed.

13Note that, in view of the stochastic dominance assumption, it is enough to assume that the
expected loss of the highest type E[L(θ̄)] is finite.
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Finally, we note here that our model is general enough to incorporate cases where

the agent’s private information concerns both the loss probabilities and the loss size.

2.1 The Agent’s Utility Function

As it will become clear in the next subsection, the agent makes a payment for the

insurance he purchases, and then suffers a random loss. In this insurance context, it

is sufficient to define risk preferences over random variables that capture the total loss

suffered by the agent.

We assume that the agent is endowed with a Yaari (dual) utility determined by

a probability distortion function g : [0, 1] → [0, 1], where g is increasing, absolutely

continuous and satisfies g(p) ≤ p with g(0) = 0 and g(1) = 1. The certainty equivalent

of a random total loss x ≥ 0, distributed according to H : R+ → [0, 1] where H(s) =

P[x ≤ s] is given by14

CE(x) = −
∫ ∞

0

1− g (H(s)) ds .

Our agent is risk-averse in a weak sense: the certainty equivalent of any lottery is less

than the lottery’s expected value. This is so because

CE(x) = −
∫ ∞

0

1− g(H(s))ds ≤ −
∫ ∞

0

1−H(s)ds = −E[x] .

While in the EU framework the above form of risk aversion is equivalent to aversion

to mean preserving spreads, here the latter notion of risk aversion is stronger, and

is equivalent to g being convex. We refer below to the latter notion as strong risk

aversion. The weak form of risk aversion that only requires g(p) ≤ p is sufficient for

most of our present analysis.

For more intuition about dual utility, note that, for the case where H admits a

density, integration by parts yields

CE(x) = −
∫ ∞

0

1− g(H(s))ds = −
∫ ∞

0

s g′(H(s))dH(s) .

In other words, dual utility modifies the standard expectation operator E[x] =
∫∞
0

sdH(s)

by multiplying each loss level s with the weight g′(H(s)). Thus, g(H(s)) can be in-

terpreted as the cumulative weight assigned to loss levels below s, while 1 − g(H(s))

represents the cumulative weight assigned to loss levels above s. The assumption

g(p) ≤ p says that the agent overweights the cumulative probability of large losses,

and underweights the cumulative probability of smaller losses, including no loss at

14Yaari considered only bounded random variables. For extensions to integrable random variables
in Lp see, for example, Baüerle and Müller [2006] and Rüschendorf [2013].
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all. The stronger notion of risk aversion where the agent is averse to mean preserving

spreads (i.e., where g is convex) requires the weights to be increasing in the loss level.

Finally, we note that Yaari’s dual utility is additive with respect to constant random

variables t (see Yaari [1987]):

CE(x+ t) = CE(x) + t .

This property implies that the agent has quasi-linear, separable preferences with re-

spect to non-random transfers t, and it greatly facilitates the analysis of our screening

problem.

We assume that the agent’s willingness to pay for insurance is finite, independently

of her type.15 This is a weak assumption: for example, it is satisfied if the loss L is

bounded, or if g is bounded from below by a power function (see an illustration be-

low).16 Without such a restriction the principal can obtain unbounded profits (without

any screening) by offering insurance that covers all losses above a threshold. Finally, as

a technical condition, we also assume that. for all θ, it holds that
∫ L

0
g′(Hθ(l))dl < ∞.

This suffices to render the uninsured agent’s utility differentiable in type.

We conclude this section by noting that Köszegi and Rabin’s [2006] loss-averse

preferences with linear utility over outcomes are a special case of Yaari’s dual utility,

and are thus covered by our model. For a random loss x, Köszegi and Rabin’s [2006]

formulation yields:17

−E[x] +
∫ ∞

0

∫ ∞

0

µ (y − x) dH(x)dH(y)

where

µ(z) =

{
z if z ≥ 0

λz if z < 0
.

As established by Masatioglu and Raymond [2016] in their Proposition 4, the above

functional form is a special case of dual utility with distortion

g(p) = (2− λ)p+ (λ− 1)p2 .

Such preferences are consistent with monotonicity in the sense of First-Order Stochas-

tic Dominance Order (FOSD) if and only if λ ∈ [0, 2]. The agent is risk-averse (either

in the weak or strong sense) if and only if the agent is loss averse with λ ∈ (1, 2]. 18

15This is equivalent to requiring that
∫∞
0

[
1− g(Hθ(s))

]
ds < ∞.

16To see this note that if g(p) ≥ pκ then
∫∞
0

1 − g(Hθ(s))ds ≤
∫∞
0

1 − (Hθ(s))
κds =∫∞

0
κ(Hθ(s))

κ−1xdHθ(s) ≤ κ
∫∞
0

xdHθ(s) = κE[L(θ)] < ∞.
17See also the theory of disappointment without a prior, due to Delquié and Cillo [2006].
18When λ = 1 the model reduces to the standard EU, risk neutral preferences.
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2.2 The Insurance Contracts

There is a single, risk-neutral monopolistic insurance provider (she) who offers an

insurance mechanism to the risk-averse agent (he). We restrict attention to (1) direct

(static) and (2) non-randomized mechanisms. Two comments about these assumptions

are in place:

In online Appendix A we illustrate through an example that the latter restriction is

not without loss of generality: lotteries may help screen different types of the risk averse

agent. It is, however, suitable in order to address insurance applications: explicitly

randomized insurance contracts offered to risk averse agents are, to the best of our

knowledge, never observed.

In his work about “Dutch books” Green (1987) showed that, if both designer and

agent can observe the realization of the agent’s random endowment, and if the designer

can offer a series of lotteries, then she can extract money from a naive agent who takes

myopic decisions, and whose utility does not satisfy the independence axiom (leading

to non-linearity in probabilities). Thus, for some notion of naiveté, the designer can

use a random, dynamic mechanism in order to exploit the agent’s dynamic inconsis-

tency, and extract more surplus than what would be possible in an optimal static

mechanism. But, if one restricts attention to non-random mechanisms where also the

agent uses a pure strategy, then the only remaining randomness in our environment is

in the agent’s endowment, i.e., the agent’s stochastic loss. Then, as the agent’s time-

inconsistence stems from a gradual resolution of uncertainty, we conjecture that, under

weak conditions, the restriction to static mechanisms is without loss of generality.

In a mechanism, the insurer offers a menu of contracts of the form (I(·, θ), t(θ))θ
where, for every type θ, I(l, θ) ∈ [0, l] is the amount covered if loss l occurs, and where

t(θ) is the associated premium. Equivalently, the insurer can be seen as offering a

menu of retention functions (R(·, θ), t(θ))θ where R(l, θ) = l− I(l, θ) is the part of the

loss l that remains to be covered by the agent of type θ.

Assumption 1 We impose two natural monotonicity conditions (or ex-post moral

hazard conditions) on the retention function R for any θ :

1. R(l, θ) is non-decreasing in l .

2. l −R(l, θ) = I(l, θ) is non-decreasing in l .

