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Abstract

Governments worldwide spend increasing amounts of money on policy schemes to reduce energy con-

sumption and related carbon emissions. We investigate the actual treatment effect of energy efficiency

measures and therein compare actual demand responses to technological potentials. Based on a demand

system analysis of household data and by approximating unobserved energy awareness, we find economic and

behavioural responses that counteract expected savings from energy efficiency. Results show strong rebound

and even backfiring effects but also suggest heterogeneity of the effectiveness driven by behavioural concepts,

such as sunk cost fallacy or habit formation. Understanding these can contribute to target-oriented policy

designs and increased effectiveness and efficiency of policies.

Keywords: Policy evaluation, household demand, unobserved heterogeneity, energy efficiency
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1. Introduction

Different countries worldwide aim at minimizing the consumption of fossil fuels and hence, carbon emis-

sions. Carbon taxes or cap-and-trade mechanisms are implemented to address negative environmental

externalities of fossil fuel consumption. While these are mostly directed at large-scale consumers like the

manufacturing industries, transaction costs tend to be disproportionately large within the residential, trade

and commerce sectors. For these, second-best policies are implemented.
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Most of these policies aim at changing the stock of energy durable, energy consuming and converting

goods as well as improving the thermodynamic characteristics of dwellings. Examples for these policies could

be energy efficiency standards, such as the internationally known Energy Star label1, or policies that reduce

financial barriers for investment in energy efficiency, such as subsidies or loans. In recent years, governments

have invested increasing amounts of money in such schemes. In 2013, the Obama Administration provided

USD 250 million to the Energy Efficiency and Conservation Loan Program in the US Climate Action Plan

(White House, 2013). In Germany, in 2015 renovations of buildings to improve energy efficiency are supported

with EUR 686 million (BMWi, 2015). In the UK, in 2015 GBP 70 million are available for energy efficiency

improvements in the residential sector (DECC, 2015).

A meaningful evaluation of these policies requires addressing effectiveness towards achievement of the

programme objectives and cost-efficiency of the policy design. Cost-efficiency focusses on free-ridership as

well as non-additionality and was recently discussed in Boomhower and Davis (2014). Whether or not energy

consumption and carbon emissions were reduced by a policy is the focal point of effectiveness evaluation.

Most evidence on this effectiveness is solely based on engineering calculations and often ignores economic

effects. A well-known example is the study on energy efficiency by the McKinsey Company (Granade et al.,

2009) which is entirely based on engineering calculations. The UK Government Energy Review Report

2006 (DTI, 2006) does not even mention economic responses to energy efficiency investments (Madlener and

Alcott, 2009), either.

That is surprising, as fundamental economic responses have been discussed ever since Jevon (1865). But

even in economic studies on energy efficiency investments, the reference level for the effectiveness is generally

given by engineering calculations for potential technological efficiency improvements. The actual efficiency

improvements, thus demand reductions, are related to these potential technological efficiency improvements.

The difference in percentages is quoted as the rebound effect (e.g. Greening et al., 2000; Gillingham et al.,

2013). The evaluation of effectiveness is therefore strongly linked to understanding the rebound effect.

Within economics, demand theory provides arguments for the rebound effect. With reduced demand for

energy services due to large-scale implementation of energy efficiency measures, the price for energy drops.

Since point price elasticities of demand differ, demand adjustments can be of ambiguous directions and also

increase the consumed quantity. At the household level, this direct effect is accompanied by an indirect

effect. The additional income from reduced energy consumption can be spent on other goods as well as on

further energy services increasing the energy consumption, again.

1https://www.energystar.gov/
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However, next to price and income effects, insights from behavioural economics need to be considered.

It needs to be investigated if behaviour counteracts energy savings and further rises the rebound effect.

While income effects will have a substantial influence, short-term temptations towards energy consumption

should do likewise. Firstly, while individuals will have developed habits in energy consumption prior to

implementing an energy efficiency measure (Jessoe and Rapson, 2014), research shows that adaptation to

new habits is limited (Neal et al., 2011). Persistence in habits and therefore energy consumption behaviour is

likely. An example could be that individuals overheat their homes after an energy efficiency implementation.

Secondly, if we consider mental-accounting and self-licensing, these might also trigger additional de-

mand, in the short term. Under self-licensing, investing in energy efficiency can be regarded as something

(ecologically) good, due to its positive connotation to climate change. Hence, temptation to consume more

energy in the present (which might be seen as something equivalently bad) might be permitted by having

made the ‘good’ investment/purchase in the past (Mazar and Zhong, 2010). Further, mental-accounting

might classify expected savings from energy efficiency measures as additional short-term disposable income

or energy consumption, leading to an even higher energy demand (Thaler, 1990).

As a summary, the previous discussion illustrates two issues of great importance. Ignoring economic as

well as behavioural responses in the evaluation of energy efficiency policies will overestimate the effective-

ness of energy efficiency measures and the accompanied policies. However, an adequate evaluation of the

effectiveness is not trivial, since engineering, economic, and behavioural drivers as well as their interactions

need to be addressed.

So far, a large body of literature analysed the rebound effect. Valuable literature reviews are given in

Greening et al. (2000), Sorrell et al. (2009) and most recently Gillingham et al. (2013) and Gillingham et al.

(2015). Due to the up-to-dateness of the latter articles, we refrain from reviewing the literature once again

and refer to Gillingham et al. (2015) for a sound presentation of the status of the academic debate.

Most of recent studies use either experimental (e.g. Davis et al., 2014) or econometric methods (e.g. Fron-

del and Vance, 2013b). A well known issue with the latter is that demand models used for identification are

simplified for methodological practicability rather than microeconomic accuracy (Deaton and Muellbauer,

1980). Sometimes cross-product and income effects are completely ignored. That is suprising, as demand

systems that were derived from the expenditure minimization problem of consumers were introduced by

Deaton and Muellbauer (1980) and further developed up until Lewbel and Pendakur (2009). These allow

among others for aggregation of preferences, seperability, budget-constraints as well as unobserved hetero-

genity. While energy demand has been explored in such demand modells (e.g. Baker and Blundell, 1991;
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Labandeira et al., 2006), the evaluation of energy efficiency measures and thus, the rebound effect, has not

been undertaken based on such modelling.

Given the engineering calculation2 based findings (from such as Granade et al. (2009)) that it is cost-

efficient to invest in energy efficiency technologies, actual adoption rates suggest that something drives a

wedge between optimal and actual investments. Research on this so-called energy efficiency gap argues that

this can be explained by heterogeneity among consumers, asymmetric information, and inattention (e.g.

Allcott and Greenstone, 2012; Boomhower and Davis, 2014). The marginal individual who implements an

energy efficiency measure is either better informed or more attentive to energy costs than extramarginal

individuals. This gives rise to a selection problem in the evaluation of energy efficiency measures. If

well-informed consumers that are more attentive to energy costs are marginal adopters of energy efficiency

measures, they are also more likely to have differing energy consumption patterns (Jessoe and Rapson,

2014). Therefore, unobserved heterogeneity that drives investment and utilization decisions needs to be

taken into account (e.g. Kahn, 2007; Kotchen and Moore, 2008, 2007). Within an adequate evaluation of

energy efficiency effectiveness, this endogeneity issue needs to be resolved.

In this paper, we investigate the effectiveness of energy efficiency measures by identifying the treatment

effect of these on energy demand. Therein, we incorporate economic and behavioural responses to address

the rebound effect.

Our analysis makes three main contributions. First, we apply the implicit Marshallian demand system

developed by Lewbel and Pendakur (2009) that combines Marshallian and Hicksian demands. To our

knowledge, we are the first to evaluate the effectiveness of energy efficiency measures in such a multi-

product demand system consistent with microeconomic theory. That is, we explore consumption of different

fuel types within the overall household budget. By applying a multi-product approach, we evaluate direct

as well as indirect effects on energy consumption simultaneously. Direct effects give consumption responses

to the fuel demand that is directly addressed by an energy efficiency measure, while indirect effects also take

into account interdependencies with consumption of other goods within the household budget. There has

been extensive work on the direct effect (as reviewed by Gillingham et al., 2015), by means of evaluating

the price elasticity of demand. However, our approach allows to address both effects at the same time and

identify the semi-elasticity of demand with respect to the implementation of an energy efficiency measure.

Second, we rely on an approach from productivity analysis to resolve the selection issue within our

demand model. We define unobserved heterogeneity that reflects unobserved energy cost attentiveness and

2Engineering calculations represent expected reductions in energy demand from implementation of an energy efficiency
measure, considering only thermodynamic improvements and taking demand for the final energy service as fixed.
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the information level regarding energy efficiency measures as energy awareness. Our analysis approximates

energy awareness using the approach by Olley and Pakes (1996). The validity of our approximation approach

is tested by investigating the impact of unobserved energy awareness on the decision to implement an energy

efficiency measure. Further, we explore how the energy efficiency measures drive energy consumption. Hence,

within our application of the Olley-Pakes-Approach, we map unobserved heterogeneity and obtain insights

on how unobserved heterogeneity drives energy consumption and the treatment effect of energy efficiency

measures.

