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Abstract

We generalize the standard, private values voting model with single-peaked preferences

and incomplete information by introducing interdependent preferences. Our main results

show how standard mechanisms that are outcome-equivalent and implement the Con-

dorcet winner under complete information or under private values yield starkly different

outcomes if values are interdependent. We also propose a new notion of Condorcet winner

under incomplete information and interdependent preferences, and discuss its implemen-

tation. The new phenomena in this paper arise because different voting rules (including

dynamic ones) induce different processes of information aggregation and learning.

1 Introduction

In this paper we generalize the standard, private values voting model with single-peaked

preferences and several alternatives by introducing interdependent preferences: the peak of

each agent is determined both by the agent’s private information and by the information

available to the other voters. Since others’ signals are their own private information, each

voter is here ex ante uncertain about her own preferred alternative. In particular, dynamic

voting processes can reveal and aggregate information along the way since agents respond to

new information about other voters by adjusting their voting strategy.
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It is well known that, on the domain of single-peaked preferences, the binary simple

majority relation is transitive and its maximal element is the Condorcet winner (see Black

[1948]): this is the preferred alternative of the median voter. On this domain, one can

thus escape Arrow’s aggregation impossibility result (Arrow, [1951]). Moreover, under a

private values assumption, the direct mechanism that chooses the median peak is dominant-

strategy incentive compatible (or strategy proof) and thus one escapes also Gibbard and

Satterthwaite’s implementation impossibility result (see Gibbard [1973] and Sattherthwaite

[1975]). Dasgupta and Maskin [2020] offer a recent, powerful axiomatic justification of the

Condorcet rule on any domain where it is applicable. Accordingly, we focus here on the

Condorcet winner under interdependent preferences and its potential implementation via

static and dynamic voting procedures.

Our main results show how standard mechanisms that are outcome-equivalent and imple-

ment the Condorcet winner under complete information or under private values yield starkly

different outcomes if values are interdependent. We also propose a novel notion of Condorcet

winner under incomplete information and interdependent preferences and show how it can be

implemented. The new phenomena in this paper arise because different voting rules induce

different processes of information aggregation and learning.

In our model, several privately informed agents have single-peaked preferences over several

alternatives, and each agent’s peak is determined by his/her own private signal and by the

mean signal of the other voters. The weighted average formula for interdependent preferences

is the simplest and most often assumed one, both in the behavioral literature (see for example

DeGroot [1974] and Charness and Rabin [2001]) and in the theoretical one (e.g. Jehiel and

Moldovanu [2001]).

We start with a basic model where signals are binary. In addition to two “extreme”

positions on the “left” and on the “right” that correspond to the binary signals, we also

consider compromise alternatives that lie in between.1 The interdependence of preferences is

what makes possible compromises salient in this model with binary signals.

With two private signals corresponding to the two extreme positions, agents cannot ma-

nipulate the intensity of their private information. We show that, in such a framework,

the complete-information Condorcet winner can be robustly implemented (e.g., in ex-post

Nash equilibrium) via a direct mechanism and also, more relevant for practical applications,

1These compromise alternatives’ locations may be endogenous. For example, during March 2019 the UK

parliament struggled to identify and elect a compromise deal between the “hard” Brexit demanded by a large

faction of the Tories, and the “soft” version, closer in spirit to economically remaining in the EU, supported

by Labour and other smaller parties.
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via a procedure that resembles the amendment voting procedure used by English-speaking

democracies, several Scandinavian countries and Switzerland. In the amendment procedure

alternatives are considered two-by-two, and the majority winner advances to the next stage,

as in an elimination tournament. While traditionally the order in which alternatives are put

to vote in the amendment procedure is fixed in advance (and hence it is independent of the

voting outcomes along the way), our mechanism requires that the two alternatives that are

put to vote at each stage are the two most extreme ones according to the order of single-

peakedness.2 Moreover, the Yes-No tallies in each binary vote must be announced before

the next-stage voting. The reason for the positive result is that the considered sequential

procedure –that considers two alternatives at a time–allows bidirectional learning about

the preferences of both “leftists” and “rightists”.

We next show how alternative procedures that modify either the order in which alter-

natives are put to vote, or the information revealed along the way, may fail to robustly

implement the complete-information Condorcet winner because the learning cannot be sat-

isfactorily performed.

Another prominent scheme that fails to always implement here the Condorcet winner is

the successive procedure used in most continental European parliaments (including the EU

parliament). In this voting mechanism, alternatives are put to vote, one after another, until

one of them gets a majority. The failure - due to the fact that learning about the preferences

of others only proceeds in one direction - occurs even under the agenda where, at each stage,

the considered alternative that is put to vote is one of the two most extreme ones.3 Recall

that, under incomplete information of the private values types, the successive procedure with

such an agenda implements the Condorcet winner.

We next show that the complete-information Condorcet winner cannot be robustly im-

plemented if agents obtain several signals, and thus can manipulate the magnitude of these.

Moreover, we also show that the Condorcet winner cannot be implemented in such a model

even in the weaker sense of the Bayes-Nash equilibrium.

As suggested by the above negative results, we define a new notion of incomplete-

information Condorcet winner: this is the alternative that would win against any other

one a simple majority vote conducted among the incompletely informed agents equipped

2Note that our procedure is a valid, standard amendment procedure if there are only three alternatives,

e.g. the status quo, a proposed reform and an amendment to the reform.
3An example of such agenda formation is given by the long-standing practice of the German parliament

and its Weimar precursor: “if several proposals are made to the same subject, then the first vote shall be on

the farthest-reaching proposal. Decisive is the degree of deviation from status quo.”
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with interdependent preferences. Under single-peaked preferences of the private values type,

the new notion coincides with the standard complete information Condorcet winner, but this

is not necessarily the case in our model with interdependent preferences. We show that an

incomplete information Condorcet winner always exists in our model, and that it is Bayes-

Nash implemented via a direct median mechanism. While dynamic procedures generally fail

to implement the incomplete-information Condorcet winner, we finally show that the amend-

ment procedure (with any agenda!) implements it under the assumption that voters behave

myopically. Since Bayes-Nash implementation requires a cardinal notion of utility we adopt

in this last part a quadratic utility functional form, and we explain how the results can be

generalized to other utilities.

The rest of the paper is organized as follows: In the next Subsection we review the related

literature. In Section 2 we describe the basic social choice model with binary signals, the

calculation of the complete-information Condorcet winner with interdependent preferences

and its robust implementation via static and dynamic mechanisms. In Section 3 we enrich

the model by allowing voters to have more than two signals and we first show that complete-

information Condorcet winner cannot be implemented in Bayesian equilibrium. Next, we

propose a new notion of incomplete-information Condorcet winner, prove its existence, and

show how it can be implemented. Section 4 concludes.

