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This article empirically analyzes supply-side and demand-side factors ex-

pected to a↵ect innovation in clean coal technologies. Patent data from 93

national and international patent o�ces is used to construct new firm-level

panel data on 3,648 clean coal innovators over the time period 1978 to 2009.

The results indicate that on the supply-side a firm’s history in clean coal

patenting and overall propensity to patent positively a↵ects clean coal in-

novation. On the demand-side we find strong evidence that environmental

regulation of emissions, that is CO2, NOX and SO2, induces innovation in

both e�ciency improving combustion and after pollution control technolo-

gies.
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1 Introduction

Currently, about 40% of world electricity is produced by coal which makes it globally the

first source of electricity generation. World electricity demand is predicted to increase

by around two-thirds until 2035 and coal to remain the leading fuel in electricity pro-

duction (IEA, 2013b). Reasons for this development are that coal reserves are large and

geopolitically secure, coal is an a↵ordable energy source, and coal-based power can be

easily integrated into existing power systems (IEA, 2013a). In light of this, it is unlikely

that alternative forms of energy can or will completely replace coal-based power in the

near future.

However, coal burning in its current form has strong environmental impacts. On the

one hand, the negative impacts of air pollutants like sulfur dioxide (SO2) and nitrogen

oxides (NOX) on the air quality and, on the other hand, the negative impact of green-

house gas emissions like carbon dioxide (CO2) on the climate. The large reliance of

electricity production on coal explains why this sector is, with about 41%, the largest

contributor to worldwide CO2 emissions. Coal accounts for about 70% of these emissions

(IEA, 2013b). Therefore, it is essential to develop new and advanced technologies that

allow coal use in electricity generation while mitigating its impact on the environment.

Clean coal technologies (CCT) may help achieving this goal. These technologies aim at

the reduction of emissions in coal-based electricity generation: indirectly, by increasing

the e�ciency of the conversion of coal into electricity (e�ciency improving combustion

technologies), or by reducing emissions entering the atmosphere directly at the end of

the pipe (after pollution control technologies).1 Regarding CO2, today the intensity of

the most e�cient coal-fired power plants lies around 700 grams of CO2 per kilowatt-

hour (gCO2/kWh). Next generation e�ciency enhancing technologies are expected to

reduce CO2 emissions from coal-based electricity generation to less than 670 gCO2/kWh.

In addition, Carbon capture and storage (CCS) technologies inherent the potential to

reduce emissions to less than 100 gCO2/kWh (IEA, 2012).

Despite the important role played by coal in electricity generation and the high mit-

igation potential of this sector, very little attention has been devoted to the factors

determining innovation in CCT. Understanding these factors will help policymakers to

design the appropriate energy and environmental policies for encouraging more innova-

1 The term CCT is controversial as the impact of CCT innovations on the environment is ambigu-
ous. On the one hand, CCT innovations increase the e�ciency of coal conversion into electricity
and therefore reduce the amount of coal use per kilowatt-hour. On the other hand, these innova-
tions make electricity generation from coal cheaper, thereby increasing the share of coal in overall
electricity generation (Aghion et al., 2016).

2



tion. Therefore, the goal of this article is to empirically investigate the determinants that

enhance innovation in CCT. We measure innovation at the firm-level by using patent

data from the Worldwide Patent Statistical Database (PATSTAT) maintained by the

European Patent O�ce (EPO) (EPO, 2014). Altogether our database contains 7,894

CCT first priority patents filed worldwide by 3,648 firms over a 32-year period from

1978 to 2009. We analyze supply-side and demand-side factors expected to a↵ect CCT

innovation. These factors include scientific and technological capacity, overall propensity

to patent, public R&D, coal prices, market size as well as environmental policies and

regulations aiming at the reduction of SO2, NOX , and CO2 emissions.

The article generally relates to the empirical literature on the determinants of innova-

tion in clean energy technologies using patent data (see, for example, Ja↵e and Palmer,

1997; Popp, 2002; Johnstone et al., 2010; Verdolini and Galeotti, 2011). In particular,

we build on Voigt et al. (2008), who use EPO patent data for 22 countries from 1974

to 2005 to examine country-specific determinants of patenting activity in the field of

CCT. Within their empirical analysis, the authors find a positive impact of public R&D

expenditures and negative impacts of the Kyoto protocol and the share of renewables

on CCT innovation.

Our study extends this analysis and contributes to the existing literature in three

respects. First, we inquire into the determinants of CCT innovation using international

firm-level panel data. This allows us to investigate factors that enhance CCT innovation

activities directly at the innovator-level. Second, our study conducts a global analysis

based on data from 93 national and international patent o�ces. This data includes

almost the entire population of all worldwide CCT patent applications filed in the con-

sidered period. Third, we provide quantitative evidence on the temporal trends and the

distribution across countries and firms of CCT innovation. This helps understanding

the global patterns of CCT innovation.

The remainder of this article is structured as follows. Section 2 presents the princi-

pal hypotheses tested in our empirical analysis. Section 3 presents the data and some

descriptive statistics. In section 4, we describe the empirical strategy and discuss the

results. Section 5 summarizes the main findings and concludes.

2 Principal Hypotheses

The purpose of this article is to test how firm-level CCT innovation is a↵ected by eco-

nomic and political factors. The theory of induced innovation is the theoretical basis
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for this relationship (see, for example, Hicks, 1932; Binswanger, 1974). In general, the

theory recognizes that knowledge production is a profit-motivated investment activity

and posits that both changes on the supply-side and changes on the demand-side a↵ect

the rate and direction of knowledge production. Changes on the supply-side include sci-

entific and technological advancements that a↵ect the profitability of innovative activity

at a given level of demand. Analogously, changes on the demand-side include shifts

on the macro level that a↵ect the profitability of innovative activity at a given level of

scientific and technological capability (Griliches, 1990).

On the supply-side, a firm’s scientific and technological capacity, that is, its existing

stock of knowledge, is expected to influence its innovative activity in the future (Ace-

moglu et al., 2012). This stock is typically measured by innovation activities undertaken

in the past, that is by historic patent filings (see, for example, Popp, 2002; Verdolini

and Galeotti, 2011). Hence, we expect that firms with a broad history of CCT inno-

vation in the past are more likely to innovate in CCT in the future. Additionally, a

firm’s patenting activity may be a↵ected by its overall propensity to patent innovations.

This propensity is likely to vary across firms and countries as well as across time, be-

cause di↵erent strategies are adopted by firms to capture the rents from innovation and

because legal conditions di↵er across countries and change over time (Jaumotte and

Pain, 2005). Thus, firms with an overall high propensity to seek for patent protection

(typically measured by total patent filings) are expected to file more patents in CCT.

Moreover, public e↵ort in support of technological development is likely to incentivize

innovation at the firm-level. Government R&D expenditures are an indicator for this

e↵ort (Popp et al., 2010). Therefore, higher CCT-related government R&D expenditures

should induce technological change and hence lead to higher innovative activity in CCT.

On the demand-side, the price level (or a policy that changes the price level) can

be expected to a↵ect a firm’s innovative activity. Increasing input prices change the

opportunity costs associated with the use of an input and thus induce innovation in

technologies that aim to reduce the use of this input (Hicks, 1932; Acemoglu et al.,

2012). Thus, increasing the price of coal should lead to innovation in more e�cient

forms to produce electricity from coal. However, an increase in the price of coal should,

in contrast, lead to less innovation in after pollution control technologies since these

make electricity production from coal even more expensive. In addition, the size of the

potential market is likely to a↵ect innovation (Acemoglu et al., 2012). A large market,

that is, a large demand, makes it easier for a firm to recoup its R&D investments. Hence,

a potentially large market for CCT, typically proxied by electricity production, should
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lead to more research towards CCT (Johnstone et al., 2010). Finally, environmental

policies and regulations typically a↵ect firms’ innovative activities. Restricting for ex-

ample air pollutant (for example SO2 and NOX) and greenhouse gas (for example CO2)

emissions from coal-fired power plants increases the value of both e�ciency improving

combustion and after pollution control technologies. The first ones allow to produce the

same output with less input and by this decrease the emissions per unit of output. The

second ones reduce the emissions directly (Popp, 2006). Thus, introducing policies and

regulations aiming at the restriction of emissions should incentivize CCT innovation.

