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Abstract

We develop a new measure of wage rigidity, the Nash wage elasticity (NWE). The

NWE is the percentage change in the actual wage rate when the wage that would occur

under Nash bargaining changes by 1%. We show that the NWE can be measured from

aggregate data under relatively weak assumptions which hold across a large class of

search and matching models. The empirical value can then be compared with the

values predicted by specific models in this class. In the US data, our estimates of the

NWE are generally between 0 and 0.1, indicating that, for both continuing workers

and new hires, (a) there is a high degree of wage rigidity and (b) Nash bargaining

provides a poor description of wage setting. We show that our estimates imply that

wage rigidity greatly amplifies business cycles: A simple SAM model suggests that, if

workers were paid Nash-bargained wages rather than actual wages, then the cyclical

volatility of unemployment would decrease to less than one seventh of what it is in

the data. We compare our results to various models of rigid and flexible wages in the

literature.
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1 Introduction

The existing literature that seeks to estimate the degree of wage rigidity and to assess

its importance in business cycles has so far failed to reach consensus, in part due to a

fundamental obstacle to inference. The obstacle is that it has been difficult to argue that

particular measures and estimation approaches correctly evaluate the rigidity of the marginal

cost of labor except under strong and controversial assumptions about which theoretical

model describes the labor market. As we discuss in Section 1.1 below, this obstacle has

been a significant barrier not only for structurally estimated models featuring wage rigidity,

but also for the reduced form literature on wage cyclicality. As such, without agreement on

the preferred model of the labor market overall, it has been not been possible to agree on

the level of wage rigidity supported by the data. Thus, findings in recent work regarding

the importance of wage rigidity for business cycles vary from highly important (Christiano,

Eichenbaum and Trabandt, 2021) to relatively unimportant (Basu and House, 2016).

In an effort to surmount this obstacle, this paper develops and applies a new semi-

structural method to estimate real wage rigidity and assess its business cycle implications.

In doing so, we provide new evidence that wage rigidity is highly quantitatively important

in US data, and plays a dominant role in explaining the volatility of unemployment over

the business cycle. Our approach relies on an equation we derive relating the wage to other

aggregate variables, which we show commonly holds across a very large class of different

search and matching (SAM) models with Nash bargaining. By estimating specifications

that regress actual wages on the Nash bargained wage implied by this equation, we are

able to directly and straightforwardly compare US wage data to what would be implied by

this large class of SAM models. The large class of models we study includes, for instance,

models with many different shocks, rich firm and match heterogeneity, job-to-job transitions,

nominal rigidity in goods markets and various other frictions in goods and financial markets.

Our results indicate that models within this large class can only be made consistent with

wage data (under conventional calibrations of other parameters) if the wages of both newly

hired workers and job stayers are far more rigid than implied by Nash bargaining.

Our approach also allows us to infer the likely contribution of real wage rigidity to the

business cycle volatility of unemployment and to assess how far the data supports different

models of rigid wages. For instance, in a simple SAM model with productivity shocks, we

find that our estimated level of wage rigidity increases the volatility of unemployment more

than sevenfold compared to what would occur under Nash bargaining, and can account for

around half the unemployment volatility in the data. We show that our NWE estimates

suggest that wages in the data are probably even more rigid than in one prominent rigid

wage model in the recent literature, that of Christiano, Eichenbaum and Trabandt (2016).
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Throughout this paper, we use the term ‘wage rigidity’ to represent the notion that real

wages do not vary with macroeconomic conditions to the extent that would be expected if

they were set by Nash bargaining. We propose a new measure of wage rigidity, the Nash wage

elasticity (NWE). The NWE represents the percentage increase in the cost of labor when

the wage rate implied by the Nash bargaining solution increases by 1%.1 By construction,

if wages are indeed set by Nash bargaining, the NWE is equal to 1. On the other hand, if

wages are very rigid compared to Nash bargaining, the NWE will be closer to zero.2

Measuring wage rigidity against the benchmark of Nash bargaining is desirable, we argue,

because some flexible wage benchmark is required to meaningfully assess whether or not

wages are rigid. That is, wages can only meaningfully be called rigid if their behavior deviates

from what would be considered a flexible wage. We provide four reasons why Nash bargaining

represents a logical flexible wage benchmark. First, Nash bargaining is perhaps the most

common assumption used in the recent literature on unemployment over the business cycle,

and so it is useful to know how far this is consistent with actual wage setting. Second, Nash

bargaining is constrained efficient in the labor market in important cases, and so the NWE

provides a useful yardstick of how flexible or rigid wages are likely to be compared to what

would be constrained efficient. Third, as we discuss below, we show that the NWE is a

strong predictor of the effects of wage rigidity on the cyclical volatility of unemployment,

regardless of whether or not wages are actually set by Nash bargaining. Fourth, we show

that different models without Nash bargaining, such as various rigid wage models, imply

significantly different values for the NWE, and the implied NWE is less sensitive to other

model assumptions aside from those about wage setting. Therefore, the NWE allows us to

adjudicate which of these models are more consistent with wage data. We discuss these four

points at various sections of the paper, before returning to them in the conclusion.

Our paper begins by developing and applying a semi-structural approach to estimate

the NWE in US data. We derive a common wage equation that holds across a large class

of models with Nash bargaining. We use this equation to impute a time series for the

Nash wage from US data, without needing to adjudicate over which model in this large

class corresponds to the true data generating process. We obtain estimates of the NWE by

regressing measures of the actual cost of labor on the Nash wage. Across 180 regressions

using various series for the cost of labor, various (or no) instruments for the Nash wage

and various assumptions about the opportunity cost of employment and hiring costs, we

1Pissarides (2009) uses the phrase Nash wage elasticity on occasion to mean the elasticity of Nash wages
with respect to productivity. To avoid confusion, we stress that we use this term to mean something
completely different.

2‘Wage rigidity’ in the sense that we use the term does not necessarily mean wages are fixed because of
menu costs or difficulties in rewriting wage contracts over time. Rather, any features of the wage setting
process that lead to wages being less volatile than or poorly correlated with Nash bargained wages would
give rise to a low NWE, and therefore ‘wage rigidity’ in our sense.
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mainly obtain NWE estimates between 0 and 0.1, indicating that wages of both job stayers

and new hires are highly rigid in comparison to Nash bargaining. The data consistently

favors an NWE below 0.65, except in the most extreme specifications, which use both the

most procyclical wage series we consider (the ‘user cost of labor’ from the NLSY) and also

assume high values of the opportunity cost of employment and/or very large fixed hiring

costs. Intuitively, our consistently small estimates of the NWE are a consequence of the fact

that the Nash wage is much more procyclical than measures of actual wages, across these

many different specifications.

Next, we provide novel analytical and simulation results to show that the NWE is a strong

predictor of the cyclical volatility of unemployment, across a large class of models with shocks

affecting the marginal revenue product of labor (e.g. productivity or markup shocks). We

derive a tight mathematical relationship between the NWE and the Fundamental Surplus,

which Ljungqvist and Sargent (2017) have shown is a valuable predictor of the cyclical

volatility of unemployment in many search models. When the NWE is as low as most of

our empirical estimates, we show that wage rigidity amplifies unemployment fluctuations in

a simple SAM model with productivity shocks more than sevenfold compared to the case of

Nash bargaining, and that this simple model can account for half of the empirical volatility

of unemployment over the business cycle under very conventional parameter assumptions.

Lastly, we investigate how far our results are consistent with various other models of

wage setting in the literature. We first examine models in which the wage is consistent with

constrained efficiency in the labor market, such as many models of directed search. We

find that these models would imply values of the NWE equal to or greater than 1, which

is inconsistent with our empirical findings. We then examine a model of staggered wage

bargaining similar to Gertler and Trigari (2009) and a model of alternating offer bargaining

similar to Christiano, Eichenbaum and Trabandt (2016). We find that wages in the data are

perhaps less rigid than implied by the calibrated staggered wage bargaining model but are

more rigid than implied by the alternating offer bargaining model.

Overall, this paper makes five main contributions relative to the literature. These contri-

butions are, first, to show that a large class of search and matching models imply a common

equation for the Nash bargained wage. Second, to develop the concept of the Nash wage

elasticity, which can be estimated for this large class of models without having to specify

which model in this class corresponds to the true data generating process. Third, to pro-

vide a range of empirical estimates of the Nash wage elasticity, which overwhelmingly imply

extremely rigid wages. Fourth, to show that, across a class of models with or without wage

rigidity (or Nash bargaining), the Nash wage elasticity is a strong predictor of the contri-

bution of wage rigidity to the volatility of unemployment over the business cycle. Fifth, to

use our Nash wage elasticity estimates to make inferences about how far different models
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of non-Nash wage setting are consistent with wage data, such as models with constrained

efficient wages or rigid wages.

Finally, while our approach is motivated by a desire to estimate wage rigidity and its

business cycle implications, we anticipate that the general methodology that we develop

could be useful in other contexts. For instance, it may be possible to use similar approaches

to estimate price rigidity in goods markets; to estimate the elasticity of asset prices to

fundamentals, or to estimate the elasticity of nominal exchange rates to differences in relative

goods prices across countries. Furthermore, while we have focused on real wage rigidity, our

approach could also be used to study nominal wage rigidity.

The remainder of the paper is structured as follows. Section 1.1 discusses the related

literature and compares our method and findings to this literature. Section 2 discusses the

intuition for our approach, develops the modeling framework, derives equations to calculate

the Nash wage and formally defines the Nash wage elasticity. Section 3 outlines the data

sources and calibration used to calculate the Nash wage. Section 4 presents our empirical

results and discusses the intuition behind our findings, including why our findings differ so

much from some prior literature. Section 5 discusses the implications of our NWE esti-

mates for business cycles and for models with non-Nash wage setting. Section 6 concludes,

discussing the value of the NWE as a wage rigidity measure and implications of findings.

1.1 Related Literature

In this section, we compare our approach to the large existing literature that seeks to estimate

the level of wage rigidity and to infer its importance for business cycles. We also outline

why our findings differ substantially from some of the work in this literature. While the

literature has contributed greatly to our understanding of wage dynamics and business cycle

propagation mechanisms, it is, as of yet, still far from consensus on the key questions of how

far wages are rigid, and how far wage rigidity matters for business cycles.3 The literature

has been dominated by two broad approaches which differ quite significantly from ours: fully

structural models and reduced form estimation.

The first of these two approaches taken by the literature has been to build structural

SAM or other DSGE models and either calibrate them and compare to data or structurally

estimate them against the data.4 Since the wage setting process is modelled explicitly, the

3For instance, see Christiano, Eichenbaum and Trabandt (2021), Dupraz, Nakamura and Steinsson (2019),
Gertler, Huckfeldt and Trigari (2020), Pissarides (2009), Basu and House (2016), and Bellou and Kaymak
(2021) for recent contrasting views.

4Examples from this literature using SAM models include Christiano, Eichenbaum and Trabandt (2016),
Gertler and Trigari (2009), Hagedorn and Manovskii (2008), Hagedorn and Manovskii (2013), Hall and
Milgrom (2008) and Pissarides (2009). A number of studies in this literature, such as Merkl and Stüber
(2017), Hagedorn and Manovskii (2013), and Gertler, Huckfeldt and Trigari (2020) provide new reduced-form
estimates of wage cyclicality using an approach along the lines of the reduced form literature discussed below,
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resulting parameters that are found to best fit the data are directly informative about the

presence and/or nature of wage rigidity. Nevertheless, the conclusions drawn about the

degree and importance of wage rigidity differ substantially across the different studies in this

literature. A major reason is that the level of wage rigidity implied by any such calibrated

or structurally estimated model may be very model specific, in that a different model may

fit the same data equally well with a very different level of wage rigidity. As such, it is

unsurprising that the findings of this literature regarding wage rigidity differ across models,

and it is not usually clear how far the findings from any particular model are robust to model

misspecification.

The principal difference between our approach and this literature is that we rely on a

wage equation for the Nash bargained wage that we show holds commonly across a very

large class of SAM models. Therefore, our conclusions about wage rigidity do not depend

on which model in this class is the correct one, and so are arguably less sensitive to model

misspecification.

Our findings also differ substantially from many (although certainly not all) of the SAM

models in this literature in that we find a high level of wage rigidity. A key reason for this

difference is that our approach is based on a Nash wage equation that applies under models

with many different shocks. Therefore, our NWE estimates may be valid even if multiple

shocks are important influences on labor demand. In contrast, many models in this literature

assume that the only shocks driving fluctuations in labor demand are productivity shocks.5

Under this assumption, Nash bargaining implies a tight link between wages and productivity,

and so much of this literature considers the elasticity of wages with respect to productivity

in the data to be very informative about wage rigidity, and empirically evaluates models

accordingly.6 However, given the lack of a strong correlation between unemployment and

productivity in the data, it seems implausible that productivity shocks are the only driver of

unemployment fluctuations. It is not clear then whether the elasticity of wages with respect

to productivity is very informative about rigidity once we allow for other shocks. On the

contrary, in our framework, which is consistent with multiple shocks, we find that the Nash

wage is practically uncorrelated with productivity in the data, and so the elasticity of wages

with respect to productivity is not informative about the NWE.

and use the results of these regressions to calibrate or empirically evaluate a structural model. Studies that
assess the implications of wage rigidity in New Keynesian DSGE models with search and matching frictions
include Krause and Lubik (2007), Blanchard and Gaĺı (2007) and Christoffel and Linzert (2010). Prominent
recent examples from the large literature on the importance of wage rigidity in New Keynesian models
include Auclert, Bardóczy and Rognlie (2021) and Broer et al. (2020).

5Examples of this include Hagedorn and Manovskii (2008), Hall and Milgrom (2008), Pissarides (2009)
and Malcomson and Mavroeidis (2017).

6Thus, Hagedorn and Manovskii (2008), for instance, calibrate their model to match this elasticity, while
Pissarides (2009) suggests that Nash bargaining is supported in the data if the elasticity of new hire wages
with respect to productivity is close to 1.
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The second approach taken by the prior literature to estimate wage rigidity has been to

estimate the cyclicality of real wages via reduced-form regressions.7 Following Bils (1985),

this literature has typically regressed a measure of wages (at the individual or aggregate

level) on a cyclical indicator, such as the unemployment rate or productivity.8 An advantage

of this approach, relative to the structural approach above, is that, to estimate the cyclicality

of a particular wage measure, it is not necessary to write down a structural model of the

labor market. This might seem to avoid the concerns of model misspecification inherent in

the structural approach.

However, in practice, the reduced form literature has faced the same barrier to infer-

ence as the structural approach – the interpretability of its conclusions often rely on strong

assumptions about the underlying theoretical model of the labor market. This is because

estimates of wage cyclicality found by the reduced form literature are often highly sensitive

to the choices of wage measure (e.g. the wage of all workers, new hires, or new hires out

of unemployment) and of cyclical indicator (e.g. unemployment or productivity). Which of

these choices seems most justified depends on the theoretical model that the researcher has

in mind. For instance, as discussed above, models in which productivity is the only shock

suggest that productivity is the natural cyclical indicator on which to regress wages, but this

conclusion does not necessarily follow if there are other shocks. Equally, whether the wage

measure that best captures the marginal cost of labor is the average wage of all workers, the

wage of newly hired workers, the ‘user cost of labor’ developed by Kudlyak (2014), or none of

these varies across theoretical models depending on whether a worker’s current wages in the

model are influenced by conditions when they were hired, and depending on whether average

match quality may vary over time (Kudlyak, 2014; Gertler, Huckfeldt and Trigari, 2020).

Moreover, for a given wage series and cyclical indicator it is regressed on, it is impossible

to infer whether an estimated wage cyclicality of e.g. 2% signifies a sticky or flexible wage

without knowing how a flexible wage should behave. This is hard to ascertain without a

theoretical model. Consequently, the literature has overwhelmingly interpreted the results

of reduced form regressions using specific calibrated models; conclusions from this literature

regarding whether the data supports a flexible or rigid wage then depend on the particular

theoretical model and calibration strategy chosen.

Our approach differs from this literature in that it delivers an estimate of the Nash wage

elasticity that can immediately be interpreted theoretically, as evidence in favor or against

Nash bargaining for example, without the need to commit to a particular theoretical model.

7This approach originates with Dunlop (1938) and Tarshis (1939).
8Recent examples of work in this vein includes Haefke, Sonntag and Van Rens (2013), Martins, Solon

and Thomas (2012), Carneiro, Guimarães and Portugal (2012), Kudlyak (2014), Basu and House (2016),
Lydon and Lozej (2018), Gertler, Huckfeldt and Trigari (2020) Grigsby, Hurst and Yildirmaz (2021), Hazell
and Taska (2020) and Schaefer and Singleton (2021). Much of the earlier literature that studies the wage
cyclicality of job stayers and new hires in this way is surveyed by Pissarides (2009)
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Furthermore, our theoretical derivation of the Nash wage equation makes clear that the ideal

measure of actual wages to estimate the NWE is the user cost of labor based on workers newly

hired out of unemployment (without any additional adjustments for match quality), and the

cyclical indicator it should be regressed on is the Nash wage. This is true across a large class

of models, since the same Nash wage equation holds across a large class of models. Therefore,

we are able to answer questions of which wage measure and which cyclical regressor should

be used, without needing to commit to a particular theoretical model. Finally, we find that

estimates of the Nash wage elasticity are ultimately far below one in many specifications for

all the measures of actual wages we consider, because all these wage measures are much less

cyclical than the Nash wage. Therefore it turns out that the question of how to measure

actual wages is relatively less important for estimating the NWE.

