
Funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany´s Excellence Strategy – EXC 2126/1– 390838866 is gratefully acknowledged.

www.econtribute.de

ECONtribute
Discussion Paper No. 245

July 2023

Shiri Alon Sarah Auster
Gabi Gayer Stefania Minardi

Persuasion with Limited Data: A Case-Based 
Approach

Funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy – EXC 2126/1-390838866 is gratefully acknowledged.



Persuasion with Limited Data:

A Case-Based Approach∗

Shiri Alon, Sarah Auster, Gabi Gayer, and Stefania Minardi†

July 2, 2023

Abstract

A strategic sender collects data with the goal of persuading a receiver

to adopt a new action. The receiver assesses the profitability of adopting

the action by following a classical statistics approach: she forms an esti-

mate via the similarity-weighted empirical frequencies of outcomes in past

cases, sharing some attributes with the problem at hand. The sender has

control over the characteristics of the sampled cases and discloses the out-

comes of his study truthfully. We characterize the sender’s optimal sampling

strategy as the outcome of a greedy algorithm. The sender provides more

relevant data—consisting of observations sharing relatively more character-

istics with the current problem—when the sampling capacity is low, when

a large amount of initial public data is available, and when the estimated

benefit of adoption according to this public data is low. Competition be-

tween senders curbs incentives for biasing the receiver’s estimate and leads

to more balanced datasets.
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1 Introduction

Economic agents often face unfamiliar problems and have to make decisions based

on a limited amount of data. Examples include policymakers deciding on a new

law, health authorities deciding on the approval of a new medicine or vaccine,

or a jury coming to a verdict in a criminal case. The canonical approach in

economics to such decision problems relies on the Bayesian paradigm, postulating

that agents hold prior beliefs and maximize expected utility with respect to these

beliefs. The implicit assumption is that agents have sufficient information about

the underlying data-generating process, for instance, because they face the same

problem repeatedly, they have access to historical data, or they rely on theories

regarding the distributions of outcomes.

Forming a prior belief is more intricate when agents face unfamiliar and com-

plex problems with limited data or experience. Following the classical approach to

statistical inference, Gilboa and Schmeidler (1995) propose a case-based approach

to decision-making in such problems. According to this theory, agents engage in

backward-looking reasoning by explicitly relying on past evidence. Facing a new

decision problem, they form estimates of potential contingencies by drawing analo-

gies with similar problems encountered in the past, even if those are not identical

to the problem at hand. The similarity notion plays a key role: in the absence

of data about the current problem, agents seek guidance by examining the per-

formance of actions taken in previous situations that share some attributes with

the problem they face. The collection of past cases used for the inference—the

database—can include an agent’s own experiences as well as external, observable

past events.

This paper studies the question of how a decision maker’s estimation in such

environments can be influenced when external data are provided by a strategic

party. This party might, for instance, be a political advisor trying to convince

a policymaker, a pharmaceutical company wanting to get a drug approved, or a

prosecutor seeking to have a suspect convicted. More specifically, we consider the

following design problem: a sender (he) chooses the composition and size of a

database with the aim of convincing a receiver (she) to adopt a certain action.

We think of the problem under consideration as being characterized by a list of

attributes. The receiver estimates the probability of the potential outcomes of an

action—assumed to be success or failure—by weighing the frequencies of outcomes

in the available data based on their similarity to the current problem. There are

some (limited) public data on which both the receiver and the sender base their
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initial assessment of the action. Given this baseline, the sender seeks to boost the

image of the action in the eyes of the receiver by providing additional evidence.

Evidence comes in the form of a collection of cases, which we call a database.

A typical case in the database is described by its characteristics (referred to as

the case type), determining the similarity to the current problem and its realized

outcome. The sender has the freedom to choose the size of the database and

the case-type composition within the limits of a sampling capacity and physical

constraints on the ability to generate observations of the same case type. The

sender is committed to disclosing the outcomes of his study truthfully to the

receiver.

Formally, our sender chooses an experiment inducing a distribution over pos-

terior beliefs, as in the canonical Bayesian persuasion problem (Kamenica and

Gentzkow, 2011). We depart from this literature in three key dimensions. First,

we model the receiver as a frequentist rather than a Bayesian. In particular, her

statistical inference process is based on similarity-weighted empirical frequencies,

as modeled by Billot, Gilboa, Samet, and Schmeidler (2005). Under this criterion,

incorporating cases that are not identical to the current case introduces a bias in

the belief formation process. As shown later, this aspect is exploited by the sender

in our setting to influence the receiver’s evaluation of the action. Second, for most

of the analysis, we assume that the sender’s payoff is linearly increasing in the re-

ceiver’s final estimate. The sender thus seeks to maximize the receiver’s expected

revised belief. While this is the standard way to model image or reputation in

economics (Holmström, 1999), the assumption trivializes the Bayesian persuasion

problem and thus allows us to draw a sharp distinction between that framework

and ours. Third, the sender in our setting chooses from a set of databases consist-

ing of a finite collection of case types, which imposes natural restrictions on the

set of distributions over revised beliefs that the sender can induce. Instead, the

defining feature of the Bayesian persuasion literature is maximal flexibility in the

choice of information structures. While this approach is mathematically elegant,

it operates on a high level of abstraction. Relative to this benchmark, the set

of feasible information structures in our framework is more tangible, allowing for

a concrete understanding of the signal characteristics’ influence on the receiver’s

estimate.

In our setting, the sender’s key tradeoff is between selecting case types that

are promising in terms of probability of success versus selecting those that are

sufficiently similar to the current problem. Mathematically, the sender’s choice
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problem amounts to maximizing a non-linear function over sets of integer-valued

alternatives, a complex combinatorial task. Leveraging the structure of our specific

objective function, we present a greedy search algorithm that solves the sender’s

problem in a polynomial number of steps. Starting from the empty database, the

algorithm replaces in each stage either an unfilled slot or an existing case type

with a more similar case type so as to maximize a replacement index, which is

defined over the set of all pairs of case types.

Our main result shows that the sender’s optimal case-type collection is charac-

terized as the algorithm’s outcome. We thus provide a simple, tractable method to

find the optimal sampling strategy for the described problem. We use this result

to study the properties of the optimal case-type composition. In particular, we

show that the sampled case types have a higher similarity to the current problem

when there are more relevant (or simply more) public data available and when,

according to the public data, the initial chances of success in the current case are

smaller. Indeed, a substantial amount of initial public evidence makes it more

difficult to change the receiver’s view about the right course of action and hence

prompts the sender to sample relatively more similar and less promising case types.

A higher success probability in the current case has the opposite effect: since the

sender is only willing to sample case types that increase the receiver’s expected

estimate, he will favor case types that have a higher success probability over those

that share more characteristics with the current problem.

Next, we consider the special case where the sender faces no constraints on

how many instances of the same case type he can sample. We show that, as long

as there are some case types with a higher success probability than the current

case, the sender exhausts his sampling capacity and generates a database that is

entirely homogeneous: all cases in the database have identical attributes. The

choice of the optimal case type is described by the maximization of a simple

success-similarity index. We then show that the sampled case type will be less

similar to the case at hand when the sender’s sampling capacity increases. A

larger sampling capacity weakens the impact of the initial evidence and thus leads

the sender to sacrifice similarity in favor of case types that are more promising in

terms of their probability of success. In the limit, as the capacity tends to infinity,

similarity loses its relevance, and the sender’s sampling decision is driven solely

by the case types’ likelihood of generating favorable outcomes.

In many contexts, agents obtain information from multiple experts with het-

erogeneous preferences. In the last part of the paper, we ask whether competition
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among data providers leads to more relevant data. We address this question by

extending the baseline setup to allow for competition between two senders. We

model the strategic interaction between the two senders as a zero-sum game by

assuming that the senders have opposing state-independent preferences. The first

sender seeks to maximize the receiver’s estimate of the action generating success,

while the second sender seeks to minimize it. We show that a pure-strategy equi-

librium exists and provide conditions under which the presence of the competitor

causes senders to sample case types that are more similar to the current case than

the ones they would sample in isolation. Under these conditions, competition

helps the receiver on two dimensions: 1) she receives more data in total; 2) both

senders are incentivized to provide data on cases that are more relevant to the

current problem. Competition thus improves data on the extensive and intensive

margins.

We illustrate the setting and the main results with two examples.

Example 1. The receiver is a policymaker trying to assess the likelihood that

a given reform is going to increase the vote share. The more confident the policy-

maker is in the success of the reform, the more eager she will work to support and,

ultimately, implement it. The sender is a lobbyist or think tank aiming to sway the

policymaker towards implementing the reform by conducting a study and present-

ing the results to the policymaker. The think tank has some freedom in shaping

the study but cannot tamper with the evidence once it has been conducted. For

example, the study might collect information about the performance of related

reforms. In this context, a case type describes the attributes of the past reform as

well as the social and economic circumstances in which it was implemented. The

composition of case types can be affected, for instance, by restricting attention to

particular regions or time frames. Alternatively, the study could take the form of

a voter survey, with case types describing the attributes of the respondents in the

survey. The think tank can choose how the survey is conducted, e.g., by phone

or online, thereby affecting the composition of voters reached by the survey. Our

results suggest that the think tank will try to target the study to specific demo-

graphics or regions that are promising in terms of generating favorable outcomes

but are similar enough to the current circumstances so that the policymaker deems

the evidence sufficiently relevant.

Example 2. The receiver is a jury member deliberating how to vote on the

outcome of a criminal trial. There are two senders, the prosecutor and the de-

fender, both of whom can call on different witnesses to take the stand. The more
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the jury member is convinced of the guilt or innocence of the accused, the harder

she will argue to convict or acquit the accused in jury deliberation. Whether a

given witness ultimately helps the prosecutor’s case or the defender’s case is not

known with certainty beforehand. Moreover, some witnesses will have a bigger

impact on the jury member’s assessment than others. A case type may thus be

viewed as the attributes of the witness’s relation to the accused and his/her po-

tential knowledge about the case. Based on these attributes, the prosecutor and

defender must decide which group of witnesses to call for testimony. For instance,

they could call a number of forensic experts, a number of character witnesses, or

a combination of them. Our results suggest that, while the prosecutor and the

defender will try to influence the jury member’s estimate by targeting the wit-

ness selection, competition drives both sides to call on witnesses relatively more

relevant to the case.

The rest of the paper is organized as follows. We conclude this section with a

literature overview. Section 2 introduces our baseline setup with one sender and

one receiver. Section 3 introduces the greedy search algorithm and shows that it

solves the sender’s design problem. Section 4 extends the baseline model to the

case of two competing senders. Section 5 concludes. All proofs are contained in

the Appendix.

1.1 Related literature

A rapidly expanding literature on persuasion has emerged from the seminal paper

of Kamenica and Gentzkow (2011). Promising avenues for further development

in this area arise from relaxing two crucial assumptions: the Bayesian formation

of beliefs by the receiver and the unconstrained nature of information structures

available to the sender. As recently emphasized by Kamenica, Kim, and Zapechel-

nyuk (2021), these assumptions are demanding and limit the applicability of the

theory. In fact, several recent studies introduce non-Bayesian elements into the

traditional framework. For instance, Galperti (2019) allows the receiver to ques-

tion, and sometimes modify, her prior belief if she is successfully persuaded by

new evidence that contradicts her initial worldview; de Clippel and Zhang (2022)

analyze situations where the receiver makes systematic mistakes in updating be-

liefs and study the impact of such biases on optimal persuasion within a broad

class of non-Bayesian updating rules. In Eliaz, Spiegler, and Thysen (2021), the

receiver lacks an understanding of the statistical mapping between states and sig-

nals, creating an opportunity for the sender to influence the receiver’s beliefs by
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strategically choosing not only the signal but also a selective interpretation of it.