The hypotheses presented above are summarized in Table 1.

Table 1: Expected determinants of CCT innovation.

CCT (EI/AP)

Supply-side determinants

Scientific and technological capacity + (+/+)

(CCT knowledge stock)

Propensity to patent + (+/+)

(Total patent filings)

Public e↵ort in support of technological development + (+/+)

(CCT-related government R&D)

Demand-side determinants

Price level o (+/�)

(Coal price)

Size of potential market + (+/+)

(Electricity production)

Environmental policies and regulations + (+/+)

(Dummies indicating introduction of emission restricting policies/regulations)

Note: + positive e↵ect; o positive or negative e↵ect; � negative e↵ect. EI = E�ciency improving
combustion technologies; AP = After pollution control technologies.

3 Data

In this section, we present the data used in our empirical analysis and describe the

construction of the explanatory variables. We then show descriptive statistics which

provide instructive insights into the data and the global patterns of CCT innovation.
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3.1 Data Sources

We use patent data as an output measure of innovative activity at the firm-level to

analyze the potential determinants of innovation in CCT.2 The data originates from

PATSTAT, a statistical database on worldwide patenting activities maintained by the

EPO (EPO, 2014). Patent applications related to CCT are identified by using Interna-

tional Patent Classification (IPC) codes taken from Voigt et al. (2008).3 We count CCT

innovations in two technology groups: e�ciency improving combustion technologies (EI)

and after pollution control (AP) technologies. The EI group contains technologies which

improve e�ciency in the conversion process of coal into electricity and thus indirectly re-

duce emissions. These technologies are Pulverized Coal Combustion under supercritical

and ultra-supercritical steam conditions (PCC), Fluidized Bed Combustion (FBC), and

Integrated Gasification Combined Cycle (IGCC). The AP group contains technologies

directly reducing emissions. These are post-combustion pollution control technologies,

that is end-of-pipe (EOP) technologies, and Carbon Capture and Storage (CCS) tech-

nologies. Table 2 provides an overview on the considered technologies.4

Table 2: Clean coal technologies.

E�ciency improving combustion technologies

Pulverized Coal Combustion

Fluidized Bed Combustion

Integrated Gasification Combined Cycle

After pollution control technologies

End-of-pipe

Carbon Capture and Storage

2 The advantages and disadvantages of using patents as a measure of innovation have been discussed
at length in the literature. See, for example, Griliches (1990), Dernis et al. (2002), and OECD
(2009).

3 To identify CCT innovations filed at the United States Patent and Trademark O�ce (USPTO), we
follow an approach by Aghion et al. (2016). We use the same IPC codes as the ones used for non-
USPTO patents and complement these with their US equivalents according to the USPC-to-IPC
reverse concordance table available on the USPTO website. The reason is that the IPC system for
classifying patent documents has been adopted just recently by the USPTO. Therefore some older
USPTO patents have no IPC codes.

4 A detailed list of the technologies including the IPC codes can be found in Voigt et al. (2008) and
Rennings and Smidt (2010).
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For our analysis, we count annual CCT first priority patent filings by firms across 93

national and international patent o�ces over the period 1978 to 2009.5 6 Counting first

priority patents ensures that the same invention, which is protected by multiple patents

filed in multiple patent o�ces, for example by one patent in Germany, one patent in the

US, and two patents in Japan, is counted as one single patent.7

We ensure that patent applications for low-value inventions are excluded from our

analysis by considering only so called claimed priorities, that is patent applications for

which protection is sought in at least two of the considered o�ces. The patents are

assigned to years based on their priority date. The priority date refers to the first filing

date of the invention worldwide. It is strongly related to R&D activities and closest to

the date of invention as well as to the decision to apply for a patent (see, for example,

Griliches, 1990; OECD, 2009). The resulting data set contains 8,414 high-value CCT

first priority patents filed by 6,302 firms across 60 o�ces.

A common problem with patent data is the heterogeneity of applicants’ names to be

found in patent documents. We use the ECOOM-EUROSTAT-EPO PATSTAT Person

Augmented Table (EEE-PPAT) database (ECOOM, 2014) to identify unique patent

holders. This database provides a grouping of patent applicant’s names achieved by

harmonizing names through a comprehensive computer algorithm. In addition, we vi-

sually inspect the name match and merge associated applicants (for example, we merge

Siemens with its di↵erently named subsidiaries). This procedure enables us to reduce

the number of distinct applicants of CCT patents from 6,302 to 5,028 (by using the

EEE-PPAT database) and then to 4,330 (by visual inspection).

To investigate the e↵ect of a firm’s scientific and technological capacity, we construct

knowledge stocks Kit for firm i at time t using the perpetual inventory method following

Cockburn and Griliches (1988) and Peri (2005):

Kit = PATit + (1� �)Kit�1 (1)

where PATit is the number of CCT patent applications and � is a depreciation rate ac-

counting for the fact that knowledge becomes obsolete as time goes by. The depreciation

5 If a single first priority patent is filed by multiple firms, we count it fractionally. That is, if a patent
is filed by more than one firm, the patent count is divided by the number of firms and each firm
receives equal shares of the patent. This avoids giving a higher weight to a patent filed by multiple
firms compared to one filed by just one firm.

6 As it is standard in the literature, we count USPTO patents only if they were granted. The reason
is that until 2001 only granted patent applications are published by the USPTO.

7 Multiple patents filed for the same invention are part of a patent family. To identify patents belonging
to the same patent family, we use the DOCDB data set in PATSTAT.
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rate is set to 10%, as is often assumed in the literature (see, for example, Verdolini and

Galeotti (2011)). The initial knowledge stock Kit0 is given by Kit0 = PATit0/(g + �),

where PATijt0 is the number of CCT patent applications in 1978, the first year observed.

The growth rate g is the pre-1978 growth in knowledge stock, assumed to be 15%, and

� again represents depreciation of 10%.8

As a control for a firm’s overall propensity to patent innovations, we use data from

PATSTAT on the firm-specific total count of annual patent filings (all patents, not only

CCT) across the 93 o�ces. Again we only count claimed priorities, that is high-value

inventions filed in at least two o�ces.

In order to estimate the impact of coal prices on innovation in CCT, we proxy the

coal price using a country-year specific real total energy end-use price for households

and industry. The price is an index with the base year 2005 and includes taxes. The

data is drawn from the Energy Prices and Taxes database of the IEA (IEA, 2014b) and

is available for 30 countries.9 Using coal prices instead would be preferable. However,

as noted by the IEA (2014a), coal prices for electricity generation are not necessarily

comparable between countries because of a great variety of coal qualities in domestic

and international trade. For example, in Germany 40% of total coal input for electricity

generation is lignite. This is usually produced by mines that are located right next to

the power station and owned by the utilities. Hence, for most of the lignite a market

price is not available and the coal price for electricity generation published by the IEA

is only based on prices for domestic and/or imported steam coal (IEA, 2014a). For this

reason, we opted for using a more general price index that is less a↵ected by this kind of

information gap. In addition, as shown in Section 3.2, the development of the average

firm-level real total energy end-use price and the average real steam coal end-use price

over time is very similar.