Part 1 of Assumption 1 ensures that the agent does not benefit from a smaller retention

R(l′, θ) < R(l, θ) by artificially increasing an incurred loss from l to l′ > l. Part 2

ensures that the agent does not benefit from a higher indemnity l′−R(l′, θ) = I(l′, θ) >
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I(l, θ) = l − R(l, θ) by hiding part of the incurred loss with a report l′ < l.19 These

ex-post moral hazard assumptions were introduced by Huberman et al [1983] and are

common in the insurance literature. Moreover, practically all contracts observed in

practice satisfy these conditions.

Observe that any function that satisfies assumptions 1 and 2 above is Lipschitz

continuous with constant 1, and hence also absolutely continuous. Its derivative ex-

ists almost everywhere and satisfies ∂R(l, θ)/∂l ∈ [0, 1] for all θ, l.20 For any θ, let

R−1(·, θ) denote the generalized inverse of R(·, θ).21 Using the additivity of Yaari’s

utility with respect to constants, and noting that the distribution of the random vari-

able R(·, θ) is given by Hθ(R
−1(·, θ)), we obtain that the certainty equivalent of the

contract (R(·, θ), t(θ)) offered to type θ equals

−t(θ)−
∫ R(L,θ)

0

[1− g(Hθ(R
−1(a, θ))]da = −t(θ)−

∫ L

0

[1− g(Hθ(l))]
∂R(l, θ)

∂l
dl,

where the last equality follows by the change of variables l = R−1(a, θ).

Finally, the cost of providing the insurance contract (R(·, θ), t(θ)) to a type θ agent

is given by

E[L(θ)]−
∫ R(L,θ)

0

[1−Hθ(R
−1(a, θ))da = E[L(θ)]−

∫ L

0

[1−Hθ(l)]
∂R(l, θ)

∂l
dl,

where the equality follows by the above change of variable.

3 Implementable Insurance Contracts

In this section we describe incentive compatible and individually rational insurance

contracts, i.e. we delineate the feasible set of contracts among which the insurer looks

for the optimal one. The formulation of Yaari’s dual utility allows us to develop a

simple envelope condition that is necessary for incentive compatibility, and to formu-

late the design problem as a linear optimization problem. The key technical features

behind this tractability are the separable additivity of constant random variables (here

these are the ex-ante premia paid for insurance). This separability comes from the fact

that risk aversion is induced here “dually” by distorting probabilities rather than pay-

offs. In other words, dual utility disentangles attitudes towards risk from the marginal

utility of money, that is constant. Besides the technical convenience, this property

19The monotonicity requirement on the insurance I can be technically dropped - see also the remark
after Theorem 1 for the ensuing consequences for optimal insurance contracts.

20In particular, the function R(·, θ) can be obtained as the integral of its derivative.
21R−1(l, θ) = sup{z : R(z, θ) ≤ l}.
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makes the dual formulation appealing for settings where stakes are small or moder-

ate, so that wealth effects are not significant: the linearity of the agents’ utilities in

monetary transfers can then coexist with any degree of risk aversion.

3.1 Incentive Compatibility

Fix a mechanism (R(·, θ), t(θ))θ. Assuming that the agent has type θ, we denote by

U(θ, θ′) the agent’s certainty equivalent of the contract (R(·, θ′), t(θ′)) designed for type

θ′. We slightly abuse notation by using below U(θ) instead of U(θ, θ) for the certainty

equivalent the agent obtains when reporting truthfully. By the additivity of the dual

utility with respect to constants, we obtain that an agent with type θ who reports to

be of type θ′ gets

U(θ, θ′) = −t(θ′)−
∫ L

0

[1− g(Hθ(l))]
∂R(l, θ′)

∂l
dl.

A mechanism (R(·, θ), t(θ))θ is incentive compatible if, for any pair of types θ and

θ′, it holds that:

U(θ) ≡ U(θ, θ) ≥ U(θ, θ′). (IC)

Proposition 1 (Incentive Compatible Mechanisms)

(1) Fix any incentive compatible mechanism (R(·, θ), t(θ))θ. Then, the agent’s cer-

tainty equivalent is given by

U(θ) = U(θ) +

∫ θ

θ

[∫ L

0

∂R(l, s)

∂l
g′(Hs(l))

∂Hs(l)

∂s
dl

]
ds,

and the seller’s profit is given by

π(R) =

∫ θ

θ

[
−E[L(θ)]−

∫ L

0

∂R(l, s)

∂l
J(l, θ)dl

]
f(θ)dθ − U(θ),

where

J(l, θ) = Hθ(l)− g(Hθ(l)) +
1− F (θ)

f(θ)
g′(Hθ(l))

∂Hθ(l)

∂θ
.

(2) If R is submodular, then the above conditions are also sufficient for the menu of

contracts (R(·, θ), t(θ))θ to be incentive compatible.

Submodularity is a very robust sufficient condition: it does not depend on the partic-

ular form of the distortion g that determines utility, nor on the other features of the

environment.
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The ”virtual value” J defined above captures the effect on the insurer’s profit of

marginally increasing the insurance coverage (or, equivalently, of marginally decreasing

the agent’s retention). We can split this effect into two parts. The first part measures

the effect on the insurer’s revenue:

(1− g(Hθ(l))) +
1− F (θ)

f(θ)
g′(Hθ(l))

∂Hθ(l)

∂θ
,

where 1 − g(Hθ(l)) represents the agent’s valuation for this marginal increase of in-

surance coverage and where 1−F (θ)
f(θ)

g′(Hθ(l))
∂Hθ(l)

∂θ
is the agent’s information rent (note

that this term is negative as ∂Hθ(l)
∂θ

is negative). The second part

− (1−Hθ(l))

measures the effect on the insurer’s cost. The exact amount of insurance in an optimal

mechanism is determined by balancing these two effects. We also note that the term

Hθ(l)−g(Hθ(l)) measures the size of efficiency gain resulting from providing insurance

to a risk-averse agent. The more risk-averse the agent is, the larger is the difference

between the insurer’s cost and the agent’s gain.

3.2 The Participation Constraint

We furthermore restrict attention to mechanisms where each agent participates vol-

untarily. Since the distribution of losses is type dependent, the outside option from

not purchasing insurance, is also type dependent. Nevertheless, we show the partici-

pation constraint will be satisfied for all types if and only if it is satisfied for the lowest

possible type θ = θ who has here the highest utility.

Define first

UNP (θ) = −
∫ L

0

[1− g(Hθ(l))] dl

to be type’s θ certainty equivalent payoff from non-participation, i.e. not obtaining

any insurance. The following individual rationality, or participation, constraint needs

then to be satisfied

U(θ) ≥ UNP (θ) . (PC)

Lemma 1 In an incentive compatible mechanism (R(·, θ), t(θ))θ, the participation

constraint is satisfied for all types if and only if it is satisfied for the lowest type

θ.