Our third contribution lies in the identification of behavioural responses to energy efficiency measures. By

evaluating and comparing the treatment effect of different energy efficiency measures, we explore whether

or not behavioural responses do play a role in the rebound effect. This has not been addressed in the

literature so far and our results show that behavioural effects impact significantly on the effectiveness of

energy efficiency measures.

We use micro data of German households for 2006-2008. By analysing billing information, we estimate

the actual effectiveness of energy efficiency measures, incorporating the rebound effect. Exploring a German

dataset is suitable for our approach for several reasons given in Germany. Energy usage is an important

topic within the political economy and public attention on energy issues is large. Also, several large-scale

promotion schemes for energy efficiency measures are in place.

We find that unobserved heterogeneity is a significant driver of the decision to invest and of energy

usage. These results regarding efficiency of policy schemes are overshadowed by the fact that economic

and behavioural responses to energy efficiency measures counteract expectations based on technological

potentials. Understanding these can contribute to target-oriented policy designs and increased effectiveness

and efficiency of policies.

The next section presents the theoretical model followed by the econometric approaches. Data is de-

scribed in section 3. Results follow in section 4, section 5 concludes.

2. Methodology

In this section, we first discuss our theoretical approach. We point out the resulting endogeneity issue and

continue with the econometric application. We explain the methodology of incorporating energy awareness

in our models.
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2.1. Theoretical Framework

Our modelling reveals the underlying decision process with respect to the choice of energy efficiency

measures and consumption of non-durable energy goods. The theoretical framework in Figure 1 presents

the drivers of energy efficiency measures and of energy demand. Key policies aim at inducing a reduction

in energy demand by supporting the implementation of energy efficiency measures. The implementation

then impacts itself on energy demand, but is endogenous. Next to observable characteristics such as socio-

economic and building characteristics, unobserved drivers, here energy awareness, determine whether or not

a household implements an energy efficiency measure.

Policy Efficiency measure Energy demand

Energy awareness

- -

6

��
�
��*

Figure 1: Energy awareness is unobserved but impacts on various causal paths

Energy aware individuals can be described by a larger attention to energy costs. They further pos-

sess more information on energy efficiency measures. Accordingly, individuals with a high level of energy

awareness should be marginal adopters of energy efficiency measures and could demonstrate a different be-

haviour regarding energy good consumption. Not addressing energy awareness and neglecting this type of

unobserved heterogeneity leads to selection and omitted variable biases and therewith, endogeneity.

We address this endogeneity problem using the approximation approach by Olley and Pakes (1996) and

approximate unobserved energy awareness by observed automobile choices. With a given demand for auto-

mobile transportation3, the decision to purchase a more efficient automobile, with lower fuel consumption

and corresponding higher mileage4, depends on the demand for automobile transportation and the aware-

ness of future energy costs. Here, we use specific CO2-emissions as an inverse equivalence for mileage5.

Further, we approximate demand for automobile transportation by population density. We assume that

in more densily populated areas private transportation demand is lower, given that alternative means of

transportation increase in population density. Equation (1) reflects the above mentioned decision making

process.

3Automobile transportation demand is assumed to be exogenous within our modelling framework. Thus, means of changing
automobile demand, such as moving, as well as substitution options are unconsidered.

4In particular in the United States of America, mileage describes the automobile fuel economy by means of the ratio of
distance traveled per unit of fuel. Often given in miles per gallon.

5Specific CO2-emissions reflect grams of CO2 emitted by driving one kilometer. Hence, larger specific CO2-emissions
correspond to lower mileage. Data on automobile fuel consumption is not available within the data set.
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Specific CO2-emissions = f(energy awareness,population density) (1)

More energy aware individuals should always prefer an automobile with lower specific CO2-emissions.

However, transportation demand intensifies this effect. Meaning, with low population density and thus high

demand for automobile transportation, the variable energy costs have a larger share in total automobile costs

than with a low demand for automobile transportation. Therefore, consumers with large specific emissions

and a high demand for automobile transportation can be considered as comparably energy unaware.

Under the assumption of strict monotonicity in the effect of energy awareness and population density on

automobile specific CO2-emissions, we can invert function f as follows:

Energy awareness = f−1(specific CO2-emissions,population density) (2)

As the exact functional form of this relationship is unknown, we control for energy awareness allowing

for semi-parametrical forms. We use a fourth-order Taylor polynomial with all interaction terms (as in

Olley and Pakes, 1996). Hence, we construct a measure of the joint effect of unobserved energy awareness

and observed population density. Decomposing the unobservables within the decision processes into the

approximated energy awareness and the truly random error term resolves the selection and omitted variable

biases6.

We begin with modelling the decision to implement an energy efficiency measure using an ordered probit

approach, taking into account observed characteristics and unobserved energy awareness. This way we get

a better understanding of the underlying decision making process and show that energy awareness does

have an effect within this decision. As a next step, we estimate a consumer demand system for non-durable

energy goods to explore the treatment effect of energy efficiency measures. We resolve the endogeneity issue

by accounting for energy awareness.

2.2. Model I - Ordered Probit Approach

Within the ordered probit approach, the dependent variable m is the implementation of one or more

energy efficiency measures. Thus, we focus on the question of whether or not efficiency measures have

been implemented rather than exploring them separately. m is a discrete, ranked and ordinal variable that

incorporates the number of all energy efficiency measures implemented by each household since 2002. m

6An illustration can be found in Appendix C.
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captures the following measures: roof or top storey ceiling insulation, basement ceiling insulation, outer

walls insulation, replacement of windows as well as replacement of the heating system. The effectiveness

of these measures is differing in practice. These differing effects however are excluded from our analysis

and average energy efficiency effects alone are captured in m. Resulting coefficient estimates are interpreted

correspondingly.

We derive a model that regresses observed and unobserved household characteristics on m. We denote

exogenous observed and preference related characteristics, such as demographics and dwelling conditions,

by vector ~z. In addition to ~z, we control for ~a, the semi-paramteric approximation of unobserved energy

awareness and observed population density. As discussed, we apply an approach similar to the Olley-Pakes

methodology for unobserved energy awareness7. The error term ρ is assumed to be joint normally distributed

(Train, 1986). We specify the following ordered probit estimation equation and estimate it via standard

maximum likelihood8.

m =

C∑
c=1

αczc +

D∑
d=1

βdad + ρ (3)

Equation (3) allows us to calculate the continuous predicted energy efficiency variable m̃ and cut points

that enable us to derive probabilities for implementing specific numbers of energy efficiency measures. If a

significant effect of ~a on the decision to implement an energy efficiency measure shows, the above mentioned

endogeneity issue arises and needs to be resolved by controlling for unobserved heterogeneity.

So as to explore the effect of energy efficiency measures on household energy demand, we discuss the

demand system analysis in the following section.

2.3. Model II - Demand System

Our demand system is based on standard assumptions regarding consumer preferences, including re-

flexiveness, completeness, and transitivity. Consumers maximize their utility following the properties of

homogeneity of degree one in prices, being increasing in utility, non-decreasing, continuous, and concave in

prices, and derivable (Edgerton, 1996). Given the nature of the problem as well as the available data, we

apply a product space approach with multiple products and heterogeneous agents. To efficiently estimate a

multi-product system requires simplifications. Methods of simplifications such as aggregation and assump-

tions regarding separability are commonly used in literature (e.g. Hausman et al., 1994). Assuming (weak)

7As a fourth-order polynomial with all interaction terms D = 17 in Equation (3).
8An overview about variable notations is given in Appendix A in Table A.1.
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separability corresponds with partitioning goods into groups and restricting preferences within groups to be

independent of quantities purchased within other groups (Deaton, 1980). Therewith, overall utility max-

imization under a budget constraint can be split into maximization of several subutility functions ν. In

our particular applicaton this coincides with households distributing overall household income on different

aggregated groups of goods (i.e. budgeting groups), such as housing, food and energy, in a first budgeting

stage.

u = f(νhousing, νfood, νenergy, ...) (4)

The resulting distribution of overall household income gives the subgroup expenditures, which restrict the

maximization process for the subutility functions. For our analysis, we focus on the energy budgeting group

and the related conditional demand function. That implies, the consumption of different energy goods is

optimized taking individual prices and energy good subgroup expenditures (from the first budgeting stage)

into account. In this multi-stage approach, separability of preferences is implicitly assumed. Hence, we

assume that the consumptions of energy and other goods are separable but separability for consumption of

different fuels is not assumed.

However, as Moschini et al. (1994) point out: “the convenience of an assumption [regarding separability]

is no substitute for its truth”. Therefore, several tests for separability were proposed in the past (e.g.

Varian, 1983; Moschini et al., 1994). Unfortunately, data availability hinders us to test our separability

assumptions. Therefore, we reason the assumption by intuition. Firstly, grouping non-durable energy goods

into one budgeting group is plausible for several reasons: Energy goods can be transformed into different

forms of energy and are used for different kinds of services, such as heating or cooking, and a general

substitutability exists. Households also tend to be contracted to one single provider that supplies most of

the non-durable energy goods used. This applies in particular to electricity and heating fuels. Joint billing

thus creates a perceptional linkage between these energy goods that is also invigorated by public attention

being given to energy as a whole rather than to individual fuels (e.g. regarding the German Energiewende).

