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Regulation of non-marketed outputs and
substitutable inputs∗

Joachim Bertsch and Simeon Hagspiel

Tuesday 1st December, 2015

We study the regulation of a monopolistic firm that provides a non-marketed out-

put based on multiple substitutable inputs. The regulator is able to observe the ef-

fectiveness of the provision, but she faces information asymmetries with respect to

the efficiency of the firm’s activities. Motivated by the example of electricity trans-

mission services, we consider a setting where one input (grid expansion) and the

output (uninterrupted electricity transmission) are observable, while another input

(sophisticated grid operation) and related costs are not. Multi-dimensional informa-

tion asymmetries are introduced by discrete distributions for the functional form of

the marginal rate of substitution between the inputs as well as for the input costs.

For this novel setting, we investigate the theoretically optimal Bayesian regulation

mechanism. We find that the first best solution cannot be obtained in case of shadow

costs of public funding. The second best solution implies separation of the most ef-

ficient type with first best input levels, and upwards distorted (potentially bunched)

observable input levels for all other types. Moreover, we compare these results to

a simpler non-Bayesian approach and hence, bridge the gap between the academic

discussion and regulatory practice. We provide evidence that under certain condi-

tions, a single contract non-Bayesian regulation can indeed get close to the second

best of the Bayesian menu of contracts regulation.
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1 Introduction

Numerous goods and services are provided by regulated firms with a monopolistic status. For

instance, uninterrupted electricity transmission services – being a textbook example of a natural

monopoly – are usually provided by a single firm. Currently, an increasing deployment of re-

newable energy sources leads to substantially changing requirements to secure an uninterrupted

electricity transmission, while multiple substitutable measures may exist to cope with it, such as

grid expansion or sophisticated grid operation.1 Due to the fact that an uninterrupted electricity

transmission is crucial for society, the regulator will be well aware of whether or not it has been

provided effectively.2 In contrast, however, electricity systems are highly complex, such that

interdependent activity levels as well as related cost figures are hard to assess. Hence, it may be

difficult for the regulator to judge the efficiency of the firm’s underlying measures. Technically

speaking, this situation may be seen as a production process involving multiple substitutable

inputs, incorporating two adverse selection problems: First, the regulator may have a hard time

estimating the necessary overall level of the firm’s activity, determined by the marginal rate of

technical substitution (MRTS), i.e., the isoquant function describing the relation of inputs needed

to produce the requested output. Second, the regulator may have difficulties verifying the unit

costs of one or multiple inputs. This multi-dimensional asymmetric information increases the

complexity of finding an adequate regulation.

In theory as well as in practice, problems of information asymmetry between the regulator

and the firm have been tackled by different forms of regulation. Typical approaches in regulatory

practice range from cost-based regulation to widely applied incentive regulation (discussed, e.g.,

in Joskow (2014)), or a linear combination of those two extremes (e.g., Schmalensee (1989)).

For instance, the German regulator offers one single contract to electricity transmission firms,

dependent on grid expansion, which corresponds to a cost-based regulation of capital.3 The

academic discussion has not yet fully covered the specific multi-dimensional problems of asym-

metric information regarding the level and mix of inputs, but more recent theoretical approaches

suggest that the best theoretical solution consists of the regulator offering the firm a menu of con-

tracts, such that the firm reveals her private information (e.g., Laffont and Tirole (1993)). Even

1The German Transmission System Operators estimate the necessary investments into grid reinforcements and
expansion to be around 22 bn. for the period 2013-2022 (Netzentwicklungsplan (2013)), which doubles the
annual figures for 2012 and quadruples the value for 2006 (Monitoringbericht (2013)).

2For instance, in Germany the regulator has defined five observable, quantifiable dimensions for measuring grid
quality.

3In Germany, transmission system operators formulate a network expansion plan for which they get an allowed in-
vestment. In line with economic theory, the chosen levels may be suspected to be inefficiently high (see Footnote
1 for related cost figures). This regulation corresponds to a cost-based regulation for the input factor grid ex-
pansion, while neglecting any other possible input, such as better operational measures. Obviously, this triggers
some sort of Averch-Johnson-effect and leads to suboptimal distortions of the input levels.
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though the dichotomy between such Bayesian models of regulation (which tend to dominate the

academic discussion) and simpler non-Bayesian models (which are closer to regulatory practice)

is well perceived, corresponding explanations are rather vague. For instance, as Armstrong and

Sappington (2007) note, "[...] regulatory plans that encompass options are ’complicated’, and

therefore prohibitively costly to implement".

The goal of this paper is twofold: First, to identify and investigate the optimal Bayesian

regulation for the multi-dimensional problem at hand, and second, to bridge the gap between the

theoretically optimal solution and simpler regimes applied in regulatory practice.

To derive an optimal regulation strategy, we build on the theory of incentives and contract

menus. It is well known that in a simple setting with two types of the firm, the efficient type

is incentivized via a contract with first best (price) levels along with some positive rent, while

the inefficient type’s contract includes prices below the first best and no rent (e.g., Laffont and

Tirole (1993)). This analysis has been extended to represent multiple dimensions of information

asymmetry in terms of adverse selection, e.g., by Lewis and Sappington (1988b), Dana (1993),

Armstrong (1999) or Aguirre and Beitia (2004). While Dana (1993) analyzes a multi-product

environment, Lewis and Sappington (1988b), Armstrong (1999) and Aguirre and Beitia (2004)

consider two-dimensional adverse selection with only one screening variable. Specifically, the

latter three derive optimal regulation strategies in a marketed-good environment (in the sense of

Caillaud et al. (1988)) with unknown cost and demand functions. In our paper, unlike Lewis

and Sappington (1988b) and Armstrong (1999), we consider shadow costs of public funding

instead of distributional welfare preferences. Despite technical differences, this is largely in line

with the analysis of Aguirre and Beitia (2004).4 However, in contrast to all these papers, we

solve the two-dimensional adverse selection problem for a non-marketed good environment and

a production process that involves two substitutable inputs with an uncertain isoquant and input

factor costs.5

For the novel setting of multi-dimensional inputs and a non-marketed output, we are able

to confirm the general insights from the above literature. We find that expected social welfare

necessarily includes positive rents for some types of the firm, such that the first best solution

cannot be achieved. While the efficient type is always set to first best input levels, the other

contracts’ (observable) input levels are distorted upwards.6 Separation of at least three types is

4Aguirre and Beitia (2004) show the difference between shadow costs of public funding and distributional welfare
preferences based on a model with continuous probability distribution, while we assume a discrete distribution.