The proof follows because both the utility from non-participation and the equilibrium

utility are decreasing in risk type, and because the latter function decreases slower due

to the fact that ∂R(l, θ)/∂l ∈ [0, 1] for all θ, l.
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3.3 Strictly Positive Profit

Our final result in this Section shows that, under rather weak assumptions, a risk

neutral insurer necessarily makes a strictly positive profit by offering full insurance to

at least some types. In particular, this shows that the insurer makes a strictly positive

profit in the optimal mechanism.

Lemma 2 Assume that Hθ is not degenerate22 and that ∂Hθ

∂θ
and g′ are continuous.23

Then, the insurer obtains a strictly positive expected profit in the optimal menu of

contracts.

The proof of Lemma 2 explicitly computes the revenue from a mechanism that

provides full insurance for sufficiently high types and no insurance for all lower types.

It then shows that the full insurance cut-off can be chosen such that the mechanism

generates strictly positive profits, and such that all agents have an incentive to partic-

ipate.

Consider, for example, the case where

Hθ(l) = (1− θ) + θQ(l),

and where θ represents the probability of an accident. We stress that the optimality

of some trade holds even if θ = 1 (i.e., even if the highest type incurs some loss with

probability one), provided that Hθ is not degenerate.

Assuming expected utility, Hendren (2013) derived conditions that are sufficient

for insurance denial when there is a single loss magnitude. These conditions imply

that, for any price set by the insurer, the distribution of the agent’s types that accept

this contract leads to negative profits for the insurer. This is never the case in our

framework with non-expected utility and with random losses: there always exists a

contract such that the insurer gets strictly positive profits. This new phenomenon is

caused by the combination of first-order risk aversion with the fact that the insurer has

here finer instruments at her disposal: she can tailor the insurance to each specific loss.

Remark: If the insurer has additional information about observable characteristics

and can divide agents into groups, then she could practice third-degree price discrimi-

nation by offering different insurance menus to different groups. By the same argument

as above, the insurer would still find it profitable to provide some insurance to each

group. In practice, there are other frictions that are not modeled here, e.g., the issuer

22A probability distribution is degenerate if it assigns probability one to a single value.
23Since Hθ is decreasing in θ for each z, and if g is concave, the derivative of these functions exists

almost everywhere, and g is even twice differentiable almost everywhere.
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cannot offer different menus to different groups or she faces reserve and liquidity costs,

verification costs and other administrative costs of issuing contracts and processing

claims. These frictions may cause the designer to refuse offering insurance to a high

risk group based on observable characteristics. If, however, additional information

about risk groups is not available or cannot be used, selling insurance to low risk types

while excluding high risk types cannot be incentive compatible: if a low risk type wants

to buy insurance, higher risk types have incentives to pretend to be of a low risk type

in order to also be insured.

4 Optimal Insurance

We now provide a characterization of the optimal insurance menu under a regularity

condition similar to the standard monotonicity condition on the virtual value.

Theorem 1 Suppose that the virtual value function

J(l, θ) = Hθ(l)− g(Hθ(l)) +
1− F (θ)

f(θ)
g′(Hθ(l))

∂Hθ(l)

∂θ

is non-decreasing in θ for all l. Consider the maximization problem

max
R

π(R) =

∫ θ

θ

[
−E[L(θ)]−

∫ L

0

∂R(l, θ)

∂l
J(l, θ)dl

]
f(θ)dθ

subject to

0 ≤ ∂R(l, θ)

∂l
≤ 1 for all θ ∈ Θ.

The above problem has a solution that is incentive compatible, and thus optimal. In

addition, at the optimum, it holds that ∂R(l, θ)/∂l ∈ {0, 1} almost everywhere.

The proof of the above Theorem is in the Appendix. When J is monotonic in type, the

solution to a relaxed version of the designer’s problem described above is submodular,

and thus incentive compatible. Therefore, it is also a solution to the original designer’s

problem.

The monotonicity of J means that, in an incentive compatible mechanism, it is

more beneficial to increase the marginal indemnity (e.g., the extra indemnity due to

a marginal increase in loss) if the type is more risky. It is important to note that this

does not necessarily mean that a high risk type is more valuable to the designer - the

cost of providing insurance to high risk types is also higher, and this may lead to a

lower profit level.
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By the above result, in the optimal mechanism, an increase in the loss l will be

either completely passed on to the agent with type θ (in that case ∂R(l, θ)/∂l = 1)

or not at all (in that case ∂R(l, θ)/∂l = 0). Here is one typical example where losses

below D and above C > D are passed on to the agent:

R(l, θ) =


l 0 ≤ l ≤ D

D D < l ≤ C

l − C +D C < l ≤ L

.

This kind of retention function R is induced by a contract with a deductible D ≥ 0

and with a coverage limit C > D.

L

R

0 1 2 3 4

1

2

3

Figure 1: Contract with deductible D = 1 and coverage limit C = 2

Remark: It can be shown that over-insurance (i.e., having I(l) > l) is not opti-

mal.24 Moreover, the monotonicity requirement on the insurance I (the second part

of Assumption 1) can be dropped under suitable technical conditions. We can then

rewrite the objective function in terms of the retention R instead of R′, under the

constraint 0 ≤ R(l, θ) ≤ l. Any possible optimal retention R for this relaxed problem

is piece-wise continuous. In each continuity interval it first holds that R(l) = l and

R(l) is a constant afterwards. Thus, whenever it exists, R′(l) is either zero or one, as

in the current analysis. In other words, every additional marginal loss is either com-

pletely passed to the insurer, or completely left with the agent. The optimal insurance

contract for certain types may then be non-monotonic: for example, it can consist of

several loss-dependent deductibles.25 Relaxing the monotonicity of R is technically

more complex since it is then more difficult to compute the agent’s utility, and to

formulate appropriate incentive compatibility conditions.

24See also Gollier [2000] who shows that over-insurance is not optimal in a complete information
framework where the insurer maximizes the agent’s welfare.

25The indemnity could have the form of the “live or die” contracts that are optimal in the contract-
ing framework of Innes [1990]. In a live or die contract low losses are fully insured (zero deductible),
while high losses are not insured at all (deductible higher than any loss)
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Some insurance contracts include coinsurance, where the agent retains a fraction of

the loss and where the insurer covers the remaining fraction. By definition, coinsurance

contracts have slopes strictly between zero and one. Therefore, these contracts cannot

be maximizers of our linear functional. Our results thus suggest that the appearance of

coinsurance contracts is not due to screening motives alone. It might be motivated by

economic forces that we did not model here, e.g., linear or affine contracts are robustly

optimal under moral hazard if the principal (insurer) is uncertain as to what actions

the agent (insuree) can and cannot take (see Caroll [2015]).

A natural question stemming from Theorem 1 is: When is the virtual value function

J non-decreasing in θ? Observe that

∂J(l, θ)

∂θ
= −∂Hθ(l)

∂θ

(
g′(Hθ(l))

[
θ − 1− F (θ)

f(θ)

]′
− 1

)
+

1− F (θ)

f(θ)

∂[g′(Hθ(l))
∂Hθ(l)

∂θ
]

∂θ
.