Dworczak and Pavan (2022) as well as Kosterina (2022) adopt a robust approach

to information design to study a sender who is uncertain about the receiver’s learn-

ing environment.1 Compared with the above papers, we take a different departure

from the Bayesian approach by introducing classical statistics inference based on

similarity-weighted frequencies.

Closer to our work, Patil and Salant (2023) study the role of statistical inference

on optimal persuasion in a setting where the sender provides evidence in the form

of Bernoulli experiments. The key difference with our framework is that in Patil

and Salant (2023), observations are of only one type. The paper’s focus is on the

question of how many observations the sender will sample, while our main interest

lies in the question of which kind of data the sender will provide. A shared feature

of their setting and ours is that restrictions on the set of feasible information

structures naturally arise from the discreteness of the data. Such restrictions

also appear in dynamic persuasion settings, where the sender decides how much

information to collect for a Bayesian receiver, as in Brocas and Carrillo (2007),

Henry and Ottaviani (2019), and McClellan (2021). In contrast, several recent

papers have introduced explicit constraints on the set of information structures to

study their implications on static Bayesian persuasion, as in Perez-Richet (2014),

Le Treust and Tomala (2019), Di Tillio, Ottaviani, and Sørensen (2021), and Ball

and Esṕın-Sánchez (2022).

Our paper is further related to Glazer and Rubinstein (2004, 2006). In a

disclosure setting with verifiable information, they consider a speaker (i.e., the

sender) who provides arguments to convince a listener (i.e., the receiver) to take

a specific action under the assumption that the amount of evidence that either

the speaker can provide or the listener can verify is limited. In related work,

Glazer and Rubinstein (2001) study optimal persuasion rules in the context of

debates between two speakers who have opposing preferences and compete to

persuade a listener to take their respective preferred action. This work recognizes

the relevance of certain aspects extraneous to the Bayesian logic for persuasion

to be successful. For instance, the success of a counterargument may depend not

only on the strength of the evidence presented but also on its similarity to the rival

argument. A key distinction is that in these works the sender has full information

1Another direction that extends the Bayesian approach studies persuasion problems with
ambiguity-averse agents, as in Laclau and Renou (2017), Beauchêne et al. (2019), Cheng (2021),
and Liu and Yannelis (2021). These works generalize the notion of Bayes plausibility to explore
the role of ambiguous communication.

7



about the state of the world and, hence, knows which action the receiver should

choose.

Finally, our paper relates to a small literature that analyzes the behavior of

case-based agents in applications other than persuasion/communication. For in-

stance, Blonski (1999) analyzes social learning of case-based agents in networks,

Guerdjikova (2006) and Golosnoy and Okhrin (2008) investigate the portfolio

choices of case-based agents in financial markets, and Argenziano and Gilboa

(2019) study coordination games with case-based players.

2 The Model

Prediction problem. We consider a receiver who needs to make a prediction

about the outcome of some action a. The action may result in either a good

outcome (denoted by G) or a bad outcome (denoted by B); hence, the state

space is given by Ω = {G,B}. The receiver uses a similarity-weighted frequency

approach and assesses the consequences of action a based on the observations of

past data. An observation is characterized by a list of observable attributes that

are believed to affect the probability of the outcome. Such a list of attributes is

called a case type, with C denoting the finite set of all case types. An observation

is a pair (c, y), where c ∈ C is the observed case type, and y ∈ {G,B} is the

outcome. A database D is a finite collection of observations, modeled as a counter

vector

D : C × {G,B} → Z+,

whereD(c, y) counts how many observations (c, y) appear in the database. For two

databases D and D′, their sum D+D′ is the result of pointwise adding D(c, y) +

D′(c, y) for every (c, y), such that the new database contains the observations from

both databases. The current problem, indexed by 0, is characterized by a case

type c0. The outcome y0 associated with c0 is unknown, as a was not yet taken in

the current problem.

Following Billot et al. (2005), we assume that, given database D, the receiver’s

estimate of action a generating a favorable outcome in the current problem is given

by the similarity-weighted empirical frequency of outcome G in database D. The

underlying assumption is that when two cases are similar, their outcome distribu-

tion is similar as well. The similarity between any two case types is quantified by

the similarity function s : C × C → R++.
2 We normalize the similarity function

2Throughout our analysis, we assume that similarity values are predetermined and fixed,
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so that s(c0, c0) = 1 and assume that s(c0, c) ∈ (0, 1) for all c ∈ C with c ̸= c0;

that is, c0 is most similar to itself. Given database D, the receiver’s estimate that

action a be successful in the current problem is given by

P (y0 = G|D) =

∑
c∈C s(c0, c)D(c,G)∑

(c,y)∈C×{G,B} s(c0, c)D(c, y)
. (1)

To illustrate the concept of case types and the determination of similarities,

let us return to the example of a policymaker deciding on a new reform. The

policymaker tries to assess the probability of success of the reform by examining

previous cases of similar reforms that have been implemented in other countries

or constituencies. A case type in this context contains various factors such as

the essential elements of the reform, the characteristics of the electorate, and

the economic conditions under which it was implemented. The outcome states

whether the policy resulted in a favorable or unfavorable result. The policymaker

maintains the belief that past reforms conducted under similar circumstances hold

greater significance for predicting the outcome in the current case compared to

those implemented under very different conditions. As a result, the policymaker

assigns a higher weight to cases with higher similarity values. The similarity

s(c0, c), quantifies the extent to which the features of the reform, the electorate,

and the economic circumstances in the current problem resemble those in case

type c.

Strategic Data Provision. A sender aims to provide verifiable data that will

boost the action’s image in the eyes of the receiver. As in the reputation literature

(Holmström, 1999), we assume that the sender’s payoff is linearly increasing in

the receiver’s revised belief on action a generating success in the current problem.

From a modeling perspective, the assumption is made for analytical tractability,

but also as a way to sharply distinguish the effects stemming from case-based

inference from the usual (Bayesian) persuasion forces, as we explain below.3

The sender can influence the receiver’s estimate by providing data. We as-

sume that the sender chooses the case types in the sample without knowing the

associated outcomes. Moreover, once the test is concluded, the sender is obliged

based on the notion that similarities are more basic than probabilities and can be used to form
probabilities. This assumption applies when the receiver has prior knowledge or experience with
the attributes influencing similarity between cases, while it may be violated if the receiver is still
in the process of learning similarity values from data, referred to as second-order induction by
Gilboa and Schmeidler (2001, pp. 174–183).

3See also the discussion in Section 3.2.
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to submit all test results truthfully. When choosing the case types that will be

sampled, the sender faces two types of constraints: 1) an overall capacity con-

straint N on the number of sampled cases, and 2) for each case type c ∈ C, a
type-specific constraint Nc, capturing the maximal number of type-c observations

that can enter the database. For instance, each case type might be unique, in

which case Nc0 = 0 and Nc = 1 for all c ̸= c0. Alternatively, there might be

some regulatory restriction, which imposes a uniform bound Nc = n̄ < N on the

number of identical case types in a trial.

Both the sender and the receiver have access to some initial public database

H. The probability of action a generating outcome G based on this prior data is

p0 := P (y = G|H), calculated according to formula (1). Once additional data are

provided, the receiver revises her estimate by adding the new data D to the initial

database H. The revised probability of success is

P (y0 = G|D+H) =

∑
c∈C s(c0, c)[D(c,G) +H(c,G)]∑

(c,y)∈C×{G,B} s(c0, c)[D(c, y) +H(c, y)]
.

Optimization problem. The sender chooses a collection of case types that will

be sampled, described as a counter vector D : C → Z+. For each c ∈ C, D(c) rep-

resents the number of cases of type c that appear in the collection. Given the

selected collection D, the revised probability p̂0(D) is a random variable whose

realized value depends on the outcomes in the sampled cases. The sender’s objec-

tive is to maximize the receiver’s expected belief. We assume that, just like the

receiver, the sender bases his initial assessment of the likelihood that outcome G

will be realized in the different types of cases on the public database H. Hence,

the sender’s estimate of case type c ∈ C generating outcome G is the similarity-

weighted frequency4

pc :=

∑
c′∈C s(c, c

′)H(c′, G)∑
(c′,y)∈C×{G,B} s(c, c

′)H(c′, y)
.

For ease of notation, we represent the collection of case types in the public data by

the counter function H : C → Z+ such that H(c) := H(c,G) +H(c, B). Given a

collection of case types D, the expected revised probability of success with respect

4Our assumption that sender and receiver use the same similarity function for statistical
inference is akin to the common prior assumption in the standard setting. As shown by Alonso
and Câmara (2016), heterogeneous prior beliefs give rise to interesting implications, from which,
however, we want to abstract in the current paper.
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to H is then given by

p̂0(D) =

∑
c∈C s(c0, c) [D(c)pc +H(c,G)]∑

c∈C s(c0, c)[D(c) +H(c)]
.

The sender solves the constrained optimization problem

max
D

p̂0(D) (2)

subject to

D(c) ≤ Nc,∀c ∈ C (3)∑
c∈C

D(c) ≤ N. (4)

If agents were Bayesian with a common prior, then the law of iterated expecta-

tions would imply that the expected posterior would satisfy p̂0(D) = p0. Conse-

quently, any sampling strategy would yield the same expected posterior, making

all strategies equally optimal. By contrast, in the current framework, the sender

can generate an upward bias in the receiver’s expected belief and thereby profit

from sampling. This bias is facilitated by the fact that the receiver is willing to

assign a positive weight to cases that are not identical to the current case.

A similar issue appears in kernel estimation, a non-parametric statistical tech-

nique that is used to estimate the conditional expectation of a dependent variable

given the values of the independent variables (see Akaike, 1954, Rosenblatt, 1956,

Parzen, 1962, Silverman, 1986, among others). The estimator in kernel estimation

is a weighted average of the dependent variables in the sample. In order to reduce

the variance of the estimator in small samples, the kernel places weight on distant

observations, which inevitably yields a biased estimator. This property, known in

statistics as the bias-variance trade-off, applies equally to case-based inference.5

5To ensure asymptotic convergence of the kernel estimator, the relative weights placed on the
different observations in the sample generally depend on the size of the sample under this method.
Analogously, one could extend our setting to let the receiver’s similarity function adapt when
the receiver has access to more data (see Gayer, 2010, for an example). The sender would then
need to evaluate how the receiver’s similarity values evolve and this might affect his disclosure
incentives. For instance, if the relative weights placed on distant case types decrease with the
number of observations, the sender’s incentives to sample such types might be reduced. That
said, our main focus is on situations where the sender’s sampling capacity is “small”, so fixing
the similarity function is indeed plausible or, at the very least, serves as a good approximation.
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3 Optimal Data Collection

When determining the optimal collection of case types in the sample, the sender

faces a tradeoff between selecting case types that have a high likelihood of success

and case types that are sufficiently similar to the current problem in order to

significantly influence the receiver’s beliefs. The first aspect is captured by the

success probability pc derived from the initial data H, while the latter aspect is

measured by the similarity s(c0, c).

