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Supply Chain Reliability and the Role of Interdependent Suppliers
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Abstract

We study a one-period supply chain problem consisting of numerous suppliers delivering a ho-
mogenous good. Individual supply is uncertain and may exhibit dependencies with other suppliers
as well as with the stochastic demand. Aiming at efficient strategies to manage supply chain re-
liability, we first derive a closed-form solution for an individual supplier’s contribution, implicitly
identifying changing returns to scale, gains of diversification, and non-additivity. We suggest two
different approaches to explicitly account for the statistical properties of the problem: First, a com-
prehensive optimization model; and second, a straightforward solution for a local variant based on
concepts from cooperative game theory. In a last step, we demonstrate practical relevance and ap-
plicability of our findings for the natural example of reliability in electricity supply systems facing
increasing amounts of wind power.

Keywords: Supply chain reliability, Capacity uncertainty, Optimization, Cooperative game
theory, Electric power industry

JEL: C44, C71, D47, L23, Q42, Q48

1. Introduction

Reliability is a key concern in virtually any supply chain. To manage and foster supply chain re-

liability, sourcing from multiple suppliers constitutes an effective and often applied practice. While

the principle idea of risk diversification is quite simple, however, the organization and coordina-

tion of multiple suppliers to ensure a certain level of supply chain reliability at reasonable costs

represents a challenging managerial task. This is particularly true when sourcing from external

suppliers, but also holds when the supply chain is integrated. In this context, one major difficulty

stems from the fact that individual suppliers are typically stochastic and interdependent. Conse-

quently, their individual contributions to supply chain reliability do not only depend on their own

characteristics, but also on all other suppliers in the chain.

An economic approach to establish a certain level of supply chain reliability consists in defining

reliable supply as a service that can be provided by individual suppliers. The provision is then paid

Special thanks go to Joachim Bertsch, Clara Dewes, Felix Höffler and Ulrich Thonemann for valuable discussions
and support. Funding by the German research society DFG through research grant HO5108/2-1 as well as through
the DFG Zukunftskonzept (ZUK 81/1) is gratefully acknowledged.
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according to the individual supplier’s contribution to supply chain reliability. An example for such

explicit reliability-related payments can be found in electricity supply chains. Various systems –

e.g., in the United States, France or the United Kingdom – have implemented so-called capacity

mechanisms to ensure reliability of supply (for a good overview, see, e.g., Joskow (2008) or Cramton

et al. (2013)). Key ingredient to all such mechanisms is the ex-ante determination of an individual

supplier’s contribution to supply chain reliability, commonly known as prequalification, which is

used as a basis for subsequent payments. Despite the apparent relevance of this measure, however, it

appears that existing approaches for its determination lack generality and consistency. Especially –

as we will show in the course of this paper – they all fail to efficiently incorporate interdependencies

between suppliers. As a matter of fact, we find that the concept of prequalification itself is imperfect

in presence of interdependencies that only allow an ex-post derivation of consistent individual

contributions. At the same time, efficient solutions are clearly needed to manage reliability in

today’s complex and interconnected supply chains.

Against this background, it is the goal of this paper to comprehensively investigate supply chain

reliability and the role of interdependent suppliers. For this purpose, we consider a one-period

supply chain problem consisting of multiple suppliers delivering a homogenous good.1 Individual

supply is uncertain and may exhibit dependencies with other suppliers as well as with the stochastic

demand. Due to the stochastic nature of the problem, demand can be served at an intended

reliability level, possibly including supply disruptions.2 Aiming at efficient rules to organize and

coordinate supply chain reliability, we are particularly interested in answering the following two

questions: First, what is the contribution of individual suppliers to supply chain reliability? And

second, how can these contributions be utilized in assessment and planning strategies to efficiently

manage supply chain reliability?

To answer these questions, our paper contributes a comprehensive analytical framework as

well as an empirical case study. In a first step, we derive a closed-form solution for an individual

supplier’s contribution, and implicitly identify changing returns to scale, gains of diversification,

and non-additivity. In order to explicitly account for the statistical properties of the problem during

the assessment and planning of supply chain reliability, we suggest two different approaches: First,

a comprehensive optimization model; and second, a straightforward solution for a local variant to

approximate the optimal solution based on concepts from cooperative game theory. These strategies

may be employed to yield an efficient management of reliability in integrated or non-integrated

supply chains.

Besides our analytical investigations, we apply our insights to the natural and relevant example

1The need to source a homogenous good from multiple suppliers may stem from capacity constraints or the
requirement for risk diversification (e.g., Minner (2003) or Tang (2006)).

2Note that instead of reliability, one could also consider the generalized case of supply quality. However, for the
sake of clarity, we will stick to the term reliability throughout the paper. Nevertheless, the concepts and results
derived could also be applied to other dimensions of supply quality, such as time-to-respond, etc.
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of reliability in power systems. Specifically, we will critically appraise existing mechanisms, and

demonstrate practical applicability of our framework by means of a novel and pertinent empirical

case study based on wind energy in the German power system. Moreover, we will show how our

game-theoretic approach is able to improve today’s flawed designs by providing a sophisticated

prequalification of suppliers.

The rest of the paper is structured as follows: Section 2 reviews the related literature. Section

3 introduces our reliability model and solves for the contribution of individual suppliers, while

the related statistical properties are depicted in Section 4. In Section 5, we investigate efficient

strategies for the assessment and planning of supply chain reliability. The application of our

findings to power systems is comprised in Section 6. Section 7 concludes.

2. Related literature

Our paper is closely related to the literature dealing with supply chain reliability and the

problem of strategic sourcing of a homogenous good from multiple suppliers, facing either supply

disruptions (i.e., a binomial distribution of uncertainty) or capacity uncertainty (i.e., an uncertain

exogenous upper bound on the actual quantity supplied).3

Supply disruptions in a supply chain consisting of multiple suppliers have been studied by Parlar

and Perry (1996), Gürler and Parlar (1997), Li et al. (2004) and Tomlin (2006), however, without

considering stochastic dependencies among the suppliers. As a natural extension, later papers

allow for dependencies between binomial supply disruptions (i.e., Babich et al. (2007), Wagner

et al. (2009) and Li et al. (2010)).

Continuous distributions of the suppliers’ uncertainties – as used in our paper – were presented

by Dada et al. (2007) and Masih-Tehrani et al. (2011). The former paper proves that when se-

lecting among a set of possible suppliers that are different in reliability and costs, cost generally

takes precedence over reliability. While this result is derived under the assumption of supply dis-

tributions being independent, Masih-Tehrani et al. (2011) captures capacity uncertainty including

multivariate dependencies, finding that the buyer’s best strategy is risk diversification by choosing

suppliers with independent distributions in order to avoid simultaneous supply disruptions.

In contrast to the above literature on supply chain reliability, our paper deviates in several

important aspects. First, instead of analyzing the costs of supply chain reliability under exogenous

prices,4 we take a different perspective on the problem by endogenously determining the individual

3Note that the former is an extreme case of the latter. Also note that both are different from yield uncertainty
which incorporates a dependency of the uncertainty on the order quantity. As we consider yield uncertainty as a
different problem class, we do not review the related literature here. For a broader review of the literature dealing
with supply chain risks, the reader is referred to Tang (2006) and Snyder et al. (2014).

4In the reviewed literature, suppliers’ prices are either given as a parameter, or result from some supplier inter-
action (such as a Cournot game) without the buyer being able to have an influence.
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supplier’s value for supply chain reliability.5 This allows us to disentangle the role of interdependent

suppliers when managing large and complex supply chains. Second, we consider arbitrary and

interdependent distributions of (un)availability and demand. And third, we present a novel solution

based on concepts from cooperative game theory.

Our paper is also related to the more specific field of supply chain reliability in power systems,

which has been investigated either from a technical or economic perspective. From a technical

perspective, the goal has been to develop methodologies to assess the technical ability to provide

reliability of supply (e.g., Garver (1966), Billinton (1970) or Billinton and Allan (1996)). The role

of individual units for supply reliability, often referred to as capacity credit or capacity value, has

also been discussed (for recent surveys, see, e.g., Amelin (2009) or Keane et al. (2011)). However,

it appears that these analyses remain very technical and have never been transferred to a broader

and generalized supply chain context. Moreover, they almost exclusively deal with the problem nu-

merically. In contrast, our paper contributes a comprehensive and consistent analytical framework

along with generalized implications for managing supply chain reliability.