1.1 Related Literature

A sizable literature on voting allows departures from the private values, incomplete informa-

tion paradigm, but restricts attention to only two alternatives - see for example the many

papers following the pioneering contribution of Feddersen and Pesendorfer [1997]. But, there

are only a few papers that study voting models with more than two alternatives and with in-

terdependent values (note that interdependence generalizes the more ubiquitous assumption

of common values).4

Implementation with interdependent valuations is analyzed by Jehiel and Moldovanu

[2001] and Jehiel et al. [2006] under the assumption that monetary transfers are feasible.

Feng et al. [2022] focus on robust implementation with one dimensional signals and without

4Dekel and Piccione [2000] analyzed sequential voting with interdependent values in a model with only

two alternatives: sequentiality is with respect to individual voting. They showed that, although the history of

the first votes should intuitively affect the behavior of the later voters, equilibrium conditioning on pivotality

leads voters to ignore the revealed history. Ali and Kartik [2012] displayed other equilibria where voters do

take into account the observed history.
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monetary transfers

Closest to our present paper, Gruener and Kiel [2004] and Rosar [2015] analyze static

voting mechanisms in a setting where agents have quadratic, interdependent preferences,

focusing on a comparison of the mean and the median mechanisms. Moldovanu and Shi [2013]

analyze voting in a dynamic setting where multi-dimensional alternatives appear over time

and where voters are only partially informed about some aspects of the alternative. Piketty

[2000] studies a two-period voting model where a large number of agents care about the

decisions taken at both stages. Voting at the first stage reveals information about preferences

that is relevant at the second stage. Piketty concludes that electoral systems should be

designed to facilitate efficient communication, e.g. by opting for two-round rather than

one-round systems–this is congruent with the kind of multi-stage procedures observed in

committees and legislatures and also discussed in this paper.

Following the pioneering work by Farquharson [1969], almost the entire literature on bi-

nary, sequential voting with several alternatives assumed that agents are completely informed

about the preferences of others (see Miller [1977], McKelvey and Niemi [1978] and Moulin

[1979], among others, for early important contributions). Under complete information, the

associated extensive form games are amenable to analysis by backward induction: voters

can, at each stage, foresee which alternative will be finally elected, essentially reducing each

decision to a vote among two alternatives. If a simple majority is used at each stage, then,

whenever it exists, a Condorcet winner is selected by sophisticated voters, independent of the

particular structure of the binary voting tree, and independent of its agenda.5

An early analysis of strategic, sequential voting under incomplete information with pri-

vate values is Ordeshook and Palfrey [1988]. They constructed Bayesian equilibria for an

amendment procedure with three alternatives and with preference profiles that potentially

lead to a Condorcet paradox. Gershkov, Moldovanu and Shi [2017] (GMS hereafter) analyzed

voting by qualified majority in the successive procedure via a model where agents’ prefer-

ences are single-peaked and follow the private values paradigm.6 In their study, the order in

which alternatives are put to vote follows the order defining single-peakedness (or its reverse).

Kleiner and Moldovanu [2017] generalized the GMS results to the class of all sequential, bi-

nary procedures with a convex agenda. Recall that in a binary, sequential procedure each

5 If a Condorcet winner does not exist, then a member of the Condorcet cycle is elected. The influence

of agenda manipulations has been emphasized by Austen-Smith [1987] and, more recently by Barbera and

Gerber [2017].
6Their focus was on finding the welfare maximizing procedure. This is achieved by varying the thresholds

needed for the adoption of each alternative.
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vote is taken by (possibly qualified) majority among two, not necessarily disjoint, subsets of

alternatives. Convexity says that if two alternatives a and c belong to the left (right) subset

at a given node, then any alternative b such that a < b < c (in the ideological order governing

single-peakedness) also belongs to the left (right) subset.

Under single-peaked, private values preferences, Kleiner and Moldovanu showed that sin-

cere voting constitutes an ex post perfect equilibrium in any voting game derived from a

sequential, binary voting tree with any convex agenda.7 An important corollary is that, if

simple majority is used at each stage of the voting tree, the associated equilibrium outcome is

always the complete information Condorcet winner. Thus, all sequential binary voting trees

with convex agendas and all information policies are equivalent under single-peaked, private

values preferences, and this theory cannot discriminate among them.

Posner and Vermeulen [2016] argue that a more or less evenly split decision by several

judges, or by a jury, may be logically incompatible with a conviction based on guilt “beyond

reasonable doubt”. They propose a dynamic voting procedure where members learn about

the positions of others and adjust their opinion, and also argue that a formal procedure where

the revealed numbers of supporters for each option speak for themselves is better than an

informal, hard to quantify deliberation. On the empirical side, Chappel et al. [2004] studied

the Federal Open Market Committee’s detailed voting patterns on monetary policy, and test

the hypothesis that the chairman’s preferred policy is a weighted average of her own and

the other members’ signals — the same functional form as the one adopted here.8 ,9 Martin

and Vanberg [2014] empirically test several models of legislative compromise in coalition

governments, and conclude that these tend to be positions that average opinions in coalitions

rather than representing, say, the view of the median coalition member. Ezrow et al. [2011]

conducted an analysis of political parties in 15 Western European democracies from 1973 to

2003 and showed that the larger, mainstream parties tend to adjust their positions on the

Left-Right spectrum in response to shifts in the position of the mean voter, while being less

sensitive to policy shifts of their own supporters. The opposite pattern holds for smaller,

niche parties.

7 In other words, voters cannot gain by manipulating their vote, regardless of their beliefs about others’

preferences, and regardless of the information disclosure policy along the voting sequence. Under a mild

refinement, this equilibrium is unique.
8There are twelve members, and the chairman’s weight on his own signal is estimated to be between 0.15

and 0.20. Chappel et al. take their cue from an earlier study by Yohe [1966] who writes “...there is also no

evidence to refute the view that the chairman adroitly detects the consensus of the committee, with which he

persistently, in the interests of Systems harmony, aligns himself.”
9They also estimate the opposite influence of the chairman on members.
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2 The Voting Model with Two Signals

There are 2n + 1 voters who collectively choose one of k available alternatives. The finite

number of alternatives is suitable for the discussion of sequential, binary voting procedures

as used in most parliaments and committees, e.g., the amendment procedure. For some

theoretical results about static mechanisms, we shall also consider the case of a continuum

of alternatives.

We identify alternatives with their locations on a left-right ideological spectrum, and the

set of locations is X = {x1, ..., xk}. The location of alternatives is ordered and normalized

so that −1 = x1 < x2 < ... < xk = 1. Before voting, each agent i, i = 1, ..., 2n + 1, obtains

a signal si ∈ {−1, 1}. We note here that the precise specification of probabilities and beliefs

does not play a role whenever we use robust implementation notions such as the ex-post Nash

equilibrium. Hence, we leave here the signal distribution unspecified.