Further, non-durable energy goods can be regarded as contributing to housing comfort (e.g. in terms of

heating, warm water, lighting, entertainment). Lastly, the assumption is consistent with comparable energy

demand estimations, see among others Baker and Blundell (1991) or Labandeira et al. (2006).

Yet, we have to consider the energy efficiency investment as a durable energy good within our budgeting

approach. The discrete decision to implement an energy efficiency measure indirectly contributes to the

9



energy subgroup utility νenergy. Indirectly by means of increasing the specific utility from consuming

nondurable energy goods for heating. Therefore, we cannot assume intertemporal separability between

the implementation of the energy efficiency measure and non-durable energy good consumption. Even

though Deaton (1980) shows that durable goods can be easily expressed in a way similar to nondurable

goods, the necessary assumptions of indivisibilities and perfect reselling of the durable good do not hold in

our application. However, the highly individualised nature of energy efficiency measures, in particular in

insulation applications, puts an absolute selling constraint on the durable energy efficiency measure. Hence,

despite contributing to the subutility function, after the decision to invest9 households stick with their

choice. Expenditures associated with the investment10 are predetermined and reduce subgroup expenditures

without altering the subutility cost minimization problem dual to the subutility maximization problem.

Thus, restricting our analysis on the residual subgroup expenditures is an appropriate approximation.

The implementation of the identification strategy requires the assumption that changes in durable energy

goods that consume electricity are not correlated with the implementation of an energy efficiency measure.

Such a correlation would be a likely scenario if energy efficiency measures are just a part of several investments

when moving into a new house (e.g. larger kitchen space allows for larger/more kitchen appliances such

as refrigerators). However, data suggests that energy efficiency measures are generally implemented after a

change in occupation took place11.

We use the Exact Affice Stone Index (EASI) implicit Marshallian demand system introduced by Lew-

bel and Pendakur (2009)12. In contrast to other product space approaches with multiple products and

heterogeneous agents13, the EASI demand system allows for almost unrestricted Engel curves, thus an un-

bounded relationship between product expenditure and household income, as well as unobserved preference

heterogeneity.

The main trick of Lewbel and Pendakur (2009) is the combination of Marshallian and Hicksian demands.

By expressing utility, u, by implicit utility, y, and replacing it in Hicksian budget share equations, they define

implicit Marshallian demand equations described entirely by observable and approximable variables14.

Households are considered as single consumers (based on the assumption of additivity of individual house-

hold member preference functions). As previously discussed, we assume a multi-stage budgeting approach.

9Because of expected utility returns.
10E.g. by means of credit payments.
11For an illustration refer to Figure A.1 in Appendix A.
12See Pendakur (2009) for a less technical introduction to the EASI demand systems and implicit Marshallian demands.
13Such as e.g. Deaton and Muellbauer (1980) and Banks et al. (1997).
14The approach used here as well as the estimation procedure are based on Pendakur (2009). A detailed description of the

approach is given in Appendix B.
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In a first budgeting stage, total income is distributed to subgroup expenditures, of which the energy group

is in the focus of this study. Households receive utility, u, from consuming a bundle of some subset of J

different goods within the energy group. They spend total nominal group expenditures, x, on that bundle,

taking the vector of prices, ~p, into account. The value of the chosen bundle can be described by ~w, a vector

of budget shares of length J . Observed and preference related characteristics, such as demographics and

housing conditions are given by vector ~z. We separate energy efficiency measures, ~m, from ~z15. Contrary

to the ordered probit estimation, we now disaggregate ~m and explore individual dummy variables for each

type of efficiency measures. This enables us to capture behavioural aspects linked to differing measures

implemented.

We further control for two types of unobserved preference heterogeneity: energy awareness and random

utility. In line with the notation of the ordered probit estimation, energy awareness is incorporated in ~a.

Random utility is denoted by ~ε.

Our matter of interest is the effectiveness of energy efficiency measures, i.e. the change in demand for an

energy good by implementing an energy efficiency measure (∂Qj/∂m). With wj = pjQj/x and exogenous

prices, Equation (5) follows.

∂Qj

∂m
=
∂wj

∂m

x

pj
+
∂x

∂m

wj

p
(5)

For good j a change in purchased quantity, Qj , is described by changes in the group budget share, wj ,

and changes in group expenditures, x. Engineering calculations on the effect of an energy efficiency measure

would give alterations in both wj and x. With all considered energy efficiency measures aiming at reducing

the demand for heating fuels, a reduced consumption of heating fuels due to an energy efficiency measure

would decrease their budget share and related group expenditures.

The effectiveness of an energy efficiency measure, as follows from Equation (5), can be measured by

changes in both the budget share of heating fuels and group expenditures. However, due to data limitations,

the first budgeting stage (determining group expenditures) cannot be accounted for. Nevertheless, we can

identify whether there is a positive16 impact of implementing energy efficiency measures by considering

energy group budget shares only and comparing these with engineering estimates.

For identification, we utilize the fact that the physical (i.e. thermodynamic) effect of energy efficiency

measures affects heating fuels only. Consider three scenarios by which we illustrate that a positve treatment

15See Table A.2 in Appendix A for the distribution of energy efficiency measures within the data
16From a policy point of view, by means of reduced nondurable energy good consumption.
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effect should always relate to ∂wj/∂m < 0. Firstly, assume the energy efficiency measure would lower group

expenditures but keeps the budget shares unaltered (i.e. ∂Qj/∂m < 0). Hence, behavioural reductions in

demand for other energy goods would compensate thermodynamic as well as behavioural induced reductions

in heating fuel demand. Secondly, assume the energy efficiency measure would unalter group expenditures

and budget shares (i.e. ∂Qj/∂m = 0). This would correspond to behavioural effects in heating fuels that

counteract thermodynamic effects entirely. Hence, no demand reducing effect of energy efficiency measures

is observable. Similar results follow if considering ∂Qj/∂m > 0. Hence, in combination with estimates

from engineering calculations (Stolte et al., 2012) we can identify and quantify economic and behavioural

responses to implementation of energy efficiency measures.

Consider the endogeneity issue resulting from energy aware households being marginal adopters of energy

efficiency measures. We argue that energy aware households tend to have a higher share of heating fuels

compared to other energy goods (i.e. mostly electricity). Observable characteristics such as dwelling, heating

and other things equal, energy aware households should still have a more efficient stock of energy consuming

durable goods. In addition, research shows that the lower bound for heating demand is restricted by

individual comfort levels (e.g. Nicol and Humphreys, 2002), while such a lower bound for other energy services

is currently unknown. Therefore, consumption restrictions induced by energy cost attentiveness should

primarily occur in non-heating fuels and hence, increase the budget share for heating fuels. Consequential,

endogeneity needs to be addressed when evaluating the second stage budgeting process.

The following estimation equation for the budget shares results from the EASI implicit Marshallian

demand system 17:

wj =

E∑
e=1

γje ỹ
e +

F∑
f=1

δjfzf +

G∑
g=1

τ jgmg +

H∑
h=1

ψj
hah +

J∑
k=1

bjk(~z,m,~a) ln pk + εj (6)

In addition to the variables already specified, the linear approximation of the implicit utility ỹ and its

powers are implemented in Equation (6). These variables give rise to another endogeneity problem: implicit

utility y (and its powers) is simultaneously defined by exogenous variables lnx, ~z and ln ~p as well as the

endogenous budget share ~w. However, this is solved by the exogeneity of lnx, ~z and ln ~p. By simply

regressing the exogenous variables on y and its powers, this endogeneity problem can be resolved. We

estimate Equation (6) using a Two-Stage-Least-Squares (2SLS) approach.

17Derivation of this equation based on Pendakur (2009) as well as an overview of variable notations (Table A.1) are given in
Appendix A.
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3. Data

Our study is based on the German Residential Energy Consumption Survey (GRECS18) 2006-2008. The

survey is conducted triennialy based on a tendering by the German Federal Ministry of Economic Affairs and

Energy19. So as to obtain information on the use of energy in private households, a representative sample of

the German population is interviewed on their consumption of various fuels and corresponding characteris-

tics. The dataset consists of cross-sectional information on socio-economic characteristics (income, residence,

number of children etc.), housing conditions (year of construction, type of building, rent/ownership etc.),

heating system (fuel used, type of heating, auxiliary systems etc.), hot-water supply and food preparation

(fuel etc.), billing information for the individual fuels/energy services, potential renewable energy systems

(year of construction, type etc.), data on the implementation of energy efficiency measures as well as au-

tomobile ownership and climate indicators (heating degree days) for the years 2006 to 2008. The survey

aims at observing energy efficiency measures implemented since 2002. We thus assume persistence in the

households’ observed and unobserved characteristics that influence the investment decision since 2002.