Economically, power system reliability has been studied with respect to the (in)ability and

potential failures of power markets to provide reliability as a market outcome (e.g., Joskow (2008)

or Cramton et al. (2013)). However, even though various designs of capacity-related payoffs have

been proposed, the role and implications of stochastic and interdependent suppliers have so far

been disregarded. Our paper fills this gap by suggesting suitable approaches to incorporate those

suppliers into reliability-related mechanisms in order to ensure economically efficient outcomes.

3. Reliability model

3.1. Supply chain reliability

We consider a one-period supply chain S consisting of numerous suppliers delivering a homoge-

nous good. Suppliers are characterized by their joint stochastic availability of supply capacity C.6

Demand D is also assumed stochastic. Due to considering only one period without additional

backup (such as, e.g., inventory storage, emergency service, etc.), supply shortages occur whenever

C is unable to cover D. Consequently, we define the risk of supply shortages in probabilistic terms

as follows:7

5Technically, the difference stems from the fact that we determine the individual supplier’s contribution based on
an endogenous demand adjustment, while the literature’s objective is to serve an exogenous (though, often stochastic)
demand level.

6Here and in the following – unless indicated differently – capital letters are used for random variables.
7Note that we implicitly assume an inelastic demand with no reaction as capacity becomes scarce. If the good

is marketed, this implies that market clearing cannot be guaranteed, e.g., because of the lack of real time pricing.
Consequently, there is a risk of situations with all available capacities producing, but still being unable to fully serve
demand – irrespective of the price level.
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Definition 1. Risk of supply shortages: Probability that supply chain S, characterized by the

stochastic availability of supply capacity C, is unable to cover stochastic demand D, i.e.:

RS = Pr(C ≤ D) = Pr(C −D ≤ 0) = Pr(X ≤ 0) = FX(0). (1)

Correspondingly, supply chain reliability is defined as the complementary probability 1 − RS .

Note that in Equation (1), we have used FX for the cumulative distribution function (cdf) of the

excess capacity X = C −D. Alos note that stochastic dependencies between the random variables

are so far unspecified. For instance, the overall availability of supply capacity C may result from

multiple interdependent supply capacities of numerous individual suppliers. Furthermore, C may

exhibit dependencies with the stochastic demand D.

3.2. The contribution of individual suppliers

We now investigate the contribution of an individual supplier with random production capacity

to the reliability of supply chain S. To this end, we add it to the existing system S, and subsequently

determine the risk of supply shortages of the new complemented supply chain T as:

RT = Pr(C + Y ≤ D) (2)

Note that as Y is positive, RT ≤ RS always holds. With the goal to capture the contribution

of Y to supply chain reliability, we follow the concept of incremental Value-at-Risk (VaR). I.e.,

we capture the change in risk exposure induced by the adjustment of X by Y while requiring the

corresponding probability to remain at the original level (e.g., Tasche and Tibiletti (2003) or Jorion

(2007)). In other words, we measure the additional demand that may be added to bring RT back

to the original risk level RS .8,9 Formally, we define the contribution of an individual supplier as

follows:

Definition 2. Contribution of an individual supplier to supply chain reliability: Level

of demand v by which D can be increased in order to maintain the original level of reliability, i.e.:

Pr(C + Y ≤ D + v) = RS (3)

Due to its complexity, Equation (3) is commonly solved for v numerically by means of iteration

(see, e.g., Wang (2002) or Keane et al. (2011)). Advantages of the numerical solution include

its straightforward implementability as well as the implicit coverage of statistical dependencies

when using concurrent observations of demand and supply. However, numerical solutions – even

8Noticeably, this approach has been used in the context of power systems under the name of effective load carrying
capability, which was originally developed by Garver (1966).

9As an alternative measure, one could also consider the change in reliability induced by adding supply capacity
Y , i.e., ∆R = RS −RT , however, without altering the principle results derived hereafter.
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if conducted for a wide range of parameter constellations and application examples – do not allow

for generalizations of the results obtained. Moreover, the numerical solution often entails a high

computational burden.

In contrast, analytical solutions allow to readily calculate the desired results and provide further

general insights. Nevertheless, only very few authors have engaged with the analytical analysis of

Equation (3). In the literature related to portfolio risks, the incremental VaR is conveniently solved

analytically up to a first order approximation (e.g., Tasche and Tibiletti (2003) or Jorion (2007)).

In contrast, Dragoon and Dvortsov (2006) propose the z-method, considering higher order terms

and the special case of a normally distributed capacity shortage over demand and independence

with the individual supplier (i.e., X ∼ N and X ⊥ Y ). Extending this approach, Zachary and

Dent (2011) proof a closed-form solution with an arbitrary distribution of X and independent X

and Y . Even though the latter paper discusses the natural extension to the case of dependent

distributions, the formal proof is not included. Hence, in the following proposition we present the

generalized solution of Equation (3) for v, with arbitrary dependence between the distributions of

X and Y , and σ(·) being their standard deviation.

Proposition 1. For σY � σX , the contribution v of an individual capacity Y to supply chain

reliability is approximated by

v = µY |X≈0 −
σ2
Y |X≈0

2

f ′X(0)

fX(0)
. (4)

Proof. From Equations (3) and (1) it follows that the equation to be solved for v is

Pr(C + Y ≤ D + v) = Pr(X + Y ≤ v) = Pr(X ≤ 0) = FX(0). (5)

The cumulative distribution function Pr(X + Y ≤ v) can be expressed as integrals over the

joint probability density function fX,Y , with X,Y being arbitrary dependent distributions. Refor-

mulating using conditional distributions and integrating over x, we obtain

Pr(X + Y ≤ v) =

∫ ∞
−∞

∫ x=v−y

−∞
fX,Y (x, y)dxdy (6)

=

∫ ∞
−∞

∫ x=v−y

−∞
fY |X(y|x)fX(x)dxdy (7)

=

∫ ∞
−∞

fY |X=v−y(y|X = v − y)FX(v − y)dy. (8)

Instead of continuing with the explicit form of the cumulative distribution function FX , we

approximate it via Taylor expansion around the critical point v − y = 0 up to the second order

polynomial degree, i.e.,

FX(v − y) = FX(0) + fX(0)(v − y) +
f ′X(0)

2
(v − y)2. (9)
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Noticeably, in the above equation we have induced and accepted an approximation error of

o((v − y)2), which occurs if derivatives of order two or higher are non-zero.

Next, note that if σY � σX , it follows that Pr(X + Y ≤ v) ≈ Pr(X + µY ≤ v) and hence, that

v ≈ µY in Equation (5). We now insert (8) and (9) in (5), and reformulate using the concept of

conditional expectations:∫ ∞
−∞

fY |X=v−y(y|X ≤ v − y)

[
FX(0) + fX(0)(v − y) +

f ′X(0)

2
(v − y)2

]
dy (10)

= FX(0) + fX(0)E [(v − Y )|X ≈ 0] +
f ′X(0)

2
E
[
(v − Y )2|X ≈ 0

]
= FX(0), (11)

which can be simplified using standard deviation σ as well as expected values µ to

fX(0)(v − µY |X≈0) +
f ′X(0)

2

(
(v − µY |X≈0)2 + σ2

Y |X≈0

)
= 0. (12)

Equation (12) represents a quadratic equation in (v − µY |X≈0) that can readily be solved for

v based on the assumption of small σY (so that the error of order O(σ4
Y |X≈0) is small), such that

Equation (4) follows.