Each voter, i = 1, ..., 2n+ 1, has an “ideal” location yi for the elected alternative. Voter

i’s ideal point depends both on her own private signal si and also on the mean of all other

voters’ private signals sj , j 6= i. Let γ ∈
[

1

2n+1
, 1
]
denote the weight that voters with signal

−1 and +1 assign to their own signal, respectively. The ideal location yi (si, s−i) ∈ [−1, 1]

for voter i is

yi (si, s−i) = γsi +
1− γ

2n

∑

j 6=i

sj . (1)

Thus, preferences are assumed here to be interdependent, and the weight γ on own signal

si, captures the level of interdependence. A special case is γ = 1, which yields the private

values case (no interdependence), while γ = 1

2n+1
yields the pure common values case where,

ex post, all voters share the same ideal point. Note that, in order to avoid a more complex,

asymmetric model where voters with the same private signal si may have different weight γi,

we assumed that the degree of interdependence is the same for all voters.

Interdependent preferences may arise due to different considerations. For example, voters

may have other-regarding preferences and the parameter γ is then a measure of the voters’

degree of altruism. In dynamic contexts (e.g., some political process), the interdependence

may represent in reduced form the effects of a future interaction among the agents. Alter-

natively, one can interpret the interdependent preference as a result of a biased information

aggregation. Voters try to learn some state but voter i puts more weight on their own signal

rather than on other voters’ signals.

The linear form of interdependent preferences is not critical for our analysis. What is

important is that, when all signals are public information, voters’ preferences are single-
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peaked. We thus assume that if alternative x ∈ X is elected, the utility of voter i with ideal

point yi is given by u (x, yi) where u(·, yi) is single-peaked at, and symmetric around yi. In

particular, any utility function u (x, yi) that is monotonically decreasing in the absolute value

of the difference between yi and x is feasible.

The linear form (1) and the symmetry assumption about u(·, yi) allow us to compare

voters’ preferences over alternatives away from their ideal location yi, without making ex-

plicit assumption on the functional form u(·, yi). For example, common specifications in the

Political Science literature are:

u(x, yi) = −(x− yi)
2,

u(x, yi) = − |x− yi| .

Remark 1 Given the linear structure (1) and the symmetry and single-peakedness of u(·, yi),

voter i’s ex post ranking between two alternatives (xi and xj) only depends on their distance

from voter i’s ideal point yi. Therefore, whenever we use robust implementation notions

such as the ex-post Nash equilibrium, neither the signal distribution nor the cardinality of the

utility function plays a role. In contrast, in our later extension with the weaker Bayesian

implementation notion, both the signal distribution and the functional form of the utility may

matter.

2.1 The Complete Information Condorcet Winner

An alternative is the complete information Condorcet winner (Condorcet winner for short) if

it wins in pair-wise simple-majority voting against any other alternative when all voters’ sig-

nals are public information. For any given realization of signals, the assumed preferences are

here single-peaked according to the left-right natural order x1, ..., xk (or xk, ..., x1). Therefore,

the complete information Condorcet winner always exists in our model.

An alternative xl is the Condorcet winner if it is the alternative that is closest to the

ideal point of voters whose signal is in the majority. Let n−1 denote the realized number

of voters with signal −1 and n+1 = 2n+ 1− n−1 denote the realized number of voters with

signal +1. Voters with signal +1 form a majority if n−1 ≤ n, and voters with signal −1 form

a majority if n−1 ≥ n+1. Let ym be the ideal point of voters in the majority. It follows from

(1) that

ym =





1− (1− γ)n−1

n
if n−1 ≤ n

−1 + (1− γ)n+1
n

if n−1 ≥ n+ 1
. (2)
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Therefore, alternative xl is the Condorcet winner if ym lies between the mid-point of xl−1

and xl and the mid-point of xl and xl+1:

−−|−
xl−1

−−− | − −−−|−
xl

−−−−− |

︸ ︷︷ ︸
CW=xl if ym lies in this interval

−−−−−−|−
xl+1

−

Formally, we define the Condorcet winner as10

CW = xl if and only if
1

2
(xl−1 + xl) < ym ≤

1

2
(xl + xl+1). (3)

2.2 Direct Implementation of the Condorcet Winner

We first show that the social choice function selecting he Condorcet winner for any realization

of signals is implementable in ex-post equilibrium. For the voting model with only two

signals, this is an extension of Black’s [1948] famous insights obtained for private values and

for dominant strategy implementation.

Proposition 1 Consider the direct mechanism ΓCW : {−1, 1}2n+1 → X that chooses the

Condorcet winner given by (3) for every profile of reports. Then, the strategy profile where

each agent truthfully reports her signal is an ex-post Nash equilibrium.

Proof. Consider the incentives of an arbitrary voter i with signal si, assuming that all the

other agents report their signals truthfully. First, suppose that, among voters other than i,

there are exactly n agents with signal +1 and n agents with signal −1. In this case, voter

i is in the majority, and by definition (3), the Condorcet winner is voter i’s most preferred

alternative. Therefore, it is optimal for voter i to report truthfully under ΓCW .

Next, suppose that, among voters other than i, the number of voters with signals +1 is

greater than the number of voters with signals −1. If si = +1, voter i is in the majority and

hence the Condorcet winner is again voter i’s most preferred alternative. Thus, voter i has

incentive to report his signal truthfully under mechanism ΓCW . If si = −1, the ideal point of

the majority when voter i reports ŝi = +1 is larger than the ideal point of the majority when

voter i reports truthfully (due to interdependent preferences). Hence, voter i’s misreporting,

relative to truthful reporting, can only push the chosen alternative further away from voter

i’s ideal location.

A similar argument applies to the remaining case where, among voters other than i, the

number of voters with +1 signals is smaller than the number of voters with −1 signals.

10The Condorcet winner is essentially unique. In the knife-edge case with ym = 1

2
(xl + xl+1), both xl and

xl+1 are Condorcet winners. In this case, we let CW = xl.
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The above Proposition requires symmetry between the agents. It does generalize to the

case where all agents who obtain signal −1 (+1) use weights γ−1 (γ+1), respectively. But,

the implementation result may fail with more heterogeneity in these weights.

For example, suppose that the degree of interdependence can take three values
{
γ−1, γ0, γ1

}

with γ0 < γ1 and that the set of alternatives is given by

X =

{
−1,−

k − 1

k
, ..., 0, ...,

k − 1

k
, 1

}

with sufficiently large k. Suppose that voters with signal −1 use weight γ−1, but voters with

signal +1 use the weights γ0 and γ1 with equal probability. Consider then voter i with signal

si = +1 and γi = γ0 under mechanism ΓCW . When γ0 is sufficiently close to 1/ (2n+ 1) and

voters with signal +1 have the majority, then voter i may have incentive to report ŝi = −1.

