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Abstract

The paper gives conditions for effi ciency and ineffi ciency of equi-
librium allocations in an overlapping-generations model with a con-
stant rate of population growth and with multiple assets, but without
labour. Optimal portfolio choice implies that, for any period and
history up to that period, the conditional certainty equivalents of the
one-period-ahead marginal rates of return must be the same for all as-
sets that are held in positive amounts. The effi ciency or ineffi ciency of
equilibrium allocations depends on whether this common conditional
certainty equivalent of returns on assets is larger or smaller than the
population growth rate. If the growth rate is uncertain, the standard
of comparison is the certainty equivalent of the population growth rate
when interpreted as a marginal rate of return on an asset.
Key Words: Dynamic Ineffi ciency, overlapping-generations mod-

els, First Welfare Theorem, certainty-equivalents criterion.
JEL: D15, D61, E21, E22, E62, H30.
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1 Introduction

In overlapping-generations models with infinite time horizons, equilibrium
allocations under laissez-faire need not be Pareto effi cient.1 Such “dynamic
ineffi ciency”is often tied to the question whether the real rate of return r on
capital is smaller or larger than the real growth rate g of the economy. If r is
less than g, effi ciency can be improved by reducing capital investments in all
periods and using the resources saved to provide for the consumption of old
participants. The “rate of return”that any agent achieves by participating
in this package, reducing capital investment in one period in order to provide
for older participants’consumption and receiving a “return”in the form of
payments from younger people in the future, who in turn reduce their capital
investments, is equal to the growth rate g. If g exceeds r, each participant
gains from this change.
The argument is clear if all real assets are riskless so that in equilibrium

they all bear the same rate of return. The argument is unclear, however, if
some assets, or even all, are risky so that their rates of return are given by
random variables, rather than real numbers. What are we to conclude if the
equilibrium rate of return on safe assets is smaller than the growth rate of
the economy and the expected rates of return on risky assets are larger than
the growth rate of the economy?
For a particular class of overlapping-generations models, this paper shows

that the relevant variable for comparison with the growth rate is given by
the certainty equivalent of the uncertain marginal rate of return on any risky
asset that is actually held. By standard portfolio choice considerations, this
certainty equivalent is the same for all assets. If a riskless asset is available
and is held in positive amounts, the certainty equivalent is equal to the
marginal rate of return on this riskless asset.2 With uncertainty about asset
returns, the r versus g comparison is as relevant as in the certainty case
provided one thinks of r as the common certainty equivalent of the uncertain
marginal rates of return on assets that are held.
I also consider the case where the population growth rate is uncertain.

Under the assumption that population growth rates from one period to the

1The argument goes back to Allais (1947, Appendix 2), Samuelson (1958), and Diamond
(1965). Blanchard (2019) as well as von Weizsäcker (2014) and Weizsäcker and Krämer
(2019/2022) have provided the discussion with a new impetus.

2For a somewhat different model, a special case of this finding with a single risky asset
is already given in Hellwig (2022). The present paper distils the underlying principles.
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next are given by a sequence of independent and identically distributed ran-
dom variables, I show that, for the class of models under consideration, the
assessment of dynamic effi ciency and ineffi ciency of an equilibrium allocation
hinges on the comparison of the common certainty equivalent of the uncertain
marginal rates of return on assets that are held to the certainty equivalent
of the marginal rate of return on a fictitious asset whose uncertain rate of
return is equal to the population growth rate.
This result contradicts a claim in Abel et al. (1989, p. 13f.), that cer-

tainty equivalents of marginal rates of return on assets being smaller than
growth rates is not a suffi cient condition for dynamic ineffi ciency.3 These
authors, however, do not prove their claim. They merely support it with an
example involving an infinitely-lived representative consumer. This example
has nothing to do with overlapping generations.
Abel et al. (1989) also have a theorem on overlapping-generations mod-

els. This theorem gives suffi cient conditions for dynamic effi ciency and for
dynamic ineffi ciency in terms of the sign of net payment flows between the
consumer sector and the producer sector of the economy, without any explicit
reference to rates of return on assets. However, these conditions are far from
necessary. For the class of models considered here, they are much stronger
than the suffi cient conditions I give in terms of the r versus g comparison. In
fact, the "gap" between my suffi cient conditions for dynamic ineffi ciency and
my suffi cient conditions for dynamic effi ciency concerns only the case r = g.
The class of models I consider is special in that there is no labour. At

any date, output is produced with capital that belongs to members of the
old generation. This output makes up the old generation’s real income at
that date. Members of the young generation have a commodity endowment
that they can use for immediate consumption and for investments in different
kinds of assets. A generalization giving the young generation a labour en-
dowment that they can use for their own production of current consumption
and investments would be trivial.
In a companion paper (Hellwig 2021), I also consider the case in which

production involves the young generation’s labour in combination with the
old generation’s assets. In this specification, however, which corresponds to
the model of Blanchard (2019), the wage rate at any one date depends on the

3Most of the literature has followed Abel et al. (1989) in presuming that assessments of
dynamic ineffi ciency must consider aggregate returns on all assets, risky as well as riskless.
See, e.g., Homburg (2014), Geerolf (2018), Blanchard (2019), Yared (2019), Acharya and
Droga (2020), Reis (2020).
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productivity shocks at that date and is thus correlated with the returns on
assets held from the predecing period. The uncertainty about productivity
at any date affects not only the returns on the old generation’s past invest-
ments but also the wage incomes of the members of the young generation.
The young generation’s consumption and investments depend on these wage
incomes. The equilibrium value of the certainty equivalent of the uncertain
marginal rate of return on any asset that the young generation at date t
invests in therefore also depends on the wage rate at date t and, indirectly,
on the date t productivity shock. This dependence raises the possibility that
the r versus g comparison at date t might depend on the wage rate at date t.
In the companion paper, I discuss this issue in detail and give a more general
criterion for dynamic effi ciency and ineffi ciency.
The plan of the paper is as follows: Section 2 introduces the basic model.

Given that labour plays no role, there is not direct trade between the two
generations that are alive in any period t. I define and and characterize
the autarky allocation and show that it can be generated as an equilibrium
allocation in a sequence of markets that involves a complete one-period-ahead
system of contingent claims at any one date. Section 3 studies the effi ciency
properties of the autarky/equilibrium allocation. The effi ciency concept used
is interim Pareto effi ciency where each generation t assesses a change of
allocation from an interim perspective, assuming that generation t knows
the history of productivity shocks up to and including t. This information
assumption eliminates the scope for Pareto improvements from having people
born in period t take over some of the return risks of people born in period
t− 1.
Section 4 provides further perspectives on the main result. Section 4.1

shows that this result implies the theorem of Abel et al. (1989) that was men-
tioned above. Specifically, the suffi cient conditions that Abel et al. (1989)
give for the dynamic effi ciency or ineffi ciency of an equilibrium allocation are
stronger than the suffi cient conditions given in this paper. Section 4.2 relates
the analysis to the First Welfare Theorem for competitive equilibria in a com-
plete market system ex ante. To preclude risk sharing between generations
born in subsequent periods, I assume that agents are distinguished according
to the histories up to and including the times of their births. Under this
assumption, the autarky allocation can be obtained as a competitive equi-
librium allocation in a complate market system ex ante. It is effi cient if the
value of aggregate consumption at equilibrium prices is finite and ineffi cient
if the value of aggregate consumption at equilibrium prices is unbounded.
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This criterion is equivalent to the criterion given by the r versus g compar-
ison. Section 4.3 extends the analysis to allow for uncertainty about the
population growth rate. As mentioned above, this case yields a generalized
r versus g criterion, in which g is replaced by the certainty equivalent of the
population growth rate when interpreted as the uncertain rate of return on
a fictitious asset.
Proofs are in part sketched in the text and in part given formally in the

appendix.