In addition to the literature reviewed above, our approach relates closely to recent work

by Malcomson and Mavroeidis (2017), Bils, Klenow and Malin (2018), Koenig, Manning and

Petrongolo (2021) and Ljungqvist and Sargent (2017). Malcomson and Mavroeidis (2017),

like us, seek to estimate a wage-setting equation while imposing weak assumptions on the

data generating process. Unlike us, they find that the data is consistent with new hire wages

being set by Nash bargaining. We conjecture that the difference in results arises because

they do not allow for markups and implicitly assume that fluctuations in labor demand

are driven entirely by productivity shocks. This could lead to a bias against finding wage

rigidity for the reasons discussed above on page 6. Koenig, Manning and Petrongolo (2021)

show that a canonical Diamond-Mortensen-Pissarides model implies a wage elasticity to

unemployment far higher than the data, consistent with our finding of a low NWE. They

also suggest that the elasticity of wages with respect to unemployment is informative across

a class of models, and develop a model of reference-dependent wages to account for rigidity.

Bils, Klenow and Malin (2018) study the cyclicality of the labor market wedge under search

models, finding that much of this cyclicality can be accounted for by the product market

wedge. Their findings provide additional evidence that labor market dynamics are affected

by time-varying markups, as allowed for in our approach. Ljungqvist and Sargent (2017)

show that in many different search and matching models, the determinants of unemployment

fluctuations is driven by a common factor they call the ‘Fundamental Surplus’.

More broadly, our work relates to the literature that studies the implications of search

and matching models with wage rigidity for business cycle fluctuations. Hall (2005), Hall

and Milgrom (2008), Christiano, Eichenbaum and Trabandt (2016) and Gertler and Trigari

(2009), among others, develop models of rigid wages and show that these can help explain

the volatility of unemployment over the business cycle. Dupraz, Nakamura and Steinsson

(2019) find that downward wage rigidity can help account for business cycle asymmetries.

Finally, our approach of developing a measure of wage rigidity, the NWE, that is use-
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ful across different models has significant similarities to the literature on estimable suffi-

cient statistics originating with Chetty (2009). Analogous to this literature, the Nash wage

elasticity is a rough sufficient statistic that is highly informative about, for instance, the

contribution of wage rigidity to business cycle fluctuations, across many different models.

2 Modeling Framework

In this section, we formally derive an equation for the Nash bargained wage that holds across

a large class of search and matching models, incorporating rich firm and match heterogeneity,

a wide variety of different shocks, possible frictions in goods and financial markets, job-to-job

transitions and varying labor force participation.

We proceed in stages. First, to provide intuition for how it can be possible to derive a

wage equation that holds under such broad conditions, we briefly discuss the case of perfectly

competitive labor markets in Section 2.1. In Section 2.2 we derive the equation for the Nash

wage in a framework featuring no firm or match heterogeneity. In Section 2.3 we expand

our approach to show that virtually the same equation for the average Nash wage arises

in a model which is much more general on a number of dimensions, including (but not

limited to) firm and match heterogeneity, job-to-job transitions and time-varying labor force

participation. Our aim is to derive an equation for the Nash wage which holds in as broad

a class of SAM models as possible. We discuss the cases nested by our modeling framework

in Section 2.4. Finally, in Section 2.5, we discuss how our Nash wage equation can be used

to estimate the Nash Wage Elasticity using data on wages and labor market flows. Since

our Nash wage equation holds across a very large class of models, it is possible to estimate

the NWE without needing to make assumptions about which model in this class accurately

describes the data generating process.

2.1 Intuition From Perfectly Competitive Labor Markets

Assume that identical households supply labor in a single perfectly competitive spot labor

market. As is well known, the resultant equilibrium wage rate must be on the household’s

labor supply curve, which means that it must equal the household’s marginal rate of substi-

tution (MRS) between consumption and leisure.

The essence of our approach is to note that the wage rate will equal the household’s MRS

under a competitive spot labor market regardless of the determinants of labor demand. For

instance, if firms have sticky prices in goods markets, or their ability to hire is affected by

working capital constraints, or their capital investment is constrained by financial frictions,

all of these things will affect their labor demand and affect equilibrium labor hours and
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wages but the wage will continue to equal the MRS in all these cases. Likewise, if firms

have heterogeneous productivity levels or markups, this will affect the aggregate demand for

labor but the wage will continue to equal the MRS.

Then, in a spot labor market, a natural metric of wage rigidity is the elasticity of the

observed wage rate with respect to the MRS. Since the perfectly competitive wage will equal

the MRS under a wide variety of different assumptions about labor demand, the elasticity

of observed wages with respect to the MRS provides a measure of how far observed wages

are rigid, compared to competitive wages, and this measure remains equally valid and useful

under a wide variety of different assumptions about labor demand. Of course, to measure

wage rigidity in this way, it is necessary to have a time series for the MRS. The literature

on the cyclicality of the labor wedge Chari, Kehoe and McGrattan (2007) has shown that

it is straightforward to calculate a value of the MRS from aggregate data under standard

assumptions about preferences.

Our approach differs from simply measuring wage rigidity in terms of the elasticity of

wages with respect to the MRS because we allow for search frictions in labor markets. With

search frictions, there is no longer any reason to expect that a flexible wage would equal

the MRS. Instead, we derive a similarly general expression for the Nash wage which holds

under a wide variety of different assumptions about firm and match heterogeneity and about

the determinants of labor demand. Just as different assumptions about labor demand affect

equilibrium labor hours and wages but do not affect the basic equality between wages and

the MRS in the competitive case, so different assumptions about labor demand also affect

employment and wages but do not affect the Nash wage equation in the search theoretic

case. In effect, the Nash wage equation we will derive is a search theoretic analogue to the

labor supply curve in a competitive market. That is, the Nash wage equation defines a locus

of points that the wage rate should satisfy, conditional on labor market stocks and flows,

and this locus is unaffected by the determinants of labor demand, just as the labor supply

curve is unaffected by the determinants of labor demand in the competitive case.

Therefore, we define the Nash wage elasticity as the elasticity of observed wages with

respect to the Nash wage derived from our Nash wage equation. We now derive the Nash

wage equation formally.

2.2 The Nash wage without heterogeneity

In this section, we derive an equation for the Nash wage in a broad framework which nests

a substantial number of different SAM models but does not allow for firm or match hetero-

geneity. We extend the results to a substantially more general setting in the next section.

We first outline the assumptions of our framework with no firm or match heterogeneity.
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Time is discrete. The economy consists of measure 1 of households and some measure of

firms. Households live in large families, made up of employed and unemployed agents. Each

large family shares consumption among its members. Unemployed agents match at the start

of each period with vacancies vt posted by firms in period t, according to the constant returns

to scale continuously differentiable matching function Mt = mt ·M(ut−1, vt), where mt is a

possible shock to the efficiency of the matching function, ut−1 is the number of unemployed

at the end of the period t− 1 and start of period t, and vt is the number of vacancies posted

in period t. The unemployed therefore find jobs at the job finding rate ft = Mt

ut−1
. There is

no on-the-job search.

At the start of period t, fraction st of employed agents separate from jobs. We allow that

st may evolve stochastically over time in response to shocks. The measure of households

who are unemployed, ut, evolves over time according to the following law of motion:

ut = (1− ft)ut−1 + st(1− ut−1) (1)

2.2.1 Preferences

The members of each large family act to maximize the expected value of :

U =
∞∑
t=0

(1− ρ)tu(ct),

where ct is the consumption of the family and u(·) is strictly increasing and concave. Em-

ployed agents earn wage rate wt in period t. Unemployed agents engage in home production.

Each unemployed agent produces zt units of consumption each period, where zt changes over

time according to some stochastic process.

It is not realistic to interpret zt as literally representing home production alone. We

instead view zt as a black box for the opportunity cost of employment, which, in a more

general model, would include the utility value of the time that an unemployed person does

not need to spend working, adjustments to reflect that the unemployed face different tax

rates to wage earners, the various cash and in-kind benefits an unemployed person is entitled

to, the possibility that these benefits may expire after a certain period of unemployment, and

the utility cost of applying for these benefits. In a richer model that incorporates all these

features, Chodorow-Reich and Karabarbounis (2016) show that it is possible to derive time

series for zt from aggregate and survey data under various assumptions about preferences.

They point out that, as far as SAM models are concerned, what matters for aggregate wage

and employment dynamics is the behavior of zt, rather than the various components of zt.

As such, for simplicity, we do not model the components of zt, and instead simply treat zt

as home production. In our empirical analysis we calculate the Nash wage using estimated
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series of zt from Chodorow-Reich and Karabarbounis (2016), so that our conclusions depend

on behavior of zt that they argue fits the data.

LetWt and Ut denote, respectively, the marginal present value to the household of having

an extra employed and unemployed agent. These evolve according to the following Bellman

equations:

Wt = wt + Et
[
(1− ρ)

u′ct+1

u′ct
[(1− st+1)Wt+1 + st+1Ut+1]

]
,

Ut = zt + Et
[
(1− ρ)

u′ct+1

u′ct
[(1− ft+1)Ut+1 + ft+1Wt+1]

]
,

where
u′ct+1

u′ct
is the household’s stochastic discount factor.

2.2.2 Firms

Firms post vacancies, which each cost κ1 per period. Fraction qt of vacancies are assumed

to match with workers each period. If a vacancy matches with a worker, the firm hires the

worker at additional hiring cost κ0.

The total number of new matches Mt each period must satisfy:

Mt = qtvt = ftut−1.

It follows that qt = ut−1ft
vt

.

We assume, for notational convenience, that vacancies match with unemployed agents

before production takes place, and so newly hired workers are productive in the period that

they are hired.

Employed agents provide a gross flow value to the firm of rt in period t, which we allow

to evolve over time according to some stochastic process. We are completely agnostic about

the determinants of rt. The term rt can be interpreted as the marginal revenue product

of a worker – so it might depend on the markup as well as on the labor productivity and

on the number of hours that a worker works.9 More generally, if workers provide other

useful services to a firm apart from producing output, such as research and development

or training of other workers, then these may also enter rt. Since we are agnostic about the

determinants of rt or about how it varies over time, our framework can nest any friction in

goods or financial markets that maps into aggregate quantities via its effect on productivity

9It might seem that allowing for time-varying hours should require the disutility of working a particular
number of hours to enter the value function of an employed worker. However, we may instead follow
Chodorow-Reich and Karabarbounis (2016) and normalize so that the disutility of working the current
mandated number of hours features as part of the value of being unemployed, and so this is incorporated
into zt.
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or markups (and, therefore, on rt). This might include, for instance, the effect of sticky

prices in goods markets as in Ravenna and Walsh (2008), or working capital constraints, as

in Christiano, Eichenbaum and Trabandt (2015).

Let Jt and Vt denote, respectively, the marginal present value of an extra worker and an

extra vacancy to a firm. These satisfy the following Bellman equations:

Jt = rt − wt + Et
[
u′ct+1

u′ct
[(1− st+1)Jt+1 + st+1Vt+1]

]
, (2)

Vt = −κ1 + (1− qt)Et
[
u′ct+1

u′ct
Vt+1

]
+ qt(Jt − Vt − κ0). (3)

Here, Jt appears on the right-hand side of the Bellman equation for the vacancy in period

t, because vacancies that are filled in period t already become productive that period.

Firms are able to create vacancies for free, so, in equilibrium, vacancy posting satisfies

the free entry condition Vt = 0. Substituting this into (3) and rearranging, we obtain:

J̃t = κ0 +
κ1
qt

= κ0 +
κ1vt
ut−1ft

= ht, (4)

where ht denotes the expected hiring cost.

2.2.3 Worker Share of Match Surplus

We now derive an equation that defines the share of match surplus that accrues to workers

in our framework. Below, we use this to derive a formula for the Nash wage. We define the

worker share of match surplus, βt, as the worker match surplus, divided by the total surplus.

That is:

βt =
Wt − Ut

Jt − Vt +Wt − Ut
.

Using that Vt = 0 and Jt = ht = κ0 + κ1vt
ut−1ft

, this can be written as:

Wt − Ut = βt

[
Wt − Ut + κ0 +

κ1vt
ut−1ft

]
,

which rearranges to,

Wt − Ut =
βt

1− βt

[
κ0 +

κ1vt
ut−1ft

]
. (5)

Subtracting the Bellman equation for an unemployed agent from the Bellman equation for

an employed agent, and substituting in (5) to eliminate Wt and Ut terms, we obtain the
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following dynamic equation for βt:

βt
1− βt

(
κ0 +

κ1vt
ut−1ft

)
= wt − zt

+ Et
[
(1− ρ)

u′ct+1

u′ct
(1− st+1 − ft+1)

βt+1

1− βt+1

(
κ0 +

κ1vt+1

utft+1

)]
. (6)

Evidently, the share of match surplus that goes to workers depends on the wage wt, as

is intuitive. Note that we have made no assumptions about how wages are actually set –

the dynamic equation (6) characterizes the implied share of match surplus that is going to

workers, for any well-behaved stochastic process governing wt.

We assume that the economy fluctuates around a steady state. In the steady state,

equation (6) implies that:

β

1− β
=

(w − z)

[1− (1− f − s)(1− ρ)]h
, (7)

where, abusing notation, we simply omit the time t subscript to denote the steady state

value of a variable. Here we used that h = κ0 + κ1v
uf

.

2.2.4 The Nash Wage

We define the Nash wage, wNt , as the value that the wage wt would have to take each period

in order for the worker surplus share βt to remain constant over time at its steady state value

β, where βt is calculated according to equation (6). Then, it follows that wNt satisfies:

β

1− β

(
κ0 +

κ1vt
ut−1ft

)
=wNt − zt

+ Et
[
(1− ρ)

u′ct+1

u′ct
(1− st+1 − ft+1)

β

1− β

(
κ0 +

κ1vt+1

utft+1

)]
, (8)

where β
1−β is given by equation (7). In our empirical analysis, we assume that the steady

state values of variables are equal to their average in the sample period. Thus, wNt is the

value that wt would need to take each period in order for βt
1−βt to remain forever equal to its

average value over the sample period.

We refer to wNt defined in this way as the Nash wage, since, under the Nash sharing rule,

the worker share of match surplus βt is given by the bargaining strength of workers. The

Nash sharing rule arises from the first order condition of the generalized Nash bargaining

solution where bargained wages are set to maximize (Jt−Vt)1−β(Wt−Ut)β.10 The standard

10The Nash sharing rule arises immediately from differentiating this with respect to the current wage wt,
since − ∂Jt

∂wt
= ∂Wt

∂wt
= 1 and ∂Vt

∂wt
= ∂Ut

∂wt
= 0.
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assumption in the SAM literature is that the bargaining share β is constant over time so

that βt = β, in which case equations (6) and (8) imply that wt = wNt .

Equation (8) implies that the Nash wage is higher when zt is higher, when ft+1 is higher,

and when hiring costs in period t are higher. These are intuitive: a higher value of the

opportunity cost of employment (captured by higher zt) or higher job finding rate make

unemployment more desirable, implying that workers have to be paid more to provide them

with a given fraction of the match surplus; a higher hiring cost increases the match surplus

of firms, which also implies that workers must be paid more to give them a given fraction of

the surplus.

Since our Nash wage implies a constant share of surplus going to workers, it rules out

the possibility of shocks to worker bargaining power, as considered by, for instance, Shimer

(2005). If, in reality, there are shocks to worker bargaining power, this could lead to sys-

tematic errors in the time series we derive for the Nash wage and bias our estimates of the

Nash wage elasticity. We discuss in Section 4.4 how we use other monetary shocks as an

instrument for the Nash wage in our estimation strategy to avoid these biases.

2.3 Nash Wage Equation in a More General Environment

The framework used in Section 2.2 to derive the Nash wage equation (8) was relatively

general on some dimensions. We made almost no assumptions about the stochastic process

underlying the opportunity cost of labor zt, wages wt, the marginal revenue product of labor

rt, the separation rate st or possible shocks to the matching function. Thus, the framework in

Section 2.2 nests many different models with different assumptions about how these variables

are determined.

Nevertheless, the framework in Section 2.2 was special in that, for instance, it did not

allow for firm or match heterogeneity. We now generalize our framework to allow for rich

heterogeneity in firms and matches, including heterogeneity in firms’ discount factors (for

instance, due to financial frictions), as well as allowing for endogenous separations, job-to-

job transitions and time-varying labor force participation. Our approach is to derive an

equation for the Nash wage while making as few assumptions as possible, in order to create

a framework which nests as many different SAM models as possible. We show that, even in

this much more general case, the equation describing the Nash wage looks very similar to

the equation derived in Section 2.2.

We now outline the assumptions of our more general framework. We maintain the same

assumptions as in Section 2.2 except where noted.
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2.3.1 Labor Market Flows

As before, there are measure 1 of households who live in large families. We allow for the

possibility that some members of a family are economically inactive, i.e. not in the labor

force. Let it denote the measure of agents who are economically inactive in period t.

All unemployed agents are identical. We let ft denote the fraction of unemployed agents

who find a job in period t by successfully matching with vacancies. We do not require that

all matches are accepted – since we allow for the possibility that poor quality matches are

rejected. Thus ft denotes the probability that an unemployed agent finds a match in period

t that she accepts.

It is assumed that agents may shift between unemployment and economic inactivity, but

an economically inactive agent cannot go straight into employment without first becoming

an unemployed agent during some period t, potentially finding a job in period t+ 1.11

Then, the law of motion of the measure of unemployed agents at the end of period t, ut,

is:

ut = (1− ft)ut−1 + st(1− it−1 − ut−1)− (it − it−1),

where st denotes the average separation rate of all employed agents. For simplicity, we

do not model agents’ choices of whether to be unemployed or economically inactive, we

merely assume that it evolves over time according to some endogenous stochastic process.

Explicitly modeling this motivation would not affect our conclusions provided the flow value

of unemployment, zt, is correctly specified.