By assumption, ∂Hθ(l)
∂θ

< 0 and g is increasing with g(p) ≤ p. Assume here that g is

convex, that is, the agent’s preference exhibit aversion to mean preserving spreads.

A non-decreasing hazard rate f(θ)
1−F (θ)

of the distribution of agent types together with

g′(Hθ(l)) ≥ 1 are sufficient for the first term to be non-negative. As g′ is increasing

and as Hθ is decreasing in θ, it is thus enough to require that g′(Hθ(0)) ≥ 1. Because

limp→1 g
′(p) > 1, this last condition is satisfied whenever the probability of a loss

faced by riskiest type, 1−Hθ(0), is sufficiently small (see Example 1 below for further

illustration on this point). In addition, the increasing stochastic concavity26 (in the

usual stochastic order) of the family of random variables with distributions (Hθ)θ is

sufficient for the second term to also be non-negative, yielding the desired monotonicity.

Roughly speaking, this last assumption says that the difference in loss distributions

of risk types decreases as the type increases. Note, that the increasing stochastic

concavity condition always holds in the classical setting where the private information

is about loss probability. In this case the family,

Hθ(l) = 1− θ + θQ(l) = θ(Q(l)− 1) + 1

depends linearly on θ.

Lastly, we note that J being non-decreasing is a sufficient, but not necessary, condi-

tion for our current methodology to work. We present below an example that satisfies

the above conditions while in Section 4 we provide another setting (see Example 3)

where J is not monotonic, but where the optimal menu is still a solution to the problem

described in Theorem 1.

26See Shaked and Shanthikumar, Section 8.C for a definition. Beyond the stochastic monotonicity
in θ already assumed above, this means that, for each loss l, 1−Hθ(l) is concave in θ.
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Example 1 (Asymmetric Information about Loss Probabilities) Consider an

environment with asymmetric information about loss probabilities as defined in (1), i.e.

Hθ(l) = θ(Q(l)− 1) + 1 .

In this case, the derivative ∂J(l, θ)/∂θ equals

−(Q(l)− 1)g′(Hθ(l))

[
θ − 1− F (θ)

f(θ)

]′
+ (Q(l)− 1) +

1− F (θ)

f(θ)
(Q(l)− 1)2g′′(Hθ(l)).

For J to be non-decreasing in θ we need

g′(Hθ(l))

[
θ − 1− F (θ)

f(θ)

]′
− 1 +

1− F (θ)

f(θ)
(1−Q(l))g′′(Hθ(l)) ≥ 0.

Assuming that the hazard rate is increasing, the above inequality holds if g′(Hθ(0)) =

g′(1− θ) > 1. Intuitively, if the maximal possible probability of a loss θ is sufficiently

small, then the inequality will hold for all relevant types θ. For instance, if g(p) =

(1− r)p+ rp2, then g′(p) > 1 ⇔ p > 1/2, so that g′(Hθ(l)) > 1 holds for any l as long

as θ < 1/2. Of course, real-life insurance data presents accident probabilities that are

much lower than 1/2.

We conclude the current Section with the following comparative statics result show-

ing that the insurance provider benefits from a higher risk aversion of the agent.

Proposition 2 Assume that g2(p) < g1(p) for any p ∈ (0, 1), i.e. g2 represents an

agent with a higher risk aversion. Assume also that the optimal retention function is

submodular when the agent’s preference is represented by g1. Then, the insurer’s profit

in the case where the agent’s preference is represented by g2 is higher than the profit

in the case where the preference is represented by g1.

4.1 Optimality of Deductibles or Coverage Limits

We now display conditions under which it is optimal to restrict attention to two special

classes of mechanisms, most often used in practice: the first class consists of menus of

contracts of the form (D, t) = (D(θ), t(θ))θ, one for each type θ, where each contract

specifies a deductible D(θ) ∈ [0, L] and a premium t(θ) ∈ R. For a fixed risk type θ,

the associated retention function is:

RD(l, θ) =

{
D(θ) l ≥ D(θ)

l l < D(θ)
.
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The second class consists of menus of coverage limits (C, t) = (C(θ), t(θ))θ where all

losses up to C(θ) ∈ [0, L] are covered for type θ, and where t(θ) is the corresponding

premium. For a fixed risk type θ, the associated retention is:

RC(l, θ) =

{
0 l ≤ C(θ)

l − C(θ) l > C(θ)
.

For convenience, we sometimes refer to the first class as deductible contracts and the

second class as cap contracts. Both contracts respect the ex-post moral hazard condi-

tions.

To see what is special about these two types of contracts, consider a setting with-

out adverse selection, i.e., where there is a single publicly known risk type θ with

corresponding loss distribution Hθ. Then, any strong risk averse agent (in the sense

of aversion to mean preserving spreads) prefers the deductible contract to any other

contract with the same expected cost to the insurer, and prefers any contract to the

cap contract with the same expected cost. The first argument is well-known (see for

example Van Heerwaarden et al. [1989]).27 We reproduce its short proof for complete-

ness, and also because we use it for proving the second, apparently new part about

the contract with a coverage limit.28

Denote by E[I] the expected cost of providing the insurance contract I to a type θ

agent.29

Theorem 2 For a given contract 0 ≤ I ≤ L satisfying Assumption 1, let D ≥ 0 be a

solution to E[(L−D)+] = E[I], and let C be a solution to E[min{L,C}] = E[I]. Then

RC(·, θ) ≤SOSD RI(·, θ) ≤SOSD RD(·, θ),

where SOSD denotes second order stochastic dominance.

The above result implies that, if types are observable and fixing the insurance pro-

vision cost, any strong risk-averse agent is willing to pay most (least) for a deductible

(coverage limit) contract. It follows that any deviation from deductible policies must

be driven by the incentive constraints coming from types being unobservable. We show

below that, with Yaari utility, these constraints induce the seller to offer a coverage

limit in some cases. This is the worst contract - with a given cost - for the agent!

27It generalizes famous results by Arrow [1963] and by Borch [1960] who showed that deductibles
lead to the lowest variance among all contracts with the same cost.

28We recall here that the ”live-or-die” contract studied by Innes [1990] is not doubly monotonic,
and is thus different from a contract with a cap.

29The classical literature following Arrow assumes that the premium is given by P (I) = (1+ δ)E[I]
where δ ≥ 0 is the load factor (or mark-up): thus, in that literature the premium is proportional to
the expected cost of providing insurance.
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We now present sufficient conditions under which the two simple forms of insurance

discussed above are optimal within the general class of mechanisms. We then provide

some examples to illustrate when the conditions hold.

Theorem 3 Assume that the virtual value J(l, θ) is non-decreasing in θ for all l.