2.3 Indirect Implementation through Sequential, Binary Voting

The above direct mechanism requires the designer to know how voters’ ideal points depend on

the realization of signals. While it does implement the Condorcet winner, it is not a natural

mechanism and it is not used in practice. Hence, we describe a natural indirect mechanism

that always elects the Condorcet winner through binary, sequential voting. The proposed

multi-stage sequential voting procedure is similar to the amendment procedure commonly

used in Anglo-Saxon parliaments and many other committees, and will be called “iterated

elimination of extreme alternatives (IEEA).”

Under the IEEA procedure, at every voting stage two extreme alternatives in the set of

still available alternatives are put up for a vote by simple majority. The alternative that

gets less support is eliminated from the set of the available alternatives. At the last stage,

the last two remaining alternatives are paired up against each other and the alternative with

majority support is selected.11

Formally, at the first stage, the set of the available alternatives is X = {x1, ..., xk}, and

the two extreme alternatives, x1 and xk, are put up for vote. If alternative x1 (or xk) fails

to get the majority support, it is eliminated from the set of available alternatives which then

becomes {x2, ..., xk} (or {x1, ..., xk−1}). In the second stage, there is a vote between x2 and

xk (or between x1 and xk−1), as these are the extreme alternatives in the respective current

set of remaining available alternatives. The process continues until the majority winner is

chosen between the last two remaining alternatives. In each stage, the margin of the vote is

revealed (or similarly the number of votes for every alternative is revealed).

11This is an example of a binary agenda that is convex in the terminology of Kleiner and Moldovanu [2017].

They prove that, in the private value setting, sincere voting is an ex post equilibrium under such an agenda.
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Proposition 2 The IEEA voting procedure has an ex-post Nash equilibrium where the com-

plete information Condorcet winner is elected at each realization of signals.

Proof. Consider the following candidate equilibrium strategy. At the first stage where

alternatives x1 and xk are put up for vote, voters with signals −1 vote for x1 while voters

with signals +1 vote for xk. From the second stage on, every agent votes in favor of the

alternative that is closer to her ideal point (in case of a tie, voters are assumed without loss

of generality to vote for the alternative with the lower index). If all voters follow this strategy,

all information will be revealed after the first stage voting, and the continuation game from

the second stage on becomes a game of complete information. Because from the second stage

on every agent knows their own ideal point and ideal alternative, and because the IEEA

procedure only eliminates alternatives in the intermediate stages and elects the winner only

at the final stage, the Condorcet winner is always selected.

It remains to show that it is an ex post equilibrium for every voter to follow this strategy.

To this end, consider the incentives of voter i, assuming that all the other voters follow this

strategy. There are three cases to consider.

1. Among voters other than i, there are equal numbers of +1 and −1 signals. In this case,

voter i is in the majority and the Condorcet winner is his most preferred alternative.

Since the Condorcet winner is chosen in the candidate equilibrium, it is optimal for i

to follow the recommended strategy.

2. Among voters other than i, there are more +1 signals than −1 signals. If voter i’s

signal is +1, voter i is in the majority and the Condorcet winner is his most preferred

alternative. Hence, it is optimal for voter i to follow the above strategy. If voter i’s signal

is −1, the Condorcet winner is not voter i’s most preferred alternative, but it remains

optimal for voter i to follow the above strategy. To see this, note that deviating from

the above strategy at any but the first stage will have no impact as there is a majority

of agents with signal +1 who support the Condorcet winner. By deviating at the first

stage and reporting +1 instead of −1, voter i increases the ideal point of the majority

and hence (weakly) moves the chosen alternative further away from the ideal point of

voter i. Hence voter i cannot gain from a deviation.

3. Among voters other than i, there are fewer +1 signals than −1 signals. This case is

analogous to case 2. This completes the proof.
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The IEEA procedure elects the Condorcet winner even if voters cannot communicate

with each other prior to voting. This procedure has three notable properties. First, the most

extreme alternatives are put up for vote first. Second, voters’ private information is fully

revealed in the first-stage voting. Third, the chosen alternative is not determined until the

last stage. All three features are important for the ability of the IEEA procedure to always

elect the Condorcet winner. We next illustrate the necessity of each property in the context

of voting with three alternatives.

2.4 Departures from the IEEA Procedure

We consider below three departures from the IEEA procedure: each one violates one or more

necessary properties for implementing the Condorcet winner.

Suppose that there are three alternatives: X = {x1, x2, x3} with −1 = x1 < x2 < x3 = 1.

The IEEA procedure requires that voters choose between x1 and x3 at the first stage, and

that at the second stage after the margin of vote in the first stage is revealed, they choose

between x2 and the winner of the first stage. This procedure guarantees the selection of the

Condorcet winner.

We first depart from the IEEA procedure by putting the moderate alternative x2 up for

vote in the first stage. Specifically, under this alternative voting procedure, voters choose

between x1 and x2 at the first stage and at the second stage they choose between x3 and the

winner of the first stage.12 We argue that this procedure may fail to select the Condorcet

winner.

Lemma 1 If γ < 1

2
(1 + |x2|) then the alternative procedure that puts x1 and x2 up for vote

in the first stage does not always elect the Condorcet winner.

Proof. Suppose by contradiction that there is a pure strategy profile that always selects the

Condorcet winner. Let σ denote the corresponding profile of actions for the first stage. For

each voter i, this yields a mapping σi : {−1,+1} → {x1, x2} where x1 and x2 in the profile

of actions denote an action of voting in favor of x1 and x2, respectively.

Consider without loss of generality the case where x2 ≤ 0 so that γ < 1

2
(1 − x2). The

other case with γ < 1

2
(1 + x2) can be proved analogously. If n−1 = n + 1, alternative x2 is

the Condorcet winner: the ideal point of voters with signal −1 is −γ and it is closer to x2

than to x1 because −γ >
1

2
(x1 + x2) is implied by γ <

1

2
(1− x2).

12This is an example of a binary agenda that is not convex (Kleiner and Moldovanu [2017]).
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Let I = {i : σi (−1) = x1} denote the set of voters who vote for x1 if they have signal −1,

and let #I denote the number of voters in set I. If #I ≥ n+1, consider the signal realization

where n−1 = n+ 1 and all voters with signal −1 are drawn from set I. Then the Condorcet

winner x2 is eliminated in the first stage, a contradiction. If #I ≤ n, consider the signal

realization where n−1 = 2n + 1. Then the Condorcet winner is x1 but it is eliminated in

the first stage, a contradiction. Since there is no pure strategy profile that always selects the

Condorcet winner, there is also no mixed strategy profile that always selects the Condorcet

winner.