Since the energy price index is available only at the country-year level, we make

the energy price firm-year specific by constructing firm-specific weights based on the

distribution of a firm’s patent-portfolio across countries (Barbieri, 2015; Noailly and

Smeets, 2015; Aghion et al., 2016). The underlying theory is that firms’ innovation

decisions are more likely to be a↵ected by price changes in countries with high importance

for their innovative activity than in countries with low importance. For example, consider

8 Note that our empirical analysis is conducted for the time span 1983 to 2009. Thus, the influence of
any inaccuracies that may be inherent in the way in which the initial knowledge stock is calculated
is rather small.

9 For the EPO we construct an energy price using the mean of GDP-weighted energy prices from EPO
member states.
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a firm that produces its innovations mainly for the German market. The innovative

activity of such a firm is in all likelihood more influenced by the German energy price

than by energy prices from other countries. Hence, we assume that firms’ are di↵erently

exposed to energy prices from di↵erent countries and that this exposure depends on the

geographical distribution of its patent-portfolio across countries. The energy price faced

by firm i at time t is therefore computed as the weighted average of energy prices across

countries:

Pit =
X

c

wPP
ic ⇥ Pct (2)

where wPP
ic is a fixed firm-specific patent-portfolio weight for country c and Pct is the

energy price in country c at time t.10 The weight proxies the relative importance of

country c’s market for firm i’s innovation activity. The weight is calculated as wPP
ic =

sPP
ic ⇥GDPcP
c s

PP
ic ⇥GDPc

, where sPP
ic is the share of country c in firm i’s overall (that is including all

patents, not only CCT) patent-portfolio11 over the period 1978 to 2009. Furthermore, in

order to account for country c’s economic size, sPP
ic is weighted by the share of country

c’s GDP in world GDP over the same time period, GDPc. Data on the countries’ GDP

is taken from the World Bank’s World Development Indicators (The World Bank, 2015).

The firm-specific weights are time-invariant since sPP
ic and GDPc are computed using

the patent-portfolio of each firm averaged over the whole sample period as in Barbieri

(2015) and Noailly and Smeets (2015). This approach avoids endogeneity issues that

could arise using time-varying weights. If changes in energy prices a↵ect the relative

importance of countries in the firms’ overall patent-portfolios or the countries’ shares in

world GDP, there might be a feed back of the altered weights into energy prices.

Another approach to avoid this potential endogeneity is to compute the weights using

the patent-portfolio of each firm averaged over a pre-sample period and run the regres-

sions over the residual period as in Aghion et al. (2016). However, this approach has two

disadvantages. First, weights computed over a pre-sample period do not reflect changes

in the patent-portfolio distribution across countries that take place after the pre-sample

period. The shorter the pre-sample period, the larger this problem is. Second, a longer

pre-sample period could alleviate this problem but has the drawback of a shorter estima-

tion period which would cover neither the development in CCT patenting in the 1980s

10 If there is no energy price available for a country or year, the other energy prices get proportionally
higher weights that add up to 1. This approach is also used for the computation of the other
firm-specific variables.

11 We checked the robustness of our estimation results by using the CCT patent-portfolio instead of
the overall patent-portfolio. Calculating the weights from this narrower patent pool leaves our main
results unchanged.
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(see Figure 1) nor the introduction of NOX regulations (see Figure 3) in this period.

Therefore, we decided to use in-sample weights.

Following Noailly and Smeets (2015), we measure the e↵ect of the market size on

CCT innovation by using country-year specific data on electricity production. The data

is obtained from the IEA Energy Balances database (IEA, 2015a) and is measured in

TWh per year. Data is available for 50 countries.12 To make market size firm-year

specific, we use the same approach as with prices. That is, we assume that firms’

innovation decisions are more likely to be influenced by the market size of countries with

high importance for the firms’ innovative activity than of countries with low importance.

Hence, market size for firm i at time t is computed as the weighted average market size

across countries:

Mit =
X

c

wPP
ic ⇥Mct (3)

where wPP
ic is a fixed firm-specific patent-portfolio weight for country c as in (2) and Mct

is the market size measured by electricity production in country c at time t.

To examine the influence of emission restricting environmental policies and regula-

tions on CCT innovation, we use country-year specific dummy variables indicating the

years after the introduction of stringent NOX regulation13 for coal-fired power plants

and the implementation of CO2 regulation (predominantly cap-and-trade programs), re-

spectively.14 Data is taken from Popp (2006) (NOX) and World Bank Group, Ecofys

(2014) (CO2). During our considered time period, 18 of the 60 countries in the data set

introduced stringent NOX regulation and 28 implemented CO2 regulation. To make the

dummy variables firm-year specific, we use the same approach as with prices and elec-

tricity production. Thus, we assume that firms’ exposure to country-specific NOX and

CO2 regulations depends on the geographical distribution of its patent-portfolio across

countries. The respective dummy variable for firm i at time t is therefore computed

12 For the EPO we construct data on electricity production by adding up production from EPO member
states.

13 In order to capture the impact of air pollution regulation on CCT innovation, one would ideally
control for both NOX and SO2 regulation. However, comparable data for stringent SO2 regulation
is not available. Since historically there were strong linkages between the introduction of NOX and
SO2 regulation, we decided to use stringent NOX regulation as a proxy for both.

14 For the EPO we construct these variables using the mean of the respective GDP-weighted dummy
variables from EPO member states.
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as the weighted average dummy variable across countries based on the importance of

country c’s market for firm i’s innovation activity:

Dit =
X

c

wPP
ic ⇥Dct (4)

where wPP
ic is a fixed firm-specific patent-portfolio weight for country c as in (2) and

(3)15 and Dct is the dummy variable in country c at time t.

Finally, to analyze the influence of government R&D on CCT innovation, we use coal

country-year specific government R&D expenditures. Since no data is available for CCT-

specific R&D expenditures, we use coal combustion plus CCS R&D expenditures as a

proxy. The data is drawn from the IEA Energy Technology R&D database (IEA, 2015b)

and contains the annual national government expenditures on coal combustion plus CCS

research, development, and demonstration in million USD (2014 prices and PPP). Data is

available for 28 countries.16 The expenditures are made firm-year specific using a similar

approach to that for prices, electricity production, and regulatory variables. However,

now we incorporate information on the geographical location of patent inventors, that is,

where the inventors worked at the discovery of the invention, to construct firm-specific

weights (Aghion et al., 2016). The underlying theory is that patent inventors are more

likely to benefit from government R&D subsidies in a country they work in than from

R&D subsidies in other countries. Hence, we assume that firms’ are di↵erently exposed

to government R&D subsidies from di↵erent countries and that this exposure depends

on the geographical distribution of its various patent inventors across countries. Thus,

government R&D expenditures faced by firm i at time t are:

RDit =
X

c

wI
ic ⇥RDct (5)

where wI
ic is a fixed firm-specific inventor weight for country c and RDct is the R&D

expenditure in country c at time t. The weight proxies the relative importance of country

c in firm i’s pool of inventors. The weight is calculated as wI
ic =

sIic⇥GDPcP
c s

I
ic⇥GDPc

, where sIic

15 Using the same patent-portfolio weights to compute the firm-year specific energy price, electricity
production, and regulatory variables could of course create multicollinearity problems among these
explanatories. However, since we have a large number of observations and since the correlation
among these variables is fairly low (see Table A5 (Appendix)), this should not be a problem.

16 For the EPO we construct coal R&D expenditures by adding up expenditures from EPO member
states.
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is the share of all firm i’s inventors in country c over the period 1978 to 2009.17 In order

to account for country c’s economic size, sIic is weighted by the share of country c’s GDP

in world GDP over the same time period, GDPc.18

After matching the patent data with energy prices, electricity production, regulatory

variables, and government R&D, our final panel data set contains 7,894 high-value CCT

first priority patents filed by 3,648 firms across 55 patent o�ces over the period 1978 to

2009. In total (all patents, not only CCT), these firms have filed 832,621 first priority

patents over the same period. Table 3 reports summary statistics for the sample.

