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Innovation in Green Energy Technologies and the Economic

Performance of Firms

Jürgen Kruse⇤†
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In this article, I empirically analyze and compare the impact of innovation

in green and non-green energy technologies on the economic performance of

firms. My analysis is conducted on a panel of 8,619 patenting firms includ-

ing 968 green energy patenters from 22 European countries over the period

2003 to 2010. I measure economic firm performance in terms of productivity

and use a panel data model based on an extended Cobb-Douglas production

function. My results show that green energy innovation has a statistically

significant negative impact on economic firm performance. In contrast, non-

green energy innovation is shown to have a statistically significant positive

impact on economic firm performance. These findings suggest that private

economic returns in terms of productivity are lower for green energy than for

non-green energy innovation.
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1 Introduction

Recent empirical economic literature has focused to a great extent on the determinants

and inducement mechanisms of innovation in green energy (GE) (or environmental,

or eco-) technologies. A large number of contributions provides a robust understand-

ing of factors determining and policies inducing GE innovation (see, for example, Ja↵e

and Palmer, 1997; Popp, 2002; Johnstone et al., 2010; Verdolini and Galeotti, 2011).

However, little attention has been devoted to the economic e↵ects of GE innovation,

especially to the relationship between innovating in GE technologies and the economic

performance of the innovating firms. Understanding this relationship helps to answer

the widely debated question whether firms gain (forgo) economic opportunities by inno-

vating (not innovating) in GE technologies.

This article empirically investigates the impact of innovation in GE technologies on the

economic performance of firms. In addition, the impact of GE innovation is compared

to the one of non-GE innovation. I analyze a panel of 8,619 patenting firms from

22 European countries over a period of 8 years from 2003 to 2010. Economic firm

performance is measured in terms of productivity. Using productivity as performance

indicator has several advantages. First, results from production function approaches are

easily interpretable and comparable to other studies (Bloom and Van Reenen, 2002).

Second, firm performance is mainly driven by productivity trends which are closely

linked to innovation dynamics (Cainelli et al., 2011). Furthermore, compared to data on

market valuation, data on productivity is available for a large number of firms including

medium- and small-sized ones. I specify a panel data model based on an extended Cobb-

Douglas production function in which productivity is a function of capital, labor, and

innovation output. Firm accounts data is taken from the AMADEUS database provided

by Bureau van Dijk (BvD). Innovation at the firm level is measured using patent data

from the Organisation for Economic Co-operation and Development (OECD) REGPAT

database.

My work is related to two strands of empirical literature on innovation and economic

firm performance. The link between innovation and economic performance at the firm

level has been analyzed in a large number of empirical economic articles (see, for example,

Scherer, 1965; Comanor and Scherer, 1969; Griliches, 1981; Griliches et al., 1991; Blundell

et al., 1999; Ernst, 2001; Bloom and Van Reenen, 2002; Lanjouw and Schankerman, 2004;

Hall et al., 2005). The majority of these investigations identifies a positive relationship

between innovative output and economic performance. However, since these studies
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focus on general innovation, the results cannot be simply transferred to GE innovation.

There are fewer articles exploring the relationship between GE (or environmental or eco)

innovation and economic firm performance. Ayari et al. (2012) investigate the impact

of renewable energy innovation (patents) on firm performance (return on assets, stock

market return) using a panel of 154 firms from 14 European countries (1987-2007). They

find evidence that renewable energy innovation has a significant positive impact on both

measures of firm performance. Marin (2014) analyzes the e↵ect of environmental and

non-environmental innovation (patents) on firm performance (value added) for a panel

of 5,905 Italian firms (2000-2007). He shows that environmental innovation in most

cases has no significant e↵ect on firm performance, while non-environmental innovation

has a positive e↵ect. In a very similar study Marin and Lotti (2016) analyze the same

relationship using a larger and longer panel of 11,938 Italian firms (1996-2006). They

find positive impacts of both environmental and non-environmental patenting, while

observing a substantially lower return for environmental ones. Wörter et al. (2015)

examine the link between environmental innovation (patents) and performance (value

added) on the industry-level. Their analysis is conducted on a panel of 22 manufacturing

industries from 12 OECD countries (1980-2009). In contrast to Ayari et al. (2012)

and Marin and Lotti (2016), they find that green innovation is negatively related to

performance for most industries. Overall, the empirical evidence concentrating on GE

innovation can thus be described as ambiguous.

This study contributes to the existing literature in three respects. First, I provide new

evidence on the unsolved question how innovation in GE technologies impacts firms’ eco-

nomic performance. Second, the impact of GE and non-GE innovation on performance

is compared. Moreover, as robustness check I distinguish two subgroups of GE technolo-

gies: (a) Renewable Energy Sources (RES) and (b) Energy E�ciency (EE) technologies.

Third, I base my analysis on a comparatively large panel of 8,619 European patenting

firms including 968 GE patenters from 22 countries over an estimation period of 8 years

(2003-2010) and a patent count period of 32 years (1977-2010).

The remainder of the article is structured as follows. Section 2 outlines the theoretical

background my analysis is based on. Section 3 presents and discusses the data. Sec-

tion 4 describes the empirical strategy employed. Section 5 discusses the results of the

econometric estimations and of the robustness tests. Finally, Section 6 summarizes the

main findings and concludes.
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2 Theoretical Background

Innovative activity in market economies to large parts exists because private profit-

maximizing firms allocate resources to the research and development (R&D) of new

products and processes, for which they see innovation opportunities and market success

and consequently expect a positive impact on future economic performance, that is

positive private returns (Dosi, 1988). The resulting innovation output of private firms is

widely believed to be an important source of economic wealth and growth in economies

(see, for example, Romer, 1986, 1990). In addition, innovation in the subgroup of GE

technologies is acknowledged to be a crucial factor for handling climate change while

maintaining reasonable economic growth (so called green growth) (see, for example,

Ja↵e et al., 2002; Popp et al., 2010; Acemoglu et al., 2012).

