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Diffusion of electric vehicles and their flexibility potential for smoothing

residual demand - A spatio-temporal analysis for Germany

Fabian Arnolda,∗, Arne Lilienkampa, Nils Namockela

aInstitute of Energy Economics at the University of Cologne, Vogelsanger Strasse 321a, 50827 Cologne, Germany.

Abstract

The transformation of the energy system causes increasing stress on distribution grid components.

However, ŕexible EV charging, if incentivized adequately, can help mitigate this impact by reducing

peaks in loads and feed-in. A comprehensive regional analysis is necessary to understand the

potential of EV charging ŕexibility for reducing peaks on regional and national levels. To this

end, we estimate regional residual demand time series for Germany for the years 2019, 2030 and

2045. We focus on modelling private EV diffusion via sigmoid functions and deriving driving and

charging proőles based on micro mobility data. Further, we distinguish two deployment schemes

for EV ŕexibility: (1) all EVs contribute to ŕattening the national residual load curve; (2) local

EVs contribute to ŕattening regional residual load curves. We őnd that the residual load curves

change structurally as positive and negative peaks in residual demand increase over the years on

the regional and national levels. Although the absolute ŕexibility potential of EV home charging

increases with the number of vehicles, its marginal utility to reduce load peaks declines.

Especially in load-dominated regions, the national deployment of ŕexibility can result in higher

regional demand peaks compared to a scenario without charging ŕexibility. The two approaches

of ŕexibility activation can be contradictory in their effects: While regional incentivization is less

efficient in reaching the smoothing in the national residual demand curve, national incentivization

can even lead to increased strain on the local level.
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1. Introduction

The energy transition towards a decarbonized future brings about fundamental changes in the es-

tablished power system, including increasing strain on distribution grid components. First, the

widespread implementation of decentralized renewable energy systems, such as wind and photo-

voltaic (PV) systems, which are mostly connected to the low and medium-voltage grid, increases

the feed-in of electricity into the distribution grid. Second, new demand applications emerge in

the distribution grid, e.g., charging electric vehicles (EV), increasing the load. Both developments

increase load and feed-in peaks on the national level as well as place an additional burden on the

technical components of local grids, such as low and medium-voltage transformers, which were de-

signed under different conditions and may need to be replaced or expanded to accommodate the

changes. The charging of EVs can increase peak load and put a strain on existing distribution

grid equipment. However, the ŕexibility in EV charging offers a solution to mitigate this impact.

By charging during periods of high renewable energy generation, load and feed-in peaks can be

reduced, thus reducing the strain on the grid.

The availability and necessity of EV charging ŕexibility depend on various regionally distinct factors,

such as the share of the EV load in the total load, the level and structure of the residual load1, the

correlation between ŕexibility potential and regional load or generation peaks, and the distribution

of charging to the different locations (at home, at work, or other places). Thus, to fully comprehend

the potential of EV charging ŕexibility in reducing peaks, a comprehensive regional analysis and

quantiőcation of the ŕexibility potential and its effects are crucial.

Two basic deployment strategies for deploying local EV charging ŕexibility can be distinguished. On

the one hand, ŕexibility can be used to ŕatten the national residual load by reducing positive and

negative peaks. That is, EV charging ŕexibility is used to reduce load during peak load situations

and to absorb excess renewable generation during times of high generation. Such a deployment

strategy aims to reduce system costs by not employing (or even investing in) expensive generation

technologies and fully utilizing generated renewable electricity. An incentive scheme for such a

deployment strategy would be the incentivization of ŕexibility deployment based on the uniform

1The residual load is the difference between total load and generation by intermittent resources.
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pricing signals of the national electricity market. Alternatively, ŕexibility can be dispatched to

smooth the regional residual demand. Such a deployment strategy aims to reduce the load on

regional distribution grid components. This approach would reduce costs for the expansion of these

grids.2 Incentive schemes for such a deployment strategy would be, for example, quantity or price

signals from distribution system operators according to the expected grid status. The goals of the

deployment strategies may be partially opposed, and the question arises of how the two strategies

affect the respective objectives.

In this research paper, we therefore őrst examine the regional evolution of residual load, load and

feed-in peaks in Germany until 2045. Our analysis focuses on the spatial and temporal diffusion

of EV charging, considering regional sigmoid transition pathways of EV adoption and regional and

user-speciőc driving and load proőles. Our analysis is based on NUTS 3 regional resolution level

data.3 We then develop and implement a spatio-temporal optimization model for EV load ŕexibility

based on the analysis. This model aims to quantify the potential of EV load ŕexibility of home

charging in smoothing residual load time series and reducing load and feed-in peaks. We compare

two different deployment scenarios: (1) using ŕexibility to ŕatten the national residual load time

series, which corresponds to the use of ŕexibility based on price signals from the national electricity

market, and (2) using ŕexibility on regional residual load and, thus, reduce the strain on regional

distribution grid components.

EV charging is considered a major source of demand ŕexibility, as shifting charging operations can

reduce peak loads and thus reduce the need for grid expansion. While some sources also note this at

the transmission grid level (Gunkel et al., 2020; Amann et al., 2022), the impact of smart charging is

predominantly analyzed at the level of the local distribution grid (e.g. Flataker et al., 2022). Powell

et al. (2022) demonstrate that the ŕexibility of EV charging possesses not just a signiőcant temporal

component but also a geographical one, reŕecting the propensity of EVs to move between locations

2Agora Verkehrswende et al. (2019) quantifies the investment costs in the low and medium voltage grid under the
assumption of uncontrolled charging of EVs depending on the charging capacity and the number of electric cars with
23 to 72 billion € between 2020-2030.

3The Nomenclature of Territorial Units for Statistics (NUTS) is a hierarchical system for dividing European
territory into territorial units. While, for example, NUTS 0 stands for states, NUTS 3 corresponds to smaller units
within states, such as districts.
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over the course of a day. They underscored the necessity for a comprehensive area-wide charging

infrastructure to facilitate daytime charging, which could utilize surplus PV generation and avert

the late afternoon peak load, as exempliőed by workplace charging. Such conditions have direct

implications for power system requirements in terms of storage and ramping needs or emissions.

Given the residual load-smoothing potential of ŕexible end-uses, such as electric vehicle charging,

there seems to be a general recognition in the European Union that local ŕexibility mechanisms are

of signiőcant interest for the operation of future distribution networks (CEER, Council of European

Energy Regulators, 2020). Regulators have begun to put in place the regulatory framework to

incentivize the provision of ŕexibility and its call-off by distribution system operators, which they

are required to do by Article 32 of Directive (2019/944) as part of the clean energy package (Council

of European Union and European Parliament, 2019).

However, while there is an elaborated stream of research analyzing the provision of regional ŕex-

ibility from a market design perspective (Radecke et al., 2019; Rebenaque et al., 2023), to our

knowledge, there is no research addressing the concrete added value of local ŕexibility use in con-

trast to centralized electricity markets, neither for demand-side ŕexibility in general nor for EV

charging in particular. We attempt to őll this gap with a focus on the German power system at

the national and regional levels.

From a system perspective, there are several studies that shed light on the transformation of the

German energy and consumption sector until 2045 and beyond (e.g. Prognos et al., 2020; Burchardt

et al., 2021; dena, 2021; Consentec et al., 2021; Kopernikus-Projekt Ariadne, 2021). The studies

develop individual scenarios for possible pathways to reduce greenhouse gas emissions and to diffuse

and use technologies, such as wind turbines, PV systems, or EVs, on the demand and supply side.

While the speciőc numbers on installed capacity and electric vehicles differ, the emerging trends,

a signiőcant increase compared to today, are the same (dena, 2022). However, the studies only

marginally touch on the regional perspective of the transition and the regional balance of supply

and demand.

The regional matching of supply and demand for the German energy system is addressed by Kockel

et al. (2022) and Kühnbach et al. (2021). Kockel et al. (2022) analyze the development of regional
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residual loads in Germany on a spatio-temporal basis, related to an emission reduction of 95%

by 2050 based on dena (2018). They note signiőcant potential for demand-side ŕexibility, but

do not speciőcally model or quantify it. Because the study only considers 2019, with very low

EV penetration, and 2050, with penetration near 100%, the EV load is determined by a uniform

distribution of regional demand based on regional vehicle counts. However, this approach is not

appropriate for modeling EV penetration for the years in between, as it neglects regionally varying

penetration rates. For EV charging, the same proőles are used for each region, abstracting from

regional characteristics such as longer driving distances in rural areas compared to urban areas.

