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Abstract

This paper analyzes the strategic firm behavior within the context of a two-period resource

duopoly model in which firms face endogenous intertemporal capacity constraints. Firms

are allowed to invest in capacity in between two periods in order to increase their initial

endowment of exhaustible resource stocks. Using this setup, we find that the equilibrium

price weakly decreases over time. Moreover, asymmetric distribution of initial resource

stocks leads to a significant change in equilibrium outcome, provided that firms do not

have the same cost structure in capacity additions. It is also verified that if only one

company is capable of investment in capacity, the market moves to a more concentrated

structure in the second period.
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1. Introduction

One of the most important aspects of strategic firm behavior in oligopolistic non-renewable

or exhaustible resource markets is the allocation of a finite resource stock over time. The

problem of resource allocation becomes more complicated once firms seize the opportunity

to increase the resource base. In this case, in addition to the production decisions, firms

also need to choose the optimal amount of resource additions over time.

In order to address the question of how firms would react under endogenous capacity

constraints, we study a resource duopoly model with two firms, competing in quantity

for two consecutive periods. At the beginning of the first period, each firm is endowed

with a fixed amount of exhaustible resource stock and is then allowed to invest in capacity

in between the two periods of production in order to increase its resource stock. Thus,

their 2nd period capacity constraints become endogenous. With this setup, we find that

the equilibrium price weakly decreases over time. Moreover, asymmetric distribution of

initial resource stocks leads to a significant change in equilibrium outcome, provided that

firms do not have the same cost structure in capacity additions. It is also verified that

if only one company is capable of investment in capacity, the market moves to a more

concentrated structure in the second period.

Apart from the mainstream economic growth literature dealing with the optimal depletion

of exhaustible resources following Hotelling (1931)1, there has been a plethora of works

that deal with the microeconomic structure of resource markets. Salant (1976) proposes

a cartel with a competitive fringe model to explain the world oil market and suggests that

a cartel would restrict its supply, leading to a monotonic increase in prices, until it takes

over the whole market and the competitive fringe exhausts its resources. Gilbert (1978)

extends the study of Salant (1976) with a Stackelberg model under the price and quantity

leadership of the cartel and confirms that the price would increase until the reserves of

the fringe firms are exhausted. Another dynamic oligopolistic market is examined by the

study of Lewis and Schmalensee (1980), which proposes that any firm having a greater

initial resource endowment will produce more at each period of the game. Eswaran and

Lewis (1984) extend the oligopoly model such that each firm has an initial share of the

common reserve. The authors find that given uneven distribution of the shares among

firms, industry extraction is inefficient as it is not cost minimizing.

In his famous work entitled “A Theory of ‘Oil’igopoly: Cournot Equilibrium in Exhaustible

Resource Markets with Fixed Supplies”, Loury (1986) proposes a non-cooperative Cournot

1Seminal works in this stream of literature are as follows: Solow (1974), Dasgupta and Heal (1974),
Stiglitz (1974), Loury (1978), Pindyck (1978).
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oligopoly model. He finds that marginal returns on resource stocks are inversely related

to players’ initial resource endowments and that aggregate production decreases over

time. He also suggests that firms with smaller resource stock exhaust their stocks at the

same time as larger stock firms. Polasky (1992) extends the model of Loury (1986) by

introducing different extraction costs among the firms and empirically testing the model.

Gaudet and Long (1994) criticize the assumptions thought to be necessary by Loury

(1986) in order to achieve a unique equilibrium for the game with uneven distribution

of initial resource stocks among players. Contrary to Loury (1986), they suggest that

exhaustion of resources in finite time is not a necessary condition for equilibrium. Later,

Salo and Tahvonen (2001) contributed to this stream of literature by considering the

economic depletion of resources instead of the physical depletion. They find, contrary

to the literature, that the degree of concentration in supply would decline such that the

market would head in the direction of more competitive rather than monopolistic. On

the other hand, more recently Benchekroun et al. (2009) and Benchekroun et al. (2010)

suggest, in accordance with Loury (1986), that the oligopolistic market, in which players

have different initial resource stocks and different cost structures, would move towards a

cartel with a competitive fringe structure as low-cost deposits are exhausted.

This article also relates to the literature on strategic firm behavior under capacity

constraints. Pioneering works in this stream are Levitan and Shubik (1972) and Osborne

and Pitchik (1986), both of which are based on price competition under exogenous

capacity constraints. Important contributions are made, among others, by Bikhchandani

and Mamer (1993), Gabszewicz and Poddar (1997), Besanko and Doraszelski (2004) and

Laye and Laye (2008). Moreover, Saloner (1987) introduces intertemporal production

decisions with a two-period Cournot duopoly, which is later extended by Pal (1991) with

the inclusion of cost differences.

The primary contribution of this paper is that it is among the firsts to subject dynamic

duopoly markets to endogenous intertemporal capacity constraints. In fact, the author

is only aware of two papers that address the strategic firm decisions under a two-period

duopoly with exogenous intertemporal capacity constraints, namely Biglaiser and Vettas

(2004) and van den Berg et al. (2012), examining price and quantity competition,

respectively. We extend the model of van den Berg et al. (2012), which most resembles

the current study, by relaxing the assumption of exogenous capacity constraints. Thus,

in our setting, besides the quantity competition firms also enter into a rivalry in capacity

investments, which leads to endogenous capacity constraints. In contrast to van den Berg

et al. (2012)’s main finding that the price weakly increases over time, we are able to show

that the price decreases with endogenous capacity constraints. This would explain the

temporary downward price trends experienced occasionally in most exhaustible resource

3



markets. Thus, the author believes that the model presented in this study better explains

the stylized characteristics of such markets.