Private profit-maximizing firms decide about R&D investments solely on the basis of

private returns. Therefore, a firm deciding about two R&D investment projects, one a

GE option and one a non-GE option, would always choose the option with the higher

private return, even though the GE option might have higher social returns (the sum of

both private and non-private returns). Higher social returns for a GE compared to a non-

GE option can result from higher non-private economic returns due to positive innovation

spillovers and the internalization of negative environmental externalities (Dechezleprêtre

et al., 2014). As a consequence, private R&D investments in GE technologies depend

on the private return of these investments compared to the private return of non-GE

investments.

In economic theory, arguments can be found in favor and against higher private re-

turns of GE compared to non-GE innovation. Higher returns may be expected because:

(a) GE technologies are newer and less explored than other technology fields. Therefore,

research in GE technologies builds on a lower knowledge stock than research in more

mature technologies. This could imply greater development perspectives and opportu-

nities for high marginal private returns (Popp and Newell, 2012). (b) GE technologies

bear the potential of having an impact on many sectors and becoming general purpose

technologies. General purpose technologies are expected to generate large economic

gains (Helpman, 1998). (c) Markets are increasingly shaped by strict environmental

regulations. This induces a larger demand for GE technologies and hence increases the

probability of higher private returns from GE innovation (Colombelli et al., 2015).

Contrariwise, lower returns could arise because: (a) GE technologies aim at internal-

izing negative environmental externalities resulting from energy production and use. As
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far as policies have not completely internalized these externalities, the benefits from GE

compared to non-GE innovation are public rather than private. Accordingly, the will-

ingness to pay and, in turn, the demand for GE technologies will be low. Consequently,

the demand will be highly dependent on political developments which are unstable and

can change unexpectedly. These circumstances lead to uncertain private returns from

GE innovation (Beise and Rennings, 2005). (b) GE technologies often are new to a

firm and lie outside their traditional technological scope. In addition, adjustments of

business processes, working routines, employment, and organizational structures may

be necessary. This could lead to large adjustment costs (Noci and Verganti, 1999). (c)

Financial markets are usually imperfect with regard to technological innovation. These

market imperfections are even more pronounced for GE innovation due to the higher

technical risk and uncertainty about market developments. This may imply high costs

of capital (Wörter et al., 2015).

Thus, I derive two rival hypotheses: H1: Private economic returns measured in terms

of productivity are higher for GE than for non-GE innovation, and H2: Private economic

returns measured in terms of productivity are lower for GE than for non-GE innovation.

This work aims to find out which of these hypotheses is right.

3 Data

3.1 Data Sources

To analyze the impact of GE innovation on the economic performance of firms, I combine

two di↵erent databases and construct a unique firm-level data set that matches patent

applicants at the European Patent O�ce (EPO) to firm accounts.

The first performance-related database is BvD’s AMADEUS which contains annual

financial data taken from the registries of approximately 19 million firms from 44Western

and Eastern European countries (Bureau van Dijk, 2015). It covers all sectors with

exception of the financial one and contains up to ten recent years of information per

firm. The database includes firm-level financial information in a standardized format

for 26 balance sheet items, 26 profit and loss items and 26 financial ratios.1 First, I use

information on sales as a measure of economic performance respectively productivity.

Second, I collect information on the number of employees as a measure of labor input

and information on total assets as a measure of capital input. A GDP deflator from

the World Bank’s World Development Indicators (The World Bank, 2015) is used to

1 The coverage of the items varies across countries and time.
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deflate all nominal values. To avoid double-counting firms and subsidiaries, I consider

only firms that report unconsolidated statements.

In order to measure innovation activities at the firm level, I extend the financial data

with patent data from the OECD REGPAT database (OECD, 2015).2 The REGPAT

database covers patent applications filed at the EPO from 1977 to 2011, derived from the

EPO’s Worldwide Patent Statistical Database (PATSTAT, Autumn 2014). To avoid a

truncation downward bias towards the end of the sample period, I consider only patents

filed until 2010. Using EPO patent applications ensures that applications for low-value

inventions are excluded from the analysis. Application costs for multinational EPO

patent applications are generally higher than for applications filed at national institu-

tions. Accordingly, patent applications filed at the EPO often constitute innovations of

high value that are expected to be commercially profitable and thus justify the relatively

high application fees (Johnstone et al., 2010).

The financial data is combined with the EPO patent information using the OECD

Harmonised Applicants’ Names (HAN) database (OECD, 2014). This database pro-

vides a grouping of patent applicants’ names constructed by harmonising names and

matching them against company names from business register data. The business regis-

ter data stems from the ORBIS database from BvD. Since AMADEUS is a component

of the ORBIS database, the HAN database allows me to match EPO patent informa-

tion to AMADEUS company names. The intersection of the AMADEUS and REGPAT

databases then results in a panel of 11,001 firms from 27 countries3 over a period of 34

years (1977 to 2010) who applied for at least one patent at the EPO during this period.

I count GE and non-GE (all patents except GE ones) patent applications filed by

these firms at the EPO over the period 1977 to 2010.4 I date the patents based on their

priority date which refers to the first filing date of the invention worldwide since this

date is strongly related to R&D activities and closest to the date of invention as well as

to the decision to apply for a patent (Griliches, 1990; OECD, 2009). The GE patents are

2 The advantages and disadvantages of using patents as a measure of innovation have been discussed
at length in the literature. See, for example, Griliches (1990), Dernis et al. (2002), and OECD
(2009).

3 The countries are (sorted by country code): Austria (AT), Belgium (BE), Switzerland (CH), Czech
Republic (CZ), Germany (DE), Denmark (DK), Estonia (EE), Spain (ES), Finland (FI), France
(FR), United Kingdom (GB), Greece (GR), Hungary (HU), Ireland (IE), Iceland (IS), Italy (IT),
Liechtenstein (LI), Luxembourg (LU), Latvia (LV), Netherlands (NL), Norway (NO), Poland (PL),
Portugal (PT), Romania (RO), Russian Federation (RU), Sweden (SE), and Slovenia (SI).