Kühnbach et al. (2021) focuses primarily on regionalized demand and the potential of demand

response. In addition to analyzing regional supply and demand balancing, they examine the residual

load-smoothing potential of ŕexible demand on a regional basis. They compare 2015 and 2030 and

deőne indicators to measure supply-demand balance. They conclude that demand management is

most effective in regions that frequently alternate between demand and supply deőcits. However,

the study lacks a comparison of regional results with a centralized energy system, and as in Kockel

et al. (2022), the chosen scenario does not őt with Germany’s recent climate protection goals of

climate neutrality by 2045 (Deutscher Bundestag, 2021).

To be compatible with current German climate targets, we develop a scenario based on KN100 from

dena (2021). In contrast to existing literature, our analysis focuses on the consistent regional and

temporal modeling of EV charging demand and ŕexibility potentials. To this end, we model EV

diffusion for 2019, 2030, and 2045 by utilizing the Bass model (Bass, 1969) that has been applied

to EV diffusion in various countries in the literature (Becker et al., 2009; Won et al., 2009; Song,

2013; Zhu et al., 2017). We derive the load and ŕexibility proőles of EVs from the mobility patterns

of the German Mobility Panel (MOP) (KIT - Institut für Verkehrswesen, 2021).

We address two key questions: To what extent can electric vehicle home charging ŕexibility reduce

load and feed-in peaks at the national and regional levels? What are the impacts of the two different

deployment strategies on national and regional residual demand curves, as well as load and feed-in
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peaks? Besides answering these questions, this paper adds to the existing literature in multiple

ways:

• Analysis of the spatio-temporal evolution of residual demand under a current scenario for

Germany’s energy transition pathway until 2045 with a focus on EV diffusion and load.

• Introduction and application of a method for modeling target-consistent regional and temporal

diffusion of electric vehicles using sigmoid functions.

• Derivation of user- and region-speciőc driving, load and ŕexibility proőles for electric vehicles

in Germany until 2045.

• Development and implementation of a model for spatio-temporal deployment of electric vehicle

load ŕexibility under different objectives.

Concerning the development of future residual load, we őnd that positive and negative peaks in

residual load increase over the years on the regional level and aggregated over Germany. The

correlation between residual load and EV charging proőles is high in 2019 but decreases until 2045.

This implies that the marginal utility of charging ŕexibility to reduce load peaks decreases over

time, although the ŕexibility potential in absolute terms is increasing with growing EV adoption.

We őnd that, especially in load- and PV-dominated regions, the nationally incentivized activation

of ŕexibility can result in drastically higher regional demand peaks compared to a scenario with-

out the use of charging ŕexibility. Our study shows that the two scenarios of ŕexibility activation

can be contradictory in their effects: While the regional incentivization is less efficient in reducing

peaks on the national level, the national incentivization leads to increased strain on local level. Our

őndings provide valuable insights into the challenges faced by regional grids and the development

of strategies to harness EV ŕexibility to address these challenges.

The paper is structured as follows: In a őrst step (Section 2), regionalized diffusion curves for EV

expansion from 2019 to 2045 and regionalized charging proőles for different user types are devel-

oped. Then a scenario of electricity demand development and renewable capacity expansion until
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2045 is regionalized, and corresponding demand and renewable generation time series are presented

(Section 3). In Section 4, a model for the regionalized optimization of EV charging ŕexibility is

developed. The results (Section 5) address the estimation of residual demand time series for the

years 2019, 2030, and 2045 on a regional and national level as well as the potential and effects

of EV charging ŕexibility under two different deployment strategies. The paper concludes with a

summary of the őndings and their implications for the transformation of the power system and

usage of EV charging ŕexibility.

2. Spatio-temporal expansion of private electric vehicles

This chapter focuses on the projection of regional expansion paths of electric vehicles and the de-

velopment of a method to derive individual load and ŕexibility proőles for each region. Section 2.1

describes the applied method to derive regionalized transition pathways for electric vehicles. Each

region reŕects a NUTS 3 district of Germany. In Section 2.2, we develop load proőles for each

region, distinguishing between different user types based on their charging locations and times.

2.1. Regional diffusion of electric vehicles

In recent years, several studies (e.g. Prognos et al., 2020; Burchardt et al., 2021; dena, 2021; Consen-

tec et al., 2021; Kopernikus-Projekt Ariadne, 2021) presented development pathways for the future

energy system and the transition to e-mobility in Germany. The "dena study - towards climate

neutrality" projects 14 mil. electric vehicles in 2030 and 36 mil. in 2045 in its climate neutrality

scenario "KN100" (dena, 2021). Also, in the summer of 2022, the German Federal Ministry for

Economic Affairs and Climate Action announced that 15 mil. electric vehicles should be achieved

by 2030 (German Government, 2022). Despite these national projections and targets, there is a

lack of scenarios at the regional level. Regions in Germany are very heterogeneous, and it can

be assumed that the penetration speeds with electric cars differ among them. Therefore, we aim

at decomposing the national transition scenarios to the local level based on a NUTS 3 resolution,

which is, for Germany, equivalent to individual districts.
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Forecasting methods for the regional diffusion of technologies can be primarily categorized into

agent-based, consumer choice, and diffusion rate and time-series methods (Ayyadi and Maarouő,

2018). While methods of the őrst kind are simulation-based, simulating the interactions of agents

and how these affect the market, consumer choice models depend on assumptions of consumer

decisions about new technology according to certain characteristics (Kumar et al., 2022). Methods

of the third kind rely on time series and diffusion rates to study technology diffusion. Existing

research utilizing the latter methods primarily focuses on four models: Gompertz (Gompertz, 1825;

Muraleedharakurup et al., 2010), Logistic (Kumar et al., 2022; Berger, 1981), Bass, and Generalised

Bass (Bass, 1969) diffusion models. The Bass diffusion model őts our problem well because it can

account for different speeds in the early and late stages of the diffusion, which is not the case for

other models (Bass, 1969; Pavlidou, 2010). It has also been widely applied in the analysis of EV

diffusion in other countries and for earlier years (Becker et al., 2009; Won et al., 2009; Song, 2013;

Zhu et al., 2017). The Bass diffusion model and its transformation are written in equations (1) and

(2) as a sigmoid function (Bass, 1969).

f(t)

1− F (t)
= p+ q

A(t)

m
= p+ qF (t) (1)

F (t) =
A(t)

m
=

∫ T

0
f(t)dt withF (0) = 0 (2)

The function f(t) describes the likelihood of a purchase at time t with p being the probability

of initial purchases at the start of the innovation (t = 0). p is referred to as the coefficient for

innovators, while q is the coefficient for imitators. The two coefficients deőne the slope of the

sigmoid function at the beginning and at the end. The cumulative diffusion level at time t F (t)

equals the cumulative number of adopters A(t), which in our case reŕects the number of EV owners

divided by the total market size m, the total number of cars.

The diffusion level F (t) in our approach is described as shown in equation (3).4 The parameter

t0 is included in the function to take the beginning of the diffusion into account and to move the

diffusion curve in time. Further, we introduce a scaling factor s. With the scaling factor, we ensure

4The transformation steps are depicted in Appendix A.
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that the diffusion curve meets the maximum penetration rate in 2045. While improving the őt of

the sigmoid function to the data points between 2019 and 2045, the scaling factor increases the

maximum relative market potential in 2050 above 100%. Since our analysis focuses on the years

until 2045, this is not an issue.

F (t) = s ∗
1− e−(p+q)(t−t0)

1 + q
p
e−(p+q)(t−t0)

(3)

Fitting the curve

We derive our regional scenarios of electric vehicle diffusion by regional decomposition of the national

scenario "KN100" of dena (2021), adjusted by the target of 15 million electric vehicles until 2030

deőned by the German government (German Government, 2022). The development of regional

scenarios using the Bass model is done in a two-step process, visualized in Figure 1.

Figure 1: Development of regional Diffusion Curves

In the őrst step, the Bass function is őtted to the national scenario using the non-linear least

squares (NLLS) method according to Newville et al. (2016). The left part of Figure 1 shows the

rate of electric vehicles over time. The blue dots represent the penetration rate in the different

years based on historic developments (until 2020) and the national scenario. The penetration rate

of 42% in 2030 matches the number of 15 mil. electric vehicles, and a penetration rate of 100%

corresponds to 36 mil. electric vehicles. The parameter s, the maximum relative market potential

of electric vehicles, is also computed by the őtting method. The computed values for the estimates

are: ŝ = 1.096, p̂ = 0.203 and q̂ = 0.010.
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While the derived national diffusion curve is őtted to the historic national electric vehicle penetra-

tion, historic developments in the speciőc German regions can drastically differ. In the start year

t0=2020 (the last year regional data is available), every region has its individual position on the

curve. Some regions are above the national average and some are below. Therefore, in a second

step, we individually shift the national diffusion curve along the time axis for each NUTS 3 region

to achieve the speciőc penetration level, as it is visualized in the right part of Figure 1. To cal-

culate the regional EV diffusion levels in 2020 we use historical data of the EV ŕeet from 2017 to

2020 on postcode level, provided by the Kraftfahrt-Bundesamt (KBA) in two data sets (Kraftfahrt-

Bundesamt, 2018b, 2019b, 2020b, 2021b; and Kraftfahrt-Bundesamt, 2018a, 2019a, 2020a, 2021a).