2 A Simple Overlapping-Generations Model

Consider an economy in periods t = 1, 2, ... In each period t, there is a
single produceable good. This good serves for consumption and investments.
There are I types of investments. For i = 1, ..., I, an investment kti of type i
in period t generates an output fi(At+1, kti) in period t+ 1, where At+1 is the
realization of a nondegenerate random variable Ãt+1 with values in a finite
set A = {a1, ..., aS}. This realization only becomes known in period t + 1.
After production, investments of all types are fully depreciated. For any a ∈
A, the return functions fi(a, ·), i = 1, ..., I, are continuously differentiable,
nondecreasing, and concave, with fi(a, 0) = 0. Moreover, for any a ∈ A,
f ′i(a, 0) > 0 for at least one i ∈ {1, ..., I}.
In each period t, a new generation of Nt people is born and lives for two

periods. There are also N0 = N old people in period 1. I assume that the
population grows at a constant rate n, so Nt = (1 + n)tN0 for all t.
For simplicity, I assume that, except for the old people in period 1, all

people have the same characteristics. A person born in period t ≥ 1 has
an initial endowment E > 0 of the period t good and no endowment of the
period t′ good for t′ 6= t. Moreover, this person is interested in the utility

u(ct1) + v(ct2) (2.1)

that is obtained from consuming ct1 in period t and c
t
2 in period t + 1. The

utility functions u(·) and v(·) are assumed to be twice continuously differ-
entiable, increasing and strictly concave, with u′(0) = ∞ and v′(0) = ∞
and with nonzero second derivatives. An old person in period 1 has past
investments k01, ..., k

0
I and is interested in the utility v(c02).
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In the absence of an trade, i.e. under autarky, a person born in period
t ≥ 1 chooses a first-period consumption level ct1, and investment levels k

t
i ,

i = 1, ..., I under the constraint

ct1 +

I∑
i=1

kti = E. (2.2)

The person also chooses a plan ct2(·) for second period consumption subject
to the constraint that

ct2(as) =
I∑
i=1

fi(as, k
t
i) (2.3)

for s = 1, ..., S. An old person in period 1 just has the consumption

c02(as) =
I∑
i=1

fi(as, k
0
i )

for s = 1, ..., S. I assume that
∑I

i=1 fi(as, k
0
i ) > 0 for all s.

The parameters Ã1, Ã2, ... are assumed to be independent and identically
distributed, with strictly positive probabilities p1, ..., pS. for the outcomes
a1, ..., aS. A person born in period t ≥ 1 thus gets the expected utility

u(ct1) +
S∑
s=1

ps · v(ct2(as)) (2.4)

from the plan (ct1, k
t
1, ..., k

t
I , c

t
2(·)).

An autarky allocation is an array of plans (ct1, k
t
1, ..., k

t
I , c

t
2(·)) for t =

1, 2, ... such that, for each t, the plan (ct1, k
t
1, ..., k

t
I , c

t
2(·)) maximizes (2.4)

subject to the constraints (2.2) and (2.3). Given the assumptions imposed
on utility functions and return functions, the following lemma is immediate.

Lemma 2.1 There is a unique autarky allocation. For each generation t ≥
1, the autarky allocation involves the unique plan (ca1, k

a
1 , ..., k

a
I , c

a
2(·)) that

satisfies the first-order conditions

u′(ca1) ≤
S∑
s=1

ps · f ′i(as, kai ) · v′(ca2(as) (2.5)

for i = 1, ...I, as well as the constraints (2.2) and (2.3), where, for any i,
(2.5) holds as an equation unless kai = 0. This plan satisfies ca1 > 0 and
ca2(as) > 0 for all s.
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The autarky allocation can be implemented as an equilibrium allocation
in a sequence of complete one-period-ahead market systems. For suppose
that, in period t, there is a market system in which consumers can buy
state-contingent claims for period t+ 1 consumption at prices

π(as) :=
ps · v′(ca2(as))

u′(ca1)
, s = 1, ..., S, (2.6)

and they can sell the period t good to firms at a price qt = 1. These firms
acquire the period t good at the price qt = 1 in order to make investments,
and they dispose of the state-dependent outputs from these investments by
selling state-contingent claims for the period t + 1 good at the prices π(as),
s = 1, ..., S. The profits of these firms are distributed to people of generation
t.

Lemma 2.2 For any t, the autarky consumption plan (ct1, c
t
2(·)) = (ca1, c

a
2(·))

maximizes the expected utility (2.4) of a person born in period t subject to
the budget constraint

ct1 +
S∑
s=1

π(as)c
t
2(as) = E + Πt, (2.7)

where

Πt = max
kt1,...,k

t
I

[
S∑
s=1

π(as)
I∑
i=1

fi(as, k
t
i)−

I∑
i=1

kti

]
(2.8)

and, moreover, the maximum in (2.8) is attained at the autarky investment
plan (kt1, ..., k

t
I) = (ka1 , ..., k

a
I ).

In any period, old agents play no active role because they do not trade.
They merely consume the returns on the contingent claims they acquired in
the preceding period. From Lemma 2.2, one therefore obtains the following
result.

Proposition 2.3 Suppose that, in each period t, there is a market system
of the sort considered in Lemma 2.2. A sequence {qt}∞t=1 of price vectors
satisfying

qt = (1, π(a1), ..., π(aS)) (2.9)

for all t and all histories (A1, ..., At) up to t, supports the autarky allocation
as a rational-expectations equilibrium allocation.
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The sequence of markets in this proposition is not equivalent to a complete
market system ex ante in which claims on all contingencies can be traded. In
a complete market system ex ante, there would be active trading of contingent
claims on the period t goods that allows people born in period t− 1 to share
some of their return risk with people born in period t. Such risk sharing
cannot take place if people born in period t know the realization of Ãt when
they enter the market.

3 Welfare Assessments

Without risk sharing between generations, the equilibrium allocation in Propo-
sition 2.3 is not ex ante effi cient. I therefore consider an interim perspective
where each generation t assesses a change of allocation on the basis of the
information that it has, assuming that it knows the history A1, ..., At of pro-
ductivity parameters up to t. From this perspective, an allocation is interim
Pareto-preferred to another if, conditioning on the information that is avail-
able to agents when they take their decisions and regardless of the value that
information may take, no participant is worse off and some participants are
strictly better off under the first allocation than under the second allocation.
To assess the interim Pareto effi ciency of the autarky allocation, I con-

sider the welfare impact of reducing the first-period consumption of agents
born in period t by ∆ > 0 and increasing second-period consumption of
these agents by (1 + n)∆ while leaving everything else unchanged. With a
population growth factor 1 + n, this change is obviously feasible. For a per-
son born in period t expected utility shifts from u(ca1) +

∑S
s=1 ps · v(ca2(as))

to u(ca1 − ∆) +
∑S

s=1 ps · v(ca2(as) + (1 + n)∆). For small ∆, the change is
approximately equal to[
−u′(ca1) +

S∑
s=1

ps · (1 + n) · v′(ca2(az))
]
·∆ = −u′(ca1)

[
1− (1 + n)

S∑
s=1

π(as)

]
·∆,

(3.1)
where πs is given by (2.6). If the term in brackets is positive, the intervention
considered lowers welfare; if this term is negative, the intervention raises
welfare. In the latter case, the new allocation Pareto dominates the autarky
allocation, in the former case, it does not dominate the autarky allocation.
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Proposition 3.1 If (1+n)
∑S

s=1 π(as) < 1, the autarky allocation is interim
Pareto effi cient. If (1 + n)

∑S
s=1 π(as) > 1, the autarky allocation fails to be

interim Pareto effi cient.