5Noticeably, with the (discrete) two-dimensional adverse selection problem, our problem setting is technically
closest to the model discussed by Armstrong (1999).

6Upwards distorted observable input levels coincide with upwards distorted prices for the inefficient type as shown
in Laffont and Tirole (1993). They also agree with the results in a setting with unknown cost and demand
functions as long as shadow costs of public funding are considered (Aguirre and Beitia (2004)). Noticeably, the
case of prices below marginal costs, as found in Lewis and Sappington (1988b) and Armstrong (1999), is mainly
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always possible, while bunching of two types may be unavoidable in case of a very asymmetric

distribution of costs or very flat isoquants.

We compare the obtained optimal Bayesian regulation to the results of a non-Bayesian reg-

ulation that we obtain by restricting our regulation problem to one single contract. We find

that despite the general inferiority a non-Bayesian cost-based regulatory regime may indeed be

close to the optimal Bayesian solution for specific circumstances. This especially holds true if

the overall input level probably needs to be high, and shadow costs of public funding are large.

Considering current circumstances observed in the electricity sector, i.e., substantial changes

in the supply structure and ongoing intense discussions about grid tariffs, these conditions may

indeed prevail.

The paper is organized as follows: Section 2 introduces the model, Section 3 presents the

optimal regulation strategy, Section 4 compares the optimal regulation to simpler regimes, and

Section 5 concludes.

2 The model

Consider a single firm that is controlled by a regulator. The firm uses two inputs to provide an

output in terms of a good or service level q that is requested by the regulator. The regulator’s

choice of q could, for instance, result from counterbalancing the economic value of the provided

with the related social costs. For simplicity, however, we assume q to be invariant throughout the

paper. Although this assumption might seem restrictive at first sight, it may indeed fit a number

of relevant cases very well. For instance, due to the very high societal value of uninterrupted

electricity transmission, changes in costs will hardly affect the desired level of the transmission

service quality q.

In our model, probability µ (respectively 1 − µ) leads to a low (high) aggregated input that is

necessary to reach the same requested output q. This could, e.g., be an exogenous shock induced

by the increased deployment of renewable energies, triggering a changing spatial distribution of

supply and hence impacting the necessary overall activity level in the grid sector to achieve se-

cure electricity transmission. From the firm’s perspective, an output level q can be provided by

means of two different inputs, one of which is observable (x) and one non-observable (y) by

the regulator. Stressing again our introductory example of electricity transmission services, x

could be the level of grid expansion that is easily observable by the regulator, even by people

unfamiliar with the details of electricity transmission. Utilization and measures of sophisticated

grid operation, especially as a partial substitute to grid expansion, however, are hardly observ-

able. The tradeoff between those two inputs needed to reach output q is commonly described by

triggered by using a distributive social welfare function instead of shadow costs of public funding.
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a production function q = f (x, y) which can be illustrated by means of isoquants. We assume

smooth and decreasing marginal returns of both inputs, such that the isoquants are downward

sloping, convex and differentiable. Noticeably, two different isoquants can never cross. An ex-

ample fulfilling these requirements is a Cobb-Douglas-type production function. The inverse

production function g(q, x) reflects the necessary level of the non-observable input y needed to

reach output q, given a level of x. We will mostly use this inverse function hereafter. Due to the

exogenous shock leading to a low (l) or high (h) aggregated input necessary for the envisaged

output level q, the inverse function takes one of two possible functional forms, i.e. gi(q, x), with

i ∈ [l, h] and gl(q, x) < gh(q, x).

The optimal rate of substitution between the two inputs minimizing total costs for reaching

the requested output depends on the cost functions of the inputs. We consider the cost function

cx(x) of the the observable input to be fixed and common knowledge, while the cost function

of the non-observable input cy
j(y) is subject to a nature draw, which leads with probability ν

(respectively 1 − ν) to a low (high) cost function (i.e., j ∈ [l, h]). For simplicity, we assume

constant factor costs of both inputs, i.e., cx(x) = cx and cy
j(y) = cy

j. The realization of cy
j

influences the isocost line of the two inputs and hence, the optimal rate of substitution.7 Hence,

depending on the two random draws for the isoquant and the costs of the non-observable input,

there are four possible first best bundles of inputs, which we denote by {x f b
ll , y

f b
ll }, {x

f b
lh , y

f b
lh },

{x f b
hl , y

f b
hl } and {x f b

hh , y
f b
hh }. As a last precondition, we require the expansion path, i.e. the curve

connecting the optimal input combinations of the different isoquants, to be pointing rightwards

as the necessary aggregated input increases.8 In terms of the first best input levels, this requires

x f b
ll > x f b

hl and x f b
lh > x f b

hh , which again holds true for a wide range of possible production function

specifications, including the above mentioned Cobb-Douglas type.

Under optimal Bayesian regulation, the goal of the regulator is to incentivize the firm via

a suitable contract framework to choose the welfare-optimizing bundle of inputs, which we

will derive based on classic mechanism design entailing truthful direct revelation. Contrary to

the firm, the regulator cannot observe the realizations of the two random draws, although the

possible realizations as well as the occurrence probabilities are common knowledge. She knows

the cost function of the observable input and can observe the corresponding input level. The

output is also observable and verifiable.9 For an optimal regulation, the regulator offers the

firm a menu of four contracts, each with a level of the observable input xi j and a corresponding

7As it is well known from production theory, the optimal rate of substitution is determined by equating the marginal
rate of technical substitution between the factors (i.e., the slope of the isoquant) with the relative factor costs (i.e.,
the slope of the isocost line).

8For an analysis involving continuous variables, this would require the expansion path to behave like a function
with a unique function value y for each x, or, in other words, an expansion path that is not bending backwards.

9Stochastic deviations due to force majeure are supposed to be detectable and excludable from the contract frame-
work.
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Figure 1: Problem setting with double adverse selection

transfer Ti j. Naturally, the contracts can be conditioned on observable parameters only, i.e., the

output as well as the amount of the observable input used. Both are enforceable by means of

suitably high penalties in case the firm deviates from the requested/contracted level.