(1) Suppose that, for each θ, there exists a unique l∗(θ) such that J(l, θ) ≤ 0 for

l ≤ l∗(θ) and J(l, θ) ≥ 0 for l ≥ l∗(θ). Then the profit maximizing mechanism

consists of a menu of deductible-premium pairs (D, t) = (D(θ), t(θ))θ.

(2) Suppose that, for each θ, there exists a unique l∗(θ) such that J(l, θ) ≥ 0 for

l ≤ l∗(θ) and J(l, θ) ≤ 0 for l ≥ l∗(θ) Then the profit maximizing mechanism

consists of a menu of cap-premium pairs (C, t) = (C(θ), t(θ))θ.

If the virtual value J(l, θ) is single crossing from above, then the designer finds it

profitable to cover small losses but not profitable to cover large ones. Therefore a

menu of coverage limits becomes optimal. If J(l, θ) is single crossing from below, then

the designer finds it profitable to cover large losses but not small ones. Therefore a

menu of deductibles becomes optimal. The formal proof (see Appendix) shows that

the extreme contracts that maximize profit for each type have the above structure,

and that submodularity - and hence incentive compatibility - is also satisfied.

Example 2 Consider the case where the probability of a loss is the agent’s private

information Hθ(l) = 1− θ + θQ(l). Let r ∈ [0, 1] and let 30

g(p) = rp2 + (1− r)p .

Suppose that θ̄ < 1
2
and that F has a monotonically increasing hazard rate. We obtain

that

J(l, θ) =Hθ(l)− g(Hθ(l)) +
1− F (θ)

f(θ)
g′(Hθ(l))

∂Hθ(l)

∂θ

=r [1−Q(l)]

[(
θ − 1 + r

r

1− F (θ)

f(θ)

)
− θ (1−Q(l)))

(
θ − 2

1− F (θ)

f(θ)

)]
is non-decreasing in θ. Moreover, for any fixed θ, J(·, θ) crosses 0 at most once from

below. Let θ∗ denote the solution to

θ − 1 + r

r

1− F (θ)

f(θ)
= 0

30This specification of g corresponds to Köszegi and Rabin’s [2006] loss-averse preferences with
linear utility over outcomes (see Section 2.1 above) where we set r = λ − 1. A higher level of r
indicates that the agent is more risk-averse.
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and let θ∗∗ denote the solution to

θ − 1 + r

r

1− F (θ)

f(θ)
= θ

(
θ − 2

1− F (θ)

f(θ)

)
.

Then the profit maximizing mechanism consists of a menu of deductible-premium pairs

with a single deductible per risk type, denoted by (D∗(θ), t∗(θ)). This mechanism offers

no-insurance to agents with accident probabilities θ < θ∗, full-insurance to agents with

accident probabilities θ > θ∗∗, and a deductible

D∗(θ) = Q−1

1−
θ − 1+r

r
1−F (θ)
f(θ)

θ
(
θ − 21−F (θ)

f(θ)

)


for θ ∈ [θ∗, θ∗∗]. Note that, for all θ, D∗(θ) is non-increasing in r, the agent’s degree

of loss aversion.

In the above example, both cutoff points θ∗ and θ∗∗are independent of the loss

distribution Q, and are thus solely determined by the agent’s distribution of loss-

probabilities. In contrast, the optimal deductibles for types between the cutoff points

are jointly determined by the loss distribution and by the type distribution.

For the special case r = 1, i.e. for g(p) = p2, we obtain that θ∗ = θ∗∗ and the

optimal menu offers either full or no insurance. For all other cases, θ∗ < θ∗∗. This

suggests that, with a random loss, the full-or-no insurance policy can be optimal if

the agents are sufficiently risk averse. This contrasts the finding of Chade and Schlee

[2012] in a framework with expected utility: they show that full insurance is never

optimal even if the loss is deterministic.

Example 3 Assume that g(p) = p2 and that

Hθ(l) = 1− e−
l
θ

Here the agent’s private information θ is the mean of the exponential distribution of

losses. We obtain that

J(l, θ) =Hθ(l)− g(Hθ(l)) +
1− F (θ)

f(θ)
g′(Hθ(l))

∂Hθ(l)

∂θ

=Hθ(l)

[
1−Hθ(l) +

2(1− F (θ))

f(θ)
× ∂Hθ(l)

∂θ

]
=Hθ(l)e

− l
θ

[
1− 2(1− F (θ))

f(θ)
× l

θ2

]
.
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As the function

1− 2(1− F (θ))

f(θ)
× l

θ2

is decreasing in l, we obtain that J(l, θ) always crosses 0 from above. Moreover, for

each θ, the solution to J(l, θ) = 0 is given by

C∗(θ) =
θ2f(θ)

2(1− F (θ))
.

that is increasing in θ. Thus, a contract with coverage limits (C∗(θ))θ is optimal.31

Remark: If
∫
ldQ(l) = 1 and if F is supported on [0, θ̄] with θ̄ < 0.5 then E[L(θ)] = θ

both in Example 2, where the agent’s private information is about the probability of

an accident, and in Example 3 where the private information is about the mean size of

a loss. Despite the fact that, for any θ, the cost of providing full insurance to an agent

with type θ is exactly the same in both examples, the respective optimal incentive

compatible contracts look fundamentally different. In the former case (private infor-

mation on accident probability), the profit-maximizing contract provides insurance

in an optimal way for the agent: as we showed in Theorem 2 a deductible contract

minimizes the expected cost to the principal of providing a given utility level to the

agent. In contrast, in the case where the agent’s private information is about loss size,

the realized loss is informative about the agent’s risk type: a higher loss is indicative

of a higher risk type. By introducing a coverage limit - recall that, keeping the cost

fixed, this is the worst insurance contract for the agent - the insurer most effectively

discourages high risk types from claiming to be low risk-types (as they would then

suffer from the reduction in coverage limit). The revenue gain from this reduction in

information rents dominates the efficiency loss due to the very inefficient provision of

insurance.

Finally, we note that, in reality, the set of different risk types that can be plausibly

discerned/screened without paying exorbitant costs is probably discrete. If the set

of types is small (say low, middle and high probability of accident), there will be an

optimal menu of contracts that also consists of a small number of different contracts.

Together with regulatory constraints on consumer obfuscation, this explains the preva-

lence of menus with a small finite number of options. In the next Section we illustrate

a related setting where there is finite number of discernible losses - this also leads to

an optimal menu that is finite.

31In this example J(l, θ) is not necessarily non-increasing in θ for all l. But, the ensuing solution
is nevertheless incentive compatible.
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4.2 An Illustration: A Finite Number of Possible Losses

In this section we specialize our model to the case where the type θ represents the

probability of an accident, and where the distribution of losses can only take a finite

number of values, independently of type.32 Thus,

Hθ(l) = 1− θ + θQ(l),

where Q is a given distribution with discrete support. This finite-loss case is relevant

in practice since the definition/verification of a loss cannot be too refined without

incurring extra costs. We restrict attention here to contracts with deductibles. In

Theorem 3 and in Example 2 we illustrated when this restriction is without loss of

generality.