From Equation (4), we observe that two terms including two different statistical features of

the individual supplier are decisive for its contribution to supply chain reliability: its average

availability µ on the one hand, and its standard deviation σ on the other, both at times of scarce

capacity, i.e. for X ≈ 0. Specifically, higher average availability at times of critical capacity directly

contributes to reliability. In contrast, the effect of the standard deviation getting larger may be

either positive or negative for reliability, depending on the sign of f ′X(0) (i.e., the convexity of

the cdf).10,11 It should typically hold true that high levels of reliability are required from supply

chains, such that the critical point X = 0 is located at the left hand side of the distribution where

the probability for insufficient capacity is low and increasing in x, which yields f ′(x) > 0. Then,

the individual supplier’s contribution to reliability decreases in its standard deviation. Somewhat

counterintuitive, however, the individual supplier’s contribution to reliability may also benefit from

a high standard deviation. This is the case for f ′(x) < 0, resulting in a situation where positive

deviations weight more than negative ones. This could hold true and represent an interesting

feature, e.g., for supply chains that are still at an early stage of development while already facing

high levels of demand, or for well-established systems that underwent a sudden and substantial

10Note that the density function f(x) is always positive by definition.
11The effect of the standard deviation essentially stems from the difference in impact from positive and negative

deviations from the average availability. If positive and negative deviations had an equal impact and would outweigh
each other, the expected overall contribution would not change. However, the impact of the standard deviation on
the reliability contribution increases with the absolute level of f ′(x) = F ′′(x), i.e., with the level of convexity of the
cumulative distribution function F (x). It also increases with f(x) = F ′(x) (i.e., the slope of the cdf) decreasing, as
the difference in impact from positive and negative deviations then becomes more important.
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increase in demand.

Two further points are worth mentioning. First, the contribution of an individual supplier to

supply chain reliability may – instead of absolute numbers – be reported relative to its maximum

available capacity y = maxY , i.e., as a fraction ṽ = v/y, with 0 ≤ ṽ ≤ 1. Second, Equation (4) can

readily be extended to multiple (n) suppliers contributing jointly to supply chain reliability. In this

case, define Y as the sum of the individual suppliers Si, i.e., Y =
∑n

i=1 Yi. Denoting with N the

set of all n suppliers in the system and contributing jointly to generation adequacy, we will write

v(N) for their joint contribution. To determine the joint contribution of one or a few units only,

we will use set S ⊆ N , and denote the corresponding contribution by v(S). The joint contribution

of multiple units (or, in other words, a coalition of units) will become important for the subsequent

analysis.

4. Statistical properties

In the following, we present three corollaries describing essential statistical properties of the

reliability contribution(s) v, following from the explicit formulation as provided in Proposition 1.

Moreover, we depict and discuss important implications for the efficient management of supply

chain reliability involving multiple suppliers delivering a homogenous good.

4.1. Changing returns to scale

Corollary 1. The contribution of an individual supplier is subject to changing returns to scale if

σY |X≈0 > 0 and f ′X(0) 6= 0.

Returns to scale can easily be shown by inserting a scaled random production capacity aY in

Equation (4), and using the fact that both, mean and standard deviation scale directly with the

scaling factor of the random variable. It follows that

v(Sa) = µaY |X≈0 −
σ2
aY |X≈0

2

f ′X(0)

fX(0)
(13)

= aµY |X≈0 −
a2σ2

Y |X≈0

2

f ′X(0)

fX(0)
. (14)

Whereas the first term on the right hand side increases linearly with a, the second term decreases

with higher order a2 as long as σY |X≈0 > 0 and f ′(x) > 0. Under these conditions, it holds that

v(Sa) < av(S), i.e., decreasing returns to scale result when considering an increasing amount of

capacity with equal availability Y . In contrast, σY |X≈0 > 0 and f ′(x) < 0 yields increasing returns

to scale.

From a management perspective, Corollary 1 is of particular relevance for a supply chain

that shall increasingly rely on one particular supplier, e.g., due to relative cost advantages. For

illustration, imagine a power system that aims at replacing an increasing number of fossil power
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plants with wind power capacities while keeping its original reliability level (suppose here a reliable

power system with f ′X(0) > 0, and variable wind power resources with σY |X≈0 > 0). Corollary 1

implies that with each additional unit of wind power installed, a decreasing amount of fossil power

can be safely removed from the system.

4.2. Gains of diversification

Corollary 2. Similar average availability and low (high) covariance in case of f ′X(0) > 0 (f ′X(0) <

0) entails gains of diversification for the contribution of individual suppliers.

For illustration, let us assess the contribution of a supplier S1 with some capacity Y1 to supply

chain reliability. Assume that some share α ∈ [0, 1] of capacity Y1 can be sourced from an alternative

supplier S2. Depending on the choice of α, the joint capacity becomes Y12 = (1 − α)Y1 + αY2.

Denote with w(·) the functional dependence of the joint contribution on α, i.e. define w(α) =

v(S1,1−α ∪ S2,α). Then, the joint contribution of this portfolio to supply chain reliability writes as

w(α) =µY12|X≈0 −
σ2
Y12|X≈0

2

f ′X(0)

fX(0)
(15)

=(1− α)µY1|X≈0 + αµY2|X≈0

−
(

(1− α)2σ2
Y1|X≈0 + α2σ2

Y2|X≈0 + 2α(1− α)σY1,Y2|X≈0

) f ′X(0)

2fX(0)
. (16)

To identify gains of diversification, we need to check the derivative of w with respect to α in

the region of α = 0, i.e.,

∂

∂α
w(α)

∣∣∣∣
α=0

=− µY1|X≈0 + µY2|X≈0 +
(

(1− α)σ2
Y1|X≈0

−ασ2
Y2|X≈0 − (1− 2α)σY1,Y2|X≈0

) f ′X(0)

fX(0)

∣∣∣∣
α=0

(17)

=− µY1|X≈0 + µY2|X≈0 +
(
σ2
Y1|X≈0 − σY1,Y2|X≈0

) f ′X(0)

fX(0)
. (18)

From the derivative evaluated at α = 0, we observe that it is positive (and hence, w(α) increas-

ing) as long as the average availability of supplier S2 is similar to that of supplier S1, and their

covariance is either not particularly strong in case of f ′X(0) > 0, or particularly strong otherwise.

Under those conditions, the joint contribution is subject to gains of diversification.

The meaning of gains from diversification, as identified in Corollary 2, is quite intuitive, and

essentially formalizes the ”don’t put all eggs into one basket” wisdom. Hence, a diversified portfolio

with multiple suppliers is often better able to reliably supply a certain load level. However, this

only holds true as long as the expected yield is similar and they are not highly correlated (for the

typically more relevant case of f ′X(0) > 0).12

12Note that in finance, the concept of risk spreading is well-known from Markowitz’ portfolio theory that shows
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4.3. Non-additivity

Corollary 3. As long as f ′X(0) 6= 0, contributions of individual suppliers are non-additive if they

are stochastically dependent.

For illustration, let us again consider a supply chain comprising two suppliers S1 and S2 with

(possibly dependent) production capacities Y1 and Y2, respectively. The joint contribution of S1

and S2 to supply chain reliability writes as

v(S1 ∪ S2) = µY12|X −
σ2
Y12|X

2

f ′X(0)

fX(0)
(19)

= µY1|X≈0 + µY2|X≈0 −
(
σ2
Y1|X≈0 + σ2

Y2|X≈0 + 2σY1,Y2|X≈0

) f ′X(0)

2fX(0)
. (20)

In contrast, if these suppliers were to be assessed independently, we can simply apply Equation

(4) to each of them to get

v(S1) = µY1|X≈0 −
σ2
Y1|X≈0

2

f ′X(0)

fX(0)
(21)

v(S2) = µY2|X≈0 −
σ2
Y2|X≈0

2

f ′X(0)

fX(0)
. (22)

From the above equations, we see that as long as σY1,Y2|X≈0 6= 0, it follows that v(S1 ∪ S2) 6=
v(S1) + v(S2). Note that generalization to n suppliers in the system yields

∑n
i=1 v({i}) 6= v(N) as

long as σYj ,Yk|X≈0 6= 0 for any pair j, k.

Let us discuss three important implications following from Corollary 3: First, note that even

though individual contributions can technically be determined, they are inconclusive under any

type of (positive or negative) dependence between the suppliers’ availabilities. This is due to the

fact that the relevant figure for supply chain reliability is the joint contribution of all suppliers

which incorporates externalities that cannot be reflected in individual assessments. We can infer

that a comprehensive approach is imperative to assess and coordinate supply chain reliability in

order to reach a consistent representation of all interdependent suppliers.