To understand the necessity of the disclosure of winning margin, we consider a voting

procedure that is identical to the IEEA procedure except that only the winner (but not the

winning margin) is revealed after the first-stage voting. This procedure fails to implement

the Condorcet winner because the latter finely depends on the signal realization while the

voters do not obtain the information necessary for correct aggregation.

Lemma 2 If max
{
1

4
(1 + x2) , 1−

n
2
(1 + x2)

}
< γ < 1

2
(1− x2) or if max

{
1

4
(1− x2) , 1−

n
2
(1− x2)

}

< γ < 1

2
(1 + x2), then the modified IEEA voting procedure that reveals only the winner does

not always elect the Condorcet winner.

Proof. Suppose, by contradiction, that there is a pure strategy profile that always selects the

Condorcet winner. Let σ1 and σ2 denote the corresponding profile of actions for the first and

second stage, respectively. Formally, σ1i : {−1,+1} → {x1, x3} and σ
2
i : {−1,+1}×{x1, x3} →

{x2,¬x2} where x2 in the range of σ
2
i denotes a vote in favor of alternative x2, while ¬x2

denotes voting against it.

Consider first the case where max
{
1

4
(1 + x2) , 1−

n
2
(1 + x2)

}
< γ < 1

2
(1− x2). Let n

∗
−1

be the minimal number of −1 voters such that x1 is the Condorcet winner. As we argued in

the proof of Lemma 1, γ < 1

2
(1− x2) implies that alternative x2 is the Condorcet winner if

n−1 = n + 1, and hence n
∗
−1 ≥ n + 2. Moreover, given γ > 1 −

n
2
(1 + x2), alternative x1 is

the Condorcet winner when n−1 = 2n because

−1 + (1− γ)
1

n
< −1 +

n

2
(1 + x2)

1

n
=
1

2
(−1 + x2) .

It follows that n∗−1 ∈ [n+ 2, 2n]. Finally, the last condition
1

4
(1 + x2) < γ ensures that, if x1

wins the first stage, conditional on being pivotal voters with signal +1 prefer x2 to x1 and

hence will vote for x2:

1− (1− γ)
n−1
n

≥ 1− (1− γ)
2n

n
>
1

2
(−1 + x2)
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We can classify all voters into 4 groups according to their choices of actions σ1i (−1) and

σ2i (−1, x1) when they obtain signal −1:

I11−1 =
{
i : σ1i (−1) = x1, σ

2
i (−1, x1) = ¬x2 = x1

}

I12−1 =
{
i : σ1i (−1) = x1, σ

2
i (−1, x1) = x2

}

I31−1 =
{
i : σ1i (−1) = x3, σ

2
i (−1, x1) = ¬x2 = x1

}

I32−1 =
{
i : σ1i (−1) = x3, σ

2
i (−1, x1) = x2

}

We use #I11−1,#I
12
−1,#I

31
−1 and #I

32
−1 to denote the corresponding size of each group above.

Two observations are immediate. First, for all profiles of signal realizations with n−1 = n+1,

alternative x2 is the Condorcet winner. To prevent x1 from winning both stages, we must

have

#I11−1 ≤ n, (4)

because otherwise we can draw all n + 1 voters with signal −1 from the set I11−1 to get x1

elected. Second, for the profile of signal realizations with n−1 = 2n+ 1, alternative x1 is the

Condorcet winner. In order for x1 to win both stages, we must have

#I11−1 +#I
12
−1 ≥ n+ 1 and #I11−1 +#I

31
−1 ≥ n+ 1. (5)

It follows from (4) and (5) that all three sets, I11−1, I
12
−1, and I

31
−1, are non-empty.

Now we argue that the set I32−1 must be empty. Suppose not. Consider a profile A of signal

realizations such that n−1 = n
∗
−1 where at least one voter with signal −1 is drawn from I32−1.

Consider another profile A′ of signal realizations that is identical to profile A except that one

voter drawn from I32−1 with signal −1 is replaced by a voter with signal +1 who votes for x3

in stage one and for x2 in stage two if x1 wins stage one.
13 By construction, the two profiles

yield the same vote patterns at both stages, and hence will elect the same alternative. But,

x1 is the Condorcet winner under profile A while x2 is the Condorcet winner under profile

A′, yielding a contradiction. Therefore, the set I32−1 must be empty and we have

#I11−1 +#I
12
−1 +#I

31
−1 = 2n+ 1. (6)

Consider now a profile B of signal realizations such that n−1 = n∗−1, where m
11 voters,

1 ≤ m11 ≤ #I11−1, with signal −1 are drawn from I11−1, m
12 voters, 1 ≤ m12 ≤ #I12−1 , with

13Note that x3 is the Condorcet winner for signal realizations where n−1 = 0 . In order to elect x3 in the

first stage, the set of voters with equilibrium strategy σ1i (+1) = x3 must be non-empty. Moreover, given

that γ > 1

4
(1 + x2), all voters with signal +1 vote for x2 in stage two if x1 wins stage one. Therefore, the

replacement in the above construction is feasible.
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signal −1 are drawn from I12−1, and m
31 = n∗−1 −m

11 −m12 voters, 0 ≤ m31 < #I31−1 , with

signal −1 are drawn from I31−1. Profile B is feasible because n∗−1 ∈ [n+ 2, 2n]. We first argue

that there must be exactly n + 1 voters who vote in favor of alternative x1 at stage one.

Suppose instead that x1 gathers at least n + 2 votes in stage one. Consider profile B
′ that

is identical to B except that one voter with signal −1 who is drawn from I12−1 is replaced

by a voter with signal +1 who will vote for x3 in stage one and vote for x2 in stage two if

x1 wins stage one.
14 By construction, x1 should also be elected with profile B

′, but x2 is

the Condorcet winner for profile B′, yielding a contradiction. Therefore, under profile B,

alternative x1 gathers exactly n+1 votes at stage one. Finally, consider profile B
′′ with voter

composition given by

m̂11 = m11 − 1

m̂12 = m12

m̂31 = m31 + 1

Then under profile B′′, n−1 = n∗−1 and hence x1 is the Condorcet winner, but x1 loses

in stage one, yielding a contradiction. This completes the proof for the first case. The other

case with max
{
1

4
(1− x2) , 1−

n
2
(1− x2)

}
< γ < 1

2
(1 + x2) is symmetric, and can be proved

analogously.

The third alternative voting procedure we consider is the successive voting procedure that

is commonly used in continental European parliaments. Alternatives are ordered according

to an agenda, say [x1, {x2, x3}]. With this agenda, voters first decide by simple majority to

accept, or to reject alternative x1. If x1 is accepted, voting ends. Otherwise, voters decide

whether to accept alternative x2. Alternative x2 is accepted if it has majority support and

x3 is accepted otherwise. We assume that the margin of the voting in the first stage is fully

revealed.