The optimal mechanism in the class of contracts with deductibles takes a commonly

seen form: a basic deductible/premium contract, supplemented by a finite ladder of

additional fees that, if added to the basic premium, gradually reduce the deductible

until possibly reaching full insurance.33

Proposition 3 Assume that the probability of an accident is θ and that, conditional

on an accident, there are n different levels of loss l1 < l2 < ... < ln with probabilities

p1, ..., pn , respectively, where pi ≥ 0, ∀i, and
∑

pi = 1. Then, there exists an optimal

contract in the class of contracts with deductibles that offers at most n+1 of deductibles.

For each offered deductible D, it holds either that D = 0 (full insurance) or there exists

1 ≤ i ≤ n such that Di = li.

A simple corollary can be now obtained for the focal case studied in almost the entire

theoretical literature where the loss is deterministic, i.e., there is only one possible

loss equal to l. By the above result, we obtain that there exists an optimal insurance

contract that offers either no insurance or full insurance (zero deductible).34 This has

been previously shown by DeFeo and Hindriks [2014].

Corollary 1 (Single Loss Case) Consider the case of a single loss level Hθ(z) =

1− θ + θ1z≥l. Assume that the virtual value

J(θ) = (1− θ)− g(1− θ)− 1− F (θ)

f(θ)
g′(1− θ)

32The proofs for all result in this section can be found in online Appendix B.
33See Hoppe et al. [2011] for an alternative explanation of coarse menus.
34In particular, offering full insurance for all insured types is optimal independently of the degree

of risk aversion, and independently of the distribution of accident probabilities. These last two model
primitives only determine the set of insured types.
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crosses zero once from negative to positive at θ = θ∗.35 Then the optimal contract offers

no insurance (i.e., D(θ) = l) to types θ ≤ θ∗ and full insurance (i.e., D(θ) = 0) to

types θ ≥ θ∗. Moreover, the expected profit is given by

l

(∫ 1

θ∗
(1− θ) f (θ) dθ − g(1− θ∗) (1− F (θ∗))

)
.

The insurer makes higher profits from lower types that are buying this contract,

while she makes lower profits (or even losses) from higher types. Yet, the only possi-

bility to attract lower types to acquire such a contract is to reduce its price.

Example 4 Consider loss levels l1 = 1 and l2 = 2 with probabilities p1 = p2 = 1/2,

respectively. Assume that g(p) = p3/2 and that types θ distribute uniformly on [0, 1].

The best full insurance contract sells to all types above 0.803. Let now:

θ∗ =
1

25p2

(
15p2 − 2

√
−15p2 + 16 + 8

)
= 0.774

θ∗∗ = 0.84.

The insurer can obtain a higher profit than that obtained by offering full insurance only:

she can offer a basic insurance contract with deductible l1 and premium (l2 − l1)
(
1− g

(
1− 1

2
θ∗
))
,

combined with an option to reduce the deductible to zero at the extra price of l1 (1− g (1− θ∗∗)).

Then types below θ∗ obtain no insurance and pay zero, types in the interval [θ∗, θ∗∗)

obtain partial insurance (D = l1) and pay (l2 − l1)
(
1− g

(
1− 1

2
θ∗
))

, while types above

θ∗∗ are fully insured (D = 0) and pay (l2 − l1)
(
1− g

(
1− 1

2
θ∗
))

+ l1 (1− g (1− θ∗∗)).

Remark: Whenever there is a unique loss level, our agent faces a binary lottery.

Then, the above analysis holds for a wider class of utility functions that coincide

with a Yaari utility for the class of binary lotteries, e.g., well-known (non-expected)

utilities displaying constant risk aversion (see Safra and Segal [1998]). Some of these

preferences are described in online Appendix C.

5 Conclusion

We have analyzed an insurance model with adverse selection where the loss distribution

depends on the risk type (that is private information) in a very general form. The

insured agents have a dual utility function. In a reinsurance context this means that

the primary insurer uses a coherent risk measure in order to assess its risk, while the

reinsurer is risk neutral.

35The result is correct even if the virtual value crosses zero from negative to positive several times.
Then θ∗ must be one of the crossing values.
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A main difference between our model and most of the literature without adverse

selection is the pricing formula: instead of assuming formulas such cost plus a mark-up,

premia are here endogenously derived from the incentive compatibility and individual

rationality constraints .

We have shown that layer contracts are optimal under some regularity conditions.

We also focused on menus consisting of very simply contracts involving either de-

ductibles or coverage limits, and we exhibited conditions under which such menus are

optimal in the general class of insurance contracts where, for each risk type, higher

losses lead both to a higher coverage and to a higher retention.
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6 Appendix

Proof for Proposition 1. (1) We note that U(θ, θ′) is absolutely continuous in θ,

with derivative
∂U(θ, θ′)

∂θ
=

∫ L

0

∂R(l, θ′)

∂l
g′(Hθ(l))

∂Hθ(l)

∂θ
dl .

The above equality follows since∣∣∣∣∂R(l, θ′)

∂l
g′(Hθ(l))

∂Hθ(l)

∂θ

∣∣∣∣ ≤ cg′(Hθ(l)).

The bound holds because |∂R/∂l| ≤ 1 and because |∂Hθ

∂θ
| ≤ c < ∞.by assumption.

Note also that
∫ L

0
g′(Hθ(l))dl is finite by assumption. By the Envelope Theorem (see

e.g. Theorem 2 in Milgrom and Segal [2002]), in any incentive compatible mechanism,

the agent’s certainty equivalent is absolutely continuous, and is given by:

U(θ) = U(θ) +

∫ θ

θ

[∫ L

0

∂R(l, s)

∂l
g′(Hs(l))

∂Hs(l)

∂s
dl

]
ds.

It follows that

−t(θ)−
∫ L

0

[1− g(Hθ(l))]
∂R(l, θ)

∂l
dl =U(θ) +

∫ θ

θ

[∫ L

0

∂R(l, s)

∂l
g′(Hs(l))

∂Hs(l)

∂s
dl

]
ds

⇔ t(θ) =− U(θ)−
∫ θ

θ

[∫ L

0

∂R(l, s)

∂l
g′(Hs(l))

∂Hs(l)

∂s
dl

]
ds

−
∫ L

0

[1− g(Hθ(l))]
∂R(l, θ)

∂l
dl.