Table 3: Summary statistics for all 3,648 firms from 1978 to 2009.

Mean Std. dev. Min. Max.

CCT patents 0.07 0.57 0.00 36

CCT knowledge stock 0.51 3.34 0.00 139

Total patents 7.36 89.24 0.00 8163

CCT-related government R&D 151.88 418.36 0.00 3511

Energy price 91.12 12.74 51.35 149

Electricity production 2559.84 668.67 16.40 4343

NOX dummy 0.53 0.31 0.00 1

CO2 dummy 0.07 0.18 0.00 1

Observations 113035

Note: Energy prices are an index with the base 2005 including taxes. Electricity production is in
TWh/year. CCT-related government R&D is in 2014 million USD (PPP).
Source: Authors’ calculations, based on PATSTAT, IEA Energy Technology R&D, IEA Energy Prices
and Taxes, IEA Energy Balances, Popp (2006) and World Bank Group, Ecofys (2014).

3.2 Descriptive Statistics

Figure 1 shows the trends in annual priority patent counts of the considered CCT.

Consistent with Voigt et al. (2008), we observe that the di↵erent CCT peak at di↵erent

points in time. PCC peaks in the early-1980s and FBC in the early- and almost again

in the late-1980s. IGCC shows a positive trend since the beginning of the early-1990s

and peaks at the end of the sample period. The developments allow to identify three

generations of the EI technologies. From the AP technologies EOP peaks in the mid-

1980s and almost again in the mid-1990s and late-2000s but never drops under a level of

17 If a patent is filed by multiple inventors, we count inventor countries fractionally. This avoids giving
a higher weight to a patent filed by multiple inventors compared to one filed by just one inventor.

18 Note that the inventor weight w

I
ic in equation (5), which is based on the distribution of a firm’s

various inventors across countries, is very distinct from the patent-portfolio weight wPP
ic in equation

(2), (3), and (4), which is based on the distribution of a firm’s patent-portfolio across countries.
Figure A1 (Appendix) shows for the USA, that these distributions vary considerably across firms.
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Figure 1: Total number of PCC, FBC, IGCC, EOP, and CCS priority patent applications
(claimed priorities) filed worldwide of all firms, 1978-2009. Source: Authors’ calcu-
lations, based on PATSTAT.

about 50 patents per year. CCS stays nearly constant until the late-1990s and increases

significantly afterwards.

Table 4 shows the top ten inventor firms in CCT, which together account for one

quarter of worldwide CCT inventions during the sample period. The firms are listed in

declining order of their rank. In addition, the total number of patents is reported so that

the relative share of CCT patents in total inventions can be computed. Looking at the

results, a great heterogeneity between the firms can be observed. The firms di↵er greatly

with respect to their overall innovative activity ranging from 375 (Foster Wheeler) to

43,229 (Siemens) patents. The relative share of CCT inventions ranges from at most

52.93% to 0.54%, again attributable to Foster Wheeler and Siemens respectively. This

reflects the fact that the top ten is composed of firms focusing on CCT innovation on

the one hand and others having an overall high propensity to patent innovations on the

other hand. Both factors are expected to influence patent filings in CCT. The market

leader in CCT is Mitsubishi with 377 patents, followed by Alstom and Babcock &Wilcox

with more than 250 patents in this field. Regarding total patents, Hitachi, Mitsubishi,
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Table 4: Top ten inventor firms in CCT.

Firm Rank CCT
patents

Other
patents

Total
patents

Relative
share of
CCT in

total
inventions

Relative
share in

world CCT
inventions

Mitsubishi 1 377 26,680 27,057 1.39 4.78

Alstom 2 252 1,689 1,941 12.99 3.19

Babcock & Wilcox 3 252 926 1,178 21.36 3.19

Siemens 4 233 42,996 43,229 0.54 2.95

Asea Brown Boveri (ABB) 5 218 4,056 4,274 5.09 2.76

Foster Wheeler 6 199 177 375 52.93 2.52

General Electric (GE) 7 132 17,481 17,613 0.75 1.67

Hitachi 8 125 33,731 33,856 0.37 1.58

Royal Dutch Shell 9 95 5,619 5,713 1.66 1.20

Combustion Engineering 10 91 482 573 15.88 1.15

Total — 1,974 133,837 135,809 1.45 24.99

Note: The table reports the top ten CCT patent holders based on total number of CCT prior-
ity patent applications (claimed priorities) filed worldwide by all firms from 1978 to 2009. It also
reports the total number of total priority patent applications (including CCT and other patents;
claimed priorities) filed worldwide by these firms from 1978 to 2009.
Source: Authors’ calculations, based on PATSTAT.

and General Electric have the highest innovative activity after Siemens, all exhibiting

five-figure patent numbers. The other listed firms patent significantly less.

As described in the section on data sources, we know for every CCT first priority

patent in our data set whether the invention subsequently has also been protected in

any of the other considered 93 patent o�ces. Accordingly, Table 5 summarizes the

geographical coverage of CCT patent protection across the main countries from 1978 to

2009. More than 80% of CCT inventions are filed, amongst other countries, in the USA.

EPO is the second most important patent o�ce covering nearly 70% of CCT patents of

the sample. Other countries holding high shares include Japan (57%), Germany (44%),

and Canada (42%). While about one third of the patents is filed in China and Australia,

all other countries are characterized by lower coverage of patenting activity.

Turning to the demand-side e↵ects, Figure 2 displays the average firm-level develop-

ment of the weighted average real steam coal end-use price as well as the real total energy

end-use price for all firms in the sample from 1978 to 2009. The coal price increases

sharply until the early-1980s before entering a long period of decline which was mainly

caused by technological progress and excess capacities (Ellermann, 1995). During the
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Table 5: Geographical coverage of CCT patent protection across top twenty countries respec-
tively patent o�ces for all firms from 1978 to 2009.

Country Share Country Share

USA 81% Denmark 10%

EPO 69% United Kingdom 9%

Japan 57% Russia 9%

Germany 44% Brazil 9%

Canada 42% South Africa 8%

China 35% Mexico 8%

Australia 31% France 8%

South Korea 16% Norway 7%

Spain 15% Finland 6%

Austria 13% Poland 6%

Note: The patents in our data set are claimed priorities, that is patents filed in at least two
o�ces. The table reports the share of these patents that are filed in the top 20 countries respectively
patent o�ces.
Source: Authors’ calculations, based on PATSTAT.
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Figure 2: Average firm-level development of the weighted average real total energy end-use
price (index with base year 2005) and real steam coal end-use price for all firms
(USD per tonne, 1996 prices and PPP), 1978-2009. Source: Authors’ calculations,
based on PATSTAT, and IEA Energy Prices and Taxes.
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2000s, the coal price again increases substantially starting from 30 USD per tonne in

1999 and peaking at nearly 80 USD per tonne in 2009. The reason for the increasing price

trend can be found in the low level of investments in the period with depressed prices

and a subsequent rapid increase in coal demand, especially from newly industrializing

countries (Wårell, 2006). The data thus provides a great amount of variation which will

be useful in determining the e↵ect of changes in the coal price on innovation. However,

as discussed before, the coal price would be preferable but because of the mentioned

information gaps the total energy price will be used in the empirical analysis instead.

Since both variables follow a very similar trend, we consider the total energy price to be

a good proxy for the coal price.
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Figure 3: Average firm-level development of the weighted average NOX and CO2 dummy vari-
ables for all firms, 1978-2009. Source: Authors’ calculations, based on PATSTAT,
Popp (2006) and World Bank Group, Ecofys (2014).

