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Energy prices, technological knowledge and green energy

innovation: A dynamic panel analysis of patent counts
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July 2014

We examine the e↵ect of energy prices and technological knowledge on in-
novation in green energy technologies. In doing so, we consider both demand-
pull e↵ects, which induce innovative activity by increasing the expected value
of innovations, and technology-push e↵ects, which drive innovative activity
by extending the technological capability of an economy. Our analysis is
conducted using patent data from the European Patent O�ce on a panel of
26 OECD countries over the period 1978-2009. Utilizing a dynamic count
data model for panel data, we analyze 11 distinct green energy technologies.
Our results indicate that the existing knowledge stock is a significant driver
of green energy innovation for all technologies. Furthermore, the results sug-
gest that energy prices have a positive impact on innovation for some but
not all technologies and that the e↵ect of energy prices and technological
knowledge on green energy innovation becomes more pronounced after the
Kyoto protocol agreement in 1997.
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1 Introduction

In a growing field of literature, economists have empirically investigated which economic
and political factors influence the rate and direction of innovation in green energy tech-
nologies. However, researchers still lack evidence on the determinants of green energy
innovation, especially when it comes to the determinants of innovation in specific tech-
nologies. Understanding these determinants is crucial in order to design the appropriate
policies to foster green energy innovation. Should these policies stimulate the demand
for green energy technologies by increasing energy prices, or should they enhance tech-
nological capability by improving the knowledge base of an economy?
This paper empirically investigates how green energy innovation in di↵erent technolo-

gies has developed in response to changes in energy prices and technological knowledge.
For the purpose of this paper we define green energy technologies as energy e�ciency,
renewable energy, fuel cell, carbon capture and storage (CCS) and energy storage tech-
nologies. We consider both demand-pull e↵ects, which induce innovative activity from
the demand side by increasing the expected value of innovations, and technology-push
e↵ects, which drive innovative activity from the supply side by extending the techno-
logical capability of an economy. We aim to shed light on the ongoing debate as to
whether demand-pull or technology-push factors are the main drivers of green energy
innovation. We hypothesize that both increasing demand, due to higher energy prices,
and increasing technological capability induce green energy innovation.
To test these hypotheses, we analyze a panel on green energy innovation drawing from

data on patent applications at the European Patent O�ce (EPO). We count patent ap-
plications in green energy technologies following a structure defined by the International
Energy Agency (IEA) and using International Patent Classification (IPC) codes from the
green inventory developed at the World Intellectual Property Organization (WIPO). Our
dataset covers 11 distinct green energy technologies for 26 OECD countries, spanning
over a 32-year period from 1978 to 2009.
This paper is related to the empirical body of literature on the determinants of green

energy innovation. In particular, we build on the pioneering work of Popp (2002), who
uses aggregate US patent data from 1970 to 1994 to estimate the impact of energy prices
and quality-weighted knowledge on innovation in environmentally-friendly technologies.
Popp finds that both factors have a significant, positive impact on innovation.
More recently, a similar analysis was carried out by Verdolini and Galeotti (2011).

They study the impact of energy prices and knowledge stocks on innovation in energy
technologies using panel data on United States Patent and Trademark O�ce (USPTO)
patent applications for 17 countries from 1975 to 2000. Their baseline results confirm the
positive e↵ects of both factors on innovation. Although the authors do not di↵erentiate
by individual technologies, separate estimations reveal di↵erences between energy-supply
and energy-demand technologies. While the e↵ect of energy prices stays significant for
supply technologies, it becomes insignificant for demand technologies.
This result is a first indicator that the relative importance of demand-pull and

technology-push factors is specific to individual technologies. However, up to now, re-
liable and detailed technology-specific empirical evidence is still missing. One notable

2



exception is Johnstone et al. (2010), who use a panel framework covering patent counts
for 25 OECD countries over a 1978-2003 period to investigate the determinants of tech-
nological change in five renewable energy technologies. They find important di↵erences
across technologies. However, their study focuses on policy instruments and does not ex-
plicitly account for technology-push e↵ects. Our study seeks to fill this void in previous
research by accounting for these technology-push e↵ects and by additionally covering a
broader base of technologies.
Our work contributes to the existing literature in three respects. First, we investigate

the determinants of innovation separately for 11 di↵erent green energy technologies. This
may help scholars and policy makers understand the divergent e↵ects of energy prices
and technological knowledge on green energy innovation across technologies. Second,
our analysis uses European patent data to assess the validity of the conclusions reached
using US patent data. Third, we apply state-of-the-art count data techniques to control
for unobserved heterogeneity, account for the dynamic character of knowledge generation
and address endogeneity issues.
The remainder of the paper is organized as follows. Section 2 provides a brief outline of

the baseline theory guiding our empirical analysis. Section 3 presents the data. Section 4
describes the econometric methodology employed. Section 5 presents and discusses the
results. Section 6 concludes.

2 Theoretical background

For green energy technologies, the process of technological change is characterized by two
key market failures. First, the harmful consequences of energy production and energy
use on the environment constitute a negative externality. In the absence of appropriate
price signals, there is no economic incentive to reduce these negative consequences.
Since there is no demand for reduction, the demand for reduction-technologies will also
be low. Consequently, there is insu�cient private incentive to invest in R&D for such
technologies. Second, the value accruing from private investments in R&D tends to spill
over to other technology producers. These spillovers constitute a positive externality.
Since the private investor incurs the full costs of its e↵orts but cannot capture the full
value, there is insu�cient private incentive to invest in R&D. As a result the two market
failures lead to a double underprovision of green energy technologies by market forces.
This double underprovision can be addressed by a combination of environmental and
innovation policies (see Ja↵e et al., 2005; Newell, 2010).
The underlying concept is policy-induced innovation. This concept is the theoretical

basis for the demand-pull and technology-push e↵ects on innovation activities. First
proposed by Hicks (1932), it originally states that changes in relative factor prices in-
duce innovation which reduces the need for the factor which has become relatively more
expensive. More generally, it posits that both changes in demand and changes in tech-
nological capability determine the rate and direction of innovation. Changes in demand
include shifts on the macro level that a↵ect the profitability of innovative activity at a
given level of technological capability. Analogously, changes in technological capability
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include scientific and technological advancements that a↵ect the profitability of inno-
vative activity at a given level of demand (see Griliches, 1990; Verdolini and Galeotti,
2011).
Following Verdolini and Galeotti (2011), the relationship between demand, technolog-

ical capability and innovation can be formalized as

It = f(Dt, TCt), (1)

where I denotes innovative activity, Dt denotes demand and TCt denotes technologi-
cal capability. Demand can be proxied by expected energy prices p

e
t , which signal the

expected general scarcity of energy in an economy. Increasing energy prices increase
the willingness to pay for R&D in technologies that either produce energy at a lower
average cost or use energy more e�ciently. Technological capability can be proxied by
technological knowledge, a concept which is typically measured by innovation activities
undertaken in the past. Innovation activities in the past are expected to induce innova-
tion activities today or, as expressed by Baumol (2002), “innovation breeds innovation”.
Acemoglu et al. (2012) show that this path dependence exists in green technological
change. Firms in economies with a history of innovation in green technologies in the
past are more likely to innovate in green technologies in the future. Using the end-of-
period stock of past patents, Kt�1, as a measure for innovation activities in the past
Equation 1 becomes