The EV diffusion levels reached in 2020 for each NUTS 3 region Fnuts3(t = 2020) are calculated

by dividing a region’s total EV ŕeet EV nuts3
2020 by the ratio of the total region ŕeet Carsnuts32020 to the

total national ŕeet CarsDE
2020 times the total German market size for EVs EV DE .

Fnuts3(t = t0) =
EV nuts3(t = t0)

EV nuts3(t = 2045)
(4)

with EV nuts3(t = t0) =
Carsnuts3(t = t0)

CarsDE(t = t0)
∗ EV DE(t = 2045) (5)

To create diffusion curves for each NUTS 3 region, the derived national diffusion curve is moved

along the time axis according to the time difference ∆t between 2020 and the time t when the EV

diffusion level for 2020 of the respective NUTS 3 region is reached on the national diffusion curves.

Equation (6) describes the approach. Here, the parameters m̂, p̂ and q̂ reŕect the estimates of the

national diffusion curve. The derivation of the formula, including ∆t, can be found in Appendix B.

Fnuts3(t) = m̂ ∗
1− e−(p̂+q̂)(t−t0+∆t)

1 + q̂
p̂
e−(p̂+q̂)(t−t0+∆t)

(6)

To get the total number of electric vehicles in each NUTS 3 region, the diffusion rates are multiplied

by the total estimated market size of EVs for each NUTS 3 region. The latter is derived by

multiplying the maximum estimated scenario value for EVs (EV DE
Y ) with the ratio of the total

vehicle ŕeet of each NUTS 3 region in 2020 to the total national ŕeet according to equation (7). To

ensure that the national target of EVs in a speciőc year is equal to the sum of all regional numbers
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of EVs, a correction factor σy is used for scaling. The scaling factor adjusts the diffusion curves in

a single point.

EV nuts3
y = F (t)nuts3 ∗

Carsnuts3y

CarsDE
y

∗ EV DE
Y ∗ σy (7)

The result of the modeled diffusion of EVs is presented in Figure 2 for the years 2030 and 2045. In

terms of consistency with the following sections, the historic distribution is visualized for the year

2019 instead of 2020. In the őgure, the total number of EVs in every NUTS 3 region is normalized

by the size of each region.

Figure 2: Number of electric vehicles in each NUTS 3 region for the years 2030 and 2045

In 2019, around 239 thous. electric vehicles do not lead to high penetration rates per square

kilometer. In 2030 mainly bigger cities such as Hamburg, Berlin and Munich, as well as some areas

in North-Rhine Westphalia, such as Dusseldorf, do have a signiőcant amount of electric vehicles

per square kilometer. Later in 2045, the western part of Germany and the Rhine-Main region are

highlighted in red. Also, smaller regions, in terms of area but with a high population per square

kilometer, have a high relative amount of electric vehicles.
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2.2. User-specific load and flexibility profiles

The electricity demand of electric passenger vehicles is determined by their underlying driving pat-

terns. For Germany, there are two major panels surveying the mobility behavior of households,

Mobility in Germany (MiD) (infas et al., 2018) and the German Mobility Panel (MOP) (KIT -

Institut für Verkehrswesen, 2021). While the MiD is updated every six years, the MOP has been

updated annually since 1994. It is a survey-based longitudinal study of the mobility behavior of

the German population. Besides household-speciőc information, it holds data on the households’

individual trips, including timestamps, destinations, distances, and modes of travel. The panel

categorizes about 14 thousand surveyed households according to ten settlement types, from small

villages to metropolises. The dataset and information on the regional settlement structure enable

the assignment of households and their respective mobility patterns to different regions. As a

common assumption, we assume that the mobility behavior of EVs does not substantially differ

from those of conventional passenger cars, and we assume the mobility patterns of vehicles remain

constant until 2045. The detailed analysis of 500 thousand individual trips and car-based mobility

patterns allows for deriving electric vehicles’ energy demand and load proőles and the resulting

inherent ŕexibility of their charging processes by user type, region, charging scenario, and day type

for the years 2019, 2030, and 2045.5

Computation of regional differentiated load profiles

By projecting the historical mobility data on the years 2019, 2030, and 2045, average load proőles

per vehicle are calculated, which are later scaled by the individual region’s total counts of EVs.

The load proőles are calculated for different settlement types, charging scenarios, and day types

(weekend and weekday) for each year considered. A total of six settlement types are distinguished,

ranging from rural communities to large cities. The charging scenarios represent combinations

of three potential charging locations (at home, at work, at other locations). The combinatorial

approach results in seven scenarios, e.g., charging at home and at work, but not at other locations.

In this way, a total of 252 proőles are distinguished.

5A brief descriptive analysis of the mobility data is given in Appendix C.
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Starting from single trips, consecutive trips within a day are stacked into trip chains to derive the

mobility patterns of individual cars in the form of binary time series indicating the standing and

driving intervals of the vehicles, including their location. For the trips, the electricity demand is

determined based on the distance traveled and the assumed EV ŕeet’s average speciőc consumption

of 0.21kWh/km in 2019, 0.18kWh/km in 2030, and 0.15kWh/km in 2045 (dena, 2021). Assuming

a charging power of 11kW and an immediate start of charging upon arrival at a charging location,

the energy demand is translated into proőles. Vehicles charge until the battery is full or a new trip

begins. The average load proőles per vehicle are generated by aggregating all proőles and dividing

them by the number of vehicles in the respective settlement type, charging scenario, and day type.

As an example, the resulting proőles for medium-sized cities for the charging scenarios "charging at

home" and "charging at home and work" for the year 2030 are shown in Figure 3. When vehicles

can only be charged at home, a load peak is observed in the afternoon, while the load is more evenly

distributed throughout the day when charging at home and work is possible.

Figure 3: Selected load proőles for a medium-sized city in 2045

The őnal hourly load time series are composed of the standardized proőles and scaled by the re-

spective vehicle counts determined in Section 2.1 for each NUTS 3 region. To this end, the regional

settlement types are given by BBSR (2022). The proportions of the seven charging scenarios are

derived from data on vehicle parking situations at home, distinguished by settlement type based on
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dena and Prognos (2020)6. The scaled load proőles are then used in combination with the results

from Section 3 to calculate the regional residual load curves in Section 5.

Computation of regional differentiated flexibility profiles

To model the home charging ŕexibility, we derive the ŕexibility potentials of the charging processes

from the mobility patterns and the generated load proőles. The time series of ŕexibility potential

become an input for the ŕexibility model (Section 4), which optimizes the load shifts for charging

processes relative to the determined load proőles. Generally, we distinguish between positive and

negative charging ŕexibility while focusing on uni-directional home charging only. Positive ŕexibility

can reduce the load of charging compared to the load proőle generated in the previous section. Thus,

the positive ŕexibility potential in each hour is equivalent to the determined load proőle. Negative

ŕexibility, in turn, means load can potentially be increased in certain intervals. Therefore, the

negative ŕexibility potential is limited upwards by the maximum available capacity. It is calculated

as the difference between the generated load proőle and the maximum available capacity in each

hour if the vehicle is home. For computational reasons, the ŕexibility model does not model EVs

individually, although this would ensure consistency in terms of EV ŕexibility provision: Car A

reduces the load in hour X and increases the load in hour Y. Aggregating all ŕexibility proőles

and centrally optimizing the deployment without restrictions would again lead to inconsistencies

and, thus, overestimate the potential for smoothing the residual load: Car A reduces the load in

hour X and car B increases the load in hour Y. To address this, we suggest a trade-off between

an aggregated centralized, top-down approach and a fully decentralized bottom-up approach using

clusters. The mobility patterns are divided into multiple clusters by clustering binary mobility

patterns (at home, not at home) using k-medoids to ensure consistency within smaller segments of

the observed trip chains. We then consider only the part of each trip chain’s ŕexibility proőle that

is determined by each cluster centroid’s mobility pattern, as conceptually shown in Figure 4.