Second, if the suppliers were to coordinate themselves (e.g., in case the supply chain is non-

integrated), they would have no incentive to team up for joint contributions if they are positively

similar characteristics when valuing properties of multi-asset portfolios (assets are here the equivalent to our sup-
pliers). However, while the interest in a Markowitz portfolio lies in finding an efficient tradeoff between risk and
expected returns, we are here interested in reliability contributions which are, as found in Equation (4), dependent
on both variance and expectation (together with additional characteristics captured by fX which are not occurring in
Markowitz). Also note that one of the main criticisms with respect to Markowitz’ portfolio theory, namely the linear
dependence assumption between the joint distributions, also applies to our case here. In fact, non-linear dependencies
can indeed be relevant for supply chain risks, as shown, e.g., by Wagner et al. (2009), Masih-Tehrani et al. (2011)
or Elberg and Hagspiel (2015). While this would be an interesting extension of our analysis, it would go beyond the
scope of this paper and is left for future research.
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related. Technically, positive dependencies imply subadditivity (or, in other words, a negative

externality) and hence, an empty core if the situation is characterized as a game. This would

substantially complicate the implementation of a competitively stable result (Telser (1994)). Even

though we will reconsider this issue in the next section, we already note that a complete analysis

of coordination mechanisms for non-integrated supply chains would be beyond the scope of this

paper and is left for future research.

Third, we observe that the value of an individual supplier for reliability depends on the other

suppliers in the chain. Hence, if the effective set of interdependent suppliers is unknown ex-ante

(e.g., if the system is to emerge from some ”unforeseeable” development, such as an auction), it

is impossible to predict the individual suppliers’ contribution to reliability (or, in other words, to

conduct a prequalification). This is due to the fact that positive (negative) dependencies cause

negative (positive) externalities that cannot be internalized as long as their size is unknown. Note

that this problem would not be present (and hence, a predetermination possible) if all suppliers

were independent (and hence, externalities non-existent).

5. Assessment and planning strategies

Based on the previous results and findings, we now investigate suitable strategies for the as-

sessment and planning of reliability in a multiple sourcing problem with possibly interdependent

suppliers. Especially, we will deal with the symptomatic challenge of efficiently expanding an exist-

ing pool of suppliers to reach a more reliable supply, or its reduction to save the related costs. We

will first formulate a model to optimize supply chain reliability in an integrated and comprehensive

way, and then switch our focus to a local variant of the problem with a straightforward solution

based on game-theoretic foundations.

5.1. Comprehensive optimization

Let us assume there is a set of potential suppliers M , each characterized by the supply charac-

teristics µYi|X≈0 and σYi|X≈0 as well as the related supplier’s costs ci. The managerial task consists

of deciding which or, alternatively, to which extent to rely on a set of players N ⊆ M that shall

be contracted for a reliable delivery.

Unfortunately, in order to make an efficient choice, Corollary 3 prohibits an easily applicable

ranking of the potential suppliers according to their individually determined reliability contribu-

tions (weighted with their corresponding costs). In contrast, we need a comprehensive model that

builds upon the supply and cost characteristics of all suppliers to find an optimal portfolio. As

such, externalities form statistical dependencies can consistently be represented and internalized

in the (efficient) solution.

As above, denote with w(·) the functional dependency of the selected portfolio’s contribution

to reliability, i.e., w(xi) = v(
⋃
i∈M Si,xi), where each player’s capacity has been multiplied with

11



the choice variable xi (i.e., the joint capacity is Y =
∑n

i=1 xiYi). Assuming that the objective is

to maximize the suppliers’ reliability under a given budget-constraint B, the integrated planning

problem can be formalized as follows:

max
xi∈M

w(xi) (23)

s.t.
∑
i∈M

xici ≤ B. (24)

Note that we have so far not specified the nature of our choice variables xi. We will in the

following discuss two distinct cases: First, when xi is binary, and second, when xi is positive

continuous. Both cases may be meaningful for management purposes.

5.1.1. Binary variables

If xi is binary, i.e., if we can choose whether or not to take a supplier into our portfolio, we are

facing a well-known combinatorial optimization problem: a quadratic knapsack problem (e.g., Gallo

et al. (1980)). More specifically – unless σYi,Yj |X≈0 ≥ 0 for all pairs i, j and f ′X(0) ≤ 0 – we have a

quadratic knapsack problem with positive and negative profits. As shown in Rader and Woeginger

(2002), this class of problems does not have any polynomial time approximation algorithm with

fixed approximation ratio unless P = NP. However, there are numerous papers devoted to upper

bounds, size reduction, heuristics, approximation techniques and exact algorithms. The interested

reader is referred to a good survey presented by Pisinger (2007) for further details about quadratic

knapsack problems.

5.1.2. Positive continuous variables

If xi ∈ R≥0, problem (23)-(23) represents a nonlinear optimization problem. Specifically, we

have a quadratic objective function and linear constraints for which the solution strongly depends

on the sign of f ′X(0).

Proposition 2. If f ′X(0) ≥ 0, problem (23)-(23) can be solved efficiently to global optimality.

Proof. The joint contribution of a set of suppliers with capacities xiYi can be rewritten in matrix

notation as:

w(xi) = xTµ− xTΣx
f ′X(0)

2fX(0)
, (25)

where x is the vector containing all xi and µ containing all µYi , with i ∈ M . Noticeably, Σ is

exactly the covariance matrix of the suppliers. As the covariance matrix is positive-semidefinite

by definition, the Hessian of w(xi) is negative-semidefinite as long as f ′X(0) ≥ 0. If so, w(xi) is a

concave function and hence, problem (23)-(23) represents a concave quadratic maximization with

linear constraints which can be solved efficiently to global optimality in polynomial time using

standard techniques (e.g., Bazaraa et al. (2006)).
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If f ′X(0) ≤ 0, problem (23)-(23) becomes a convex quadratic maximization, and the application

of local optimization can no longer guarantee that the solution is a global optimum. However, it

is well known that all solutions of such a problem must lie at some vertex of the feasible region,

with the challenge to identify whether the solution obtained is a global or only a local optimum.

Known approaches build on cutting plane methods, concave envelopes, or reduction techniques.

Instead of discussing additional properties of the problem, however, we refer the interested reader

to Floudas and Visweswaran (1995) for further details.

We conclude our discussion about the comprehensive optimization of supply chain reliability

with an illustrative example.

Example. Consider problem (23)-(23) for the case of two suppliers, i.e., i ∈ 1, 2, and continuous

decision variables xi ∈ R≥0. Furthermore, assume that costs ci are equal for both suppliers, i.e.

c1 = c2 = c. As reliability is increasing in xi, it follows that the budget constraint will be binding,

indicating that only a limited capacity K = x1 + x2 = B/c can be built. Consequently, we only

need to derive the best diversification strategy to distribute K among the two suppliers S1 and S2.

I.e., we need to find α ∈ [0, 1] such that the production capacities (1− α)Y1 and αY2 jointly yield

the best overall level of reliability. Hence, the optimization takes the following form:

max
α

w(α) =(1− α)µY1|X≈0 + αµY2|X≈0

−
(

(1− α)2σ2
Y1|X≈0 + α2σ2

Y2|X≈0 + 2α(1− α)σY1,Y2|X≈0

) f ′X(0)

2fX(0)
. (26)

We differentiate (26) with respect to α which – after a few calculations – yields:

α∗ =

(
µY2|X≈0 − µY1|X≈0

) fX(0)
f ′X(0)

+ σ2
Y1|X≈0 − σY1,Y2|X≈0

σ2
Y1|X≈0 + σ2

Y2|X≈0 − 2σY1,Y2|X≈0
. (27)

As expected, increasing weight is placed on S2 when µY2|X≈0 (given that f ′X(0) > 0) or σY1|X≈0

is increasing (or vice versa for their respective counterparts). The effect is amplified by an increasing

covariance. Note that if the two suppliers are identical (i.e., when µY1|X≈0 = µY2|X≈0 and σY1|X≈0 =

σY2|X≈0), then α∗ = 1/2 in order to optimally deploy changing returns to scale based and gains

from diversification.