2.3.2 Household Bellman Equations

We allow that workers in different matches and/or at different firms may earn different wages,

and that the wages of a worker in a match may evolve idiosyncratically and endogenously

over time due to, for instance, match-specific human capital accumulation, or long-term wage

contracting as in Rudanko (2009). We also allow the separation rate into unemployment

to vary over time and across matches and firms. This could be due to e.g. endogenous

separations, where low productivity matches have a higher probability of separating. Let

wi,kt and si,kt denote the wage and separation rate in match k at firm i at time t.

We also allow for possible job-to-job transitions, which occur at the start of each period,

simultaneously with separations into unemployment. Let λi,kt denote the probability of a

worker in match k at firm i transferring to a new job at the start of period t. This may

vary over time and across matches, since workers may be more likely to look for other jobs

11It is well known that, in the data, economically inactive individuals do find jobs without previously being
registered as unemployed. We interpret such individuals as people who were, in truth, looking for work and
therefore unemployed, but were mismeasured as economically inactive.
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if their match quality is low.12

The Bellman equations for an unemployed agent, for an employed agent in the match k,

are as follows:

Ut = zt + Et
[
(1− ρ)

u′ct+1

u′ct
[(1− ft+1)Ut+1 + ft+1W̃t+1,t+1]

]
, (9)

W i,k
t = wi,kt + Et

[
(1− ρ)

u′ct+1

u′ct
[(1− si,kt+1 − λ

i,k
t+1)W

i,k
t+1 + λi,kt+1W̃

i,k,T
t+1 + si,kt+1Ut+1]

]
, (10)

where W i,k
t denotes the value of a worker in match k at firm i at time t and W̃ i,k,T

t+1 denotes

the expected value that the worker in match k at firm i at the start of t + 1 expects to

have, if she transitions directly to a new job in period t+1, with the superscript T signifying

‘transition’. W̃t,τ denotes the average value among workers at time t, who were most recently

unemployed at the start of period τ , and found a job during period τ . By the usual abuse

of the law of large numbers, we assume therefore that an unemployed agent who finds a job

in period t+ 1 has expected value W̃t+1,t+1 in that period.

2.3.3 Firms

Firms, i, and matches, k, are heterogeneous in terms of the marginal flow value to the firm

of the match, which we denote by ri,kt . This may be due to heterogeneous productivity

or markups across firms. If firms have concave production functions or downward-sloping

demand curves then ri,kt will also depend on the number of workers employed by a firm.

Firms may hire out of unemployment, or may hire already employed agents, which precip-

itates a job-to-job transition. For mathematical tractability, we assume that the unemployed

and the already employed match with firms in different submarkets, with potentially more

than one submarket for matching with the already employed, as occurs in models of directed

search with job-to-job transitions. Then, when a firm posts a vacancy, it decides whether to

target the unemployed or the already employed.

As before, we assume a vacancy posting cost of κ1 and a fixed hiring cost of κ0 if the

vacancy successfully yields a new hire. Let qi,ut denote the probability that a vacancy posted

by firm i that targets the unemployed successfully turns into a match (and an employment

relationship) in period t. We allow that qi,ut varies across firms because, in a setting with

firm and match heterogeneity, it is possible that the matches at lower productivity firms are

less likely to be accepted, and so less likely to turn into employment relationships.13

12Of course, our setting also nests models with no job-to-job transitions, which amounts to fixing λi,kt = 0
for all i,k,t.

13For instance, if a worker and firm observe the idiosyncratic match productivity of a match before deciding
whether to go ahead with the match, then it may be that matches at a low productivity firm will only be
accepted if the idiosyncratic match-specific component of productivity is particularly good, which may be a
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Then, the Bellman equations for a firm with a match J i,k
t and a vacancy at firm i that

targets the unemployed V i,ut are as follows:

J i,k
t = ri,kt − w

i,k
t + Et

[
mi
t+1(1− s

i,k
t+1 − λ

i,k
t+1)J

i,k
t+1

]
, (11)

V i,ut = −κ1 + qi,ut (J̃ i
t,t − V

i,u
t − κ0). (12)

Here J̃ i
t,τ denotes the expected value of a match at firm i at the start of t if the worker was

hired out of unemployment in period τ . mi
t+1 is the firm i’s stochastic discount factor, which

we allow to potentially depend on the firm i – this might occur if, for instance, some firms

value their cashflow today more relative to the future due to short-term financing constraints.

Since a firm can freely create and dispose of new vacancies, it must be the case that

V i,ut ≤ 0, with equality if the firm is maintaining at least one vacancy in period t.

Then, equation (12) implies that, if firm i hires in period t, then,14

J̃ i
t,t = κ0 +

κ1

qi,ut
. (13)

2.3.4 Worker Share of Match Surplus

We now derive an expression for the worker’s share of match surplus in this more general

framework. We define βt as the average share of match surplus at time t that is earned

by workers who are newly hired out of unemployment in that period (where the average is

across new matches of such workers in period t). As will be seen below, it is this measure

of worker surplus share for which there exists a mathematical formulation in terms of labor

market flows that is almost identical to equation (6) above. Thus, we define βt as:

βt =
W̃t,t − Ut

W̃t,t − Ut +
∫
i q

i,u
t vi,ut J̃ i

t,tdi∫
i q

i,u
t vi,ut di

.

Here, the term W̃t,t−Ut represents the average match surplus of workers newly hired out of

unemployment at time t, as defined above. The term J̃t,t represents the expected surplus each

firm i gets from hiring such workers, and the integral reflects that this should be averaged

across firms i in proportion to their share of total hiring out of unemployment, with the

low probability event.
14Note that, in many models, it is possible for equation (13) to hold in equilibrium for multiple firms with

different values of qi,ut and J̃ i
t,t. In particular, in a model with large firms facing downward-sloping demand

curves or concave production functions, firms with a higher qi,ut will, all else equal, hire more and will see
their marginal value of J̃ i

t,t fall until (13) holds with equality.
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hiring of firm i out of unemployment given, in expectation, by qi,ut vi,ut .15

Rearranging this, and using that (13) holds for all firms that set vi,ut > 0, we obtain:

W̃t,t − Ut =

(
βt

1− βt

) ∫
i
qi,ut vi,ut J̃ i

t,tdi∫
i
qi,ut vi,ut di

=

(
βt

1− βt

)(
κ0 +

κ1v
u
t∫

i
qi,ut vi,ut

)
,

where vut =
∫
i
vi,ut di denotes the total number of vacancies targeted at the unemployed.

The total number of unemployed agents that find jobs must equal the total number of

such vacancies that match, so that
∫
i
qi,ut vi,ut di = ut−1ft. Then, we can rewrite the equation

above as:

W̃t,t − Ut =

(
βt

1− βt

)(
κ0 +

κ1v
u
t

ut−1ft

)
. (14)

In order to use this to derive a dynamic equation for βt similar to (6), it is necessary

to characterize W̃t,t. We do this by gradually integrating the Bellman equation for W i,k
t

across workers and employment histories. This requires some additional notation. Let

P(j,m, t|i, k, τ) denote a probability measure representing the probability that a worker

who left unemployment at time τ , obtaining the match k in firm i will subsequently find

themselves in period t in match m in firm j, without having spent a spell of unemployment

in between (where these probability measures are based on the information available at the

start of period τ). Let f i,kτ denote a probability measure representing the probability that

an unemployed agent at the start of period τ successfully forms the match k with firm i in

period τ (where these probability measures are based on the information available at the

start of period τ). Let

W i,k

t,τ =

∫
j,m
Wj,m

t dP(j,m, t|i, k, τ)∫
j,m

dP(j,m, t|i, k, τ)
, wi,kt,τ =

∫
j,m

wj,mt dP(j,m, t|i, k, τ)∫
j,m

dP(j,m, t|i, k, τ)
,

si,kt,τ =

∫
j,m

sj,mt dP(j,m, t|i, k, τ)∫
j,m

dP(j,m, t|i, k, τ)
, s̃t,τ =

∫
i,k
si,kt,τ (W

i,k

t,τ − Ut)df i,kτ∫
i,k

(W i,k

t,τ − Ut)df
i,k
τ

.

That is, W i,k

t,τ , w
i,k
t,τ and si,kt,τ denote the average values of W , w and s that a worker

expects to obtain at time t, if the worker is hired in match k by firm i at time τ , and remains

continuously employed (without a spell of unemployment) between time τ and time t. s̃t+1,τ

is the average separation rate at time t+ 1 of workers who were hired out of unemployment

in period τ (and have not since become unemployed) where the average is weighted across

matches in proportion to the surplus of those matches.

15Here we are making the usual abuse of the law of large numbers by taking the expectations of the values
of firms and hiring costs when integrating across firms.
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Then, it follows from equation (10) that W i,k
t, τ evolves according to:16

W i,k

t,τ = wi,kt,τ + Et
[
(1− ρ)

u′ct+1

u′ct
[(1− si,kt+1,τ )W

i,k

t+1,τ + si,kt+1,τUt+1]

]
(15)

Integrating across all new workers hired out of unemployment at time τ , we obtain, after

some rearrangement:

W̃t,τ = w̃t,τ + Et
[
(1− ρ)

u′ct+1

u′ct
[(1− s̃t+1,τ )W̃t+1,τ + s̃t+1,τUt+1]

]
.

Repeatedly recursively substituting (14) and (9) into this equation to eliminate W and U
terms, we obtain the dynamic equation that describes βt:

βt
1− βt

(
κ0 +

κ1v
u
t

ut−1ft

)
= wUCt − Φt − zt

+ Et
[
(1− ρ)

u′ct+1

u′ct
(1− s̃t+1,t − ft+1)

βt+1

1− βt+1

(
κ0 +

κ1v
u
t+1

utft+1

)]
, (16)

where,

wUCt = w̃t,t + Et
∞∑
j=1

(1− ρ)j
u′ct+j

u′ct

[
w̃t+j,t

(
j∏

k=1

(1− s̃t+k,t)

)

−
(

1− s̃t+1,t

1− s̃t+1+j,t+1

)
w̃t+j,t+1

(
j∏

k=1

(1− s̃t+1+k,t+1)

)]
, (17)

Φt = Et
∞∑
j=2

(1− ρ)j
(
u′ct+j

u′ct

)
Ut+j

[
−
(

s̃t+j,t
1− s̃t+j,t

)( j∏
k=1

(1− s̃t+k,t)

)

+

(
s̃t+j,t+1

1− s̃t+j,t+1

)(
1− s̃t+1,t

1− s̃t+1+j,t+1

)( j∏
k=1

(1− s̃t+1+k,t+1)

)]
, (18)

Ut = zt + Et
∞∑
j=1

(1− ρ)j
u′ct+j

u′ct

[
zt+j + ft+j

(
βt+j

1− βt+j

)
ht+j

]
. (19)

Equation (16) is identical to equation (6), which described βt in the model with no firm or

match heterogeneity, except for the following differences:

16To prove formally that (10) implies (15), first note that (10) implies (15) when t = τ . This follows from
integrating (10) across all matches that a worker could move to as part of an on-the-job transition. Then,
by a symmetrical argument, note that if (10) implies (15) for some t = n and τ , then (10) implies (15) for
t = n+ 1 and τ . The result then follows by induction.
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1. The vacancy rate vt in equation (6) is replaced by vUt : the number of vacancies targeted

at the unemployed.

2. The separation rate st in equation (6) is replaced by s̃t+1,t: the average next period

separation rate of workers newly hired out of unemployment, where the average is

weighted by the match surplus.

3. The wage rate wt is replaced in equation (16) with the wage component of the user

cost of labor, wUCt , based on workers hired directly out of unemployment. The user

cost of labor is a concept first developed by Kudlyak (2014), who observed that in

models where wages in a match continue depend on conditions under which the worker

was first hired, the macroeconomically relevant measure of the cost of labor is not the

current wage rate, but instead depends on the wage of newly hired workers and also

the future wage changes that these newly hired workers expect in future.

Our expression for wUCt is the same as the expression for the wage component of

the user cost of labor in Kudlyak (2014) except for two key differences. First, we

allow for a time varying stochastic discount factor and a separation rate that varies

across matches and over time, which complicates the user cost equation. Second, our

derivation of wUCt makes clear that the correct measure of the user cost of labor for our

purposes depends on the expected present and future wages of workers hired directly

out of unemployment. For instance, the key first term in our user cost equation, w̃t,t, is

the average wage of workers newly hired out of unemployment. In contrast, Kudlyak

measures the user cost using the wages of all newly hired workers – many of whom

are workers transitioning from one job to another. As argued by Gertler, Huckfeldt

and Trigari (2020), the behavior of the wages of workers transitioning from one job to

another can give a very misleading impression of the cost of labor for firms, in cases

where workers are more likely to move to higher quality matches in booms. At the same

time, contrary to what Gertler, Huckfeldt and Trigari (2020) and Bellou and Kaymak

(2021) have suggested, it is possible to accurately estimate the relevant notion of user

cost in the models encompassed by our framework without needing to measure, control

or make assumptions about match quality, since there are no measures of match quality

in the equation (17).

4. There is an additional term Φt, which is non-zero if (and only if) the probability of a

worker losing their job and entering unemployment depends on the number of periods

that the worker has been employed.17 The term Φt enters equation (16) because if,

17This will be typically true in, for instance, models with endogenous separations – where a longer period
in which a worker has been employed may e.g. indicate a likely higher match quality and therefore a lower
chance of future separation.
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for instance, holding a job for longer reduces the likely future separation rate, then a

worker who is hired at t and retains their job into t+ 1 is less likely to be unemployed

at, e.g. time t + 10 than a worker who is hired at t + 1. The consequence is that the

value of being unemployed at time t+ 10 therefore affects the value of accepting a job

today, and so future unemployment values Ut+j enter into the expression for Φt.

2.3.5 The Nash Wage

In this more general case, we define the Nash wage wNt as the time series that the user cost

of labor wUCt would take each period according to equation (16), if it were the case that the

share of match surplus going to each worker newly hired from unemployment βt, remained

forever constant at some steady state value β (which we take, in our empirical analysis, to

be the average observed value of βt in the sample period). Fixing βt = β in (16), this implies

the Nash wage equation:

wNt = ΦN
t + zt +

β

1− β

(
κ0 +

κ1v
u
t

ut−1ft

)
− Et

[
(1− ρ)

u′ct+1

u′ct
(1− s̃t+1,t − ft+1)

β

1− β

(
κ0 +

κ1v
u
t+1

utft+1

)]
, (20)

where β is given by the steady state value

β

1− β
=

(w − z − ΦN)

[1− (1− f − s)(1− ρ)]h
, , (21)

and where ΦN
t and ΦN are calculated by substituting βt = β into equation (18) and (19).

This equation is essentially identical to the Nash wage equation from the simpler framework

of Section 2.2, except for the small number of differences that distinguished the equation

(16) from its analogue in Section 2.2.

In the modeling framework studied here, it is more precise to say that wNt is defined

according to the Nash sharing rule where workers and firms get a fixed share of match surplus,

rather than the generalized Nash bargaining solution where the new hire wage maximizes

(Jt−Vt)1−β(Wt−Ut)β. In the framework of Section 2.2, the two coincide: Nash bargaining

implies that the worker gets a constant fraction β of the match surplus. However, if the

separation rate or rate of job-to-job transitions are affected by the wage rate in a match,

then this will distort the Nash bargaining solution away from the Nash sharing rule, because

the Nash bargaining solution will, for instance, award a higher share of the match surplus to

workers if this results in a lower separation rate and higher total match surplus. Of course,

the quantitative difference between the Nash bargaining solution and Nash sharing rule is

likely to be small if the size of the total match surplus is not strongly affected by the wage
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the worker is paid when they are first hired.

2.4 Cases Nested by Our Modeling Framework

Our modeling framework in Section 2.3 deliberately imposed minimal structure in order to

encapsulate a wide variety of models and mechanisms discussed in the literature. Since we

can derive the equation for the Nash wage without imposing more structure, it follows that

our equation for the Nash wage holds across a very large range of different models. The

consequence of this is that the estimates for the Nash wage elasticity in Section 3 below are

valid across a large class of models.

Here we briefly outline some of the many cases nested by the modeling framework of

Section 2.3. Of course, an important special case of our framework is a discrete time version

of the canonical Diamond-Mortensen-Pissarides model in Shimer (2005). Our framework

captures this special case if all matches are assumed to be homogeneous, rkt is the same

across matches and equal to aggregate productivity, separation rates are constant over time,

and stochastic discount factors are the same across agents and over time.

Equally, our model also covers significant departures from the framework of Shimer

(2005). First, the model allows for a wide variety of frictions outside the labor market.

Any friction that affects the labor market via the flow value of labor rkt is covered. This

may occur, for instance, if there are distortions to product markets, such as product market

price rigidities. Working capital constraints as in Christiano, Eichenbaum and Trabandt

(2015) are also covered. Likewise, we allow for firms’ discount rates to vary over time and

differ from household discount rates, which covers cases where financial frictions make firms

behave as if they are relatively impatient, as in Schoefer (2021).

Second, the model allows for rich heterogeneity across firms and matches and over time.

Since rkt can vary across matches over time, our framework allows for the possibilities that

workers improve at their jobs over time, that matches persistently vary in quality, or that

there are match-specific productivity shocks. Equally, allowing rkt and firms’ discount rates

to vary across firms and over time allows the model to capture cases where the effects of

goods and financial market frictions differ across firms and over time. Since we allow that

there can be variation across firms and time in the probability that vacancies match with

workers and match specific time varying separation rates, our model also covers cases where

the probability of matching and separating depend endogenously on e.g. match specific

productivity.

Third, our framework allows for time varying labor force participation and job-to-job

transitions.