The sender, having to choose integer quantities of case types to maximize the

receiver’s expected estimate, faces an integer programming optimization problem

with a non-linear objective function. We will show that the solution to this combi-

natorial choice problem can be found via an algorithm that makes a greedy choice

according to a criterion that we introduce next. Generally, a greedy algorithm

selects the best option based on the current situation without taking into account

future choices. In our case, the choice of the algorithm at each stage will be guided

by a replacement index defined over the set of all pairs of case types. This index

will serve as a measure of the benefit associated with replacing one case type with

another in a given database.

Definition 1. For any two case types c, c′ ∈ C, define the replacement index

ϕ(c′, c) :=
s(c0, c

′)p′c − s(c0, c)pc
s(c0, c′)− s(c0, c)

.

The following lemma shows that the replacement index allows us to determine

whether, for a given collection of case types, the sender gains or loses from replacing

some case type c belonging to the collection with another case type c′.

Lemma 1. Let D be a case-type collection and c ∈ C a case type such that D(c) >

0. Define D′ as the case-type collection obtained from D by replacing one instance

of c with c′ ∈ C.6

(i) If s(c0, c
′) > s(c0, c), then:

p̂0(D
′) > p̂0(D) ⇐⇒ ϕ(c′, c) > p̂0(D).

(ii) If s(c0, c
′) < s(c0, c), then:

p̂0(D
′) > p̂0(D) ⇐⇒ ϕ(c′, c) < p̂0(D).

6Formally: D′(c) = D(c)− 1, D′(c′) = D(c′) + 1 and D′(c′′) = D(c′′) for all c′′ ̸= c, c′.
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Lemma 1 provides a simple condition to detect when the sender gains from

replacing a certain case type from a given collection. Specifically, suppose that

the sender has a collection of case types D and wishes to evaluate the impact on

the expected posterior of replacing one instance of case type c represented in D

with a more similar case type c′. Part (i) of Lemma 1 guarantees that such a

replacement is beneficial if and only if ϕ(c′, c) > p̂0(D). Symmetrically, part (ii)

characterizes the condition under which replacing an instance of case type c with

a less similar case type c′ makes the expected posterior increase.

To account for adding a case type c to a database with unfilled capacity,

it is useful to introduce a fictitious case type c∅ with s(c0, c∅) = 0 and pc∅ an

arbitrary number. This case type can be thought of as ‘no observation’ or an

observation that is not relevant to the problem at hand.7 Lemma 1 applies to

replacements of c∅ as well: replacing ‘no observation’ with an observation of case

type c in some case-type collection D generates a gain for the sender if and only

if ϕ(c, c∅) = pc > p̂0(D).8 For ease of notation, we will treat C as the set of case

types including the fictitious case type c∅. Since not sampling is always feasible,

we set Nc∅ ≥ N .

Note that Lemma 1 implies that sampling is beneficial for the sender as long

as there exists some case type c ∈ C such that pc > p0. To see this, consider the

collection consisting only of instances of the fictitious case type c∅—call it D0.

This can be interpreted as the initial situation where the sender has not sampled

yet. Since p̂0(D0) = p0, Lemma 1 implies that the sender gains from sampling one

instance of case types c if and only if pc = ϕ(c, c∅) > p̂0(D0) = p0. Thus, sampling

a case type c ∈ C increases the receiver’s posterior in expectation if and only if

it has a higher success probability than the current case type c0 according to the

initial data H and, hence, if and only if pc > p0.

The algorithm we now specify presents a sequence of ‘locally beneficial’ re-

placements from less similar to more similar case types. Starting from the empty

database, the algorithm will choose at every stage a replacement of one item in the

collection so as to maximize the replacement index. To formalize this procedure,

let us define for each case-type collection D, the set of feasible replacements of less

7Note that for all non-fictitious case types, we require similarities to be strictly positive, in
line with Billot et al. (2005). It is not difficult to add the possibility of irrelevant case types that
obtain a similarity value of zero; see Alon and Gayer (2020) for a characterization.

8Likewise, removing a case type c from a case-type collection D without replacement of
another case type in C is strictly beneficial if and only if pc < p̂0(D).
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similar case types by more similar case types:

R(D) = {(c′, c) ∈ C × C : s(c0, c
′) > s(c0, c), D(c) > 0 and D(c′) < Nc′}

In the definition and the analysis that follows, we will abstract from the non-

generic cases where ϕ(c, c′) = ϕ(c′′, c′′′) for some (c, c′) ̸= (c′′, c′′′).

Definition 2 (Greedy Search Algorithm (GSA)). Let D0 be such that D0(c∅) = N

and D0(c) = 0 for all c ∈ C\{c∅}. For each n ∈ N:

1. Find (c̃′, c̃) ∈ R(Dn) such that (c̃′, c̃) ∈ argmax(c′,c)∈R(Dn) ϕ(c
′, c).

2. If ϕ(c̃′, c̃) ≤ p̂0(Dn), then stop.

3. If ϕ(c̃′, c̃) > p̂0(Dn), let Dn+1 be the case-type collection obtained from Dn

by replacing case type c̃ with case type c̃′.

The algorithm begins at stage 0 with a collection of N instances of the fictitious

case type. Then, each stage n ∈ N consists of three steps. Given collectionDn, step

1 computes the index-maximizing replacement from less similar to more similar

case types subject to the feasibility constraint. Steps 2 and 3 compare the value

of the replacement index obtained in step 1 with the expected posterior of Dn.

By part (i) of Lemma 1 we know that the replacement is beneficial if and only

if the replacement index exceeds the expected posterior. Thus, the algorithm

stops at step 2 if this is not the case. Otherwise, we reach step 3, which defines

the collection Dn+1 by implementing the index-maximizing replacement. Since,

in each stage, we replace a less similar case type with a more similar case type,

every stage of the algorithm contributes to the total similarity of the sampled

collection. In other words, the degree of the total similarity to the current case

type c0 increases with the number of stages through which the algorithm runs.

We denote by n∗ the stage at which the algorithm stops.

We illustrate the algorithm with an example.

Example. There are three possible case types, C = {c, c′, c′′} with p0 < pc <

pc′ < pc′′ , s(c0, c) > s(c0, c
′) > s(c0, c

′′), and

ϕ(c, c′) < ϕ(c, c′′) < ϕ(c′, c′′).

The sender can only sample two observations (N = 2), of which at most one can

be of case type c′′. Hence, Nc′′ = 1, and Nc, Nc′ > 1. The algorithm starts with
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D0(c∅) = 2 and R(D0) = {(c, c∅), (c′, c∅), (c′′, c∅)}. The maximizing replacement

index over this set is ϕ(c′′, c∅) = pc′′ , so we get D1(c∅) = 1, D1(c
′′) = 1, and

R(D1) = {(c, c′′), (c′, c′′), (c, c∅), (c′, c∅)}. Case type c′′ is now at capacity, so it

cannot be added further. Since

ϕ(c, c′′) < ϕ(c, c∅) = pc, ϕ(c′, c′′) < ϕ(c′, c∅) = pc′ , and pc < pc′ ,

the maximizing replacement index in the second stage is ϕ(c′, c∅). Provided

p̂0(D1) < pc′ is satisfied, we thus set D2(c
′) = 1, D2(c

′′) = 1. The set of feasible

replacements is now given by R(D2) = {(c, c′), (c, c′′), (c′, c′′)} and the maximal

replacement index over this set is ϕ(c′, c′′). If p̂0(D2) > ϕ(c′, c′′), we stop at D2.

Otherwise we set D3(c
′) = 2, and so on.

It should be noted that, while the replacement index measures the qualita-

tive effect of a given replacement on the receiver’s expected estimate, it does not

quantify the magnitude of the change, as this will depend on the public data H

and the other sampled cases in D. Hence, given some case-type collection D, the

replacement associated with the highest index is not necessarily the replacement

that locally benefits the sender most. Instead, the algorithm proceeds through a

sequence of incremental improvements, whose order only depends on the replace-

ment indices (ϕ(c′, c))(c′,c)∈C×C. The following result shows that this procedure

finds the optimal case-type collection for the sender.

Theorem 1. The case-type collection Dn∗, obtained as the outcome of the GSA,

solves the sender’s optimization problem (2).

To show the optimality ofDn∗ , we start by establishing two preliminary results.

First, we demonstrate how the similarity of the different case types with c0 affects

the order of their associated replacement indices (Lemma 4 in the Appendix). In

particular, considering three case types c1, c2, c3, with c1 being most similar to c0

and c3 being least similar to c0, we show that either ϕ(c1, c2) < ϕ(c1, c3) < ϕ(c2, c3)

or ϕ(c2, c3) < ϕ(c1, c3) < ϕ(c1, c2) will hold. This ordering has implications for the

properties of the sets of feasible replacements R(Dn) at different stages n of the

algorithm. For instance, if there is a stage n at which the algorithm replaces case

type c3 with case type c1, it must be the case that either c2 is already at capacity

(Dn(c2) = Nc2) or c2 is not represented in the current collection (Dn(c2) = 0). If

not, replacing case type c3 with c2 and replacing case type c2 with c1 would be

feasible at stage n, so ϕ(c1, c3) cannot be the maximizing index across all feasible

replacements in R(Dn).
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Second, we prove that the maximizing replacement index is monotonically

decreasing in the algorithm stages n (Lemma 5). This result is non-trivial since

the feasibility set R(Dn) changes with each stage n. We show that having two

stages of the algorithm, n and n+1, such that the maximizing replacement index

at stage n is strictly greater than the one at stage n+ 1 is incompatible with the

properties of the sets of feasible replacements implied by Lemma 4.

With these preliminary results at hand, we prove that there is no single case

type replacement for Dn∗ that satisfies the constraints and increases the expected

estimate of the receiver. For case types with a greater similarity than those in

the final collection Dn∗ , this conclusion follows directly from the specification

of the algorithm. The main challenge lies in showing that replacing any case

type belonging to Dn∗ with another less similar case type is either unfeasible or

unprofitable. Using the established order on the set indices and the monotonicity

property of the maximizing replacement index, we prove that this requirement is

indeed satisfied. Finally, we show that if a case-type collection cannot be improved

upon by replacing a single case type, then it cannot be improved upon by the

replacement of a sub-collection of case types (Lemma 6).

As mentioned earlier, due to the integer constraints, the sender’s design prob-

lem is a complex combinatorial task. In principle, to solve the problem, one would

have to calculate the values of all possible case-type collections, the number of

which grows exponentially with the cardinality of C and N . In contrast, the GSA

finds the optimal case-type collection in a number of steps that is polynomial in

|C| and N . Starting from the empty case-type collection, each available slot is

replaced at most |C|− 1 times. Hence, the maximal number of algorithm stages is

N · (|C| − 1). The complexity within each stage is bounded by the total number

of indices that need to be compared. This number is given by
(|C|

2

)
= |C|(|C|−1)

2
.

Hence, the total number of steps of the algorithm is O(N · |C|3).