5.2. A local variant

Let us now switch our focus to a local variant of problem (23)-(23), where we presuppose

that we are dealing with a predefined set of suppliers N . For instance, this could be an existing

portfolio of suppliers, or a readymade plan for a future set of suppliers. Aiming at a comparison of

individual suppliers against each other or against the chain’s value of reliability (e.g., in order to

decide on possible cutbacks in the chain), the managerial objective is to determine each supplier’s

contribution to reliability. Note that by fixing the set of suppliers we are able to predetermine and
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internalize the externalities stemming from statistical interdependencies between the suppliers.

Nevertheless, even though the joint value is now easy to derive, it remains challenging to allocate

an individual supplier’s value in a suitable and meaningful way. We will approach and solve this

problem based on easily applicable game-theoretic foundations.

To this end, characterize the (joint) value of one or multiple suppliers for supply chain reliability

as the output of a coalitional game (N, v) with transferable utility, where N is a finite set of units

in the system, and v a characteristic function. v(·) measures the (joint) contribution of a nonempty

coalition of suppliers S ⊆ N as defined implicitly in Equation (3), or explicitly in Equation (4).

Note that v(S) ∈ Rs, i.e., for every coalition S, a corresponding contribution can be determined.

A solution concept for this coalitional game is a payoff vector Φ ∈ RN allocating the joint value

v(N) to the coalition members.

While there would be an infinite number of allocation rules to split the joint contribution and

allocate it to individual suppliers (e.g., the joint contribution could simply be allocated to one

single supplier, or be split into equal parts), it is important to note that the specific choice may

feed back to the supply chain performance and should hence be chosen with care. Specifically, the

rule should reflect individual marginal contributions to reliability in an efficient way.

The efficiency property simply requires that the sum of all allocations adds up to the worth of

all suppliers contributing jointly to reliability, i.e., that
∑

i Φi(N, v) = v(N). As we have seen in

Corollary 3, this requires to internalize externalities occurring due to statistical interdependencies.

Following Hart and Mas-Colell (1989), we define the marginal contribution of a supplier to

reliability as DiP (N, v) = P (N, v)−P (N \{i} , v), where P (N, v) is a single real number associated

to the game (N, v), and P (∅, v) = 0. P is called a potential function if it satisfies the efficiency

condition
∑

iD
iP (N, v) = v(N).

Based on the above formalizations, the allocation problem can be solved by means of a theorem

presented in Hart and Mas-Colell (1989).

Theorem 1. (Hart and Mas-Colell (1989)). There exists a unique potential function P .

Moreover, the corresponding vector of marginal contributions DiP (N, v)i∈N coincides with the

Shapley value of the game (N, v), given by:

Φi(v) =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)). (28)

Noticeably, the solution based on the Shapley value not only solves the allocation problem

in a unique way, but is also normatively fair in the sense that it (uniquely) fulfills the following

additional axioms: Symmetry, Linearity, Dummy, and Consistency (Shapley (1953) and Hart and

Mas-Colell (1989)).

With its properties, we can use the Shapley value to allocate the suppliers’ joint contribution,

and to rank the individual suppliers’ marginal contribution to reliability in an efficient way. Thus,
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it may serve as a powerful tool for planning and controlling purposes, e.g. in order to quantify

and compare the reliability of individual suppliers against each other. Moreover, weighted with its

corresponding costs, a supplier’s contribution may also be compared against the chain’s value of

reliability V oR (in the context of electricity, this is often referred to as the value of lost load). The

necessary condition to keep supplier i in the chain would then write as

ci
Φi
≤ V oR. (29)

Our allocation rule could also serve as a basis for a more comprehensive expansion planning:

Due to the fact that the Shapley value corresponds to the (discrete) gradient of the game, it provides

the direction of the greatest increase in reliability. Hence, as long as adjustments are sufficiently

small, increasing capacities according to this direction is the optimal expansion strategy.13

Solving the reliability assessment and planning problem based on the Shapley value has an

addition appeal in that it can also be used as a signal and rule of valuation for external suppliers

in the context of non-integrated supply chains, thus reaching a normatively fair valuation and trig-

gering efficient investment incentives. In fact, incentivized by payments according to the Shapley

value, a supplier will find it optimal to align her/his investments according to the supply chain

optimal solution as this provides the largest payoff. For illustration, reconsider the example from

Section 5.1.

Example (continued). Investment incentives induced by the above allocation rule (Equation

(28)) may be investigated by means of biform games, studying the impact of surplus division on

non-cooperative investment decisions (Brandenburger and Stuart (2007)). Investments take place

in a stage prior to surplus allocation, such that the suppliers’ profits are maximized.

Comparable to the first part of the example dealing with the integrated planning of supply chain

reliability, we now consider the case of a price-taking external investor who wants to build supply

capacity K ∈ [0, inf), and needs to decide on the share β ∈ [0, 1] (respectively 1−β) to be invested

in supplier S2 (S1). Under the assumption that revenues are generated from reliability-related

payoffs according to the Shapley value, the investor’s profit function becomes

Π = p((1− β)Φ1 + βΦ2)−Kc, (30)

with p the (constant) price paid per reliable capacity (e.g., determined through an assessment of

the chain’s value of reliability, as previously discussed). For the case of two suppliers, the Shapley

13If adjustments are large, the gradient would need to be recalculated, thus corresponding to the gradient descent
iterative optimization algorithm. In fact, this would be one of the available algorithms to solve the optimization
problem (23)-(23) from above.

15



values Φ1,Φ2 can easily be calculated as

Φ1 =
1

2
v(S1) +

1

2
(v(S1 ∪ S2)− v(S2)) (31)

Φ2 =
1

2
v(S2) +

1

2
(v(S1 ∪ S2)− v(S1)). (32)

Inserted in Equation (30), the optimal weight for the distribution of the investment can be

derived from the first-order condition ∂Π
∂β = 0, which – after a few calculations – yields β∗. We find

that β∗ = α∗, i.e., equality of the investor’s optimal choice and the optimal integrated planning

benchmark.

Two further remarks are worthwhile: First, note that it always needs a certain price level

to incentivize investments. Specifically, it would be individually rational to invest as long as
p
c >

K
v((1−β)S1∪βS2) . Changing prices would not affect the distribution of investment due to the

linearity property of the Shapley value. Second, also note that reliability-related payoffs could be

complemented with other payoffs, e.g. for expected production volumes.

6. Application to power systems

Power systems can be seen as a natural example of our previously investigated problem, due

to the fact that a highly homogenous good (i.e., electricity) is sourced from a large number of

capacity constrained suppliers (i.e., power plants). Moreover, reliability is a key concern as unin-

terrupted electricity supply is of high economic value, and blackouts can cause tremendous losses.

For instance, in the early 2000s insufficient supply capacities caused a series of blackouts in the

Californian power system affecting several hundred thousand customers. The State of California

was forced to initiate short-term countermeasures to alleviate the crisis, amounting to an estimated

40 bn.$ in additional energy costs from 2001 to 2003 (Weare (2003)). The economy was estimated

to slow down by 0.7-1.5%, entailing an increase in unemployment by 1.1% (Cambridge Energy

Research Associates (2001)). The severity of these events has triggered a worldwide debate about

reliability in power systems as well as the development of supporting mechanisms (i.e., so-called

capacity mechanisms). Noticeably, the discussion has recently been regaining momentum due to

the large-scale deployment of variable renewable energies (such as wind or solar power) whose

impact on power system reliability is considered a crucial issue of common interest (Council of

European Energy Regulators (2014)).

Against this background, this section has two objectives: First, to use our generated insights

to critically appraise current mechanisms supporting reliability in power system. And second, to

demonstrate applicability and relevance of our previous investigations in an empirical case study

for wind power in Germany.
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6.1. Critical appraisal of current mechanisms

Despite a broad consensus on the importance of reliability in the power sector, it appears that

existing mechanisms clearly lack generality and consistency, especially when it comes to the role of

variable and interdependent renewable energies. This is reflected in a variety of fundamentally dif-

ferent approaches, clearly revealing that there is no best practice (let alone an optimal benchmark)

for how to deal with the reliability of such resources. Moreover, it appears that (negative) exter-

nalities from statistical interdependencies have simply been disregarded in current mechanisms.