Fourth, our framework allows for essentially any wage-setting protocol. By allowing the
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wage to depend upon both the current period t and the period at which the match began,

we allow for history dependence in wages, as in e.g. Rudanko (2009). While our Nash wage

equation by definition captures the wage set according to the Nash sharing rule, we nowhere

assume that actual wages are set in this way, since there is no assumption that they equal

Nash wages.

Fifth, our framework allows for the possibility of a wide range of macroeconomic shocks.

Any shock that operates via rkt is covered, such as productivity shocks, markup shocks or

shocks that increase the costs of working capital. Since we did not specify a matching

function, we also allow for the possibility of variation in matching efficiency over time. We

also allow for the possibility of shocks to the separation rate or to firms’ discount rates,

where the latter could be a consequence of financial shocks.

It is worth emphasizing that we are not making the absurd assumption that none of

these many features matter for labor markets. Our framework is fully consistent with these

various types of friction and heterogeneity mattering for both equilibrium unemployment

and wage determination. However, our common Nash wage equation reveals that, under

the Nash sharing rule, the wage has to be set according to the same equation across these

many cases, just as workers have to be on their supply curve equation in a competitive labor

market, regardless of what is assumed about labor demand.

2.5 The Nash Wage Elasticity

In Section 3, we use the equations (16) and (20) for the Nash wage wNt and the worker

bargaining share βt from the more general model described in Section 2.3 to compute time

series for these two variables using data on wages, labor market flows, and series for the

opportunity cost of employment zt from Chodorow-Reich and Karabarbounis (2016). We

use the resulting time series for the Nash wage to estimate the Nash wage elasticity, as we

now discuss.

2.5.1 Computing Series for wNt and βt

To compute series for wNt and βt, we make several assumptions that simplify equations (16)

and (20), due to data limitations.

First, we impose Φt = ΦN
t = 0 for all t. It is not possible to evaluate Φt or ΦN

t without

either data or assumptions about how the separation rate varies across jobs and over time

due to job tenure effects and varying match surplus across matches. Neither the sign nor the

cyclicality of Φt are straightforward to determine, since a separation rate that decreases with

job tenure implies both
(

s̃t+j,t

1−s̃t+j,t

)
<
(

s̃t+j,t+1

1−s̃t+j,t+1

)
and

(
1−s̃t+1,t

1−s̃t+1+j,t+1

)
< 1. In most models in

the literature, the probability of a worker separating from a job and entering unemployment
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is either exactly or approximately unrelated to the length of time the unemployed individual

has been in a job. In such cases, Φt is exactly or approximately equal to zero. For this reason,

we judge that Φt = 0 may be a plausible approximation. Future work could investigate how

far allowing for time variation in Φt affects estimates of the Nash wage elasticity.

Second, we set s̃t+1,t = st+1. Recall that the former is a weighted average separation

rate, while the latter is simply the economy-wide average separation rate. s̃t+1,t will tend to

be greater than st+1 insofar as workers who have been in a job less time are more likely to

separate, but will tend to be less than st insofar as matches with a higher surplus are less

likely to separate. In practice, the s̃t+1,t terms are of very small quantitative significance in

equations (16) and (20), and, consequently, we have found that our empirical NWE estimates

are essentially unaffected by different assumptions about s̃t+1,t, provided s̃t+1,t is of the same

order of magnitude as st+1.
18

Third, we assume that vut is proportional to vt. Specifically, we fix vut = vt, where setting

the constant of proportionality to equal 1 is a normalization, since doubling κ1 and halving

vut leaves equations (16) and (20) unchanged. We make this assumption because we do

not know of data available for our long time period regarding what fraction of vacancies

is targeted primarily at the unemployed. Setting vut = vt makes our Nash wage equation

consistent with the case of no job-to-job transitions, which is a common, if counterfactual,

assumption in models in the literature. Furthermore, making vut proportional to vt may

roughly approximate reality because the job finding rate of the unemployed and frequency

of job-to-job transitions appear to have a roughly similar cyclicality in US data (Mukoyama,

2014).

For the empirical analysis, it is convenient to work with log-linearized forms of the equa-

tions (16) and (20). Log-linearizing (20) around the steady state using (21), setting Φt = 0,

s̃t,t+1 = st+1 and vut = vt and using hat variables to denote log deviations from the steady

state, we obtain

wUCŵNt − zẑt
wUC − z

=

(
κ1v

huf

)
(v̂t − ût−1 − f̂t)

+
(
ff̂t + sŝt

) (1− ρ)

1− (1− f − s)(1− ρ)
+ Et[Ât+1 − Ât], (22)

where

Ât =
(1− ρ)(1− f − s)

1− (1− f − s)(1− ρ)

[
ff̂t + sŝt
1− f − s

−
(
κ1v

huf

)
(v̂t − ût−1 − f̂t) + σĉt

]
. (23)

Log-linearizing equation (16) for βt, imposing Φt = 0 and recursively substituting in (22),

18Details of these results with different assumptions about s̃t+1,t are available upon request.
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we obtain:

β̂t
1− β

=

(
wUC

wUC − z

)
Et

∞∑
j=0

[1− (1− f − s)(1− ρ)] (1− ρ)j(1− f − s)j(ŵUCt+j − ŵNt+j).

(24)

This equation confirms that the deviation of the worker’s share of the match surplus from

its steady state value is proportional to a discounted sum of expected future deviations of

the user cost of labor from Nash wages.

We use equations (22) and (24) to infer the level of the deviation of the worker surplus

share, β̂t, and the Nash wage, ŵNt , from empirical data. Given values of these, we propose

a measure of aggregate wage rigidity which we term the Nash Wage Elasticity (NWE). The

NWE represents the percentage change in the actual wage rate, wt, when the Nash wage,

wNt , changes by 1%. An NWE of 1 would imply that Nash bargaining provides an accurate

model of wage fluctuations. On the other hand, if the NWE is positive but close to 0, this

would imply a wage rate which is relatively insensitive to the macroeconomic factors that

influence the Nash wage.

Specifically, we assume a relationship of the form

ŵUCt = γŵNt + εt

where γ is the NWE and εt is a disturbance term. We estimate this equation by OLS and

using various instruments for the Nash wage to address concerns of possible measurement

error.

The next section discusses details of the data series and calibrations used to estimate the

Nash wage. The Nash wage elasticity is closely related to the procyclicality of wages. As we

discuss in Section 4, our derived value of the Nash wage turns out to be highly procyclical.

Consequently, higher values of γ suggest more procyclical wages. Generally, we find γ far

below 1, and, accordingly, our measures of the user cost of labor are less procyclical than the

Nash wage. As such, we find that the Nash wage tends to be lower than the user cost of labor

in recessions. Furthermore, since we showed above that β̂t depends on the difference between

the Nash wage and the actual user cost of labor, we find that β̂t is strongly countercyclical.

3 Data and Calibration

We compute time series for the model-implied Nash Wage ŵNt and worker surplus share (β̂t)

in US data using the equations (22) and (24) using various measures of the user cost of labor

(wUCt ) various measures of the opportunity cost of employment (zt), calibrated parameters
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time series for the job finding rate, separation rate, unemployment and consumption derived

from US data. The national statistical sources used for these series are reported in Appendix

A. We derive f and s using the headline series of the level of unemployed workers (ul), number

employed workers (e) and number of unemployed workers for less than 5 weeks (us) monthly

released by the U.S. Bureau of Labor Statistics (BLS) and follow the approach of Shimer

(2005):

ft = 1−
ult − ust−1

ult
(25)

st =
ust+1

et(1− 1
2
ft)

(26)

The job vacancy rate (v) is taken from Petrosky-Nadeau and Zhang (2020), which they

construct by combining the BLS’s Job Openings and Labor Turnover Survey (JOLTS) with

a range of earlier sources, in order to cover periods where JOLTS data is unavailable.

We obtain measures of the opportunity cost of employment, zt, from Chodorow-Reich

and Karabarbounis (2016). As discussed above on page 11, these measures represent the

combined advantages of being unemployed relative to the mean marginal product of labor

in terms of benefits in cash and in kind, taxes, and more free time. The reader is referred

to Chodorow-Reich and Karabarbounis (2016) for details of how these series for zt are con-

structed. Using different assumptions on preferences, Chodorow-Reich and Karabarbounis

derive four different time series for zt, computed on the basis of a) separable utility in

hours and consumption (SEP); b) Constant Frisch Elasticity (CFE) and two different Cobb-

Douglas parametrizations (CD1 and CD2). For completeness, we derive our results using all

four series for zt. As we show in Table 1 below, these different series imply very different

levels for the average value of zt over time, but Chodorow-Reich and Karabarbounis robustly

find zt to be highly procyclical, contra the assumption of a constant z commonly considered

in the SAM literature. The intuition for this is that the marginal rate of substitution be-

tween consumption and leisure is highly cyclical (i.e. workers value consumption relatively

more in recessions), which dominates the countercyclicality of unemployment benefits.

Chodorow-Reich and Karabarbounis’s different assumptions about preferences imply dif-

ferent assumptions about σ. To maximize consistency with their approach, we use the value

of σ associated with each zt series in Chodorow-Reich and Karabarbounis (2016)

3.1 Empirical Measures of Wages

We consider multiple measures of the cost of labor. In the previous section, it was shown that

the relevant measure of the cost of labor that should ideally be used to calculate the Nash
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wage elasticity is the user cost of labor based on newly hired workers out of unemployment.

The user cost of labor incorporates not only the wage earned by a newly hired worker today,

but also the possibility that being hired today rather than tomorrow affects a worker’s

likely wages in future periods, thereby making it more or less expensive for a firm to hire

a worker today versus tomorrow. Unfortunately, no empirical measure of this user cost has

been constructed and it is not straightforward to construct a reliable such measure given

the available data. In particular, to calculate the user cost accurately, a relatively long

individual panel is needed to incorporate the possibility that being employed today affects a

worker’s wages some distance into the future, as implied by models of implicit contracts such

as Rudanko (2009). One such panel is the National Longitudinal Survey of Youth (NLSY),

however the NLSY does not ask whether an individual has been hired out of unemployment,

and so the wages of new hires out of unemployment cannot be distinguished from those of job

switchers. Kudlyak (2014) and Basu and House (2016) have constructed measures of the user

cost of labor from the NLSY, based on lumping together all new hires, whether they are job

switchers or new hires out of unemployment. This is problematic because Gertler, Huckfeldt

and Trigari (2020) have found that the wages of job switchers and wages of new hires out

of unemployment have quite different cyclical properties, with the latter being substantially

more cyclical. If this is the case, the user cost series of Kudlyak (2014) and Basu and House

(2016) may have quite a substantial procyclical bias, which would substantially bias upwards

estimates of the NWE based on this series (since the Nash wage is very procyclical, as we

discuss below).

For this reason, we consider five different empirical proxies for the user cost of labor:

the BLS average weekly earnings wage series, two series from Basu and House (2016) and

two series from Haefke, Sonntag and Van Rens (2013). We consider all these series because

of the substantial debate in the literature regarding the true cyclicality of the cost of labor

(Gertler, Huckfeldt and Trigari, 2020; Bellou and Kaymak, 2021). As we discuss, we believe

that some of the series are likely to lead to downward biased estimates of the NWE and other

series are likely to lead to upward biased estimates of the NWE. Therefore, by considering

the range of measures, we hope to provide a range of estimates of the NWE, with the true

value likely to fall somewhere within this estimated range.

We call the first series the CES wage as it is based on the monthly Current Employment

Survey (CES) and represents the U.S. employed population average hourly earnings. There

are two reasons why this headline series may have a countercyclical bias, thus failing to be

a representative ‘user cost’ series: a) since the CES wage is aggregate, this measure suffers

from likely countercyclical composition bias if the workers hired in booms have on average

lower quality characteristics than the workers hired in recessions and b) an aggregate wage

will have a countercyclical bias if the wages of newly hired workers are more influenced by
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the current state of the labor market than are those of job stayers (Basu and House, 2016;

Kudlyak, 2014). Given this likely countercyclical bias, we anticipate that the CES series will

tend to understate the Nash wage elasticity.

As a second proxy for the user cost of labor, we use a measure of the new hire wage

computed from NLSY data by Basu and House (2016), which specifically corrects for com-

position bias by controlling for individual fixed effects. As discussed above, this new hire

wage includes both job changers and newly hired workers out of unemployment, whose wages

might have quite different cyclical properties. Another concern with the NLSY series is that

the NLSY consists of only a single cohort, which might not be representative of the wider

population.

The third series we use is the ‘user cost of labor’ calculated by Basu and House (2016)

from NLSY data (this is similar to the series calculated by Kudlyak (2014)). We refer

to this series as the NLSY user cost, to distinguish it from the true user cost of labor in

our theoretical framework. This series also adjusts for individual fixed effects to address

composition bias. As discussed above, this series gets close conceptually to the relevant

concept of the user cost of labor, but may overstate the Nash wage elasticity, possibly by

a significant amount, since it lumps together job switchers with newly hired workers out of

unemployment.

The remaining two wage series are calculated by Haefke, Sonntag and Van Rens (2013)

on the basis of Current Population Survey (CPS) hourly earnings. The first such wage series,

which we call Haefke New Hire, is the wage of newly hired workers out of unemployment,

since the CPS has information on recent past unemployment status and so can distinguish

this group from job switchers. The second series, which we call Haefke All, is a wage of all

workers. Both series adjust for composition bias using controls for education, demographic

characteristics and experience. The composition bias adjustment means that the ‘Haefke All’

series is less at risk of countercyclical bias than the CES series discussed above. Nevertheless,

since neither of these series is based on panel data, neither of them can fully capture the

possible dynamic effects of being hired today on future wages, which should be taken into

account as part of the user cost of labor. Thus, neither of these measures fully capture the

user cost. Since these two indices have some missing values due to the unavailability of more

granular information in the third and forth quarters of 1985 and 1995, we resort to linear

interpolation to produce a continuous series.

We multiply our wage indices, which are hourly, by average weekly hours worked (ac-

cording to the CES) in order to enumerate our series for the cost of labor in terms of the

per-worker cost. This transformation is necessary to make the wage indicators consistent

with the SAM model stated above, where the wage corresponds to the pay for being employed

rather than a hourly rate.
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3.2 Steady State Variable Values and Calibrated Parameters

Having obtained time series for st, ft, ut, zt and so on, our log-linearization approach requires

that we calculate the steady state values of these variables as well as their deviations from

the steady state. For each variable, we assume that the HP-filtered log value from the data

isolates the log deviation of the variable from its steady state value. For almost all variables,

we consider the longer term (whole sample) average as the steady state, value. These values

are shown in Table 1.

Inferring the steady state value of the user cost of labor is less straightforward, since many

of our series for this control for individual fixed effects or characteristics, so it is not clear

what these series imply for the average user cost of labor over time. Instead, we calibrate

the steady state value of the user cost of labor based on the hiring first order condition for

firms, in order to maximize consistency with the literature.

This approach requires first that we calibrate the hiring costs κ0 and κ1, representing

the fixed hiring cost and vacancy posting cost. As a baseline, we set the fixed hiring cost

to zero (the traditional assumption in the literature) and set the vacancy posting cost to

0.44. This second parameter deserves more discussion, since there is no consensus in the

literature on the total value of hiring costs (relative to the steady state marginal product

of labor). Both Hagedorn and Manovskii (2008) and Michaillat and Saez (2021) calibrate

the costs based on microdata, both assuming fully variable costs (κ0 = 0). We consider

different combinations of fixed/variable hiring costs consistent with a steady state hiring

cost of roughly 0.58, halfway between the value used by Hagedorn and Manovskii (2008) and

Michaillat and Saez (2021). Our steady state costs are stated in the following equation:

h = κ0 + κ1

(
v

uf

)
' 0.58 (27)

At the same time, since there is also no consensus on the likely split between fixed and

variable hiring costs, we explore multiple calibrations of κ0 and κ1 below, keeping the steady

state hiring cost at 0.58, but varying the fraction of fixed hiring costs in the total from 0 to

90%. This implies values of κ0 ranging from 0 to 0.52, and values of κ1 ranging from 0.044

to 0.44. In particular, we consider specifications with only variable costs (κ0 = 0, κ1 = 0.44),

as is standard in the literature, specifications where the fixed hiring cost is roughly half of

total hiring costs (κ0 = 0.29, κ1 = 0.22 ) and specifications where the fixed hiring cost is

90% of total hiring costs (κ0 = 0.52, κ1 = 0.044).

For the user cost of labor, we assume that steady state wUC is the equilibrium steady

state wage that would result if all workers are homogeneous and paid the same wage and

there are no goods market frictions in the steady state. Hence, we calculate it according to

(12):
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J = r − w + (1− ρ)(1− s)J (28)

The first order condition is J = h. Normalizing r = 1, we obtain that in the steady

state:

w = 1− (1− (1− ρ)(1− s))h ' 0.98 (29)

We note that 0.98 is consistent with the SAM literature (e.g. Pissarides (2009) assumes a

steady state wage of 0.98).

We summarize the calibration in the Table 1 below, which shows the range for κ0 and κ1

consistent with the steady state h of 0.58 and the σ parameter values used by Chodorow-

Reich and Karabarbounis (2016) for each of the four z series. In the analyses below, we

do not show results for other values of σ, ρ or h (i.e. we only vary the ratio κ0
κ1

). This

is because we have found that plausible alternatives to these parameter assumptions make

truly negligible difference to our empirical results – affecting NWE estimates by less than

1%.