The second part of Proposition 3.1 follows from the argument sketched
above. That argument also shows that, if (1 + n)

∑S
s=1 π(as) < 1, the spec-

ified intervention does not provide a Pareto improvement. A more general
argument is needed, however, in order to show that in this case no inter-
vention at all provides for a Pareto improvement, not even an intervention
that provides for the sharing of risks from the random variable Ãt+1 between
generations t and t+ 1.
The interim effi ciency or ineffi ciency of the autarky allocation thus de-

pends on whether the sum
∑S

s=1 π(as) is less than or greater than 1
1+n

. To
understand what this comparison is about, it is useful to recall that, for any t
and any s, π(as) is the period t price of a claim on the period t+ 1 good con-
tingent on the event Ãt+1 = as expressed in units of the period t good. The
sum

∑S
s=1 π(as) is therefore the period t price of a non-contingent claim on

the period t+1 good expressed in units of the period t good. The proposition
asserts that the interim effi ciency or ineffi ciency of the allocation depends on
whether this price is less than or greater than 1

1+n
.

Proposition 3.1 makes no reference to assets or asset returns. Rates of
return enter implicitly because the equilibrium price system depends on the
allocation and the allocation in turn reflects the available investment oppor-
tunities. Using (2.6) and Lemma 2.1, one finds that, for any asset i satisfying
kai > 0, one has

1∑S
s=1 π(as)

=
u′(c

a)
1∑S

s=1 ps · v′(ca2(as))
=

∑S
s=1 ps · f ′i(as, kai ) · v′(ca2(as))∑S

s=1 ps · v′(ca2(as))
. (3.2)

Upon combining this finding with Proposition 3.1, one obtains:

Proposition 3.2 The autarky allocation fails to be interim Pareto effi cient
if ∑S

s=1 ps · f ′i(as, kai ) · v′(ca2(As))∑S
s=1 ps · v′(ca2(as))

< 1 + n (3.3)

for all i. The autarky allocation is interim Pareto effi cient if∑S
s=1 ps · f ′i(as, kai ) · v′(ca2(as))∑S

s=1 ps · v′(ca2(as))
> 1 + n (3.4)
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for all i satisfying kai > 0.

The term on the left-hand side of (3.3) and (3.4) is a marginal-utility-
weighted expectation of the marginal return random variable f ′i(Ãt+1, k

a
i ) for

asset i. This marginal-utility-weighted expectation is the same for all assets
that are actually held. It can be interpreted as the certainty-equivalent of
the marginal return f ′i(Ãt+1, k

a
i ), i.e., as that value of the marginal return on

a (possibly fictitious) riskless asset at which the investor would be indifferent
between a marginal investment in asset i and in the riskless asset.
The term 1+n on the right-hand side of (3.3) and (3.4) can be interpreted

as a rate of return that is implicit in participants’s paying ∆ in the first
period of their lives and receiving (1 + n)∆ in the second period of their
lives. Proposition 3.2 asserts that, if this implicit rate of return exceeds the
common value of the certainty equivalents of the marginal returns on assets,
the autarky allocation is Pareto dominated; if this implicit rate of return
is smaller than than the common value of the certainty equivalents of the
marginal returns on assets, the autarky allocation is Pareto effi cient.
For an asset that satisfies

f ′i(as, k
a
i ) = f̂ ′i(k

a
i ) (3.5)

for some function f̂i and all s, the left-hand side of (3.3) and (3.4) is simply
equal to f̂ ′i(k

a
i ).

Corollary 3.3 Assume that the autarky allocation satisfies kai > 0 for some
asset i that is riskless, i.e., that satisfies (3.5) for all s. Then this allocation
is interim Pareto effi cient if f̂ ′i(k

a
i ) > 1 + n and interim Pareto-dominated if

f̂ ′i(k
a
i ) < 1 + n.

Corollary 3.3 restates the old result that the effi ciency or ineffi ciency of
a competitive-equilibrium allocation in an overlapping-generations economy
depends on whether the marginal rate of return on a riskless asset that is
held in positive amounts exceeds the growth rate of the economy or falls
short of it. In contrast to the discussion in Abel et al. (1989), the criterion
for effi ciency and ineffi cieny is specified only in terms of the marginal rate of
return on the safe asset, seemingly without regard to the rates of return on
risky assets. Implicitly, though, the marginal rates of return on risky assets
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come in because, by portfolio choice considerations, the certainty equivalents
of marginal rates of return must be the same for all assets that are held in
positive amounts.
The follows remark shows that that there exist constellations in which

the assumption kas > 0 is satisfied so Corollary 3.3 is not vacuous.

Remark 3.4 Suppose that asset 1 is riskless, so that f1(as, ·) = f̂1(·) for
some function f̂1 and all s. Then ka1 > 0 if there exists a state in which the
returns on all other assets are zero, i.e., if, for some s, fj(as, kaj ) = 0 for all
j 6= 1. The condition ka1 > 0 is also satisfied if limkj→∞ f

′
j(as, kj) = 0 for all

j 6= 1 and all s and the endowment E is very large.

The first part of Remark 3.4 concerns constellations in which safe invest-
ments are needed as protection against the positive-probability event that
risky investments may be completely lost. The second part concerns con-
stellations in which endowments are so large that, without safe investments,
the marginal returns on risky investments would be so low (with probabil-
ity one) that, at the margin, these investments would be dominated by safe
investments.
If there is no riskless asset, one can still define a "shadow" safe rate of

return

Ra :=
1∑S

s=1 π(as)
=

u′(c
a)
1∑S

s=1 ps · v′(ca2(as))
(3.6)

as that value of the rate of return on a fictitious safe asset at which agents
would be exactly indifferent about a marginal investment in this asset. This
number is given by the consumers’marginal rate of substitution between
non-contingent changes in consumption in the first and second periods of
their lives.

Corollary 3.5 The autarky allocation is Pareto effi cient if Ra > 1 + n and
Pareto-dominated if Ra < 1 + n.
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4 Pareto Improving Fiscal Interventions

4.1 Allowing for Participants’Responses to Interven-
tions

In the preceding sections, the Pareto improvements for the case (1+n)
∑S

s=1 π(as) >
1 are implemented by direct interventions in the overall allocation of con-
sumption. I will now show that these improvements can also be achieved
by specific fiscal interventions that leave the participants free to adjust. For
this purpose, I consider the effects of imposing a lump sum tax T on each
person when this person is young and providing a lump sum subsidy S to
each person when this person is old, leaving all other features of the model
unchanged. Both T and S are measured in units of the good of the period
in question.
I assume that this intervention involves no waste of resources. In any

period t, therefore, NtT = Nt−1S and hence

S = (1 + n)T. (4.1)

Proceeding as before, I define a T -autarky allocation as an array of plans
(ct1(T ), kt1(T ), ..., ktI(T ), ct2(·|T )) for t = 1, 2, ..., such that, for each t the plan
(ct1(T ), kt1(T ), ..., ktI(T ), ct2(·|T )) maximizes the expected utility

u(ct1) +
S∑
s=1

ps · v(ct2(as))

under the constraints

ct1 +
S∑
s=1

kti = E − T (4.2)

and, for s = 1, ..., S,

ct2(as) = (1 + n)T +
I∑
i=1

fi(as, k
t
i). (4.3)

Using the same arguments as before, one easily finds that the conclusions
of Lemma 2.1 hold for a T -autarky allocations with T ∈ (0, E) as well as
T = 0. In particular, for any such T, there exists a unique T -autarky al-
location, which involves the same plan (ca1(T ), ka1(T ), ..., kaI (T ), ca2(·|T )) for

12



all generations t = 1, 2, ... Moreover, the T -autarky allocations can be imple-
mented as equilibrium allocations in a sequence of complete one-period-ahead
market systems. The following result is an analogue of Proposition 2.3.