The timing – as shown in Figure 2 – is as follows. First, the random draws are realized and the

cost function of the non-observable input and the necessary aggregated input relation (isoquant)

are observed by the firm. The firm then chooses between several (in our case, four) contracts

offered by the regulator. She then realizes the input levels to produce the requested output. The

regulator observes one input level (x) and whether the output is as requested; if those are as

agreed upon, the contract is executed and the transfer realized.

time

t = 1

Firm learns the
realization of the

two random draws

t = 2

Firm chooses
one of the contracts

offered by the regulator

t = 3

Firm realizes
input levels;

Output is realized;
Contract is executed

Figure 2: Timing

The rent of the firm Ri j given a realization i ∈ [l, h] and j ∈ [l, h], results from the transfer Ti j

minus the private cost of the firm’s activities:10

Ri j = Ti j − cxxi j − cy
jgi(q, xi j) (1)

10It goes without saying here that the firm is characterized such that she tries to maximize her rent.
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The regulator maximizes expected social welfare, defined as the sum of expected social utility

and firm surplus, by adjusting the observables, i.e.:

max
xi j,Ti j

W = E

S q − (1 + λ)Ti j︸             ︷︷             ︸
Net social utility

+ (Ti j − cxxi j − cy
jgi(q, xi j))︸                           ︷︷                           ︸

Firm’s rent (Ri j)

 (2)

where S q is the gross social utility from reaching output q, and λ denotes the shadow costs

of public funding, i.e., the costs due to raising and transferring finances through public channels

(for a discussion, see, e.g., Laffont and Tirole (1993)). As discussed previously, we assume q

– and hence also gross social utility S q – to be invariant and independent of the random draws,

yielding11

max
xi j,Ti j

W = S q − E

(1 + λ)Ti j︸     ︷︷     ︸
Transfer costs

− (Ti j − cxxi j − cy
jgi(q, xi j))︸                           ︷︷                           ︸

Firm’s rent (Ri j)

 (3)

As an important consequence of Equation (3), we see that the optimization problem of the

regulator can be reformulated in terms of a cost-minimization problem, essentially stating that

the desired output shall be reached at minimal expected social costs:

min
xi j,Ti j

C = E
[
Ci j

]
= E

λ Ri j︸︷︷︸
Firm’s rent

+(1 + λ)( cxxi j︸︷︷︸
Costs of

observable input

+ cy
jgi(q, xi j)︸      ︷︷      ︸

Costs of
non-observable input

)

 (4)

While choosing xi j and Ti j such that social costs are minimized, the regulator is restricted by

several participation and incentive constraints for the firm’s rent:

Ri j ≥ 0 ∀i, j (5)

Ri j ≥ Ri′ j′ + cy
j′gi′(q, xi′ j′) − cy

jgi(q, xi′ j′) ∀ pairs i, j and i′, j′ (6)

Equation (5) ensures that all types of firms have a non-negative profit and therefore partici-

pate.12 In line with the revelation principle, Equation (6) provides the firm with the incentive to

truthfully report the realized isoquant and non-observable input costs.

11This is the reason why q appears as a subscript here. In case of a more complex analysis involving q as a variable,
S q would be replaced by S (q, x) to reflect the counterbalancing of the economic value of the provided output with
the related social costs.

12Hence, we implicitly assume zero liability for the firm.
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Written explicitly, the four participation constraints for the four possible firm types become

Rll ≥ 0 (7a)

Rlh ≥ 0 (7b)

Rhl ≥ 0 (7c)

Rhh ≥ 0, (7d)

and the twelve incentive constraints (each of the four types might be tempted to choose a

contract of one of the other three types)

Rll ≥ Rlh + cy
hgl(q, xlh) − cy

l gl(q, xlh) (8a)

Rll ≥ Rhl + cy
l gh(q, xhl) − cy

l gl(q, xhl) (8b)

Rll ≥ Rhh + cy
hgh(q, xhh) − cy

l gl(q, xhh) (8c)

Rlh ≥ Rll + cy
l gl(q, xll) − cy

hgl(q, xll) (8d)

Rlh ≥ Rhl + cy
l gh(q, xhl) − cy

hgl(q, xhl) (8e)

Rlh ≥ Rhh + cy
hgh(q, xhh) − cy

hgl(q, xhh) (8f)

Rhl ≥ Rll + cy
l gl(q, xll) − cy

l gh(q, xll) (8g)

Rhl ≥ Rlh + cy
hgl(q, xlh) − cy

l gh(q, xlh) (8h)

Rhl ≥ Rhh + cy
hgh(q, xhh) − cy

l gh(q, xhh) (8i)

Rhh ≥ Rll + cy
l gl(q, xll) − cy

hgh(q, xll) (8j)

Rhh ≥ Rlh + cy
hgl(q, xlh) − cy

hgh(q, xlh) (8k)

Rhh ≥ Rhl + cy
l gh(q, xhl) − cy

hgh(q, xhl). (8l)

3 Optimal regulation

3.1 Preparatory analysis

As a first preparatory step in the analysis we shall check whether the contract variable x is actu-

ally suitable to provide incentives to the firm to reveal her true type. To this end, we investigate

whether the incentive to choose another type’s contract (motivated by a potential increase in

rent) regarding one of the two random draws is impacted by an adjustment of x. This is often

referred to as “single crossing” conditions. For the incentive to choose another type’s contract

8



regarding the realized input cost, we find that13

∂

∂x
(Rih(x) − Ril(x)) = (cy

l − cy
h)g′i(q, x) for i = l, h, (9)

which is clearly greater than zero due to ch > cl and g′i(q, x) < 0. Hence, by an upwards

distortion of x, we are able to reduce the incentive for the firm to choose the contract of a high

cost type instead of truly revealing the realized low cost type.

Similarly, for the incentive to choose a contract for an isoquant different from the realized

one, we find that

∂

∂x
(Rh j(x) − Rl j(x)) = cy

j(g
′
l(q, x) − g′h(q, x)) for j = l, h (10)

which is greater than zero as long as g′h(q, x) < g′l(q, x). Recalling from Section 2 that we have

assumed rightwards pointing expansion paths (a property exhibited by a wide range of possible

production function specifications, including the Cobb-Douglas type), this condition will always

hold true. Hence, upwards distorting x will provide a possibility to reduce the incentive for

the firm to choose the contract with a high isoquant instead of truly revealing the realized low

isoquant.