Properties of Dn∗. The characterization of the optimal case-type collection in

terms of the outcome of the GSA allows us to study the influence of the initial

data on the sender’s sampling choice. The next proposition shows how the optimal

case-type collection Dn∗ depends on the initial success probability p0 as well as

the total similarity of the initial public data to the current case type, s0H :=∑
c∈C s(c0, c)H(c).

Proposition 2. Let D∗(· | p0, s0H) denote the solution of the GSA for a given

success probability p0 and similarity s0H . The following statements hold:
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(i) If s0H > s′0H , then∑
c∈C

s(c0, c)D
∗(c | p0, s0H) ≥

∑
c∈C

s(c0, c)D
∗(c | p0, s′0H) .

(ii) If p0 > p′0, then∑
c∈C

s(c0, c)D
∗(c | p0, s0H) ≤

∑
c∈C

s(c0, c)D
∗(c | p′0, s0H) .

More relevant initial data, as captured by a larger s0H , leads the sender to

sample relatively less promising and more similar case types. Indeed, if s0H is rel-

atively large, it is difficult to change the receiver’s perception of action a. Bringing

to the fore good outcomes in cases that are very different from the current case

will have a limited impact on the receiver’s beliefs, so similarity becomes a more

important factor. Hence, a substantial amount of relevant public data incentivizes

the sender to sample more similar case types and thus reduces the bias in the re-

ceiver’s inference. The GSA captures precisely this intuition. The similarity s0H

does not affect the sequence of maximizing replacement indices along the stages of

the algorithm but does affect the speed with which the expected posterior p̂0(Dn)

increases with each stage n. The larger s0H , the slower the increase of the expected

posterior and, hence, the longer it takes for the algorithm to stop. Thus, as the

total similarity of the initial data increases, the algorithm implements the same

or strictly more replacements, thereby producing a collection of case types with a

higher total similarity to c0.

An increase in the success probability of the current case type p0 has the

opposite effect on the sender’s incentives. If p0 is relatively high, the sender

chooses case types that are likely to have a favorable outcome, even if they share

few attributes with the problem at hand. Recall that, by Lemma 1, the sender

only gains from case types with pc > p0. The larger p0, the more demanding this

constraint becomes. Furthermore, the larger p0, the larger the expected posterior

p̂0(Dn) for each intermediate case-type collection Dn. This implies that Condition

2. of Definition 2 becomes easier to satisfy. Consequently, the algorithm stops

earlier, thereby producing a collection of case types that is less similar to c0.
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3.1 Maximal Flexibility

This section considers the special case where the sender faces no constraints on the

case-type composition except for the overall sampling constraint. This flexibility

allows us to characterize the optimal case-type collection in closed form and to

study the implications of tightening/relaxing the sampling capacity. The following

proposition characterizes the solution of the sender’s optimization problem when

the sender has the flexibility to sample any given case type up to N times.

Proposition 3. Assume Nc ≥ N for all c ∈ C and define

c∗ := argmax
c∈C

(
s(c0, c)(pc − p0)

Ns(c0, c) +
∑

c′∈C s(c0, c
′)H(c′)

)
. (5)

The optimal case-type collection Dn∗ is such that Dn∗(c∗) = N and Dn∗(c) = 0 for

all c ̸= c∗.

A key feature of the environment with maximal flexibility is that the sender

chooses a homogeneous database featuring just one case type. The sender’s op-

timization problem thus has a corner solution. There are two situations to be

distinguished. If the success probability of the current case type is higher than

that of all others (pc ≤ p0,∀c ∈ C\{c∅}), then the sender has no incentives to

sample. In this case, we have c∗ = c∅.
9

If instead there is a case type c ∈ C such that pc > p0, then the sender exhausts

his sampling capacity, as testing any additional instance of case type c will increase

the receiver’s estimate in expectation. Proposition 3 demonstrates that the sender

cannot gain from combining different case types in one database and that the case

type he samples is determined as the maximizer of the success-similarity index

in (5).10 This index is increasing in both pc and s(c0, c). Hence, a case type is

more likely to be sampled if it has a high success probability according to the initial

data and if it shares many attributes with the current case. The maximization

problem is trivially solved if there exists a case type that dominates all others in

terms of both success probability and similarity. Outside of this case, the sender

will face a tradeoff along these two dimensions.

9Recall s(c0, c∅) = 0.
10Note that the maximizer of the index in (5) is not necessarily unique. For instance, there

could be two maximal case types, one having a relatively higher probability of success and the
other being relatively more similar. In the absence of additional assumptions, the sender would
be indifferent between these two case types. This case is clearly knife-edged and will thus be
ignored.
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The choice problem is illustrated in Figure 1. The black and gray dots illus-

trate different case types, identified by their similarity to the current case s(c0, c)

and their success probability pc. Gray dots represent case types that are strictly

dominated by other case types: for each case type represented by a gray dot, there

exists another case type, which has a higher similarity and a higher success prob-

ability according to the initial data H. The case type maximizing the index (5) is

marked by a red circle. The blue curve then shows all combinations of similarity

and success probability that give rise to that same value of this index.

0 1
s(c0 ,c)

pc

Figure 1: Different case types c in the (s(c0, c), pc)-space.

The value of the index depends on the sender’s sampling capacity N , the size

and relevance of the initial data, summarized by s0H , and the success probability

of the current case type p0 according to the initial data. From Proposition 2, we

know that the similarity of the optimal case type, s(c0, c
∗), is weakly increasing in

the similarity s0H of the public data to the current case type and decreasing in the

initial success probability p0. The following proposition shows how the optimal

case type c∗ depends on the sampling capacity N .

Proposition 4. Let c∗(N) denote the case type maximizing (5) for a given capacity

N . Assume there is some c ∈ C such that pc > p0.

(i) If N ′ > N , then s(c0, c
∗(N ′)) ≤ s(c0, c

∗(N)).

(ii) There is a threshold N̄ such that for all N > N̄ , the sender samples case

type

cmax = argmaxc∈C\{c∅}

(∑
c′∈C s(c, c

′)H(c′, G)∑
c′∈C s(c, c

′)H(c′)

)
.
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Proposition 4 shows that a larger sampling capacity N increases the sender’s

incentives to sample case types that are promising in terms of their success prob-

ability but may be rather different from the current case. This is because, with a

larger sampling capacity, the impact of the initial data H on the receiver’s esti-

mate can be weakened more easily. Indeed, when the sender has a large sampling

capacity, there is no need to rely on cases that share many attributes with p0 to

modify the receiver’s beliefs. Intuitively, for N sufficiently large, the sender can

overwhelm the initial data using any case type, so similarity becomes relatively

less important. In the limit, as N → +∞, the significance of the similarity to c0

vanishes altogether, and the sender simply samples the case type c that, according

to the initial data, is most likely to generate outcome G.

Figure 2 illustrates the comparative statics results. AsN increases, the sender’s

indifference curve becomes flatter: the sender is more willing to sacrifice similar-

ity for a higher likelihood of generating favorable outcomes. The case type that

was optimal before the increase in sampling capacity (see Figure 1) is now domi-

nated by a case type with a strictly lower similarity and a strictly higher success

probability, marked by the red circle. In the limit as N → ∞, the indifference

curve becomes completely flat so that the optimal case type c is the one with

the highest value of pc (the leftmost point in Figure 2). Note that a qualitatively

similar picture obtains when we increase p0 or decrease s0H . In the latter case, the

indifference curve becomes flat in the limit as s0H → 0. Indeed, as the relevance

of the initial data vanishes, the receiver’s estimate converges to the frequency of

G in the new data, even if the sampled case type is very dissimilar to c0.

In summary, the sender has the ability to influence the receiver’s estimate

of the outcomes in problem c0 by selectively sampling case types that are more

promising than c0 based on the initial data H. The sender’s ability to bias the

receiver is limited by the fact that the receiver discounts observations that share

few attributes with the current case. This does not apply when the sender can

generate a substantial amount of data or if the relevance of the existing public data

to the current problem is negligible. In contrast, when the capacity constraint is

tight or there is substantial prior knowledge from existing data, the sender is

compelled to trade off the probability of success with the similarity to the current

case.
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0 1
s(c0 ,c)

pc

Figure 2: An increase in N results in a flatter indifference curve (graphed in
orange). Compared to the situation in Figure 1, the index is now maximized by a
case type with lower similarity and higher success probability.

3.2 Discussion

Sampling costs. We assumed throughout that the sender has a fixed sampling

capacity N . The cost of sampling n ≤ N observations is thus zero, while the cost

of sampling more than N observations is arbitrarily large. The setting can be

extended to the case where the sender’s cost of sampling n cases is described by a

smoothly increasing and weakly convex function K(n). The sender’s optimization

problem then becomes:

max
D

p̂0(D)−K

 ∑
c∈C\{c∅}

D(c)


subject to (3).

As long as the cost function does not depend on the sampled case types, it is

clear that the optimal case-type composition for any sample size n will continue

to be described by Theorem 1. Our previous characterization thus applies, but

now the sender has to solve the additional problem of determining the optimal

sample size. Since the GSA does not necessarily pick the replacement with the

highest marginal gain, it is not straightforward to suitably modify the algorithm,

for instance, by comparing in each stage the marginal replacement gain with the

associated cost. However, given that the gains from sampling are bounded above

by one, the size of the optimal case-type collection is bounded above by N :=

min{n ∈ N : K(n) ≥ 1}. To determine the sender’s solution, it thus suffices to
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compare the net payoff associated with the case-type collection obtained as an

outcome of the GSA in N cases. Hence, for any increasing convex cost function

K(·), our method can be used to solve the sender’s optimization problem in a

number of steps that is polynomial in the input.

Sampling gains. The sender’s payoff in our setting is linearly increasing in

the receiver’s posterior, so his objective is to maximize the expected value of

the receiver’s final estimate. The assumption that the sender’s payoff increases

continuously in the receiver’s estimate is natural in settings where the receiver has

the ability to influence the choice of action but does not possess full authority over

the decision. Linearity is instead a simplifying technical assumption, which isolates

the sender’s incentives to bias the receiver’s estimate from other known persuasion

forces. A natural alternative assumption is that the receiver adopts the action if

and only if her posterior is above a threshold ρ ∈ (0, 1).11 This assumption is

plausible if the receiver has full authority to decide on the implementation of the

action and there are no additional factors that could influence her decision. The

sender’s payoff as a function of the receiver’s posterior, in this case, is piecewise

constant with a single upward jump at ρ.

To illustrate the implications of relaxing linearity, let us focus on this case and

assume the receiver has a fixed acceptance threshold ρ. The goal of the sender is

then to maximize the probability with which the receiver’s estimate exceeds this

threshold. Formally, the sender’s optimization problem is described by

max
D

Pr

(∑
c∈C s(c0, c)[D(c,G) +H(c,G)]∑

c∈C s(c0, c)[D(c) +H(c)]
≥ ρ

)
subject to (3) and (4), where D is a random variable induced by the case-type

collection D. Clearly, if p0 ≥ ρ, the sender’s problem is trivial because adoption is

guaranteed even if he does not provide additional data. We thus focus on the case

p0 < ρ. Since each data point corresponds to a Bernoulli experiment, the collection

of observations featuring the same case type follows a binomial distribution. Using

this fact, the adoption probability takes the form

Pr

(∑
c∈C

XD(c),pcs(c0, c) ≥ ρ
∑
c∈C

s(c0, c)D(c) + (ρ− p0)
∑
c∈C

s(c0, c)H(c)

)
,

11The literature on Bayesian persuasion considers significantly more general objective func-
tions.
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where Xn,p ∼ B (n, p).