It = g(pet , Kt�1), (2)

where both factors are expected to have a positive impact on innovation activity.
Following these expectations, governments can foster green energy innovation in two

ways: implement policies that increase energy prices and thus increase the private pay-
o↵ to successful innovation, i.e. demand-pull, and implement policies that increase
the stock of knowledge and thus decrease the private cost of producing innovation, i.e.
technology-push. Examples of policies that increase energy prices are emission taxes and
emission trading systems. Examples of policies that increase the knowledge stock are
government support for the generation and dissemination of basic scientific and techno-
logical knowledge, provision of high quality education and training systems, promotion
of business networks and technology transfer as well as government-sponsered R&D and
tax incentives to invest in private R&D. Researchers have come to a consensus that in
order to stimulate innovation in green energy technologies, both types of instruments
are necessary (see Nemet, 2009).

3 Data

Our analysis is conducted using patent data from the OECD REGPAT database (OECD,
2013). The database combines information on patent activities from two complementary
sources: the EPO’s Worldwide Patent Statistical Database (PATSTAT) and the OECD
patent database. It contains patent applications filed at the EPO based on the priority
date, that is, the first filing date of the invention worldwide. Several studies have
shown that this date is strongly related to R&D activities and is closest to the date
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of discovery of an invention (see, e.g., Griliches, 1990; OECD, 2009). Furthermore,
in contrast to patent applications filed at national institutions, multinational patent
applications such as those filed at the EPO often constitute innovations of high value
that are expected to be commercially profitable and thus justify the relatively high
application costs (see Johnstone et al., 2010). Hence, utilizing EPO patent applications
ensures that applications for low-value inventions are excluded from our analysis.1

All patents are classified according to the IPC system, which assigns each patent
to a specific area of technology. In particular, the “IPC Green Inventory” provides
the IPC codes for patents relating to so-called Environmentally Sound Technologies
(EST) (WIPO, 2013a,b). Combining the IPC codes with the energy technology structure
developed at the IEA (IEA, 2011), we count the technology-specific annual green energy
patent applications at the EPO between 1978 and 2009 on the country level. The patent
applications are assigned by country of origin (based on the country of the inventor)
using fractional counts. That is, each patent application is counted as a fraction for the
respective country, depending on the inventor’s share in the patent.
As a result of the availability of appropriate IPC codes and missing values for some

of the utilized variables, our analysis covers 11 green energy technologies and 26 OECD
countries. The technologies are: energy e�ciency in residential and commercial build-
ings, appliances and equipment (EEBAE), energy e�ciency in transport (EET), other
energy e�ciency (EEO)2, solar energy, wind energy, ocean energy, biofuels, geothermal
energy, fuel cells, CCS and energy storage.
Table 1 provides an overview on the development of the total number of EPO patent

applications in these technologies for the 26 countries. As shown, in the whole sample
period, the highest number of green energy patent applications is observed for the United
States, followed by Japan and Germany. The lowest number of green energy patent
applications belongs to Slovakia. Furthermore, all countries significantly increase their
patent activities in green energy technologies over time. Across all countries, we observe
an increase in green energy patenting of more than 130% from the 1978-1984 period to
the 2005-2009 period. In total, our database contains more than 175,000 green energy
patent applications.
As patent activities in green energy technologies may be a↵ected by a country’s overall

propensity to patent innovations, we include a control variable covering the country-
specific total number of annual EPO patent applications. In doing so, we control for
variations in the propensity to patent both across countries and across time. Figure 1
shows the trend in green energy and total patenting for the six leading (in terms of
green energy) innovative countries in our database. Green energy patent applications
are shown on the left axis and total patent applications on the right axis. In all countries,
we see a steady and similar growth in green energy and total patent applications.
Figure 2 illustrates the trends in patenting for the 11 technologies. First of all, it can be

seen that the number of patent applications di↵ers significantly among the technologies.

1 The advantages and disadvantages of using patents as a proxy for innovation have been discussed
comprehensively in the literature. See, e.g., Griliches (1990), Dernis et al. (2002) and OECD (2009).

2 Following the IEA energy technology structure, the other energy e�ciency group includes waste
heat recovery and utilization, heat pumps and measurement of electricity consumption.
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Table 1: Number of green energy EPO patent applications by country and time period.

Country 1978-1984 1985-1989 1990-1994 1995-1999 2000-2004 2005-2009 Total

AT 213 226 316 328 543 752 2,379
AU 157 173 204 340 487 413 1,774
BE 171 148 202 378 442 422 1,763
CA 170 259 266 671 966 993 3,325
CH 654 609 563 766 780 896 4,269
CZ 1 1 5 11 32 70 120
DE 4,544 3,829 3,555 5,303 7,421 8,394 33,046
DK 69 130 238 448 546 939 2,371
ES 30 32 91 170 278 651 1,252
FI 45 92 185 224 274 348 1,168
FR 1,630 1,619 1,512 1,900 2,101 2,670 11,433
GB 1,323 1,260 1,046 1,592 1,788 1,572 8,581
GR 5 9 26 23 26 51 140
HU 64 40 27 32 27 42 232
IE 7 14 6 36 60 121 244
IT 341 515 471 612 1,080 1,364 4,383
JP 1,647 2,628 3,195 5,934 10,043 10,082 33,528
LU 10 3 7 18 15 32 84
NL 615 634 656 1,008 1,439 1,542 5,894
NO 35 45 68 130 206 327 810
NZ 9 18 20 48 72 68 236
PT 1 7 7 9 16 49 88
SE 415 255 373 481 505 633 2,663
SK 0 0 1 8 19 18 45
TR 2 2 1 5 14 39 63
US 5,849 6,628 7,362 12,324 13,341 9,824 55,328
Total 18,004 19,177 20,405 32,798 42,521 42,314 175,220

Note: The country codes represent Austria (AT), Australia (AU), Belgium (BE), Canada (CA),
Switzerland (CH), Czech Republic (CZ), Germany (DE), Denmark (DK), Spain (ES), Finland (FI),
France (FR), United Kingdom (GB), Greece (GR), Hungary (HU), Ireland (IE), Italy (IT), Japan
(JP), Luxembourg (LU), Netherlands (NL), Norway (NO), New Zealand (NZ), Portugal (PT), Sweden
(SE), Slovakia (SK), Turkey (TR), and United States (US).