The effect of changing incentives following a distortion of x helps us to derive a first charac-

terization of the optimal solution of our regulatory problem. In fact, in order to comply with the

incentive constraints (8a)-(8l) (which need to be fulfilled for the optimal solution anyway), input

levels xi j need to follow a certain ordering. Note that for each pair of types there are two relevant

incentive constraints (e.g., Equations (8a) and (8d) for the types ll and lh). Adding those and

using the above single crossing conditions, the necessary ordering can be obtained as follows:14

xll ≤ xlh ≤ xhh (11)

xll ≤ xhl ≤ xhh (12)

Moreover, from the incentive constraints (8a) and (8i) it follows that only the participation

constraints (7b) and (7d) (i.e., limited liability of the lh and the hh-type) remain relevant for

further analyses. In contrast, the other two participation constraints (those of the low-cost types)

are implicitly fulfilled if these two incentive constraints hold.

So far unclear from the above analysis, however, is the ordering of the intermediate cases xlh

and xhl, which depends on whether the term Rhl(x) − Rlh(x) is increasing or decreasing in x.

13Here and in the following, a prime denotes derivation with respect to x.
14For instance, adding Equations (8a) and (8d) yields (cy

l − cy
h)g′l (q, xlh) ≥ (cy

l − cy
h)g′l (q, xll), which, together with (9),

implies that xlh ≥ xll.

9



Differentiating with respect to x yields

∂

∂x
(Rhl(x) − Rlh(x)) = (cy

hg′l(q, x) − cy
l g′h(q, x)) (13)

which is increasing in x as long as

cy
h

cy
l

<
gh(q, x)
gl(q, x)

, (14)

and decreasing in x otherwise. Together with incentive constraints (8e) and (8h) we infer

that if the cost variation is small compared to the isoquant variation, then xlh ≤ xhl. If the

aggregated input level variation is small compared to the cost variation, then xlh ≥ xhl. For an

intuition, recall Figure 1. If the aggregated input level variation and hence the distance between

the isoquants is large, x f b
hl is larger than x f b

lh . If the cost variation, and hence, the vertical distance

between the corresponding first best solutions is large, x f b
lh is larger than x f b

hl .

The results of our preparatory analysis are summarized in the following two Lemmas.

Lemma 1. Limited liability is only an issue for the high-cost types. Hence, the only relevant

participation constraints are (7b) and (7d), whereas (7a) and (7c) are implicitly fulfilled.

Lemma 2. In order to reach incentive compatibility, input levels xi j must be ordered as follows:

(A) If the cost variation is small compared to the isoquant variation, then Rhl(x) − Rlh(x) is

increasing in x and requires

xll ≤ xlh ≤ xhl ≤ xhh. (15)

(B) If the cost variation is large compared to the isoquant variation, then Rhl(x) − Rlh(x) is

decreasing in x and requires

xll ≤ xhl ≤ xlh ≤ xhh. (16)

3.2 Full information benchmark

If the regulator had no information deficit, she would observe the realized isoquant as well as

the realized isocost line. Differentiating all possible realizations of the social cost function Ci j

with respect to the observable input levels xi j shows that all of them are single-peaked with a

unique minimum at g
′

i(q, xi j) = − cx

cy
j
, which is necessarily realized at xi j = x f b

i j . The regulator

would easily derive the first best levels of inputs to supply the requested output at minimal social

costs, i.e., {x f b
i j , y

f b
i j }, by equating the known realized marginal rate of technical substitution of the

inputs with the realized isocost line. Moreover, she would be able to enforce the implementation

10



of the first best due to the full observability. The corresponding optimal transfers would be

T f b
i j = cxx f b

i j + cy
jy

f b
i j , leaving all types of the firm with zero rent. In the case of full information,

social costs amount to C f b
i j = (1 + λ)T f b

i j = (1 + λ)(cxx f b
i j + cy

jy
f b
i j ), corresponding to the welfare-

optimizing first best solution that could thus be obtained.

3.3 Asymmetric information

In the case of asymmetric information, the only two observables for the regulator are the output q

and the observable input x. In addition, she can choose an appropriate level of transfer payment

T . As q is invariable and observable, its implementation can be enforced by means of suitably

high penalties in case the firm deviates. Hence, x and T are the two variables the regulator will

condition her contracts on. The general idea for the regulator’s optimal regulation strategy is

to offer a menu of contracts with optimized variables {x∗i j,T
∗
i j}, such that expected social costs

are minimized (as stated in Equation (4)), and participation (Equation (5)) and incentive con-

straints (Equation 6) fulfilled. Hence, we restrict our attention to incentive compatible contracts

ensuring that the firm always reveals her true type. Under these conditions, the revelation prin-

ciple requires that the solution found (if any) is a Bayesian-Nash equilibrium (Myerson (1979),

Laffont and Martimort (2002)).

3.3.1 One-dimensional asymmetric information

We shall first investigate a simplified problem with one-dimensional asymmetric information

only, i.e., isoquant or cost uncertainty. Eliminating the isoquant uncertainty (by setting µ = 0,

µ = 1 or gl j = gh j), we are left with two constraints binding: the participation constraint of the

high cost type (7b or 7d) and the incentive constraint from the low to the high cost type (8a or

8i). This leads to the simplified cost function:

C =ν
[
λ
(
gi(xih)(cy

h − cy
l )
)

+ (1 + λ)
(
cxxil + cy

l gi(xil)
)]

(17)

+ (1 − ν)
[
(1 + λ)

(
cxxih + cy

hgi(xih)
)]

Derivating with respect to xi j, j ∈ l, h yields the following first order conditions:

∂C
∂xil

= 0⇔ g′i(x∗il) = −
cx

cy
l

, (18)

∂C
∂xih

= 0⇔ νλ(cy
h − cy

l )g′i(x∗ih)︸                ︷︷                ︸
<0

+ (1 − ν)(1 + λ)(cx + cy
hg′i(x∗ih))︸                                ︷︷                                ︸

=0 for xih=x f b
ih

<0 for xih<x f b
ih

>0 for xih>x f b
ih

= 0 (19)
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Similarly, in case of no cost uncertainty, the observable input levels of the low isoquant types

are first best, whereas the high isoquant types are distorted upwards:15

Lemma 3. In case of asymmetric information about either costs or isoquants, the respective

l-type is set to first best, while the h-type is distorted upwards compared to its first best.