Proposition 4.1 Let T ∈ [0, E). Suppose that, in each period t, there is a
market system of the sort considered in Lemma 2.2, in which consumers can
buy state-contingent claims for the period t+ 1 good in return for the current
good and firms sell state-contingent claims for the period t + 1 good. Then
the sequence {qt}∞t=1 of price vectors satisfying

qt = (1, π(a1|T ), ..., π(aS|T )), (4.4)

with

π(as|T ) :=
ps · v′(ca2(as|T ))

u′(ca1(T ))
, s = 1, ..., S, (4.5)

supports the T -autarky allocation as a rational-expectations equilibrium allo-
cation.

The expected utility a person obtains from the T -autarky plan (ca1(T ), ka1(T ), ..., kaI (T ), ca2(·|T ))
is written as

W (T ) = u(ca1(T )) +
S∑
s=1

ps · v(ca2(as|T )). (4.6)

By a straightforward application of the envelope theorem, one obtains

dW

dT
= u′(ca1(T )) · dc

a
1(T )

dT
+

S∑
s=1

ps · v′(ca2(as|T )) · dc
a
2(as|T )

dT

= −u′(ca1(T )) + (1 + n)
S∑
s=1

ps · v′(ca2(as|T ))

= −u′(ca1(T ))

[
1− (1 + n)

S∑
s=1

π(as|T )

]
. (4.7)

The following result is immediate.

Proposition 4.2 If 1 < (1 + n)

S∑
s=1

π(as|0), then, for small T > 0, any

person’s expected utility under the T -autarky allocation is greater than the
person’s expected utility under the autarky allocation without a fiscal inter-
vention.
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4.2 Crowing Out or Crowding In of Investments?

In Blanchard (2019), with a single asset, a lump sum tax-and-transfer scheme
of the sort considered here crowds out private investments. If the laissez-faire
allocation is ineffi cient, such crowding out is useful because the rate of return
on the tax payment T that is implicity in the subsidy S = (1 + n)T exceeds
the certainty equivalent of the return on any asset.
With multiple assets, however, the lump sum tax-and-transfer scheme

may affect different assets differently. For a specification with two assets,
one risky and one riskless, the following result shows that the lump sum tax-
and-transfer scheme may actually crowd in the risky investment. Specifically,
with decreasing absolute risk aversion, the wealth effect from the tax-and-
transfer scheme may create enhanceed incentives for investing in the risky
asset.

Proposition 4.3 Assume that I = 2 and that, for all s, f1(as, k1) = rk1
for some r > 0 and all k1 and f2(as, k2) = ρ(as)k2 for some function ρ
from A to R+. Assume also that the utility function v(·) exhibits strictly
decreasing absolute risk aversion. If the autarky allocation (with T = 0)

satisfies 1 < (1 + n)
S∑
s=1

π(as|0) as well as ka1(0) > 0 and ka2(0) > 0, then,

for T slightly above zero, ka1(T ) < ka1(0) and ka2(T ) > ka2(0). If ka1(0) = 0 and
ka2(0) > 0, then, for T slightly above zero, ka1(T ) = 0 and ka2(T ) < ka2(0).

If the autarky allocation is Pareto dominated and ka1(0) > 0, the lump sum
tax-and-transfer scheme of the sort considered here provides a net subsidy
that is equivalent to

−T + (1 + n)
S∑
s=1

π(as|0) · S =

[
(1 + n)

S∑
s=1

π(as|0)− 1

]
· T.

This subsidy induces an increase in first-period consumption and, if risk
aversion is strictly decreasing, an increase in risky investment. Both increases
are accompanied by a decrease in safe investment. In contrast, if ka1(0) > 0,
the intervention always causes risky investment to go down. The reason is
that the intervention reduces the need for a store of value; if risky investments
are the only store of value held, they must go down.

14



Blanchard’s result that a tax-and-transfer scheme by itself will crowd out
risky investment is due to the assumption that there is only one real asset.
As had already been stressed by Tobin (1963), with more than one asset, the
comparative statics analysis of fiscal interventions must allow for changes
in portfolio composition. In the present context, if ka1(0) > 0, the fiscal
intervention crowds out safe investments, for which it is a close substitute,
but may crowd in risky investment if the income effects from the effi ciency
gain reduce risk aversion.

5 Discussion

5.1 Relation to Abel et al. (1989).

Abel et al. (1989) introduced another criterion, which on the face of it
has nothing to do with rates of return. For any one period t, their net-
dividend criterion compares the returns to investments that are payed out
to consumers in that period to the payments for new investments that con-
sumers make in that period. In the context of the model considered here,
the comparison concerns the returns Nt−1 · d̃t :=

∑I
i=1 fi(Ãt, k

t−1
i ) on past

investments that go to the old generation in period t and the new investment
Nt ·

∑I
i=1 k

t
i that is made by the young generation in period t. According

to Proposition 1 in Abel et al. (1989), under the assumption that produc-
tion exhibits stochastic constant returns to scale, an equilibrium allocation
is Pareto effi cient if, for some ε > 0, d̃t ≥ (1 + ε)(1 +n)

∑I
i=1 k

t
i for all t with

probability one, and the allocation is Pareto dominated if, for some ε > 0,
d̃t ≤ (1 − ε)(1 + n)

∑I
i=1 k

t
i for all t with probability one. For the autarky

allocation in the present analysis, these conclusions are actually a special
case of Corollary 3.5. This is shown by the following result.

Proposition 5.1 Assume that production exhibits stochastic constant re-
turns to scale, i.e., that, for some functions ρ1(·), ..., ρI(·) from A to R+,

fi(as, ki) = ρi(as) · ki (5.1)

for all s and all ki > 0. Then the autarky allocation satisfies Ra > 1 + n if,
for some ε > 0,

I∑
i=1

fi(as, k
a
i ) ≥ (1 + ε)(1 + n)

I∑
i=1

kai (5.2)
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for all s. It satisfies Ra < 1 + n if, for some ε > 0,

I∑
i=1

fi(as, k
a
i ) ≤ (1− ε)(1 + n)

I∑
i=1

kai (5.3)

for all s.