The organization of the current paper is as follows: Section 2 introduces the model.

Section 3 solves the model using the Subgame Perfect Nash Equilibrium concept and

provides major results. Section 4 presents oil market interpretation of the model. Welfare

analysis is conducted in Section 5. Finally, Section 6 concludes.

2. Model

This article proposes a resource duopoly model with two firms, i = 1, 2, competing in

quantity for two consecutive periods, t = 1, 2. At the beginning of the first period (t = 0),

each firm is endowed with a fixed amount of exhaustible resource, Ri,0 ≥ 0, which can be

increased to a cumulative recoverable resource, (Ri,0 +Radd,i) ∈ [Ri,0, Rmax], where Radd,i

is the additions to the resource base (capacity additions) of firm i and Rmax is finite.

Thus, firms can endogenize their 2nd period capacity by simultaneously choosing Radd,i

in the interim period at a cost of xi, i.e., capacity investment. This creates a three-stage

game as depicted in Figure 1.

Ri0 

qi1 

Ri=Ri0-qi1+Radd,i 

qi2 

xi 

Radd,i 

Figure 1: Structure of the Game

In Figure 1, qi,1 is the quantity decision of firm i in the first stage (1st period of production)

subject to its initial resource endowment (Ri,0), Radd,i is the decision made on capacity

addition in the second stage (in between the two periods of production) at a cost of xi, and

finally qi,2 is the quantity decision of firm i in the third stage (2nd period of production)

subject to its remaining endogenous capacity defined by the following equation:

Ri = Ri,0 − qi,1 +Radd,i. (1)
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Assumption 1. Initial resource endowment for each firm lies in the following range:2

α1A+ α3Rj,0

α4 − α2

< Ri,0 <
(α4 − 3α8)A− 3α10Rj,0

3α9

for i, j ∈ 1, 2 and i 6= j

The upper bound of the interval provided by Assumption 1 guarantees that the second

period capacity constraint for each firm is binding; thus, at equilibrium firms invest

in capacity Radd,i > 0 for i ∈ {1, 2}. If this part of the assumption is violated, the

problem becomes less interesting as it reduces to the typical dynamic Cournot game with

exogenous intertemporal constraints, in which equilibrium is achieved without positive

capacity investments. This case is in fact already considered in van den Berg et al.

(2012). The lower bound, moreover, guarantees that each firm would carry some of its

initial resource endowment over to the second period. If violated, the capacity constraints

are no longer intertemporal. In this case, each firm uses up all of its initial capacity in the

first period, generates new capacity in the interim period and uses it again in the second

period. Since the focus of this paper is the intertemporal allocation of the endogenous

resource, a lower bound of Assumption 1 is also necessary.

We, furthermore, assume that the costs of exploring initial resource stock and resource

extraction are sunk and therefore do not have a role in the model. The inverse demand

function for each period is as follows:

Pt = Pt(Qt) = A−Qt,

where A captures the market size and Qt = qi,t+qj,t for i, j ∈ {1, 2} and i 6= j. Moreover,

we define the capacity addition cost function as:

xi = ai ×Radd,i
2, (2)

where ai (∈ N+) is a finite constant that captures the “reverse efficiency” (or the cost)

of capacity investments such that, as it becomes larger, capacity additions become more

costly.3

2The α’s are defined on page 12 by Proposition 1.
3We would have assumed a general functional form for capacity addition cost, xi, that is convex in

Radd,i, yet the functional form provided is tractable as its first derivative is linear.
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3. Subgame Perfect Nash Equilibrium

We employ the Subgame Perfect Nash Equilibrium (SPNE, hereafter) concept, which

suggests that the strategy of each player at each instant of time is a function of the prior

decisions made by both itself and its rival. Therefore, for any state of the game at the

beginning of the 2nd period z(qi,1, qj,1, Radd,i, Radd,j), which is the result of the 1st and

interim period decisions, firm i will solve the following maximization problem given firm

j’s production decision:

max
qi,2

πi,2 = qi,2 P2(qi,2, qj,2)− xi(Radd,i)

subject to

0 ≤ qi,2 ≤ Ri,

where, recall that, Ri is the 2nd period capacity constraint defined by Equation 1. The

resulting best response correspondence for firm i in the 2nd period, σi,2(z) : [0, Rj] →
[0, Ri], will be as follows:

σi,2(qj,2) =

{
Ri if 0 ≤ Ri ≤ A−qj,2

2

max (0,
A−qj,2

2
) otherwise.

Equilibrium strategies for firm i are given by the function f ∗i (z) and defined as follows:

f∗i (z) =


A
3 if Ri, Rj >

1
3

A−Rj
2 if Ri >

A−Rj
2 and Rj ≤ A

3

Ri if either Ri ≤ A
3 and Rj >

A−R1
2 or Ri ≤ A−Rj

2 and Rj ≤ A−Ri
2 .