Note that the result of an adverse selection problem with one-dimensional information asym-

metry on costs is well-known from the literature (e.g., Baron and Myerson (1982) or Sappington

(1983)). Also note that the results concerning isoquant uncertainty are strikingly different com-

pared to the one-dimensional demand uncertainty (which essentially corresponds to the isoquant

in our setting) studied by Lewis and Sappington (1988a) or Armstrong (1999). In contrast to our

model – due to neglecting shadow costs of public funding – they find that the first best can be

achieved in the one-dimensional case of demand uncertainty.

3.3.2 Two-dimensional asymmetric information

Solving the full optimal regulation problem requires minimization of social costs, subject to

all imposed four participation and twelve incentive constraints. Due to the large number of

constraints, we approach the optimization by solving a relaxed problem where only a subset of

the constraints is considered. To this end, we need to come up with an educated guess about

the binding constraints in the optimum. If we can later show that the remaining constraints are

fulfilled at the solution of the relaxed problem, we will have obtained the solution of the full

problem.

We already know from Lemma 1 that the participation constraints of the high-cost types are

the only relevant ones. Furthermore, it generally seems to be a good approach to assume the

“upwards” incentive constraints, i.e., from low to high isoquant, and from low to high costs,

to be binding. Moreover, it seems plausible to assume binding incentive constraints from the

most efficient to an intermediate type (i.e., lh or hl), and from an intermediate type to the least

efficient type. If we consider the isoquant variation more relevant than the cost variation, as-

suming the incentive constraints according to the ordering shown in Lemma 2, Case (A), to be

binding appears to be the most educated guess we can come up with.16 Hence, we assume that

incentive constraints (8a) (ll→ lh), (8e) (lh→ hl), and (8i) (hl→ hh) are fulfilled with equality.

In addition, we assume the participation constraint of the hh-type to bind since this is the only

type remaining that is not attracted by any other type. Figure 3 illustrates with arrows the bind-

ing incentive constraints, such that the former type is not attracted by the latter type-contract.

Diamonds mark the binding participation constraints.

15Due to the obvious symmetry of the problem, we omit the detailed calculation here.
16The ordering and solution of Case (B) is reversed, but similar. The corresponding discussion can be found in the
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Figure 3: Constraints considered binding for Case (A)

We find that this set of assumptions does indeed lead us to the optimal regulation strategy.

The results are summarized in the following Proposition 1.

Proposition 1. For Case (A),

(i) Optimal regulation is achieved under the following set of observable input levels:

x∗ll = x f b
ll (20)

x∗lh ≥ x f b
lh (21)

x∗hl ≥ x f b
hl (22)

x∗hh ≥ x f b
hh , (23)

while respecting x∗ll < x∗lh ≤ x∗hl ≤ x∗hh.

(ii) The most efficient (ll) type can always be separated. Moreover, separation of at least three

types is always possible, while bunching of the lh and hl types is unavoidable in case of

ν → 1. The hl and hh types may need to be bunched in case of g′l(q, x) → 0 together with

cy
l being large.

Proof. See Appendix. �

appendix.
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Corollary 1. For λ = 0, the optimal solution is first best. All input levels amount to x∗i j = x f b
i j ,

and expected social costs to C = C f b.

Proof. Follows immediately from the solution of Case (A) when setting λ = 0. �

According to Corollary 1, with no shadow costs of public funding, all input levels x∗i j are first

best. The regulator optimizes overall welfare, but has no preference regarding the distribution of

social surplus. Hence, she can give the firm an arbitrarily high budget at no social costs, and the

firm maximizes her rent by setting efficient input levels. In this case, the maximization of the

firm and the maximization of social welfare coincide, i.e., there is no problem of aligning the

activities of the firm with social interests. Of course, larger parts of the welfare are then given to

the firm.

For the general case of λ > 0, observable input levels of all types besides the ll-one are

distorted above first best levels, leading to a second best solution only. Naturally, the overall

level of inefficiency increases in λ, but also for decreasing µ and ν (i.e., when there is a high

probability for “costly” outcomes of the random draws) as well as for cy
h−cy

l and gh(q, x)−gl(q, x)

getting large. In contrast, however, the less significant the cost variation becomes compared to

the isoquant variation, the more efficient the solution will be.

Due to keeping the most efficient (ll) type at first best level combined with the ordering ac-

cording to Lemma 2, the type can always be separated in the contract framework. Moreover,

we find that at least three types can always be separated, while bunching of two types may be

unavoidable in case of vanishing isoquant or cost uncertainties, or if the isoquant variation be-

comes extremely large. As a last remark, it is worth mentioning that the ordering of rents is (and

must be) as depicted in Figure 3, i.e. 0 = R∗hh < R∗hl < R∗lh < R∗ll.

The results for Case (B) are symmetric but structurally identical to Case (A), i.e., the ll-type

is incentivized to first best input levels while the other types show upwards distortions of xi j.

However, roles of isoquants and costs are interchanged, reflected in the inverse occurrence of

the terms gi ↔ cy
j and µ ←→ ν. At the same time, as imposed by Lemma 2, Case (B), the

sequence of the “intermediate” types is now hl → lh. Hence, the ordering of observable input

levels xlh and xhl as well as rents Rlh and Rhl need to be reversed to obtain an optimal regulatory

contract framework.17

4 Comparing the optimal regulation to simpler regimes

In contrast to the optimal Bayesian menu of contracts studied in the previous section, regulatory

authorities often apply alternative, simpler approaches. In fact, in the case of electricity trans-

17See the appendix for a detailed discussion and the corresponding proposition and proof.
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mission grids, it appears that they mostly offer a non-Bayesian, i.e., single, contract, while the

application of Bayesian contracts in terms of menus of contracts, has been very rare.18 For in-

stance, regulatory practice in Germany is such that TSOs formulate a grid expansion plan, which

is then reviewed and approved by the regulator. For the approved measures, the TSOs get their

costs reimbursed. This corresponds to a cost-based regulation for the input factor grid expan-

sion, while neglecting any other possible input, such as better operational measures. Meanwhile,

driven e.g. by social acceptance issues, the regulator is expected to limit the approval of exten-

sive grid expansion to some "reasonable" level.