4 If a single patent is filed by multiple firms, I count it fractionally. That is, if a patent is filed by
more than one firm, the patent count is divided by the number of firms and each firm receives equal
shares of the patent. This avoids giving a higher weight to a patent filed by multiple firms compared
to one filed by just one firm.

6



identified by using International Patent Classification (IPC) codes from the “IPC Green

Inventory” (WIPO, 2015a,b). The inventory provides IPC codes for patents relating to

so-called Environmentally Sound Technologies. Combining these codes with the energy

technology structure developed at the IEA (IEA, 2011), I count GE patents from two

groups: RES and EE. The RES group contains five RES technologies: solar energy, wind

energy, geothermal energy, ocean energy, and fuel cells. The EE group contains three EE

technologies: energy e�ciency in residential and commercial buildings, appliances and

equipment, energy e�ciency in transport, and other energy e�ciency5. Table 1 provides

an overview on the considered technologies.

Table 1: Green energy technologies.

Renewable energy sources technologies

Wind energy

Solar energy

Geothermal energy

Ocean energy

Fuel cells

Energy e�ciency technologies

Energy e�ciency in residential and commercial buildings, appliances and equipment

Energy e�ciency in transport

Other energy e�ciency

To investigate the e↵ect of firms’ GE and non-GE knowledge, I construct a GE knowl-

edge stock (GKS) and a non-GE knowledge stock (NKS) for firm i at time t using the

perpetual inventory method following Cockburn and Griliches (1988) and Peri (2005):

GKSit = GPATit + (1� �)GKSit�1 and (1)

NKSit = NPATit + (1� �)NKSit�1, (2)

where GPATit (respectively NPATit) is the number of GE (respectively non-GE) patent

applications and � is a depreciation rate accounting for the fact that knowledge becomes

5 Following the IEA energy technology structure, the other energy e�ciency group includes waste
heat recovery and utilization, heat pumps, and measurement of electricity consumption.
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obsolete as time goes by. The depreciation rate is set to 10% as is often assumed in the

literature (see, for example, Verdolini and Galeotti, 2011).6 7

The availability of the AMADEUS financial firm information is limited. The first

available year is 2003. Since I count patents filed until 2010, I use AMADEUS data

from 2003 to 2010. For approximately 22% of the matched firms I have no information

on sales, employment, and/or total assets. For the remaining firms, there are missing

values for some years. Because of these missings, the number of firms and years and,

by this, the number of observations that can be used for the econometric estimations is

lower than in the base sample with 11,002 firms and 34 years. The resulting estimation

data set is an unbalanced panel of 8,619 firms from 22 countries8 over a period of 8

years (2003 to 2010), who have filed at least one EPO patent between 1977 and 2010. In

total, these 8,619 firms filed 3,021 GE patents and 100,835 non-GE patents at the EPO

between 1977 and 2010. The GE patents were filed by a subset of 968 firms from 17

countries9 since not every firm in the full sample applied for a GE patent. The non-GE

patents were filed by a subset of 8,345 firms from 22 countries which shows that almost

every firm in the full sample filed a non-GE patent.

Table 2 reports summary statistics for the full sample of 8,619 patenting firms. The

mean values of sales and total assets suggest the presence of some major firms as the

means lie well above the threshold for the AMADEUS classification of a very large

firm. The knowledge stock values demonstrate the di↵erence in patent counts between

GE and non-GE technologies, reflecting that just about 11% of the sampled firms are

GE patenters. The standard deviations of the knowledge stock of GE and non-GE

technologies have a similar level of about 10% of the mean value. The last row shows

that I have on average almost 6 years of data for each firm.

Table 3 reports correlations between the variables sales, employees, and total assets as

well as GKS and NKS. The highest correlation persists between GKS and NKS (0.552).

This shows that the development of GKS is positively related to those of the significantly

larger group of NKS. The two knowledge stocks are all only weakly correlated to the

measure of firms’ performance, labor, and capital input. As expected, there is also a

6 The initial knowledge stock GKSit0 (respectively NKSit0) is given by GKSit0 = GKSit0/(g + �)
(respectively NKSit0 = NKSit0/(g + �)) where GPATijt0 (respectively NPATijt0) is the number
of patent applications in 1977, the first year observed. The growth rate g is the pre-1977 growth in
patent stock, assumed to be 15%, and � again represents depreciation of 10%.

7 I test the robustness of the regression results against the utilization of di↵erent depreciation rates
in the calculation of the knowledge stocks in Section 5.2, Table 10.

8 The countries are AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IT, LI, LU, LV, NL,
NO, PL, SE, and SI.

9 The countries are AT, BE, CH, CZ, DE, DK, ES, FI, FR, GB, IT, LU, LV, NL, NO, PL, and SE.
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Table 2: Summary statistics.

Mean Std. dev. Min. Max.

Sales (million EUR) 186.83 2526.82 0.00 323387

Employees (100s) 3.56 38.85 0.01 2888

Total assets (million EUR) 335.96 4091.64 0.00 310898

GE knowledge stock 0.15 1.35 0.00 108

Non-GE knowledge stock 6.11 63.92 0.00 3627

Observations per firm 5.70 1.93 1.00 8

Note: Sales and total assets are both in 2006 million. The knowledge stock variables are calculated
using the patent data from 1977 to 2010.
Source: Authors’ calculations, based on AMADEUS and REGPAT databases.

positive correlation between the firm indicators themselves, the one between sales and

total assets (0.621) being the highest.

Table 3: Correlation matrix.