(3)

Region q∗1,2 q∗2,2 R1 R2

I A/3 A/3 > A/3 > A/3
II R1

A−R1

2
≤ A/3 > A−R1

2

III A−R2

2
R2 > A−R2

2
≤ A/3

IV R1 R2 ≤ A−R2

2
≤ A−R1

2

Table 1: Second Period Possible Equilibrium Outcomes

There may exist four possible Nash equilibria for the second-period subgame (q∗1,2, q
∗
2,2),

which satisfy both σ1,2(q
∗
2,2) = q∗1,2 and σ2,2(q

∗
1,2) = q∗2,2 as provided in Table 1. Since in

Region I the 2nd period capacities of both firms are non-binding, each firm chooses the

Cournot outcomes and ends up with a residual amount left ‘unproduced’ in the resource

base. Regions II and III correspond to the outcomes when only one firm has a binding
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capacity, firm 1 and firm 2, respectively. And, finally, in Region IV both firms have

binding capacities, thus producing whatever their capacity allows. Given Assumption 1,

the equilibrium can not occur in Regions I, II and III (See Lemma 1).

Lemma 1. Given Assumption 1, each firm chooses the second period equilibrium quantity

to be:
q∗i,2 = Ri = Ri,0 − qi,1 +Radd,i

for i = 1, 2 where Ri, Rj ≤ A/3
(4)

Proof. Firms would deviate from this equilibrium if and only if at least one of them, say

firm 1, has non-binding capacity in the second period. Given Assumption 1, this can

arise due to either the firm investing too much in the capacity in the interim period and

thus generating more capacity addition than it needs, or the firm producing too little in

the first period thus saving the capacity for the second period in order to end up with

the Cournot outcome. Let us analyze these two cases:

i. Let us assume that firm 1 chooses to over-invest in capacity in the interim period

to end up with the non-binding second period capacity constraint and thus produce

the Cournot quantity. Since the capacity addition cost function is strictly increasing

in Radd,1, the firm can decrease the capacity addition, and hence the cost, until the

second period capacity reaches the threshold value of R1 = A/3, without changing

the second period equilibrium strategy of q∗1,2 = A/3. Once the second period

capacity equalizes to R1, the firm is in Region IV. Note that the capacity addition

decisions in the interim period are being made simultaneously. Thus, there is no

first-mover advantage in the game. If this was the case, the outcome may have been

different than that proposed here.

ii. Let us assume that firm 1 chooses to produce too little –strictly lower than the

Cournot quantity– in the first period to assure non-binding capacity for the second

period, i.e., q1,1 < A/3. This implies that it would not add further capacity in the

interim period since it has already ensured the Cournot outcome for the second

period, i.e., Radd,1 = 0. First of all, one must note that firm 1 will affect firm 2’s

decision at this stage of the game if and only if it has a binding capacity. If its

capacity constraint is not binding, then firm 2’s behavior is left unaltered (firm 2

chooses the optimal quantity given firm 1’s production not the capacity). Hence,

firm 1 could deviate from this strategy by producing one marginal unit more at the

first stage instead of having left over at the third stage. This reallocation continues

until the second period capacity of firm 1 becomes binding, i.e., R1 ≤ R1.
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Moreover, the firm would not choose an equilibrium quantity of zero for the second period,

i.e., q∗i,2 = 0, because it would always have the incentive to generate additional capacity

for the second period. �

Given the 2nd period equilibrium provided in Equation (4), firm i will subsequently choose

the capacity additions with the following maximization problem:

max
Radd,i

πi,2 = q∗i,2 P2(q
∗
i,2, q

∗
j,2)− xi(Radd,i), (5)

where q∗i,2 and q∗j,2 represent the 2nd period equilibrium quantities of firms i and j,

respectively. Following the maximization problem in Equation (5), the best response

correspondence for the interim period capacity addition decision, γi, for firm i is as

follows:

γi(Radd,j) =

{
0 if Radd,j > A+ 2qi,1 + qj,1 − 2Ri,0 −Rj,0
A+2qi,1+qj,1−2Ri,0−Rj,0−Radd,j

2+2ai
otherwise.

Region R∗add,1 R∗add,2
A 0 0

B A+2q1,1+q2,1−2R1,0−R2,0

2+2a1
0

C 0 A+2q2,1+q1,1−2R2,0−R1,0

2+2a2

D A(1+2a2)+(3+4a2)q1,1+2a2q2,1−(4a2+3)R1,0−2a2R2,0

4a1a2+4a1+4a2+3

A(1+2a1)+(3+4a1)q2,1+2a1q1,1−(4a1+3)R2,0−2a1R1,0

4a1a2+4a1+4a2+3

Region Parameter Conditions

A
A+ 2q1,1 + q2,1 < 2R1,0 +R2,0

A+ 2q2,1 + q1,1 < 2R2,0 +R1,0

B
A+ 2q1,1 + q2,1 ≥ 2R1,0 +R2,0

(1 + 2a2)A+ (3 + 4a2)q1,1 + 2a2q2,1 < (3 + 4a2)R1,0 + 2a2R2,0

C
(1 + 2a1)A+ (3 + 4a1)q2,1 + 2a2q1,1 < (3 + 4a1)R2,0 + 2a1R1,0

A+ 2q2,1 + q1,1 ≥ 2R2,0 +R1,0

D
(1 + 2a2)A+ (3 + 4a2)q1,1 + 2a2q2,1 ≥ (3 + 4a2)R1,0 + 2a2R2,0

(1 + 2a1)A+ (3 + 4a1)q2,1 + 2a1q1,1 ≥ (3 + 4a1)R2,0 + 2a1R1,0

Table 2: Interim Period Possible Equilibrium Outcomes

The corresponding possible Nash equilibria, which satisfy γ1(R
∗
add,2) = R∗add,1 and

γ2(R
∗
add,1) = R∗add,2, for the subgame at the interim period are provided in Table 2.

