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Economic Analysis of Price Premiums in the Presence of Non-convexities -
Evidence from German Electricity Markets

Martin Paschmanna

aInstitute of Energy Economics, University of Cologne, Vogelsanger Strasse 321a, 50827 Cologne, Germany.

Abstract

Analyzing price data from sequential German electricity markets, namely the day-ahead and intraday

auction, a puzzling but apparently systematic pattern of price premiums can be identified. The price premi-

ums are highly correlated with the underlying demand profile. As there is evidence that widespread models

for electricity forward premiums are not applicable to the market dynamics under analysis, a theoretical

model is developed within this article which reveals that non-convexities in only a subset of sequential mar-

kets with differing product granularity may cause systematic price premiums at equilibrium. These price

premiums may be bidirectional and reflect a value for additional short-term power supply system flexibility.

Keywords: sequential market organization, electricity markets, short-term market dynamics, price

premiums, arbitrage

JEL classification: C60, C62, C63, D21, D23, D24, D41, D44, D47, L11

1. Introduction and Research Question

Economic theory suggests that the limited storability of electricity may pose limits to arbitrage. Price

levels in sequential markets may hence differ significantly and sudden changes in prices may be identified.

At the same time, recent developments are characterized by the establishment of sequential short-term

electricity markets in Germany to deal with the increasing share of highly volatile intermittent renewable

electricity generation. A trend of trading shorter contracts closer to the physical delivery may be identified.

These markets face an ongoing increase in trade volumes, but the economic understanding of the respective

market dynamics has yet to be deepened.
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Andreas Knaut, Frank Obermüller, Simon Paulus and Florian Weiser for the vivid discussions. This research has been carried
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author.
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In this paper, an analysis of price premiums in the context of two sequential German short-term electricity

markets is conducted. The day-ahead auction is cleared at noon one day ahead delivery and offers hourly

products. It is regarded as providing the most relevant reference price for subsequent trade. Second, the

intraday auction is considered which is settled three hours afterwards and allows for trading quarter-hourly

contracts.

In the research area of electricity markets, the model presented in Bessembinder and Lemmon (2002)

embodies a widespread explanatory approach for price premiums between forward and real-time electricity

markets. However, there is evidence that the model is not applicable to price premiums between the day-

ahead and intraday auction. The rapid succession of both market settlements without updated information

requires the derivation of an alternative approach to decode the puzzling pattern of price premiums identified.

Therefore, a theoretical model is developed to analyze price premiums in the presence of non-convexities in

sequential markets with differing product granularity.

The model uncovers that non-convexities being more pronounced in only a subset of sequential markets

may lead to both negative or positive price premiums. The direction of price premiums depends on the

market settlement being in particular sections of the underlying merit order. Indeed, the real-world data

reveals a high correlation of load and the direction as well as the value of price premiums. It may be

stressed that the price premiums under analysis incorporate a value of additional short-term power system

flexibility rather than reflecting a value of risk. Analyzing the cost-saving potential from smoothing these

non-convexities, a proxy for the value of additional power system flexibility could be derived. On a national

level, this is approximately EUR 10.2 million in 2015. The corresponding value for flexibility which is

provided by neighboring countries is EUR 6.4 million in 2015. These are rather small numbers, but yet the

general model framework may easily be transferred to other applications such as sequential block and single

unit auctions.

It is crucial to understand the fundamental properties of the price premiums identified as they may

reflect market needs or even indicate inefficiencies. As regards the day-ahead and intraday auction, the

price premiums are, at least partially, triggered by restricted participation in the intraday auction. The

introduction of cross-border market coupling on a sub-hourly level may be beneficial to reduce the resulting

welfare losses. From a business perspective, the findings and the systematology uncovered are relevant to

evaluate business strategies building on the price differences observed.

The article is organized as follows. In Section 2 the paper is positioned in the existing literature and

a broad overview on possible limits to arbitrage is provided. In a next step, an empirical analysis of price
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premiums in the German day-ahead and intraday auction is presented in Section 3. To gain insights into

the drivers of the price premiums under consideration, a theoretical analysis is conducted within Section 4.

The respective results are then contextualized in Section 5. Finally, conclusions are drawn.