Sales Employees Total assets GKS NKS

Sales 1

Employees 0.202 1

Total assets 0.621 0.282 1

GKS 0.101 0.101 0.121 1

NKS 0.080 0.106 0.131 0.552 1

Source: Authors’ calculations, based on AMADEUS and REGPAT databases.

3.2 Descriptive Statistics

Figure 1 shows the development of yearly GE and non-GE patenting activities of all

firms during 1977 and 2010. GE patent applications are shown on the left axis and non-

GE applications on the right axis. Both variables show an increasing trend from 1977

to 2010. The number of yearly non-GE patent applications increases monotonically and

it can be seen that the yearly increases become significantly larger since the beginning

of the 1990s. Yearly non-GE patent applications peak after a small drop at about

8,000 in 2009. The development of the yearly number of GE patents in my sample is

characterized by two periods of growth. While they remain fairly stable well below 100

at the beginning, there is a steep increase to over 100 yearly GE patents at the end of the

1990s. After a phase of stagnation at the beginning of the 2000s, again an increase to

over 300 yearly GE patents from 2005 to 2008 can be observed. Overall, the development

of GE patents is less steady than the one of non-GE patents.
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Figure 1: Number of yearly GE (left axis) and non-GE (right axis) patent applications filed
at the EPO by all firms. Source: Authors’ calculations, based on AMADEUS and
REGPAT data.

Table 4 shows the distribution of firms by GE and non-GE patents. In the range

from one to 1,000 or more patents, it can be seen how many firms have filed at least a

certain number of patents. As stated before, the sample contains 8,619 firms of which

968 firms have filed at least one GE and 8,345 firms at least one non-GE patent. Only

about 13% (1,059) of the non-GE firms have filed ten or more non-GE patents while

the respective figure lies at 5% (51) for GE patents, that is the majority of firms has

filed less than ten patents, even more so with regard to GE patents. There are some

particularly innovative firms in the sample as 439 firms have filed 25 non-GE patents or

more, 121 firms 100 or more and still 51 firms 250 or more. Finally, 12 firms have filed

1,000 or more non-GE patents. Concerning GE patents, there are 15 firms which have

filed 25 or more patents and 2 firms which have filed 100 or more patents.
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Table 4: The distribution of firms by GE and non-GE patents.

1 or more 10 or more 25 or more 100 or
more

250 or
more

1,000 or
more

Firms (GE) 968 51 15 2 0 0

Firms (Non-GE) 8,345 1,059 439 121 51 12

Source: Authors’ calculations, based on AMADEUS and REGPAT data.

Table 5 gives complementary information on the distribution of the firms with regard

to technology, firm size10, industry11, and country. The GE patenters in the sample are

more involved in EE than RES innovation as 73% of GE firms have patented in the

field of EE technologies and only 41% in RES technologies. GE firms tend to be larger

compared to the non-GE sample. While 31% of GE firms are categorized as very large,

only 17% of the non-GE sample are. The distribution among industries and countries

is very similar between GE firms and the non-GE sample. 50% and 54% respectively

are classified as manufacturers which is thus the most prominent industry group. Other

well represented groups are professional, scientific and technical activities, wholesale and

retail trade as well as construction. Concerning the country distribution of the non-GE

firms, Germany (32%) and France (30%) dominate the sample followed by Spain (11%)

and Italy (10%). It is interesting to note that GE patenters disproportionately come

from Germany (38%).

10 AMADEUS groups firms into the three size categories very large, large, and medium. For firms to be
classified as very large, they have to satisfy at least one of the following criteria: Operating revenue
of at least 100 million EUR, total assets of at least 200 million EUR, at least 1000 employees, or the
firm has to be publicly listed. The respective criteria for large companies are: at least 10 million
EUR operating revenue, at least 20 million EUR total assets, or at least 150 employees. For medium
sized firms these criteria are: at least 1 million EUR operating revenue, at least 2 million EUR total
assets, or at least 15 employees.

11 AMADEUS assigns firms to industries using NACE (for the French term ”nomenclature statistique
des activités économiques dans la Communauté européenne”), the standard European industry
classification system.
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Table 5: Distribution of firms by technology, size, industry, and country.

Technology RES EE GE

No. of GE firms 399 704 968

% in GE firms 41% 73% 100%

Size Very Large Large Medium All

No. of GE firms 296 305 367 968

% in GE firms 31% 32% 38% 100%

No. of non-GE firms 1,399 2,684 4,262 8,345

% in non-GE firms 17% 32% 51% 100%

Industry Manu-
facturing

Professional,
scientific

and
technical
activities

Wholesale
and retail

trade

Construction Other All

No. of GE firms 485 159 126 70 128 968

% in GE firms 50% 16% 13% 7% 13% 100%

No. of non-GE firms 4,559 977 1,357 346 1,106 8,345

% in non-GE firms 54% 12% 16% 4% 13% 100%

Country DE FR ES IT Other All

No. of GE firms 369 290 72 65 172 968

% in GE firms 38% 30% 7% 7% 18% 100%

No. of non-GE firms 2,630 2,542 894 834 1,445 8,345

% in non-GE firms 32% 30% 11% 10% 17% 100%

Source: Authors’ calculations, based on AMADEUS and REGPAT data.

4 Empirical Strategy

To empirically evaluate the impact of GE innovation on firm performance, I follow the

approach by Bloom and Van Reenen (2002) who measure firm performance by produc-

tivity. I use a panel data model based on a standard Cobb-Douglas production function

for firm i at time t, extended by innovation respectively knowledge as an additional

input:

Qit = AL↵
itK

�
itI

�
it, (3)

12



where Q is the output, L is the labor input, K is the capital input, I is the knowledge

stock, and A is a constant. The parameters ↵, �, and � are elasticities with respect to

labor, capital, and knowledge respectively.