Region A corresponds to the equilibrium in which none of the firms generate additional

capacities for the second period. Regions B and C are the regions in which firm 1 and firm

2, respectively, choose not to add capacity. Finally, Region D represents the equilibrium
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with positive amount of capacity additions for both firms. Given Assumption 1 and

Lemma 1, Lemma 2 will rule out the equilibria in regions A, B and C (See Lemma

2).

Lemma 2. Interim period equilibrium capacity addition for each firm, i = 1, 2, is as

follows:

R∗add,i =
A(1 + 2aj) + (3 + 4aj)qi,1 + 2ajqj,1 − (3 + 4aj)Ri,0 − 2ajRj,0

4aiaj + 4ai + 4aj + 3

where (3 + 4aj + 2ai)(Ri,0 − qi,1) + (3 + 4ai + 2aj)(Rj,0 − qj,1) ≤ (2 + 2ai + 2aj)A.

(6)

Proof. Given the best response correspondence, we have 4 different equilibria for the

interim period subgame as provided in Table 2. The equilibrium can not occur in Regions

A, B and C because:

i. Parameter conditions in Region A together suggest the following:

2A

3
< (R1,0 − q1,2) + (R2,0 − q2,2)

since the capacity addition for each firm in this region is zero, which, given Lemma

1, follows directly as:

q∗1,2 + q∗2,2 >
2A

3
.

This inequilibrium can occur only if at least one of the firms has non-binding

capacity in the second period and produces an amount larger then the Cournot

outcome. This contradicts Assumption 1.

ii. The equilibrium outcomes in Regions B and C suggest that one firm chooses not to

invest in capacity additions in the interim period. Recall that the decisions at this

stage are held simultaneously. Thus, this case can occur only if the firm ensures

the Cournot quantity for the second period. Given Assumption 1, this can arise if

and only if its first period supply is strictly lower than the Cournot quantity. This

case has already been eliminated by Lemma 1.

�

Using equilibrium outcomes in the 2nd and the interim periods, q∗i,2 and R∗add,i defined

by Equations (4) and (6), the game to a one-period optimization in which firm i only

chooses the 1st period quantity. The maximization problem is defined as follows:
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max
qi,1

Πi = πi,1(qi,1, qj,1) + πi,2(q
∗
i,2, q

∗
j,2, xi(R

∗
add,i))

subject to qi,1 + q∗i,2 ≤ Ri,0 +R∗add,i,
(7)

where πi,1 and Πi are firm i’s first period profit and reduced profit functions, respectively.4

Consequently, given Lemma 1 and Lemma 2, the best response correspondence for firm

i in the 1st period, σi,1 : [0, Rj,0]→ [0, Ri,0], will be as follows:

σi,1 =


β1A−β2qj,1+β3Ri,0+β4Rj,0

β5
if max

{
−β6A+β7qj,1−β8Rj,0

β9
,
β6A−β7qj,1+β8Rj,0

β10
,
β11A−β12qj,1+β13Rj,0

β14

}
≤ Ri,0 ≤

β15A+β16qj,1−β17Rj,0
β10

Ri,0 if Ri,0 <
β6A−β7qj,1+β8Rj,0

β10

0 if qj,1 >
β6A+β9Ri,0+β8Rj,0

β7
,

where

β1 = 8a2i (1 + aj) + 16ai(1 + aj)
2 + (3 + 4aj)

2

β2 = 24ai(1 + aj)(1 + 2aj) + 16a2i (1 + aj)(1 + 2aj) + (3 + 4aj)
2

β3 = 16a2i (1 + aj)(1 + 2aj) + (3 + 4aj)
2

β4 = 8(1 + ai)aj(1 + aj)

β5 = 2(1 + ai)(3 + 4aj)(3 + 4aj + 8ai(1 + aj))

β6 = 8a2i (1 + aj) + 16ai(1 + aj)
2 + (3 + 4aj)

2

β7 = (3 + 4ai)
2 + 24aj(1 + ai)(1 + 2ai) + 16a2j (1 + ai)(1 + 2ai)

β8 = 16aiaj(1 + ai)(1 + 2ai)

β9 = 2ai(8ai(1 + aj)(1 + 2aj) + (3 + 4aj)
2)

β10 = 2ai(3 + 4aj + 4ai(1 + aj))
2

β11 = 3ai(5 + 6ai)− 4aj(1 + ai)(3 + 2ai)− 16a2j (1 + ai)(1 + 2ai)

β12 = 3(ai(3 + 4ai) + 4aj(1 + ai)(3 + 8ai) + 16a2j (1 + ai)(1 + 2ai))

β13 = 12aj(1 + aj)(3 + 4aj + ai(7 + 8aj))

β14 = 6ai(3 + 4aj + 4ai(1 + aj))

β15 = 3 + 4aj + 2ai(8 + 10aj + ai(7 + 8aj)))

β16 = 9 + 12aj + 2ai(3 + 2ai)(5 + 6aj)

β17 = (1 + ai)(9 + 12aj4ai(6 + 7aj)).

The quantities (q∗i,1, q
∗
j,1) are the Nash equilibrium of the reduced game if and only if

q∗i,1 ∈ σi,1(q∗j,1) and q∗j,1 ∈ σj,1(q∗i,1). Lemma 3 provides the unique Subgame Perfect Nash

Equilbrium of the reduced game.