Table 1: Steady States and Calibration

Variables in Steady State Description

u 0.064 Unemployment Rate

f 0.37 Finding Rate

w 0.98 Wage

z 0.47, 0.76, 0.96 Opportunity cost of employment

s 0.03 Separation Rate

v 0.03 Vacancy rate

β 0.68 Bargaining Share

h 0.58 Hiring Costs

Calibrated Parameters

κ0 0, 0.29, 0.52 Fixed Hiring Costs

κ1 0.44, 0.22, 0.044 Proportional Hiring Costs

σ 1, 1.52, 1.25, 1.19 Risk Aversion Coefficient

ρ 0.012 Discount Rate

Notes: This table shows the benchmark parameter and steady state values used to derive the Nash wage
series. As explained in the text, we consider 4 different series for zt from Chodorow-Reich and Karabarbounis
(2016) with the steady state z values 0.47, 0.47, 0.76 and 0.96, and associated 4 different values of σ. We
consider 3 different calibrations of the pair (κ0, κ1) – with the first calibration using κ0 = 0, κ1 = 0.44.

31



4 Results

In this section, we compute time series for the Nash wage and worker surplus share, and then

estimate values for the Nash wage elasticity using regressions of the type discussed on page

26. We estimate these regressions in three different ways: using OLS; using unemployment

as an instrument for the Nash wage, and using monetary shocks as instruments for the Nash

wage. We first discuss the series we derive for the worker surplus share and Nash wage

and a few features of these series, then we consider in turn each of these three estimation

approaches and the corresponding estimation results.

4.1 The Worker Surplus Share and Nash Wage Series

First, we derive time series for the worker surplus share and Nash wage using the log-

linearized expressions for these in Section 2.5. Given data series for wUCt , zt, st, ft and so on,

as described in the previous section, and using calibrated parameter values from Table 1,

the time series for the Nash wage and bargaining share can be computed straightforwardly

from the expressions in Section 2.5, except for one remaining difficulty: these log-linearized

expressions include expectation terms for future values of the relevant variables. Following

the literature on estimating business cycle wedges (e.g. Chari, Kehoe and McGrattan, 2007),

we calculate these forecast terms by using the fitted values of a reduced-form VAR with one

lag, estimated on the data in our sample period, where the vector of hp-filtered variables in

the VAR, yt, is given by yt = [1 year interest rate; Real GDP; GDP Deflator; ft; st; wt; zt;

vt; ut; ct].

To derive the time series for the Nash wage using equation (22), only a one-period ahead

forecast is needed. To derive the time series for the bargaining share using equation (24), we

calculate the recursive sum using forecast values for wages and Nash wages up to the horizon

j = 50, although the geometrical decay of the summation term makes it effectively nil after

the 20th period. The forecasts of future values of the Nash wage used in this equation are

calculated using equation (22) and inputting the corresponding forecasts of future values of

the other variables, based on the VAR.19

19As such the forecast Et[w
N
t+40], for instance, is calculated by putting, for instance, Et[zt+40] into equation

(22) in place of zt.
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Figure 1: Worker Surplus Share (βt) based on the NLSY user cost of labor

Notes: The figure shows the derived time series for log-deviation of βt from its steady state value, where we
use the separable preference specification, assume fully variable hiring costs, and use the NLSY user cost
series as our measure of the user cost of labor. Shaded lines denote NBER recession dates.

In Figure 1 we graph the worker surplus share and in Figure 2 we chart the empirical Nash

Wage. For the graphs, we use the separable preference series for zt, and assume fully variable

hiring costs, so that κ0 = 0. Figure 1 uses the NLSY user cost of labor as the measure for

ŵUCt , and Figure 2 considers three distinct wage measures. Comparing Figures 1 and 2, it is

evident that the measured worker share of match surplus is strongly countercyclical and the

Nash wage is strongly procyclical, much more so than the proxies for the actual user cost

of labor. The countercyclical worker surplus share in Figure 1 suggests that, in recessions,

workers are earning more than they would if their share of the surplus was constant (as in

the Nash sharing rule). This is consistent with Figure 2, where it appears that in recessions

actual wages are well above the Nash wage. As such, movements in the Nash wage appear

to be associated with much smaller movements in actual wages. This is consistent with the

evidence we document below that the Nash wage elasticity is well below 1, indicating wage

rigidity.
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Figure 2: Nash Wage ŵNt

Notes: The figure shows the derived time series for the log-deviation of the Nash wage from its steady state
value, where we use the separable preference specification and assume fully variable hiring costs. Shaded
lines denote NBER recession dates.

4.2 Estimating the Nash Wage Elasticity using OLS

In this section, we estimate the NWE via OLS. To do so, we estimate 60 linear regressions

for which the NWE is the slope coefficient of a regression where the Nash wage is the

independent variable and the dependent variable is a measure of the cost of labor. The Nash

Wage Elasticity is represented by the coefficient γ in the following ordinary least squares

(OLS) regression:

ŵUCt = γŵNt + εt (30)

We estimate 60 different such regressions by varying the cost of labor measure ŵUCt by

variously considering the five proxies for the user cost of labor and regressing them on 12

different time series for the Nash wage, which are derived based on combinations of the four

series for the opportunity cost of labor z and the three different combinations of fixed and

variable hiring costs discussed in Section 3.

In Table 2 we find estimates of the NWE ranging from 0.01 to 1.56. However, the vast

majority of estimates are below 0.1 (and usually statistically indistinguishable from zero),

and only a few estimates are above 0.6. Almost all estimates are statistically distinguishable

from 1. The small number of estimates above 0.6 all use the NLSY user cost of labor (our

most procyclical labor cost series) and use either almost entirely fixed hiring costs, or use
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the CD2 series of z. This series of z has an average value of 0.96 – close to the calibration

of Hagedorn and Manovskii (2008), which is viewed by most of the subsequent literature as

implausibly high (Chodorow-Reich and Karabarbounis, 2016; Christiano, Eichenbaum and

Trabandt, 2021). Given the extreme assumptions needed to find an NWE above 0.6, we

interpret our estimates as clearly supporting an NWE below 0.6, and favoring an NWE of

0.1 or below.

Table 2: OLS Nash Wage Elasticity Estimates for 5 Wage and 12 Nash Wage Series

Nash Wage Specification Details NWE Estimates for 5 Wage Series

Z Series Steady state z κ0 κ1 CES NLSY New Hire NLSY User Cost Haefke All Haefke New Hire

SEP 0.47 0.00 0.44 0.01 0.02 0.24 0.01 0.02

(0.01) (0.04) (0.04) (0.01) (0.02)

SEP 0.47 0.29 0.22 0.01 0.02 0.39 0.03 0.03

(0.01) (0.07) (0.07) (0.01) (0.03)

SEP 0.47 0.52 0.04 0.02 0.02 0.65 0.06 0.04

(0.02) (0.12) (0.15) (0.02) (0.07)

CFE 0.47 0.00 0.44 0.01 0.01 0.24 0.01 0.02

(0.01) (0.04) (0.04) (0.01) (0.02)

CFE 0.47 0.29 0.22 0.01 0.02 0.39 0.03 0.03

(0.01) (0.07) (0.07) (0.01) (0.03)

CFE 0.47 0.52 0.04 0.02 0.02 0.67 0.06 0.05

(0.02) (0.13) (0.15) (0.02) (0.07)

CD1 0.76 0.00 0.44 0.02 0.04 0.53 0.03 0.04

(0.01) (0.09) (0.10) (0.01) (0.05)

CD1 0.76 0.29 0.22 0.03 0.06 0.81 0.06 0.06

(0.02) (0.15) (0.16) (0.02) (0.08)

CD1 0.76 0.52 0.04 0.06 0.07 1.16 0.13 0.09

(0.04) (0.24) (0.26) (0.04) (0.15)

CD2 0.96 0.00 0.44 0.19 0.38 1.56 0.26 0.13

(0.06) (0.40) (0.54) (0.06) (0.30)

CD2 0.96 0.29 0.22 0.21 0.40 1.39 0.28 0.12

(0.06) (0.40) (0.57) (0.07) (0.32)

CD2 0.96 0.52 0.04 0.22 0.40 1.18 0.28 0.10

(0.06) (0.39) (0.59) (0.07) (0.33)

Notes: We estimate the NWE for 5 wage series and 12 distinct Nash wage series via the OLS regression in
equation (30). Each of the 12 rows represents a Nash wage series, with the 4 left hand side columns detailing
the corresponding assumptions about the opportunity cost of employment and hiring costs. The 5 right
hand side columns provide the corresponding Nash wage elasticity estimates for the 5 different wage series.
Newey–West standard errors are given in parentheses.
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4.3 NWE estimates with unemployment as an instrument

Next, we estimate the NWE using the (hp-filtered) unemployment rate as an instrument for

the Nash wage. The justification for an IV approach is that our OLS estimates might be

biased towards zero due to measurement error in the Nash wage. To alleviate this concern,

we estimate an IV regression with the same second stage equation as Eq. (30), but where

the hp-filtered unemployment rate instruments for the Nash wage in the first stage.

wt = θwn + ξt (31)

This approach has two advantages. First, it reduces concerns of measurement error in the

Nash wage. Second, the point estimate is equivalent to dividing the semi-elasticity of actual

wages with respect to the unemployment rate by the semi-elasticity of Nash wages with

respect to the unemployment rate.20 Since the reduced-form literature on wage cyclicality

commonly computes the elasticity of wages with respect to the unemployment rate, this

approach has the virtue of easy comparison to that literature. We compare our results to

this literature in detail in Section 4.6.2 below.

We report the results in Table 3. Throughout, IV estimates are relatively similar to OLS

estimates. This is because the Nash Wage is strongly correlated with the unemployment

rate (correlation > 0.8) in most specifications. Again, in most cases, the NWE is close to or

indistinguishable from zero. Intuitively, as we discuss in Section 4.6 below, this is because

the elasticity of the Nash wage with respect to the unemployment rate is much higher than

the elasticity of the actual cost of labor with respect to the unemployment rate, for most

measures of the cost of labor. The NWE based on the NLSY User Cost is markedly positive.

It is even greater than 1 in a few instances, but only in relatively extreme calibrations – –

those using the CD1 and CD2 specification entailing a high value of z, and/or a high value

of fixed hiring costs κ0.

20That is, θ in this specification is equal to the ratio θ1/θ2 from the following OLS regressions:

wt = θ1yt + ξt,1

wN
t = θ2yt + ξt,2
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Table 3: Estimates of the NWE with Unemployment as Instrument for the Nash Wage

Nash Wage Specification Details NWE Estimates for 5 Wage Series

Z Series Steady state z κ0 κ1 CES NLSY New Hire NLSY User Cost Haefke All Haefke New Hire

SEP 0.47 0.00 0.44 0.01 - 0.01 0.27 0.02 0.01

(0.01) (0.05) (0.07) (0.01) (0.02)

SEP 0.47 0.29 0.22 0.01 - 0.01 0.41 0.03 0.02

(0.01) (0.08) (0.10) (0.01) (0.04)

SEP 0.47 0.52 0.04 0.01 - 0.02 0.68 0.05 0.03

(0.02) (0.13) (0.16) (0.02) (0.07)

CFE 0.47 0.00 0.44 0.01 - 0.01 0.28 0.02 0.01

(0.01) (0.05) (0.07) (0.01) (0.02)

CFE 0.47 0.29 0.22 0.01 - 0.01 0.42 0.03 0.02

(0.01) (0.08) (0.10) (0.01) (0.04)

CFE 0.47 0.52 0.04 0.02 - 0.02 0.70 0.06 0.03

(0.02) (0.14) (0.17) (0.02) (0.07)

CD1 0.76 0.00 0.44 0.01 - 0.02 0.62 0.04 0.02

(0.02) (0.12) (0.15) (0.02) (0.05)

CD1 0.76 0.29 0.22 0.02 - 0.03 0.91 0.07 0.03

(0.03) (0.18) (0.22) (0.03) (0.08)

CD1 0.76 0.52 0.04 0.03 - 0.04 1.46 0.12 0.06

(0.05) (0.28) (0.35) (0.04) (0.14)

CD2 0.96 0.00 0.44 0.09 - 0.12 4.11 0.29 0.15

(0.13) (0.79) (0.98) (0.11) (0.35)

CD2 0.96 0.29 0.22 0.11 - 0.14 4.85 0.35 0.18

(0.15) (0.94) (1.15) (0.13) (0.42)

CD2 0.96 0.52 0.04 0.12 - 0.16 5.66 0.42 0.22

(0.18) (1.09) (1.35) (0.16) (0.50)

Notes: We estimate the NWE for 5 wage series and 12 distinct Nash wage series via the 2SLS regression in
equation (31), where unemployment instruments for the Nash wage. Each of the 12 rows represents a Nash
wage series, with the 4 left hand side columns detailing the corresponding assumptions about the opportunity
cost of employment and hiring costs. The 5 right hand side columns provide the corresponding Nash wage
elasticity estimates for the 5 different wage series. Newey–West standard errors are given in parentheses.

4.4 NWE estimates with monetary shocks as an instrument

Lastly, we estimate the NWE conditional on monetary shocks, in effect using monetary

shocks as an instrument for the Nash wage. Estimating the NWE conditional on a par-

ticular shock helps address the concern that our low estimates of the NWE are driven by

measurement error that varies systematically with the rate of unemployment. This would

occur if the Nash wage is affected by preference shocks or shocks to worker bargaining power,
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which were not considered in our modeling framework.21 By estimating the Nash wage elas-

ticity conditional on a specific shock, we therefore avoid the risk that other unmeasured

shocks are biasing NWE estimates.

To estimate the NWE conditional on monetary shocks we borrow from the dynamic fiscal

multiplier literature. The multiplier is defined as the cumulative change in GDP relative to

government spending on an exogenous impulse. It is often approximated with the ratio

of the integral of GDP and government spending impulse response functions (IRFs) at an

arbitrary horizon h (Ramey, 2016, 2018). Nekarda and Ramey (2021), among others, have

extended this framework to analyze the conditional response of markups to monetary policy,

government spending, productivity and investment specific technology shocks.

Ramey (2016) shows that the dynamic fiscal multiplier can be calculated in a one step

regression in this way by means of a direct instrumental variable local projection (IV-LP).

In particular, it is possible to estimate the dynamic fiscal multiplier using

h∑
j=0

yt+j = ah +mh

h∑
j=0

gt+j + γhCt + ut+h

where
∑h

j=0 yt+j is the cumulative sum of output after a government spending shock,
∑h

j=0 gt+j

is the cumulative sum of government spending, and the latter is instrumented using an iden-

tified government spending shock xt. The estimate of mh then corresponds to the fiscal

multiplier at the horizon h, Ct is a matrix of control variables and ut+j is the error term.

Analogously, we may estimate the Nash wage elasticity conditional on monetary shocks

using

h∑
j=0

ŵt+j = mh

h∑
j=0

ŵNt+j + γhCt + ut+h, (32)

where
∑h

j=0 ŵt+j is the cumulative sum of measured wages (logged and hp-filtered) and∑h
j=0 ŵ

N
t+j the cumulative sum of Nash wages, and the latter is instrumented using an iden-

tified monetary policy shock. The coefficient mh is then the estimated NWE at time horizon

h. The IV-LP approach has the advantage to be conducive to the calculation of standard

errors.

For the identified monetary policy shock, we use the Romer and Romer narrative series

21For instance, if there are preference shocks that affect zt over time, this could lead to a strongly counter-
cyclical zt and more countercyclical Nash wage, because shocks increasing the value of zt will tend to raise
wages, Nash wages and unemployment. Then, by not considering these shocks for zt, our series for the Nash
wage could have a procyclical bias and our NWE estimates above could be biased towards zero. Alterna-
tively, if there are shocks to the bargaining power of workers, these will tend to lead to more countercyclical
Nash wages as both wages and unemployment are typically increased when the bargaining power of workers
rises (see Shimer, 2005), also implying our previous NWE estimates are biased towards zero.
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for monetary policy Romer and Romer (2004) as updated in Wieland and Yang (2020). Our

specification is exactly Eq. (32) where the matrix of controls contains 1 lag of the shock, log

GDP, Nash wage and the wage proxy we use as the dependent variable (all hp-filtered). We

estimate the Nash wage elasticity using a horizon of 4 quarters after the monetary policy

shock. We summarize the results in Table 4.

Table 4: NWE Estimates Using Monetary Shocks as Instrument for the Nash Wage

Nash Wage Specification Details NWE Estimates for 5 Wage Series

Z Series Steady state z κ0 κ1 CES NLSY New Hire NLSY User Cost Haefke All Haefke New Hire

SEP 0.47 0.00 0.44 0.01 0.04 0.37 0.02 - 0.01

(0.01) (0.06) (0.18) (0.01) (0.04)

SEP 0.47 0.29 0.22 0.02 0.07 0.60 0.04 - 0.02

(0.02) (0.09) (0.30) (0.02) (0.07)

SEP 0.47 0.52 0.04 0.03 0.18 1.25 0.09 - 0.05

(0.04) (0.21) (0.63) (0.06) (0.16)

CFE 0.47 0.00 0.44 0.01 0.04 0.37 0.02 - 0.01

(0.13) (0.14) (0.13) (0.01) (0.04)

CFE 0.47 0.29 0.22 0.02 0.07 0.61 0.04 - 0.02

(0.13) (0.15) (0.13) (0.02) (0.07)

CFE 0.47 0.52 0.04 0.03 0.19 1.30 0.09 - 0.05

(0.13) (0.17) (0.15) (0.06) (0.16)

CD1 0.76 0.00 0.44 0.02 0.09 0.88 0.02 - 0.01

(0.13) (0.15) (0.14) (0.01) (0.04)

CD1 0.76 0.29 0.22 0.03 0.17 1.44 0.04 - 0.02

(0.13) (0.17) (0.15) (0.02) (0.07)

CD1 0.76 0.52 0.04 0.01 0.20 2.85 0.09 - 0.05

(0.11) (0.19) (0.17) (0.06) (0.16)

CD2 0.96 0.00 0.44 0.02 0.09 8.27 0.02 - 0.01

(0.11) (0.19) (0.23) (0.01) (0.04)

CD2 0.96 0.29 0.22 0.04 0.06 11.06 0.04 - 0.02

(0.11) (0.20) (0.24) (0.02) (0.07)

CD2 0.96 0.52 0.04 0.08 0.05 15.26 0.09 - 0.05

(0.11) (0.20) (0.25) (0.06) (0.16)

Notes: We estimate the NWE for 5 wage series and 12 distinct Nash wage series via the IV-LP regression given
in equation (31), where the monetary shock instruments for the cumulative change in the Nash wage. Each
of the 12 rows represents a Nash wage series, with the 4 left hand side columns detailing the corresponding
assumptions about the opportunity cost of employment and hiring costs. The 5 right hand side columns
provide the corresponding Nash wage elasticity estimates for the 5 different wage series. Newey–West
standard errors are given in parentheses.