The elasticity with respect to labor accounts for the e↵ect on output caused by growth

in labor input. The elasticity with respect to capital accounts for the e↵ect in output

caused by growth in capital input. These parameters measure the corresponding single

factor productivity (SFP) growth. The elasticity with respect to knowledge measures

the total factor productivity (TFP) by accounting for the e↵ect in output not caused by

the growth in labor and capital input. This is in line with the conventional view that

TFP is the measure of the rate of technical change (Krugman, 1996). Precisely, since I

will use sales as a proxy for output, I measure revenue productivity which includes both

changes in factor productivity as well as in markups as firms are able to raise prices for

new innovations (Bloom and Van Reenen, 2002).

Expressing 3 in logarithms yields:

ln (Q)it = ln (A) + ↵ln (L)it + �ln (K)it + �ln (I)it . (4)

In the empirical application, I use sales as a proxy for output Q, the number of

employees engaged as a proxy for labor L, and total assets as a proxy for capital K.

The knowledge stock I is proxied by the firm’s GE knowledge stock (GKS), capturing

GE specific knowledge, and the respective non-GE knowledge stock (NKS), capturing

non-GE knowledge. This allows a separate assessment of the productivity impact of

GE and non-GE innovation. Including the non-GE knowledge stock also controls for

di↵erences in the firms’ overall propensity to patent innovations. The knowledge stocks

are included in levels and not in logarithmic form since a substantial number of firms

have knowledge stocks of zero (Wooldridge, 2002). In the complete sample of 8,619

firms the share of zero observations is 91% for the GE and 17% for the respective non-

GE knowledge stock. Thus, this share is substantial especially with respect to the GE

knowledge stock.12 In order to mitigate any reverse causality problems and to account

for the fact, that the impact of innovation on productivity is dynamic and comes with

a certain time lag (Bloom and Van Reenen, 2002), the knowledge stock variables are

12 In a robustness test, I address this approach. I use an alternative specification that includes the
logged total knowledge stock instead of the separated GE and non-GE stocks in levels. Therefore,
the problem of zero knowledge stocks is less pronounced. Using the total knowlege stock in logs
does not change the sign and significance of the coe�cients so that I continue to use the knowledge
stocks in levels in the main specification.
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lagged by two years.13 To control for correlated unobserved heterogeneity, I include

year fixed e↵ects Tt and firm-specific fixed-e↵ects ⌘i. The baseline specification to be

estimated then is given by:

ln (Q)it = ln (A) + ↵ln (L)it + �ln (K)it + �1 (GKS)it�2 + �2 (NKS)it�2

+ Tt + ⌘i + uit,
(5)

where uit is a standard varying error term (across time and firms). I estimate (5) using

OLS and fixed-e↵ects (within) regression (least-squares dummy-variable regression) with

standard errors cluster-robust to heteroscedasticity (Section 5.1). To test the robustness

of the baseline model, I use alternative specifications with modifications (Section 5.2).

5 Results

5.1 Baseline Results

The baseline results of estimating the Cobb-Douglas production function (5) are pre-

sented in Table 6. Initially, the full sample of 8,619 firms is used. Column (1) gives

the OLS estimates of the production function. As the independent variables employ-

ment and total assets enter the estimations in log form, the estimated coe�cients can

be interpreted as elasticities. The coe�cients on employment and total assets are both

positive and statistically significant at the 1% level. This result is in line with general

expectations. As one would also expect, the sum of the coe�cients is close to unity

suggesting constant returns to scale. Column (2) has the results of the fixed-e↵ects

estimator which controls for time-invariant unobserved heterogeneity between firms by

including firm-specific fixed e↵ects. Again the coe�cients on employment and total as-

sets are both positive and statistically significant while slightly smaller for employment

and slightly higher for total assets. The estimated elasticities of 0.639 and 0.469 suggest

that a 10% increase in employment or capital is associated with a 6.4 and 4.7% increase

in productivity respectively.

Column (3) reports the results from adding the firm’s GE knowledge stock and the

corresponding non-GE stock as proxies for a firm’s knowledge. As the knowledge stocks

enter the estimation in levels, the estimated coe�cients have a percentage interpretation

when they are multiplied by 100, commonly called semi-elasticity. The GE knowledge

stock is negative and significant at the 5% level. The coe�cient suggests that an increase

13 I test the robustness of my results against other lag structures in Section 5.2, Table 9.
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Table 6: Estimated coe�cients of the Cobb-Douglas production function. Estimation time
span: 2003-2010. Dependent variable: Sales (log).

(1) (2) (3) (4)

Firms All All All GE patenters

Employees (log) 0.700⇤⇤⇤ 0.639⇤⇤⇤ 0.643⇤⇤⇤ 0.441⇤⇤⇤

(0.029) (0.055) (0.055) (0.094)

Total assets (log) 0.408⇤⇤⇤ 0.469⇤⇤⇤ 0.469⇤⇤⇤ 0.730⇤⇤⇤

(0.027) (0.047) (0.046) (0.167)

GE knowledge stockt�2 �0.036⇤⇤ �0.031⇤⇤

(0.014) (0.012)

Non-GE knowledge stockt�2 0.001⇤⇤⇤ 0.001⇤⇤⇤

(0.000) (0.000)

Year dummies yes yes yes yes

Firm dummies no yes yes yes

Adj. R-Squared 0.581 0.896 0.896 0.915

No. observations 39152 39152 39152 4482

No. firms 8619 8619 8619 968

Note: Column (1), (2), and (3) present the results using the population of all patenting firms. Column
(4) presents the results for the subset of firms with GE patents. The knowledge stock variables are
calculated using the patent data from 1977 to 2010. Robust standard errors clustered by firm are in
parantheses. ***, **, and *: Significant at the 1%, 5%, and 10%-level.

of the stock by 1 would lead to a 3.6% decrease in productivity. A doubling of the stock

with respect to its sample average (0.15) would lead to a 0.5% decrease in productivity.

In contrast, the corresponding non-GE stock is positive and significant at the 1% level.