4Please note that discount factor assumed to be unity for simplicity.
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Lemma 3. Nash equilibrium of the reduced game for firm i is as follows:

q∗i,1 =
α1A+α2Ri,0+α3Rj,0

α4
for Ri,0 >

α1A+α3Rj,0
α4−α2

where;

α1 = 32a2i (1 + aj)(1 + 6aj + 6a2j) + 4ai(1 + aj)(15 + 88aj + 88a2j)

+(3 + 4aj)(9 + 50aj + 40a2j)

α2 = 4ai(1 + aj)(27 + 60ai + 32a2i + 16(1 + ai)(6 + 7ai)aj + 16a2j(5 + 11ai + 6a2i ))

α3 = −2aj(3 + 4ai + 4aj + 4aiaj)(9 + 8ai + 8aj + 8aiaj)

α4 = 64a3i (1 + aj)(1 + 2aj)(5 + 6aj) + 48ai(1 + aj)(9 + 34aj + 28a2j)

+32a2i (1 + aj)
(
21 + 8aj(9 + 7aj)

)
+ (3 + 4aj)

(
27 + 4aj(27 + 20aj)

)
.

(8)

Proof. The other two possible equilibrium strategies for firm i at this stage are [i] q∗i,1 = 0

and [ii] q∗i,1 = Ri,0. Let us explain why the firm would not choose these two strategies:

i. Let us assume that in the first period the firm chooses to produce 0 and save all of

its initial resource for the second period. Choosing zero production quantity leads

to monopoly prices since the only supplier will be the rival. It is a fact that in the

second period the firm will not be a monopoly because even if the rival supplies all

its initial resource endowment in the first period, it still has an incentive to invest

in capacity and to generate new capacity for the second period. Thus, the second

period price will be less than the monopoly price. In this case, the firm would enjoy

monopoly prices in the first period by reallocating its capacity such that it would

increase the production in the first period without changing the production in the

second period.

ii. Firm i will choose the first period quantity to be equal to its initial resource

endowment if and only if Ri,0 ≤ α1A+α3Rj,0
α4−α2

. Yet, Assumption 1 excludes this.

�

Following Lemma 1 and Lemma 2, the Nash equilibrium of the reduced game (q∗i,1, q
∗
j,1),

defined by Lemma 3, leads to the Sub-game Perfect Nash Equilibrium of the entire game,

which is defined by Proposition 1.
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Proposition 1. The Sub-game Perfect Nash Equilibrium of the entire game is unique

and defined as follows:

(q∗i,1, R
∗
add,i, q

∗
i,2) =

(
α1A+α2Ri,0+α3Rj,0

α4
,
α5A+α6Ri,0+α7Rj,0

α4
,
α8A+α9Ri,0+α10Rj,0

α4

)
,

where

α1 = 32a2i (1 + aj)(1 + 6aj + 6a2j) + 4ai(1 + aj)(15 + 88aj + 88a2j)

+(3 + 4aj)(9 + 50aj + 40a2j)

α2 = 4ai(1 + aj)(27 + 60ai + 32a2i + 16(1 + ai)(6 + 7ai)aj + 16a2j(5 + 11ai + 6a2i ))

α3 = −2aj(3 + 4ai + 4aj + 4aiaj)(9 + 8ai + 8aj + 8aiaj)

α4 = 64a3i (1 + aj)(1 + 2aj)(5 + 6aj) + 48ai(1 + aj)(9 + 34aj + 28a2j)

+32a2i (1 + aj)
(
21 + 8aj(9 + 7aj)

)
+ (3 + 4aj)

(
27 + 4aj(27 + 20aj)

)
α5 = 2

[
8a2i (1 + aj)(1 + 4aj)(5 + 6aj) + (1 + aj)(3 + 4aj)(9 + 40aj)

+ai
(
66 + 4aj(107 + 2aj(89 + 44aj))

)]
α6 = −

(
3 + 4aj + 4ai(1 + aj)

)(
27 + 4aj(27 + 20aj) + 4ai(9 + 8a2(4 + 3aj))

)
α7 = −

(
3 + 4aj + 4ai(1 + aj)

)(
4aj(9 + 10aj + 2ai(5 + 6aj))

)
α8 =

(
3 + 4aj + 4ai(1 + aj)

)(
9 + 8aj(6 + 5aj) + 4ai(3 + 2aj(7 + 6aj))

)
α9 =

(
3 + 4aj + 4ai(1 + aj)

)(
4ai
(
9 + 12ai(1 + aj)(1 + 2aj) + 10aj(3 + 2aj)

))
α10 = −(3 + 4aj + ai(1 + aj))(2(3 + 4ai)aj(3 + 4aj))

(9)

for
α1A+ α3Rj,0

α4 − α2

< Ri,0 <
(α4 − 3α8)A− 3α10Rj,0

3α9

.

Proof. Nash equilibrium of the reduced game, provided by Lemma 3, corresponds one-to-one

with the SPNE of the entire game. Moreover, the parameter constraints provided by

Lemma 1, Lemma 2 and Lemma 3 restrict our attention to only one region, which is

disjoint to the other excluded regions. Thus, given the interval for the initial resource

endowments of each firm, the SPNE defined by Proposition 1 is unique. �

Note that the equilibrium in Proposition 1 is valid only for the initial resource endowments

that lie in the provided interval. With this interval, we restrict our attention to the

equilibrium in which both firms would have positive capacity additions and positive

supplies in both periods. As the upper bound of this range is approached, the second

period reduces to the unconstrained Cournot game in which the equilibrium is achieved

without capacity additions, since the capacity constraints become non-binding.