Transferring such a simple non-Bayesian approach into our model, we need to limit the set

of regulatory choice variables to one single contract with contract variables x̄ and T̄ , such that

the objective function of the regulator (in contrast to Equation (4) as in the case of optimal

regulation) becomes:

min
x̄,T̄

C̄ = E

λ R̄i j︸︷︷︸
Firm’s rent

+(1 + λ)( cx x̄︸︷︷︸
Costs of

observable input

+ cy
jgi(q, x̄)︸    ︷︷    ︸

Costs of
non-observable input

)

 (24)

In contrast to the solution of the optimal regulation, this minimization is only subject to the

participation constraints (5). With a sole contract and hence, only one observable input x̄ for all

types, the regulator has no possibility to separate types, which makes the incentive constraints

obsolete. As before, the only participation constraint holding with equality is the one of the hh-

type. Considering that this type gets full cost reimbursement but cannot be distinguished from

the other types, it becomes clear that all other types must then necessarily receive a positive rent.

The following proposition summarizes the solution of this non-Bayesian regulatory approach.19

Proposition 2. Under a single contract cost-based regulation with quantity restriction, the op-

timal input level x̄∗ represents an expected average of the first best solutions of the four possible

types, adjusted by some upwards distortion in case of λ > 0. As an expected average, it lies

between the extreme types’ first-best input levels, i.e. x f b
ll < x̄∗ < x f b

hh .

Proof. See Appendix. �

18The system operator for England and Wales and the electric distribution companies in the UK are the only two
examples for menus of contracts being applied in regulatory practice Joskow (2014).

19Note that the solution for a pure cost-based regulation without quantity restriction would simply reimburse the
costs of the observable input. This would incentivize the firm to choose infinitely high values of x (known as the
gold-plating effect). Assuming that the regulator restricts her set of choices by an upper level of x̄ = x f b

hh in order
to limit excessive (socially costly) rents, all types would then choose this level. In contrast to this very simple
approach, the regulatory regime considered in this section makes use of being able to use the observable input x
as a contracting variable.
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Proposition 3. Compared to a single contract, the regulatory approach based on a menu of

contracts is superior with respect to expected social welfare.

Proof. It is easy to show that the optimal solution of the single contract is a feasible solution

of the menu of contracts problem. Due to the fact that the solution for the menu of contracts,

as stated in Proposition 1, is both optimal and different from the one in Proposition 2, it must

necessarily be superior. �

As stated in Proposition 3, the solution of the single contract regime is always inferior to

the one obtained with the menu of contracts. Nevertheless, the characteristics of the different

regimes can be compared and deserve a closer look. We contrast the outcome of the optimal

menu of contracts with the one of the single contract regime considering three aspects: input

levels, cost-efficiency of the input levels, and rents of the firm.

Input levels for the different types have been characterized in Proposition 1 for the menu of

contract, stating that all types besides the ll-one are distorted above first best levels. According

to Proposition 3, the optimal input level for the single contract regime, x̄∗, represents an expected

average of the first best solution of the four possible types, adjusted by some upwards distortion

in case of λ > 0. Hence, chosen input levels are generally different. However, x̄∗ may get

close to x∗hl in case of λ being large and µ small (i.e., for a high probability of realizing a high

isoquant). At the same time, it will never be as high as x∗hh, due to x̄∗ < x f b
hh < x∗hh.

Cost-efficiency of the input levels is closely connected to the input levels and their deviation

from the first-best optimal solution. The optimal menu of contracts approaches first-best cost-

efficiency of the input levels for λ → 0, as input levels then converge towards first-best levels,

i.e., {x∗i j, y
∗
i j} → {x f b

i j , y
f b
i j }. In contrast, cost-efficiency is poor for the single contract regime

under this condition. However, first-best input levels may also be reached, but only under very

restrictive conditions, namely if λ → 0 and the occurrence probability for one specific type is

particularly large (e.g., if µ, ν → 1). Type-specific as well as expected cost-efficiency of input

levels is (only) then approaching first-best optimality for both contracting frameworks. For the

general case of λ ≥ 0, it is clear that cost-efficiency of the input levels is inferior for the ll type

in the single contract regime, while the ordering is ambiguous for all other types, depending on

the optimal choice of x̄∗ in comparison to x∗i j.

Regarding rents of the firm, remember that they are only an issue for social welfare if there

are shadow costs of public funding, i.e., if λ > 0. Then, however, the well known trade-off for

rent-extraction and efficiency becomes relevant. For both contracting regimes, the rent of the

inefficient hh type is set to zero. Moreover, for both regimes it holds true that 0 = R∗hh < R∗hl �

R∗lh < R∗ll (respectively, 0 = R̄∗hh < R̄∗hl � R̄∗lh < R̄∗ll), if isoquant variation is more relevant than

cost variation. For the rent of specific types, we find that R∗hl < R̄∗hl, while the ordering of other
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types’ rent is generally ambiguous. Interestingly, however, if g′i(x) is small in the relevant range,

R∗i j < R̄∗i j for all i, j.

Based on the above comparative statics, a singular interesting constellation can be identified

for which the two contracting frameworks effectively approach each other.

Proposition 4. For λ being large and µ small, the performance of the single contract is close to

the one of the menu of contracts.

Proof. For λ being large, x̄∗ is distorted upwards (see Proposition 2), while x∗hl ≈ x f b
hl for µ small.

Hence, in this case, x̄∗ ≈ x∗hl. Moreover, due to the fact that we consider Case (A) where cost

uncertainty is relatively low, we know that the upwards distortion of x∗hh is low (see Equation

(29)), such that x∗hl is not far from x∗hh. Under these conditions, C̄∗ ≈ C∗. �

Transferring Proposition 4 to our example of electricity transmission services and the regula-

tion of the German TSOs, one may indeed come to the conclusion that the practically applied

non-Bayesian regulatory approach could be close to the optimal second-best strategy. In fact,

a high overall input level appears to be likely due to the strongly changing supply infrastruc-

ture, while ongoing intense discussions about the burden of electricity costs and grid tariffs for

consumers could indicate high shadow costs of public funding. In the end, however, reasons

for the chosen regulation are probably manifold, and might also include an explicit disutility

of grid expansion, a commitment problem,20 or the prohibitively high costs of implementing a

’complicated’ regulatory regime (Armstrong and Sappington, 2007).