6The shares of the different charging scenarios are depicted in Appendix D. We assume equal proportions within
the two subgroups of charging scenarios that involve either at least partial home charging or no home charging.
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Figure 4: Concept for generating ŕexibility clusters

In our analysis, we őnd eight clusters as a suitable segmentation for the observed mobility patterns

for weekdays and weekends. Figure 5 shows the resulting eight clusters.

Figure 5: Flexibility clusters for weekdays

The resulting ŕexibility proőles for a medium-sized city and the year 2030 are shown in Figure 6.

Since we only consider ŕexible charging at home, the positive ŕexibility is higher when vehicles can

only charge at home. In general, the negative ŕexibility potential is much higher than the positive
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ŕexibility potential, as charging is generally only carried out over short periods in relation to the

idle times of the vehicles.

Figure 6: Selected ŕexibility proőles for a medium-sized city in 2045

The őnal ŕexibility time series for each NUTS 3 region are composed the same way as the load

proőles. We assume that all households charging at home are willing to provide ŕexibility.

3. Regionalization of demand and supply

In order to examine the potential of using EV home charging ŕexibility for smoothing national

and regional residual demand, we derive regional time series for electricity demand from the other

consumption sectors in Section 3.1 and electricity generation from renewable energy sources in

Section 3.2. Both sections focus on the spatial distribution to NUTS 3 regions őrst and then derive

corresponding proőles.
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3.1. Electricity demand

Spatial distribution of annual demand

Consistent with the EV market development, we adopt the electricity demand development of the

remaining consumption sectors until 2045 from the "KN100" scenario from dena (2021). Table 1

shows the assumed annual evolution of demand by consumption sector and application.

Table 1: Annual electricity demand by sector and application in TWh

Sector Application 2019 2030 2045

Households SLP1residential 121 119 116
Heat residential 6 20 29
Light trucks 0 0 2

Small-scale Industries, SLP commercial 133 129 118
Trade and Services Heat commercial 9 21 28

Base load 4 5 6
Heavy trucks 0 1 2
Light trucks 0 2 11

Industry Heat commercial 4 9 12
SLP commercial 17 16 19
Base load 206 241 285
Heavy trucks 0 5 10
Light trucks 0 1 3

Rail transport 12 20 24
Conversion sector 8 8 8
Passenger cars2 1 34 58

Total 522 625 732

1 standard load proőle 2 The allocation of the demand from EVs is discussed in Section 2.
Values deviate from dena (2021) due to updated government targets (15 mil. EVs in 2030).

The spatial allocation of the demand is done in two steps. In the őrst step, distribution keys,

matching the sector-speciőc demand to the federal states, are derived based on data from Länder-

arbeitskreis Energiebilanzen (2022).7 In the second step, sector-speciőc demand distribution keys

to the regions within the federal states are derived. These are based on regional characteristics,

such as residents, employees in the tertiary industry, income, and gross value added, taken from

VWG (2022a) and VWG (2022b). Table 2 shows the weighting factors of these characteristics

7A detailed discussion of the approach and the derived distribution keys are presented in Appendix E.
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to allocate the demand of the individual sectors from the federal states to regions. The weighting

factors are chosen similarly to BNetzA (2020).

Table 2: Annual electricity demand by sector and application in TWh

Sector Allocated by Weighting factor

Households, rail transport Residents 90%
Income 10%

Small-scale Industries, Employed in sector 20%
Trade and Services Gross value added in sector 80%
Industry, conversion Gross value added in sector 100%

Temporal distribution of regional demand

To derive the temporal distribution of demand, time series are determined for the individual ap-

plications, which are used to distribute the spatially distributed annual demand over the year.

Four categories can be distinguished when creating our regional demand time series: Standard load

proőles, time series for mobility applications, time series for heat generation, and applications for

which we assume a constant power consumption. The standard load proőles (SLP) for household

consumption ("H0") and commercial consumption ("G0") are taken from VDEW (1999). The daily

proőles are available separately by day of the week (Monday-Friday, Saturday, Sunday/holidays)

and by season (Summer, Winter, Transition) and are matched to the calendar year 2015. The

proőles for light and heavy electric trucks are taken from ENTSO-E (2022b). The daily proőles

are available, separated by Monday-Friday and Saturday-Sunday, and are matched based on this

distinction to the calendar year 2015. Due to the temperature dependency of the heat generation

proőles, they are calculated for each region separately. To calculate the proőles for households, we

use the standardized proőles for heat pump electricity consumption as a function of time of day

and outdoor temperature from SWM (2022) as well as regional temperature data for 2015 from

Copernicus Climate Change Service (2020). For electricity demand from commercial consumers

for heat generation, we use the proőle data from Ruhnau and Muessel (2022) and match it with

temperature data for 2015. Last, we assume uniform consumption over the year for the base load,

rail transport and conversion applications. Figure F.2 in Appendix F illustrates the different proőles.
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3.2. Electricity generation

Spatial distribution of annual renewable electricity capacities

As a starting point, existing capacities in 2022 of onshore wind, rooftop PV, large-scale PV and

hydropower are spatially distributed according to the Marktstammdatenregister (BNetzA, 2022).

Offshore wind capacities are located in a separate offshore region and are not spatially distributed.

For the future development of each technology, the methods described in the network development

plan 2023 (German TSOs, 2022) are reproduced using regional capacity potentials from Ebner et al.

(2019). For 2045, the announced capacity targets within the so-called "Easter package" (Bundesrat,

2022) were assumed: 160 GW onshore wind, 200 GW large-scale and rooftop PV each.

For onshore wind, the distribution to regions is done according to the relative capacity potentials

in the federal states compared to the total potential of Germany. As soon as the 2% target for each

federal state is reached, the relative distribution factor in this federal state is devalued by 50%. The

2% area target thus represents a threshold value above which less area may be available for wind

energy use in a federal state, thus slowing down the expansion. The remaining net expansion is then

further distributed to the federal states in an iterative procedure based on the relative distribution

of the respective potential. Based on the capacity assigned to each state, the capacity is further

distributed to the NUTS 3 regions according to the relative potentials.

For the regional expansion of large-scale PV capacities until 2045, the regional potential areas for

each federal state and the NUTS 3 regions are used as well. The target capacities for each federal

state according to German TSOs (2022) are distributed by the weighted regional potentials. This

is done by using a modiőcation of the potentials. The potential area in the federal state with

the highest average yield (Baden-Württemberg) is valued twice as high as the potential area in

the federal state with the lowest average yield (Lower Saxony). For rooftop PV installations, the

approach is postcode-speciőc. A constrained growth function is derived for each postcode using the

change in existing installations to date and the maximum potential. This function is linear until

50% of potential is reached, and then approaches the potential limit asymptotically. This approach

follows the observation that past additions have been largely linear. However, after a certain point,

it decreases due to adding less suitable areas and slowly approaching the potential limit.

19



For hydropower, only existing capacities are regional distributed. No additional expansion is as-

sumed.

Temporal distribution of regional renewable electricity generation

Generation proőles for the spatially distributed renewable capacities are based on the COSMO-

REA6 weather data of the year 2015 provided by HErZ, Hans-Ertel Centre for Weather Research

(University of Bonn - Germany) and DWD, Deutscher Wetterdienst (2022). The data set contains

information regarding wind speed, temperature and solar irradiation. With these data, in-feed

proőles for rooftop and large-scale PV are computed by replicating the method described in Huld

et al. (2010). For onshore and offshore wind, power curves for standard wind turbines are utilized

in combination with wind speed data. Feed-in time series for hydropower equal the historic time

series from ENTSO-E (2022a).