Proposition 2. The equilibrium price, P ∗t , weakly decreases over time.
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Proof. Given the interval for initial resource endowments of each firm, we can verify for

any combination of (ai, aj) that Q∗1 ≤ Q∗2, where Q∗t = q∗1,t+q
∗
2,t. Since the inverse demand

function does not change over time, i.e., Pt = A − Qt, the equilibrium price in the first

period is larger than or equal to the second period price, P ∗1 ≥ P ∗2 . �

Proposition 2 contradicts Hotelling-based reasoning, which states that the scarcity rent of

the exhaustible resources would cause the prices to increase gradually (Hotelling (1931)).

Yet, this reasoning is based on the assumption of a fixed amount of initial resource

endowments. Thus, the result proposed by Proposition 2 is due to the endogenous

capacity constraints. This result, in fact, captures the short-term stylized characteristics

of exhaustible resource markets in which price drops are observed from time to time.

For instance, exploration of new oil reserves would lead to declining prices as a result

of supply enhancements. Proposition 2 may not be applicable if this model is extended

to an infinite time horizon since in this case, the capacity addition cost function should

have a different structure, capturing the fact that it gets harder to add capacity as the

cumulative capacity addition increases.

Proposition 3. Given a fixed aggregate initial resource endowment, S0 = Ri,0 +Rj,0:

i. if ai = aj, an increase or decrease in |Ri,0 −Rj,0| leads to no change in equilibrium

price.

ii. if ai > aj, the equilibrium price in both periods increases (decreases) as the share of

Rj,0 relative to Ri,0 increases (decreases).

Proof. Let us assume a fixed amount of aggregate initial resource, S0 = Ri,0 + Rj,0.

For ai = aj, total amount of supply in both periods will be a function of only the

aggregate initial resource endowment, i.e., Q∗t (S0). Thus, given a fixed S0, a change in

|Ri,0 − Rj,0| would not affect the outcome. Yet, when ai 6= aj, we can verify that an

uneven distribution of the fixed aggregate initial resource stock among firms would lead

to a significant change in equilibrium supply. More specifically, we can verify that for

ai > aj, an increase in Rj,0 relative to Ri,0 leads to a decrease in equilibrium supply in

both periods, Q∗1 and Q∗2. �

Proposition 3 suggests that if the firms are symmetric in their cost functions, any asymmetric

distribution in reserves do not affect the equilibrium outcomes. Moreover, if firms have

different cost parameters, ai 6= aj, equilibrium price increases due to a decrease in

equilibrium quantity when the distribution is altered in favor of the more efficient firm,

i.e., the one with lower a. The equilibrium price, on the other hand, would decline if the

asymmetry is in favor of the less efficient firm, i.e., the one with higher a. This is an

expected result since if one firm is more efficient in capacity addition, it would become

13



more dominant in the second period, leading to a more concentrated market structure

and eventually to an increase in prices. On the other hand, distribution of initial resource

stock in favor of the less efficient firm would offset the advantage of a more efficient firm

leading to a more competitive market structure.

Proposition 4. At equilibrium,

i. if Ri,0 > Rj,0, then, ceteris paribus, q∗i,t > q∗j,t and R∗add,i < R∗add,j for i, j ∈ {1, 2},
i 6= j and t ∈ {1, 2}.

ii.
∂q∗i,t
∂Ri,0

> 0,
∂q∗j,t
∂Ri,0

< 0,
∂R∗

add,i

∂Ri,0
< 0 and

∂R∗
add,j

∂Ri,0
> 0 for i, j ∈ {1, 2}, i 6= j and t ∈ {1, 2}.

Proof. The proof follows directly from the first derivatives of the corresponding continuous

functions, i.e. q∗(.) and R∗add(.), with respect to the initial resource endowments. �

Proposition 4 implies, not surprisingly, that the firm with a greater initial resource

endowment would supply more in both periods and generate smaller additional capacity,

all else being equal. Moreover, initial resource endowment of a firm has a positive effect

on its supplies and a negative effect on the supplies of rival firm in both periods. Finally,

initial endowment has negative and positive effects on the capacity additions of the firm

itself and its rival, respectively.

Proposition 5. At equilibrium,

i. if ai < aj then, ceteris paribus, q∗i,t > q∗j,t and R∗add,i > R∗add,jfor i, j ∈ {1, 2}, i 6= j

and t ∈ {1, 2}.

ii.
∂q∗i,t
∂ai

< 0,
∂q∗j,t
∂ai

> 0,
∂R∗

add,i

∂ai
< 0 and

∂R∗
add,j

∂ai
> 0 for i, j ∈ {1, 2}, i 6= j and t ∈ {1, 2}.

Proof. The proof follows directly from the first derivatives of the corresponding continuous

functions, i.e., q∗(.) and R∗add(.), with respect to the cost parameters. �

Proposition 5 implies that the firm with higher efficiency, or lower cost parameter, will

supply more output in both periods and generate larger capacity addition. Moreover, ai

has negative effects on both supply and investment decisions of firm i and positive effects

on those of firm j.

14



4. Oil Market Interpretation: Oil Field Service (OFS) Companies

One of the most important resource markets is, without a doubt, the oil market. The

model presented in Section 2 would, therefore, be applicable to this specific market. The

initial resource stock of the firms and the investment in capacity additions could refer

to the initial recoverable reserves and the reserve growth investments in the oil market,

respectively. As is commonly known, the upstream petroleum industry represents a

highly concentrated market structure. For instance, in 2004, 81% of the world’s proved

reserves was controlled by the major National Oil Companies (NOCs) including Saudi

Aramco, National Iranian Oil Company, Iraq National Oil Company, Kuwait Petroleum

Corporation, Abu Dhabi National Oil Company, PDVSA (National Oil Company of

Venezeula) and National Oil Company of Libya (PWC (2005)). Moreover, according

to the US Energy Information Administration, in 2011, NOCs accounted for around 55%

of global oil supply, while major International Oil Companies (IOCs) were responsible

for 27% (EIA (2013)). Thus, it is a reasonable simplification to assume that the current

upstream oil industry is dominated by two blocks of companies, i.e., IOCs and NOCs.