Based on the findings presented in the previous part of the paper, let us reflect upon three

representative mechanism designs. First, consider the case of Spain. They exclude variable re-

sources (i.e., wind and solar power) by allocating zero reliable capacity. This clearly induces a

situation of static inefficiency as soon as there is any positive contribution – which is likely to be

the case as shown in numerous studies (e.g., Keane et al. (2011) or our own empirical analysis

presented hereafter). Note that by allocating a value of zero, the Spanish design also fails to incen-

tivize investments into suppliers that are beneficial for reliability, hence also inducing an additional

long-term inefficiency.

As a second example, take the capacity auction of New England (PJM market). They attempt

to prequalify suppliers individually in an ex-ante procedure. This clearly contradicts the non-

additivity we have found in Corollary 3. Moreover, while PJM allows suppliers using intermittent

resources to cooperate and bid jointly, there will typically be disincentives to do so due to positive

dependencies in the availability of generation capacity. These shortcomings will necessarily entail

an inefficient outcome.

Third, drawbacks can also be found in the UK capacity mechanism which allocates an average

payoff to each unit in the same technology-class (e.g., coal, gas, wind, etc.). While the approach

ensures static efficiency by complying with the true joint contribution, it lacks the provision of

spatially diversified investment incentives. In addition, the approach may face opposition from

underrated suppliers whose individual contribution to reliability lies well above the average level.

A last and most striking design fault is present in all existing approaches. They all build on

the concept of prequalification, i.e., an ex-ante assessment of all units potentially participating

in the chain yielding a single number to reflect its contribution to reliability of supply. Subse-

quently, a mechanism (e.g., an auction) selects the effective subset that shall be realized. In the

presence of interdependencies, this is simply not possible. As it was discussed in the context of

the Nonadditivity-Corollary 3, the value of an individual supplier for reliability depends on the

effectively realized set of suppliers in the supply chain due to the externalities that can only be

known ex-post. In a changing world with highly interdependent resources for electricity generation,

future mechanisms will hence need to find solutions in a comprehensive model based on the full

statistical characteristics of the capacity availability as well as the costs of each supplier, as it was

shown in Section 5.1. This should clearly be the medium- and long-term strategy to organize and

coordinate supply chain reliability in the electricity sector.
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In a short-term perspective, however, the solutions presented in Section 5.2 can be a suitable

mean to improve the efficiency of mechanisms while maintaining their principle design features,

i.e., an ex-ante assessment (i.e., prequalification) of all units with a single number and a subsequent

selection of an effectively delivering subset, e.g., via a capacity auction. In fact, it can be argued

that power systems are typically quite mature, already comprising an almost sufficient amount of

generation capacity. In such a context, the setting would at least be close to the one considered in

Section 5.2. Hence, calculating the Shapley value for the existing suppliers would yield their (true)

contribution to system reliability, which they could be prequalified with previous to a capacity

auction. In addition, (comparatively few) new suppliers interested in entering the market would be

prequalified with the same (relative) value as an already existing supplier that is located nearby and

hence, shows similar capacity availability as the new entrant. As long as changes are sufficiently

small, this yields the supply chain optimal extension. For illustration, we will provide an empirical

example for this approach in the next section.

6.2. Empirical case study

Based on real-world data for wind power in Germany, we shall now develop an empirical case

study to demonstrate applicability and relevance of the concepts developed in the previous sections

and to empirically confirm our analytical results. Specifically, we shall quantify the reliability of

the supply system as well as the joint contribution of wind power, and then derive the individual

allocations according to the Shapley value.

Note that the case of wind power in Germany appears to be particularly relevant: With 34.02

out of 188.68 GW production capacity being installed, wind power plays a major role in Germany’s

generation portfolio, while it is a declared goal to integrate the technology into general market

structures. Moreover, power system reliability as well as possible regulatory interventions, such as

capacity mechanisms, have been heavily discussed for several years.

6.2.1. Estimation procedure

Recall Equation (3) that needs to be solved for v in order to obtain the contribution of individual

suppliers. We assume random variable C, i.e., the availability of the power supply fleet apart from

wind power, to be independent from wind power Y and demand D, and that its distribution can

be determined through convolution of the suppliers’ outage probabilities (see below). In contrast,

the joint distribution of Y and D is estimated from simultaneous historical observations. As we

only have one observation per instant in time t, we need to extend Equation (3) to multiple time

periods, such that random variables Y,D may be replaced by corresponding observations yt, dt:
14

T∑
t=1

Pr(C + yt ≤ dt + v) =
T∑
t=1

Pr(C ≤ dt) (33)

14The validity and consistency of the result obtained from this reformulation may be justified by the central limit
theorem (Zachary and Dent (2011)).
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Note that summing up the probabilities over time yields the expected value during the con-

sidered number of hours T . This measure is often applied to formulate or benchmark reliability

levels. For instance, a 1-day-in-10-years criterion has often been used as a benchmark or target

value, both in the academic literature (e.g., see Keane et al. (2011)) as well as in practice (e.g., by

the Midcontinent ISO or the ISO New England).15

6.2.2. Data

The necessary data can be classified into three main areas: First, detailed information is needed

about installed capacities and availability factors of dispatchable power suppliers apart from wind

(C in Equation (33)). Second, the analysis requires high-resolution data on wind power capacities

as well as their infeed profiles (yt). Third, load levels with the same temporal resolution and regional

coverage are needed to perform the calculations (dt). Descriptions of the data along with some

preparatory calculations can be found in the Appendix A. Importantly, we find clearly positive

dependencies among all wind power profiles (see Appendix A.4 for a detailed analysis).

Regarding the level of detail in our analysis, we would ideally opt for a representation of

each individual supplier in the system. However, for large systems with many interdependent

suppliers, this would quickly involve impractical data requirements and calculation efforts. This is

mainly due to the fact that each of the 2n − 1 possible coalitions needs to be calculated. Hence,

some administrative division may provide a satisfactory level of disaggregation while still being

manageable.16 In our empirical example, we will hence aggregate wind power on the federal state

level.17

6.2.3. Results

Reliability of Germany’s dispatchable power fleet

To determine the cumulative distribution function FC describing the availability distribution of

Germany’s dispatchable power supply fleet, we assume that each supplier is either fully available or

not,18 and that individual failure probabilities are independent. Based on these assumptions, FC

15Alternative economic approaches would try to estimate efficient reliability levels from the value of lost load
(VOLL) and costs of maintaining a certain level of supply chain reliability (Telson (1975)). A thorough discussion
would clearly be beyond the scope of this paper, such that the interested reader is referred to Stoft (2002) for
the necessary calculations, and attempts to quantify the VOLL, e.g., by Anderson and Taylor (1986) for Sweden
or by Growitsch et al. (2014) for Germany. Noticeably, due to the fact that data requirements and estimation
procedures are far from being straightforward, it is not surprising that rules of thumb and common practice, such as
the 1-day-in-10-years, are often applied.

16The same (relative) Shapley value would then apply to all units within that area.
17Germany consists of 16 federal states: Baden-Württemberg (BW), Bayern (BY), Berlin (BE), Brandenburg

(BB), Bremen (HB), Hamburg (HH), Hessen (HE), Mecklenburg-Vorpommern (MV), Niedersachsen (NI), Nordrhein-
Westfalen (NW), Rheinland-Pfalz (RP), Saarland (SL), Sachsen (SN), Sachsen-Anhalt (ST), Schleswig-Holstein (SH),
and Thüringen (TH).

18I.e., no partial failures are taken into account.

19



can be derived via convolution of the individual suppliers’ failure probabilities. We implemented

the algorithm developed in Hasche et al. (2011) which proved to be fast enough to calculate the

cdf for our supply chain (consisting of nearly 900 dispatchable power supply units) in less than a

minute on a standard laptop. The resulting (complementary) cumulative distribution function is

shown in Figure 1, together with a histogram of load levels. Load levels are for the most part far

left of the critical range of around 90 GW where the complementary cdf begins to drop sharply.