Lemma 3 If γ < 1

2
(1 + |x2|) then the successive voting procedure with agenda [x1, {x2, x3}]

does not always elect the Condorcet winner.

Proof. To obtain a contradiction, suppose there is a pure strategy profile that always selects

the Condorcet winner, and let σ denote the corresponding profile of actions for the first stage.

For each voter i this yields a mapping σi : {−1,+1} → {x1,¬x1} where x1 in the profile of

actions denotes an action of voting in favor of x1, while ¬x1 denotes voting against x1.

14As argued in the previous footnote, there always exists a voter with a strategy such that, with signal +1,

he votes for x3 in stage one and votes for x2 in stage two if x1 wins stage one.
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Consider again without loss the case where x2 ≤ 0, so that γ <
1

2
(1−x2). The other case

with γ < 1

2
(1 + x2) is analogous. Again, if γ <

1

2
(1− x2) and n−1 = n+ 1, alternative x2 is

the Condorcet winner.

Let I = {i : σi (−1) = x1} denote the set of voters who vote for x1 if they have signal −1.

If #I ≥ n + 1, consider the signal realization where all voters in I get signal +1 and where

n−1 = n + 1. Then all voters with signal −1 would vote for x1 and hence x1 is elected, but

x1 is not the Condorcet winner, a contradiction. If #I ≤ n, then x1 will not be selected even

if all voters have signal −1, in which case x1 is the Condorcet winner, a contradiction.

Why does the successive voting procedure fail to select the Condorcet winner? First,

information may not be fully revealed in the first vote on x1. In particular, if γ <
1

2
(1− x2),

voters may unanimously reject x1 even though x1 may be the Condorcet winner. Second, the

winner may be chosen in the first-stage voting. In particular, if γ < 1

2
(1− x2), alternative x1

may be chosen even though it is not the Condorcet winner.

An alternative interpretation of the above Lemma is that, in order to implement the

Condorcet winner via the successive voting procedure, it is necessary to add another stage

of information revelation such that the successive procedure is conducted under complete

information15. For example, if we add a preliminary stage in which voters vote whether

to have agenda [x1, {x2, x3}] or agenda [x3, {x2, x1}], then there exists an equilibrium with

information revelation at the first stage where the Condorcet winner will be elected.16 We

note that such preliminary votes on the agenda itself are sometimes conducted in reality (see

for example, Kleiner and Moldovanu [2020] for a case from the Weimar republic).

3 The Voting Model with a Rich Signal Space

Let us now consider a richer set of signals, and assume that si ∈ [−1, 1]. The model is

otherwise the same as above: the ideal point yi (si, s−i) of of voter i is

yi (si, s−i) = γsi +
1− γ

2n

∑

j 6=i

sj .

The complete information Condorcet winner is, again, the alternative that is preferred by

the median voter or, equivalently, the alternative that is closest to the median voter’s ideal

point.

15Before participation in the successive procedure agents may also be involved in some cheap-talk interaction

that reveals their private information. Then, there exists an equilibrium in successive procedure with a cheap

talk stage that will elect the Condorcet winner.
16We are grateful to anonymous referee for suggesting this procedure.
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If there are three or more signals, voters can manipulate the magnitude of their signals.

This incentive is sometimes so strong that the full-information Condorcet winner cannot be

robustly implemented.

Proposition 3 If γ ∈
(

1

2n+1
, 1
)
and k ≥ 3 then there is no ex-post incentive compatible

mechanism that always selects the full-information Condorcet winner.

Proof. Suppose by contradiction that there is a mechanism ΓCW that always selects the Con-

dorcet winner in ex-post equilibrium. Consider two profiles of signal realizations (s1, ..., si, ..., s2n+1)

and (s1, ..., s
′
i, ..., s2n+1) that have following properties: (1) they differ only in the signal of

voter i and have the same median voter m 6= i with signal sm; (2) signal si is interior

with −1 ≤ sm < si < s′i ≤ 1; (3) given signal realizations (s1, ..., sj , ..., s2n+1), the median

voter m is almost indifferent between alternatives xj and xj+1, but slightly prefers xj and

hence the Condorcet winner is xj ; (4) given signal realizations (s1, ..., s
′
j , ..., s2n+1), voter m

slightly prefers xj+1 and hence the Condorcet winner is xj+1; (5) voter i prefers xj+1 to xj

under both signal realizations. Since γ ∈
(

1

2n+1
, 1
)
, since there are at least two alterna-

tives, and since signals are assumed to be continuous, such profiles exist. By assumption,

ΓCW always selects the Condorcet winner, and hence ΓCW (s1, ..., si, ..., s2n+1) = xk while

ΓCW (s1, ..., s
′
i, ..., s2n+1) = xk+1. But given signal realization (s1, ..., si, ..., s2n+1), voter i has

an incentive to misreport his signal to be s′i. This yields a contradiction.

We note that in the present framework with a continuum of signals, a much stronger

impossibility result holds: only constant social choice functions are ex-post implementable

- see Feng et al [2022]. These authors also discuss why ex-post implementation is more

permissive in models with discrete (e.g., binary) signals, a phenomenon we also observed in

our model with binary signals analyzed above.

3.1 Bayesian Implementation with Quadratic Utilities

The previous impossibility result suggests that we may need to relax our equilibrium con-

cept to Bayesian implementation. For this relaxation, we need both assumptions about the

distribution of signals and a cardinal specification of utilities.

We assume that each voter’s signal is drawn I.I.D. from the interval [−1, 1] according to

a bounded density f > 0, and that preferences are quadratic: u(x, yi) = −(x− yi)
2.

Finally, for additional tractability in this cardinal framework (e.g., in order to uses cal-

culus), we assume for the sequel that the set of feasible alternatives is the entire interval

X = [−1, 1].
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Proposition 4 If γ ∈
(

1

2n+1
, 1
)
and k ≥ 3 then there is no Bayesian incentive compatible

mechanism that always selects the full-information Condorcet winner.

Proof. Without loss of generality, consider a direct mechanism that selects the Condorcet

winner, the alternative which is the peak of the median voter under the assumption of truthful

reports. Let us look at agent 1’s incentives, assuming that all other voters report their types

truthfully. Consider then the utility of voter 1 who observes signal s1, but reports signal s
′
1.