Since our sender does not have full flexibility in choosing the distribution over

induced posterior beliefs but is constrained by the underlying structure of finite

databases and available case types, standard tools, in particular concavication

methods, are not applicable here. The main tradeoff, however, is easy to see when

the sender is restricted to homogeneous databases that feature only a single case

type c ∈ C. In this case, the sender’s problem amounts to

max
c∈C

Pr

(
Xn,pc ≥ ρn+

ρ− p0
s(c0, c)

∑
c′∈C

s(c0, c
′)H(c′)

)

subject to n ≤ min{Nc, N}. The expression clearly shows that the adoption

probability is increasing in pc and increasing in s(c0, c). When choosing a case

type, the sender thus faces a tradeoff that is qualitatively similar to the one of

the baseline model: he must weigh the likelihood of generating successes against

the similarity to the current case. The expression further reveals that similarity

becomes relatively more important when the gap between the acceptance threshold

ρ and the prior obtained from the initial data becomes bigger. When ρ − p0 is

relatively large, the new data has to be sufficiently relevant for the current case in

order to sway the receiver into adopting the desired action.

There are two interesting differences with respect to the baseline model. First,

when the receiver has a fixed acceptance threshold, it may be optimal for the

sender to sample without exhausting his capacity. In particular, if there is no case

type c with pc ≥ ρ or if such case types have little similarity with the current case,

then the sender must sample a case type c̃ with a prior success probability below

the acceptance threshold (pc̃ < ρ). If the sender collects a lot of data on case type

c̃, he expects the receiver’s posterior belief to be in a small neighborhood of pc̃,

and thus below ρ, with high probability. Assuming that c̃ is sufficiently similar to

c0 so that a few successes suffice to persuade the receiver, the sender can generate

a higher acceptance probability by relying on a small sample in the hope of getting

lucky.

Second, there are now situations where, due to complementarities between

case types, the sender wants to sample more than one type even when case-type-

specific sampling constraints are non-binding. We illustrate this feature in a simple

example. Suppose there are only two case types, c1 and c2. Case type c1 is

more similar to the current problem but less likely to generate successes, i.e.,

s(c0, c1) > s(c0, c2) and pc1 < pc2 . The sender can only generate two data points
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(N = 2), both of which have to be successful in order to persuade the receiver.

Within the sampling constraint, the sender is free to choose any combination of

case types (Nc1 , Nc2 ≥ 2). Now suppose that s(c0, c2) is sufficiently small so that,

conditional on observing two successes, the receiver is willing to adopt action a

if and only if at least one of the two data points is of the more similar case type

c1.
12 The sender’s optimal sampling strategy is then C = (c1, c2). The adoption

probability generated by this strategy is pc1pc2 , which is strictly higher than p2c1 ,

the adoption probability when sampling only case type c1. All other sampling

strategies lead to certain rejection. The sender’s sampling problem is thus solved

by a non-homogeneous database. Intuitively, by combining case types c1 and

c2, the sender maximizes the probability of favorable observations subject to the

constraint that, on average, these observations are still sufficiently relevant to the

case at hand.

4 Competing Senders

In many situations, decision-makers have access to multiple experts whose pref-

erences may differ. For instance, multiple lobbyists working to advance different

political agendas may try to influence a policymaker. The question is then whether

the policymaker benefits from the ability to obtain information from both sides of

the political aisle. To capture such situations, we modify the setup of the baseline

model and allow for competition between senders.

As before, there is one receiver who bases her inference on a similarity-weighted

frequency criterion. There are two senders, indexed by i = A,B, each of whom

can sample up to a total of N i observations. For the sake of analytical tractability,

we focus on the case where senders have maximal flexibility, as in Section 3.1, so

that we can ignore case-type specific sampling constraints. Senders have opposing

preferences over the receiver’s posterior belief. Sender A, as before, would like to

boost the image of action a in the eyes of the receiver, whereas Sender B wants the

opposite: he has a preference for the status quo and would thus like to discredit

action a. More specifically, we maintain the assumption that Sender A’s payoff is

12Formally, the following two inequalities must hold:

ρ >
s(c0, c1) +

∑
c∈C s(c0, c)H(c,G)

s(c0, c1) + s0H
,
2s(c0, c2) +

∑
c∈C s(c0, c)H(c,G)

2s(c0, c2) + s0H

ρ <
s(c0, c1) + s(c0, c2) +

∑
c∈C s(c0, c)H(c,G)

s(c0, c1) + s(c0, c2) + s0H
.

24



linear and increasing in the realized posterior and analogously add that Sender B’s

payoff is linear and decreasing in the realized posterior. Sender A’s optimization

problem then remains to maximize the receiver’s expected posterior belief, while

Sender B’s optimization problem is to minimize it. Both senders share the same

prior on the success probabilities of the different case types, which is again based

on the similarity-weighted frequency computed over the initial database H.

Best responses. The strategic interaction between the two senders takes the

form of a zero-sum game. Suppose that Sender A’s strategy is to sample a col-

lection DA of case types, while Sender B’s strategy is to sample the collection

DB. These samples jointly induce a random database. The receiver’s expected

posterior belief is

p̂0(D
A +DB) :=

∑
c∈C s(c0, c)[(D

A(c) +DB(c))pc +H(c,G)]∑
c∈C s(c0, c)(D

A(c) +DB(c) +H(c))
.

From the perspective of each sender, the problem of maximizing or minimizing

this expectation is similar to the problem analyzed in Section 3.1. Compared to

the single-sender benchmark, each sender now optimizes against a larger initial

database, which is the combination of H and the database generated by the other

sender. From the viewpoint of a given sender, competition thus changes the total

similarity of the ‘external database’ to case type c0—i.e., the data publicly avail-

able or supplied by the other sender— as well as the expected baseline probability

of success.

Lemma 2. For each case-type collection D, define

p̃0(D) :=

∑
c∈C s(c0, c)[D(c)pc +H(c,G)]∑

c∈C s(c0, c)[D(c) +H(c)]
.

A sender’s best response to the other sender playing a pure strategy D is:

1. For Sender A, to sample NA observations of type

c∗A = argmax
c∈C

(
s(c0, c)(pc − p̃0(D))

NAs(c0, c) +
∑

c∈C s(c0, c)[D(c) +H(c)]

)
.

2. For Sender B, to sample NB observations of type

c∗B = argmin
c∈C

(
s(c0, c)(pc − p̃0(D))

NBs(c0, c) +
∑

c∈C s(c0, c)[D(c) +H(c)]

)
.
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Lemma 2 shows that senders best respond to a pure strategy by either not

sampling (c∗i = c∅, i = A,B) or by sampling a single case type up to capacity,

just as in the single sender setting. As stated above, the best response of each

sender depends on the choice of the other sender through the similarity weight∑
c∈C s(c0, c)[D(c)+H(c)] as well as through p̃0(D), the expected probability that

will obtain if the considered sender provides no additional data.

The description of the best response in Lemma 2 is valid only if the senders

play a pure strategy. It is well known that zero-sum games often do not have pure

strategy equilibria. The following lemma shows that this is not a concern here.

Lemma 3. There exists an equilibrium in pure strategies.

The existence of a pure strategy equilibrium is proved by contradiction. Given

Lemma 2, a pure strategy can be described by the case type a given sender samples.

If no pure strategy equilibrium exists, then there must be a set of pure strategies

that form a cycle of best responses (recall that there is a finite number of pure

strategies available to each sender). We show that within this cycle, there is a

sub-cycle containing four case types, cAj , c
A
j+1 for Sender A and cBj , c

B
j+1 for Sender

B, that yield the following preferences: Sender A prefers sampling case type cAj to

case type cAj+1 when Sender B chooses case type cBj and the converse when Sender

B chooses case type cBj+1. At the same time, Sender B prefers case type cBj to case

type cBj+1 when Sender A chooses case type cAj+1 and the converse when Sender A

chooses case type cAj . These preferences correspond to four inequalities, where at

least one of them must be strict. Summing over these inequalities generates the

contradiction.

Equilibrium. We now examine how competition between senders impacts equi-

librium sampling. Specifically, we investigate the conditions under which each

sender provides data to the receiver. To this end, let c̄∗ denote the case type max-

imizing the success-similarity index (5) under the initial data H and c∗ denote

the case type minimizing this index. These two case types describe, respectively,

Sender A’s and Sender B’s optimal sampling if they act in isolation.

Proposition 5. There is a pure-strategy equilibrium with only one sender sam-

pling if and only if for all c ∈ C,

pc ≥
NAs(c0, c̄

∗)pc̄∗ +
∑

c∈C s(c0, c)H(c,G)

NAs(c0, c̄∗) +
∑

c∈C s(c0, c)H(c)
, (6)
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or for all c ∈ C,

pc ≤
NBs(c0, c

∗)pc∗ +
∑

c∈C s(c0, c)H(c,G)

NBs(c0, c∗) +
∑

c∈C s(c0, c)H(c)
. (7)

If neither of these conditions holds, then there is a pure strategy equilibrium in

which both senders sample up to capacity.

The result directly follows from the characterization of the senders’ best re-

sponses in Lemma 2 and therefore its proof is omitted. Despite its simplicity,

the result carries interesting implications in terms of competition between the

two senders and their incentives to take up sampling. Consider the case where

Sender B samples the case type c∗ that would be optimal if Sender A were not

present. Note that if C contains case types with a success probability below p0,

then pc∗ < p0 and the right-hand side of (7) is strictly smaller than p0. Suppose

now there is some c ∈ C such that

NBs(c0, c
∗)pc∗ +

∑
c∈C s(c0, c)H(c,G)

NBs(c0, c∗) +
∑

c∈C s(c0, c)H(c)
< pc < p0,

and that all case types with a higher success probability have an arbitrarily low

similarity with c0. Then, Sender A will find it optimal to sample case type c, even

though it has a lower success probability than c0 according to the initial data.

This is because by sampling case type c, Sender A reduces the impact of Sender

B’s sampling on the receiver’s final estimate. Providing evidence on case type c

decreases the weight the receiver assigns to even more detrimental case types.

In order to weaken the evidence provided by his opponent, Sender A, in this

case, chooses a case type that is less promising but more similar to c0 than the

one he would choose in isolation. We next show that this property holds more

generally.

Proposition 6. In any pure strategy equilibrium where both senders sample,

1. Sender A chooses a case type c such that s(c0, c) ≥ s(c0, c̄
∗);

2. Sender B chooses a case type c′ such that s(c0, c
′) ≥ s(c0, c

∗).

In the proof, we show that from the perspective of Sender A, the receiver’s

expected estimate can be expressed as a weighted average of the receiver’s estimate

when Sender A acts in isolation and chooses to sample case type c and the success

probability of the case type chosen by Sender B. The weights in this average
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depend on the similarity value of Sender A’s chosen case type c. We then establish

that choosing any case type with a lower similarity than that of case type c̄∗ is

dominated by case type c̄∗. An analogous argument applies to Sender B.