Within the dataset information for some variables (billing information20 for energy goods, heating degree

days, number of energy efficiency measures and household size) is given on a yearly level for 2006 to 2008.

For all other variables information is only given for one point in time. This particularly concerns the socio-

economic characeristics21. However, under the assumption of permanence in the cross-sectional information

of the survey, we expand the dataset for the years 2006-2008. Given the yearly variation of some of the

variables, we handle it as a cross-sectional dataset but allow for more than one observation per household.

We further analyse the choice of automobiles to proxy unobserved energy awareness. We match the stated

automobile manufacturer key number and type key number in the survey with specific CO2-emissions of the

ADAC automobile database (Allgemeiner Deutscher Automobilclub, 2014). Based on this information, we

calculate household average CO2-emissions per kilometer as the mean of the specific CO2 emissions of all

automobiles in each household. Population density is matched from German Federal Statistical Office and

the Land Statistical Offices (2014) at the local authority level.

We subset the original dataset in various ways. We restrict our analysis to homeowners of detached and

semi-detached houses. These households directly benefit from potential energy efficiency measures and we

18GRECS was used in energy demand related articles among others in Grösche and Vance (2009), Frondel and Vance (2013a)
and Grösche and Schröder (2011).

19The report, including the questionnaire used to generate GRECS, is given in Frondel et al. (2011).
20Billing information includes individual price data for each household. We thus account for individual supply side charac-

teristics within the data.
21The survey was conducted between February 22nd and April 15th in 2010.
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Fuel combination Frequency Percent

Electricity and natural gas 393 32.37 %
Electricity, natural gas and wood 182 14.99 %
Electricity and heating oil 156 12.85 %
Electricity, heating oil and wood 122 10.05 %
Electricity and wood 56 4.61 %
Electricity, heating oil, wood and solar thermal energy 34 2.8 %
Electricity, natural gas and solar thermal energy 34 2.8 %
Electricity, natural gas, wood and solar thermal energy 33 2.72 %
Only electricity 29 2.39 %
Electricity, heating oil and solar thermal energy 24 1.98 %
Electricity, natural gas, wood and lignite 19 1.57 %
Electricity and liquified petroleum gas 15 1.24 %
Electricity and district heating 12 0.99 %
Electricity, heating oil, wood and lignite 12 0.99 %

Observations 1121

Table 1: Distribution of energy goods utilization among households

can circumvent the tenant-landlord problematic. In order to minimize the measurement bias, households

with heat cost allocators are excluded. Our sample only includes households with stated automobile own-

ership. Further, the lack of filing of energy bills leads to a missing data problem. We assume that missing

variables are missing at random and thus, listwise deletion of the corresponding observations does not bias

our results (Little and Rubin, 2002).

Table 1 gives an overview of the different combinations of energy goods used by households in the

dataset22. It shows different energy good combinations. Even though all relevant data for the different

combinations for estimating each combination individually are in principle available, two data problems

make such an endeavour impossible. First, a low number of observations for some combinations would

lead to inefficient estimates and second, for combinations including wood, prices at the household level are

unavailable. Despite the fact that price indices for wood exist, the application of such energy indices (e.g.

on federal state level) for households is inappropriate. With a vast number of different sources and thus,

large differentiation in costs and prices, heterogeneity of wood prices on a regional level cannot be captured

within the data. For these reasons, we will restrict our demand analysis on households that only utilize

electricity and natural gas.

Summary statistics for the samples used are given in Table A.3, Table A.4, and Table A.5 in Appendix

A.

22For reasons of clarity, fuel combinations with less than ten observations are omitted. The information is given for the data
used in the ordered probit estimation.
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4. Results

Prior to identification of the treatment effect of energy efficiency measures, we discuss whether unob-

served heterogeneity, as approximated by energy awareness, impacts on the decision to implement an energy

efficiency measure. Recall that if we find a statistically significant impact of the approximation of unob-

served heterogeneity results on the investment decision, neglection of unobserved heterogeneity results in

biased estimates within the demand model estimation. According to the model described in section 2.2,

the ordered probit estimation results are presented in Table 2. Exogenous and observable characteristics ~z

show the expected tendencies. For example, the probability of implementing energy efficiency measures is

significantly higher for older buildings and lower for the lowest income group in our data.

Dependent Variable: Number of energy efficiency measures

Exogeneous and observable characteristics (~z)
Dwelling completion:

before 1918 1.933*** (0.261)
1919 - 1948 1.710*** (0.260)
1949 - 1957 1.912*** (0.269)
1958 - 1968 2.042*** (0.254)
1969 - 1977 1.786*** (0.253)
1977 - 1983 1.426*** (0.243)
1984 - 1994 0.890*** (0.246)
1995 - 2001 0.222 (0.245)
2002 - 2008 (ref.)

Dwelling characteristics:
Living space (sq m) -0.000710 (0.000740)
Year of heating system completion 0.0233*** (0.00367)
Semi-detached house (ref.)
Detached house 0.0327 (0.0850)

Monthly income:
below 500 EUR/month -5.385*** (0.286)
500 - 1000 EUR/month 0.181 (0.317)
1000 - 1500 EUR/month -0.0768 (0.190)
1500 - 2000 EUR/month -0.0866 (0.154)
2000 - 2500 EUR/month -0.137 (0.125)
2500 - 3000 EUR/month -0.189+ (0.127)
3000 - 3500 EUR/month -0.107 (0.125)
3500 - 4000 EUR/month -0.0931 (0.119)
above 4000 EUR/month (ref.)

Age:
18-29 years (ref.)
30-49 years -0.119 (0.308)
above 50 years -0.190 (0.305)

Energy awareness (~a)
Automobile specific CO2 emissions (SCE) -0.0296+ (0.0202)
SCE2 0.000129+ (0.0000848)
SCE3 -0.000000212+ (0.000000142)
SCE4 9.96e-11 (7.89e-11)
Population density (PD) -0.0106** (0.00437)
PD2 0.00000923*** (0.00000320)
PD3 -1.81e-09*** (6.08e-10)
PD4 5.18e-14** (2.24e-14)
SCE × PD 0.000115** (0.0000468)

Continued on next page

Table 2: Ordered probit estimation results
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Continued from previous page

SCE2 × PD2 3.40e-10*** (1.18e-10)
SCE3 × PD3 6.51e-17*** (2.39e-17)
SCE2 × PD -0.000000412***(0.000000151)
SCE × PD2 -9.52e-08*** (3.48e-08)
SCE3 × PD 4.57e-10*** (1.50e-10)
SCE × PD3 1.61e-11** (6.32e-12)
SCE2 × PD3 -5.79e-14*** (2.19e-14)
SCE3 × PD2 -3.80e-13*** (1.26e-13)

Cut-off point 1 45.14*** (7.583)
Cut-off point 2 46.02*** (7.587)
Cut-off point 3 46.60*** (7.589)
Cut-off point 4 47.25*** (7.597)
Cut-off point 5 47.89*** (7.590)

Observations 1026

Standard errors in parentheses
+ p < 0.15, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Standard errors are clustered by household

Table 2: Ordered probit estimation results

Coming to the coefficients for the proxy of unobserved energy awareness as well as population density,

~a, our findings show that the polynomials of specific CO2-emissions and population density as well as

their interactions are statistically significant in their impact on the implementation of energy efficiency

measures. To illustrate the relationship between the proposed functional form for energy awareness and the

implementation of energy efficiency measures, we map the estimated coefficients for ~a graphically in Figure

2.

The figure shows that households that are by assumption less energy aware, and thus own a higher

emitting automobile, tend to have a lower probability to implement an energy efficiency measure. Further,

this result suggests that the first derivative with respect to specific automobile carbon emissions is negative

along the entire range23. We further observe a slight population density effect. A larger number of efficiency

measures is more likely to be implemented in less densely populated areas. This could be explained by lower

social norm effects due to an increased anonymity in densily populated areas. Here, monumental protection

and stricter building regulations are also more likely, restricting the potential for implementation of energy

efficiency measures.

The estimation results support our hypothesis that unobserved energy awareness impacts on the decision

to implement an energy efficiency measure. The validity of our approximation approach is thus confirmed

and disregard leads to biased estimates.

23Figure A.2 and Figure A.3 in Appendix A visualize the first derivatives with respect to specific automobile carbon emissions
and population density.
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Figure 2: Joint impact of energy awareness and population density on the likelihood to implement an energy efficiency measure

Turning to the treatment effect of energy efficiency measures, the results of the demand system estimation

are given in Table 3. Estimated coefficients represent semi-elasticities within the energy budget group, as

illustrated in Equation (6). With these, the treatment effect is identified from Equation (5). As the budget

shares in the budgeting group for energy goods sum up to unity, one budget share equation is dropped

within the estimation process. With only electricity and natural gas under consideration, we estimate the

system once with the electricity budet share and once with the natural gas budget share only. Coefficients

do not express direct effects on energy demand, but distributional effects among energy goods within the

energy budget group. For the exogenous and observable characteristics ~z, we find among others the budget

share for natural gas is increasing in dwelling age and the budget share for electricity is rising in the number

of household members.