A huge number of patent applications is related to biofuels, EET and EEO. In contrast,
the number of patent applications in ocean energy is rather low. Furthermore, for all
technologies, we observe an increase in patent activities over time. However, the growth
paths di↵er substantially. For example, for biofuels and fuel cells, we see a significant
increase during the 1990s. After that, patent activities begin to decrease. A completely
di↵erent picture emerges for wind and solar energy. Here, we observe an above-average
growth starting from the mid-1990s, with exceptionally high growth from the mid-2000s.
This result emphasizes the increasing prominence of electricity generation from wind and
solar energy resources over the last two decades.
Energy storage, CCS and geothermal energy have experienced relatively steady growth

but on rather low levels. Apart from di↵erent growth paths, there is also a significant
di↵erence in the level of patent activity between the categories considered. In particular,
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Figure 1: Number of green energy EPO patent applications and number of total EPO patent
applications by 6 major innovators, 1978-2009. Note: The country codes are the
same as in Table 1.

patent activity has grown from about zero to above 1,000 for solar energy and the three
energy e�ciency technologies, while other technologies grew on rather low levels. An
exception is biofuels, which had a high level of patent activity already in 1980.
As the main focus of our analysis is to investigate the impact of energy prices and

technological knowledge on green energy innovation, we include a price index and a
knowledge stock in our model. The price index is drawn from the Energy Prices and
Taxes Database of the IEA (IEA, 2012a). It depicts the country-specific real total energy
end-use price (including taxes) for households and industry with the base year 2005. As
described in Section 2, expected energy prices signal the expected scarcity of energy
in an economy and thus a↵ect the demand for innovation in green energy technologies.
Our energy index is used as a proxy for these expected energy prices. Using di↵erent
energy prices for di↵erent technologies would be preferable. However, technology-specific
price series often show a high amount of missing values. Furthermore, as we have
technology groups covering several sub-technologies, it is not always possible to identify
the appropriate price. Overall, as the index used in this study is a composite of industry
and household prices for oil products, coal, natural gas and electricity, it is expected to be
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Figure 2: Total number of EPO patent applications of 26 OECD countries by green energy
technology, 1978-2009. Note: EEBAE: Energy e�ciency in residential and commer-
cial buildings, appliances and equipment; EET: Energy e�ciency in transport; EEO:
Other energy e�ciency; CCS: Carbon capture and storage.

a reliable proxy for the average development of energy prices.3 Comparable indices have
been used in a number of other studies (see, e.g., Popp, 2002; Verdolini and Galeotti,
2011).
Figure 3 displays the average real total energy end-use price index for households

and industry among the 26 OECD countries in the database from 1978 to 2009. After
a peak in the early 1980s (following the oil crises of the 1970s), a rough decrease in
the energy price index is seen until the late 1990s. From then on, the index almost
continuously increases. In 2008, it indicates an increase in the total energy end-use price
of approximately 15%, relative to the base year 2005. A similar pattern can be observed
for the vast majority of the country-specific indices.4

The knowledge stock is constructed using the perpetual inventory method following
Cockburn and Griliches (1988) and Peri (2005). Basically, the technology-specific knowl-
edge stock is obtained by counting all patents which have accumulated for the respective
technology in a country up to a certain year. The technology-specific knowledge avail-

3 In fact, the development of the individual energy price time series for the years and countries where
detailed data are available is very similar to the development of the utilized composite index.

4 The country-specific price indices are provided in the appendix (Figure A5).
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Figure 3: Average real total energy end-use price for households and industry among 26 OECD
countries (index: 2005=100), 1978-2009.

able to researchers and inventors in each country and year is then represented by the
end-of-period stock, which covers all patents accumulated up to the previous year.
The end-of-period knowledge stock Kijt�1 for technology j = 1, ...,M in country

i = 1, ..., N and year t = 1, ..., T is calculated as

Kijt�1 = PATijt�1 + (1� �)Kit�2, (3)

where PATijt�1 is the number of patent applications and � is a depreciation rate that
accounts for the fact that knowledge becomes obsolete as time goes by. The rate of
depreciation is set to 10%, which is consistent with other applications in the patent
and R&D literature (see, e.g., Verdolini and Galeotti (2011)). The initial knowledge
stock Kijt0 is given by Kijt0 = PATijt0/(� + g), where PATijt0 is the number of patent
applications in 1978, the first year observed. The growth rate g is the pre-1978 growth
in knowledge stock, assumed to be 15%, and � again represents depreciation of 10%.5

In addition to the price, knowledge stock and total patents variables, we also include
a variable reflecting publicly funded research, development and demonstration expen-
ditures. The data is drawn from the Energy Technology Research and Development

5 Note that our empirical analysis is conducted for the time span 1983-2009. Thus, the influence of
any inaccuracies that may be inherent in the way in which the initial knowledge stock is calculated
is rather small.
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Database of the IEA (IEA, 2012b) and contains the annual national government expen-
ditures on energy research, development and demonstration disaggregated by technology
in million constant US dollars at 2011 prices.

4 Model specification

As we measure green energy innovation by patent counts, we use count data techniques
in our econometric approach. A standard Poisson regression model for panel data takes
the following exponential form:

yit = exp(x0
it� + ⌘i) + uit, (4)

where yit is a non-negative integer count variable, x0
it is a vector of explanatory variables,

⌘i is a unit-specific fixed e↵ect and uit is a standard error term. The subscripts i =
1, ..., N and t = 1, ..., T denote the observation unit and time, respectively.
It should be noted that the values of our dependent variable, the fractional counts

of patent applications, are not necessarily integers. That is, strictly speaking, our de-
pendent variable is not count data. However, as noted by Silva and Tenreyro (2006)
and Wooldridge (2002), the dependent variable does not have to be an integer for the
Poisson estimator to be consistent. An alternative approach used in a number of empir-
ical studies is the estimation of a log-linear model by ordinary least squares. However,
this approach can not handle zero values in the data and hence would be unnecessarily
restrictive. For this reason, Silva and Tenreyro (2006) strongly recommend a Poisson
specification for a non-negative continuous dependent variable with zero values.
Following this recommendation, our baseline model can be defined as

PATijt = exp(�P ln Pit�1 + �K lnKijt�1 + �R&D lnR&Dijt�1

+ �TPAT ln TPATit�1 + �t Tt + ⌘i) + uit,
(5)

where PATijt is the fractional patent count for technology j in country i and time t, P is
a price index, K represents the end-of-period knowledge stock as defined in Equation 3,
R&D denotes publicly funded expenditures on research, development and demonstra-
tion, TPAT is the fractional patent count of all patent applications, T represents a time
trend, ⌘i is a unit-specific fixed e↵ect and uit is a standard error term. The independent
variables Pit, R&Dijt and TPATit are lagged by one year in order to mitigate any reverse
causality problems.
Another econometric issue that needs to be addressed is the dynamic character of our

model. As defined in Section 3, our knowledge stock variable is a function of the lagged
dependent variable. This path dependence violates the assumption of strict exogeneity
of all regressors required by the traditional fixed e↵ect count data estimator developed
by Hausman et al. (1984).
To account for this problem of predetermined (i.e., weakly exogeneous) regressors in

dynamic count data models, Blundell et al. (1995, 2002) propose an alternative estima-
tor: the pre-sample mean scaling (PSM) estimator. This estimator relaxes the strict
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exogeneity assumption by modeling the unit-specific fixed e↵ects via pre-sample infor-
mation on the dependent variable. Following this approach, the unit-specific fixed e↵ects
in Equation 5 are defined as