The NWE conditional on the monetary policy shock is similar to the OLS and the IV

specifications. The NWE is generally very small or nil one year after a monetary policy
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shock. This suggests that the actual wage is also not sensitive to moves in the Nash wage

conditional on these shocks. Furthermore, the similarity of our results across the OLS

specification and the two IV specifications suggest that measurement errors in the Nash

wage that are either uncorrelated or correlated with the unemployment rate are unlikely to

be substantially biasing our estimates of the NWE towards zero.

4.5 Overall distribution of NWE estimates

In Figure 3 we summarize all the 180 estimates for the NWE derived so far in a box plot. The

12 boxes represent the 12 alternative calibrations, using the four different series for z and

three different calibrations of hiring costs. The outliers are all estimates involving the NLSY

user cost series. Estimates with a higher steady state z and CD2 are more dispersed and

present more outliers. The other estimates is very concentrated around 0. Taken together,

this evidence is strongly suggestive that the NWE is positive but much closer to 0 than to

1.

Figure 3: Box Plots of NWE Estimates across all 180 Regressions.

Z SEP, k0/h=0 Z SEP, k0/h=0.5 Z SEP, k0/h=0.9 Z CFE, k0/h=0 Z CFE, k0/h=0.5 Z CFE, k0/h=0.9 Z CD1, k0/h=0 Z CD1, k0/h=0.5 Z CD1, k0/h=0.9 Z CD2, k0/h=0 Z CD2, k0/h=0.5 Z CD2, k0/h=0.9
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Notes: The figure shows 12 box plots, one for each of the 12 Nash wage series used in the regressions. The
x axis contains information the Nash wage series used. Each box plot shows the median, interquartile range
and outliers for the 15 NWE estimates associated with this Nash wage series, across the 3 regressions and 5
wage measures. Outlier NWE estimates that are greater than 1.5 are written above the dotted line, with the
precise NWE estimate not shown for these outliers. Some of these outlier estimates are much larger than
1.5, e.g. the largest estimate is 15.3.
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4.6 What is driving our results?

Across many different measures of wages and different empirical specifications, we have esti-

mated values of the NWE that are positive, but substantially below 1. Perhaps surprisingly,

this is true in many specifications even when we use the highly procyclical NLSY user cost

of labor from Basu and House (2016). Key to understanding our results is that our mea-

sured series for the Nash wage are highly procyclical, more procyclical even than the NLSY

user cost of labor, as we explain below. Since the actual cost of labor is significantly less

procyclical than the Nash wage, it therefore follows that the NWE is substantially below 1.

In this section, we discuss why we find the Nash wage to be so procyclical. We first

provide some informal intuition, before making the discussion more precise. We then discuss

how our findings compare to previous literature assessing the extent of wage rigidity and

why we find a greater degree of rigidity than much of this literature may appear to suggest.

Informally, the key to our results is that firm match surpluses appear to be procyclical,

whereas worker match surpluses appear highly countercyclical, across different measures of

the cost of labor. The reason that the firm match surplus appears to be procyclical is that

the firm’s hiring decision implies that the firm match surplus must equal the hiring cost, and

hiring costs are procyclical since vacancies take longer to be filled when unemployment is

low. On the other hand, the worker match surplus is strongly countercyclical, as the value of

unemployment is much lower in recessions due to the longer time required to find a job. With

a procyclical firm surplus and a strongly countercyclical worker surplus, it follows that the

worker’s share of the total surplus is strongly countercyclical, and so the Nash wage must be

substantially more procyclical than the actual wage. Then, the NWE must be substantially

below 1. In principle, if wages were procyclical enough then this could entail a procyclical

worker match surplus and an NWE of 1 or more, but it turns out that this would require

wages to be a lot more procyclical than any of our empirical measures of labor cost.

4.6.1 Formal intuition

To develop this argument formally, assume, for simplicity, that all variables follow approxi-

mate random walks, so that for each variable Et[xt+1] ' xt. Assume also that the separation

rate is roughly constant, so that ŝt = 0. Then, equation (22) gives the following approximate

formula for the Nash wage.

wUCŵNt − zẑt
wUC − z

− ff̂t
(

(1− ρ)

1− (1− f − s)(1− ρ)

)
=

(
κ1v

huf

)
(v̂t − ût − f̂t)
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Furthermore, log linearizing equation (1), setting ut+1 = ut and ŝt = 0 yields:

(f + s)ût = −ff̂t.

Substituting this into the equation above, we obtain:

wUCŵNt − zẑt
wUC − z

+ (f + s)ût

(
(1− ρ)

1− (1− f − s)(1− ρ)

)
︸ ︷︷ ︸

Deviation of Worker Match Surplus

=

(
κ1v

huf

)(
v̂t −

s

f + s
ût

)
︸ ︷︷ ︸

Deviation of Firm Surplus

.

The right-hand side of this equation is the deviation of the hiring cost from steady state,

which equals the deviation of the firm’s match surplus from steady state. Since vacancies

are procyclical and unemployment is countercyclical, the firm’s surplus is procyclical.

The equation states that this has to equal the deviation of the worker surplus from steady

state. The reason that the left-hand side of the equation has to equal the right-hand side

is that the Nash wage ŵNt is defined as the wage that keeps the worker share of surplus

constant, requiring that the log deviation of the firm and worker surplus are equal.

The worker surplus term on the left-hand side has two components. The first term in the

deviation of the worker surplus is the change in the wage minus opportunity cost of working.

The second term, proportional to ût, represents that the worker’s match surplus relative to

unemployment depends on how long a worker would expect to be unemployed if they were

to quit the job. Since the duration of unemployment increases as the unemployment rate

increases, this term relates positively to ût.

If the wage were too acyclical, so that ŵNt = 0, then the left-hand side of this equation

would be countercyclical, since our data series for ẑt is procyclical (Chodorow-Reich and

Karabarbounis, 2016), and the unemployment rate is countercyclical. Since the right-hand

side is procyclical, ŵNt has to be procyclical for the left-hand side to equal the right-hand

side. That is, the firm’s match surplus is procyclical, and everything apart from wages makes

the worker surplus countercyclical. As such, the wage rate would have to be quite procyclical

in order for the worker’s surplus to be as procyclical as the firm’s, which is required by Nash

bargaining.

How procyclical then does ŵNt have to be? To answer this question, rewrite the left-hand

side of the equation above as:wUC
(
ŵN

t

ût

)
− z

(
ẑt
ût

)
wUC − z

+

(
(1− ρ)(f + s)

1− (1− f − s)(1− ρ)

) ût.
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For this to be procyclical, it must be negatively related to ût. That is, we need that:

wUC
ŵN

t

ût
− z ẑt

ût

wUC − z
+

(
(1− ρ)(f + s)

1− (1− f − s)(1− ρ)

)
< 0

Using that ẑt
ût
< 0, this can be rearranged to:∣∣∣∣ŵNtût

∣∣∣∣ > (1− z

wUC

)( (f + s)(1− ρ)

ρ+ (f + s)(1− ρ)

)
+

z

wUC

∣∣∣∣ ẑtût
∣∣∣∣

The right-hand side term in round brackets will be very close to 1 in an empirically plausible

calibration. Since the last term is also positive, this requires in practice that:∣∣∣∣ŵNtût
∣∣∣∣ > 1− z

wUC
.

This condition implies that the Nash wage must be extremely procyclical. In particular,

for our baseline series of z, the right-hand side is equal to 0.53. The left-hand side is

the percentage change in Nash wages when the number unemployed increases by 1%. If

this exceeds 0.53, and the average unemployment rate is 6.3%, then a 1 percentage point

increase in the unemployment rate (i.e. from 6.3% to 7.3%) must reduce the Nash wage by

more than 0.53/0.063 = 8.4%. Note that this is merely the minimum level of cyclicality of

the Nash wage required for the worker match surplus to be at all procyclical. If the firm

surplus is highly procyclical (which will be the case if κ0 is substantially below 1) then Nash

bargaining requires for the worker match surplus also to be highly procyclical, implying

that a 1% decrease in the unemployment rate must increase the Nash wage by substantially

more than 8.4%. Indeed, with our baseline series of z with separable preferences and fully

variable hiring costs, a simple OLS regression of the Nash wage on the unemployment rate

(hp-filtered) reveals that a 1% fall in the unemployment rate raises the Nash wage by a

colossal 15.7%. As such, the Nash wage is highly procyclical. The implication, then, is that

the measured wage would have to be roughly this procyclical for us to find an NWE close

to 1. Since none of our series for the cost of labor are anything like this procyclical, we find

an NWE considerably below 1.

In the estimates of the Nash wage elasticity using unemployment as an instrument in

Table 3, the relationship between the procyclicality of wages and the Nash wage elasticity

is precise. The estimated Nash wage elasticity in that case is exactly equal to the semi-

elasticity of wages with respect to the unemployment rate, divided by the semi-elasticity

of the Nash wage with respect to the unemployment rate. As stated above, the latter is

-15.7% for our baseline series with separable preferences and variable hiring costs. For all
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the wage series we consider apart from the NLSY user cost, we find that the semi-elasticity

of wages with respect to the unemployment rate is less than 0.5% in absolute value (i.e. a

one percentage point increase in the unemployment rate reduces wages by less than 0.5%)

– which correspondingly delivers estimates of the NWE smaller than 0.5/15.7 = 0.03. For

the NLSY user cost measure, the semi-elasticity of wages with respect to the unemployment

rate is estimated at -4.3%, which delivers an NWE estimate of 4.3/15.7 =0.27.

4.6.2 Comparing our results to the literature

Our high estimated degree of wage rigidity is surprising from the point of view of much

of the previous literature reviewed in Section 1.1, where it has often been argued that the

wages of new hires, for instance, are relatively flexible. Our difference in our findings from the

previous literature is not primarily due to our estimates of the procyclicality of actual wages,

but rather due to our finding that the Nash wage is extremely procyclical. Our estimates

of the semi-elasticity of actual wage measures to the unemployment rate are roughly in line

with the existing reduced form literature, and the estimates of this literature would likewise

support values of the NWE much closer to 0 than to 1. For instance, in a meta-analysis

of 208 estimates across countries including the US, Nijkamp and Poot (2005) estimate a

‘wage-curve’ elasticity of wages with respect to unemployment of -0.07. Given an average

unemployment rate of 6.4% in our data, this translates to a semi-elasticity of wages with

respect to unemployment of around 1%, and would correspond to a Nash wage elasticity of

around 1/15.7 = 0.06 in the baseline separable preference specification.22

Studies that focus on the pay of newly hired workers have often found that these are

relatively more cyclical than the wages of other workers, but the results of these studies

are nevertheless consistent with values of the NWE much closer to 0 than 1. For instance,

the literature on the US surveyed by Pissarides (2009) suggests a semi-elasticity of the

wage of job changers with respect to the unemployment rate in the range 2-4%. This

would correspond to a Nash wage elasticity in the range 0.12-0.25 in the baseline separable

preference specification.23 More recently, Gertler, Huckfeldt and Trigari (2020) and Grigsby,

Hurst and Yildirmaz (2021) find semi-elasticities of wages with respect to unemployment of

1-2% in magnitude in the US for job-changers, and of 0.1-1% in magnitude for job stayers

and (in the case of Gertler et. al.) for new hires out of unemployment. This would translate

to NWE estimates of 0.06-0.12 for job changers, and 0-0.06 for job stayers and new hires from

unemployment in the baseline separable preference specification. Finally, our estimates of

the cyclicality of the NLSY user cost are of similar magnitude to those of Kudlyak (2014) and

22Blanchflower and Oswald (1994) likewise found a wage-curve elasticity of around -0.1 for the US, which
would correspond to a Nash wage elasticity of around 0.1.

23As discussed above on page 28, there are reasons to think that the using the wage of job changers to
estimate the NWE could lead to upwardly biased NWE estimates.
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Basu and House (2016) for this series. As such, our findings on the procyclicality of wages

are consistent with the previous reduced form literature. However, new to our approach is

that this level of wage procyclicality can be effectively compared to what would be implied

by Nash bargaining, where it becomes clear that wages in the data appear to be extremely

rigid compared to Nash bargaining.

Our finding that wages are much more rigid than Nash bargaining, including for new

hires, is at odds with work in the literature suggesting that the procyclicality of new hire

wages (or all wages) is roughly consistent with Nash bargaining.24 As discussed in section

1.1, we believe that this difference of findings is due to this literature typically measuring

wage procyclicality in terms of the elasticity of wages with respect to labor productivity. This

is justified based on models where fluctuations are driven by productivity shocks and the

elasticity of the Nash bargained wage with respect to productivity is close to 1. Our approach,

which also allows for other shocks, suggests on the contrary that the elasticity of wages with

respect to productivity is not informative about the rigidity of wages (compared to Nash

bargained wages) because our series for the Nash wage are slightly negatively correlated with

productivity (correlation coefficients around -0.3). This is because the Nash wage is highly

negatively correlated with the unemployment rate for the reasons discussed immediately

above, and unemployment is actually slightly positively correlated with productivity in the

data. As such, we argue that the elasticity of wages with respect to productivity is not

informative about their elasticity with respect to Nash wages.

5 Business Cycle Implications of Wage Rigidity

In this section, we assess the business cycle implications of our estimated level of aggregate

wage rigidity. For simplicity, we restrict attention to the environment with homogeneous

firms and matches and no on-the-job search outline in Section 2.2. Furthermore, as in much

of the theoretical literature, we restrict attention to an economy which experiences only one

shock, to the marginal revenue product of labor rt, which follows an exogenous stochastic

process. Shocks to rt could be interpreted as, for instance, productivity shocks or markup

shocks, or aggregate demand shocks in a model with sticky prices in goods markets. In

addition, we assume for simplicity that the matching function and separation rate are time

invariant so that Mt = M(ut−1, vt) and st = s. We investigate the consequences of different

assumptions about wage setting in this environment.

First, we show analytically that, if all variables follow approximate random walks, then

the NWE is approximately a sufficient statistic for the contribution of wage rigidity to the

24Including, for instance, Hagedorn and Manovskii (2008), Haefke, Sonntag and Van Rens (2013), Pis-
sarides (2009), and Malcomson and Mavroeidis (2017).

45



cyclical volatility of unemployment in such a model. This is because we show that there is

a tight mathematical relationship between the NWE and the Fundamental Surplus, which

Ljungqvist and Sargent (2017) have shown is a useful predictor of the cyclical volatility of

unemployment in many search models.

Next, we show via simulations that the NWE does indeed closely predict the volatil-

ity of unemployment in a simple SAM model with shocks to rt, just as the link with the

Fundamental Surplus would lead to us to expect. To do this, we calibrate a very simple

log-linearized business cycle model based on our search and matching framework. When

the NWE is as low as most of our empirical estimates, we show that wage rigidity amplifies

unemployment fluctuations in the model more than sevenfold compared to the case of Nash

bargaining, and that such a model can easily account for around half of the empirical volatil-

ity of unemployment over the business cycle even if the only shocks to rt are productivity

shocks.

Lastly, we investigate how far our results are consistent with various other models of

wage setting in the literature, including models with constrained efficient wages, such as

many directed search models, and rigid wage models based on Hall (2005), Gertler and

Trigari (2009) and Christiano, Eichenbaum and Trabandt (2016).

5.1 The NWE and the Fundamental Surplus

We now revisit, in our framework, recent results of Ljungqvist and Sargent (2017), who

show in the context of a number of SAM models, including some with sticky wages, that

the elasticity of the unemployment rate with respect to productivity shocks depends closely

on a term that they call the ‘Fundamental Surplus’. We extend their results to the class

of models studied in this section.25 Furthermore, we show that the Fundamental Surplus

depends closely on the Nash wage elasticity, and that the Nash wage elasticity is therefore

a strong predictor of the effect of wage rigidity on the volatility of unemployment. The

relationship between the Fundamental Surplus and the Nash wage elasticity is so close that

it is very difficult for a model in the class we study to deliver a high volatility of unemployment

unless it either has a low Nash wage elasticity or has a high value of z
w

.

We assume, as in Section 4.6 that all variables follow approximate random walks and set,

for each variable x, that x̂t ' x̂t−1 ' Et[x̂t+1] – i.e. we consider the long run effects of an

almost permanent shock. This is essentially the same as Ljundqvist and Sargent’s approach

of studying the comparative statics of model steady states with respect to parameters, and

is a valid approximation insofar as shocks are highly persistent.