Semi-elasticities of budget shares Electricity Natural Gas

Normalized price of energy good (ln) 0.0735*** (0.0224) 0.0735*** (0.0224)
Implicit utility/log real expenditures:

Linear 0.501 (0.411) -0.497 (0.415)
Squared -0.0306+ (0.0205) 0.0304+ (0.0207)

Exogeneous and observable characteristics (~z)
Dwelling completion:

before 1918 -0.0333 (0.0332) 0.0330 (0.0333)
1919 - 1948 -0.0494+ (0.0331) 0.0498+ (0.0331)
1949 - 1957 -0.0406 (0.0358) 0.0424 (0.0359)
1958 - 1968 -0.00571 (0.0338) 0.00644 (0.0337)
1969 - 1977 0.00667 (0.0308) -0.00632 (0.0308)
1977 - 1983 -0.0428+ (0.0292) 0.0435+ (0.0293)
1984 - 1994 0.0118 (0.0273) -0.0110 (0.0273)

Continued on next page

Table 3: Demand system estimation results
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Continued from previous page

Semi-elasticities of budget shares Electricity Natural Gas

1995 - 2001 0.0164 (0.0266) -0.0162 (0.0267)
2002 - 2008 (ref.)

Dwelling characteristics:
Year of heating system completion -0.000732 (0.000534) 0.000745 (0.000533)
Living space 0.000184 (0.000190) -0.000187 (0.000190)
Detached house -0.000524 (0.0107) 0.000625 (0.0107)
Semi-detached house (ref.)

Climate characteristics:
Heating degree days -0.00000674 (0.0000146) 0.00000647 (0.0000146)
Year -0.000582 (0.00122) 0.00108 (0.00123)

Monthly income:
below 500 EUR/month 0 (.) 0 (.)
500 - 1000 EUR/month 0 (.) 0 (.)
1000 - 1500 EUR/month -0.00853 (0.0342) 0.00935 (0.0341)
1500 - 2000 EUR/month 0.0324 (0.0285) -0.0322 (0.0284)
2000 - 2500 EUR/month -0.0182 (0.0178) 0.0184 (0.0178)
2500 - 3000 EUR/month -0.00252 (0.0165) 0.00278 (0.0164)
3000 - 3500 EUR/month -0.00377 (0.0180) 0.00367 (0.0180)
3500 - 4000 EUR/month -0.0152 (0.0203) 0.0151 (0.0202)
above 4000 EUR/month (ref.)

Head of household characteristics:
Age: 18-29 years
Age: 30-49 years 0.0159 (0.0364) -0.0159 (0.0365)
Age: above 50 years 0.0148 (0.0353) -0.0152 (0.0353)
Education: High-School and above 0.00963 (0.0112) -0.00906 (0.0112)
Number of household members 0.0297*** (0.00552) -0.0298*** (0.00554)

Energy efficiency measures (~m)
Type of energy efficiency measure implemented:

Roof or top storey ceiling -0.0378* (0.0195) 0.0378* (0.0195)
Basement ceiling insulation 0.0379+ (0.0259) -0.0392+ (0.0257)
Outer walls insulation 0.0594** (0.0241) -0.0598** (0.0241)
Window replacement 0.0118 (0.0220) -0.0120 (0.0220)
Heating system replacement 0.00897 (0.0158) -0.00974 (0.0158)

Energy awareness (~a)
Automobile specific CO2 emissions (SCE) 0.0115** (0.00474) -0.0119** (0.00478)
SCE2 -0.0000513** (0.0000246) 0.0000521** (0.0000246)
SCE3 9.88e-08* (5.59e-08) -9.72e-08* (5.57e-08)
SCE4 -7.21e-11+ (4.82e-11) 6.80e-11 (4.80e-11)
Population density (PD) 0.00310*** (0.000780) -0.00337*** (0.000845)
PD2 -0.00000274***(0.000000613) 0.00000293*** (0.000000658)
PD3 5.07e-10*** (1.18e-10) -5.41e-10*** (1.26e-10)
PD4 4.08e-15 (3.29e-15) -4.15e-15 (3.30e-15)
SCE × PD -0.0000340*** (0.00000920) 0.0000373*** (0.0000100)
SCE2 × PD2 -1.01e-10*** (2.41e-11) 1.09e-10*** (2.64e-11)
SCE3 × PD3 -1.90e-17*** (4.50e-18) 2.06e-17*** (4.94e-18)
SCE2 × PD 0.000000105*** (3.36e-08) -0.000000117*** (3.67e-08)
SCE × PD2 3.12e-08*** (6.92e-09) -3.36e-08*** (7.51e-09)
SCE3 × PD -9.55e-11** (3.82e-11) 1.09e-10*** (4.15e-11)
SCE × PD3 -6.03e-12*** (1.26e-12) 6.44e-12*** (1.36e-12)
SCE2 × PD3 9.65e-14*** (2.59e-14) -1.06e-13*** (2.84e-14)
SCE3 × PD2 1.96e-14*** (4.31e-15) -2.11e-14*** (4.69e-15)

Observations 387 387

Standard errors in parentheses
+ p < 0.15, ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Standard errors are clustered by household

Table 3: Demand system estimation results
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Figure 3: Joint impact of energy awareness and population density on budget share of natural gas

The estimation results for the joint impact of energy awareness and population density, ~a, as presented

in Figure 324 illustrate two results. First, energy aware individuals have a higher (lower) share of natural

gas (electricity) consumption compared to less energy aware households. This confirms our hypothesis that

energy aware households are not only marginal adopters of energy efficiency measures, but in addition show

different consumption patterns. This is a reasonable result, as it is to be expected that these households also

utilize more efficient durable goods that consume electricity, hence, bolstering budget shares for natural gas.

The related endogeneity problem should result in an underevaluation of the effectiveness of energy efficiency

measures. Additionally, a population density effect becomes apparent: With an increase in population

density, the budget share for natural gas decreases which can be explained by the urban heat island effect.

The most important results, that is the treatment effect of energy efficiency measures on natural gas

budget shares, are given by the coefficients for ~m. Prior to discussing these, let us summarize what engineer-

ing calculations would suggest. All measures considered aim at reducing the consumption of heating fuels

only. Therefore, expenditures on natural gas should decrease after implementation. Assuming that direct

and indirect rebound effects within energy consumption are absent, the additional income from savings in

heating fuel expenditures will be spent on other goods, for instance food. Within our specification of the

demand system, this translates to a reduction in energy budget group expenditures (∂x/∂m < 0) and thus,

increasing budget share for electricity (∂welectricity/∂m > 0) and decreasing budget share for natural gas

(∂wnatural gas/∂m > 0). Lack of appropriate data hinders us to evaluate the first budgeting stage, necessary

to quantify ∂x/∂m. Hence, in our discussion we focus on the semi-elasticities of budget shares with respect

24First derivatives are given in Figure A.4 and Figure A.5 in Appendix A.
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to implementation of energy efficiency measures. In this respect, we would expect statistically significant

reductions in budget shares for natural gas. Nevertheless, one has to keep in mind that statistically insignif-

icant results do not show that there is no demand reducing effect whatsoever. A small effect might still

exist.

We find statistically significant results with expected signs for the implementation of basement ceiling

and outer wall insulation. Implementation of either of these reduces the budget share of the heating fuel,

i.e. natural gas. Further, no statistically significant impact of either window or heating system replacement

shows. As for roof or top storey ceiling insulation, we also find statistically significant changes in budget

shares. These however are counterintuitive: implementation corresponds with an increasing budget share

for natural gas. Assuming constant spending on electricity, these results indicate an increase in natural gas

spending, which can probably be explained by strong backfiring effects25.

As a first summary, we find that only two out of five energy efficiency measures give estimation results

which signs are in line with expectations from engineering calculations. Thus, two conclusions follow: first,

rebound effects are likely to counteract demand reductions from energy efficiency measures. These effects

might completely counteract efficiency gains and even result in backfiring. Second, results suggest a large

heterogeneity within the rebound effect for the different efficiency measures.

In order to evaluate and make these conclusions more plausible, we compare our budget share semi-

elasticities with engineering calculations within examplary model calculations. For reference, we consider

a detached house, built between 1969 and 1977, with living space of 144 m2. Further, the overall heating

demand prior to implementation of the insulation is assumed to be at 237 kWh/m2a and electricity demand

is assumed to be 3500 kWh/a. Electricity (0.2526 EUR/kWh) and natural gas (0.0675 EUR/kWh) prices

for 2011 are taken from BNetzA and BKartA (2012)26. Engineering calculations for energy savings from

different energy efficiency measures are taken from Stolte et al. (2012). Using this information, we can

calculate expected changes in budget shares and compare these to our results.