⌘i = ✓

¯
PAT ip, (6)

where ¯
PAT ip = (1/TP )

PTP�1
r=0 PATi,0�r is the PSM of patent applications by country

i, TP is the number of pre-sample observations and ✓ is an unknown parameter to be
estimated.
Another alternative to estimate dynamic count data models with predetermined re-

gressors is the quasi-di↵erenced generalized method of moments (GMM) estimator de-
veloped by Chamberlain (1992) and Wooldridge (1997). However, as noted by Blundell
et al. (2002), a well-known problem of this estimator is that it can be severely biased. In
particular, when the sample is small and the regressors are highly persistent over time,
the lagged values of the predetermined regressors can be weak predictors of the future.
Conducting Monte Carlo simulations, Blundell et al. (2002) show that the PSM scal-

ing estimator outperforms the quasi-di↵erenced GMM estimator in almost all settings.
Furthermore, while formally shown to be consistent for a large number of pre-sample
periods only, it outperforms the quasi-di↵erenced GMM estimator even in the case of
only four pre-sample observations. We therefore follow Blundell et al. (1995, 2002) and
build our empirical model on the PSM scaling estimator as defined in Equations 5 and
6.

5 Results

5.1 Baseline results

Our baseline results are presented in Table 2. As the explanatory variables enter the
estimations in log form, the estimated coe�cients can be interpreted as elasticities. We
estimate our model for each technology separately as well as for all technologies together.
As shown, the results di↵er significantly between the technologies, which strongly sup-
ports our approach of a technology-specific analysis. The observed di↵erences can be
explained by the di↵erent application areas, cost structures as well as maturity levels
of the technologies. Nevertheless, one common result for all technologies is the positive
impact of the knowledge stock on patent applications. The corresponding coe�cients
are positive and statistically significant at the 1% level in all models. The estimated
elasticities between 0.534 and 1.020 suggest that, depending on the technology, a 10%
increase in knowledge stock is associated with a 5.3 to 10.2% increase in patent activities.
This finding is consistent with previous research (see, e.g., Popp, 2002; Verdolini and
Galeotti, 2011) and in line with the technology-push hypothesis stating that innovation
is induced by advances in the technological capability of an economy.
A completely di↵erent picture emerges for our second focus of interest, the impact of

energy prices or demand-pull e↵ects on innovation activities. Here, our results reveal
significant di↵erences among the technologies. The coe�cient for the energy price is
positive and statistically significant for solar, ocean, geothermal energy and CCS only.
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Table 2: Estimated coe�cients of the PSM Poisson model. Estimation time span: 1983-2009.
Dependent variable: Number of patent applications at the EPO.

EEBAE EET EEO Solar Wind Ocean

Energy pricet�1

(log)
�0.559 0.205 0.059 1.115⇤⇤⇤ �0.180 0.612⇤

(0.350) (0.179) (0.166) (0.150) (0.496) (0.348)

Knowledge stockt�1

(log)
0.930⇤⇤⇤ 1.011⇤⇤⇤ 0.534⇤⇤⇤ 0.640⇤⇤⇤ 0.884⇤⇤⇤ 0.743⇤⇤⇤

(0.095) (0.067) (0.079) (0.080) (0.069) (0.128)

Public R&Dt�1

(log)
�0.002 �0.004 �0.001 0.036 0.187⇤⇤⇤ 0.072

(0.011) (0.011) (0.008) (0.051) (0.042) (0.063)

Total patentst�1

(log)
0.316⇤⇤ 0.185⇤⇤⇤ 0.558⇤⇤⇤ 0.497⇤⇤⇤ �0.049 �0.002

(0.145) (0.058) (0.075) (0.133) (0.060) (0.098)

Time trend
�0.026⇤⇤ �0.036⇤⇤⇤ �0.039⇤⇤⇤ 0.013⇤⇤ 0.059⇤⇤⇤ 0.030⇤⇤⇤

(0.012) (0.007) (0.006) (0.006) (0.007) (0.010)

Constant
0.029 �2.706⇤⇤⇤ �2.642⇤⇤⇤ �1.917⇤⇤⇤ �1.228⇤ �4.349

(2.170) (0.950) (0.727) (1.137) (2.244) (1.595)

Observations 518 517 517 534 518 462

Biofuels Geothermal Fuel cells CCS Storage All

Energy pricet�1

(log)
�0.638⇤ 0.370⇤⇤ 1.730 0.563⇤⇤⇤ 0.026 0.086

(0.380) (0.145) (1.847) (0.215) (0.250) (0.165)

Knowledge stockt�1

(log)
0.749⇤⇤⇤ 0.793⇤⇤⇤ 0.948⇤⇤⇤ 1.020⇤⇤⇤ 0.732⇤⇤⇤ 1.013⇤⇤⇤

(0.130) (0.117) (0.207) (0.068) (0.081) (0.032)

Public R&Dt�1

(log)
0.100⇤⇤⇤ 0.050 0.024 �0.057⇤⇤ 0.048 0.017⇤

(0.024) (0.043) (0.068) (0.023) (0.035) (0.010)

Total patentst�1

(log)
0.371⇤⇤⇤ 0.215⇤⇤⇤ 0.017 �0.015 0.510⇤⇤⇤ 0.138⇤⇤⇤

(0.107) (0.069) (0.212) (0.047) (0.137) (0.022)

Time trend
�0.058⇤⇤⇤ 0.006 �0.218⇤⇤ �0.024⇤⇤⇤ �0.018⇤ �0.036⇤⇤⇤

(0.007) (0.009) (0.088) (0.005) (0.010) (0.006)

Constant
1.232 �4.351⇤⇤⇤ �3.011 �3.436⇤⇤⇤ �4.062⇤⇤⇤ �1.856⇤⇤

(1.673) (0.735) (5.785) (1.052) (1.523) (0.848)

Observations 523 503 114 485 519 5210

Notes: All models control for unit-specific fixed e↵ects by using PSM information on the first
5 years available (1978-1982). Robust standard errors clustered by country (Model EEBAE - Storage)
and by country-technology (Model All) are in parentheses. ***, ** and *: Significant at the 1%-, 5%-,
and 10%-level. EEBAE: Energy e�ciency in residential and commercial buildings, appliances and
equipment; EET: Energy e�ciency in transport; EEO: Other energy e�ciency; CCS: Carbon capture
and storage.