From Equation (33) and our data, we obtain a basically negligible risk of supply shortages

of RS = 1 − 1.15e−12 hours/year.19 Hence, installed capacities appear to be largely sufficient to

reliably cover today’s load profile.
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Figure 1: Complementary cdf of Germany’s dispatchable power plants together with a histogram of load
levels

Having previously mentioned the often applied 1-day-in-10-years target, we find that a 30%

increase in current (2013) load levels could be sustained in order to reach that threshold, again

indicating large amounts of over-capacity in the German system.

The contribution of wind power to reliability of supply

We find the joint contribution of Germany’s aggregated wind power to reliability of supply

v(N) to be 3376 MW, corresponding to ṽ(N) = 9.9% relative to the installed capacity of 34.02

GW.

To provide empirical evidence for the decreasing returns to scale found in Corollary 1, we scale

today’s wind power capacity by factors of 0 to 3, while assuming unchanged characteristics of

load and dispatchable power (Figure 2, left hand side). As expected, the contribution decreases

monotonically along a convex function. To empirically confirm gains of diversification (Corollary

2), we first calculate the contribution of wind capacities being installed in two states (S1 and

S2) separately, ranging from 100 to 900 MW. We take Sachsen (SN) and Thüringen (TH) as an

example.20 We then calculate the joint contribution of a diversified portfolio of the same aggregated

19Note that RS is a risk measure, not implying that a certain number of load shedding events effectively occurs.
Hence, the figures presented here and in the following should not be confused with realized statistical numbers, such
as the Average System Interruption Duration Index (ASIDI).

20These two states have a similar average availability of wind power and a correlation coefficient of 0.59.
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capacity being installed in both the states (capacity split half-half, i.e., v(S1, 1
2
∪S2, 1

2
)). Whereas the

joint contribution of the diversified portfolio lies in between the separate states for small capacities,

it clearly yields higher contributions for increasing penetration levels. Especially, the rate at which

the diversified contribution drops is significantly smaller.
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Figure 2: Decreasing returns to scale (left); Gains of diversification (right)

The following Table 1 presents today’s installed wind power capacities per state, along with

the individual absolute (v(Si)) and relative contributions (ṽ(Si)). Individual relative contributions

vary significantly, ranging from 13.9 to 31.3%. Summing up the individual contributions would

clearly yield a false joint contribution of 19.6%. Compared to the previously determined consistent

joint contribution of 9.9%, this is a huge overestimation that would be induced by neglecting the

positive interdependencies between the resource availability at different locations. This empirical

finding underlines the importance of the non-additivity property, as stated in Corollary 3.

State Installed Capacity [MW] Absolute Contribution [MW] Relative Contribution
BW 624 156 24.9%
BY 1066 158 14.8%
BE 2 1 31.3%
BB 5233 1013 19.4%
HB 114 34 30.0%
HH 55 16 28.1%
HE 961 145 15.1%
MV 2301 588 25.6%
NI 7676 1392 18.1%

NW 3473 483 13.9%
RP 2366 395 16.7%
SL 223 44 19.9%
SN 1055 281 26.6%
ST 4093 955 23.3%
SH 3683 723 19.6%
TH 1097 295 26.9%

Table 1: Installed capacity, absolute and relative contributions calculated for each state individually
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Non-additivity

Empirical evidence shows that our problem is largely subadditive and non-convex, and that

the core is empty. The following Figure 3 is meant to illustrate the subadditive nature of our

problem from two perspectives. The left hand side shows the coalition’s joint contribution vs. its

size (in terms of coalition members) for all 65535 possible coalitions,21 clearly indicating an inverse

relation. Similarly, the right hand side shows the error that would be induced by neglecting the

(positive) interdependencies by plotting each possible coalition’s sum of individual contributions

vs. its consistent joint contribution.22 Whereas superadditivity would require all points to be

above the perfect additivity line, we find that virtually all points lie well below, with the error

substantially increasing for larger individual contributions (essentially due to decreasing returns

to scale, i.e., in line with Corollary 1). The results of both figures are driven by the positive

interdependencies among the 16 states that are illustrated in Figure A.4.
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Figure 3: Relative joint contribution vs. size of coalition (left); Sum of individual contributions vs. joint
contribution (right)

Prequalification according to the Shapley value

Figure 4 presents the relative Shapley value Φ̃i(v(N)), i.e. the payoffs relative to installed

capacities allocated to each of the 16 states (squares). To put these values into perspective, they are

presented in combination with the suppliers’ average availability (µi) as well as with their separately

calculated individual contribution (ṽ(Si)). We find that the individual contribution as well as the

Shapley value tends – as expected – to decrease with average availability. However, the Shapley

values also show pronounced deviations from the joint contribution (9.9%), as well as from the

ordering of the individual contributions and average availabilities. For instance, Niedersachsen (NI)

and Sachsen-Anhalt (ST) both have high average availabilities, but also large installed capacities as

21For a game with 16 players, the number of possible coalitions is 216 − 1 = 65535.
22The most exterior point, i.e. the grand coalition of all states, has already been discussed in the previous

paragraph.
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well as pronounced positive dependencies with other states – and hence comparatively low Shapley

values. Overall, the Shapley values range from 15.1% for Baden-Württemberg (BW) and Sachsen

(SN) to 5.7% for Bavaria (BY).

Investigating the types of externalities emerging from the problem at hand and relating the

Shapley value to the possibility of emerging beneficial coalitions, we find that 50337 out of 65535

possible coalitions would be able to block this allocation, due to the subadditivity found above.

Hence, it seems to be reasonable to transfer the process of prequalification to an independent

central authority to avoid competitively unstable situations (Telser (1994)).
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Figure 4: Average availabilities, individual contributions and Shapley values (all relative)

In practice, it will be most plausible to pay power supply units according to a weighted

production- and reliability-related preference (i.e., if existing markets for energy are or were to

be complemented by a capacity mechanism). Figure 5 presents this tradeoff, showing that states

perform strikingly different on both dimensions. Separating the field into quadrants, we find

that Baden-Württemberg (BW) and Sachsen (SN) perform particularly well for the case of more

preference given to reliability, Niedersachsen (NI) and Sachsen-Anhalt (ST) for the case of more

preference on production volumes, and Mecklenburg-Vorpommern (MV) for an equal balance.

Nordrhein-Westfalen (NW), Bavaria (BY) and Hessen (HE) perform poorly with respect to both

properties. Moreover, it should be noticed that even though a general positive trend can be found,

the tradeoff is widely scattered around a straight line. This property would offer the possibil-

ity to effectively incentivize investments that contribute much better to reliability than purely

production-based decisions by means of appropriate payoffs reflecting (weighted) preferences for

production volumes and reliability.
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Figure 5: Average availability vs. Shapley value

7. Conclusions

Supply chain reliability is a timely and relevant subject that has been studied intensively in

the academic literature. However, the specific role of interdependent suppliers for supply chain

reliability has so far been disregarded. To fill this gap, we have thoroughly investigated the issue

based on statistical and economic analyses. Especially, we have derived an analytical solution for

the contribution of individual suppliers to reliability as well as strategies for the assessment and

planning of reliability in supply chains that account for the statistical properties of the problem.

Practical applicability and relevance has been demonstrated with a numerical example based on

wind energy in the German power system, thereby confirming our analytical findings.

Overall, our concepts and findings may be used to design and manage the reliability of supply

chains more efficiently. Especially, integrated supply chains may benefit from a comprehensive

optimization, while the Shapley value provides a suitable way to incentivize external suppliers. In

power systems, the approach may improve the design of capacity mechanisms, thus enabling an

efficient procurement of reliability from a large number of interdependent suppliers. This example

appears to be particularly relevant as our analysis has revealed substantial shortcomings in existing

designs that can be overcome with our suggested approach.