Figure 3 depicts further demand-side determinants, namely the average firm-level de-

velopment of the weighted average NOX and CO2 dummy variables for all firms in the

sample from 1978 to 2009. The firm-specific dummies depend on the introduction of

NOX and CO2 regulations in all countries with importance for the firms’ overall innova-

tions. Therefore, the developments in countries with a larger coverage of patents have a

16



larger e↵ect on the average firm-level dummies. Chronologically, NOX regulation kicks

in first in 1983 (Germany and Switzerland). Other countries follow among which Japan

(1996) and the USA (1998) can be found. As the three individually most important

countries have implemented NOX regulations, the dummy variable jumps to the value

0.8 in 1998. Regulation on CO2 was almost exclusively implemented in the European

Union with the introduction of the cap-and-trade system in 2005. This is reflected in a

dummy variable of about 0.4 from 2005 onwards.

4 Empirical Strategy and Results

In this section we specify the empirical model and discuss the estimation method. Then

we present the estimation results of our baseline specifications and conduct a number of

robustness tests.

4.1 Empirical Model

Given the hypotheses stated in Section 2 and the variables described in Section 3.1, our

empirical model can be specified as follows:

PATijt = exp(�0 + �1 ln Pit�1 + �2 lnKijt�1 + �3 lnRDit�1 + �4 ln TPATit�1

+ �5 lnMit�1 + �6 CO2it + �7 NOxit + ⌧t + ⌘i) + uijt

(6)

where i, j, and t index the firm, technology, and time, respectively. PAT is the annual

firm-level patent count for technology j and TPAT is the annual firm-level patent count

for all patents. K represents the end-of-period knowledge stock as defined in Equation 1.

P , RD, and M denote the weighted firm-year energy price, the weighted firm-year

government R&D expenditures, and the weighted firm-year market size as defined in

Equations 2-4. CO2 and NOx are dummy variables indicating the implementation

of CO2 regulations (mainly cap-and-trade programs) and (stringent) NOX regulations,

respectively. Like the the energy price and the market size the dummy variables are

weighted by the share of firm i’s patent filings in country c and country c’s economic

importance (that is, share in world GDP). ⌧ and ⌘ capture unobserved firm- and time-

specific heterogeneity and uijt is a standard error term. The variables P , K, RD, TPAT ,

and M are lagged by one year in order to mitigate any reverse causality problems.

Given the count data nature of our dependent variable we use count data techniques

to estimate Equation 6. A standard approach for panel data is the Poisson fixed e↵ect
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count data estimator developed by Hausman et al. (1984). However, this estimator

requires strict exogeneity of all regressors to be consistent. In our model, the regulatory

variables (CO2 and NOx) and the market size variable M are unlikely to be strictly

exogenous. In addition, as the knowledge stock variable K is a function of the lagged

dependent variable, it is predetermined.

To account for this problem, Blundell et al. (1995, 2002) proposed an alternative

estimator: the pre-sample mean scaling estimator. This estimator relaxes the strict

exogeneity assumption by modeling firm heterogeneity via pre-sample information on the

firm’s patenting activities. Following this approach, the firm-specific e↵ects in Equation 6

are defined as:

⌘i = ✓1 ln ¯PAT ij + ✓2 D( ¯PAT ij > 0) (7)

where ¯PAT ij = (1/N)
PN

n=1 PATijn is the pre-sample mean of patent applications by

firm i, technology j, and year n. N is the number of pre-sample observations and D is

a dummy variable equal to one if the firm ever patented in the pre-sample period.

Another econometric issue that needs to be addressed is possible overdispersion in

the data. A standard Poisson regression model assumes equidispersion, that is, the

mean and the variance of the counts are equal. However, in many real data applications

the variance is greater than the mean, which is named overdispersion. In this case the

standard Poisson regression model yields ine�cient estimates with downwardly biased

standard errors.

A model that relaxes the equidispersion assumption of the standard Poisson regression

model is the negative binomial regression model. The model includes a so called disper-

sion parameter ↵, that allows the variance and the mean of the counts to di↵er from

each other. If ↵ is equal to zero, the negative binomial model reduces to the Poisson

model (see, for example, Long and Freese (2014)).

4.2 Empirical Results

The estimation results of our empirical model are presented in Table 6. We estimate

the model defined in Equation 6 separately for EI-CCT and AP-CCT as well as for

all CCT together. Pre-estimation analyses of the data reveal that for CCT and EI-

CCT the variance of the patents counts is about five times higher than the mean. For

AP-CCT it is about 2.5 times higher. For this reason, we start our empirical analysis

with a comparison of the PSM Poisson and negative binomial regression results. Several
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standard tests for model selection, the Akaike Information Critieria (AIC), the Baysian

Information Criteria (BIC), and the likelihood-ratio (LR) test of including the overdis-

persion parameter ↵ in the model are reported in Table 6. For all technology groups

the null hypothesis of ↵ equal to zero is strongly rejected. Furthermore, the AIC and

BIC statistics are always lower for the negative binomial than for the Poisson regression

model. These results consistently indicate that the negative binomial regression model

is preferred over the Poisson regression model.

Column (3) in Table 6 reports the negative binomial estimation results for all CCT

together. As the explanatory variables enter the estimations in log form, the estimated

coe�cients can be interpreted as elasticities. Interestingly, the energy price has a neg-

ative and statistically significant impact on CCT patent activities. While this seems

counterintuitive at first glance, the estimated price coe�cients for the EI-CCT and AP-

CCT models in Column (5) and (7) reveal that this result is driven by the price reaction

of patent activities in AP technologies. The energy price has no significant impact in

the EI-CCT model but a relatively high negative and strongly significant impact in

the AP-CCT model. The estimated elasticity of -2.155 suggests that a 1% increase in

energy prices results in an approximately 2% decrease in AP patent activities. This

result is in line with our hypothesis that higher energy prices lead to less innovation in

AP technologies, since these make electricity production from coal even more expensive.

Nevertheless, the insignificance of the energy price in the EI-CCT model is unexpected.

In general, we would expect a positive impact of higher energy prices on patent activi-

ties, since innovation in EI-CCT aims at producing electricity from coal more e�ciently,

that is with less energy (coal) input.

For the knowledge stock and total patents we observe a common result for both tech-

nology groups. The corresponding coe�cients are positive and statistically significant

at the 1% level in all models. In the preferred negative binomial regression models the

estimated elasticities for the knowledge stock between 0.954 and 0.996 suggest that a 1%

increase in knowledge stock is associated with an approximately 1% increase in patent

activities. The corresponding elasticities for total patents vary between 0.341 in the

AP-CCT model and 0.390 in the CCT model. These findings are consistent with pre-

vious research (see, for example, Popp, 2002; Verdolini and Galeotti, 2011) and confirm

our hypotheses that innovation in CCT is positively a↵ected by both the scientific and

technology capacity and the overall propensity to patent of the firms.

A di↵erent picture emerges for public R&D expenditures. A negative and statistically

significant impact is shown in the CCT, EI-CCT, and AP-CCT model. Although we did
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Table 6: Baseline results for CCT, EI-CCT, and AP-CCT.