To derive the Fundamental Surplus formula, log-linearize the matching function, to infer

25This class was specified immediately above.
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that (under the random walk assumption):

f̂t ' (1− φ)(v̂t − ût) (33)

where φ is the elasticity of the matching function with respect to unemployment, in the

neighborhood of the steady state. Substitute (4) into (2) to eliminate J terms and log-

linearize. Then, combine with (22) and (33) and use that ŵt = εN ŵ
N
t , and ẑt = εzŵt, where

εN is the Nash wage elasticity and εz is the procyclicality of zt relative to wages. After

rearrangement, we obtain:

− ût
r̂t
' φ(1− u)Υ̃

(
w + δFh

α0δFh+ (w − z)ε̃
[
1− δF

δ
(1− α0)

])︸ ︷︷ ︸
Inverse Fundamental Surplus Ratio

r̂, (34)

where

ε̃ =
εN

1− εzεN z
w

,

δ = 1− (1− f − s)(1− ρ),

δF = 1− (1− s)(1− ρ),

α0 = 1− κ1
h
.

and

Υ̃−1 =

 δε̃− δF ε̃(
1−β
β

)
α0δF + δε̃− (1− α0)δF ε̃

φ+


(

1−β
β

)
α0δF + α0δε̃(

1−β
β

)
α0δF + δε̃− (1− α0)δF ε̃

 (1− φ).

The left-hand side of (34) is the size of response of unemployment to a shock to r̂t. Thus,

squaring this equation gives the cyclical volatility of unemployment relative to r̂t. Ljungqvist

and Sargent (2017) assume εz = 0, and consider cases where εN = 1 (Nash bargaining) and

εN = 0 (the completely sticky wage of Hall (2005) discussed below). After some rearrange-

ment, it can be shown that the values of Υ̃ and of the Inverse Fundamental Surplus Ratio are

exactly the same in these special cases as found by Ljundqvist and Sargent (using different

notation). The ‘Fundamental Surplus’ refers to the reciprocal of the Inverse Fundamental

Surplus Ratio.

It is immediate that wage behavior only enters the right-hand side of equation (34) via

the Nash wage elasticity. As such, insofar as the random walk approximation is accurate,

the Nash wage elasticity is an accurate summary statistic for the effect of wage rigidity on
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the cyclical volatility of unemployment.

We now discuss how this formula shows that the Fundamental Surplus term, and, in

particular, the Nash wage elasticity and the ratio z
w

are the key drivers of the cyclical

volatility of unemployment. Ljundqvist and Sargent show that Υ̃ is bounded below by 1

and above by min[φ; 1− φ]−1, a result that can be straightforwardly seen to also hold in our

setting by inspecting the expression for Υ̃−1. The standard view in the literature is that the

data supports φ ' 0.5 (Petrongolo and Pissarides, 2001) in which case Υ̃ ∈ [1, 2]. Then,

the only way to get a high volatility of unemployment relative to r̂t (which is the easiest

way to get the model to produce large fluctuation in unemployment) is to make the Inverse

Fundamental Surplus Ratio large and the Fundamental Surplus small. Given the very small

size of the terms in δ and δF in the equation for the Fundamental Surplus, it is virtually

impossible to make the Fundamental Surplus small unless the term (w−z)ε̃
w

is small – in other

words, either the Nash wage elasticity (which is the main term in ε̃) is small, or z is close to

w – workers are roughly indifferent between being unemployed and employed. This echoes

the conclusion of Christiano, Eichenbaum and Trabandt (2021) that wage rigidity is essential

to allow SAM models without very high z to deliver large fluctuations in unemployment.26

5.2 Numerical Simulations

In this section, we build a very simple calibrated SAM model based on the model framework

laid out on page 45m where rt is the driving shock. We show results of simulations of this

model that show that changes in the NWE predict the cyclical volatility of unemployment

well, just as implied by the formal analysis of the Fundamental Surplus above.

We aim to parametrize the model in the simplest possible way while allowing the NWE to

vary. We assume that all matches are homogeneous and that the marginal revenue product

of labor rt follows an AR(1) process with quarterly autocorrelation equal to 0.97, roughly

the autocorrelation of labor market tightness in our sample period. We are agnostic about

whether changes in the marginal revenue product of labor are due to changes in markups

(e.g. as a consequence of aggregate demand shocks with nominal rigidities in goods markets)

or because of changes in productivity. The separation rate st is time invariant and set equal

to the steady state separation rate in our empirical analysis.

Workers and firms match according to a Cobb Douglas matching function:

Mt = Mv1−φt uφt ,

26Ljundqvist and Sargent also argue that, for instance, large fixed hiring costs κ0 will bring down the
Fundamental Surplus. The formulation here, where κ0 does not directly appear in the Fundamental Surplus
formula, makes clear that large fixed hiring costs can significantly shrink the Fundamental Surplus (only)
insofar as they increase the equilibrium steady state ratio z

w .
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where M is a constant and φ = 0.5.

To examine the aggregate effects of our estimated level of wage rigidity, we assume that

the wage satisfies:

ŵt = γŵNt , (35)

where γ is the Nash wage elasticity, and the Nash wage is determined by the log-linearized

equation (22) that was derived in Section 2. We consider values of the Nash wage elasticity

γ in the range 0 to 1.

For simplicity, we assume linear utility, so that σ = 0. This entails that ĉt drops out

of the model equations, which allows us to avoid making assumptions about goods markets

and the determination of aggregate consumption.

Finally, it is necessary to specify the cyclicality of the flow value of unemployment. For

this we consider two cases, one case where zt is acyclical, and one where it is proportional

to wt, in which case:

ẑt = ŵt (36)

All other variables are calibrated in line with the steady state values we used in Section

3 above.

Table 5 shows the standard deviation of unemployment relative to the marginal revenue

product of labor for different levels of the NWE, and for the case of acyclical and procyclical

z. All moments are hp-filtered, in accordance with our empirical analysis. To adjudicate the

accuracy of the Fundamental Surplus formula, (34), the volatility implied by that formula

is also shown. We see that, except for very low values of the NWE, the Fundamental

Surplus formula provides a relatively good guideline of the likely effect of wage rigidity on

the volatility of unemployment.

The relative volatility of unemployment increases substantially as the Nash wage elasticity

falls. With a Nash wage elasticity of 0.1, somewhat higher than most of our estimates,

the relative volatility of unemployment is more than 7 times as high as in the case of a

Nash wage elasticity of 1. Thus, our empirical findings suggest that wage rigidity may be

increasing the cyclical volatility of unemployment more than sevenfold compared to what

would be occurring under flexible wages.27 In our data, the relative cyclical volatility of

unemployment is roughly 11 times that of productivity. Thus, our estimates suggest that if

rt represented shocks to productivity alone (i.e. we ignored e.g. aggregate demand shocks)

then the empirical level of wage rigidity can account for around half of the cyclical volatility

27A caveat with this analysis is that, in a richer model, changes in the flexibility of wages could have
additional repercussions for labor demand and therefore the volatility of rt. For instance, if a higher level of
wage flexibility led to a less countercyclical capital-labor ratio, this might make rt less volatile. Alternatively,
if changes in wages affect the aggregate demand for goods, this could also affect rt if goods markets feature
nominal rigidities.

49



Table 5: NWE and Simulated Relative Unemployment Volatility

Acyclical z z Proportional to w

NWE
Relative Volatility
of Unemployment

Volatility Implied
by FS formula

Relative Volatility
of Unemployment

Volatility Implied
by FS formula

0 21.1 46.1 21.1 46.1
0.05 8.6 13.5 8.4 13.2
0.1 5.4 7.9 5.2 7.6
0.2 3.1 4.3 2.8 3.9
0.3 2.2 3.0 1.9 2.6
0.4 1.7 2.3 1.4 1.9
0.5 1.3 1.8 1.0 1.4
0.6 1.1 1.5 0.8 1.1
0.7 1.0 1.3 0.7 0.9
0.8 0.9 1.2 0.5 0.7
0.9 0.8 1.0 0.4 0.6
1 0.7 0.9 0.4 0.5

Notes: The table shows the volatility of unemployment relative to the marginal revenue product of labor
predicted by simulations of the SAM model in this section and by the Fundamental Surplus formula, for
various calibrations of the NWE. The first column shows the calibrated value of the NWE. The remaining
columns show the predicted relative volatility of unemployment under either the assumption of an acyclical
opportunity cost of employment or an opportunity cost of employment proportional to wages. Columns 2
and 4 denote the volatility predicted by the Fundamental Surplus formula under these assumptions, and
columns 3 and 5 denote the volatility that arises under the model simulations.

of unemployment. Thus, wage rigidity goes a long way to explaining the ‘Shimer puzzle’ that

unemployment is far more volatile relative to productivity than implied in a simple model

with Nash bargaining: it can explain around half of the Shimer puzzle just with productivity

shocks alone.

5.3 Implications of the NWE for Non-Nash Wage Models

We now study how far our estimates of the NWE are informative for various models of non-

Nash bargaining. We investigate the implications of our NWE estimates for four non-Nash

approaches to modeling wages from the recent literature, first models in which the labor

market is constrained efficient, as in many models of directed search (Wright et al., 2021),

then three models designed to generate rigid wages: the approaches of Hall (2005), Gertler

and Trigari (2009) and Christiano, Eichenbaum and Trabandt (2016). We show that the

wage setting assumptions in these papers can, with small changes, be incorporated into the

framework of Section 2, at least in the case of homogeneous firms and matches, while in most

cases remaining agnostic about the determination of the marginal revenue product of labor
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rt.
28 As such, it is possible to study the dynamics of wages in most of these models without

making strong assumptions on the determinants of labor demand and, consequently, our

conclusions in this section about the implications of our NWE estimates for these models

are relatively robust to different features of the economic environment, such as frictions in

goods markets or financial frictions facing firms, insofar as these features affect labor markets

via their effect on labor demand.

We show that the constrained efficient wage setting model delivers a wage that is weakly

more procyclical than the Nash wage provided the matching function displays as much com-

plementarity between unemployment and vacancies as the main matching functions consid-

ered in the literature. Therefore, if wages were set in a way consistent with constrained

efficiency, we would expect to estimate a value of the NWE greater than 1. As such, our

low estimates of the NWE indicate, first, that many directed search models are likely to

struggle to explain the pattern of wages we see in the data and, second, that wages in the

data appear to be more rigid than is consistent with constrained efficiency.

We show that each of the three approaches to rigid wages implies a wage setting equation

where the aggregate wage is a function of the Nash wage, and (possibly) hiring costs and the

flow value of unemployment.29 We study the cyclical implications of these three approaches

to rigid wages by incorporating the wage setting equation of each into the business cycle

model studied in Section 5.2. Our simulation allows us to infer the values of the Nash wage

elasticity implied by these rigid wage models, as well as the resulting cyclical volatility of

unemployment.

5.3.1 Constrained Efficient Wages and Directed Search

We suppose that the wage is set in such a way that, in the absence of goods market or

financial market frictions, the equilibrium level of unemployment is constrained efficient.

This allows us to infer the wage behavior implied by the many directed search models which

entail constrained efficiency in the absence of frictions in other markets.30

We suppose that the matching function has an elasticity of substitution between unem-

ployment and vacancies that is weakly less than 1, so that the elasticity of matches with

respect to unemployment, φt, is weakly decreasing in the number of unemployed. This

assumption nests the cases normally considered in the literature, including the common

28The caveat ‘in most cases’ applies here because the one exception is the constrained efficient wage setting
model, which requires that we assume that rt is equal to labor productivity.

29Consistently with the framework of Section 2 the wage setting equation implied by these three approaches
to rigid wages does not depend on many other features of the economic environment such as frictions in
goods markets.

30See Wright et al. (2021) for a discussion of the relationship between directed search and constrained
efficiency.
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Cobb-Douglas matching function which has an elasticity of substitution of 1, as well as, for

instance, urnball matching functions.

A constrained efficient allocation would set vacancies according to the following first order

condition of a benevolent social planner:

pt − zt −
κ1

1− φt

(
vt

ut−1ft

)
+ Et

[(
u′(ct+1)

u′(ct)

)
κ1

1− φt

(
vt+1

utft+1

)
(1− st+1 − φtft+1)

− κ0 + κ0

(
u′(ct+1)

u′(ct)

)
(1− st+1)

]
= 0,

where pt denotes the marginal product of labor. The intuition for the first line of this first

order condition is as follows. Suppose the planner creates enough extra vacancies at time

t to create an extra position at t, and reduces vacancies at t + 1 to leave employment at

t + 1 unchanged. The benefit of this at time t is that there is pt extra output, but one

fewer worker is unemployed so the flow value of unemployment zt is lost. Furthermore, the

planner has to create 1
1−φt

(
vt

ut−1ft

)
vacancies at time t, because each vacancy has a filling

rate of vt
ut−1ft

, and the elasticity of matches with respect to vacancies is 1− φt. On the other

hand, fraction 1− st+1 of the extra hired workers are still employed at t + 1 so the planner

can create correspondingly fewer vacancies then, but also has to create extra vacancies at

t + 1 in proportion to φtft+1, since there will be one fewer unemployed at the start of t + 1

per extra worker hired at t, and so, all else equal, this will lead to φtft+1 fewer matches at

t + 1 because the elasticity of matches with respect to unemployment is φt. The intuition

for the second line of the first order condition is that hiring an extra worker at t costs κ0 but

requires 1− st+1 fewer hires at t+ 1 since 1− st+1 of extra employees will still be employed

then.

Now, suppose there are no goods or financial market frictions, so that the marginal

revenue product of labor satisfies rt = pt. The constrained efficient wage is then one such

that, given this wage, firms’ optimal hiring decisions will achieve the same allocation as the

planner. Substituting (4) and (2) into the planner’s first order condition, to eliminate pt,

reveals that this implies that the constrained efficient wage, wEt should satisfy:

φt
1− φt

(
κ0 +

κ1vt
ut−1ft

)
=wEt − zt

+ Et
[
(1− ρ)

u′ct+1

u′ct
(1− st+1 − ft+1)

φt
1− φt

(
κ0 +

κ1vt+1

utft+1

)]
,

Comparing this with equation (8) makes clear that the constrained efficient wage is the

same as the Nash wage, except setting the worker bargaining power β equal to φt (i.e. the

well known Hosios condition), and ignoring the fixed cost of hiring κ0. Now, first consider
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the Cobb-Douglas matching function, which holds φt = φ fixed. Then, since our results

in Section 3 made clear that adding a fixed cost of hiring will make the Nash wage less

cyclical (thereby raising estimates of the Nash wage elasticity) it follows that the constrained

efficient wage will be more procyclical than the Nash wage if κ0 > 0. Now, alternatively,

with a matching function that has an elasticity of substitution strictly less than 1, φt will

tend to be procyclical, since it is decreasing in the number of unemployed and increasing

in vacancies. This adds an additional procyclical element to the efficient wage, which is

increasing in φt. This further accentuates the tendency for the constrained efficient wage to

be more procyclical than the Nash wage.

Thus, we may conclude that if wages were set in a way consistent with constrained

efficiency, as in many directed search models, wages would be more procyclical than Nash

wages and we would expect the Nash wage elasticity to be greater than 1. As a consequence

of this, it follows that the low Nash wage elasticity we find in the data not only indicates

that directed search models may have difficulty in matching the empirical behavior of wages

over the business cycle, but also indicates that the movement of wages over the business

cycle is likely to be more rigid than is consistent with constrained efficiency.

5.3.2 Fixed Wages

The simplest approach to rigid wages of the three we consider is the approach of Hall (2005).

In this model, firms are homogeneous and each firm’s wage is assumed to be fixed provided

that the fixed wage is consistent with positive match surplus for both worker and firm. If

the steady state wage rate is consistent with positive match surplus for both worker and

firm, then this will continue to be true in the neighborhood of the steady state, and so the

wage will remain fixed in the neighborhood of the steady state. In that case, it follows that

ŵt = 0, and so the Nash wage elasticity implied by the Hall (2005) model is exactly zero.

This is not far from some of our estimates of the NWE in Section 4. Since this model is a

special case of the model in Section 5.2, the row of Table 5 corresponding to an NWE of 0

shows the results implied by the wage setting assumption of Hall (2005).

5.3.3 Staggered Wage Bargaining

The second model of rigid wages we consider is a staggered wage bargaining model based

on Gertler and Trigari (2009), henceforth GT. In this model, each firm pays all its workers

the same wage. At the start of each period, each firm draws an idiosyncratic iid shock

which determines whether it renegotiates its wages with its workers or not. Fraction λ of

firms retain the same wage as they had in the previous period, while fraction 1− λ of firms

negotiate a new wage with all their workers according to Nash bargaining,

53



To isolate the effect of wage rigidity on unemployment fluctuations, we amend GT’s stag-

gered wage bargaining model so that it is consistent with the modeling framework outlined

in Section 2, with as few additional assumptions as possible. This allows us to compare the

wage implied by staggered wage bargaining with the Nash wage derived in Section 2.

To this end, we make one change to the wage bargaining framework in GT. In GT, the

firm, when negotiating wages with its existing workers, takes into account that this wage

will affect the wages of new workers it hires. The effect of this assumption in GT is to lead

firms to bargain as if their discount rate is somewhat lower, and the effective firm discount

rate is time varying and depends on the firm’s expectations of its future hiring, and also of

how its future hiring will be affected by the wage rate it negotiates. This adds considerable

complexity to the bargaining problem, and also entails that the GT wage bargaining solution

depends on convex costs of hiring, which are a feature of GT but are inconsistent with the

framework of Section 2. To avoid this complexity and to maintain consistency with the

framework of Section 2, we do not assume convex costs of hiring. Furthermore, we assume

that when a firm renegotiates its wages with workers, the outcome of this negotiation depends

only on the match surplus the firm earns from its current workers, and the match surplus of

these workers, and does not depend on the effect of wages on future hiring.

As such, we assume that, when a firm renegotiates wages with workers, the renegotiated

wage for each match k satisfies the Nash bargaining solution:

Wk
t − Ut = β[(Wk

t − Ut) + (J k
t − V it)] = β[(Wk

t − Ut) + J k
t ],

where β is the worker bargaining share and the Bellman values J k
t , V it , Wk

t and Ut are as

defined in Section 2 and so evolve according to the same Bellman equations as in Section 2.