Denote by sl the n-th highest report of all agents but 1, and by sh the (n+ 1)-th highest

(or n-th lowest) report of all agents but 1. Denote by G the marginal distribution of sl

(with density g) and by Q the marginal distribution of sh (density q). If s
′
1 < sl, then the

mechanism implements the alternative that is the peak of agent l (under truthful reports of

all agents but 1 and report s′1 of voter 1). If s
′
1 > sh, then the mechanism implements the

alternative which is the peak of agent h (under truthful reports of all agents but 1 and report

s′1 of voter 1). If sl < s
′
1 < sh then the mechanism implements the alternative which is the

peak of agent 1 with reports (s′1, s2, ..., sn) that is, it is the bliss point of agent 1 if he would

get signal s′1 and all others report truthfully. Observe that in the first case (s
′
1 < sl) the

difference between the true peak of agent 1 and the implemented alternative is

γ (s1 − sl) +
1− γ

2n
(sl − s

′
1),

in the second case (s′1 > sh) the difference between the true peak of agent 1 and the imple-

mented alternative is

γ (s1 − sh) +
1− γ

2n
(sh − s

′
1),

and in third case (sl < s
′
1 < sh) the difference is

γ
(
s1 − s

′
1

)
.

Hence the expected utility of voter 1 with signal s1 and report s
′
1 (assuming truthful reports

of all other agents) is given by

∫
1

s′
1

−

(
γ (s1 − sl) +

1− γ

2n
(sl − s

′
1)

)2
g (sl) dsl

+

∫ s′
1

−1

−

(
γ (s1 − sh) +

1− γ

2n
(sh − s

′
1)

)2
q (sh) dsh

−
(
γ
(
s1 − s

′
1

))2
Pr
(
sl < s

′
1 < sh

)
.

If there exists a Bayesian incentive compatible mechanism that implements the Condorcet

winner, then the last expression should be maximized at s′1 = s1. Taking the first-order
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condition with respect to s′1 and setting it to zero yields:

0 =
(
γ
(
s1 − s

′
1

))2
g
(
s′1
)
+

∫
1

s′
1

1− γ

n

(
γ (s1 − sl) +

1− γ

2n
(sl − s

′
1)

)
g (sl) dsl

−
(
γ
(
s1 − s

′
1

))2
h
(
s′1
)
+

∫ s′
1

−1

1− γ

n

(
γ (s1 − sh) +

1− γ

2n
(sh − s

′
1)

)
h (sh) dsh

+2
(
γ
(
s1 − s

′
1

))
Pr
(
sl < s

′
1 < sh

)
−
(
γ
(
s1 − s

′
1

))2 ∂

∂s′
1

Pr
(
sl < s

′
1 < sh

)
.

The above equality must hold for s′1 = s1, and this yields

0 =

∫
1

s1

1− γ

n

(
γ (s1 − sl) +

1− γ

2n
(sl − s1)

)
g (sl) dsl

+

∫ s1

−1

1− γ

n

(
γ (s1 − sh) +

1− γ

2n
(sh − s1)

)
q (sh) dsh

=
1− γ

n

(
1− γ

2n
− γ

)∫
1

s1

(sl − s1)g (sl) dsl

+
1− γ

n

(
1− γ

2n
− γ

)∫ s1

−1

(sh − s1)q (sh) dsh.

Since γ ∈
(

1

2n+1
, 1
)
, this is equivalent to

0 =

∫
1

s1

(sl − s1)g (sl) dsl +

∫ s1

−1

(sh − s1)h (sh) dsh

For the mechanism to be BIC, the last equality must hold for any s1. Taking the derivative

on both sides of the last equality with respect to s1, we finally obtain:

0 = −

∫
1

s1

g (sl) dsl −

∫ s1

−1

q (sh) dsh.

The above yields a contradiction since g (sl) > 0 and q (sh) > 0.

3.2 The Incomplete-Information Condorcet Winner

The above impossibility result under the weaker equilibrium concept suggests a new, modified

notion of Condorcet winner that is consistent with the presence of incomplete information,

and that can be potentially implemented in Bayesian equilibrium. We first need the following

Lemma about simple majority voting among two alternatives.

Lemma 4 Consider voting by simply majority among two alternatives x and y in X =

[−1, 1], and assume without loss of generality that x < y. This game has a unique symmetric

Bayes-Nash equilibrium in undominated strategies ( equilibrium for short). In this equilib-

rium, there is a cutoff c ∈ [−1, 1] such that voter i votes for x if si < c and votes for y if

si > c. When interior, this cutoff is determined by the equation

γc+
1− γ

2
[E[s|s < c] + E[s|s > c]] =

x+ y

2
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Proof. When determining her optimal strategy, a voter only needs to consider the event

where she is pivotal. Assuming that all other voters use a strategy with cutoff c as above,

and conditioning on being pivotal, the preferred alternative (i.e., the peak) of voter i with

signal si (within the entire set X = [−1, 1] !) is given here by

γsi +
1− γ

2
[E[s|s < c] + E[s|s > c]]

Moreover, preferences are single-peaked around the above ideal point.

Note that the expression for the peak is strictly increasing in si, and hence the equilibrium

strategy of voter i is also determined by a certain cut-off such that she votes for x for signals

below the cutoff and votes for y for signals above the cutoff. In a symmetric cutoff equilibrium

all voters use a strategy with the same cutoff, and, when interior, the equilibrium cutoff is

determined by the fact that a voter who has a signal equal to the cutoff must be indifferent

between voting in favor of x or in favor of y, i.e. her preferred alternative must be midway

between x and y :

γc+
1− γ

2
[E[s|s < c] + E[s|s > c]] =

x+ y

2

Existence follows by continuity, and uniqueness follows because the left hand side is strictly

increasing in c. The fact that all symmetric Bayes-Nash equilibria in undominated strate-

gies have the above cutoff form follows here analogously to Proposition 1 in Feddersen and

Pesendorfer [1997].

We are now ready to define our notion of Condorcet winner:

Definition 1 a We say that an alternative x wins against alternative y under incomplete

information at signals (s1, ..s2n+1) if in the equilibrium of the simple majority vote

between x and y, x is elected when the realization of signals is (s1, ..s2n+1).

b An alternative xCW = xCW (s1, ..s2n+1) is an incomplete information Condorcet winner at

(s1, ..s2n+1) if, for any other alternative x ∈ X, xCW wins against x under incomplete

information at (s1, ..s2n+1).

The above notion mimics the logic of the classical one under complete information, and

coincides with it in that case and in the incomplete information case with private values. But,

the two notions need not be the same when values are interdependent. For example, we show

below that the incomplete information Condorcet winner can be Bayes-Nash implemented,

contrasting the impossibility result obtained in the previous section.
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Note that the transitivity of the binary relation defined above is sufficient but not neces-

sary for the existence of a maximal element, i.e. a Condorcet winner.17 ,18

Lemma 5 a For any fixed realization of signals (s1, ..s2n+1), the binary relation among al-

ternatives "x wins against y under incomplete information at (s1, ..s2n+1)" is transitive.

b An incomplete information Condorcet winner exists and is unique for any realization of

signals. If si is a median signal when realized signals are (s1, ..s2n+1) then

γsi +
1− γ

2
[E[s|s < si] + E[s|s > si]]

is the incomplete information Condorcet winner at this realization.