Here an increase of the stock by 1 would result in a 0.1% increase in productivity. A

doubling of the stock with respect to its sample average (6.11) would result in a 0.6%

increase in productivity. Thus, the marginal e↵ect of GE innovation is negative while

the marginal e↵ect of non-GE innovation is positive indicating that sales markets do not

provide su�cient incentives to increase firms’ GE innovation activities but do provide

enough incentives to increase firms’ non-GE innovation activities. The results suggest

that, while there is a positive return in terms of productivity for non-GE innovation,

a negative return is found for GE innovation. Thus, hypothesis H2 can be confirmed:

Private economic returns measured in terms of productivity are lower for GE than for

non-GE innovation. The findings are in line with the aforementioned examinations by

Marin (2014), Marin and Lotti (2016), and Wörter et al. (2015).

The last column (4) gives the results of the previous specification for the subset of

the 968 GE patenters. Using this specification, I test if the results in column (3) are
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robust or mainly driven by the shift from a firm without any GE patents to a firm with

GE patents. Again the estimate on the GE knowledge stock is negative and significant

although slightly smaller than in column (3). Likewise the coe�cient on the respective

stock in non-GE patents is still positive and significant but slightly lower. The lower

estimates on employment and higher estimates on total assets indicate that the GE

patenting firms are on average more capital intensive than the non-GE patenting firms.

In fact the GE patenters have on average a 37% higher capital to labor ratio compared

to the complete sample.

5.2 Robustness Tests

In order to test the sensitivity of the baseline results presented in Table 6, I conduct a

number of robustness tests based on the main model in column (3).

First, I repeat the main specification di↵erentiating between two subgroups of GE

technologies: RES and EE technologies. Column (1) and (3) in Table 7 present results

using the population of all patenting firms. Overall, the estimated coe�cients are similar

but show di↵erences between the two technology groups. The negative coe�cients of

the RES and EE knowledge stocks are higher compared to the coe�cient of the GE

knowledge stock, even more so for the RES knowledge stock. Thus, patents in the field

of RES have a more pronounced negative impact on productivity than EE patents. This

finding may be explained by di↵erent maturity levels of RES and EE markets. Again

in contrast, the corresponding coe�cient of the non-RES and non-EE knowledge stocks

are small, but positive and significant.

Column (2) and (4) give the results for the subset of firms with RES respectively

EE patents. Doing this, I test again if the results in column (1) and (3) are robust

or mainly driven by the shift from non-RES respectively non-EE patenters to RES-

respectively EE patenters. The coe�cient on the RES knowledge stock is negative and

significant and increases slightly in absolute terms compared to column (1). Contrary,

the coe�cient on the EE knowledge stock decreases slightly compared to column (3)

but still remains negative and significant. The coe�cients on the respective stocks in

non-RES and non-EE patents do not change compared to columns (1) and (3). The

estimates on employment and total assets show that both RES and EE patenters are on

average more capital intensive than non-GE firms, with EE patenters having the highest

capital-intensity. The sum of the coe�cients is 1.22 in column (2) and 1.05 in column

(2), suggesting higher returns to scale in tangible factors for RES than EE patenters.
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Table 7: Di↵erentiating by technology group. Estimation time span: 2003-2010. Dependent
variable: Sales (log).

(1) (2) (3) (4)

Firms All RES patenters All EE patenters

Employees (log) 0.643⇤⇤⇤ 0.508⇤⇤⇤ 0.642⇤⇤⇤ 0.343⇤⇤⇤

(0.055) (0.165) (0.055) (0.100)

Total assets (log) 0.469⇤⇤⇤ 0.714⇤⇤⇤ 0.469⇤⇤⇤ 0.707⇤⇤⇤

(0.046) (0.174) (0.046) (0.238)

RES knowledge stockt�2 �0.055⇤ �0.061⇤⇤

(0.031) (0.025)

Non-RES knowledge stockt�2 0.001⇤⇤ 0.001⇤⇤⇤

(0.000) (0.000)

EE knowledge stockt�2 �0.044⇤⇤ �0.029⇤

(0.022) (0.016)

Non-EE knowledge stockt�2 0.001⇤⇤ 0.001⇤⇤

(0.001) (0.000)

Year dummies yes yes yes yes

Firm dummies yes yes yes yes

Adj. R-Squared 0.896 0.896 0.896 0.937

No. observations 39152 1816 39152 3344

No. firms 8619 399 8619 704

Note: Estimations are based on the same specification as in column (3) of Table 6. Column (1) and (3)
present the results using the population of all patenting firms. Column (2) and (4) present the results
for the subset of firms with RES respectively EE patents. The knowledge stock variables are calculated
using the patent data from 1977 to 2010. Robust standard errors clustered by firm are in parantheses.
***, **, and *: Significant at the 1%, 5%, and 10%-level.

The relationship between innovation and productivity may be dependent on a firm’s

size. Therefore, I conduct a second robustness test di↵erentiating between the size of

the investigated firms. Table 8 reports estimated coe�cients of the main model for

very large, large, and medium sized firms. The coe�cient on the GE knowledge stock,

which has been significant in all previous specifications, is only significant for very large

firms. For very large firms it also has the same size as in the main specification. The

coe�cient on the non-GE knowledge stock, likewise always significant before, is highly

significant for medium sized firms only, significant at the 10% level for very large firms

and insignificant for large firms. Overall, the results are very similar in size but not

always statistically significant. The results suggest that the (negative) impact of GE

innovation on productivity tends to be more pronounced for larger firms whereas the

(positive) productivity e↵ect of non-GE innovation seems to be more important for
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smaller firms. Possible reasons for the lower levels of significance are that the sample

sizes are smaller and the variation of the knowledge stocks is lower between firms of

similar size.

Table 8: Di↵erentiating by firm size. Estimation time span: 2003-2010. Dependent variable:
Sales (log).