CCT EI-CCT AP-CCT

Poisson NegBin Poisson NegBin Poisson NegBin

Energy pricet�1

(log)
�1.094 �1.839⇤⇤⇤ �0.513 �1.250 �1.514 �2.155⇤⇤

(1.145) (0.684) (1.759) (1.095) (1.056) (0.845)

Knowledge stockt�1

(log)
0.844⇤⇤⇤ 0.954⇤⇤⇤ 0.883⇤⇤⇤ 0.996⇤⇤⇤ 0.892⇤⇤⇤ 0.964⇤⇤⇤

(0.049) (0.038) (0.066) (0.053) (0.051) (0.049)

Public R&Dt�1

(log)
�0.039⇤⇤⇤ �0.066⇤⇤⇤ �0.059⇤⇤⇤ �0.088⇤⇤⇤ �0.033⇤⇤ �0.048⇤⇤⇤

(0.013) (0.009) (0.016) (0.013) (0.015) (0.012)

Total patentst�1

(log)
0.319⇤⇤⇤ 0.390⇤⇤⇤ 0.325⇤⇤⇤ 0.371⇤⇤⇤ 0.310⇤⇤⇤ 0.341⇤⇤⇤

(0.024) (0.018) (0.025) (0.022) (0.018) (0.017)

Electricity prod.t�1

(log)
�0.020 �0.059 0.017 �0.011 �0.062 �0.091⇤

(0.049) (0.037) (0.083) (0.067) (0.054) (0.048)

CO2 regulation
0.808⇤⇤ 0.519⇤⇤⇤ 1.138⇤⇤⇤ 0.777⇤⇤⇤ 0.761⇤⇤⇤ 0.502⇤⇤

(0.335) (0.171) (0.416) (0.254) (0.281) (0.208)

NOX regulation
0.457⇤⇤⇤ 0.518⇤⇤⇤ 0.239 0.311 0.621⇤⇤⇤ 0.631⇤⇤⇤

(0.158) (0.135) (0.217) (0.201) (0.203) (0.182)

Pre-sample mean
�0.256 �0.924⇤⇤ 0.235 �0.657 �0.963⇤⇤⇤ �1.171⇤⇤⇤

(0.408) (0.363) (0.461) (0.487) (0.331) (0.334)

Pre-sample dummy 0.219⇤ 0.150 �0.092 0.069 0.163 0.057
(0.128) (0.101) (0.209) (0.138) (0.112) (0.097)

Constant
2.083 6.370⇤ �1.102 3.147 4.483 8.029⇤⇤

(5.637) (3.266) (8.735) (5.392) (5.173) (3.970)

Log-likelihood -16735 -15924 -8415 -7888 -9577 -9384

Overdispersion
parameter ↵

0.943 1.115 0.772

LR-test of ↵ = 0
1622⇤⇤⇤ 1055⇤⇤⇤ 387⇤⇤⇤

(0.000) (0.000) (0.000)

AIC 33540 31920 16900 15847 19224 18839

BIC 33870 32259 17206 16162 19535 19159

Observations 91219 91219 46043 46043 53375 53375

Firms 3638 3638 1820 1820 2138 2138

Notes: Estimation time span: 1983-2009. All models control for unit-specific fixed e↵ects by
using PSM information on the first 5 years available (1978-1982). All models include a full set of time
dummies (not reported). Robust standard errors clustered at the firm-level are in parentheses. ***, **
and *: Significant at the 1%-, 5%-, and 10%-level. For likelihood-ratio test of ↵ = 0, Prob � �

2 in
parentheses. AIC: Akaike Information Criterion, BIC: Bayesian Information Criterion.
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not expect such a result, it may indicate that public R&D expenditures have a crowding-

out e↵ect on private R&D expenditures (Popp, 2002). Nevertheless, the magnitude of the

coe�cients is rather small suggesting that from an economic point of view public R&D

expenditures do not really a↵ect firm-level patent activities in CCT. A similar result

is observed for the potential market size. In contrast to our hypothesis, the negative

coe�cients for electricity production indicate a negative impact of the potential market

size on innovation activities in CCT. However, the coe�cients are small in magnitude

and only statistically significant at the 10% level in the AP-CCT model.

Referring to our regulatory variables, implementation of CO2 regulation and imple-

mentation of NOX regulation, the estimated coe�cients for the di↵erent technologies

provide some interesting results. The estimated coe�cients for CO2 regulation are posi-

tive and statistically significant in all models, as expected. For NOX regulation a positive

impact is shown in the CCT and AP-CCT model only. This outcome can be explained

by the specific focus of AP technologies on SO2 and NOX abatement processes.

In our baseline models firm-specific fixed e↵ects are captured by two pre-sample vari-

ables: the firm’s average patent count in CCT in the pre-sample period and a dummy

variable equal to one if the firm ever patented in CCT in the pre-sample period. We find

statistically significant coe�cients for the pre-sample mean in the CCT and the AP-CCT

model indicating that the applied pre-sample mean estimator is able to capture at least

some of the unobserved firm heterogeneity in our sample.

As a robustness check of this approach, we re-estimate the preferred negative binomial

regression models with a di↵erent specification of the pre-sample variables. Instead of

using pre-sample information on CCT patent activities, we now use pre-sample infor-

mation on patent activities in general. The results are presented in Columns (2)-(4)

in Table 7. As shown, the magnitude as well as the sign of the statistically significant

coe�cients are robust to this alternative specification. Only for electricity consumption

a change in significance is observed. The coe�cient is not statistically significant any

more in the AP-CCT model. Furthermore, the pre-sample variables are statistically

significant in all models. This suggests that the pre-sample information on patent ac-

tivities in general is an even better indicator for unobserved firm heterogeneity than the

pre-sample information on patent activities in CCT only.

The second robustness test we conduct is the exclusion of the top ten innovative firms

in CCT. These firms are responsible for approximately 25% of all CCT patents in the

sample and thus may bias some of our baseline results. As seen in Columns (5)-(7) in

Table 7, our main results carry over. In addition, the weak statistical significance of
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Table 7: Robustness results for di↵erent pre-sample specification and exclusion of top innova-
tive firms.

Pre-sample information: total patents Without top ten CCT firms

CTT EI-CCT AP-CCT CTT EI-CCT AP-CCT

Energy pricet�1

(log)
�1.706⇤⇤ �1.011 �2.107⇤⇤ �1.785⇤⇤⇤ �1.455 �1.976⇤⇤

(0.690) (1.099) (0.864) (0.671) (1.018) (0.826)

Knowledge stockt�1

(log)
0.925⇤⇤⇤ 0.966⇤⇤⇤ 0.915⇤⇤⇤ 0.953⇤⇤⇤ 0.997⇤⇤⇤ 0.956⇤⇤⇤

(0.034) (0.043) (0.044) (0.039) (0.050) (0.052)

Public R&Dt�1

(log)
�0.066⇤⇤⇤ �0.087⇤⇤⇤ �0.049⇤⇤⇤ �0.072⇤⇤⇤ �0.097⇤⇤⇤ �0.052⇤⇤⇤

(0.009) (0.013) (0.012) (0.009) (0.013) (0.012)

Total patentst�1

(log)
0.417⇤⇤⇤ 0.402⇤⇤⇤ 0.359⇤⇤⇤ 0.401⇤⇤⇤ 0.369⇤⇤⇤ 0.337⇤⇤⇤

(0.020) (0.027) (0.022) (0.017) (0.022) (0.017)

Electricity prod.t�1

(log)
�0.046 0.012 �0.080 �0.065⇤ �0.035 �0.092⇤⇤

(0.039) (0.070) (0.050) (0.037) (0.066) (0.047)

CO2 regulation
0.528⇤⇤⇤ 0.792⇤⇤⇤ 0.505⇤⇤ 0.521⇤⇤⇤ 0.723⇤⇤⇤ 0.500⇤⇤

(0.176) (0.261) (0.212) (0.165) (0.233) (0.200)

NOX regulation
0.422⇤⇤⇤ 0.254 0.519⇤⇤⇤ 0.555⇤⇤⇤ 0.391⇤ 0.660⇤⇤⇤

(0.136) (0.202) (0.183) (0.137) (0.207) (0.185)

Pre-sample mean
�0.593⇤⇤⇤ �0.518⇤⇤⇤ �0.487⇤⇤⇤ �1.246⇤⇤⇤ �1.419⇤⇤ �0.965⇤

(0.110) (0.146) (0.117) (0.342) (0.562) (0.526)