Over the last few years, high oil prices, fluctuating around 100$/bbl (well above the

maximum marginal costs for producing a barrel of conventional (around 60$) and of

unconventional (around 80$) crude oil), have encouraged upstream petroleum companies

to increase production. However, in addition to other factors, substantial risks and costs

associated with upstream activities, especially exploration and development operations,

remain as the main obstacles facing supply enhancements. The excessive profits that the

IOCs can extract create an incentive to face these risks and costs; yet NOCs would not be

able to invest further in these activities as they may not have the required know-how or

may be required to consider other factors, such as maximizing social welfare in the host

country. In this respect, Oil Field Service (OFS, hereafter) companies, which specialize

in development activities, emerge as business partners for NOCs.

Increasing recoverability of the reserves is one of the main objectives of development

activities in the upstream petroleum industry. Reserve growth technologies, such as

enhanced or improved oil recovery techniques, would lead to enhancement in supply

via increasing the recoverability ratios of the reserves. Therefore, investment in such

technologies is of great importance for upstream petroleum companies as well as for the

future market structure of the petroleum industry.

In the general model presented in Section 2, we suggest that both firms can generate

additional capacity for the second period. The reality, however, may differ. In fact, as

previously mentioned, we implicitly assume that one of the firms, i.e., NOC, may not
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have the necessary know-how or funding opportunity to invest further into increasing the

recoverable reserve and instead employs an OFS company, which is specialized in reserve

growth technologies. Now let us assume that there are no OFS companies existing in the

upstream oil market and that the NOC, which is represented by firm 2, is not capable of

capacity investment. This means that for the NOC, the cost parameter is infinitely large

and they can not generate additional capacity for the second period. We call this new

case “no-OFS”.

Proposition 6. The Nash equilibrium for the no-OFS case is as follows:

(q∗1,1, R
∗
add,1, q

∗
1,2)noOFS =

(
(5+6a1)A+2a1(5+6a1)R1,0−(2+2a1)R2,0

2(1+a1)(5+6a1)
,
2A−R2,0−2R1,0

2(1+2a1)
,
(5+6a1)A+2a1(5+6a1)R1,0−(3+4a1)R2,0

2(1+a1)(5+6a1)

)

(q∗2,1, R
∗
add,2, q

∗
2,2)noOFS =

(
(2+3a1)R2,0

5+6a1
, 0,

(3+3a1)R2,0

5+6a1

)
.

(10)

Proof. The proof follows directly from the fact that as the cost parameter for the NOC,

a2, approaches infinity, the Nash equilibrium given in Equation (9) will approach the one

represented in Equation (10):

lim
a2→∞

(q∗i,1, R
∗
add,i, q

∗
i,2)General → (q∗i,1, R

∗
add,i, q

∗
i,2)noOFS.

Note that given the cost function in Equation (2), Radd,i = (xi
ai

)1/2 (which satisfies Inada

conditions) we make sure that as a2 approaches infinity, Radd,2 approaches zero and not

a negative value, i.e., lima2→+∞Radd,2 = 0 �

In order to investigate the effects of OFS companies on the market dynamics, we compare

the Nash equilibria of both the General and no-OFS cases, represented by Equations (9)

and (10), respectively. Let us assume that in the General case each firm has exactly the

same capacity addition cost structure, i.e., a1 = a2 = a. In the no-OFS case, the cost

parameter of firm 1, a1, stays at the same level, while the cost parameter of firm 2, a2,

approaches infinity.

Proposition 7. The effect of OFS companies on equilibrium supply and capacity additions

for a1 = a and a2 →∞:

i. The quantity supplied by the capable firm, firm 1 (IOC) in our setup, is greater at

each instant of time in the no-OFS case:

q1,1,General ≤ q1,1,noOFS and q1,2,General ≤ q1,2,noOFS.
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ii. The quantity supplied by the incapable firm, firm 2 (NOC) in our setup, is lower at

each instant of time in the no-OFS case:

q2,1,General ≥ q2,1,noOFS and q2,2,General ≥ q2,2,noOFS.

iii. Total quantity supplied to the market is greater at each instant of time in the General

Case:

Qt,General ≥ Qt,noOFS where Qt = q1,t + q2,t and t = 1, 2.

iv. Total capacity addition in the General case is greater:

Radd,total,General ≥ Radd,total,noOFS where Radd,total = Radd,1 +Radd,2.

v. The additional capacity generated by the capable firm is greater in the no-OFS case:

Radd,1,General ≤ Radd,1,noOFS.

Proof. The proofs for [i.], [ii.], [iii.], [iv.] and [v.] follow directly from Proposition 1 and

Proposition 6. �

Proposition 7 implies that the existence of OFS companies leads to a more competitive

market structure in the upstream oil industry. The market would move to a more

concentrated structure if we only allow for one firm to invest in reserve growth technologies

or, in other words, if there were no OFS companies in the market, because the capable

firm would supply more and increase its supply periodically. Existence of OFS firms,

moreover, has a significant effect on reserve growth investments and, thus, equilibrium

capacity additions. As expected, due to the rivalry between firms, total additional

capacity generated in the General case is greater than that in no-OFS case. Yet, the

additional capacity generated by the capable firm is greater in the no-OFS case. This

result emerges possibly due to the fact that in the no-OFS case, capable firm would enjoy

higher profits in the 2nd period by increasing its capacity even more.