4. Modelling electric vehicle charging flexibility

By aggregating the results of the previous sections, regionalized residual load time-series are com-

puted. On the national level, positive peaks imply the utilization and steep ramping of (and the

necessity of investment in) expensive dispatchable generation units. In contrast, negative peaks

imply an excess of renewable energy generation. On the regional level, both positive and negative

peaks put strain on distribution grid components such as transformers. Consequently, residual

load curves should be smooth and close to zero. Electric vehicle charging represents one source of

ŕexibility potential. We develop an optimization model for the deployment of regional ŕexibility

of electric vehicles. In the model, we distinguish between two deployment strategies. Under the

őrst strategy, the regional ŕexibility potential is used to ŕatten the corresponding regional residual

load curves by reducing positive and negative peaks. This is our basic model, described in Section

4.1. Under the second strategy, the model is adjusted according to Section 4.2. Here, the ŕexibility

potential of home charging processes is aggregated to ŕatten the national residual load curve instead.
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4.1. Flexibility on regional level

The smoothing of the residual load has two objectives. First, to minimize the absolute distance to

zero in every time step, and second, to minimize peaks. The objective functions in Equation (8)

combines these by minimizing the square absolute value of the residual load. On a regional level, this

optimization logic represents the minimization of grid expansion costs, which becomes necessary,

especially when large positive or negative peaks occur. On the national level, the generation costs

are to be minimized, which become disproportionately more expensive during positive peaks, which

serves as a justiőcation for the quadratic optimization approach. The objective function contains

the adjusted residual load RL as a variable, which has two dimensions. One temporal t ∈ T and

spatial n ∈ N . The set T contains the 8760 hours of a year, and the set N contains all NUTS 3

regions of Germany.

min z =
T∑
t

N∑
n

|RLt,n|
2 (8)

The adjusted residual load curve RLt,n equals the residual load curve before load shift rlt,n plus

the usage of load shift (LS), as it is shown in Equations (9) and (10).

RLt,n = rlt,n +

T∑
t1

User∑
u

(LSt1,t,n,u ∗ tsmax
t1,t,u

) ∀t ∈ T ∧ n ∈ N (9)

with LSt,t1,n,u = LSneg
t,t1,n,u

− LSpos
t,t1,n,u

(10)

The variable LS has two time-dimensions and is deőned for every region n and every user type

u ∈ User. Furthermore, the variable can be decomposed into a positive part LSpos and a negative

part LSneg. Negative ŕexibility here means that the load increases so that the residual load moves

upwards. Positive ŕexibility reŕects load reduction. For every user type s, the binary parameter

tsmax
t1,t,u

deőnes whether load shifting is possible from time step t1 to time step t.
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With the following two Equations (11) and (12), it is ensured that the maximum LS potential is

not exceeded in every time step t, in every region n and for every user type u. Two equations are

necessary to distinguish between a positive and a negative ŕexibility potential (see Section 2.2).

T∑
t

(LSpos
t,t1,n,u

∗ tsmax
t1,t,u

) ≤ Pmax,pos
t1,n,u

∀t1 ∈ T ∧ n ∈ N ∧ u ∈ User (11)

T∑
t

(LSneg
t,t1,n,u

∗ tsmax
t1,t,u

) ≤ Pmax,neg
t1,n,u

∀t1 ∈ T ∧ n ∈ N ∧ u ∈ User (12)

The last Equation (13) ensures that shifted energy is balanced for every user type and region within

a őxed period of 24 hours. For every from-to relationship (amount of energy shifted from t to t1),

the sum has to equal zero.

T∑
t1

(LSt,t1,n,u ∗ tsmax
t1,t,u

) = 0 ∀t ∈ T ∧ n ∈ N ∧ u ∈ User (13)

After the optimization of the use of ŕexibility, new residual loads are computed.

4.2. Flexibility on national level

To use the ŕexibility potential of home charging processes to ŕatten the national residual load

curve, two equations of the basic model are adjusted. First, the residual load curve in the objective

function (8) has no regional dimension anymore (Equation 14).

min z =

T∑
t

|RLt|
2 (14)

Second, ŕexibility from all NUTS 3 regions and all user types is aggregated to smooth the national

residual load curve. Instead of Equation (9), we formulate the following equation to compute the

new national residual load curve.

RLt = rlt +

T∑
t1

User∑
u

N∑
n

(LSt1,t,n,u ∗ tsmax
t1,t,u

) ∀t ∈ T (15)

All other model equations stay the same as described in the previous section.
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5. Analysis and results

Based on the methodologies and data presented in previous sections, we conduct a thorough analysis

of the characteristics of regional and national residual load curves, and evaluate the impact of two

deployment strategies for home charging ŕexibility. This section is divided into two parts. The

őrst part, Section 5.1, focuses on analyzing residual load curves, aiming to answer two primary

questions. How do regional residual loads develop over time? And what is the relationship between

the load proőles of electric vehicles and regional residual load curves?

In Section 5.2, we analyze two deployment strategies for the ŕexibility provided by electric vehicles.

We differentiate between national-oriented and regional-oriented activation of ŕexibility and use the

presented optimization approach to answer the following question: What is the effect of different

strategies for activating the ŕexibility offered by electric vehicles on regional and national residual

load curves?

5.1. Residual load analysis

We categorize regions into three distinct clusters: Photovoltaic (PV)-dominated, wind-dominated,

and load-dominated regions. The clustering is based on two dimensions: the average regional ratios

of wind and PV feed-in to the average load, normalized by the maximum ratio across all regions in

2045. The clustering results are presented in Figure 7. A region is deemed load-dominated if both

dimensions have a normalized value smaller than 0.20. A region is considered wind-dominated if it

has a normalized wind-to-load ratio greater than 0.20 and greater than the PV-to-load ratio. The

deőnition for PV-dominated regions follows the same logic.
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Figure 7: Clustering of the NUTS 3 regions

The wind-dominated regions are primarily situated in the northern part of Germany and consist

of 98 NUTS 3 regions, covering an area of 157,753 square kilometers, equivalent to 44% of the

total land area of Germany (357,588 square kilometers). The PV-dominated regions are located

predominantly in the southern region of Germany, particularly in Bavaria. These 166 NUTS 3

regions have a total area of 140,332 square kilometers, accounting for 39% of Germany’s land area.

Load-dominated regions are primarily located in Germany’s western and southwestern regions and

include major urban areas such as Berlin, Hamburg, and Munich. This cluster consists of 137

NUTS 3 regions and has a total area of 59,666 square kilometers, accounting for 17% of Germany’s

land area. The clusters differ not only in terms of load, wind and PV generation ratios but also,

for example, in terms of population density and number of EVs. Both are high in load regions and

low in wind regions. Furthermore, individual regions within a given cluster also possess distinct

characteristics in terms of parameters such as population density, renewable energy capacity, and

adoption of electric vehicles. A detailed account of the distribution of regional properties for and

within each cluster is provided in Appendix G.
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Boxplots are computed for the three clusters and Germany to compare the properties of the residual

load curves for the years 2019, 2030, and 2045 without considering ŕexibility. The results are

presented in Figure 8.

Figure 8: Comparison of regional residual load curves prior to the activation of ŕexibility

Note: The minimum and maximum values are represented by crosses. The median is depicted by the orange line,
while the colored box between the lower and upper quantiles represents 50% of all values. The maximum whiskers
are equal or lower to 1.5 times the Inter-Quartile Range (range of the colored box)

Regarding the Cluster Wind, the majority of residual load curve values show a decrease from

2019 to 2045. The median of the residual load curve decreases from 0.7 GW in 2019 to -12.4 GW

in 2030 and further to -22.2 GW in 2045. The increased dependence on the weather for electricity

generation leads to an increase in the variance of the residual load curve. The distance between the

minimum and maximum values of the boxplot, a measure of dispersion, increases by 178% from

2019 to 2030 and by 338% from 2019 to 2045. This increase is attributed to the signiőcant expansion

of wind capacities relative to electrical load growth. The minimum values of the residual load curve

increase from -25.0 GW in 2019 to -148.6 GW in 2045, while the maximum value increases by 41%

from 13.1 GW in 2019 to 18.5 GW in 2045. The Cluster PV displays relatively stable properties

for the residual load curve, with a slight decrease in the median from 10.1 GW in 2019 to 8.2 GW
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in 2045. Similar to the wind-dominated cluster, the variance of the residual load curve increases,

albeit to a lesser extent, due to the weather-dependent electricity generation and the limited impact

of load. The properties of the residual load curve in Cluster Load display a different trend. The

median increases from 30.9 GW in 2019 to a value of 35.2 GW in 2045, an increase of 14%. The

maximum value of the residual load increases by around 36%, and the minimum value reduces from

18.5 GW in 2019 to -23.2 GW in 2045. The addition of new electric loads from electric vehicles and

heat pumps in these regions is offset by the effect of rooftop PV expansion. As the peak demand

occurs in the evening while the maximum feed-in from rooftop PV occurs at noon, the minimum

and maximum values of the residual load curve diverge.

The residual load curve in Germany (DE) displays characteristics similar to those of the renewable-

dominated clusters, as they represent a larger share of residual load. Additionally, the German

residual load curve includes Offshore Wind feed-in, which is roughly correlated with the wind-

dominated cluster.

Correlation between residual load and electric vehicle load curves

Besides the ratios of renewable feed-in and load, the three clusters differ regarding the correla-

tion between residual load and the electric vehicle load curves. Table 3 shows the coefficients of

correlation for the three clusters and the years 2019, 2030 and 2045.