The designer’s expected revenue equals

∫ θ

θ

t(θ)f(θ)dθ = −
∫ θ

θ

∫ L

0

∂R(l, θ)

∂l

[
1− g(Hθ(l)) +

1− F (θ)

f(θ)
g′(Hθ(l))

∂Hθ(l)

∂θ

]
f(θ)dldθ−U(θ),

where we used integration by parts to obtain the equality. Her profit equals

π(R) =

∫ θ

θ

[
t(θ)− E[L(θ)] +

∫ L

0

[1−Hθ(l)]
∂R(l, θ)

∂l
dl

]
f(θ)dθ

=

∫ θ

θ

[
−E[L(θ)]−

∫ L

0

∂R(l, θ)

∂l
J(l, θ)dl

]
f(θ)dθ − U(θ),

where

J(l, θ) = Hθ(l)− g(Hθ(l)) +
1− F (θ)

f(θ)
g′(Hθ(l))

∂Hθ(l)

∂θ
.
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(2) Suppose that R(l, θ) is submodular. Taking any θ < θ′, we obtain

U(θ, θ′) =− t(θ′)−
∫ L

0

[1− g(Hθ(l))]
∂R(l, θ′)

∂l
dl

=U(θ′)−
∫ L

0

[∫ θ′

θ

g′(Hs(l))
∂Hs(l)

∂s
ds

]
∂R(l, θ′)

∂l
dl

=U(θ) +

∫ θ′

θ

[∫ L

0

∂R(l, s)

∂l
g′(Hs(l))

∂Hs(l)

∂s
dl

]
ds

−
∫ θ′

θ

[∫ L

0

g′(Hs(l))
∂Hs(l)

∂s
ds

]
∂R(l, θ′)

∂l
dl,

where the last equality follows from part (1) of this Proposition. As R(l, θ) is

submodular, we obtain that ∂R(l,θ′)
∂l

< ∂R(l,s)
∂l

for any s ∈ (θ, θ′). Also, g′(Hs(l))
∂Hs(l)

∂s
<

0 becuase ∂Hs(l)
∂s

< 0. It follows that

∫ θ′

θ

[∫ L

0

∂R(l, s)

∂l
g′(Hs(l))

∂Hs(l)

∂s
dl

]
ds ≤

∫ θ′

θ

[∫ L

0

g′(Hs(l))
∂Hs(l)

∂s
ds

]
∂R(l, θ′)

∂l
dl

which implies that U(θ, θ′) ≤ U(θ). Similarly, we can show that U(θ′, θ) ≤ U(θ′)

also holds, and conclude that the mechanism (R(·, θ), t(θ))θ is incentive compatible,

as desired.

Proof of Lemma 1. The condition is clearly necessary. For sufficiently, observe

that both UNP (θ) and U(θ) are decreasing in θ. Moreover, for all θ it holds that

U ′
NP (θ) =

∫ L

0

g′(Hθ(z))
∂Hθ(z)

∂θ
dz ≤

∫ L

0

∂R(z, θ)

∂z
g′(Hθ(z))

∂Hθ(z)

∂θ
dz = U ′(θ)

because 0 ≤ ∂R(z,θ)
∂z

≤ 1 and because g′(Hθ(z))
∂Hθ(z)

∂θ
≤ 0 for all θ. Hence, we obtain

that

UNP (θ) = UNP (θ) +

∫ θ

θ

U ′
NP (z)dz ≤ U(θ) +

∫ θ

θ

U ′(z)dz = U(θ)

as desired.

Proof of Lemma 2. Consider the following simple mechanism: there exists a type

θ∗ such that

R(θ, l) =

{
0 θ ≥ θ∗

l θ < θ∗
.

Thus, all types θ ≥ θ∗ are being offered full insurance (i.e., a zero deductible), while

types θ < θ∗ are being offered no insurance at all (i.e., a deductible L). The expected
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profit from this mechanism is given by

π(R) =−
∫ θ

θ

E[L(θ)]f(θ)dθ −
∫ θ∗

θ

∫ L̄

0

J(θ, z)dzf(θ)dθ − U(θ)

=

∫ θ∗

θ

∫ L̄

0

[
g(Hθ(z))−Hθ(z)−

1− F (θ)

f(θ)
g′(Hθ(z))

∂Hθ(z)

∂θ

]
dzf(θ)dθ

−
∫ θ

θ

E[L(θ)]f(θ)dθ − U(θ).

Since E[L(θ)] =
∫ L̄

0
(1−Hθ (z)) dz we can rewrite

π(R) = −L̄+

∫ θ

θ∗

∫ L̄

0

Hθ(z)dzf(θ)dθ − U(θ)−
∫ L̄

0

[(1− F (θ)) g(Hθ(z))]
θ∗

θ dz

=− L̄− U(θ) +

∫ θ

θ∗

∫ L̄

0

Hθ(z)dzf(θ)dθ +

∫ L̄

0

g(Hθ(z))dz −
∫ L̄

0

(1− F (θ∗)) g(Hθ∗(z))dz.

At θ∗ = θ,

π(R) = −L̄−U(θ)+

∫ L̄

0

g(Hθ(z))dz = −L̄+

∫ L

0

[1− g(Hθ(z))] dz+

∫ L̄

0

g(Hθ(z))dz = 0.

Moreover, we have that

∂π

∂θ∗
=−

∫ L̄

0

f(θ∗)Hθ∗(z)dz +

∫ L̄

0

f(θ∗)g (Hθ∗(z))dz −
∫ L̄

0

(1− F (θ∗)) g′(Hθ∗(z))
∂Hθ∗(z)

∂θ
dz

=−
∫ L̄

0

f(θ∗) [Hθ∗(z)− g (Hθ∗(z))] dz −
∫ L̄

0

(1− F (θ∗)) g′(Hθ∗(z))
∂Hθ∗(z)

∂θ
dz.

At θ∗ = θ,
∂π

∂θ∗
< 0

whenever Hθ is not degenerate. Continuity guarantees that the derivative remains

negative in some interval to the left of θ∗ = θ. Hence, this simple mechanism where

sufficiently high types are fully insured while all other types remain uninsured generates

a strictly positive expected profit for the insurer. The optimal contract generates

expected profits not lower than this simple contract.

Proof of Theorem 1. A retention function R : [0, L̄) × Θ → [0, L̄) is feasible

and satisfies Assumption 1 if and only if R(0, θ) = 0 and ∂R(l, θ)/∂l ∈ [0, 1] almost

surely. Fixing θ, any subsequence of functions R(·, θ) with these properties is uniformly

bounded, Lipschitz-continuous and hence uniformly continuous. The Arzela-Ascoli

Theorem yields that, for every θ, any such sequence has a uniformly convergent sub-
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sequence.36 Thus, absent incentive constraints, a collection (R(·, θ))θ that maximizes

profit must exist by the continuity of the profit functional, by the compactness of the

set of retention functions that satisfy Assumption 1 for each θ, and by Tychonoff’s

Product Theorem. Fixing again θ, note that the set of feasible policies is convex and

that the objective is linear in R(·, θ). Bauer’s maximum principle yields that, for each θ,

a maximum is attained at an extreme point. The extreme points of the set of feasible

retention functions R(·, θ) that satisfy Assumption 1 are continuous in l and are such

that ∂R(l, θ)/∂l ∈ {0, 1} almost everywhere.37 Thus, at the maximum, an increase in

the loss l is either completely passed on to the agent with type θ (i.e., ∂R(l, θ)/∂l = 1)

or not at all (i.e., ∂R(l, θ)/∂l = 0). In order to show that the obtained pointwise

solution to

maxπ(R) =

∫ θ

θ

[
−E[L(θ)]−

∫ L

0

∂R(l, θ)

∂l
J(l, θ)dl

]
f(θ)dθ

subject to

0 ≤ ∂R(l, θ)

∂l
≤ 1, for all θ ∈ Θ

is indeed optimal, we need to show that the resulting retention R : [0, L̄)×Θ → [0, L̄)

is incentive compatible. To establish this property, it is enough to show that R is

submodular. Take any θ < θ′. The assumption that J(l, θ) is non-decreasing in θ for

all l ensures that the pointwise maximization solution to the above problem satisfies

∂R(l, θ′)

∂l
≤ ∂R(l, θ)

∂l

for all l. That is, R is submodular, as desired.