Our findings are related to some results in the literature on competition be-

tween multiple senders under Bayesian persuasion. Among others, Gentzkow and

Kamenica (2017), Au and Kawai (2020), and Koessler, Laclau, Renault, and

Tomala (2021) show that competition leads to more informative equilibria in com-

parison to the collusive outcome. Consistently with the existing literature, our re-

sults indicate that competing senders will generate a more balanced composition

of observations as compared to when they are the sole provider of information.

In particular, competition in our case-based environment enhances the relevance

of the data made available to the receiver by inducing both senders to select case

types more similar to the current one in comparison to their sampling behavior in

isolation.

5 Conclusions

This paper introduces a classical statistics approach to persuasion, considering a

receiver who forms an estimate of the outcomes of a new action via the similarity-

weighted frequencies in the provided data. The sender decides on the case types

in the database and faces a novel tradeoff between selecting types that are rela-

tively promising according to the initial data and sampling types that share more

characteristics with the problem faced by the receiver. Due to the fact that sig-

nals are discrete databases, the sender’s design problem becomes a combinatorial

optimization problem over sets of integer-valued alternatives. We characterize the

sender’s optimal sampling strategy as the outcome of a greedy search algorithm

and study the impact of the initial public data and the sender’s sampling capacity

on the solution.

The Bayesian approach to information design has generated many important

economic insights. We believe that our model complements the literature by of-

fering a number of new benefits. First, being less abstract than the canonical

approach, it can help to clarify the link between the characteristics of signals and

the belief-formation process. Second, the explicit formulation of data facilitates

the modeling of possible constraints on the set of feasible posterior distributions,

for instance, via the set of feasible case types, the tightening/relaxation of sam-

pling constraints, or regulatory restrictions on experimental trials. Finally, our
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model can be seen as a stepping stone to the analysis of more general statistical

inference procedures in games with strategic data provision.

A Appendix

Notation To ease notation, this appendix abbreviates by scc′ the similarity

s(c, c′), between case types c and c′, with s0c denoting the similarity s(c0, c) be-

tween case types c0 and c. Furthermore, for a database D and a case type c′, we

define

S(c,D) =
∑

(c′,y)∈C×{G,B}

s(c, c′)D(c′, y)

as the total similarity of c with cases belonging to D. Finally, we denote by DG

the sub-database of D containing only those observations for which the realized

outcome was G. Hence, S(c,DG) =
∑

c′∈C s(c, c
′)D(c′, G) is the total similarity of

c′ with the successful observations in D.

A.1 Proof of Lemma 1

Let D be a case-type collection and c, c′ ∈ C be two case types such that D(c) > 0

and D(c′) < Nc′ . Let D′ be a case-type collection such that D′(c) = D(c) − 1,

D′(c′) = D(c) + 1 and D′(c′′) = D(c′′) for all c′′ ̸= c, c′.

(i) Suppose that s0c′ > s0c. Then:

p̂0(D
′) =

∑
c∈C

pcs0cD(c) + s0c′pc′ − s0cpc + S(c0,HG)∑
c∈C

s0cD(c) + s0c′ − s0c + S(c0,H)
>

∑
c∈C

pcs0cD(c) + S(c0,HG)∑
c∈C

s0cD(c) + S(c0,H)
= p̂0(D)

⇐⇒ s0c′pc′ − s0cpc
s0c′ − s0c

>

∑
c∈C

pcs0cD(c) + S(c0,HG)∑
c∈C

s0cD(c) + S(c0,H)
= p̂0(D)

⇐⇒ ϕ(c′, c) > p̂0(D)
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(ii) Suppose that s0c′ < s0c. Then:

p̂0(D
′) =

∑
c∈C

pcs0cD(c) + s0c′pc′ − s0cpc + S(c0,HG)∑
c∈C

s0cD(c) + s0c′ − s0c + S(c0,H)
>

∑
c∈C

pcs0cD(c) + S(c0,HG)∑
c∈C

s0cD(c) + S(c0,H)
= p̂0(D)

⇐⇒ s0c′pc′ − s0cpc
s0c′ − s0c

<

∑
c∈C

pcs0cD(c) + S(c0,HG)∑
c∈C

s0cD(c) + S(c0,H)
= p̂0(D)

⇐⇒ ϕ(c′, c) < p̂0(D)

A.2 Proof of Theorem 1

For any case-type collection C, denote by

ϕ∗(C) := max
(c,c′)∈R(C)

ϕ(c, c′)

the maximal index over the set of feasible replacements and define ϕ∗
n := ϕ∗(Dn−1).

A.2.1 Preliminary Lemmas

Before moving to the main argument, let us prove three preliminary lemmas.

Lemma 4. Consider three case types c, c′, c′′ such that s0c > s0c′ > s0c′′. Then

min{ϕ(c, c′), ϕ(c′, c′′)} < ϕ(c, c′′) < max{ϕ(c, c′), ϕ(c′, c′′)}

Proof. Towards a contradiction, assume first ϕ(c, c′′) > ϕ(c, c′), ϕ(c′, c′′). The in-

equality ϕ(c, c′′) > ϕ(c, c′) can be written as

s0cpc − s0c′′pc′′

s0c − s0c′′
>

s0cpc − s0c′pc′

s0c − s0c′

⇐⇒ (s0c − s0c′)(s0cpc − s0c′′pc′′) > (s0c − s0c′′)(s0cpc − s0c′pc′)

⇐⇒ s0c(s0c′pc′ − s0c′′pc′′) + s0c′′(s0cpc − s0c′pc′) > s0c′(s0cpc − s0c′′pc′′) .

The inequality ϕ(c, c′′) > ϕ(c′, c′′) can be written as

s0cpc − s0c′′pc′′

s0c − s0c′′
>

s0c′pc′ − s0c′′pc′′

s0c′ − s0c′′

⇐⇒ (s0c′ − s0c′′)(s0cpc − s0c′′pc′′) > (s0c − s0c′′)(s0c′pc′ − s0c′′pc′′)

⇐⇒ s0c′(s0cpc − s0c′′pc′′) > s0c(s0c′pc′ − s0c′′pc′′) + s0c′′(s0cpc − s0c′pc′) .

Both conditions together yield a contradiction. By an analogous argument (with
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reversed inequalities), we can also exclude the case ϕ(c, c′′) < ϕ(c, c′), ϕ(c′, c′′).

The next lemma shows that the maximizing replacement index is (weakly)

decreasing with each stage of the algorithm.

Lemma 5. ϕ∗
n is monotonically decreasing in n.

Proof. Suppose the statement is not true: there exists some n such that ϕ∗
n < ϕ∗

n+1.

Let ϕ(ci, cj) = ϕ∗
n and ϕ(ck, cl) = ϕ∗

n+1 with s0ci > s0cj and s0ck > s0cl (cj, cl could

be the ficticious case type). By assumption, we have ϕ(ci, cj) < ϕ(ck, cl), so it

must be the case that at stage n replacing type cl with type ck was not feasible.

This can be for two reasons:

1. Dn−1 contains no cl-types: Dn−1(cl) = 0;

2. at stage n, the capacity of case types ck was exhausted: Dn−1(ck) = Nck .

We start with the first case. Since Dn−1 contains no cl-types and since replacing

type cl with type ck is feasible in stage n + 1, we must have ci = cl (case type cl

enters in stage n) and hence pck < pcl = pci < pcj . Since ϕ(ci, cj) = ϕ(cl, cj) <

ϕ(ck, cl), Lemma 4 implies ϕ(cl, cj) < ϕ(ck, cj). But this implies that in stage n

case type cj is replaced by case type ck rather than ci = cl, unless adding case ck

is not feasible. In this case, however, it will not be feasible in stage n+ 1 either.

Moving to the second case, assume Dn−1(ck) = Nck . In order for the replace-

ment of case type cl with case type ck to be feasible at stage n + 1, it must

be that case type ck is replaced in stage n. We thus have cj = ck and hence

pci < pcj = pck < pcl . The assumption ϕ(ci, cj) = ϕ(ci, ck) < ϕ(ck, cl) implies

ϕ(ci, ck) < ϕ(ci, cl) (again by Lemma 4). Since the latter inequality holds and

the algorithm replaces case type ck with case type ci in stage n, it means that

replacing case type cl with case type ci is not feasible at this stage. Hence, Dn−1

contains no cl types, which brings us back to case 1.

Single replacements. We will now show that Dn∗ cannot be improved upon by

replacing a single case type c with another case type c′. For case types c, c′ with

s0c′ > s0c, this property follows directly from the specification of the algorithm

and Lemma 1. We can thus focus on similarity-reducing replacements.

Towards a contradiction, suppose then there is a pair of case types (c, c′) with

s0c > s0c′ such that replacing case type c with case type c′ is optimal, i.e. ϕ(c, c′) <

p̂0(Dn∗), and feasible, i.e. Dn∗(c) > 0 and Dn∗(c′) < Nc′ . Noting ϕ(c, c′) <

p̂0(Dn∗) < ϕ∗
n∗ , let n∗ ≤ n∗ be the first stage in the algorithm such that there is a

pair (ci, cj) with s0ci > s0cj satisfying the properties
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1. ϕ(ci, cj) < ϕ∗
n∗ :

2. Dn∗(ci) > 0;

3. Dn∗(cj) < Ncj .

Property (b) implies that there exists a subsequence of algorithm stages Si =

(ni
1, n

i
2, ..., n

i
K) with ni

K ≤ n∗ and an ordered set of case types Ci = {ci1, ci2, ..., ciK}
with s(ci1, c0) < ... < s(ciK , c0) and ciK = ci such that13

• ϕ∗
ni
k
= ϕ(cik, c

i
k−1), where ci0 := c∅;

• Dn(c
i
k) > 0 for all n ∈ {ni

k, ..., n
i
k+1 − 1}, k ∈ {1, ..., K − 1};

• Dn(ci) > 0 for all n ∈ {ni
K , ..., n∗}.

By monotonicity of the algorithm (Lemma 5) and definition of Si, ϕ(cik, c
i
k−1) is de-

creasing in k. By, Lemma 4, this implies ϕ(cik, c
i
k−1) < ϕ(cik, c

i
k−2) < ϕ(cik−1, c

i
k−2),

which in turn implies ϕ(cik, c
i
k−2) < ϕ(cik, c

i
k−3) < ϕ(cik−2, c

i
k−3), and so on. Hence,

for all k ∈ {1, ..., K} and k′ < k, ϕ(cik, c
i
k′) is decreasing in k′. Since ϕ(ci, cj) <

ϕ(ci, c
i
K−1), a direct implication of this property is cj ̸∈ Ci.

Case type cj must be at capacity when ci enters. Let Si be a subsequence of

algorithm stages as defined above and let ni
k̃
be the first stage of the subsequence

Si such that the corresponding case type ci
k̃
has a similarity s(ci

k̃
, c0) greater than

s(cj, c0). That is, k̃ is the smallest number such that s(ci, c0) > s(cik, c0) > s(cj, c0)

for all k ∈ {k̃, ..., K−1}. Since ϕ(ci, cj) < ϕ∗
n∗ < ϕ(ci, c

i
k) for all k, Lemma 4 implies

ϕ(cik, cj) < ϕ(ci, cj) for all k ∈ {k̃, ..., K − 1}, (8)

which further implies ϕ(cik, cj) < ϕ(cik, c
i
k−1) for all k ∈ {k̃, ..., K− 1}. Considering

k = k̃ with s(ci
k̃
, c0) > s(cj, c0) > s(ci

k̃−1
, c0), we then have ϕ(ci

k̃
, ci

k̃−1
) < ϕ(cj, c

i
k̃−1

),

again by Lemma 4.14 Hence, at stage ni
k̃
, case type cj must be at capacity:

Dni
k̃
(cj) = Ncj .