The proof of Proposition 5.1 makes essential use of the stationarity of
the autarky allocation. The fact that kti = kai for all t makes it possible
to translate the net-dividend criterion into a rate-of-return criterion: Given
(5.1), (5.2) takes the form

I∑
i=1

ρi(as) · kai ≥ (1 + ε)(1 + n) ·
I∑
i=1

kai (5.4)

for all s, implying that, in all possible states of nature, the overall rate
of return on the portfolio (ka1 , ..., k

a
I ) is at least (1 + ε)(1 + n). From the

optimization conditions (2.5), one has

u′(ca1) ·
I∑
i=1

kai =
I∑
i=1

S∑
s=1

[ps · v′(c̃a2) · ρi(as) · kai ],

so the net-dividend condition (5.4) implies

u′(ca1) ·
I∑
i=1

kai ≥
S∑
s=1

ps · v′(c̃a2) · (1 + ε)(1 + n) ·
I∑
i=1

kai

and, therefore,

1 ≥
S∑
s=1

π(as) · (1 + ε)(1 + n)

or
Ra ≥ (1 + ε)(1 + n),

which implies interim Pareto effi ciency. Similarly, (5.3) implies that in all
possible states of nature the overall rate of return on the portfolio (ka1 , ..., k

a
I )

is at most (1 − ε)(1 + n) > 1 + n, so that the optimization conditions (2.5)
yield

u′(ca1) ·
I∑
i=1

kai ≤
S∑
s=1

ps · v′(c̃a2) · (1− ε)(1 + n) ·
I∑
i=1

kai
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and, therefore,
Ra ≤ (1− ε)(1 + n),

implying a failure of interim Pareto effi ciency.
Without stationarity, the status of the result of Abel et al. (1989) is un-

clear. Their conditions compare payouts of returns from investments of pe-
riod t−1 with new investments of period t. Without some kind of stationarity,
this comparison seems unrelated to rates of return. Chattopadhyay (2008)
has examples where the technology involves technical regress, so investments
decline over time. In these examples, the condition d̃t ≥ (1+ε)(1+n)

∑I
i=1 k

t
i

holds for all t with probability one, and yet the competitive-equilibrium al-
location is Pareto-dominated.4

5.2 Realation to the First Welfare Theorem

"Dynamic ineffi ciency" has little to do with dynamics. "Dynamic ineffi -
ciency" reflects a breakdown of the FirstWelfare Theorem in certain economies
with an infinity of goods and an infinity of consumers.5 The First Welfare
Theorem asserts that, in the absence of external effects, public goods, and
the like, under quite general assumptions on preferences and technologies,
competitive equilibrium allocations are Pareto effi cient. For a breakdown of
this theorem, having a "large-square" economy with a large number of agents
(at least two for every good) as well as a large-number of goods is crucial.
The scope for a breakdown depends on the structure of the equilibrium price
system, which in turn depends on the interplay of consumer preferences and
investment opportunities. In the absence of investment and production, only
consumer preferences matter.6

4Because technical regress is compatible with the assumptions of Abel et al. (1989),
it follows that their Proposition 1 is invalid as stated. Their formal argument uses a
Lagrangian approach to the Paretian problem of maximizing the payoff to one person
subject to the constraint that no other person is made worse off, but they fail to verify the
conditions on the system of Lagrange multipliers that must hold for this approach to work
when there are infinitely many constraints. Using the same kind of Lagrangian approach,
the proof of Proposition 3.1 in the Appendix involves showing that these conditions on the
system of Lagrange multipliers hold if

∑S
s=1 π(as) < 1. They do not hold if

∑S
s=1 π(as) >

1.
5See, e.g., Balasko and Shell (1980), Mas-Colell et al. (1995), Ch. 20.H.
6Although the total number of participants in this ex ante market system is countably

infinite, the definition and analysis of competitive equilibrium do not raise any technical
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In the present context, these observations are relevant even though the
sequence of markets in Proposition 2.3 is not equivalent to a complete market
system ex ante in which claims on all contingencies can be traded. The
reason is that, for a slightly modified economy, the sequence of markets in
Proposition 2.3 is equivalent to a complete market system ex ante in which
claims on all contingencies can be traded. In this modified economy, the
failure of interim Pareto effi ciency when (1 + n)

∑S
s=1 π(as) > 1 is in fact a

failure of the First Welfare Theorem.
The modified economy differs is identical to the one studied so far except

that the set of agents is expanded by treating agents born in period t as
different agents if the histories (A1, ..., At) up to period t are different. Thus
an agent born in period t is treated as St different agents, who differ from each
other according to the histories (A1, ..., At) ∈ At. Following any one history
up to t, the set of agents in the economy at t is the same as in the original
model. However, from an ex ante perspective, this construction eliminates
the scope for using active trading of contingent claims on the period t goods
to allow people born in period t − 1 to share some of their return risk with
people born in period t. Such risk sharing cannot take place if the plans of
people born in period t condition on the histories up to and including t that
determine their identities.7

Proposition 5.2 The autarky allocation is a competitive equilibrium allo-
cation in a complete system of contingent-claims markets ex ante in which
agents born in period t are distinguished by the histories (A1, ..., At) up to t
as well as their names. The equilibrium involves a sequence {qt(·)} of time-
and-history-contingent prices for the consumption that satisfies the equations

q1(A1) = 1 (5.5)

and, for any t > 1 and history (A1, ...At) up to t,

qt(A1, ..., At) = π(At) · qt−1(A1, ..., At−1). (5.6)

or conceptual problems. Because of the underlying overlapping-generations specification
of preferences, technologies and endowments, the number of participants interested in any
one contingent claim is finite, so the aggregate excess demand for that claim is well-defined
as a finite sum of excess demands of the interested participants.

7This procedure is the same as the procedure for constructing the agent normal form
of an extensive-form game, treating the same agent at two different information sets at
two different agents. See Selten (1975).
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For the modified economy in which agents born in period t are distin-
guished by the histories (A1, ..., At) up to t as well as their names, the con-
cepts of interim Pareto effi cency and ex ante Pareto effi ciency coincide be-
cause, in this economy, each agent naturally conditions on the history up to
and including the date of his or her birth. Proposition 3.1 thus becomes a re-
sult about ex ante Pareto effi ciency. The comparison of

∑S
s=1 π(as) and 1

1+n
,

which is crucial for the distinction between the effi ciency and ineffi ciency pats
of Proposition 3.1 can now be translated into a condition on the equilibrium
price system {qt(·)}.

Proposition 5.3 If
∑S

s=1 π(as) <
1
1+n
, the value of aggregate consumption

at the equilibrium prices in Proposition 5.2 is finite, and the autarky alloca-
tion is ex ante Pareto effi cient for an economy in which agents born in period
t are distinguished by the histories (A1, ..., At) up to t as well as their names.
If
∑S

s=1 π(as) >
1
1+n

, the value of aggregate consumption at the equilibrium
prices in Proposition 5.2 is unbounded, and the autarky allocation fails to be
ex ante Pareto effi cient for an economy in which agents born in period t are
distinguished by the histories (A1, ..., At) up to t as well as their names.

The standard proof of the First Welfare Theorem begins by observing
that, if an alternative allocation provides each participant with greater util-
ity than the competitive equilibrium allocation, then for each participant the
consumption plan under the new allocation must be unaffordable at the equi-
librium prices. Upon adding this inequality over all consumers, one finds that
the value at equilibrium prices of aggregate consumption under the alterna-
tive allocation must exceed the value of aggregate consumption under the
competitive equilibrium allocation and therefore the value of the aggregate
available resources. This leads to the conclusion that the alternative allo-
cation cannot be feasible: For at least one good, the alternative allocation
must stipulate consumption in excess of the resources available for providing
this good.
In the present model, with infinitely many agents and infinitely many

goods, one for each period and history up to that period, this argument goes
through if the value of aggregate consumption at the equilibrium prices in
Proposition 5.2, as it is if

∑S
s=1 π(as) <

1
1+n

, and it breaks down if this value

is unbounded, as it is if
∑S

s=1 π(as) >
1
1+n

. Proposition 5.3 thus links the
classification of cases in Proposition 3.1 to applicability or breakdown of the
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standard proof of the First Welfare Theorem in a "large-square" economy,
an economy that has an infinity of people as well as an infinity of goods.