Table 3: Correlation between residual load and electric vehicle load curves
Cluster 2019 2030 2045

Cluster Wind 0.08 -0.19 -0.25
Cluster PV 0.29 -0.21 -0.27
Cluster Load 0.74 0.46 0.11

The coefficients of correlation highlight that the residual load in the load-dominated cluster cor-

relates most with the electric vehicles load proőle. However, the correlation almost vanishes until

2045, caused by the penetration of rooftop PV applications and the electriőcation of further appli-

cations like heating or industrial processes. The residual load becomes less dominated by residential

applications in the evening. The increasing weather dependency of electricity generation and a low
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share of load compared to renewable feed-in is the reason for the lower correlation in 2019 and even

negative correlation in 2045 in the other two clusters.

This development is relevant for the use of EV charging ŕexibility to reduce the residual demand.

Today, especially in Cluster PV and Cluster Load, there would be a strong incentive to shift the

load of EV charging to counter the high correlation with the residual load peaks. In 2045, however,

especially in Cluster Wind and Cluster PV, EVs tend to be charged when the residual load is low

(or negative). This development implies that the marginal utility of charging ŕexibility to reduce

load peaks is decreasing over time, although the ŕexibility potential is increasing in absolute terms

with growing EV adoption.

5.2. Flexibility of electric vehicles

This section provides a detailed analysis of two deployment strategies for utilizing the ŕexibility

provided by electric vehicles. The objective of the analysis is to understand the impact of these

strategies on the residual load curves at both national and regional levels. We distinguish two

deployment strategies: First, we use ŕexibility to ŕatten the regional and, second, the national

residual load curve. In the following, we use the formulations of "nationally incentivized" and

"regionally incentivized" ŕexibility deployment for the use of the two deployment strategies. The

optimization model outlined in Section 4 is used for the analysis. The properties of the resulting

regional and national residual load curves for the years 2030 and 2045 are evaluated and compared.

Characteristics of the activation of flexibility

Figure 9 illustrates the model results for a single region with a temporal resolution of 48 hours. The

őgure highlights the differences in the shape of the residual load and load shifting between the two

optimization schemes. For example, the charging process for user type C is shifted to hour 27 in

the regional scheme but to hour 10 in the national scheme. The use of ŕexibility is mainly limited

by the positive ŕexibility potential, as depicted by the dotted lines.
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Figure 9: Optimal activation of ŕexibility in region DE111 (Stuttgart)

Note: The left column of the figure shows the results of the regional optimization and the right column shows the
results of the national optimization. The residual load before the activation of flexibility (regional on the left and
national on the right) is depicted using a black line, and the change of charging processes for user types A to H are
shown in blue. 28



Model results on national level

The mechanisms for activating ŕexible charging processes impact the properties of the national

residual load curve. In Figure 10, the residual load curves after regional and national incentivized

activation of ŕexibility are compared to the residual load curve before the use of ŕexibility. This is

done for the years 2030 and 2045.

Figure 10: Properties of the national residual load curve before and after the use of ŕexibility

For both years, the range between the minimum and maximum values, as well as the absolute value

of the peak change to a small extent through both national and regional incentivization of ŕexibil-

ity. However, national incentivization has a greater impact compared to the regional approach. In

2030, regional incentivization decreases the range between the minimum and maximum values by

1.9%, while national incentivization decreases this range by 4.8%. Before the use of ŕexibility, the

negative peak surpasses the positive one in absolute terms. Regional incentivization reduces the

peak by 2.6%, and national incentivization reduces it by 7.5%. These characteristics observed in

2030 can also be seen in 2045, but with higher values and a greater variance of the residual load.

The use of ŕexibility reduces the absolute value of negative peak demand. The minimum changes
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from -303 GW to -288 GW (-5.0%) with the regional approach and to -285 GW (-5.9%) with the

national approach, while the maximum is only reduced by 4 GW (-3.6%) in both cases.

Model results on regional level

We calculate imbalance ratios to analyze the effects of the two ŕexibility deployment strategies

on the regional feed-in and load peaks. These are deőned as the positive or negative peaks in

each region’s residual demand divided by the respective regional total load and generation over

a year.8 The imbalance ratio can be formulated in a positive (PIRr), negative (NIRr) and an

absolute (AIRr) way (see Eq. (16) to (18)). Dividing the maximum amount of power needed in

both the positive (RE deőcit) and negative (RE surplus) direction in each region by total load

and generation allows us to analyze and compare the development of peaks for the heterogeneous

regions. Comparing the Imbalance Ratios before and after ŕexibility activation, we are able to

quantify how ŕexibility changes the altitude of the load and feed-in peaks.

PIRr =
max
h∈H

(residualloadh,r)

∑8760
h=1 (totalloadh,r + generationh,r)

∗ 1000 ∀r ∈ R (16)

NIRr =
min
h∈H

(residualloadh,r)

∑8760
h=1 (totalloadh,r + generationh,r)

∗ 1000 ∀r ∈ R (17)

AIRr = max (|PIRr|, |NIRr|) ∗ 1000 ∀r ∈ R (18)

Figure 11 visualizes the change of the imbalance ratios after the national and regional incentivized

activation of ŕexibility in each region for the year 2030. Figure 12 shows the results for the year

2045. As reference values in both őgures, highlighted in gray, the peaks in 2019 are normalized to

the load and generation of 2030 and 2045, respectively.

8The use of this evaluation variable follows Kühnbach et al. (2021).
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Figure 11: Imbalance ratios before and after the use of ŕexibility in 2030

Note: The x-axis represents the regions in each cluster. In each of the nine sub-figures, the imbalances before
flexibility are sorted in ascending order. The imbalance ratios after the activation of flexibility are then matched to
the corresponding region.
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Figure 12: Imbalance ratios before and after the use of ŕexibility in 2045

Note: The x-axis represents the regions in each cluster. In each of the nine sub-figures, the imbalances before
flexibility are sorted in ascending order. The imbalance ratios after the activation of flexibility are then matched to
the corresponding region.
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In renewable-dominated regions in 2045, before the activation of ŕexibility, the negative imbalance

ratio is always greater, in absolute terms, than the positive imbalance ratio. It thus deőnes the

absolute imbalance ratio and the maximum strain on local grid components. In the load-dominated

cluster, it is the other way around in about 66% of the regions.

In the Cluster Wind, the positive imbalance ratio decreases only slightly when applying both

activation mechanisms for ŕexibility. On average, positive imbalance declines by 1.2% with national

incentives and by 2.7% with regional ones. The positive peaks of the residual loads decrease by

0.002 MW/km2 on average with national incentives and by 0.004 MW/km2 with the regional

approach. The decreasing effect is limited by low positive ŕexibility potentials and the fact that

the charging processes and the situation of the highest residual load do not fall into the same

periods, as discussed in Section 5.1. The correlation between residual load and charging proőle

decreases over time, which limits the potential for ŕexibility in peak load situations. This limitation

applies to all three clusters. The negative imbalance ratio in the wind-dominated cluster remains

largely unchanged under the national deployment strategy (-1.2% on average in absolute terms9,

corresponding to -0.013 MW/km2). However, it decreases more when applying the regional strategy

(-3.5% in absolute terms, corresponding to -0.037 MW/km2). As the negative imbalance ratio is

greater than the positive one for the regions in this cluster, the absolute imbalance ratio reproduces

the negative one in absolute terms.