12



The strongest impact is observed for solar energy, indicating a price elasticity higher than
1. This finding is in accordance with Johnstone et al. (2010), who also find a significant
positive e↵ect of the energy price on patent activities in solar energy. Furthermore, also
in common with Johnstone et al. (2010), we do not find any e↵ect of the energy price
on patent activities in wind energy. For the other two technologies, however, our results
di↵er from those of Johnstone et al.. While Johnstone et al. (2010) do not find any
e↵ect of the energy price on patent activities in geothermal or ocean energy, our results
indicate a positive e↵ect. However, the estimated coe�cient for ocean energy is only
significant at the 10% level.
Interestingly enough, for biofuels, we observe a statistically significant negative coef-

ficient for the energy price; however, again only at the 10% level. Finally, for the three
energy e�ciency technologies, we do not find any significant impact of the energy price
on patent activities.
Referring to public R&D expenditures, the estimated coe�cients indicate either no

or just a minor impact of public R&D expenditures on patent activities. A statistically
significant impact of public R&D expenditures is shown for wind energy, biofuels and
CCS only. Among these, the highest elasticity can be observed for wind energy. The
estimated elasticity of 0.187 suggests that a 10% increase in public R&D expenditures
results in an approximate 1.9% increase in patent activities. This result is consistent
with Klaassen et al. (2005), who find that public R&D plays a key role in inducing
cost-reducing wind energy innovations in Europe. In contrast, the estimated negative
elasticity of public R&D expenditures for CCS indicates a decrease in patent activi-
ties when public R&D expenditures increase. As noted by Popp (2002), such a result
may be driven by a crowding-out e↵ect of public R&D expenditures on private R&D
expenditures.6

The estimation results for our control variable total patents are generally as expected.
For 7 of the 11 technologies, we find a statistically significant and positive coe�cient, sug-
gesting that for the majority of green energy technologies, patent activities are a↵ected
by the overall propensity to patent. This is also confirmed by the highly statistically
significant and positive coe�cient for total patents in the model including all technolo-
gies. Only for wind energy, ocean energy, fuel cells and CCS do overall patent activities
seem to have no impact on the technology-specific patent activities.
In order to account for the development of green energy innovation activities over time,

we also add a time trend to our estimations. Here, we observe a statistically significant
negative time trend for 7, a statistically significant positive time trend for 3 and a
statistically insignificant time trend for 1 of the 11 technologies. A negative time trend
suggests diminishing returns to R&D activities or, in other words, more di�culties in
developing new innovations. As new innovations are more di�cult for relatively mature

6 As noted before, we lag the R&D variable by one year in order to mitigate any reverse causality
problems. This approach also accounts for the fact that R&D e↵orts do not immediately lead to
innovative output (Hall et al., 1986). In order to test the sensitivity of the R&D results to other lag
structures, we re-estimate the baseline model from Table 2 with public R&D expenditures lagged
two, three and four years. Overall, the results are robust to these alternative specifications.
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technologies, the di↵erent signs of the time coe�cients point to di↵erent maturity levels
of the technologies.

5.2 Robustness tests

In order to test the sensitivity of our baseline results, we conduct a number of robustness
tests. First, we repeat the estimations in Table 2 with di↵erent dynamic specifications
for the energy price. More specifically, we re-estimate our baseline model with the energy
price lagged two years, three years and with a moving average of past energy prices over
five years. The estimated coe�cients for the alternative energy prices as well as for the
one-year lagged energy price used in our baseline model are depicted in Table 3.

Table 3: Di↵erent dynamic specifications for the energy price. Estimation time span: 1983-
2009. Dependent variable: Number of patent applications at the EPO.

EEBAE EET EEO Solar Wind Ocean

Energy pricet�1 (log) �0.559 0.205 0.059 1.115⇤⇤⇤ �0.180 0.612⇤

(0.350) (0.179) (0.166) (0.150) (0.496) (0.348)

Energy pricet�2 (log) �0.481 0.340⇤⇤ 0.085 1.198⇤⇤⇤ �0.015 0.577

(0.346) (0.148) (0.144) (0.165) (0.526) (0.365)

Energy pricet�3 (log) �0.366 0.353⇤⇤ 0.138 1.209⇤⇤⇤ 0.007 0.610⇤⇤⇤

(0.311) (0.164) (0.130) (0.182) (0.535) (0.227)

Energy priceMA (log) �0.411 0.344⇤ 0.119 1.275⇤⇤⇤ 0.006 0.526⇤

(0.363) (0.182) (0.154) (0.169) (0.617) (0.295)

Biofuels Geothermal Fuel cells CCS Storage All

Energy pricet�1 (log) �0.638⇤ 0.370⇤⇤ 1.730 0.563⇤⇤⇤ 0.026 0.086

(0.380) (0.145) (1.847) (0.215) (0.250) (0.165)

Energy pricet�2 (log) �0.552 0.382⇤⇤⇤ 0.600 0.703⇤⇤⇤ 0.148 0.159

(0.368) (0.128) (1.186) (0.127) (0.224) (0.146)

Energy pricet�3 (log) �0.528⇤ 0.322⇤⇤ 1.413 0.818⇤⇤⇤ 0.253 0.211⇤

(0.307) (0.145) (0.991) (0.105) (0.231) (0.118)

Energy priceMA (log) �0.714⇤ 0.375⇤⇤ 3.369⇤⇤ 0.805⇤⇤⇤ 0.216 0.179

(0.405) (0.152) (0.145) (0.145) (0.259) (0.144)

Notes: Estimations are based on the same specification as in Table 2. To conserve space only
the coe�cients for the di↵erent energy prices are presented. The complete tables are available from
the authors upon request. Robust standard errors clustered by country (Model EEBAE - Storage) and
by country-technology (Model All) are in parentheses. ***, ** and *: Significant at the 1%-, 5%-, and
10%-level. Energy priceMA: Moving average of the energy prices of the previous five years. EEBAE:
Energy e�ciency in residential and commercial buildings, appliances and equipment; EET: Energy
e�ciency in transport; EEO: Other energy e�ciency; CCS: Carbon capture and storage.

Overall, the estimated coe�cients are very similar for all specifications. Only for EET,
ocean energy and fuel cells do we see some notable changes in statistical significance or
magnitude. With an increasing time lag between energy prices and patent activities, the
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price coe�cients for EET become statistically significant. Thus, it seems that energy
prices from two or more years prior have a positive impact on patent activities in trans-
port energy e�ciency. A similar e↵ect can be observed for fuel cells, with the moving
average of past energy prices being statistically significant at the 1% level. For ocean
energy, however, the results remain ambiguous. While the highly statistically significant
coe�cient for the three-year lagged price indicates a positive price e↵ect, the other price
coe�cients are either insignificant or only significant at the 10% level.
The second robustness test we conduct is the utilization of di↵erent depreciation rates

in the calculation of the end-of-period knowledge stock. Table 4 reports the estimated
knowledge stock coe�cients for depreciation rates of 5%, 10% (as used in the baseline
model depicted in Table 2), 15% and 20%. For all specifications, the coe�cients are
positive and highly statistically significant at the 1% level. Furthermore, the magnitude
of the coe�cients is very similar within each technology. Thus, our baseline result saying
that the knowledge stock is a significant driver of patent activities in all technologies is
robust to di↵erent assumptions on the depreciation rate.
Another robustness test is conducted by limiting our sample to the time span 1998-

2009. The reasoning for this is twofold: First, we observe a significant growth in green
energy patent applications within the latter periods of our sample. Hence, our results
may be influenced, in particular, by developments in these periods. Second, a shorter
sample period implies a longer pre-sample period that can be used to calculate the PSM
information. By choosing the cut-o↵ year 1998, we increase the number of pre-sample
periods from 5 to 20 years.
Furthermore, 1998 is the first year after the Kyoto protocol was signed. The Kyoto

protocol was the first international agreement among the world’s industrialized coun-
tries that aimed to reduce air-polluting greenhouse gas emissions via a legally-binding
commitment. Even though the protocol did not come into force until 2005, it can be in-
terpreted as a first indicator towards a more green energy-oriented policy. This change of
future policy expectations may have a↵ected the development of green energy innovation
in the years following (see Johnstone et al., 2010).7