5 Conclusion

We considered a regulated firm providing a non-marketed output with substitutable inputs. We

presented the optimal Bayesian regulation in terms of a menu of contracts when the regulator

faces information asymmetries regarding the aggregated input level needed to provide the output

as well as the realized optimal marginal rate of substitution between the inputs. Finally, the

optimal Bayesian regulation was compared to a simpler non-Bayesian approach which appears

to be closer to regulatory practice.

20Noticeably, a commitment problem of the regulator might impede the implementation of an incentive-based ap-
proach, which would be welfare-superior compared to a cost-based regulation. If the firm gets an unconditional
payment representing the pay-off of the hh-type, i.e., T̃ = cx x f b

hh +cy
hgh(q, x f b

hh ), she will realize first-best input quan-
tities {x f b

i j , y
f b
i j }. In this case, the realized rent of the firm becomes Ri j = cx x f b

hh + cy
hgh(q, x f b

hh ) − cx x f b
i j − cy

jgi(q, x
f b
i j ).

However, due to the (observable) separation of types via the realized input x, the regulator might be tempted to
adjust the regulatory contract ex-post, and hence, jeopardize the regulatory success if the firm anticipates this
behavior.
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We found that in the optimal Bayesian regulation, the first best solution cannot be achieved

under the considered information asymmetries and shadow costs of public funding. This implies

a strictly positive rent for the firm. The second best solution that we then characterized depends

on the relative importance of the information asymmetries. However, the most efficient type

is always set to first best, while the levels of the observable input are distorted upwards for all

other types. At least three types can always be separated, while bunching of two types may

be unavoidable in case of a very asymmetric distribution of costs or very flat isoquants. These

results are structurally similar to the solutions for multi-dimensional adverse selection problems

in the literature (e.g. Lewis and Sappington (1988b), Armstrong (1999) or Aguirre and Beitia

(2004)). However, in contrast to existing results, our model explains upwards distortions of

input levels rather than prices. Hence, we obtained important insights regarding the optimal

mechanism design in the context of a regulated monopolistic firm producing a non-marketed

good with multi-dimensional inputs.

The comparison to a single contract cost-based approach, as it is often applied in regulatory

practice, showed that the menu of contracts is welfare superior. However, there are situations in

which the performance of the approaches converge, namely if the overall input level probably

needs to be high, and shadow costs of public funding are large. Given our motivating example of

electricity transmission services and the current situation, e.g., in Germany, these circumstances

may indeed prevail, possibly explaining the gap between the theoretically optimal Bayesian

approach and the simpler non-Bayesian regulation applied in practice.

Lastly, we note that our general approach as well as our insights might also be applicable to

other industries that show similar characteristics, such as public works or administrative services.

Besides investigating such areas of application, future research could relax the limited liability

assumption and hence, allow for a shut down of firms. Another expansion could allow the good

to be marketed, which would trigger a demand reaction of the regulator (or consumers) and

possibly lead to interesting variations of the conclusions derived in this paper.
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Appendix

Proof of Proposition 1

Proof. (i) Under the constraints considered binding for Case (A) – as discussed and shown

in Figure 3 – the social cost function (4) becomes

C =

µν
[
λ
(
gh(xhh)(cy

h − cy
l ) + cy

l gh(xhl) − cy
hgl(xhl) + gl(xlh)(cy

h − cy
l )
)

+ (1 + λ)
(
cxxll + cy

l gl(xll)
)]

+ µ(1 − ν)
[
λ
(
gh(xhh)(cy

h − cy
l ) + cy

l gh(xhl) − cy
hgl(xhl)

)
+ (1 + λ)

(
cxxlh + cy

hgl(xlh)
)]

+ (1 − µ)ν
[
λ
(
gh(xhh)(cy

h − cy
l )
)

+ (1 + λ)
(
cxxhl + cy

l gh(xhl)
)]

+ (1 − µ)(1 − ν)
[
(1 + λ)

(
cxxhh + cy

hgh(xhh)
)]
. (25)

To derive the optimal observable input levels, we need to derive the above equation with

respect to each of the four possible xi j. Minimizing C with respect to xll yields

g′l(x∗ll) = −
cx

cy
l

, (26)

which implies that x∗ll = x f b
ll . Derivations of C with respect to xlh, xhl and xhh take the

following forms:

∂C
∂xlh

= µνλ(cy
h − cy

l )g′l(xlh)︸                  ︷︷                  ︸
<0

+ µ(1 − ν)(1 + λ)(cx + cy
hg′l(xlh))︸                                 ︷︷                                 ︸

=0 for xlh=x f b
lh

<0 for xlh<x f b
lh

>0 for xlh>x f b
lh

(27)

∂C
∂xhl

= µλ(cy
l g′h(xhl) − cy

hg′l(xhl))︸                         ︷︷                         ︸
<0

+ (1 − µ)ν(1 + λ)(cx + cy
l g′h(xhl))︸                                  ︷︷                                  ︸

=0 for xhl=x f b
hl

<0 for xhl<x f b
hl

>0 for xhl>x f b
hl

(28)

∂C
∂xhh

= (µ + (1 − µ)ν)λg′h(xhh)(cy
h − cy

l )︸                                  ︷︷                                  ︸
<0

+ (1 − µ)(1 − ν)(1 + λ)(cx + cy
hg′h(xhh))︸                                          ︷︷                                          ︸

=0 for xhh=x f b
hh

<0 for xhh<x f b
hh

>0 for xhh>x f b
hh

. (29)

From Equation (27), we see that ∂C
∂xlh

is strictly smaller than 0 for xlh = x f b
lh and monoton-

ically increasing in xlh, which implies that x∗lh > x f b
lh must always hold. The same logic
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applies for x∗hl and x∗hh.

(ii) From the fact that x f b
ll < x f b

lh and the strict upwards distortion of all other types, it follows

that the ll-type can always be separated. In order to investigate whether the types lh, hl and

hh can be separated or need to be bunched, we proceed as follows: For each of the possible

pairs lh − hl, hl − hh and lh − hh, we check the derivative of C with respect to the former

type at the optimal level of x∗ of the latter type (derived from the first order condition).

If the change in C is greater than 0 we can conclude that we have already surpassed the

optimal level of the former type, which then must be smaller than the optimal level of the

latter type. In other words, we check the level of upwards distortion for the lh, hl and hh

types while considering the necessary ordering of the types according to Lemma 2. For

the pair lh-hl, we find that x∗lh may surpass x∗hl in case of ν → 1, while they are otherwise

clearly separated from each. For the pair hl-hh, bunching may occur for g′l(q, x) → 0

together with cy
l being large. Furthermore, we find that lh-hh can always be separated,

implying that at most two types (i.e., either lh-hl or hl-hh) may be bunched under certain

parameter constellations.