5.3 Uncertainty about Population Growth

The analysis so far has made extensive use of the assumption that the pop-
ulation growth rate is constant. There is an easy generalization, however, to
the case where the population growth rate from period t to period t + 1 is
the realization of a random variable ñt+1 and the random variables ñ1, ñ2, ...
are independent and identically distributed. Without loss of generality, one
can write

ñt = ν(Ãt), (5.7)

so that the state of the world in period t determines not only the returns
on assets held from period t − 1 but also the size of generation t relative
to generation t − 1. The autarky allocation is the same as before, but the
transfer scheme considered in Section 3 now takes the form of a payment
∆ > 0 in period t by a person born in that period and a receipt (1 + ñt+1)∆
by that person in period t + 1. Given this modification, for small ∆, the
effect of such a scheme on the expected utility of a person born in period t
now takes the form[

−u′(ca1) +
S∑
s=1

ps · (1 + ν(as)) · v′(ca2(az))
]
·∆, (5.8)

which specializes to (3.1) if ν(as) = n, regardless of as. Along the same lines
as before, one obtains the following generalization of Proposition 3.2:

Proposition 5.4 In the model with uncertain population growth given by
5.7), the autarky allocation fails to be interim Pareto effi cient if∑S

s=1 ps · f ′i(as, kai ) · v′(ca2(As))∑S
s=1 ps · v′(ca2(as))

<

∑S
s=1 ps · (1 + ν(as)) · v′(ca2(az))∑S

s=1 ps · v′(ca2(as))
(5.9)

for all i. The autarky allocation is interim Pareto effi cient if∑S
s=1 ps · f ′i(as, kai ) · v′(ca2(as))∑S

s=1 ps · v′(ca2(as))
>

∑S
s=1 ps · (1 + ν(as)) · v′(ca2(az))∑S

s=1 ps · v′(ca2(as))
(5.10)

for all i satisfying kai > 0.
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To understand this result, consider a possibly fictitious asset whose rate
of return from period t to period t + 1 is equal to the population growth
rate, so one unit of the good invested in this asset in period t yields 1 + ñt+1
in period t + 1. The term on the right-hand sides of (5.9) and (5.10) can
be interpreted as the certainty equivalent of the one-period rate of return on
this asset. The proposition assets that the interim effi ciency or ineffi ciency of
the autarky allocation depends on how the certainty equivalent of marginal
returns on assets that are held compare to the certainty equivalent of the
marginal returns on this fictitious asset. The underlying rationale is the
same as before: The transfer scheme considered in (5.8) can be interpreted
in terms of an "investment" ∆ in period t and a "return" (1+ ñt+1) in period
t+ 1.

A Proofs

The first-order conditions in Lemma 2.1 as well as Lemma 2.2 and Proposition
2.3 follow by standard arguments, so their proofs are left to the reader.
Positivity of ca1 and c

a
2(A) for all A ∈ A follows from the first-order conditions

in Lemma 2.1 and the assumptions that u′(0) = ∞, v′(0) = ∞, ps > 0 for
all s ∈ {1, ..., S} and that, for all s ∈ {1, ..., S}, there exists some i such that
f ′i(as, 0) > 0.
As for the proof of Proposition 3.1, the argument in the text shows that

the autarky allocation is interim Pareto-dominated if
∑S

s=1 π(as) >
1
1+n

. It
remains to be proved that the autarky allocation is interim Pareto effi cient
if
∑S

s=1 π(as) <
1
1+n

. I follow the same strategy as Abel et al. (1989). The
idea is to show that the equilibrium allocation maximizes the welfare of the
old generation in period 1 over the set of feasible allocations subject to the
constraint that no other generation be made worse off, using a Lagrangian
approach to deal with the constraints. The approach requires some care
in order to ensure that the duality conditions underlying the Lagrangian
approach are satisfied.
If A = {a1, ..., aS} is the set of possible values of the productivity pa-

rameters in any one period, then At is the set of possible histories of the
productivity parameter up to t, i.e., the set of contingencies on which choices
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at t may be conditioned. The space

E :=
∞⋃
t=1

[
{t} × At

]
, (A.1)

corresponds to the union of these sets of contingencies over all t. Notice that
E is a countable union of finite sets and is therefore a countable set.
An allocation is a list that assigns to each date t and each history (A1, ..., At) up

to t he actions that are to be taken at this date and history. For any pair
[t, (A1, ..., At)] ∈ E , this list specifies a vector (ct1(A1, ..., At), k

t
1(A1, ..., At),...,

ktI(A1, ..., At) of first-period consumption and investments for generation t
and the second-period consumption ct−12 (A1, ..., At) for generation t − 1 fol-
lowing the history (A1, ..., At). An allocation is feasible if it satisfies the con-
straints

ct−12 (A1, ..., At) + (1 + n)

[
ct1(A1, ..., At) +

I∑
i=1

kti(A1, ..., At)

]

≤ (1 + n)E +
I∑
i=1

fi(At, k
t−1
i )), (A.2)

for any [t, (A1, ..., At)] ∈ E , where, for i = 1, ..., I, kt−1i = k0i for t = 1 and
kt−1i = kt−1i (A1, ..., At−1) for t > 1.
An allocation is interim Pareto-preferred to the autarky allocation if it

satisfies the inequalities

v
(
c02(A1

)
) ≥ v

(
I∑
i=1

fi(A1, k
0
i )

)
(A.3)

for all A1 ∈ A and

u(ct1(A1, ..., At)) +
S∑
s=1

π(as)v(ct2(A1, ..., At, as)) ≥ u(ca1) +
S∑
s=1

π(as)v(ca2)

(A.4)
for all [t, (A1, ..., At)] ∈ E with t > 1.
The proof strategy is to show that, for each A1 ∈ A, the autarky allo-

cation is a solution to the problem of maximizing v (c02(A1)) subject to the
feasibility constraints (A.2) and the Pareto constraints (A.4). The argument
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involves two steps. One step involves showing that the autarky allocation
is a solution to the problem of maximizing a suitably specified Lagrangian.
The second step involves showing that, because it maximizes the specified
Lagrangian, the autarky allocation also solves the Paretian problem of max-
imizing v (c02(A1)) subject to (A.2) and (A.4).