Let nj ≤ n∗ be the first stage following ni
k̃
at which case type cj is replaced by

another case type. Suppose ni
k < nj < ni

k+1 for some k ∈ {k̃, ..., K − 1}. Then,

by condition 8, Properties 1-3 are satisfied for the pair (cik, cj) at stage nj, which

13Si describes the sequence of replacements that lead to ci.
14If k̃ = 1, ci

k̃−1
= c∅.
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violates our definition of ci. We thus have nj = n∗ < ni
K .

Replacement of cj. Let cl be such that ϕ∗
n∗ = ϕ(cl, cj). Since n∗ < ni

K , we

have ϕ(cl, cj) < ϕ(ci, c
i
K−1). We distinguish two cases according to the relative

similarity of case type cl:

1. s0ci > s0cl : The inequality ϕ(ci, cj) < ϕ(cl, cj) implies, by Lemma 4, ϕ(ci, cl) <

ϕ(cl, cj). Since cl replaces cj in stage n∗, we must have Dn∗−1(cl) < Ncl . Note

further that

ϕ(ci, cl) < ϕ(cl, cj) = ϕ∗
n∗ < ϕ∗

n∗−1.

These two properties, together with Dn∗−1(ci) > 0, violate the definition of

n∗ as the first stage in the algorithm satisfying Properties 1-3.

2. s0cl > s0ci : The inequality ϕ(ci, cj) < ϕ(cl, cj) now implies ϕ(cl, cj) <

ϕ(cl, ci), again by Lemma 4. Given Dn∗−1(ci) > 0, this contradicts ϕ∗
n∗ =

ϕ(cl, cj), as cl would be replaced by ci rather than cj according to the algo-

rithm.

Combined Replacements. What remains to be shown is if the sender cannot

increase p̂0 locally by replacing a single case type in Dn∗ , then p̂0 cannot be

increased either by replacing a subset of case types in the collection.

Lemma 6. Let D and D′ be two case-type collections such that p̂0(D) < p̂0(D
′).

Then there exist two case types c, c′ ∈ C such that D(c) > 0 and a case-type

collection D̃ defined by D̃(c) = D(c)− 1, D̃(c′) = D(c′) + 1 and D̃(c′′) = D(c) for

all c′′ ̸= c, c′ such that p̂0(D̃) > p̂0(D).

Proof. Consider case-type collection D and suppose there is no single replacement

that yields an increase of the expected posterior. That is, for all c with D(c) > 0

and c′ ̸= c, we have ϕ(c′, c) ≤ p̂0(D) if s0c′ > s0c and ϕ(c′, c) ≥ p̂0(D) if s0c′ < s0c.

Towards a contradiction, suppose then there is an alternative case-type collection

D′ such that p̂0(D
′) > p̂0(D). Let us define ∆ : C → Z such that ∆(c) =

D′(c)−D(c) for all c ∈ C. Following the same argument as in the proof of Lemma

1, p̂0(D
′) > p̂0(D) requires ∑

c∈C pcs0c∆(c)∑
c∈C s0c∆(c)

> p̂0(D)

if
∑

c∈C s0c∆(c) > 0 and the reverse inequality if
∑

c∈C s0c∆(c) < 0. In either case,
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we can write this condition as∑
c∈C

pcs0c∆(c) >
∑
c∈C

p̂0(D)s0c∆(c) .

Since
∑

c∈C ∆(c) = 0, there must then exist two case types c′ and c such that

∆(c′) > 0, ∆(c) < 0, and

pc′s0c′ − pcs0c > p̂0(D)(s0c′ − s0c).

If s0c′ > s0c, this inequality is equivalent to ϕ(c′, c) > p̂0(D), whereas if s0c′ < s0c,

it is equivalent to ϕ(c′, c) < p̂0(D). Both cases contradict the assumption that

case-type collection D cannot be improved upon via a single replacement.

A.3 Proof of Proposition 2

Let D∗(p0, s0H) denote the solution of the algorithm for a given probability of

success p0 and similarity s0H . Note that the order of steps through which the

algorithm runs and the associated case-type collections, ⟨D0, D1, D2, ...⟩, are in-

dependent of H. The public data only matters for the stopping point of the

algorithm. According to Definition 2, the index of the last stage, denoted by

n∗(p0, s0H), is the largest number such that for all n < n∗(p0, s0H)

p̂0(Dn; p0, s0H) =

∑
c∈C pcs0cDn(c) + p0s0H∑

c∈C s0cDn(c) + s0H
< ϕ∗(Dn).

We observe that p̂0(Dn; s0H , p0) is increasing in p0 and, for all n ≤ n∗(p0, s0H),

decreasing in s0H . To see the latter, consider

∂(p̂0(Dn; p0s0H))

∂s0H
= −

∑
c∈C(pc − p0)s0cDn(c)(∑
c∈C s0cDn(c) + s0H

)2 . (9)

Since each replacement stage of the GSA constitutes an improvement of the ex-

pected posterior, we have pc > p0 for all c ∈ Dn and all n ≤ n∗(p0, s0H) (see

Lemma 1). Hence, (9) is strictly negative.

Part(i). Suppose now database H changes to H′ such that s0H < s0H′ and p0

remains invariant. We then have for all n < n∗(p0, s0H),

p̂0(Dn; s0H′ , p0) < p̂0(Dn; s0H , p0) < ϕ∗(Dn).
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Hence, n∗(p0, s0H′) ≥ n∗(p0, s0H). Since with each stage n of the algorithm

the total similarity s(c0, Dn) becomes larger, this implies s(c0, D
∗(p0, s0H′)) ≥

s(c0, D
∗(p0, s0H)).

Part(ii). Similarly, suppose database H changes to H′ such that p0 > p′0 and

s0H remains invariant. We have for all n ≤ n∗(p0, s0H) ,

p̂0(Dn; s0H , p
′
0) < p̂0(Dn; s0H , p0) < ϕ∗(Dn).

Hence, n∗(p′0, s0H) ≥ n∗(p0, s0H) and s(c0, D
∗(p′0, s0H)) ≥ s(c0, D

∗(p0, s0H)).

A.4 Proof of Proposition 3

To prove the statement, we distinguish two cases.

Case (i). Suppose pc ≤ p0 for all c ∈ C\{c∅}. In this case, we have c∗ = c∅,

i.e., not sampling is optimal for the sender. This directly follows from Lemma 1 .

Indeed, consider a case-type collection D of size n =
∑

c∈C D(c) ≤ N and let case

type c′ = argminc:D(c)>0 pc be the type minimizing the success probability among

all case types sampled under D, with pc′ ≤ p0. The sender then benefits from

excluding c′ if and only if p̂0(D
′) ≥ p̂0(D), where D′ is the case-type collection

obtained from D by omitting one instance of c′. Namely, D′(c′) = D(c′) − 1 and

D′(c) = D(c) for all c ̸= c′. Since 0 = s(c0, c∅) < s(c0, c
′), by applying Lemma 1

(part (ii)) we have that

p̂0(D
′) ≥ p̂0(D) if and only if pc′ = ϕ(c∅, c

′) ≤ p̂0(D).

The last inequality holds because pc′ ≤ pc for all c such that D(c) > 0. Thus, it is

always (weakly) better not to sample c′. By the same token, the sender is weakly

better off by discarding all case types with prior probability equal to or smaller

than p0.

Case (ii). Assume now there exists some c ∈ C\{c∅} such that pc > p0.

According to Proposition 3, the sender will exhaust his sampling capacity by

choosing a homogenous database featuring a single case type that maximizes the

index (5).

Step 1. At stage 1, we have ϕ∗(D0) = ϕ(c̄, c∅) = pc̄, where pc̄ := maxc∈C\∅ pc.

The replacement is clearly beneficial since pc̄ > p0 = p̂0(D0). In the next stage,

the set of feasible replacements still contains (c̄, c∅) and, hence, the maximizer is
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unchanged. Proceeding in this way, the algorithm arrives at a collection containing

N instances of case type c̄.

Step 2. We claim that, if at any stage n, the maximal replacing index is ϕ∗(Dn) =

ϕ(c′, c) > p̂0(Dn), then the GSA will replace all instances of c with c′, where

s(c0, c
′) > s(c0, c).

Indeed, let ϕ∗(Dn) = ϕ(c′, c) at stage n. Then, at stage n+1, if not all instances

of c were replaced, the maximal replacing index is unchanged. This follows from

ϕ(c′, c) > p̂0(Dn+1) =

∑
c∈C

pcs0cDn(c)− pcs0c + pc′s0c′ + S(c0,HG)∑
c∈C

s0cDn(c)− s0c + s0c′ + S(c0,H)

if and only if

ϕ(c′, c) > p̂0(Dn) =

∑
c∈C

pcs0cDn(c) + S(c0,HG)∑
c∈C

s0cDn(c) + S(c0,H)
.

We thus conclude that the optimal collection of case types Dn∗ is homogeneous.

Step 3. For every c ∈ C, let DN
c be the case-type collection containing N instances

of case type c, that is, DN
c (c) = N and DN

c (c
′) = 0 for every c′ ̸= c. Then, DN

c is

optimal if p̂0(D
N
c ) ≥ p̂0(D

N
c′ ) for every c′ ∈ C. Namely, if,

p̂0(D
N
c ) =

Ns0cpc + S(c0,HG)

Ns0c + S(c0,H)
≥ Ns0c′pc′ + S(c0,HG)

Ns0c′ + S(c0,H)
= p̂0(D

N
c′ )

⇐⇒ Ns0cpcs0c′ + s0cpcS(c0,H) + s0c′s(c0,HG) ≥ Ns0c′pc′s0c + s0c′pc′S(c0,H) + s0cS(c0,HG)

⇐⇒ Ns0cs0c′(pc − p0) + s0cS(c0,H)(pc − p0) ≥ Ns0cs0c′(pc′ − p0) + s0c′S(c0,H)(pc′ − p0)

⇐⇒ s0c(pc − p0)(Ns0c′ + S(c0,H)) ≥ s0c′(pc′ − p0)(Ns0c + S(c0,H))

⇐⇒ s0c(pc − p0)

Ns0c + S(c0,H)
≥ s0c′(pc′ − p0)

Ns0c′ + S(c0,H)
.

A.5 Proof of Proposition 4

Part (I). Let c∗ := c∗(N, p0,H) denote the optimal case type for a given capacity

N , a prior probability of success p0, and an initial database H. That is, for all

c ∈ C,

s0c∗(pc∗ − p0)

Ns0c∗ + S(c0,H)
≥ s0c(pc − p0)

Ns0c + S(c0,H)

⇐⇒ Ns0c∗s0c(pc∗ − pc) ≥ S(c0,H)[(s0c(pc − p0)− s0c∗(pc∗ − p0)]. (10)
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Let the capacity increase to N ′, and the new optimum be c′∗ := c∗(N ′, p0,H).