In the Cluster PV, the positive imbalance ratios display a different pattern than the ones in

the wind-dominated cluster, with an increase in response to national incentives. The national de-

ployment strategy results in an increase of 5.1% of the positive imbalance ratio on average, which

corresponds to an increase of the positive residual peak demand of 0.008 MW/km2 across all re-

gions within this cluster. But, there are also regions which face distinct greater effects with up to

0.071 MW/km2. In these cases, peaks can increase by up to 35% following national incentives.

This outcome is attributed to more electric vehicles in PV-dominated regions, resulting in a greater

potential for positive ŕexibility. In contrast, positive imbalance ratios are lowered by 2.1% with

9For the positive and absolute imbalance ratio, a reduction corresponds to an improvement: the (positive or
negative) residual load peak becomes smaller. For the negative imbalance ratio, a reduction corresponds to a
worsening: the negative residual load peaks (the absolute value) become larger. In order to be consistent in terms
of the positive/negative impact, all described changes in the negative imbalance ratio refer to the absolute change.
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regional incentives on average, corresponding to a reduction of 0.008 MW/km2 . The negative

imbalance ratio is consistently reduced by regional incentives in absolute terms (-6.3% on average,

corresponding to -0.068 MW/km2). National incentives reduce the absolute value of the negative

imbalance ratio, too, but to a less extent (-1.2%; -0.023 MW/km2). Just as in the wind-dominated

cluster, as the negative imbalance ratio is greater than the positive one, the absolute imbalance

ratio reproduces the negative one in absolute terms. Last, in the load-dominated cluster, we

observe that following national incentivized activation of ŕexibility, positive imbalance ratios are

the highest compared to their occurrence in renewable-dominated clusters. On average, the posi-

tive imbalance increases by 3.1% (0.043 MW/km2) with national incentives. But, just like in the

PV-dominated cluster, there are also regions with high penetration rates of electric vehicles, which

face a distinct greater effect with up to 0.349 MW/km2. In this case, the peak increases by around

27% following national incentives. Regional incentives instead lower the positive imbalance ratio

by 1.4% (-0.018 MW/km2) on average. The negative imbalance ratio is consistently reduced both

by regional and national incentives, but regional incentives have a greater effect (-2.1% compared

to -6.3%, corresponding to -0.079 MW/km2 and -0.208 MW/km2). In contrast to the separated

effects on positive and negative imbalances, the effect of national incentives on the absolute imbal-

ance ratio is region-speciőc, indicating the regions’ heterogeneity in the load-dominated cluster. In

some regions, the positive imbalance ratio exceeds the negative imbalance ratio (regions 0 to 90),

while the opposite is true in others (regions 91 to 137). In regions with a greater positive imbalance

than a negative, the absolute imbalance ratio increases by 3.2% on average with national incentives,

corresponding to an increase of absolute residual peak demand by 0.056 MW/km2 on average. In-

stead, local incentives lower the absolute imbalance ratio by 1.1% on average, corresponding to a

decrease of the absolute peak by 0.019 MW/km2 on average. In regions with a smaller positive

imbalance than a negative, national incentives reduce the absolute imbalance ration by 1.9% on

average (-0.036 MW/km2), whereas local incentives would lower the absolute imbalance ratio even

more by 5.9% (-0.104 MW/km2) on average. Consequently, there are regions in the load-dominated

cluster where national incentives are slightly beneőcial in lowering the absolute imbalance ratio or

do not signiőcantly change it. However, there are also regions where national incentives result in
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an increase in the absolute imbalance ratio, stemming from the increase in positive peaks. Or,

formulated differently, national incentives can signiőcantly increase or slightly reduce the absolute

peaks. Regional incentives may either lower the imbalance ratio or have an insigniőcant impact

on the absolute value, depending on the ŕexibility potential and the correlation between charging

proőles and residual load peaks.

Summarizing, national incentives tend to increase the positive imbalance ratio in PV- and load-

dominated regions, whereas regional incentives decrease it, albeit to a small extent. However,

regional incentives can signiőcantly reduce the negative imbalance ratio.

In the context of the three clusters under consideration, it can be inferred that in regions domi-

nated by wind energy, the national deployment strategy does not exert additional pressure on the

distribution grid, but regional incentives can reduce imbalances. In PV-dominated regions, both

the national and the regional incentives do lower the absolute imbalance ratio. However, regional

incentives have a greater effect. For the regions of both clusters, it can be observed that the ŕex-

ibility potential is used in particular to absorb excess renewable electricity and has less effect in

smoothing load peaks. This is also manifested in the temporal shift patterns in the two clusters:

For both the national and the regional incentivization, load shifting takes place primarily from the

evening to the times of surplus generation at noon.

In contrast, load-dominated regions are characterized by heterogeneity in terms of positive or neg-

ative peak dominance, so the impact of national incentives on imbalances can be either positive

(worsen the situation) or negligible. That is because the national incentivization corresponds to

the temporal scheme of the renewable-dominated regions: Load is shifted from the evening into

the times of national renewable surplus, only that there is no renewable energy surplus in many

load-dominated regions, leaving them worse off. Regional incentives, on the other hand, can reduce

absolute imbalances in these regions, as the load is shifted into the night, to address load peaks

during the day.
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6. Conclusion

The expansion of decentralized renewable energy systems and electric vehicles is putting stress on

the distribution grids. However, ŕexible EV charging can help alleviate this impact by reducing

peak loads and feed-in by better matching load and supply. The paper conducted a comprehensive

regional analysis of Germany to estimate the regional potential of EV charging ŕexibility for reduc-

ing peaks on regional and national levels. This was achieved by modeling regional EV diffusion with

sigmoid functions and deriving individual charging and ŕexibility proőles for each NUTS 3 region

in Germany. For both, we presented a detailed method. We further developed a model to optimize

the use of EV charging ŕexibility to either ŕatten the regional residual loads or the national one.

Our analysis consists of two parts.

In the őrst part of our analysis, we examined the future development of residual load curves and

their correlation with EV charging proőles. Three different clusters were formed: load-dominated,

wind-dominated and PV-dominated. We őnd that the increased dependency on weather-based

electricity generation leads to a signiőcant increase in the variance of the residual load curve until

2045. Our results reveal that the regional structure of electricity demand and supply is highly

heterogeneous. Moreover, the correlation between residual load and EV charging proőles decreases

over time, implying that the marginal utility of charging ŕexibility to reduce load peaks declines,

even if the positive ŕexibility potential increases in absolute terms.

In the second part, we evaluated the impact of two incentive mechanisms for activating the ŕexibility

of electric vehicles. One aims to ŕatten the regional residual load curves with local ŕexibility. The

other uses the aggregated ŕexibility potentials to ŕatten the national residual load. Results show

that both strategies reduce the variance of the residual load and peak demand and feed-in from

a national perspective. In 2045, both strategies reduce the positive residual peak load by about

4 GW (3.6%), correspondingly less reserve capacity, storage or imports need to be kept available.

The negative residual peak load, i.e. the maximum surplus of renewable capacity, is reduced by 15

GW (5.0%) in case of regional incentivization and even by 18 GW (5.9%) in case of national incen-

tivization. I.e., the use of EV charging ŕexibility has a signiőcantly greater potential in absorbing

excess renewable generation than in lowering positive peak load. Regional incentivization generally
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leads to a decline in absolute values of peaks on regional level. Here, as well, the ŕexibility is par-

ticularly useful in absorbing excess renewable generation and thus reducing negative residual load

peaks. The local impact of the national incentivized activation varies depending on the region’s

characteristics. In load- and some PV-dominated regions, national incentivization can result in

drastically higher regional demand peaks compared to a scenario without charging ŕexibility (up to

35%). In wind-dominated regions, this effect is less pronounced. Furthermore, regions with higher

shares of EV load than total load and regions with a higher correlation of EV charging proőles with

the residual load have higher potential to ŕatten the residual load and reduce the peak demand.

The two application scenarios of charging ŕexibility discussed aim at two very different targets:

while national incentivization aims at reducing demand in times of low national renewable gen-

eration feed-in and thus times of high prices, the regional incentivization aims at reducing the

regional strain on grid components. Our study shows that these two targets can be contradictory

in their effects: While the regional incentivization is less effective in reaching the smoothing in the

national residual demand curve, the national incentivization can even lead to increased strain on

local level, especially in load-dominated regions. Policymakers should, thus, consider these regional

effects when implementing incentives for ŕexible EV charging to achieve maximum effectiveness in

reducing peaks on regional and/or national levels and avoid unwanted, additional strain on grid

components. Furthermore, our results may also provide a justiőcation at the transmission system

level for introducing regionally differentiated price signals (e.g. zonal or nodal pricing), as uniform

pricing at the national level may result in undesirable effects at the regional level.

While we are able to estimate regional effects of ŕexibility deployment at the level of NUTS 3 regions

with our method, there is a need for further research on its impact on actual distribution grids and

grid components. In the course of this, the concrete grid expansion costs and electricity generation

costs under different deployment strategies could be quantiőed and compared. Furthermore, our

analysis abstracts from other ŕexibility options and their interdependencies with the ŕexible home

charging of EVs. Hence, there remains a need for further research, addressing workplace charging

or charging in public spaces as well. Finally, further research could investigate on the effects of

different policy schemes aiming at the implementation of the discussed deployment strategies.
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Appendices

A. The full Bass model

For the computation of regional transition pathways of electric vehicles, the Bass diffusion model

is used. In this section, it is explained how the formula in Equation (3) is derived. According

to Rogers’ concept of the diffusion of innovation (1962), P (t) is "the probability that an initial

purchase will be made at time t given that no purchase has yet been made" (Bass, 1969).