8

To specify the Lagrange multipliers λt(A1, ..., At) for the feasibility con-
straints (A.2), I set

λ1(A1) = v′

(
I∑
i=1

fi(A1, k
0
i )

)
(A.5)

for t = 1 and A1 ∈ A and

λt(A1, ..., At) = (1 + n) · π(At) · λt−1(A1, ..., At−1) (A.6)

for t > 1 and (A1, ..., At) ∈ At. For the Pareto constraints, I specify Lagrange
multipliers µt(A1, ..., At) such that

µt(A1, ..., At) =
1 + n

u′(ca1)
· λt(A1, ..., At) (A.7)

for all [t, (A1, ..., At)] ∈ E . Given these Lagrange multipliers,for any A1 ∈ A,
a Lagrangian function L(·|A1) is specified by setting:

L({ct−12 (·), ct1(·), kt1(·), ..., ktI(·)}∞t=1|A1) = v
(
c02(A1

)
) (A.8)

+
∑

[t,(A1,...,At)]∈E

µt(A1, ..., At)

[
u(ct1(A1, ..., At)) +

S∑
s=1

psv(ct2(A1, ..., At, as))−W a

]

+
∑

[t,(A1,...,At)]∈E

λt(A1, ..., At)[(1 + n)E +
I∑
i=1

fi(At, k
t−1
i (A1, ..., At−1)])

−
∑

[t,(A1,...,At)]∈E

λt(A1, ..., At)

{
ct−12 (A1, ..., At) + (1 + n)

[
ct1(A1, ..., At) +

I∑
i=1

kti(A1, ..., At)

]}
,

where

W a := u(ca1) +

S∑
s=1

psu(c̃a2(as)) (A.9)

8This second step is missing in Abel et al. (1989) and is not actually valid at the level
of generality of their formulation. For counterexamples, see Chattopadhyay (2008).
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is the expected utility obtained by a member of generation t > 0 at the
autarky allocation.

Lemma A.1 For any A1 ∈ A, the value of the Lagrangian (A.8) is maxi-
mized at the autarky allocation, which has c02(A1) =

∑I
i=1 fi(A1, k

0
i ) and, for

t = 1, 2, ... and A1, ..., At+1,

ct1(A1, ..., At) = ca1,

ct2(A1, ..., At+1) = ca2(At+1),

and, for i = 1, ..., I,
kti(A1, ..., At) = kai .

The value of the Lagrangian at the autarky allocation is v
(∑I

i=1 fi(A1, k
0
i )
)
.

Proof. By construction, the autarky allocation satisfies the constraints (A.4)
and (A.2) with equality. Therefore the value of the Lagrangian at the autarky

allocation is v
(∑I

i=1 fi(A1, k
0
i )
)
. By the concavity assumptions on utility

24



and return functions, for any allocation, (A.8) yields

L({ct−12 (·), ct1(·), kt1(·), ..., ktI(·)}∞t=1|A1)− v
(

I∑
i=1

fi(A1, k
0
i )

)
(A.10)

≤
(
c02(A1)−

I∑
i=1

fi(A1, k
0
i )

)
· v′
(

I∑
i=1

fi(A1, k
0
i )

)
+

∑
[t,(A1,...,At)]∈E

µt(A1, ..., At) · u′(ca1) · [ct1(A1, ..., At)− ca1]

+
∑

[t,(A1,...,At)]∈E

µt(A1, ..., At) ·
S∑
s=1

psv
′(ca2(as))[c

t
2(A1, ..., At, as)− ca2(as)]

+λ1(A1) ·
((

I∑
i=1

fi(A1, k
0
i )− c02(A1)

)
− (1 + n)

(
(c11(A1)− ca1) +

I∑
i=1

(k1i (A1)− kai )
))

+
∑

[t,(A1,...,At)]∈E\{[1,A1]}

λt(A1, ..., At) ·
I∑
i=1

f ′i(At, k
a
i )[k

t−1
i (A1, ..., At−1)− kai ]

−
∑

[t,(A1,...,At)]∈E\{[1,A1]}

λt(A1, ..., At) · [ct−12 (A1, ..., At)− ca2(At)]

−
∑

[t,(A1,...,At)]∈E\{[1,A1]}

λt(A1, ..., At) · (1 + n) · [ct1(A1, ..., At)− ca1]

−
∑

[t,(A1,...,At)]∈E\{[1,A1]}

λt(A1, ..., At) · (1 + n) ·
I∑
i=1

[kti(A1, ..., At)− kai ].

I claim that the right-hand side of (A.10) is nonpositive. To prove this claim,
I first note that the difference (c02(A1) −

∑I
i=1 fi(A1, k

0
i )) enters the right-

hand side of (A.10) with a total weight v′
(∑I

i=1 fi(A1, k
0
i )
)
− λ1(A1). By

(A.5), this is equal to zero, so the terms involving this difference vanish. The
difference (ct1(A1, ..., At)− ca1) enters with a total weight

µt(A1, ..., At) · u′(ca1)− (1 + n) · λt(A1, ..., At).
By (A.7), this is also zero, so, for any t and any (A1, ..., At), the terms
involving the difference (ct1(A1, ..., At)− ca1) also vanish. The terms involving
the difference (ct2(A1,...,At, as)− ca2(as)) have the total weight

µt(A1, ..., At) · psv′(ca2(as))− λt+1(A1, ..., At, as).
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By (A.7), (A.6), and the definition of π(as), this is also zero, so these terms
also vanish. Finally, for any i, the difference (kti(A1, ..., At) − kai ) enters the
right-hand side of (A.10) with a total weight equal to∑

At+1∈A
λt+1(A1, ..., At+1) · f ′i(At+1, kai )− (1 + n) · λt(A1, ..., At).

By (A.6), this expression is equal to ∑
At+1∈A

π(At+1)f
′
i(At+1, k

a
i )− 1

 · (1 + n) · λt(A1, ..., At).

By the definition of π(At+1) and the first-order condition for kai ,

∑
At+1∈A

π(At+1)f
′
i(At+1, k

a
i ) =

S∑
s=1

psv
′(ca2(as))f

′
i(At+1, k

a
i )

u′(ca1)
≤ 1,

and the inequality is strict only if kai = 0. If kai > 0, it follows that the
weight with which the difference (kti(A1, ..., At) − kai ) enters the right-hand
side of (A.10) is equal to zero. If kai = 0, the difference (kti(A1, ..., At) − kai )
is nonnegative, and the contribution to the right-hand side of (A.10) of the
terms that involve this difference is nonpositive.

Proposition A.2 If
∑S

s=1 π(as) <
1
1+n

, then, for any A1 ∈ A, the autarky
allocation is a solution to the problem of maximizing v (c02(A1)) subject to the
feasibility constraints (A.2) and the Pareto constraints (A.4).

Proof. Given the system of Lagrange multipliers λt(A1, ..., At), µt(A1, ..., At),
t = 1, 2, ..., (A1, ..., At) ∈ At, the formulae

λ∞({t} × {(A1, ..., At)}) := λt(A1, ..., At) (A.11)

and
µ∞({t} × {(A1, ..., At)}) := µt(A1, ..., At) (A.12)

define a pair of set functions on the singletons in E . One easily sees that these
set functions can be extended to additive measures λ∞, µ∞ on the algebra
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of all finite subsets of E . I will show that these measures are bounded if∑S
s=1 π(as) <

1
1+n
. I begin with λ∞ and note that, for any t > 1, one has

λ∞({t} × At−1) =
∑

(A1,...,At)∈At
λt(A1, ..., At)

=
∑

(A1,...,At)∈At
[(1 + n)t−1 · π(At) · ... · π(A2) · λ1(A1)]

= (1 + n)t−1 ·
∑
At∈A

π(At) · ... ·
∑
A2∈A

π(A2) ·
∑
A1∈A

λ1(A1)

=

[
(1 + n) ·

S∑
s=1

π(as)

]t−1
·
∑
A1∈A

λ1(A1).