Table 4 illustrates the expenditures for electricity and natural gas as well as related budget shares from

engineering calculations in Stolte et al. (2012). Further, it compares these to our estimation results. We find

that economic and behavioural responses increase the budget share for natural gas from roof or top storey

ceiling insulation by 6.0 pp, from window replacement by 2.2 pp and from heating system replacement by

5.4 pp. These results relate to a direct rebound effect that is on the one hand of expected sign and on

25If rebound effects counteract efficiency gains from energy efficiency measures in its entirety and even overshoots these, this
effect is called backfiring.

26We restrict our analysis to one example setting due to lack of available data.
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Annual expenditures
in EUR (Stolte et al., 2012)

Budget shares
in % (Stolte et al., 2012)

Changes in budget shares
of natural gas in pp

Electricity
Natural

gas
Electricity

Natural
gas

Engineering
expectation

Our
estimation

results

∆

Without efficiency
measure

884 2304 27.7% 72.3% - - -

Roof or top storey
ceiling insulation

884 2069 29.9% 70.1% -2.2pp 3.8pp +6.0pp

Basement ceiling
insulation

884 2134 29.3% 70.7% -1.6pp -3.9pp -2.3pp

Outer walls
insulation

884 1758 33.5% 66.5% -5.7pp -6.0pp -0.3pp

Window replacement 884 2065 30.0% 70.0% -2.2pp 0.0pp +2.2pp

Heating system
replacement

884 1782 33.2% 66.8% -5.4pp 0.0pp +5.4pp

Table 4: Comparison of expectations from engineering calculations and estimation results

the other hand heterogeneous with respect to energy efficiency measure. These results suggest, that the

rebound effect significantly counteracts technological efficiency gains. Assuming that households maximize

their utility, these results could still imply a higher level of utility. For roof and top storey insulation, results

suggest that even backfiring (i.e., ∂Qnatural gas/∂m > 0) is likely.

The results for outer walls insulation closely resemble engineering expectations. Hence, there are either

hardly any such effects, or cross-product effects (i.e., indirect effects reducing consumption of electricity)

counteract reductions in natural gas budget shares. As the absence of rebound effects is rather unlikely, this

result allows us to calculate the cross-product, i.e., indirect, rebound effect.

Given that additional consumption of natural gas from the direct rebound effect requires additional con-

sumption of electricity to keep budget shares similar to engineering calculations, we can calculate additional

spending on electricity in relation to additional spending on natural gas. This results in further 0.38 EUR

spent on electricity for each 1 EUR spent on natural gas due to the direct rebound effect.

Contrary, we find additional budget share reductions originating from economic and behavioural effects

by 2.3 pp from implementation of basement ceiling insulation. This result suggests behavioural responses

that either further reduce natural gas demand or increase electricity demand. Hence, an inverse rebound

effect shows. However, as for low numbers of observations for this energy efficiency type27 focus on this

result should be restricted.

27See Table A.2 in Appendix A.
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Yet, these results are not an unimpeachable evidence as we can only control for the second budgeting

stage. This implies that regarding Equation (5), we can identify ∂wj/∂m only and have no information on

∂x/∂m. By showing necessary changes in electricity consumption that would allow for the joint realization of

the estimation results and the demand reduction from engineering calculations, we illustrate the plausibility

of our results. Further, assume no behavioural effects in heating fuels (i.e. no rebound effect28). By

this approach, we want to illustrate how improbable these scenarios are and hence, qualify our results by

contradiction.

Annual expenditures
in EUR (Stolte et al., 2012)

Budget shares
in %

Additional spending
on electricity

Electricity Natural gas
Natural gas

(Stolte et al., 2012)
Natural gas

(our estimation)
in EUR in %

Without efficiency
measure

884 2304 72.3% - - -

Roof or top storey
ceiling insulation

884 2069 70.1% 76.0% -231.9 -26.2%

Basement ceiling
insulation

884 2134 70.7% 68.4% 104.2 +11.8%

Outer walls
insulation

884 1758 66.5% 66.3% 8.8 +1.0%

Window replacement 884 2065 70.0% 72.3% -94.2 -10.7%

Heating system
replacement

884 1782 66.8% 72.3% -200.0 -22.6%

Table 5: Necessary changes in electricity spending for the joint realization of savings from engineering calculations and our
estimation results

The necessary changes in electricity demand that would explain a joint realization of the engineering

calculations and our estimation results are presented in Table 5. The results suggest that large reductions in

electricity consumption from -10.7% to -26.2% would be required for window, heating system replacement

and roof or top ceiling insulation. As no plausible driver for such reductions exists, we can conclude that

significant economic and behavioural rebound effects exist for these measures. As for outer walls insulation,

only 1% additional spending on electricity were required.

Taken all together, comparing our results to engineering calculations confirms our prior conclusions.

Rebound effects are likely to counteract demand reductions in particular for roof or top storey insulation

and window and heating system replacements. For outer wall insulation, we find that our results are either in

line with engineering calculations or suggest existence of indirect rebound effects of considerable magnitude.

Therefore, heterogeneity in the rebound effect manifests.

28Behavioural responses in heating fuels by means of a positive rebound effect would require opposed behavioural responses
in electricity and heating fuels.
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This heterogeneity allows for the following classification. On the one hand, we have measures leading to

moderate or high direct rebound effects and on the other hand, outer wall insulation showing either no direct

effect or a combination of direct and indirect effects. As previously discussed, rebound effects as in the first

group were to be expected. The differing effect for outer wall insulation needs to be explained in the context

of other factors. Expected savings of this measure are high, but this is also the case for other measures, such

as heating system replacement. Looking at the investment costs and disutility resulting from construction

for outer wall insulation, these are comparatively high. That is, this measure is linked to high costs that

need to be amortized over a longer period of time. In addition, the high visibility of this measure leads to

a repeated priming of these costs and suggesting altogether sunk cost fallacy. For outer wall insulation, we

thus propose the strongest impact on habit formation within the group of energy efficiency measures that

we explore.

5. Conclusion and discussion

While governments worldwide spend increasing amounts of money on policy schemes to reduce energy

consumption and related carbon emissions, economic and behavioural responses undermine their effective-

ness. In this paper, we investigate the actual treatment effect of energy efficiency measures and therein

compare actual demand responses to technological potentials. This is crucial as evaluation of measures to

increase energy efficiency relies mostly on engineering based calculations.

Based on German household survey data for the period 2006-2008, we find that unobserved energy

awareness does impact on the decision to implement an energy efficiency measure. Controlling for energy

awareness approximated by the automobile choice and population density shows, that more energy aware

households are more likely to invest. This has implications not only for the effectiveness and efficiency of

policy schemes, but further gives rise to a selection problem in evaluation.

Target-oriented policy measures should thus either increase the number of energy aware households by

for example information campaigns or address particularly households that are energy aware. This would

increase the adaption and hence, reduce the energy efficiency gap. Further, targeting policy schemes to

marginal adopters increases the efficiency of respective policies.

Additionally, our demand system estimation illustrates two important findings. First, economic and

behavioural responses counteract demand reductions from energy efficiency measures. Second, our results

confirm heterogeneity in these responses for different energy efficiency measures. Even if energy awareness is

taken account of, technological potentials are not fully realized due to economic and behavioural responses
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to the measures. Our results suggest that rebounding effects might actually increase energy demand and

hence, fail policy target levels. The effectiveness of policies thus falls short of its expectations, but must not

be negative per se. Individual utility will still be maximized and it might be that households reach a higher

level of utility due to the implementation.

Our results further show response heterogeneity of the different energy efficiency measures. This suggests

that behavioural aspects are linked to the measures themselves. These seem to be relevant in particular for

high cost and visible investments, such as outer wall insulation. Habit formation, priming, and the sunk cost

fallacy seem to be likely drivers of the effectivness of energy efficiency measures. However, further research

is required to fully understand these behavioural effects and their policy implications.

To conclude, understanding the economic and behavioural responses of such measures will contribute to

a better policy design and public discussion. Thus, it will promote the effectiveness of policy schemes and

the achievement of the overarching goal to reduce carbon emissions and mitigate climate change.
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Appendix A. Data

Abbreviation Explanation Coefficient Length

~a Semi-parametric approximation for energy awareness and population density ~β(1), ~ψ(2) D(1), H(2)

b Slutsky coefficients - J × J
C Cost function - -

m(1),~m(2) Number of implemented energy efficiency measures τ (2) 1(1), G(2)

n Hicksian budget share function - J

~p Prices of energy goods b(2) J
u Utility - -
~v Hicksian budget share - J
~w Budget share - J
x Total (group) expenditures - -

y Implicit utility γ(2) E(2)

~z Exogenous, observed characteristics α(1), δ(2) C(1), F (2)

ρ Ordered probit error term - -
ε EASI random utility - J
nu Budgeting group subutility - -

(1) Econometric Model I: Ordered Probit, (2) Econometric Model II: EASI

Table A.1: Notation

Type of energy efficiency measure Frequency Percent

Roof or top storey ceiling insulation 72 19%
Basement ceiling insulation 8 2%
Outer walls insulation 36 9%
Window replacement 66 17%
Heating system replacement 88 23%

Observations 387 100%

Table A.2: Distribution of energy efficiency types among households
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Mean Standard deviation Min Max