(1) (2) (3)

Firms Very large Large Medium

Employees (log) 0.686⇤⇤⇤ 0.652⇤⇤⇤ 0.606⇤⇤⇤

(0.140) (0.066) (0.063)

Total assets (log) 0.530⇤⇤⇤ 0.541⇤⇤⇤ 0.412⇤⇤⇤

(0.105) (0.063) (0.070)

GE knowledge stockt�2 �0.031⇤ �0.039 �0.056

(0.017) (0.040) (0.113)

Non-GE knowledge stockt�2 0.001⇤ 0.000 0.004⇤⇤⇤

(0.001) (0.001) (0.001)

Year dummies yes yes yes

Firm dummies yes yes yes

Adj. R-Squared 0.870 0.846 0.814

No. observations 8109 13956 17087

No. firms 1428 2775 4416

Note: Estimations are based on the same specification as in column (3) of Table 6. Column (1) presents
the results for the subset of very large, column (2) for the subset of large, and column (3) for the subset
of medium sized firms. The knowledge stock variables are calculated using the patent data from 1977
to 2010. Robust standard errors clustered by firm are in parantheses. ***, **, and *: Significant at the
1%, 5%, and 10%-level.

As noted before, in the baseline specification I lag the knowledge stock variables by two

years in order to mitigate any reverse causality problems and to account for the fact that

innovative output does not immediately have an e↵ect on a firm’s productivity. In order

to test the sensitivity of the knowledge stock results to other lag structures, I conduct a

third robustness test and re-estimate the main model with the current knowledge stocks

and with knowledge stocks lagged one, two (as used in the baseline specification depicted

in Table 6), and three years. The results are given in Table 9. Overall, the results are

robust to these modifications. The impact of additional GE innovation on productivity

is still negative and the impact of additional non-GE innovation still positive. The higher

point estimates on the two- and three-year lag compared to the zero- and one-year lag
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for both knowledge stocks14 support the hypothesis of a time lag between innovation

and its e↵ect on performance. In other words, patented innovations take some time to

enter the production function. Another explanation for the stronger negative impact of

additional GE innovation for longer lags might be that marginal costs of GE innovation

were higher and demand for GE innovation was lower in earlier periods (for a similar

result and reasoning see Wörter et al., 2015).

Table 9: Di↵erent lags for the knowledge stocks. Estimation time span: 2003-2010. Dependent
variable: Sales (log).

(1) (2) (3) (4)

Firms All All All All

Employees (log) 0.643⇤⇤⇤ 0.643⇤⇤⇤ 0.643⇤⇤⇤ 0.642⇤⇤⇤

(0.055) (0.055) (0.055) (0.055)

Total assets (log) 0.469⇤⇤⇤ 0.469⇤⇤⇤ 0.469⇤⇤⇤ 0.469⇤⇤⇤

(0.046) (0.046) (0.046) (0.046)

GE knowledge stock �0.029⇤⇤ �0.028⇤ �0.036⇤⇤ �0.034⇤⇤

(0.013) (0.015) (0.014) (0.017)

Non-GE knowledge stock 0.001⇤⇤⇤ 0.001⇤⇤⇤ 0.001⇤⇤⇤ 0.001⇤⇤

(0.000) (0.000) (0.000) (0.001)

Year dummies yes yes yes yes

Firm dummies yes yes yes yes

Adj. R-Squared 0.896 0.896 0.896 0.896

No. observations 39152 39152 39152 39152

No. firms 8619 8619 8619 8619

Note: Estimations are based on the same specification as in column (3) of Table 6. Column (1), (2), (3),
and (4) present the results for the current knowledge stocks and for knowledge stocks lagged one, two,
and three years, respectively. The knowledge stock variables are calculated using the patent data from
1977 to 2010. Robust standard errors clustered by firm are in parantheses. ***, **, and *: Significant
at the 1%, 5%, and 10%-level.

The final robustness test is done by utilizing di↵erent depreciation rates in the calcula-

tion of the knowledge stocks. Table 10 reports the main model estimates for depreciation

rates of 5%, 10% (as used in the baseline estimation depicted in Table 6), 15%, and 20%.

The higher the depreciation rate, the lower the importance of past knowledge. A depre-

ciation rate of 100% would mean that the knowledge stock becomes a flow variable, that

is only the patents from the current period contribute to a firm’s productivity. For all

specifications, the coe�cients on the GE and non-GE knowledge stocks are significant at

14 For the non-GE coe�cients, the increase concerns the fourth decimal place and cannot be seen in
the presented output table.
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least at the 5% level. While the coe�cient of the non-GE knowledge stock does not vary

in size, the coe�cient of the GE stock becomes more negative using higher depreciation

rates. Hence, the negative e↵ect of GE knowledge on productivity becomes larger when

firms can rely on less previous GE knowledge. In other words, a larger GE knowledge

stock mitigates the negative e↵ect that an increase in GE knowledge has on productivity.

An explanation might be that firms with a larger knowledge stock in GE technologies

have lower R&D costs for the same amount of inventive output than firms with a lower

knowledge stock.

Table 10: Di↵erent depreciation rates for the knowledge stocks. Estimation time span: 2003-
2010. Dependent variable: Sales (log).

(1) (2) (3) (4)

Firms All All All All

Employees (log) 0.642⇤⇤⇤ 0.643⇤⇤⇤ 0.643⇤⇤⇤ 0.643⇤⇤⇤

(0.055) (0.055) (0.055) (0.055)

Total assets (log) 0.469⇤⇤⇤ 0.469⇤⇤⇤ 0.469⇤⇤⇤ 0.468⇤⇤⇤

(0.046) (0.046) (0.046) (0.047)

GE knowledge stockt�2 �0.026⇤⇤ �0.036⇤⇤ �0.042⇤⇤⇤ �0.046⇤⇤⇤

(0.012) (0.014) (0.016) (0.017)

Non-GE knowledge stockt�2 0.001⇤⇤ 0.001⇤⇤⇤ 0.001⇤⇤⇤ 0.001⇤⇤⇤

(0.000) (0.000) (0.001) (0.001)

Year dummies yes yes yes yes

Firm dummies yes yes yes yes

Adj. R-Squared 0.896 0.896 0.896 0.896

No. observations 39152 39152 39152 39152

No. firms 8619 8619 8619 8619

Note: Estimations are based on the same specification as in column (3) of Table 6. Columns (1), (2),
(3), and (4) present the results for knowledge stock depreciation rates of 5%, 10%, 15%, and 20%,
respectively. The knowledge stock variables are calculated using the patent data from 1977 to 2010.
Robust standard errors clustered by firm are in parantheses. ***, **, and *: Significant at the 1%, 5%,
and 10%-level.