Lastly, it is straightforward to check that the remaining constraints are satisfied under the

obtained solution of the relaxed problem. Hence, we have indeed obtained to optimal solution

for the full regulatory problem we are facing in Case (A). �

Proof of Proposition 2

Proof. Written explicitly, Equation (24) becomes

C̄ =µν
[
λ
(
cy

hgh(x̄) − cy
l gl(x̄)

)
+ (1 + λ)

(
cx x̄ + cy

l gl(x̄)
)]

+ µ(1 − ν)
[
λ
(
cy

hgh(x̄) − cy
hgl(x̄)

)
+ (1 + λ)

(
cx x̄ + cy

hgl(x̄)
)]

+ (1 − µ)ν
[
λ
(
cy

hgh(x̄) − cy
l gh(x̄)

)
+ (1 + λ)

(
cx x̄ + cy

l gh(x̄)
)]

+ (1 − µ)(1 − ν)
[
(1 + λ)

(
cx x̄ + cy

hgh(x̄)
)]
. (30)

Deriving the above with respect to x̄ yields, after a few calculations, E(g′i(x̄∗))E(cy
j) + cx +

λ(cy
hg′h(x̄∗) + cx) = 0. Hence, for λ = 0, E(g′h(x̄∗)) = − cx

E(cy
j)

. �

Two-dimensional asymmetric information, Case (B): Cost variation large
compared to isoquant variation

To solve the second case following from Lemma 2, we need to apply a different educated guess

with respect to the binding constraints. However, we apply a similar reasoning as in Case (A), but
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take account of the fact that now, cost variation is more relevant than isoquant variation. Hence,

we choose a symmetric setting and imply incentive constraints (8b) (ll → hl), (8h) (hl → lh)

and (8f) (lh → hh) to be binding. Again, we assume the participation constraint of the hh-type

to be binding. Figure 4 illustrates this setting.

After having determined the results and checked all remaining constraints, we find the setting

of binding constraints as in Figure 4 indeed to be optimal for Case (B). Results are summarized

in the following Proposition 5.

Proposition 5. For case (B),

(i) Optimal regulation is achieved under the following set of observable input levels:

x∗ll = x f b
ll (31)

x∗lh ≥ x f b
lh (32)

x∗hl ≥ x f b
hl (33)

x∗hh ≥ x f b
hh , (34)

while respecting x∗ll < x∗hl ≤ x∗lh ≤ x∗hh.

(ii) The most efficient (ll) type can always be separated. Moreover, separation of at least three

types is always possible, while bunching of the hl and lh types is unavoidable in case of

µ→ 1.The lh and hh types may be bunched in case of cy
l being small and g′h(q, x) large.
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Figure 4: Constraints considered binding for Case (B)
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Proof. (i) Under the constraints considered binding for Case (B) – as discussed and shown

in Figure 4 – the social cost function (4) becomes

C =

µν
[
λ
(
cy

h(gh(xhh) − gl(xhh)) + cy
hgl(xlh) − cy

l gh(xlh) + cy
l (gh(xhl) − gl(xhl))

)
+ (1 + λ)

(
cxxll + cy

l gl(xll)
)]

+ µ(1 − ν)
[
λ
(
cy

h(gh(xhh) − gl(xhh))
)

+ (1 + λ)
(
cxxlh + cy

hgl(xlh)
)]

+ (1 − µ)ν
[
λ
(
cy

h(gh(xhh) − gl(xhh))
)

+ cy
hgl(xlh) − cy

l gh(xlh) + (1 + λ)
(
cxxhl + cy

l gh(xhl)
)]

+ (1 − µ)(1 − ν)
[
(1 + λ)

(
cxxhh + cy

hgh(xhh)
)]
. (35)

Minimizing C with respect to xll yields

g′l(x∗ll) = −
cx

cy
l

, (36)

which implies that x∗ll = x f b
ll . Derivation of C with respect to xlh, xhl and xhh yields:

∂C
∂xlh

= µλ(cy
hg′l(xlh) − cy

l g′h(xlh)︸                        ︷︷                        ︸
<0

+ µ(1 − ν)(1 + λ)(cx + cy
hg′l(xlh))︸                                 ︷︷                                 ︸

=0 for xlh=x f b
lh

<0 for xlh<x f b
lh

>0 for xlh>x f b
lh

(37)

∂C
∂xhl

= µνλ(cy
l g′h(xhl) − cy

l g′l(xhl))︸                           ︷︷                           ︸
<0

+ (1 − µ)ν(1 + λ)(cx + cy
l g′h(xhl))︸                                  ︷︷                                  ︸

=0 for xhl=x f b
hl

<0 for xhl<x f b
hl

>0 for xhl>x f b
hl

(38)

∂C
∂xhh

= (µ + (1 − µ)ν)λcy
h(g′h(xhh) − g′l(xhh))︸                                         ︷︷                                         ︸
<0

+ (1 − µ)(1 − ν)(1 + λ)(cx + cy
hg′h(xhh))︸                                          ︷︷                                          ︸

=0 for xhh=x f b
hh

<0 for xhh<x f b
hh

>0 for xhh>x f b
hh

.

(39)

From Equation (37), we see that ∂C
∂xlh

is strictly smaller than 0 for xlh = x f b
lh and monoton-

ically increasing in xlh, which implies that x∗lh > x f b
lh must always hold. The same logic

applies for x∗hl and x∗hh.

(ii) From x f b
ll < x f b

lh and the strict upwards distortion of all other types, it follows that the

ll-type can always be separated. x∗hl may surpass x∗lh in case of µ → 1. If the low costs
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cy
l are small and g′h(q, x) becomes large, lh and hh types may need to be bunched, without

impacting the separation of the other types.

The remaining constraints are satisfied under the obtained solution. �

As in Case (A), the first best solution can be obtained for λ = 0, while the solution is second

best and incurring an increasing level of inefficiency for increasing levels of λ. Also again, the

most efficient type can always be separated, while bunching of the hl and lh types (lh and hh

types) may occur for very high occurrence probability of low isoquants, or if gh(q, x) is very

steep and cy
l small.
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