Table 5 reports the results of our short-term model with the estimation time span 1998-
2009. Still, for all technologies, the knowledge stock seems to be a major driver of green
energy innovation. Moreover, for most technologies, the magnitude of the corresponding
coe�cient is much higher than in our baseline estimations. The most pronounced impact
is shown for fuel cells, with an estimated elasticity of 1.378. This value indicates that
a 10% increase in knowledge stock is associated with an approximately 14% increase in
patent activities.
For the energy price, a more diversified picture is shown. In fact, we observe a number

of significant changes compared to the results of our baseline model depicted in Table 3.
While the formerly statistically significant price coe�cients for ocean energy, biofuels

7 The signature of the Kyoto protocol may not be the only factor that changed the development of
green energy innovation in these years. Other political and economic reasons might be, for instance,
the rise of China and India or the liberalization of the European energy markets. Nevertheless, since
the Kyoto protocol marks a substantial break in international environmental policy, the Kyoto-
argumentation seems to be the most plausibel one in this context.
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Table 4: Di↵erent depreciation rates for the knowledge stock. Estimation time span: 1983-
2009. Dependent variable: Number of patent applications at the EPO.

EEBAE EET EEO Solar Wind Ocean

Knowledge stockt�1,
� = 0.05 (log)

0.952⇤⇤⇤ 1.055⇤⇤⇤ 0.522⇤⇤⇤ 0.641⇤⇤⇤ 0.941⇤⇤⇤ 0.741⇤⇤⇤

(0.107) (0.079) (0.083) (0.091) (0.071) (0.156)

Knowledge stockt�1,
� = 0.10 (log)

0.930⇤⇤⇤ 1.011⇤⇤⇤ 0.534⇤⇤⇤ 0.640⇤⇤⇤ 0.884⇤⇤⇤ 0.743⇤⇤⇤

(0.095) (0.067) (0.079) (0.080) (0.069) (0.128)

Knowledge stockt�1,
� = 0.15 (log)

0.915⇤⇤⇤ 0.980⇤⇤⇤ 0.547⇤⇤⇤ 0.638⇤⇤⇤ 0.844⇤⇤⇤ 0.718⇤⇤⇤

(0.086) (0.060) (0.075) (0.070) (0.070) (0.113)

Knowledge stockt�1,
� = 0.20 (log)

0.904⇤⇤⇤ 0.958⇤⇤⇤ 0.560⇤⇤⇤ 0.635⇤⇤⇤ 0.814⇤⇤⇤ 0.684⇤⇤⇤

(0.079) (0.055) (0.072) (0.063) (0.071) (0.105)

Biofuels Geothermal Fuel cells CCS Storage All

Knowledge stockt�1,
� = 0.05 (log)

0.804⇤⇤⇤ 0.836⇤⇤⇤ 0.948⇤⇤⇤ 1.063⇤⇤⇤ 0.738⇤⇤⇤ 1.069⇤⇤⇤

(0.138) (0.133) (0.229) (0.087) (0.094) (0.039)

Knowledge stockt�1,
� = 0.10 (log)

0.749⇤⇤⇤ 0.793⇤⇤⇤ 0.948⇤⇤⇤ 1.020⇤⇤⇤ 0.732⇤⇤⇤ 1.013⇤⇤⇤

(0.130) (0.117) (0.207) (0.068) (0.081) (0.032)

Knowledge stockt�1,
� = 0.15 (log)

0.723⇤⇤⇤ 0.746⇤⇤⇤ 0.949⇤⇤⇤ 0.977⇤⇤ 0.720⇤⇤⇤ 0.980⇤⇤⇤

(0.124) (0.107) (0.191) (0.063) (0.072) (0.028)

Knowledge stockt�1,
� = 0.20 (log)

0.716⇤⇤⇤ 0.702⇤⇤⇤ 0.950⇤⇤⇤ 0.938⇤⇤⇤ 0.704⇤⇤⇤ 0.960⇤⇤⇤

(0.118) (0.101) (0.179) (0.065) (0.067) (0.025)

Notes: Estimations are based on the same specification as in Table 2. To conserve space only
the coe�cients for the di↵erent knowledge stocks are reported. The complete tables are available from
the authors upon request. Robust standard errors clustered by country (Model EEBAE - Storage)
and by country-technology (Model All) are in parentheses. ***, ** and *: Significant at the 1%-, 5%-,
and 10%-level. EEBAE: Energy e�ciency in residential and commercial buildings, appliances and
equipment; EET: Energy e�ciency in transport; EEO: Other energy e�ciency; CCS: Carbon capture
and storage.

and CCS are now insignificant, the respective coe�cients for EET and energy storage
become significant. Furthermore, the magnitude of the still positive and statistically
significant price coe�cients for solar and geothermal energy is much higher than before.
Referring to the other variables, public R&D, total patents and the time trend the

results of the short-term model are in general in line to those obtained from the baseline
model. Still, public R&D expenditures seem to have only a minor impact on patent
activities. However, compared to our baseline model indicating a statistically significant
and positive impact of public R&D on patent activities for wind energy and biofuels only,
we now observe a statistically significant and positive impact of public R&D for two more
technologies, namely EEBAE and energy storage. Furthermore, in spite of some changes
in significance, the estimated coe�cients for total patents and the time trend again
suggest a positive impact of the overall propensity to patent and diminishing returns to
R&D activities over time on green energy patent activities for most technologies.
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Table 5: Estimated coe�cients of the PSM Poisson model. Estimation time span: 1998-2009.
Dependent variable: Number of patent applications at the EPO.

EEBAE EET EEO Solar Wind Ocean

Energy pricet�1

(log)
0.376 0.766⇤ 0.163 1.735⇤⇤⇤ 0.721 �1.158

(0.750) (0.429) (0.389) (0.480) (0.592) (0.795)

Knowledge stockt�1

(log)
1.362⇤⇤⇤ 1.260⇤⇤⇤ 0.816⇤⇤⇤ 1.005⇤⇤⇤ 0.955⇤⇤⇤ 1.015⇤⇤⇤

(0.092) (0.111) (0.200) (0.085) (0.071) (0.154)

Public R&Dt�1

(log)
0.054⇤⇤⇤ 0.008 �0.020⇤⇤ �0.010 0.194⇤⇤⇤ 0.069

(0.016) (0.008) (0.010) (0.040) (0.053) (0.072)

Total patentst�1

(log)
�0.067 0.040 0.496⇤⇤⇤ 0.485⇤⇤⇤ �0.132⇤⇤ �0.048

(0.198) (0.074) (0.154) (0.127) (0.054) (0.095)

Time trend
�0.134⇤⇤⇤ �0.084⇤⇤⇤ �0.054⇤⇤⇤ �0.053⇤⇤ �0.016 0.072⇤⇤

(0.029) (0.022) (0.018) (0.022) (0.020) (0.036)