Proof. Let us start with a direct proof of point b): Fix a profile of signals, and let si be the

median one, i.e., n voters have a signals weakly above (below, respectively) si. Define

xCW := γsi +
1− γ

2
[E[s|s < si] + E[s|s > si]] ,

and consider a simple vote between xCW and x 6= xCW according to simultaneous, simple

majority voting.

Assume first that x > xCW . By the above Lemma the equilibrium is such that all voters

with signal above some cutoff c vote for x, and all voters with signal below c vote for xCW .

Conditional on i being pivotal and on other voters using cutoff strategies with cutoff c, the

expected ideal point for voter i with signal si is

γsi +
1− γ

2
[E[s|s < c] + E[s|s > c]] .

For c = si, this is precisely xCW , and thus voter i would strictly prefer xCW over x. Since the

expected ideal point is increasing in c, we obtain that c > si must hold. Therefore, voter i

and all voters with lower signals vote for xCW . Since voter i had, by assumption, the median

signal, alternative xCW is elected. Hence, any alternative x such that x > xCW loses against

xCW in any equilibrium.

The arguments for x < xCW are symmetric, and it follows that xCW is the unique

incomplete information Condorcet winner at the given profile.

17An example is the space of preferences that are single-peaked on a tree. The Condorcet winner always

exist, but the majority relation is not necessarily transitive.
18 If the space of alternatives is infinite, then transitivity needs to be complemented by a compactness

assumption in order to ensure the existence of a maximal element, i.e. the Condorcet winner.
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We now turn to transitivity, point a). Fix a realization of signals (s1, ..s2n+1) and assume

without loss of generality that x < y, and that x wins against y under incomplete information

at this realization. Note that the cutoff in the corresponding equilibrium of simple majority

voting between x and y is increasing in both x and y.

Since by assumption x wins against y, we know that there are at least n+1 signals below

cxy. Assume now that y wins against z. We need to show that x wins against z. If z > y

then cxz > cxy, and thus there are obviously at least n + 1 signals below cxz, and x wins

against z.

Assume then that z < y. Hence there are at least n + 1 signals above czy. If x < z < y

then, by monotonicity, the configuration of cutoffs must be cxz < cxy < czy. But then we

obtain that there are at least n+ 1 signals below cxy and at least n+ 1 signals above czy, a

contradiction. So here it cannot be the case that y wins against z.

The only remaining case is z < x < y, in which case the configuration of cutoffs must be

czx < czy < cxy. Since there are at least n+ 1 signals above czy, there are also at least n+ 1

signals above czx , and hence x wins against z as desired.

Remark 2 The analysis in the above Lemma was based on quadratic utilities. But, the

existence of an incomplete-information Condorcet winner generalizes to any utility function

such that the majority voting among any two alternatives has a cutoff equilibrium (see general

conditions for this to hold in Feddersen and Pesendorfer [1997]) and such that the respective

cutoff is monotonically increasing in the location of both alternatives. Then, we can apply

transitivity - that only hinges on the ordering of cutoffs - to yield the desired existence.

The definition of the Condorcet winner under incomplete information is based on a col-

lection of completely separate, binary votes. It is not a priori clear that this alternative be

implemented also in the full-fledged strategic situation where the agents are aware of and

select among several alternatives.

Proposition 5 The direct revelation mechanism that always selects the expected peak of the

agent with the median signal is Bayesian incentive compatible and implements the incomplete

information Condorcet winner.

Proof. This is essentially Proposition 1 in Gruener and Kiel [2004]. They considered the

indirect mechanism where agents are asked to report their peaks and where the designer

selects the median peak. These authors showed that the equilibrium strategy of an agent
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with signal si is to report the peak

γsi +
1− γ

2
[E[s|s < si] + E[s|s > si]]

Our result follows then by the revelation principle, and by our above definition of the

incomplete-information Condorcet winner.

Contrasting the above direct implementation and the equivalence among various proce-

dures under complete information or private values, sequential binary voting procedures do

not necessarily implement the incomplete information Condorcet winner under interdepen-

dent values. The reason is that, as shown above, in sequential voting games, sophisticated

agents dynamically learn about their preferred alternative from the respective announced

results of previous votes. This gradual learning process is not reflected in the static definition

of the incomplete information Condorcet winner.

Along strategic sophistication, another important and well-studied behavioral assumption

in the voting literature is “naive voting”. One facet of naivete is myopic voting. Assume then

that agents behave naively in the sense that, at each stage of a sequential, binary voting

procedure, they ignore both the already revealed information and the consequence of today’s

outcome on future play. We obtain:

Proposition 6 Assume that agents vote myopically and that there is a finite number of

alternatives. Then, for any realization of signals, the amendment procedure (with any agenda

!) implements the incomplete information Condorcet winner .

Proof. Assume that x = x(s1, s2, ..sn) is the elected alternative in an amendment procedure

given signals (s1, s2, ..sn), and look at any other alternative y = y0 6= x. Consider alternative

y1 that eliminated y0 in a direct vote among myopic voters. This is the same as saying that y1

wins against y0 = y under incomplete information. Such an alternative must exist because in

an amendment procedure all alternatives are put to vote at some stage, and because y0 was

not ultimately elected at this signal realization. If y1 = x then obviously x wins against y0

under incomplete information. If y1 6= x, then consider alternative y2 that directly eliminated

y1: this must exist by the same argument as above. Since the number of alternative is finite,

and since x is ultimately elected, we can construct a chain such that y = y0, y1, .., yl = x

such that yi wins against yi−1. The result follows then by transitivity of the binary relation,

as shown above .

We note here that the successive procedure need not implement the incomplete-information

Condorcet winner even if agents are assumed to behave myopically in the sense described

above.
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4 Conclusion

We have studied static and dynamic voting procedures in a setting where agents have single-

peaked, interdependent preferences over several alternatives, and we focused on the Condorcet

winner. In contrast to the private values case, the complete-information Condorcet winner can

be implemented via a static, direct revelation mechanism only if the set of signals available

to the agents is restricted. In that case, dynamic procedures that invariably implement

the complete-information Condorcet winner with private values differ in their information

revelation and aggregation processes and yield different results - some positive, some negative

- when preferences are interdependent. Finally, we have defined and show how to implement

a new notion of incomplete-information Condorcet winner. This new notion coincides with

the standard notion under complete information or under private values, but differs from it

in our setting with interdependent values.
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