Dependent Variable: Number of energy efficiency measures .8421053 1.118545 0 5
Exogeneous and observable characteristics (~z)
Dwelling completion:

before 1918 .0896686 .2858457 0 1
1919 - 1948 .0935673 .2913677 0 1
1949 - 1957 .0662768 .2488866 0 1
1958 - 1968 .0984405 .2980547 0 1
1969 - 1977 .128655 .334981 0 1
1977 - 1983 .1364522 .3434356 0 1
1984 - 1994 .1315789 .3381973 0 1
1995 - 2001 .1666667 .3728597 0 1
2002 - 2008 .0877193 .2830242 0 1

Dwelling characteristics:
Living space (sq m) 137.0575 43.38398 40 772
Year of heating system completion 1993.896 11.02201 1924 2009
Detached house .6929825 .4614817 0 1
Semi-detached house .3070175 .4614817 0 1

Monthly income:
below 500 EUR/month .0009747 .0312195 0 1
500 - 1000 EUR/month .0155945 .123961 0 1
1000 - 1500 EUR/month .0526316 .2234058 0 1
1500 - 2000 EUR/month .1130604 .3168211 0 1
2000 - 2500 EUR/month .1578947 .3648201 0 1
2500 - 3000 EUR/month .1510721 .3582938 0 1
3000 - 3500 EUR/month .1374269 .3444654 0 1
3500 - 4000 EUR/month .1159844 .3203624 0 1
4000 - 4500 EUR/month .1023392 .3032417 0 1
above 4500 EUR/month .1530214 .3601837 0 1

Age:
18-29 years .0175439 .1313503 0 1
30-49 years .3489279 .4768636 0 1
above 50 years .6335283 .4820754 0 1

Energy awareness (~a)
Automobile specific CO2 emissions (SCE) 229.4425 98.22171 90 828
SCE2 62281.96 61222.64 8100 685584
SCE3 2.01e+07 3.49e+07 729000 5.68e+08
SCE4 7.62e+09 2.18e+10 6.56e+07 4.70e+11
Population density (PD) 612.0979 894.262 14 4592
PD2 1173589 3377958 196 2.11e+07
PD3 3.56e+09 1.38e+10 2744 9.68e+10
PD4 1.28e+13 5.90e+13 38416 4.45e+14
SCE × PD 141736.3 239259.4 2156 2459488
SCE2 × PD2 7.73e+10 3.35e+11 4648336 6.05e+12
SCE3 × PD3 8.16e+16 6.25e+17 1.00e+10 1.49e+19
SCE2 × PD 3.86e+07 8.99e+07 332024 1.49e+09
SCE × PD2 2.77e+08 9.02e+08 30184 1.00e+10
SCE3 × PD 1.23e+10 4.11e+10 5.08e+07 8.97e+11
SCE × PD3 8.54e+11 3.69e+12 422576 4.20e+13
SCE2 × PD3 2.43e+14 1.37e+15 6.51e+07 2.46e+16
SCE3 × PD2 2.54e+13 1.54e+14 7.16e+08 3.65e+15

Observations 1026

Table A.3: Ordered probit estimation - summary statistics
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Mean Standard deviation Min Max

Budget share of energy good .3784045 .1075553 .0590275 .7483409
Implicit utility/log real expenditures:

Linear 10.00476 .3889487 8.65094 11.07085
Squared 100.2462 7.750888 74.83876 122.5638
Normalized price of energy good (ln) 1.082285 .2263139 -1.077474 2.337301

Exogeneous and observable characteristics (~z)
Dwelling completion:

before 1918 .0801034 .2718045 0 1
1919 - 1948 .0956072 .2944325 0 1
1949 - 1957 .0697674 .2550845 0 1
1958 - 1968 .0878553 .2834508 0 1
1969 - 1977 .118863 .3240462 0 1
1977 - 1983 .0878553 .2834508 0 1
1984 - 1994 .1524548 .3599265 0 1
1995 - 2001 .255814 .4368826 0 1
2002 - 2008 .0516796 .2216659 0 1

Dwelling characteristics:
Year of heating system completion 1995.196 9.550123 1963 2009
Living space 128.5736 33.54599 60 250
Detached house .4806202 .500271 0 1
Semi-detached house .5193798 .500271 0 1

Climate characteristics:
Heating degree days 3324.92 343.0874 2537.892 4560.433
Year 2006.863 .7406439 2006 2008

Monthly income:
below 500 EUR/month 0 0 0 0
500 - 1000 EUR/month 0 0 0 0
1000 - 1500 EUR/month .0465116 .210863 0 1
1500 - 2000 EUR/month .0620155 .2414959 0 1
2000 - 2500 EUR/month .1808786 .3854158 0 1
2500 - 3000 EUR/month .1963824 .3977753 0 1
3000 - 3500 EUR/month .1447028 .3522564 0 1
3500 - 4000 EUR/month .0904393 .2871813 0 1
4000 - 4500 EUR/month .121447 .3270689 0 1
above 4500 EUR/month .1576227 .3648586 0 1
Age: 18-29 years .0077519 .0878167 0 1

Head of household characteristics:
Age: 30-49 years .3100775 .4631238 0 1
Age: above 50 years .6821705 .4662355 0 1
Education: High-School and above .5193798 .500271 0 1
Number of household members 2.821705 1.051396 1 8

Energy efficiency measures (~m)
Type of energy efficiency measure implemented:

Roof or top storey ceiling .1317829 .3386925 0 1
Basement ceiling insulation .0155039 .1237055 0 1
Outer walls insulation .0594315 .2367366 0 1
Window replacement .0775194 .2677599 0 1
Heating system replacement .1111111 .3146765 0 1

Energy awareness (~a)
Automobile specific CO2 emissions (SCE) 217.6331 96.0457 109 604
SCE2 56565.1 57856.37 11881 364816
SCE3 1.77e+07 3.02e+07 1295029 2.20e+08
SCE4 6.54e+09 1.58e+10 1.41e+08 1.33e+11
Population density (PD) 746.5672 986.9007 14 4592
PD2 1528819 3535677 196 2.11e+07
PD3 4.44e+09 1.36e+10 2744 9.68e+10
PD4 1.48e+13 5.50e+13 38416 4.45e+14
SCE × PD 177846.5 306968.3 2156 2459488
SCE2 × PD2 1.26e+11 5.22e+11 4648336 6.05e+12
SCE3 × PD3 1.64e+17 1.13e+18 1.00e+10 1.49e+19
SCE2 × PD 5.18e+07 1.39e+08 332024 1.49e+09

Continued on next page

Table A.4: Demand system estimation electricity - summary statistics
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Continued from previous page

Mean Standard deviation Min Max

SCE × PD2 3.93e+08 1.12e+09 30184 1.00e+10
SCE3 × PD 1.84e+10 7.41e+10 5.11e+07 8.97e+11
SCE × PD3 1.19e+12 4.25e+12 422576 4.08e+13
SCE2 × PD3 4.89e+13 2.85e+14 7.16e+08 3.65e+15
SCE3 × PD2 4.00e+14 2.03e+15 6.51e+07 2.46e+16

Observations 387

Table A.4: Demand system estimation electricity - summary statistics

Mean Standard deviation Min Max

Budget share of energy good .6215955 .1075553 .2516591 .9409724
Implicit utility/log real expenditures:

Linear 10.0048 .3889485 8.651021 11.07089
Squared 100.2469 7.750915 74.84016 122.5646
Normalized price of energy good (ln) -1.082285 .2263139 -2.337301 1.077474

Exogeneous and observable characteristics (~z)
Dwelling completion:

before 1918 .0801034 .2718045 0 1
1919 - 1948 .0956072 .2944325 0 1
1949 - 1957 .0697674 .2550845 0 1
1958 - 1968 .0878553 .2834508 0 1
1969 - 1977 .118863 .3240462 0 1
1977 - 1983 .0878553 .2834508 0 1
1984 - 1994 .1524548 .3599265 0 1
1995 - 2001 .255814 .4368826 0 1
2002 - 2008 .0516796 .2216659 0 1

Dwelling characteristics:
Year of heating system completion 1995.196 9.550123 1963 2009
Living space 128.5736 33.54599 60 250
Detached house .4806202 .500271 0 1
Semi-detached house .5193798 .500271 0 1

Climate characteristics:
Heating degree days 3324.92 343.0874 2537.892 4560.433
Year 2006.863 .7406439 2006 2008

Monthly income:
below 500 EUR/month 0 0 0 0
500 - 1000 EUR/month 0 0 0 0
1000 - 1500 EUR/month .0465116 .210863 0 1
1500 - 2000 EUR/month .0620155 .2414959 0 1
2000 - 2500 EUR/month .1808786 .3854158 0 1
2500 - 3000 EUR/month .1963824 .3977753 0 1
3000 - 3500 EUR/month .1447028 .3522564 0 1
3500 - 4000 EUR/month .0904393 .2871813 0 1
4000 - 4500 EUR/month .121447 .3270689 0 1
above 4500 EUR/month .1576227 .3648586 0 1
Age: 18-29 years .0077519 .0878167 0 1