Since all matches in the same firm are the same, we let J i
t (w) denote the match surplus

of the firm i if it pays the wage w. Likewise, W i
t(w) is the match surplus of the worker in

firm i if they are paid wage w.

Let J i

t be the expected value of a firm i at the start of the period t, before it discovers

whether or not it will renegotiate its wages that period. That is:

J i

t = λJ i
t (wit−1) + (1− λ)J i

t (w∗it )

where wit−1 is the wage paid by the firm in the previous period, and w∗it is the wage that

would be negotiated if the firm renegotiates its wages.

Define W
i

t similarly.
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The Bellman equations in Section 2 imply that:

J i
t (w∗t ) = J i

t − (w∗it − wit) + λ(1− st+1)Et[mt+1(J i
t+1(w

∗i
t )− J i

t+1)]

W i
t(w

∗
t ) =W i

t + (w∗it − wit) + λ(1− st+1)Et[mt+1(W i
t+1(w

∗i
t )−W i

t+1)],

where the expected wage of at the start of the period (before it is known whether renegoti-

ation will happen) is:

wit = λw∗it + (1− λ)wit−1.

When wages are renegotiated, the bargaining solution satisfies:

W i
t(w

∗i
t )− Ut = β[(W i

t(w
∗i
t )− Ut) + J i

t (w∗it )],

Combining this with the previous two Bellman equations and rearranging, we obtain:(
β

1− β

)(
W i

t

)
= J i

t −
w∗it − wit

1− β
+ λ(1− st+1)Et

[
mt+1

((
β

1− β

)(
W i

t+1 − J
i

t+1)
))]

Averaging across all firms (and so dropping i superscripts), log-linearizing around the steady

state and rearranging, we obtain:

− β̂t
1− β

=

(
w

βh

)(
1

1− λ(1− s)(1− ρ)
· λ

1− λ

)
(ŵt − ŵt−1)

Substituting in equations (21) and (16), we obtain:

ŵt − ŵt−1 = (1− δ)Et[ŵt+1 − ŵt] +
δ

ψ
(ŵNt − ŵt) (37)

where

δ = 1− (1− f − s)(1− ρ)

ψ =
w − z
βh

(
1

1− λ(1− s)(1− ρ)

)(
λ

1− λ

)
.

Equation (37) is the wage setting equation for the staggered wage bargaining model. This

resembles New Keynesian Phillips curve equations, in that the rate of growth of wages

depends on the deviation of wages from the negotiated (Nash) level, and also depends on

the expected rate of growth of wages next period.

We now study the business cycle properties of the staggered wage bargaining model.

In particular, we keep the business cycle model assumptions unchanged from Section 5.2,

except that we replace the wage equation (35) assumed there, and replace it with the wage
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equation (37). For simplicity, we limit attention to the ẑt = 0 case. In Table 6 below, we

consider various values of λ. Since λ is the probability that a firm is unable to renegotiate

its wages in a period, this parameter determines the level of wage rigidity in the staggered

bargaining model.

For each value of λ, the second column of the Table 6 shows the estimated NWE obtained

from simulating the model for 10,000 periods and performing an OLS regression of the wage

on the Nash wage in the simulated data, in accordance with the first approach we used to

estimate the Nash wage in Section 3. The remaining columns of Table 6 mirror those Table

5: they show the relative volatility of unemployment implied by the staggered bargaining

model, and then they show the relative volatility predicted by the Fundamental Surplus

formula, given the estimated NWE in the second column.

GT originally calibrated λ at 0.88. As Table 6 shows, this is consistent with an NWE

of 0.03, which is rather lower than the majority of our empirical estimates. On the other

hand, if the model is recalibrated with λ = 0.66, the implied NWE is slightly higher than the

majority of our estimates. This suggests that the staggered bargaining model is consistent

with the level of wage rigidity we estimate, provided that λ is calibrated at a somewhat lower

level than assumed by GT.

The last two columns of Table 6 also reveal that the NWE implied by the staggered

bargaining model provides a useful guideline to the cyclical volatility of unemployment in

that model, using the Fundamental Surplus formula. Nevertheless, the staggered bargaining

model delivers a rather lower level of unemployment volatility than one would expect given

the Nash wage elasticity. This is because the staggered bargaining model delivers a low

NWE only in the short run (recall that we estimated the NWE delivered by the model using

hp-filtered simulated data). In the long run, the staggered bargaining model implies that the

wage should be fully flexible. Consequently, firms may e.g. hire more in recessions than the

NWE of the staggered bargaining model would suggest, because they anticipate that while

wages are sticky now, they will fall in future.
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Table 6: NWE and Relative Unemployment Volatility under Staggered Bargaining

λ Estimated NWE
Relative Volatility

of Unemployment

Volatility Implied

by FS formula

0.01 0.99 0.70 0.95

0.02 0.98 0.70 0.96

0.11 0.83 0.72 1.12

0.22 0.61 0.78 1.50

0.33 0.41 0.89 2.20

0.44 0.26 1.10 3.44

0.55 0.14 1.46 5.76

0.66 0.07 2.14 10.25

0.77 0.03 3.47 19.06

0.88 0.01 6.58 33.75

0.99 0.00 18.07 45.68

Notes: The table shows the volatility of unemployment relative to the marginal revenue product of labor
predicted by the simulations of the staggered bargaining model and by the Fundamental Surplus formula,
for various calibrations of the sticky wage parameter λ. The first column shows the calibrated value of λ.
The second column shows the value of the NWE estimated from model simulated data. The third column
shows the volatility of unemployment relative to the marginal revenue product of labor shock in the model
simulations, and the fourth column shows the volatility of unemployment predicted by the Fundamental
Surplus formula, given the estimated NWE in column 2.

5.3.4 Alternating Offer Bargaining

Following Hall and Milgrom (2008) and Christiano, Eichenbaum and Trabandt (2016) we

consider a wage setting protocol in which wages are determined by an alternating offer

bargaining game. The details of the bargaining game follow Christiano, Eichenbaum and

Trabandt (2016) (henceforth CET) exactly. We suppose that each period is divided into

M = 60 sub-periods. At the start of the first sub-period, the firm makes an initial wage

offer to the worker, which the worker can accept or reject. If the wage offer is rejected, play

proceeds to the next sub-period. In odd sub-periods, if the firm and worker have not yet

reached agreement, then the firm gets to make a wage offer to the worker, which the worker

can accept or reject. Every offer the firm makes costs the firm γ in processing costs. In even

sub-periods, if the firm and worker have not yet reached agreement, then the worker makes

an offer to the firm, which the firm can accept or reject. If neither have reached agreement

by the end of the last sub-period, the match terminates. Additionally, each time an offer is

rejected, bargaining breaks down and the match is terminated with probability ς. In each

sub-period in which the two sides have not reached agreement, the worker does not produce

the flow value rkt and does not get paid, but receives the flow value of unemployment zt.
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CET show that the solution of the bargaining game is that the worker accepts the firm’s

offer in the first sub-period and the wage satisfies:

Jt = µ1(Wt − Ut)− µ2γt + µ3(rt − zt)

where µi = αi+1

α1
and

α1 = 1− ς + (1− ς)M

α2 = 1− (1− ς)M

α3 = α2

(
1− ς
ς

)
− α1

α4 =

(
1− ς
2− ς

)
α2

M
+ 1− α2

where ς is the probability that bargaining breaks down each day.31.

Into this, we substitute the firm’s Bellman equation to eliminate rt, substitute that

Wt − Ut = βt
1−βt · Jt (where βt is the worker’s share of match surplus) to eliminate Wt and

Ut, and substitute the firm’s optimal hiring decision Jt = ht to eliminate Jt. We obtain the

following form of the alternating offer bargaining solution:

ht = µ1ht ·
βt

1− βt
− µ2γ + µ3(wt + ht − Et[mt+1(1− st+1)ht+1]− zt)

Log-linearizing this around the steady state and using equations (16) and (21), we obtain:

ŵt =

(
µ1

µ1 + µ3

)
(ŵNt − ŵAt ) + ŵAt

−
(

µ3

µ1 + µ3

)
(1− δ)EtŵAt+1 +

(
µ3

µ1 + µ3

)
(1− δ)Etŵt+1 (38)

where, ŵNt is the Nash wage (deviation from the steady state) and ŵAt is the deviation of an

alternative wage, given by:

ŵAt =

(
h

µ3w

)[
1− µ3 −

βµ1

1− β

]
(v̂t − ût−1 − f̂t)

+
(1− ρ)(1− s)h

w
Et
[
(σct − σct+1) + ĥt+1 −

sŝt+1

1− s

]
+
z

w
ẑt. (39)

As with the staggered wage bargaining model above, we study the cyclical properties of

the business cycle model in Section 5.2, replacing the wage equation there (equation (35))

with the wage setting equations (38) and (39). Again, we fix ẑt = 0. The key parameter

31Here, we have written CET’s result in terms of our own notation
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that determines the rigidity of wages under alternating offer bargaining is the probability

ς that bargaining breaks down. As we did for λ with the staggered bargaining model, we

vary the level of this parameter, estimate the resulting NWE on model simulated data and

compare the cyclical volatility of unemployment with what would be implied by the model’s

implied NWE and the Fundamental Surplus formula. The results are in Table 7 below. We

see that, across parameter values, the alternating offer model delivers an NWE around 0.7,

significantly higher than almost all our estimates. The volatility of unemployment predicted

by the model is close to what one would expect from its NWE, based on the Fundamental

Surplus formula.

Table 7: NWE and Unemployment Volatility under Alternative Offer Bargaining:
Baseline Case

ς Estimated NWE
Relative Volatility

of Unemployment

Volatility Implied

by FS formula

0.000 0.69 0.84 1.34

0.002 0.70 0.87 1.32

0.003 0.71 0.89 1.30

0.005 0.72 0.90 1.29

0.006 0.72 0.91 1.28

0.008 0.73 0.92 1.27

0.009 0.73 0.93 1.26

0.011 0.74 0.93 1.26

0.012 0.74 0.94 1.25

0.014 0.74 0.94 1.25

0.015 0.75 0.95 1.25

0.017 0.75 0.95 1.24

Notes: The table shows the volatility of unemployment relative to the marginal revenue product of labor
predicted by the simulations of the alternating offer bargaining model and by the Fundamental Surplus
formula, for various calibrations of the bargaining breakdown parameter ς and at our baseline calibration of
the other parameters. The first column shows the calibrated value of ς. The second column shows the value
of the NWE estimated from model simulated data. The third column shows the volatility of unemployment
relative to the marginal revenue product of labor shock in the model simulations, and the fourth column
shows the volatility of unemployment predicted by the Fundamental Surplus formula, given the estimated
NWE in column 2.

It is surprising that the alternating offer bargaining model generates an NWE so close

to 1, given that a key purpose of the model was to generate wage rigidity. Inspection of

equation (38) and (39) indicates that a major reason for the cyclicality of the wage under

the alternating offer bargain is the cyclicality of hiring costs. CET likewise note that the
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alternating offer bargain fits their macroeconomic data far better with fixed rather than

variable hiring costs. For this reason, we also study the alternating offer bargaining model

with primarily fixed hiring costs. Specifically, we reduce κ1 from 0.43 to 0.01, and recalibrate

κ0 to maintain the average total hiring cost. Results of the simulations of this model are

presented in Table 8 below. In this case, the results are very sensitive to ς, but with values

of ς close to zero, the model achieves an NWE close to 0.3 and correspondingly larger

unemployment fluctuations. Thus, our results support CET’s assertion that fixed hiring

costs help the model fit the data. This is still higher than many of our estimates. As such,

our estimates generally support a level of wage rigidity that is as great or greater than

implied by the alternating offer bargaining model.

Table 8: NWE and Unemployment Volatility under Alternative Offer Bargaining:
Mostly with Fixed Hiring Costs

ς Estimated NWE
Relative Volatility

of Unemployment

Volatility Implied

by FS formula

0.000 0.33 3.33 3.99

0.002 0.42 2.71 3.19

0.003 0.50 2.36 2.75

0.005 0.56 2.14 2.48

0.006 0.61 1.99 2.30

0.008 0.64 1.87 2.16

0.009 0.68 1.79 2.06

0.011 0.71 1.72 1.98

0.012 0.73 1.67 1.92

0.014 0.75 1.63 1.87

0.015 0.77 1.60 1.83

0.017 0.78 1.57 1.80

Notes: The table shows the volatility of unemployment relative to the marginal revenue product of labor
predicted by the simulations of the alternating offer bargaining model and by the Fundamental Surplus
formula, for various calibrations of the bargaining breakdown parameter ς, where we calibrate κ1 = 0.01.
The first column shows the calibrated value of ς. The second column shows the value of the NWE estimated
from model simulated data. The third column shows the volatility of unemployment relative to the marginal
revenue product of labor shock in the model simulations, and the fourth column shows the volatility of
unemployment predicted by the Fundamental Surplus formula, given the estimated NWE in column 2.

6 Conclusion

In this paper, we develop a new measure of aggregate real wage rigidity, the Nash wage

elasticity. The NWE is simply the elasticity of the measured marginal cost of labor with
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respect to the Nash wage, where the bargaining share is set to equal the actual wage in

a steady state. A completely rigid wage implies an NWE of 0, and if wages were set by

Nash bargaining then the NWE should in theory equal 1. Thus, the Nash wage measures

the rigidity of actual wages relatively to a flexible benchmark given by the Nash bargained

wage.

Throughout the paper, we provide four reasons why Nash bargaining represents a logical

flexible wage benchmark against which to compare actual wages. First, in Section 1.1, we

reference the extensive literature using Nash wage bargaining to understand fluctuations in

unemployment over the business cycle. Given the importance of Nash bargaining in the

literature, it is useful to assess the validity of this assumption. Second, in Section 5.3 we

discuss how, in important cases, constrained efficient wage setting implies an NWE of 1

or more, indicating that an empirical NWE far below 1 is suggestive evidence that wage

dynamics are not constrained efficient. Third, in Section 5, we show that the NWE is a

strong predictor of the effects of wage rigidity on the cyclical volatility of unemployment,

even if wages are not set by Nash bargaining. Fourth, also in Section 5.3 we show that

different models of non-Nash bargaining imply very different values for the NWE, and that

the NWE implied by these wage-setting models can be inferred while remaining relatively

agnostic about the determinants of labor demand. As such, the NWE is a useful statistic to

assess the empirical performance of these wage-setting models empirically.

To estimate the NWE, we build a broad modeling framework that encompasses a wide

variety of cases studied in the literature, and show that the framework delivers equations for

the worker share of match surplus and the Nash wage that can be calculated from empirical

data. When taking these equations to US data from 1979-2012, we find that the worker

share of match surplus is strongly countercyclical and that the Nash wage is substantially

more procyclical than the observed cost of labor. These findings hold for a range of different

measures of the cost of labor that range from practically acyclical to strongly procyclical.

Across 180 regressions, which variously use different wage measures and use either simple

OLS or different instruments for the Nash Wage, we obtain estimates of the Nash wage

elasticity that are mainly between 0 and 0.1. We only obtain Nash wage elasticity estimates

above 0.65 for the most procylical series of the cost of labor (the user cost from the NLSY)

and, even with this series, only for specifications that assume a relatively high value of fixed

hiring costs and/or the opportunity cost of employment.

We investigate the business cycle implications of the our small estimated values for the

NWE. We find that a small NWE makes an enormous difference to fluctuations in unemploy-

ment. We show that there is a tight link between the NWE and the Fundamental Surplus

of Ljungqvist and Sargent (2017), with smaller values of the NWE greatly shrinking the

Fundamental Surplus and increasing the volatility of unemployment in SAM models with

61



shocks to the marginal revenue product of labor. In a simple SAM model with such shocks,

an NWE of 0.1 yields fluctuations in unemployment that are more than seven times as large

as occur when the NWE is 1. In this sense, the vast majority of cyclical movements in

unemployment can be attributed to the effects of wage rigidity.

Finally, we compare our estimated NWE with the implications of various non-Nash mod-

els of wage setting. This includes constrained efficient wage setting, as in many directed

search models, and three models of sticky wages. We find that our estimated NWE implies

much more rigid wages than is consistent with the constrained efficient wage model. Our

NWE estimates do suggest wages may be less rigid than assumed by Hall (2005) and Gertler

and Trigari (2009), but more rigid than assumed by Christiano, Eichenbaum and Trabandt

(2016).
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Appendix

A Data Sources and Data

Name Description Source ID Notes

u Unemployment Rate Fred UNRATE

ul Unemployment Level Fred UNEMPLOY

us Short tern unemployment Fred UEMPLT5 unemployed for less than 5 weeks

el Employment Level Fred CE16OV

c Personal Consumption Fred A794RX0Q048SBEA

labor Productivity BLS NFBUS

w NLSY New Hire Wage Basu and House (2016)

wCES Average Hourly Wage Fred AHETPI

wUL NLSY User Cost of labor Kudlyak (2014) reported in Basu and House (2016)

z Elasticity Chodorow-Reich and Karabarbounis (2016)

f Finding Rate Calculated Eq. (25)

s Separation rate Calculated Eq. (26)

v Vacancy rate Petrosky-Nadeau and Wasmer (2013)

Forecasting VAR

1-Year T-Rate Market Yield on U.S. Treasury Securities at 1-Year Constant Maturity Fred GS1

Real GDP Real Gross Domestic Product Fred GDPC1

GDP Deflator GDP Implicit Price Deflator Fred USAGDPDEFQISMEI

Shock Measures

MP Romer and Romer Narrative Series Romer and Romer (2004) updated in Wieland and Yang (2020)
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