Pre-sample dummy 0.464⇤⇤⇤ 0.397⇤⇤⇤ 0.422⇤⇤⇤ 0.130 0.171 �0.049
(0.075) (0.111) (0.080) (0.087) (0.123) (0.098)

Constant
5.642⇤ 1.787 7.746⇤ 6.170⇤ 4.353 7.229⇤

(3.302) (5.418) (4.068) (3.211) (5.006) (3.869)

Log-likelihood -15894 -7873 -9371 -15094 -7128 -8875

Observations 91219 46043 53375 90959 45783 53115

Firms 3638 1820 2138 3628 1810 2128

Notes: Estimation time span: 1983-2009. All models control for unit-specific fixed e↵ects by
using PSM information on the first 5 years available (1978-1982). All models include a full set of time
dummies (not reported). Robust standard errors clustered at the firm-level are in parentheses. ***, **
and *: Significant at the 1%-, 5%-, and 10%-level.
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electricity production in the AP-CCT model is back and NOX regulation is shown to be

statistically significant in all models.

Table 8: Robustness results for di↵erent lagged and forward values of the energy price, public
R&D expenditures, and electricity production.

CTT EI-CCT AP-CCT

Energy pricet�1 (log)
�1.839⇤⇤⇤ �1.250 �2.155⇤⇤⇤

(0.684) (1.095) (0.845)

Energy pricet�2 (log)
�1.955⇤⇤⇤ �1.641 �2.140⇤⇤⇤

(0.653) (1.012) (0.825)

Energy pricet�3 (log)
�2.392⇤⇤⇤ �2.510⇤⇤ �2.263⇤⇤⇤

(0.660) (0.998) (0.844)

Energy pricet+1 (log)
�1.314⇤ �0.511 �1.704⇤

(0.743) (1.198) (0.894)

Public R&Dt�1 (log)
�0.066⇤⇤⇤ �0.088⇤⇤⇤ �0.048⇤⇤⇤

(0.009) (0.013) (0.012)

Public R&Dt�2 (log)
�0.056⇤⇤⇤ �0.077⇤⇤⇤ �0.038⇤⇤⇤

(0.010) (0.014) (0.013)

Public R&Dt�3 (log)
�0.048⇤⇤⇤ �0.066⇤⇤⇤ �0.033⇤⇤

(0.010) (0.015) (0.014)

Electricity prod.t�1 (log)
�0.059 �0.011 �0.091⇤

(0.037) (0.067) (0.048)

Electricity prod.t�2 (log)
�0.052 �0.007 �0.092⇤

(0.037) (0.064) (0.048)

Electricity prod.t�3 (log)
�0.048 �0.012 �0.088⇤

(0.039) (0.065) (0.049)

Electricity prod.t+1 (log)
�0.083⇤⇤ �0.046 �0.109⇤⇤

(0.040) (0.069) (0.052)

Notes: Estimations are based on the same specification as in Table 6. To conserve space only
the coe�cients for the di↵erent lagged and forward values of the energy price, public R&D expendi-
tures, and electricity production are presented. The complete tables are available from the authors
upon request. Robust standard errors clustered at the firm-level are in parentheses. ***, ** and *:
Significant at the 1%-, 5%-, and 10%-level.

Given the somehow unexpected results for the energy price, public R&D, and market

size in some of our baseline models, we complete our robustness analysis with alternative

specifications on the lag structure of these variables. More specifically, we re-estimate

our baseline negative binomial specification with a two-year and three-year lagged energy
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price, public R&D, and market size (electricity production) variable. Furthermore, as

firms rather consider the future than the past for their innovation decisions, we also

estimate model specifications with forward values, that is, values in t+1, for the energy

price and the market size. Of course, the utilization of forward values as a proxy for the

firm’s expectations assumes that the expected value in the future is equal to the realized

value in the future.

The estimated coe�cients for the di↵erent lag and forward structures of the energy

price, public R&D, and electricity production variable are depicted in Table 8. As shown,

our baseline results are left intact. The estimated coe�cients for all lagged and forward

values of the energy price indicate a negative impact of higher energy prices on patent

activities in the AP-CCT model. Except for the third lag, the coe�cients for EI-CCT

are not statistically significant. In the case of public R&D expenditures the magnitude

of the coe�cients gets smaller with increasing lags. Finally, the coe�cients for all lagged

and forward values of electricity production indicate a statistically significant negative

impact of market size on patent activities in the AP-CCT model at the 10% level.

5 Conclusions

In this article, we empirically analyzed the determinants of innovation in clean coal

technologies. We conducted our analysis on a panel of 3,648 firms which filed 7,894

CCT patents across 55 patent o�ces over the period 1978 to 2009. We examined supply-

side and demand-side factors expected to a↵ect innovation in CCT. Our contribution

to the literature is 3-fold. First, we investigate the determinants of CCT innovation

directly at the firm-level. Second, our analysis builds on an almost entire population of

all CCT patents filed worldwide in the considered period. Third, we provide interesting

descriptive evidence on firms’ global CCT patenting behavior.

Overall, our results show that a number of supply- and demand-side factors influence

firm-level patenting activities in CCT. On the supply-side we find evidence that firms

with a higher technology capacity, that is a longer history of patent activities in CCT

and a higher overall propensity to patent, are more active in CCT innovation than

others. This finding confirms previous results for other technologies and is in line with

the technology-push hypothesis stating that innovation activities are path dependent

and built on existing knowledge. Public policies should keep this in mind and create a

research friendly economic environment that fosters the private generation of scientific

and technological knowledge and enables firms to exploit their existing knowledge base.

24



Another supply-side policy that is usually assumed to push private innovation activ-

ities is public R&D spending. However, for CCT we do not find such an impact. On

the contrary, our findings suggest that public R&D spending reduces or ‘crowds-out’

private R&D investments and thus reduces private innovation activities. Nevertheless,

this potential crowding-out e↵ect seems to be very small and, hence, is economically

negligible.

Referring to the demand-side, we find a strong relationship between emission restrict-

ing regulations and CCT innovation. Regulation of CO2 emissions has a positive impact

on CCT patenting activities in general and NOX regulation has a positive impact on

AP-CCT innovation. Given the ongoing high dependence of worldwide electricity pro-

duction on coal-fired power plants, this finding emphasizes the importance of strict

environmental regulations on the way towards a cleaner electricity system.

For energy prices a diversified picture emerges. Our hypothesis was that higher energy

prices have a positive impact on input-saving EI-CCT innovation and a negative impact

on post-combustion AP-CCT innovation. However, the findings only support the lat-

ter. As AP technologies make electricity production from coal even more expensive, an

increase in energy prices leads to less innovation in these technologies.

The outcome that we do not find a positive impact of increasing energy prices on

EI-CCT innovation may be due to two e↵ects. On the on hand, we would expect that

increasing energy prices induce innovation in input-saving EI-CCT, as stated in our ini-

tial hypothesis. On the other hand, increasing energy prices may indicate a stronger

support of public authorities for other less polluting types of electricity-generation tech-

nologies, in particular electricity generation from renewables and natural gas. In this

case, increasing energy prices would have a negative impact on coal-burning patenting

activities in general. The two e↵ects are opposed to each other and, hence, may cancel

each other out.

Finally, referring to market size, our results contradict the hypothesis that a poten-

tially larger market size leads to more innovation in CCT. We either find no statistically

significant impact or a slightly significant negative impact. We do not have an expla-

nation for this result. However, as both the statistical significance and the economic

significance are very low, this unexpected result should not be taken too seriously.