Constant
0.467 �3.104 �2.102 �9.407⇤⇤⇤ �2.805 2.564

(3.638) (1.906) (1.744) (2.109) (2.502) (3.183)

Observations 241 240 241 248 243 225

Biofuels Geothermal Fuel cells CCS Storage All

Energy pricet�1

(log)
0.251 1.536⇤⇤⇤ 1.398 0.093 1.080⇤⇤⇤ 0.529⇤⇤

(0.158) (0.239) (1.907) (0.499) (0.317) (0.234)

Knowledge stockt�1

(log)
0.824⇤⇤⇤ 0.817⇤⇤⇤ 1.378⇤⇤⇤ 0.916⇤⇤⇤ 0.369⇤⇤ 1.235⇤⇤⇤

(0.269) (0.184) (0.139) (0.189) (0.165) (0.083)

Public R&Dt�1

(log)
0.129⇤⇤ 0.066 0.029 �0.033 0.089⇤⇤⇤ 0.012

(0.059) (0.040) (0.050) (0.023) (0.029) (0.012)

Total patentst�1

(log)
0.277⇤⇤⇤ 0.277⇤⇤⇤ 0.281⇤ �0.104⇤⇤ 0.011 0.139⇤⇤⇤

(0.073) (0.101) (0.160) (0.046) (0.097) (0.026)

Time trend
�0.154⇤⇤⇤ �0.037 �0.218⇤⇤ �0.014 �0.035⇤⇤ �0.096⇤⇤⇤

(0.022) (0.024) (0.087) (0.023) (0.014) (0.015)

Constant
0.648 �8.598⇤⇤⇤ �2.850 �0.728 �5.727⇤⇤⇤ �1.649

(0.709) (1.355) (6.244) (2.114) (1.761) (1.208)

Observations 247 229 114 236 242 2506

Notes: All models control for unit-specific fixed e↵ects by using PSM information on the first
20 years available (1978-1997). Robust standard errors clustered by country (Model EEBAE - Storage)
and by country-technology (Model All) are in parentheses. ***, ** and *: Significant at the 1%-, 5%-,
and 10%-level. EEBAE: Energy e�ciency in residential and commercial buildings, appliances and
equipment; EET: Energy e�ciency in transport; EEO: Other energy e�ciency; CCS: Carbon capture
and storage.
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Our last robustness test deals with the observed di↵erences between the estimated
price coe�cients in our short-term and our baseline models (see Tables 2 and 5). In
order to obtain a more comprehensive picture and to check whether these di↵erences are
only related to the usage of a one-year lagged energy price specification, we re-estimate
our short-term model with di↵erent dynamic specifications for the energy price (as done
before for the baseline model, see Table 3). The results are shown in Table 6.

Table 6: Di↵erent dynamic specifications for the energy price. Estimation time span: 1998-
2009. Dependent variable: Number of patent applications at the EPO.

EEBAE EET EEO Solar Wind Ocean

Energy pricet�1 (log) 0.376 0.766⇤ 0.163 1.735⇤⇤⇤ 0.721 �1.158

(0.750) (0.429) (0.389) (0.480) (0.592) (0.791)

Energy pricet�2 (log) 0.379 1.125⇤⇤⇤ 0.151 1.728⇤⇤⇤ 1.002⇤ �1.273

(0.690) (0.266) (0.339) (0.458) (0.553) (0.916)

Energy pricet�3 (log) 0.597 1.095⇤⇤⇤ 0.331 1.662⇤⇤⇤ 0.891⇤ �0.742

(0.493) (0.319) (0.292) (0.468) (0.486) (0.661)

Energy priceMA (log) 0.766 1.155⇤⇤⇤ 0.342 1.879⇤⇤⇤ 1.227⇤⇤ �1.394

(0.554) (0.333) (0.328) (0.429) (0.607) (0.916)

Biofuels Geothermal Fuel cells CCS Storage All

Energy pricet�1 (log) 0.251 1.536⇤⇤⇤ 1.398 0.093 1.080⇤⇤⇤ 0.529⇤⇤

(0.158) (0.239) (1.907) (0.499) (0.317) (0.234)

Energy pricet�2 (log) 0.320⇤⇤ 1.479⇤⇤⇤ �0.366 0.624⇤ 1.166⇤⇤⇤ 0.650⇤⇤⇤

(0.133) (0.238) (1.057) (0.334) (0.277) (0.196)

Energy pricet�3 (log) 0.832⇤⇤⇤ 1.457⇤⇤⇤ 0.453 1.094⇤⇤⇤ 1.151⇤⇤⇤ 0.848⇤⇤⇤

(0.190) (0.252) (0.958) (0.283) (0.326) (0.169)

Energy priceMA (log) 0.979⇤⇤⇤ 1.757⇤⇤⇤ 1.858 0.941⇤⇤ 1.181⇤⇤⇤ 0.886⇤⇤⇤

(0.361) (0.297) (1.562) (0.420) (0.353) (0.194)

Notes: Estimations are based on the same specification as in Table 5. To conserve space only
the coe�cients for the di↵erent knowledge stocks are reported. The complete tables are available from
the authors upon request. Robust standard errors clustered by country (Model EEBAE - Storage)
and by country-technology (Model All) are in parentheses. ***, ** and *: Significant at the 1%-, 5%-,
and 10%-level. EEBAE: Energy e�ciency in residential and commercial buildings, appliances and
equipment; EET: Energy e�ciency in transport; EEO: Other energy e�ciency; CCS: Carbon capture
and storage.

First of all, it can be seen that all estimated price coe�cients in the model including
all technologies are positive and statistically significant at the 1% level. In our baseline
model, we observe a positive impact of the energy price on patent activities in green
energy technologies only for the three-year lagged price and just at a 10% level of sig-
nificance. This finding, together with the other observed di↵erences in the estimates
of our baseline and short-term models, point to the fact that, at least for some green
energy technologies, the development of patent activities changed significantly in the
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post-Kyoto period. With the number of green energy patents rapidly increasing within
this period, our results for the knowledge stock and for the energy price suggest that
both technology-push e↵ects and demand-pull e↵ects gain a more pronounced impact
on patent activities in this period.
Nevertheless, while this observation holds for all technologies in the case of technology-

push e↵ects, demand-pull e↵ects seem to a↵ect only some technologies. With at least
three of the four energy price specifications tested being statistically significant, the
results in Table 6 clearly indicate a positive impact of the energy price on patent activities
in 7 of the 11 technologies, namely EET, solar energy, wind energy, biofuels, geothermal
energy, CCS and energy storage. In our baseline model, this is only the case for 4
technologies: EET, solar energy, geothermal energy and CCS.
Referring to the magnitude of the estimated price coe�cients, some other interest-

ing results are obtained from our short-term model estimations. For EET, solar and
geothermal energy, the magnitude of the price coe�cients is much higher in the short-
term model than in the baseline model. Moreover, for solar and geothermal energy,
the price coe�cients are much higher than the knowledge stock coe�cients, indicating
that the energy price for these technologies is the main driver of patent activities in the
post-Kyoto period.
A similar result can be observed for energy storage. While the estimated price coef-

ficients are insignificant for all energy price specifications tested in our baseline model,
they are highly statistically significant and positive in our short-term model. More-
over, the magnitude of the price coe�cients is much higher than the magnitude of the
knowledge stock coe�cient.
Overall, these results point to a change in expectations after the Kyoto protocol was

signed. In particular, they suggest that market participants expected green energy-
oriented policies to be pushed forward and energy prices to persistently increase in the
future. Such a development creates more profitable market conditions for green energy
technologies and hence raises patent activities in this area.