Our analysis could be extended in several directions: It would be interesting to investigate

optimal mechanisms to ensure reliability in supply chains under private information (e.g., regard-

ing the suppliers’ costs). One could also consider the role of capacity-constrained transportation

networks (which would in fact be highly relevant for the specific case of power systems), or the

effect of an endogenous demand-side response on reliability. Lastly, our approach could be applied

to other supply chains incorporating stochastic suppliers and demand, such as homogeneous food

products or reliable customer services.
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Appendix A. Data and preparatory calculations

Appendix A.1. Installed capacities and availability factors

For information about currently installed power supply units, we use the List of Power Plants

prepared and provided by the Federal Network Agency (Bundesnetzagentur (2014)). It lists all

existing units in Germany with a net nominal electricity capacity of at least 10 MW.23 Moreover,

supply facilities of less than 10 MW are also included on an aggregated basis grouped by energy

source. Extracted net nominal capacities by fuel type are depicted in Table A.1. As for wind

power, 34.02 GW were installed by mid 2014, distributed among the 16 federal states as shown in

Figure A.1.
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Figure A.1: Distribution of installed wind power capacities (34.02GW total)

Regarding the suppliers’ availabilities, we assume fuel-type specific factors according to histor-

ical observations, taken from VGB and Eurelectric (2012), and complemented with dena (2010)

for Hydro, Geothermal and Biomass, as reported in Table A.1. For PV, we assume an availability

factor of 0%.24

23In addition, it also comprises capacities directly feeding into the German grid from Luxembourg, Switzerland
and Austria (which we assume to contribute to Germany’s generation adequacy)

24This is a conservative estimate, however, consistent with the observation that highest load hours occur in the
late evening during winter time.
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Fuel type Availability Capacity [GW]
Biomass 88.0% 6.38

Coal 83.9% 27.73
Gas 88.3% 25.42

Geothermal 90.0% 0.03
Hydro (pump) storage 90.0% 10.63

Hydro run-of-river 40.0% 3.92
Lignite 85.3% 20.95

Nuclear 83.3% 12.07
Oil 89.2% 4.14

Others (Waste, Landfill gas, etc.) 90.0% 5.32
PV 0.0% 37.45

Wind to be calculated 34.02

Table A.1: Availability factors and installed capacities per fuel type

Appendix A.2. Wind speed data and wind to power conversion

As we want to focus on the supply side uncertainty of wind power in our empirical example,

coverage and resolution of the wind data are crucial for obtaining reliable results. Consequently, we

use hourly wind speed data of 32 years (1982-2013) to cover a broad range of possible wind patterns

in Germany, provided by the national climate monitoring of the German Weather Service (DWD

(2014)).25 We select one representative location per federal state according to the agglomeration

of wind turbines within each state.26

The conversion of wind speed to electrical power output is described by a turbine-specific

power curves. As a representative power curve, we use the Nordex S77 turbine with a hub height

of 77 meters and a rated power of 1.5kW (Nordex (2007)). Wind speed to power conversion is

implemented via lookup-tables with linear interpolation.

To validate this relatively simple model for generating wind power profiles, we compare statisti-

cal profiles and volumes with our synthetic model-generated data. Figure A.2 compares statistical

yearly production per federal state (available from Agentur für erneuerbare Energien (2014) for the

years 2001-2012, except for 2007) against our modeling results (based on historically installed wind

capacities taken from Bundesverband WindEnergie (2014) and wind speeds from the corresponding

years). As can be seen, our model overestimates production for the first years, whereas satisfactory

conformity is reached for more recent periods. This is probably due to improvements in turbine

technologies over the years (remember that we have applied the power curve of a relatively modern

turbine).

25In case of missing data, empty entries are replaced by interpolations based on the previous and next available
value if the empty space is not exceeding 12 hours. If the gap is longer, entries are replaced by data of the same
station and same hours of the previous year. As measurements are taken a couple of meters above ground only,
wind speeds are scaled to the wind turbines’ hub height assuming a power law: vh1 = vh0(h1/h0)a, where h0 is
the measurement height, h1 the height of interest and α the shear exponent. According to Firtin et al. (2011), a is
assumed to be 0.14.

26The list of selected observatories is presented in the following Table A.2.
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State DWD-ID Observatory name
BW 4887 Stötten
BY 5705 Würzburg
BE 3987 Potsdam
BB 164 Angermünde
HB 691 Bremen
HH 1975 Hamburg-Fuhlsbüttel
HE 1420 Frankfurt
MV 4271 Rostock

NI 891 Cuxhaven
NW 2483 Kahler Asten
RP 2385 Idar-Oberstein
SL 4336 Saarbrücken
SN 1048 Dresden
ST 1957 Halle-Kröllwitz
SH 4466 Schleswig
TH 1270 Erfurt-Weimar

Table A.2: Selected DWD observatories
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Figure A.2: Yearly wind power production per federal state (model: left, statistics: right)

Another step of validation has been carried out for the hourly profiles, based on a comparison

of the distributions of the model-based data with historical production profiles (available for the

years 2010-2013) by means of QQ-plots (Figure A.3). Distributions are found to be very similar

for those years, however, with slightly decreasing conformity for upper quantiles. Conducting a

simple regression analysis yields an R2 of 0.80, 0.81, 0.82 and 0.81 for the years 2010-2013. For

completeness, summary statistics of the obtained profiles (based on 2014 wind capacities) are also

provided in Table A.3.

Appendix A.3. Load profiles

Germany’s load levels are reported on an hourly basis by ENTSO-E (2014), representing the

hourly average active power absorbed by all installations connected to the transmission or distri-

bution network. Instead of using multiple years of load data, we restrict our attention to the most
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Figure A.3: QQ-plots of model-based and historical production profiles, for the years 2010-2013

Profile Capacity Min Max Mean Std
Load Germany (2013) n.a. 29.55 75.623 52.892 9.633

Wind Power BW (1982-2013) 0.624 0 0.624 0.134 0.183
Wind Power BY (1982-2013) 1.066 0 1.066 0.136 0.251
Wind Power BE (1982-2013) 0.002 0 0.002 0.000 0.001
Wind Power BB (1982-2013) 5.233 0 5.233 1.010 1.406
Wind Power HB (1982-2013) 0.114 0 0.114 0.026 0.032
Wind Power HH (1982-2013) 0.055 0 0.055 0.010 0.014
Wind Power HE (1982-2013) 0.961 0 0.961 0.124 0.215
Wind Power MV (1982-2013) 2.301 0 2.301 0.557 0.731

Wind Power NI (1982-2013) 7.676 0 7.676 2.033 2.398
Wind Power NW (1982-2013) 3.473 0 3.473 0.375 0.723
Wind Power RP (1982-2013) 2.366 0 2.366 0.413 0.669
Wind Power SL (1982-2013) 0.223 0 0.223 0.032 0.051
Wind Power SN (1982-2013) 1.055 0 1.055 0.205 0.287
Wind Power ST (1982-2013) 4.093 0 4.093 1.047 1.326
Wind Power SH (1982-2013) 3.683 0 3.683 0.696 0.932
Wind Power TH (1982-2013) 1.097 0 1.097 0.207 0.308

Table A.3: Capacities and summary statistics of load and wind power profiles in [GW]

recent year 2013 in order to focus on the supply side uncertainty. We hence refer to reliability under

current load levels and profiles. Summary statistics of the load profile are comprised in Table A.3.
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Appendix A.4. Correlation analysis

As has been noticed several times during the theoretical analysis in Sections 3 and 5, covariance

among the power production of the different locations crucially impacts the properties and results

of the problem. In order to get an impression of the dependencies characterizing wind power and

load in Germany, Figure A.4 shows the matrix of linear correlation coefficients ρ.

As can be seen, ρ among the wind power profiles is in a range of [0.10, 0.77], with a mean

of 0.48 (excluding diagonal values). Correlations between wind power and load are in a range of

[0.06, 0.17], with a mean of 0.13. Hence, all dependencies are clearly positive.27
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Figure A.4: Correlation matrix of wind power profiles

27As reliability of supply is particularly relevant during tight capacities, we recalculate the same numbers for the
data corresponding to the 5% highest load hours, resulting in a range of [0.15, 0.79] and a mean of 0.51 for correlations
among wind power, and [−0.02, 0.03] and a mean value of 0.00 for correlations between wind power and load. Hence,
wind power dependencies are even slightly more pronounced during high-load-hours, whereas wind power and load
are independent.
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