Head of household characteristics:
Age: 30-49 years .3100775 .4631238 0 1
Age: above 50 years .6821705 .4662355 0 1
Education: High-School and above .5193798 .500271 0 1
Number of household members 2.821705 1.051396 1 8

Energy efficiency measures (~m)
Type of energy efficiency measure implemented:

Continued on next page

Table A.5: Demand system estimation natural gas - summary statistics
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Continued from previous page

Mean Standard deviation Min Max

Roof or top storey ceiling .1317829 .3386925 0 1
Basement ceiling insulation .0155039 .1237055 0 1
Outer walls insulation .0594315 .2367366 0 1
Window replacement .0775194 .2677599 0 1
Heating system replacement .1111111 .3146765 0 1

Energy awareness (~a)
Automobile specific CO2 emissions (SCE) 217.6331 96.0457 109 604
SCE2 56565.1 57856.37 11881 364816
SCE3 1.77e+07 3.02e+07 1295029 2.20e+08
SCE4 6.54e+09 1.58e+10 1.41e+08 1.33e+11
Population density (PD) 746.5672 986.9007 14 4592
PD2 1528819 3535677 196 2.11e+07
PD3 4.44e+09 1.36e+10 2744 9.68e+10
PD4 1.48e+13 5.50e+13 38416 4.45e+14
SCE × PD 177846.5 306968.3 2156 2459488
SCE2 × PD2 1.26e+11 5.22e+11 4648336 6.05e+12
SCE3 × PD3 1.64e+17 1.13e+18 1.00e+10 1.49e+19
SCE2 × PD 5.18e+07 1.39e+08 332024 1.49e+09
SCE × PD2 3.93e+08 1.12e+09 30184 1.00e+10
SCE3 × PD 1.84e+10 7.41e+10 5.11e+07 8.97e+11
SCE × PD3 1.19e+12 4.25e+12 422576 4.08e+13
SCE2 × PD3 4.89e+13 2.85e+14 7.16e+08 3.65e+15
SCE3 × PD2 4.00e+14 2.03e+15 6.51e+07 2.46e+16

Observations 387

Table A.5: Demand system estimation natural gas - summary statistics

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

pr
io

r 
to

 1
97

8

19
78

−
19

83

19
84

−
19

94

19
95

−
20

01

20
02

−
20

04

20
05

20
06

20
07

Year of building occupation

Ye
ar

 o
f e

ne
rg

y 
ef

fic
ie

nc
y 

im
pl

em
en

ta
tio

n

Figure A.1: Distribution of energy efficiency implementation years and years of building occupation
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Figure A.2: First derivatives of the joint impact on the likelihood to implement an energy efficiency measure with respect to
specific automobile carbon emissions

Figure A.3: First derivatives of the joint impact on the likelihood to implement an energy efficiency measure with respect
population density
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Figure A.4: First derivatives of the joint impact on budget share of natural gas with respect to specific automobile carbon
emissions

Figure A.5: First derivatives of the joint impact on budget share of natural gas with respect to population density
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Appendix B. Derivation of the demand system estimation equation

By assuming a quadratic form in logarithmized prices, the minimal log expenditure for households with

the observed and unobserved characteristics (as specified in section 2.3), prices ~p and utility level u are given

by the EASI cost function:

lnC(~p, u, ~z,m,~a, ~ε) = u+

J∑
j=1

nj(u, ~z,m,~a) ln pj +
1

2

J∑
j=1

J∑
k=1

bjk(~z,m,~a) ln pj ln pk +

J∑
j=1

εj ln pj (B.1)

with nj(u, ~z,m,~a) representing the J-vector Hicksian budget share function and bjk(~z,m,~a) being the

Slutsky coefficients. Using Shepard’s Lemma, we can derive Hicksian budget shares, by ∂ lnC/∂ ln pj .

Denoting the Hicksian budget share by ~v it follows:

vj(~p, u, ~z,m,~a, ~ε) = nj(u, ~z,m,~a) +

J∑
k=1

bjk(~z,m,~a) ln pk + εj (B.2)

From Equation (B.2) and due to the fact that the budget shares are observable in the data, it follows:

J∑
j=1

wj ln pj =

J∑
j=1

nj(u, ~z,m,~a) ln pj +

J∑
j=1

J∑
k=1

bjk(~z,m,~a) ln pj ln pk +

J∑
j=1

εj ln pj (B.3)

Manipulating Equation (B.3) for
∑J

j=1 n
j(u, ~z,m,~a) ln pj , replacing it in Equation (B.1), replacing lnC

by lnx and rearranging the resulting equation for u gives the implicit utility function, y:

y = u = lnx−
J∑

j=1

wj ln pj +
1

2

J∑
j=1

J∑
k=1

bjk(~z,m,~a) ln pj ln pk (B.4)

Thus, substituting Equation (B.4) into Equation (B.2) results in the implicit Marshallian budget shares:

wj = nj(y, ~z,m,~a) +

J∑
k=1

bjk(~z,m,~a) ln pk + εj (B.5)

From Equation (B.5) the first difficulty of the EASI demand system becomes obvious. Due to a possible

non-linear dependency of nj from y and the fact that y depends on ~w, ~p, ~z, ~m and ~a29. Therefore, we

approximate Equation (B.4) in line with Lewbel and Pendakur (2009) by:

29Lewbel and Pendakur (2009) provide some evidence that the nonlinearity is of relatively small relevance.

32



ỹ = lnx−
J∑

j=1

wj ln pj (B.6)

Under the assumption that nj(ỹ, ~z,m,~a) is additively separable in ỹ, ~z, ~m and ~a, the following linear

specification for nj results in:

nj(ỹ, ~z,m,~a) =

E∑
e=1

γje ỹ
r +

F∑
f=1

δjfzf +

G∑
g=1

τ jgmg +

H∑
h=1

ψj
hah (B.7)

Inserting Equation (B.7) and Equation (B.6) into Equation (B.5), the budget share equation to be

estimated is as follows:

wj =

E∑
e=1

γje ỹ
r +

F∑
f=1

δjfzf +

G∑
g=1

τgmg +

H∑
h=1

ψj
hah +

J∑
k=1

bjk(~z,m,~a) ln pk + εj (B.8)
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Appendix C. Endogeneity

The selection bias follows from the self-selection of households to implement an energy efficiency mea-

sure. Thus, the treatment (implementation of an energy efficiency measure, ~m) cannot be considered

to be randomly assigned. If we do not control for the unobserved heterogeneity, as incorporated in ~a,

our estimation approach would suffer from endogeneity. When omitting the unobserved heterogeneity

(
∑H

h=1 ψ
j
hah + εj = ηj) following the conditional expectation function (CEF) of Equation (6) results.

E(wj | ~z,m) =

E∑
e=1

γje ỹ
e +

F∑
f=1

δjfzf +

G∑
g=1

τ jgmg +

J∑
k=1

bjk(~z, ~m) ln pk + E(ηj | ~z, ~m) (C.1)

We are interested in the difference in outcomes for those households that implement one or several

energy efficiency measures and those who do not. For simplification, assume we are only interested in the

treatment effect of implemting one efficiency measure, i.e. m = {0, 1}. The CEF of households that choose

to implement one energy efficiency measure is:

E(wj | ~z,m = 1) =

E∑
e=1

γje ỹ
e +

F∑
f=1

δjfzf + τ j1 +

J∑
k=1

bjk(~z,m) ln pk + E(ηj | ~z,m = 1) (C.2)

For households that did not implement any energy efficiency measure m, following CEF results:

E(wj | ~z,m = 0) =

E∑
e=1

γje ỹ
e +

F∑
f=1

δjfzf +

J∑
k=1

bjk(~z,m) ln pk + E(ηj | ~z,m = 0) (C.3)

Of our interest is the treatment effect, i.e. the difference between both outcomes. Hence, it follows

E(wj | ~z,m = 1)− E(wj | ~z,m = 0) = τ j1 + E(ηj | ~z,m = 1)− E(ηj | ~z,m = 0)︸ ︷︷ ︸
Selection bias

(C.4)

Following the ordered probit estimation results, the decision to implement an energy efficiency measure

crucially depends on ~a that is omitted as an individual variable and hence, included in ηj . Therefore the

selection bias in this problem does not resolve to zero. However, with the introduction of ~a as control

variables, i.e. proxy for the unobserved heterogeneity environmental awareness, the endogeneity problem

can be resolved:
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E(wj | ~z,~a,m = 1)− E(wj | ~z,~a,m = 0) = τ j1 + E(εj | ~z,~a,m = 1)− E(εj | ~z,~a,m = 0)︸ ︷︷ ︸
Selection bias

(C.5)

With the unobserved heterogeneity excluded from the error term, the selection bias (E(εj | ~z,~a,m =

1)−E(εj | ~z,~a,m = 0)) is zero, as the decision to implement an efficiency measure should not be correlated

to the error term. Thus, the incorporation of ~a as a proxy for the unobserved heterogeneity resolves the

endogeneity issue.
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