If (1+n)·
∑S

s=1 π(As) < 1, (A.12) implies that the infinite series
∑∞

t=1 λ
∞({t}×

At) is well defined and satisfies
∞∑
t=1

λ∞({t} × At) =
1

1− (1 + n) ·
∑S

s=1 π(as)
·
∑
A1∈A

λ1(A1).

The additive measure λ∞ on the algebra of all finite subsets of E is therefore
σ-finite and has a unique extension λ∞ to the algebra of all subsets of the
countable set E .9 This yields

λ∞(E) =
1

1− (1 + n) ·
∑S

s=1 π(as)
· v′
(

I∑
i=1

fi(A1, k
0
i )

)

≤ 1

1− (1 + n) ·
∑S

s=1 π(as)
· v′
(

min
s′

I∑
i=1

fi(as′ , k
0
i )

)
. (A.13)

By the assumption that
∑I

i=1 fi(as, k
0
i ) > 0 for all s, (A.13) provides a finite

upper bound on λ∞(E).
The corresponding claim for µ∞ follows upon observing that, by construc-

tion, µ∞(·) = 1
u′(ca1)

· λ∞(·).
The product λ∞(·) ⊗ µ∞(·) is a bounded additive set function on the

algebra of all subsets of the product E × E . By a straightforward generaliza-
tion of Theorem IV.8.16 in Dunford and Schwartz (1958), it follows that the

9See Theorem A, p. 54, in Halmos (1950).
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measure λ∞(·)⊗µ∞(·) defines a bounded linear functional, an element of the
dual space to [`∞(E)]2, the space of pairs of bounded real-value functions on
the countable space E . The space [`∞(E)]2 is the space of violations of the
constraints (A.2) and (A.4). By Theorem 1, p. 220, in Luenberger (1969),
therefore, the proposition follows from Lemma A.1.

Proposition 3.1 follows immediately. Proposition 3.2 and Corollaries 3.3
and 3.5 follow by the arguments sketched in the text.

Proof of Remark 3.4. The first statement follows from the first-order
condition (2.5) in Lemma 2.1 and the observation, that for the critical s,
kai = 0 would imply ca2(s) = 0 and v′(ca2(s)) =∞.
To prove the second statement, suppose that limkj→∞ f

′
j(as, kj) = 0 for

all j 6= i and s and that kai = 0 even if E is large.
I claim that, if E is very large, then, by the first-order condition (2.5), ca1

is very large and u′(ca1) is close to zero. Otherwise, u
′(ca1) would be bounded

away from zero and, by (2.5), for every j 6= i, there would exist s such that
v′(ca2(s))f

′
j(as, k

a
j ) is also bounded away from zero. For the specified s the,n

ca2(s) is bounded and so is kj. However, if k
a
i = 0 and ca1 as well as k

a
j , j 6= i,

are bounded, then, for large E, the constraint for generation t’s first-period
choices is not exhausted, contrary to the optimality of the autarky plan.
Given that u′(ca1) is close to zero if E is large, (2.5) implies that, for all j

and all s, v′(ca2(s))f
′
j(as, k

a
j ) is close to zero if E is large. Hence there exists j

such that kaj is large if E is large. For this j, the first-order conditions (2.5)
imply

S∑
s=1

psv
′(ca2(as))f

′
j(as, k

a
j ) ≥

S∑
s=1

psv
′(ca2(as))f̂

′
i(0),

hence
max
s
f ′j(as, k

a
j ) ≥ f̂ ′i(0).

Given the assumption that limkj→∞ f
′
j(as, kj) = 0 for all j 6= i and s, it follows

that kaj is bounded even if E is large. The assumption limkj→∞ f
′
j(as, kj) = 0

for all j 6= i and s and that kai = 0 even if E is large has thus led to a
contradiction and must be false.

Proposition 4.1 follows by the same arguments as Proposition 2.3. Propo-
sition 4.2 follows by the argument given in the text.
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Proof of Proposition 4.3. Under the specified assumptions, the pair
(c1(T ), k2(T )) in the T -autarky plan is easily seen to maximize the objective

u(c1) +

S∑
s=1

ps · v((1 + n− r)T + r(E − c1) + (ρ(as)− r)k2).

The first-order conditions for this maximization are given as

u′(c1)− r
S∑
s=1

ps · v′((1 + n− r)T + r(E − c1) + (ρ(as)− r)k2) = 0

and
S∑
s=1

ps · (ρ(as)− r) · v′((1 + n− r)T + r(E − c1) + (ρ(as)− r)k2) = 0.

By the implicit function theorem, it follows that

dc1
dT

= (1 + n− r) · r · AC −B2

u′′ · C + AC −B2

and
dk2
dT

= −(1 + n− r) · u′′ ·B
u′′ · C + AC −B2

,

where

A =
S∑
s=1

ps · v′′((1 + n− r)T + r(E − c1) + (ρ(as)− r)k2),

B =
S∑
s=1

ps · (ρ(as)− r) · v′′((1 + n− r)T + r(E − c1) + (ρ(as)− r)k2),

C =

S∑
s=1

ps · (ρ(as)− r)2 · v′′((1 + n− r)T + r(E − c1) + (ρ(as)− r)k2).

By the strict concavity of u and v, A < 0, C < 0, and AC − B2 > 0. Thus,
1 + n− r > 0 implies dc1

dT
∈ (0, (1 + n− r)r).

Furthermore, by standard arguments, decreasing absolute risk aversion
in v(·) implies B > 0.10 Thus, 1 +n− r > 0 implies dk2

dT
> 0. The proposition

follows immediately.
10See, e.g., Leroy and Werner (2001), p. 119.
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The proof of Proposition 5.1 follows from the argument sketched in the
text. Proposition 5.2 follows from Proposition 2.3.

Proof of Proposition 5.3. For a participant who is to be born in period
t, following the history A1, ...At, the value of the autarky consumption vector
(ca1, c

a
2(a1), ..., c

a
2(aS)) at the equilibrium prices in Proposition 5.2 is equal to

the value qt(A1, ..., AS) · (E + Πa), where

Πa =

S∑
s=1

I∑
i=1

π(as)fi(as, k
a
i )−

I∑
i=1

kai

is the value of the maximum in (2.8), in Lemma 2.2. The aggregate of this
value over all participants who are to born in period t at all is equal to

(1 + n)t ·N0 ·
∑

(A1,...,AS)∈At
qt(A1, ..., AS) · (E + Πa).

By (5.6) and (5.5), this expression is equal to

(1 + n)N0 ·
[

(1 + n)
S∑
s=1

π(as)

]t−1
· (E + Πa).

By standard arguments, the infinite series that is obtained by adding over t

converges if (1 +n)
S∑
s=1

π(as) < 1 and diverges if (1 +n)
S∑
s=1

π(as) > 1. In the

case of convergence, ex ante Pareto effi ciency follows by the usual argument
for the First Welfare Theorem. In the case of divergence, the failure of ex
ante Pareto effi ciency follows by the argument used to prove Proposition 3.1.

The proof of Proposition 5.4 follows step by step the same line of argument
as the proof of Proposition 3.1. If one replaces the term (1 +n) in conditions
(A.2), (A.6), (A.7), and (A.8) by (1 + ν(At)), one finds that Lemma A.1
remains valid without change. The conclusion of Proposition A.2 then follows
from the assumption that

∑S
s=1 π(as)(1 + ν(as)) < 1, with a proof that is

the same except for the replacement of
∑S

s=1 π(as)(1 +n) by
∑S

s=1 π(as)(1 +
ν(as)).
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