5. Welfare Analysis

In the previous sections, we derived the Nash equilibrium for the General case

(Section 3) and the no-OFS case (Section 4). In this section, we conduct a welfare

analysis. At equilibrium, the consumer surplus (CS) is defined as follows:

CS∗ =
1

2

[
(Q∗1)

2 + (Q∗2)
2
]
,

where Q∗1 and Q∗2 are the equilibrium aggregate supplies in periods 1 and 2, respectively.
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Proposition 8. In both the General and the no-OFS cases, an increase in the initial

resource endowment for at least one of the firms leads to a weak increase in consumer

surplus.

Proof. The proof follows directly from the first derivatives of the equilibrium outcomes

with respect to Ri,0 for i ∈ 1, 2. �

Proposition 8 suggests, not surprisingly, that consumers would benefit from an increase

in the availability of the exhaustible resource. This result is in accordance with the

previous findings in the literature, such as Gaudet and Long (1994), and with the stylized

characteristics of exhaustible resource markets.

Proposition 9. Given fixed aggregate initial resource endowment, S0 = Ri,0 +Rj,0,

1. in the General Case,

i. if ai = aj, an increase or decrease in |Ri,0−Rj,0| leads to no change in consumer

surplus.

ii. if ai > aj, the consumer surplus increases (decreases) as the share of Rj,0

relative to Ri,0 decreases (increases).

2. in the no-OFS Case,

for any a1, the consumer surplus increases (decreases) as the share of R1,0 relative to

R2,0 decreases (increases) or as the share of R2,0 relative to R1,0 increases (decreases).

Proof. The proof follows directly using the same reasoning provided in the proof of

Proposition 3. �

Proposition 9 implies, in line with Proposition 3, that if one firm is slightly more efficient

than the other, consumer welfare tends to change with the asymmetric distribution of

initial resource endowment. Consumer welfare decreases if the asymmetry is in favor of

the more efficient firm. On the other hand, if the initial resource distribution is in favor

of the less efficient firm, the consumer welfare increases.

The total welfare function in our setting can be defined as follows:

W = TS1 + TS2 −X = A
(
Q∗1 +Q∗2

)
− 1

2

[
(Q∗1)

2 + (Q∗2)
2
]
−
(
a1R

2
add,1 + a2R

2
add,2

)
,

where TS1 and TS2 are total surpluses in periods 1 and 2, respectively, and X is the

aggregate amount of capacity addition costs. The first-best decisions made on total

quantity and capacity addition, which maximize total welfare, are as follows:
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Q1,FB = Q2,FB =
A(a1+a2)+2a1a2(R1,0+R2,0)

a1+a2+4a1a2

Radd,FB =
(a1+a2)(A−R1,0−R2,0)

a1+a2+4a1a2
.

(11)

Proposition 10. The equilibria in the General case defined by Proposition 1, in the

no-OFS case by Proposition 6 and first-best case by Equation 11 reveal the following:

i. WFB > WGeneral > WnoOFS,

ii. Qt,FB > Qt,General > Qt,noOFS for t ∈ {1, 2},

iii. Radd,FB > Radd,General > Radd,noOFS.

Proof. The proof follows directly from the equilibria defined by equations (9), (10) and

(11). �

According to Proposition 10, the total welfare and all three decision variables are the

largest in the first-best calculation and smallest in the no-OFS case. We confirm, in line

with Proposition 7, that the General case, in which both firms are capable of capacity

addition is superior to the no-OFS case.

6. Conclusion

This paper analyzes the strategic firm behavior within the context of a two-period resource

duopoly model in which firms face endogenous intertemporal capacity constraints. We

find that the equilibrium price weakly decreases over the two periods. This result captures

the short-term stylized characteristics of exhaustible resources markets, in which price

drops are occasionally observed. For instance, exploration of new oil reserves may lead to

declining prices as a result of supply enhancements. Moreover, we show that asymmetric

distribution of initial resource stocks leads to a significant change in equilibrium outcome,

provided that firms do not have the same cost structure in capacity additions. It is also

verified that if only one company is capable of investment in capacity, the market moves

to a more concentrated structure in the second period.

We also conduct an oil market interpretation of the general model. For this purpose, we

assume that the NOC does not have the necessary know-how or funding opportunities

for reserve growth investments. Yet, it can employ an OFS company to compete with

the IOC in capacity addition. We find that under the absence of OFS companies, only
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one firm is capable of increasing the capacity for the second period, thus moving the

market towards a more concentrated structure. Therefore, the OFS companies carry

significant importance in the upstream petroleum industry. Although the integrated

structure of the companies, mostly IOCs, increases the profitability, the increasing role

of small independent firms that are specialized only in exploration and production is

sustainable only if these small firms are supported by OFS companies in development

activities. Hence, promoting specialization in these activities, especially reserve growth

technologies, would not only serve as a useful tool to increase the competition but also

lead to more recoverable resources.

A possible extension of the model could be the introduction of stochasticity in capacity

generation such that the capacity additions would be a result of R&D activity held at a

prior stage of the game. Another extension would be to analyze the first-mover advantages

in the game. However, these extensions could only be made if one could find a model

specification that is sufficiently general but also analytically tractable.
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