6 Conclusions

In this article, I studied the e↵ect of innovation in GE technologies on the economic per-

formance of firms and compared it to the e↵ect of non-GE innovation. I based my study

on a panel of 8,619 patenting firms including 968 GE patenters from 22 European coun-

tries over the period 2003 to 2010. To construct the panel, I combined firm accounts data
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with data on firms’ patent applications. My results show that, all else equal, innovation

in GE technologies has a negative impact on the economic performance of firms while

innovating in non-GE technologies positively a↵ects firms’ economic performance. This

confirms the hypothesis H2 that private economic returns in terms of productivity are

lower for GE than for non-GE innovation, which corresponds to previous results found

by Marin (2014), Marin and Lotti (2016), and Wörter et al. (2015). I also find evidence

for di↵erent performance e↵ects across GE technologies. My results reveal that the neg-

ative e↵ect on firm performance is more pronounced for RES than for EE technologies.

Moreover, my findings suggest that the negative relationship between GE innovation

and performance is stronger for larger firms. Furthermore, the negative impact of GE

innovation on performance is found to be stronger with a larger time lag between both.

On the one hand, this supports the hypothesis of a time lag between innovation and

its impact on performance. On the other hand, it indicates that marginal costs of GE

innovation decreased and demand for GE innovation increased over time. Finally, the

use of di↵erent knowledge depreciation rates shows that the negative impact of new GE

patents on performance is less pronounced when firms can build on an existing stock of

GE knowledge.

Given these results, the initial research question can be answered: since GE inno-

vation guarantees lower private returns than non-GE innovation, firms forgo economic

opportunities by innovating in GE technologies and gain economic opportunities by con-

centrating on innovation in non-GE technologies. However, as one can observe in the

data, firms nevertheless have invested in GE technologies. Since the resources that firms

can allocate to R&D investment projects are limited and since firms always choose the

project with the highest private return, this observation evidences a potential crowding

out of GE innovation at the expense of (more rewarding) non-GE innovation. Thus it

seems that there where factors (for example political expectations, environmental reg-

ulation) that somewhat forced firms to use their scarce R&D funds for projects with

comparatively low returns (Marin, 2014). Assuming that the non-private returns for

the GE and the non-GE project are the same, this crowding out would be welfare de-

creasing. However, if the GE project has higher social returns (that is combined private

and non-private returns) compared to the non-GE project, this crowding out would be

welfare increasing. This then would be an argument for policy intervention aiming to

increase private returns of GE innovation in order to promote socially beneficial green

growth.
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Figure A1: Number of firms, 2003-2010. Source: Authors’ calculations, based on AMADEUS
and REGPAT data.
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Table A1: Number of yearly patent applications filed at the EPO by all firms by technology
group.

Year RES EE GE Non-GE

1977 0 0 0 66

1978 0 3 3 212

1979 2 7 9 309

1980 1 9 10 390

1981 1 12 13 504

1982 4 14 18 530

1983 5 16 18 548

1984 7 20 24 647

1985 3 32 35 749

1986 7 26 27 891

1987 4 28 32 1,024

1988 3 25 28 1,140

1989 11 30 32 1,267

1990 5 33 38 1,268

1991 3 29 31 1,331

1992 5 40 45 1,390

1993 10 45 52 1,609

1994 8 42 47 1,768

1995 12 35 40 2,034

1996 11 33 40 2,487

1997 20 57 68 2,886

1998 25 62 77 3,419

1999 26 88 100 3,883

2000 41 108 119 4,278

2001 59 101 143 4,440

2002 51 94 134 4,911

2003 46 94 130 5,522

2004 63 110 168 6,142

2005 54 89 141 6,959

2006 82 142 207 7,324

2007 106 168 241 7,739

2008 132 181 261 7,558

2009 195 192 356 7,925

2010 189 207 336 7,691

Total 1,190 2,171 3,021 100,835

Source: Authors’ calculations, based on AMADEUS and REGPAT data.
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Table A2: Country distribution of GE firms.

Country No. %

DE 369 38.12

FR 290 29.96

ES 72 7.44

IT 65 6.71

SE 49 5.06

AT 46 4.75

BE 24 2.48

NO 23 2.38

FI 6 0.62

CH 5 0.52

PL 5 0.52

GB 4 0.41

DK 3 0.31

LU 3 0.31

CZ 2 0.21

LV 1 0.10

NL 1 0.10

Total 968 100.00

Source: Authors’ calculations, based on AMADEUS and REGPAT data.
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Table A3: Country distribution of non-GE firms.

Country No. %

DE 2630 31.51

FR 2542 30.46

ES 894 10.71

IT 834 9.99

SE 502 6.02

AT 313 3.75

NO 234 2.80

BE 184 2.20

FI 45 0.54

PL 37 0.44

CH 32 0.38

DK 25 0.30

GB 22 0.26

LU 17 0.20

EE 9 0.11

NL 9 0.11

CZ 6 0.07

HU 4 0.05

LV 3 0.04

GR 1 0.01

LI 1 0.01

SI 1 0.01

Total 8345 100.00

Source: Authors’ calculations, based on AMADEUS and REGPAT data.
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