Further research in this field should examine the impact of environmental regulations

on the di↵usion of CCT. In this study we analyzed one stage of technological progress,

that is, innovation. The following stage is di↵usion. It would be interesting to analyze

how environmental regulations influence the adoption of new technologies in electricity
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production processes. Another promising path for additional research is the analysis of

spillover e↵ects among the firms.
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Figure A1: Patent-portfolio weights versus inventor weights for the USA. Source: Authors’
calculations, based on PATSTAT. Note: The figure shows combinations of patent-
portfolio weights (y-axis) and inventor weights (x-axis) for the USA for all 3,684
firms.
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Table A1: Total number of CCT, EI, AP, PCC, FBC, IGCC, EOP, and CCS patents.

Year CCT EI AP PCC FBC IGCC EOP CCS

1978 172 101 72 27 31 43 44 28

1979 152 103 49 41 26 36 32 17

1980 193 119 74 25 47 47 47 27

1981 197 120 77 38 44 38 44 33

1982 194 104 90 35 33 36 48 42

1983 207 110 97 53 29 28 68 29

1984 231 116 115 36 37 43 90 26

1985 241 109 132 30 45 34 94 39

1986 223 100 123 22 46 32 96 27

1987 213 113 100 27 48 38 69 31

1988 209 97 112 17 37 43 81 32

1989 207 109 98 17 38 54 70 29

1990 204 96 108 23 36 37 66 42

1991 218 111 107 25 31 55 72 35

1992 225 108 117 15 34 59 74 43

1993 224 126 98 23 31 72 67 31

1994 254 124 130 18 28 78 99 31

1995 255 136 120 32 21 83 86 34

1996 242 140 102 22 23 95 58 44

1997 248 142 107 19 23 100 82 25

1998 234 120 114 12 16 92 66 48

1999 220 111 109 24 19 68 60 49

2000 253 134 119 11 21 102 65 54

2001 240 143 97 31 13 99 40 58

2002 258 147 111 30 18 99 59 52

2003 221 120 101 23 18 79 54 47

2004 258 151 108 26 12 113 45 62

2005 296 141 155 23 20 97 75 80

2006 322 168 155 34 20 113 72 83

2007 406 193 213 46 16 131 87 126

2008 436 219 217 43 28 148 84 133

2009 443 205 239 36 23 146 97 141

Total 7,894 4,129 3,765 883 911 2,335 2,190 1,575

Note: The table reports the total number of CCT, EI, AP, PCC, FBC, IGCC, EOP, and CCS
priority patent applications (claimed priorities) filed worldwide per year of all firms.
Source: Authors’ calculations, based on PATSTAT.
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Table A2: Distribution of patent-portfolio weights across top four countries respectively patent
o�ces for the top ten CCT inventor firms from 1978 to 2009.

Firm and countries/patent o�ces Weight Firm and countries/patent o�ces Weight

(1) Mitsubishi (6) Foster Wheeler

Japan 0.324 USA 0.155

USA 0.273 Japan 0.133

Germany 0.106 Canada 0.126

EPO 0.065 EPO 0.099

(2) Alstom (7) General Electric (GE)

EPO 0.212 USA 0.235

USA 0.200 Japan 0.183

Germany 0.158 EPO 0.151

Japan 0.072 Germany 0.100

(3) Babcock & Wilcox (8) Hitachi

USA 0.182 Japan 0.342

Canada 0.124 USA 0.322

EPO 0.114 EPO 0.083

Japan 0.112 Germany 0.072

(4) Siemens (9) Royal Dutch Shell

Germany 0.270 USA 0.133

EPO 0.239 EPO 0.133

USA 0.175 Japan 0.093

Japan 0.095 Canada 0.093

(5) Asea Brown Boveri (ABB) (10) Combustion Engineering

EPO 0.230 USA 0.274

Germany 0.205 Japan 0.126

USA 0.142 Canada 0.119

Japan 0.074 EPO 0.089

Note: Patent-portfolio weights are constructed based on the distribution of firms’ patent port-
folios across countries over the period 1978 to 2009.
Source: Authors’ calculations, based on PATSTAT.
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Table A3: Distribution of patent-portfolio weights across top twenty countries respectively
patent o�ces averaged over all firms from 1978 to 2009.

Country/patent o�ce Weight Country/patent o�ce Weight

USA 0.233 France 0.015

Japan 0.189 Austria 0.014

EPO 0.130 Spain 0.012

Germany 0.110 Brazil 0.009

China 0.070 South Africa 0.005

South Korea 0.065 Norway 0.005

Canada 0.032 Mexico 0.005

Australia 0.023 Russia 0.004

Taiwan 0.017 Denmark 0.004

United Kingdom 0.017 Italy 0.004

Note: Patent-portfolio weights are constructed based on the distribution of firms’ patent port-
folios across countries over the period 1978 to 2009.
Source: Authors’ calculations, based on PATSTAT.

Table A4: Distribution of inventor weights across top twenty countries averaged over all firms
from 1978 to 2009.

Country Weight Country Weight

Germany 0.295 Belgium 0.006

USA 0.285 Sweden 0.006

South Korea 0.149 Finland 0.006

Japan 0.099 Canada 0.005

France 0.056 Italy 0.005

Switzerland 0.020 Norway 0.003

Netherlands 0.015 Denmark 0.003

United Kingdom 0.012 Singapore 0.003

Taiwan 0.009 Australia 0.002

Austria 0.009 China 0.002

Note: Inventor weights are constructed based on the distribution of firms’ inventors across
countries over the period 1978 to 2009.
Source: Authors’ calculations, based on PATSTAT.

33



T
ab

le
A
5:

C
or
re
la
ti
on

m
at
ri
x.

C
C
T

p
at
en
ts

C
C
T

kn
ow

le
d
ge

st
oc
k

T
ot
al

p
at
en
ts

C
C
T
-

re
la
te
d

go
ve
rn
-

m
en
t

R
&
D

E
n
er
gy

p
ri
ce

E
le
ct
ri
ci
ty

p
ro
d
u
ct
io
n

N
O

X

d
u
m
m
y

C
O

2

d
u
m
m
y

C
C
T

p
at
en
ts

1

C
C
T

kn
ow

le
d
ge

st
oc
k

0.
70
1

1

T
ot
al

p
at
en
ts

0.
27
1

0.
26
5

1

C
C
T
-r
el
at
ed

go
ve
rn
m
en
t
R
&
D

0.
00
4

0.
00
5

-0
.0
02

1

E
n
er
gy

p
ri
ce

0.
01
6

0.
00
1

0.
00
8

0.
13
5

1

E
le
ct
ri
ci
ty

p
ro
d
u
ct
io
n

0.
01
0

0.
00
9

0.
03
0

0.
19
8

-0
.1
19

1

N
O

X
d
u
m
m
y

0.
02
9

0.
05
1

0.
04
9

0.
10
2

-0
.2
12

0.
61
9

1

C
O

2
d
u
m
m
y

0.
02
6

0.
02
2

0.
01
1

0.
17
5

0.
47
1

0.
32
4

0.
29
4

1

S
ou

rc
e:

A
u
th
or
s’

ca
lc
u
la
ti
on

s,
b
as
ed

on
P
A
T
S
T
A
T
,
IE

A
E
n
er
gy

T
ec
h
n
ol
og
y
R
&
D
,
IE

A
E
n
er
gy

P
ri
ce
s
an

d
T
ax

es
,
IE

A
E
n
er
gy

B
al
an

ce
s,

P
op

p
(2
00
6)

an
d
W
or
ld

B
an

k
G
ro
u
p
,
E
co
fy
s
(2
01
4)
.

34


	Introduction
	Principal Hypotheses
	Data
	Data Sources
	Descriptive Statistics

	Empirical Strategy and Results
	Empirical Model
	Empirical Results

	Conclusions