P (t) =
f(t)

1− F (t)
= p+

q

m
A(t) = p+ qF (t) (A.1)

The parameter p is the coefficient of innovators meaning the probability of initial purchases at the

start of the innovation and q is the coefficient of imitators, signalling the pressure they feel from

the increasing number and m is the total market size. f(t) is the likelihood of purchase at time t.

F (t) is the cumulative diffusion level at time t, further described in Equation (A.2). A(t) expresses

the cumulative number of adopters a(t) in the interval (0, t), presented in Equation (A.3) (Bass,

1969; Van der Kam et al., 2018).

F (t) =
A(t)

m
=

∫ t

0
f(t)dt (A.2)

A(t) =

∫ T

0
a(t)dt = m

∫ T

0
f(t)dt = mF (t) (A.3)

The cumulative number of adopters a(t) itself can be calculated according to Equation (A.4)

a(t) = mf(t) = P (t)[m−A(t)] = [p+
q
∫ T

0 a(t)dt

m
][m−

∫ T

0
a(t)dt] (A.4)

Also, f(t) can be extended as:

f(t) = [p+ qF (t)][1− F (t)] = p+ (q − p)F (t)− q[F (t)]2 (A.5)

To őnd F (t), this non-linear differential Equation (A.6) needs to be solved:

dt =
dF

(p+ (q − p)F − qF )
(A.6)
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This equals to:

F =
q − pe(−t+C)(p+q)

q(1 + e(−t+C)(p+q))
(A.7)

Since F (0) = 0, the integration constant may be evaluated:

−C =
1

p+ q
ln(

q

p
) (A.8)

Therefore:

F (t) =
1− e−(p+q)t

1 + q
p
e−(p+q)t

(A.9)

or:

A(t) = m
1− e−(p+q)t

1 + q
p
e−(p+q)t

(A.10)

To normalize the beginning of the diffusion t0 at 0, this function can be written as:

A(t) = m
1− e−(p+q)(t−t0)

1 + q
p
e−(p+q)(t−t0)

(A.11)

which is derived from Van der Kam et al. (2018).
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B. Function transformation to ∆t

This section displays the transformation of the diffusion curve function given in Equation (3) to

the diffusion curve function in Equation (6). The objective is to calculate t given all other variables

and parameters stay constant. Recall Equation (3):

F (t, m̂, p̂, q̂) = m̂ ∗
1− e−(p̂+q̂)(t−t0)

1 + q̂
p̂
e−(p̂+q̂)(t−t0)

| ∗ (1 +
q̂

p̂
e−(p̂+q̂)(t−t0)) (B.12)

For the sake of simplicity, F (t) will be written as F in this function transformation. The transfor-

mation steps are shown in Equations (B.13) to (B.20).

F (1 +
q̂

p̂
e−(p̂+q̂)(t−t0)) = m̂ ∗ (1− e−(p̂+q̂)(t−t0)) |solving the brackets (B.13)

F + F
q̂

p̂
e−(p̂+q̂)(t−t0) = m̂− m̂e−(p̂+q̂)(t−t0) | ∗ p̂ (B.14)

p̂F + q̂F e−(p̂+q̂)(t−t0) = m̂p̂− m̂p̂e−(p̂+q̂)(t−t0) | − p̂F,+m̂p̂e−(p̂+q̂)(t−t0) (B.15)

m̂p̂e−(p̂+q̂)(t−t0) + q̂F e−(p̂+q̂)(t−t0) = m̂p̂− p̂F (B.16)

(m̂p̂+ q̂F )e−(p̂+q̂)(t−t0) = m̂p̂− p̂F | ∗
1

m̂p̂+ q̂F
(B.17)

e−(p̂+q̂)(t−t0) =
m̂p̂− q̂F

m̂p̂+ q̂F
|ln (B.18)

−(p̂+ q̂)(t− t0) = ln(
m̂p̂− q̂F

m̂p̂+ q̂F
) | ∗

1

−(p̂+ q̂)
(B.19)

t− t0 =
ln( m̂p̂−q̂F

m̂p̂+q̂F
)

−(p̂+ q̂)
|+ t0 (B.20)

t =
ln( m̂p̂−q̂F

m̂p̂+q̂F
)

−(p̂+ q̂)
+ t0 (B.21)

To calculate the time difference ∆t between a given time tset when a NUTS 3 region reaches a certain

diffusion level F (t)nuts3y , and the time when the same level is reached on the national diffusion curve,

the following Equation (B.22) is the result.

∆t = t− tset = t−
ln( m̂p̂−q̂F

m̂p̂+q̂F
)

−(p̂+ q̂)
+ t0 − tset (B.22)
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C. Descriptive analysis of mobility data

Figure C.1: Key parameters of the used MOP dataset (KIT - Institut für Verkehrswesen, 2021)

D. Shares of charging scenarios

Table D.1: Shares of charging scenarios per settlement type

settlement type h h,w h,o h,w,o w o w,o Total

rural community 22% 22% 22% 22% 4% 4% 4% 100%

smaller provincial town 22% 22% 22% 22% 4% 4% 4% 100%

larger provincial town 21% 21% 21% 21% 6% 6% 6% 100%

smaller medium town 18% 18% 18% 18% 9% 9% 9% 100%

larger medium town 20% 20% 20% 20% 7% 7% 7% 100%

smaller metropolis 16% 16% 16% 16% 13% 13% 13% 100%

larger metropolis 10% 10% 10% 10% 19% 19% 19% 100%

Notes: The row total may differ from 100% due to rounding errors. Charging locations: at home (h), at work (w),
others (o)
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E. Distribution of demand to federal states

To distribute the national demand of each sector among the federal states, we use data from

Länderarbeitskreis Energiebilanzen (2022). The data includes the demand of all federal states

separately by sector for the years 1990-2019. We allocate the demand in our model among the

federal states based on the distribution of sector-speciőc demand in 2019. An exception is the state

of Saarland, where the most recent data available is from 2016 (Table E.2). We assume that this

distribution does not change fundamentally over time.

Table E.2: Distribution keys of sectoral electricity demand to federal states

Sector BW BY BE BB HB HH HE MV NI NW RP SL SN ST SH TH Total

Households 14% 16% 3% 3% 1% 3% 8% 2% 9% 23% 5% 1% 4% 2% 4% 2% 100%

Small-scale industries,

trade and services
15% 16% 5% 3% 1% 3% 9% 2% 9% 20% 4% 1% 4% 3% 3% 3% 100%

Industry 12% 15% 1% 3% 1% 2% 5% 1% 11% 28% 7% 2% 5% 4% 2% 3% 100%

Rail transport 11% 19% 8% 5% 1% 3% 11% 2% 11% 15% 4% 1% 4% 4% 2% 2% 100%

Conversion sector 9% 9% 1% 10% 1% 3% 2% 1% 10% 37% 1% 2% 6% 5% 3% 0% 100%

Note: The row total may differ from 100% due to rounding errors.
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F. Demand profiles

Figure F.2: Demand proőles per application. Heat proőles are exemplary: shown are the proőles
for the region DEA23 (Cologne) on 3 exemplary days of the year.
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G. Cluster properties

Table G.3: Properties of the regions within the three cluster in 2045

Property Indicator Cluster Wind Cluster PV Cluster Load

Population density Minimum 36 66 125
[People per km2] Maximum 437 1585 4761

Mean 117 264 1165
Number of EVs Minimum 14 31 56
[cars per km2] Maximum 167 606 1811

Mean 55 119 471
Wind Onshore capacity Minimum 0.22 0.00 0.00
[MW per km2] Maximum 1.94 1.26 0.95

Mean 0.75 0.29 0.15
total PV capacity Minimum 0.19 0.16 0.00
[MW per km2] Maximum 1.59 2.18 2.35

Mean 0.62 0.69 0.34
large-scale PV capacity Minimum 0.19 0.16 0.00
[MW per km2] Maximum 1.59 2.18 2.34

Mean 0.62 0.69 0.34
rooftop PV capacity Minimum 0.13 0.15 0.23
[MW per km2] Maximum 2.04 5.41 7.46

Mean 0.38 0.86 2.20

Figure G.3: Distribution of the population density within each cluster in 2045
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Figure G.4: Distribution of EVs per km2 within each cluster in 2045

Figure G.5: Distribution of Wind Onshore capacities per km2 within each cluster in 2045

Figure G.6: Distribution of PV capacities (large-scale PV and rooftop PV) per km2 within each
cluster in 2045
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Figure G.7: Distribution of large-scale PV capacities per km2 within each cluster in 2045

Figure G.8: Distribution of rooftop PV capacities per km2 within each cluster in 2045
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