Proof of Proposition 2. Let Rg1 be the optimal retention function if preferences

are represented by g1. Since Rg1(l, θ) is submodular, it is also implementable if the

preferences are represented by g2. For every θ we show that if we use the retention

function Rg1(l, θ) also for the agent with preferences represented by g2 then

tg2(θ) > tg1(θ)

where tgi is the premium in case the preferences are represented by gi and the retention

36The classical Arzela-Ascoli Theorem assumes a compact support. In order to obtain compactness
and the existence of extreme points for the case where the support of losses is unbounded, we use
instead the extension to a σ− compact and locally compact Hausdorff space (see for example Theorem
4.44, page 137 in Folland [1999]).

37We wish to thank Martin Pollrich and Andreas Kleiner for insightful discussions about this
set of functions. See also the related characterizations of extreme points of the unit ball of Lipschitz
functions (without any monotonicity assumptions) e.g. Smarzewski [1997] and the papers cited there.
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function is Rg1(l, θ). Recall that the premium is given by

t(θ) = −U(θ)−
∫ θ

θ

[∫ L

0

∂R(l, s)

∂l
g′(Hs(l))

∂Hs(l)

∂s
dl

]
ds−

∫ L

0

[1− g(Hθ(l))]
∂R(l, θ)

∂l
dl .

As R(l, s) is submodular it follows that ∂R(l, θ)/∂l is decreasing in θ. Furthermore,

as ∂R(l, θ)/∂l ∈ [0, 1] for every fixed value of l, the function ϕl(θ) = −∂R(l, θ)/∂l

defines a measure over Θ. We can rewrite the transfer of type θ as follows

t(θ) = −U(θ)−
∫ θ

θ

[∫ L

0

∂R(l, s)

∂l
g′(Hs(l))

∂Hs(l)

∂s
dl

]
ds−

∫ L

0

[1− g(Hθ(l))]
∂R(l, θ)

∂l
dl

= −U(θ) +

∫ L

0

∫ θ

θ

ϕl(s)g
′(Hs(l))

∂Hs(l)

∂s
dsdl −

∫ L

0

[1− g(Hθ(l))]
∂R(l, θ)

∂l
dl

=

∫ L

0

[1− g(Hθ(l))] dl −
∫ L

0

[ϕl(s) (1− g(Hs(l)))]
θ
s=θ dl

+

∫ L

0

∫ θ

θ

(1− g(Hs(l))) dϕl(s)dl −
∫ L

0

[1− g(Hθ(l))]
∂R(l, θ)

∂l
dl

=

∫ L

0

(
1− ∂R(l, θ)

∂l

)
[1− g(Hθ(l))] dl +

∫ L

0

∫ θ

θ

(1− g(Hs(l))) dϕl(s)dl

where the third line follows from integration by parts and from the property that in the

optimal mechanism type θ is indifferent whether to participate or not. As ∂R(l, θ)/∂l ∈
[0, 1] and as ϕ is a measure, submodularity of R(l, s) implies that dϕl(s) ≥ 0. Hence,

the above term is decreasing in g. Therefore, for every fixed retention function, the

premium is higher if the agent becomes more risk-averse, while the expected cost (given

the same retention function) is the same. Adjusting further to the optimal retention

for g2 yields the desired result.

Proof for Theorem 2.

1. Since 0 ≤ I ≤ X, it follows that RI ≤ X and hence that FRI
(l) ≥ FL(l) for all

l ≥ 0 where F denotes here the distribution of the respective random variable.

Moreover, FRd
(l) = FL(l) for l < D and FRD

(l) = 1 for l ≥ D. Therefore FRI

and FRD
cross exactly once, and hence the result follows by Theorem 3.A.44 in

Shaked and Shanthikumar (point 3.A.59)

2. Note that IC has exactly the same structure as RD. Hence, the argument above

yields I ≤SOSD IC . By assumption, I and RI are comonotonic random variables.

Let V (I) denote the agent’s dual utility when he faces lottery given by I, where

the dual utility function is arbitrary. By the comonotonic additivity of the dual
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utility (see Yaari [1987]), we have

V (L) = V (I) + V (RI) = V (IC) + V (RIC )

If V represents a risk-averse agent, we obtain that that V (IC) ≥ V (I) and

hence that V (RIC ) ≤ V (RI). Since, by assumption, EI = EIC , we obtain that

ERI = ERIC . Since the risk-averse Yaari utility V was arbitrary, Theorem

3.A.7 in Shaked and Shanthikumar (due to Chateauneuf et al. [2004]) yields

that RIC ≤SOSD RI .

Proof of Theorem 3.

1. Fix a type θ and consider the term∫ L

0

J(θ, l)
∂R(l, θ)

∂l
dl = −

∫ L

0

∂J(θ, l)

∂l
R(l, θ)dl

that is linear in R. The optimal R∗(·, θ) must be an extreme point of the feasible

set. In particular ∂R∗(l,θ)
∂l

exists almost everywhere and equals either 0 or 1. By

the single-crossing assumption, we obtain that a maximum is obtained by setting
∂R∗(l,θ)

∂l
= 1 for l ≤ l∗(θ) and ∂R∗(l,θ)

∂l
= 0 for l ≥ l∗(θ). This yields the extreme

point

R(l, θ) =

{
l if l < l∗ (θ)

l∗ (θ) otherwise
.

This is equivalent to setting a deductible D∗(θ) = l∗(θ). If the virtual value

satisfies the monotonicity condition in the Theorem, then the overall obtained

menu {D∗(θ)}θ is decreasing in θ. In particular, R is submodular and hence

incentive compatible.

2. The proof follows as above by first observing that the relevant extreme point

satisfies

R(l, θ) =

{
0 if l < l∗ (θ)

l − l∗ (θ) otherwise

and hence that
∂

∂l
R(l, θ) =

{
0 if l < l∗ (θ)

1 if l > l∗ (θ)
.

By the monotonicity assumption, we obtain that l∗(θ′) ≤ l∗(θ) if θ′ ≤ θ. In

particular, R is submodular, and hence incentive compatible.
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