That is,

s0c′∗(pc′∗ − p0)

N ′s0c′∗ + S(c0,H)
≥ s0c∗(pc∗ − p0)

N ′s0c∗ + S(c0,H)
⇐⇒

N ′s0c∗s0c′∗(pc′∗ − pc∗) ≥ S(c0,H)[(s0c∗(pc∗ − p0)− s0c′∗(pc′∗ − p0)]. (11)

Combining eq. (10) and (11), we obtain that (N ′−N)s0c∗s0c′∗(pc′∗−pc∗) ≥ 0, which

holds if and only if pc′∗ ≥ pc∗ . Moreover, it must be that s0c′∗ ≤ s0c∗ (otherwise

case type c∗ would be dominated by c′ for all sampling capacities).

Part (ii). Consider case-type collection DN
c such that DN

c (c) = N and DN
c (c

′) = 0

for every c′ ̸= c. Then, the expected posterior probability is

p̂0(D
N
c ) =

Ns0cpc + S(c0,H)p0
Ns0c + S(c0,H)

=
pc

1 + S(c0,H)
Ns0c

+
S(c0,H)p0

Ns0c + S(c0,H)
→ pc =

s(c,HG)

s(c,H)

as N → ∞. Hence, for N sufficiently large, the optimal case type c∗ is the case

type that maximizes pc over c ∈ C.

A.6 Proof of Lemma 2

Suppose that Sender i = A,B samples a case-type collection D. The opponent

sender will then best respond to the joint similarity
∑

c∈C[D(c) + H(c)] and the

revised posterior probability p̃0(D), as defined in Lemma 2, based on H and the

expected similarity-weighted frequency of success within D. This probability is of

the same form as p0 in the single-sender problem. Hence, Proposition 3 applies,

where
∑

c∈C[D(c) +H(c)] takes the place of
∑

c∈C H(c) and p̃0(D) takes the place

of p0.

A.7 Proof of Lemma 3

From Lemma 2, we know that the best response of a sender to a pure strategy

of the opponent is either to sample nothing or to sample a database of maximal

capacity composed of only one case type. As before, for a case type c and a positive

integer m, let Dm
c denote the case-type collection consisting of m observations of

type c, namely, Dm
c (c) = m and Dm

c (c
′) = 0 for every case type c′ ̸= c.

First, note that an equilibrium where both senders do not sample can exist only

if there are no types with success probability different from p0. Otherwise, if there
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is a type c1 with probability pc1 that is different from p0, we have the following: if

pc1 > p0, then Sender A will be better off sampling c1 than not sampling, and if

pc1 < p0, then Sender B will be better off sampling c1 than not sampling.

Suppose that there is a case type with probability pc higher than p0. According

to Lemma 2, if Sender B does not sample, then Sender A’s best response is to

sample at full capacity, choosing a case-type collection composed of only one case

type. If the generated expected posterior is below the success probabilities of all

available case types, then Sender B’s best response remains not sampling since

any sampled case type would only increase the expected value of the receiver’s

final estimate. However, if there is a case type cm whose probability of success pcm

is lower than this revised probability, then Sender B’s best response is to sample

cm as it lowers the revised probability. This will result in a revised probability

of success that is still higher than pcm . Consequently, Sender A, will respond

by sampling a type that keeps the revised probability above pcm (which may or

may not be the same case type as in the previous stage); in turn, Sender B will

still want to sample. The same analysis holds when the roles of the senders are

reversed (i.e. when there is a case type with probability lower than p0). Hence,

there cannot exist a cycle of best responses where senders switch back and forth

between sampling and not sampling. To prove the existence of a pure-strategy

equilibrium, it thus suffices to rule out the possibility of best-response cycles where

both senders sample.

By contradiction, suppose that there is no equilibrium in pure strategies. Then

there should exist r ∈ N pairs of strategies that form a cycle of best responses that

strictly improve on one another. That is, there should exist pairs of case types

cAj , c
B
j , j = 1, . . . , r, where cAr = cA1 , c

B
r = cB1 , that satisfy, for all j = 1, . . . , r − 1:

• Sampling DNA

cAj
is a best response of Sender A to a sample of DNB

cBj
by Sender

B.

• Sampling DNB

cBj+1
is a best response of Sender B to a sample of DNA

cAj
by Sender

A.

• Sampling DNA

cAj+1
in response to a sample of DNB

cBj+1
by Sender B is strictly

better for Sender A than sampling DNA

cAj
(otherwise Sender A sampling DNA

cAj

and Sender B sampling DNB

cBj+1
would be a pure strategy equilibrium).

• Sampling DNB

cBj+1
in response to a sample of DNA

cAj
by Sender A is strictly better

for Sender B than sampling DNB

cBj
.
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If Sender A samples collection DNA

cA and Sender B samples collection DNB

cB ,

then the revised posterior probability of success is,

p̂0(c
A, cB) =

NApcAs0cA +NBpcBs0cB + p0S(c0,H)

NAs0cA +NBs0cB + S(c0,H)
.

The above conditions on senders’ strategy pairs imply that, for j = 1, . . . , r − 1,

and for any case type c,

p̂0(c
A
j , c

B
j ) ≥ p̂0(c, c

B
j )

p̂0(c
A
j , c) ≥ p̂0(c

A
j , c

B
j+1)

p̂0(c
A
j+1, c

B
j+1) > p̂0(c

A
j , c

B
j+1)

p̂0(c
A
j , c

B
j ) > p̂0(c

A
j , c

B
j+1) .

Therefore, according to the first inequality, we also have p̂0(c
A
j , c

B
j ) ≥ p̂0(c

A
j+1, c

B
j )

for all j = 1, . . . , r − 1.

We first show that whenever a cycle as above exists, then there must exist

j ∈ {1, . . . , r−1} for which p̂0(c
A
j+1, c

B
j+1) ≥ p̂0(c

A
j+1, c

B
j ). Suppose, on the contrary,

that there does not exist such a j. Then for all j = 1, . . . , r − 1, p̂0(c
A
j+1, c

B
j ) >

p̂0(c
A
j+1, c

B
j+1), implying, by the above inequality, that for all j = 1, . . . , r − 1,

p̂0(c
A
j , c

B
j ) > p̂0(c

A
j+1, c

B
j+1). As cAr = cA1 and cBr = cB1 , we obtain a contradiction.

Therefore, for some j ∈ {1, . . . , r − 1}, the following holds:

p̂0(c
A
j , c

B
j ) ≥ p̂0(c

A
j+1, c

B
j ) (12)

p̂0(c
A
j , c

B
j ) > p̂0(c

A
j , c

B
j+1) (13)

p̂0(c
A
j+1, c

B
j+1) > p̂0(c

A
j , c

B
j+1) (14)

p̂0(c
A
j+1, c

B
j+1) ≥ p̂0(c

A
j+1, c

B
j ) . (15)

We show that these four conditions cannot be simultaneously satisfied. We define

Ek := NApcAk s0cAk + p0S(c0,H) ,

Fk := NAs0cAk + S(c0,H) ,

ek := NBpcBk s0cBk ,

fk = NBs0cBk .
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Using this notation, inequalities (12-15) can be written as,

Ej + ej
Fj + fj

≥ Ej+1 + ej
Fj+1 + fj

Ej + ej
Fj + fj

>
Ej + ej+1

Fj + fj+1

Ej+1 + ej+1

Fj+1 + fj+1

>
Ej + ej+1

Fj + fj+1

Ej+1 + ej+1

Fj+1 + fj+1

≥ Ej+1 + ej
Fj+1 + fj

.

Multiplying by the denominators and summing over the inequalities, we obtain

(Ej+Ej+1+ej+ej+1)(Fj+Fj+1+fj+fj+1) > (Ej+Ej+1+ej+ej+1)(Fj+Fj+1+fj+fj+1) .

A contradiction. We thus conclude that a cycle of strictly improving best responses

cannot exist. Therefore, there exists an equilibrium in pure strategies.

A.8 Proof of Proposition 6

If all case types c ∈ C satisfy pc = p0, the proof is trivial. Note that as long as there

exists a case type c ∈ C whose probability pc ≥ p0 (pc ≤ p0) then in response to

any action of Sender B (resp., A), not sampling is weakly dominated by sampling

a case type with the maximal (resp., minimal) probability in C. Therefore, if

a sender chose to sample a positive number of observations in isolation, he will

certainly choose to sample when facing an opponent who is also allowed to sample.

Suppose now there exists a case type c ∈ C such that pc > p0. Then, in

isolation, Sender A would sample NA instances of case type c̄∗. This will also be

Sender A’s equilibrium strategy if, in equilibrium, Sender B does not sample. We

thus consider equilibria where both Sender A and Sender B choose to sample a

positive number of observations. We wish to show that in this case, Sender A

samples a case type c with s0c ≥ s0c̄∗ . As before, we denote by DN
c the case-type

collection with N instances of case type c. The receiver’s expected posterior when

Sender A samples case type c̄∗ and Sender B samples NB instances of case type
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c′ is:

NBs0c′pc′ +NAs0c̄∗pc̄∗ + S(c0,H)p0
NBs0c′ +NAs0c̄∗ + S(c0,H)

=

NBs0c′

NBs0c′ +NAs0c̄∗ + S(c0,H)
pc′ +

NAs0c̄∗ + S(c0,H)

NBs0c′ +NAs0c̄∗ + S(c0,H)
p̂0(D

NA

c̄∗ ).

(16)

Thus, the resulting expected posterior of the receiver is a weighted average of pc′

and p̂0(D
NA

c̄∗ ). By Proposition 5, we know that Sender B would never choose a

case type c′ such that pc′ > p̂0(D
NA

c̄∗ ); hence, it must be that pc′ ≤ p̂0(D
NA

c̄∗ ).

We argue next that since pc′ ≤ p̂0(D
NA

c̄∗ ), choosing case type c̄∗ for Sender A

weakly dominates choosing any other case type c′′ such that pc′′ > pc̄∗ . Since c̄∗

is optimal for Sender A when he acts in isolation, we have p̂0(D
NA

c′′ ) ≤ p̂0(D
NA

c̄∗ );

furthermore, it must be that s0c′′ < s0c̄∗ , otherwise choosing c̄∗ would always be

dominated by c′′. Therefore, if Sender A switches from c̄∗ to c′′, then the weight on

pc′—the first probability in the weighted average in (16)—would increase, while

the second probability in this weighted average would decrease from p̂0(D
NA

c̄∗ ) to

p̂0(D
NA

c′′ ), leading to an unambiguous decline of the receiver’s expected posterior.

Thus, in equilibrium, Sender A samples a case type c′′ whose probability is pc′′ ≤
pc̄∗ . If s0c′′ < s0c̄∗ , sampling a database with case type c′′ is dominated by sampling

c̄∗. Hence in equilibrium, Sender A will choose case type c′′ for which s0c′′ ≥ s0c̄∗ .

An analogous argument follows for Sender B if there exists a case type c ∈ C
such that pc < p0. This proves the proposition for the case where c̄∗ ̸= c∅ (resp.

c∗ ̸= c∅). On the other hand, if a sender does not sample when acting in isolation

(c̄∗ = c∅ or c
∗ = c∅), then the similarity of his sampled database when acting with

the other sender can only increase.
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