6 Conclusions

In this paper, we analyzed the e↵ect of energy prices and technological knowledge on
innovation in green energy technologies. We based our analysis on green energy patent
counts from 26 OECD countries and 11 technologies over the period 1978-2009. Our
contribution to the induced innovation literature is threefold. We investigated demand
and supply determinants of green energy innovation separately for di↵erent technologies.
We used European patent data to consolidate previous results reached on US patent
data. Finally, we estimated a dynamic count data model for panel data using the
PSM scaling estimator proposed by Blundell et al. (1995, 2002). This approach allowed
us to account for path dependencies in knowledge production, endogeneity issues and
unobserved heterogeneity.
Our analysis yields several interesting findings. First of all, our results indicate that

the main determinant of innovation in green energy technologies is the availability of
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technological knowledge. This confirms the technology-push hypothesis, stating that
innovation is induced by advances in the technological capability of an economy. It also
confirms previous results suggesting that inventors build on existing knowledge and “see
further by standing on the shoulders of giants”. Moreover, concerning the demand-pull
hypothesis suggesting energy prices as a major driver of green energy innovation, our
results reveal significant di↵erences across technologies. We find that increasing energy
prices induce innovation in some but not all green energy technologies. This result
supports our approach of a technology-specific analysis. However, even more important
is that we uncovered significant di↵erences comparing the pre- and post-Kyoto period.
More precisely, our results indicate that the e↵ect of both energy prices and technological
knowledge on green energy innovation is stronger after the Kyoto protocol agreement.
This suggests that the general awareness for clean energy generation increased. Finally,
evidence is presented that government R&D plays either no or just a minor role in
inducing green energy innovation.
From our results several policy implications can be drawn. First, the strong evidence

for the technology-push hypothesis suggests that policies should enhance technological
capability to foster green energy innovation. That is, policies should support the gener-
ation and dissemination of fundamental scientific and technological knowledge, promote
investments in complementary infrastructure and enable economies to exploit their exist-
ing knowledge base. Above that, depending on the technology, increasing energy prices
and subsidizing energy R&D can encourage innovation and thus increase the economy’s
stock of knowledge. Second, concerning demand-pull, it seems that energy prices are
not equally suitable to induce innovation in di↵erent technologies. For example, it could
be beneficial to increase energy prices for solar energy, but apparently not for EEBAE.
Accordingly, policy makers aiming to increase energy prices should be aware of these
di↵erences. All together, it may be concluded that distinct technologies have distinct
innovation characteristics and thus di↵erent sets of policies are required to encourage
green energy innovation.
Further research could extend our analysis in two main aspects. On the one hand,

the observed di↵erences across technologies seem to be worth examining in more detail.
On the other hand, a closer analysis of the post-Kyoto period could lead to a deeper
understanding of how this agreement has changed innovators future policy expectations.
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Figure A1: Total number of green energy EPO patent applications of 26 OECD countries,
1978-2009.
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Figure A2: Number of green energy EPO patent applications by country, 1978-2009. Note:
The country codes are the same as in Table 1.
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Figure A5: Real total energy end-use price for households and industry by country (index:
2005=100), 1978-2009. Note: The country codes are the same as in Table 1.
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Table A2: Number of EPO patent applications by green energy technology and time period.

Technology 1978-
1984

1985-
1989

1990-
1994

1995-
1999

2000-
2004

2005-
2009

Total

Biofuels 8,848 8,277 6,442 11,780 10,778 6,488 52,614
CCS 408 542 628 912 1,026 1,184 4,701
Fuel cells 434 465 687 1,792 4,522 3,555 11,455
Geothermal 312 244 357 532 723 1,013 3,181
Ocean 221 166 161 229 383 694 1,853
EEO 3,546 4,938 5,957 6,940 8,213 7,450 37,044
EEBAE 760 925 1,348 2,461 4,741 4,632 14,867
Solar 1,554 1,202 1,492 2,425 3,932 6,684 17,290
Storage 293 367 606 1,331 1,696 2,037 6,330
EET 1,430 1,926 2,576 4,027 5,450 6,229 21,640
Wind 197 123 149 367 1,059 2,348 4,245
Total 18,004 19,177 20,405 32,798 42,521 42,314 175,220

Note: EEBAE: Energy e�ciency in residential and commercial buildings, appliances and equip-
ment; EET: Energy e�ciency in transport; EEO: Other energy e�ciency; CCS: Carbon capture and
storage.
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Table A3: Total number of total EPO patent applications and total number of green energy
EPO patent applications over 1978-2009 by country.

Country Number of
total patents

Relative share
in sum of total

patents

Number of
green energy

patents

Relative share
in sum of green
energy patents

Ratio of green
energy patents
to total patents

AT 27,813 1.19% 2,378 1.36% 8.55%
AU 19,492 0.83% 1,773 1.01% 9.10%
BE 27,320 1.17% 1,763 1.01% 6.45%
CA 35,753 1.53% 3,324 1.90% 9.30%
CH 65,331 2.79% 4,268 2.44% 6.53%
CZ 1,588 0.07% 120 0.07% 7.57%
DE 475,912 20.35% 33,045 18.86% 6.94%
DK 18,896 0.81% 2,370 1.35% 12.55%
ES 17,496 0.75% 1,251 0.71% 7.15%
FI 23,121 0.99% 1,167 0.67% 5.05%
FR 175,655 7.51% 11,433 6.53% 6.51%
GB 131,161 5.61% 8,580 4.90% 6.54%
GR 1,363 0.06% 139 0.08% 10.26%
HU 3,239 0.14% 231 0.13% 7.16%
IE 4,258 0.18% 244 0.14% 5.74%
IT 86,489 3.70% 4,383 2.50% 5.07%
JP 419,708 17.95% 33,527 19.13% 7.99%
LU 1,596 0.07% 84 0.05% 5.29%
NL 67,132 2.87% 5,894 3.36% 8.78%
NO 8,065 0.34% 810 0.46% 10.05%
NZ 2,925 0.13% 235 0.13% 8.05%
PT 1,050 0.04% 87 0.05% 8.37%
SE 48,335 2.07% 2,663 1.52% 5.51%
SK 347 0.01% 45 0.03% 13.08%
TR 1,927 0.08% 63 0.04% 3.29%
US 672,831 28.77% 55,328 31.58% 8.22%
Total 2,338,817 100.00% 175,220 100.00% 7.49%

Note: The country codes are the same as in Table 1.
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