2. Literature Background

The Fundamental Theorem of Asset Pricing depicts conditions for arbitrage-free and complete markets

(Dybvig and Ross, 1987). In particular, the coincide of stochastic processes and equivalent martingales

causes markets not to exhibit unexploited arbitrage opportunities. Based on this theory, in Weber (1981)

the author states that prices in sequential auctions epitomize a martingale where, on average, prices neither

go systematically up nor down over time. The Law of One Price furthermore clarifies that in perfect

financial markets goods should have an identical price across all locations (Isard (1977) and Richardson

(1978)). However, real-world markets may require a more differentiated view.

The general impact of sequential market designs on prices has extensively been studied (see, e.g., Allaz

and Vila (1993); Knittel and Pindyck (2013); Kilian and Murphy (2014); Juvenal and Petrella (2015)). In

Mezzetti et al. (2007), the authors suggest a lowballing effect reducing the first stage market price. As regards

the application to real markets, in Ardeni (1989) it is stressed that the Law of One Price does not hold true

for sequential commodity markets, at least in the long run. Based on the example of electricity markets,

empirical evidence for this hypothesis is provided in Ito and Reguant (2016). The authors identify systematic

price premiums in forward markets. Taking up on the general idea of non-convergence of sequential markets’

prices, a concept of equilibrium models with a certain degree of disequilibrium is developed in Grossman

and Stiglitz (1980).

Economic theory suggests that prices in sequential markets may particularly differ in the case of limited

arbitrage. In Grossman and Stiglitz (1980), the authors identify transaction costs as a first plausible driver of

systematic price differences in sequential markets (see, e.g., Ardeni (1989); Jha and Wolak (2015)). Second,

market power abuse may trigger price spreads since dominant firms may not benefit from exploiting arbitrage

opportunities (Ito and Reguant, 2016). As a third factor, risk aversion may drive the Law of One Price

to fail (McAfee and Vincent, 1993). For illustration purposes, in Ashenfelter (1989) the author analyzes

wine auctions and observes significant differences in prices for identical goods. The respective explanatory

approach is based on risk aversion, quantity constraints, and asymmetric information. Such asymmetries

regarding market participants may also refer to an asymmetric valuation of goods and different preferences

(Bernhardt and Scoones (1994); Salant (2010)).
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One further category of explanatory approaches for limited arbitrage refers to institutional and regulatory

schemes. In Borenstein et al. (2008), the authors point out that uncertainty about a regulatory change may

trigger prices in sequential markets to differ and empirical evidence from Californian electricity markets

is presented. Finally, newly emerging markets may trigger learning processes leading to price differences

shortly after introducing a new trading opportunity (Doraszelski et al., 2016).

In this paper, focus is placed on price relations within sequential electricity markets. Following economic

theory, electricity exhibits unique features that cause a need for a differentiated analysis compared to other

commodities such as oil and gas. First, the limited potential to store huge amounts of electricity poses

limits to arbitrage opportunities. Furthermore, limited access to capital and strict regulation for financial

players may be relevant (Birge et al., 2014). In Bessembinder and Lemmon (2002), the authors develop

an equilibrium model that is supposed to be tailored for sequential electricity markets. In doing so, the

authors suggest that forward premiums are negatively affected by high price volatility. At the same time,

they identify a positive correlation of forward premiums and the skewness of prices in the real-time market.

Complementary to Bessembinder and Lemmon (2002), in Longstaff and Wang (2004) the authors present

empirical evidence from US electricity markets that the theoretical model is actually applicable to real-world

data. In contrast to their scope, the analysis conducted within this article focuses on electricity markets

with fundamentally different market characteristics. Above all, there is essentially no informational update

between both market settlements. Nevertheless, a similar pattern of price premiums is observed yielding a

puzzle which is yet to be solved.

3. Empirical Analysis of Price Premiums in the German Day-ahead and Intraday Auction

An empirical analysis of price premiums between the German day-ahead and intraday auction provides

first insights on the topic under analysis. The day-ahead auction is settled at noon one day ahead physical

delivery. The respective products are hourly contracts for the physical delivery of electricity. Following the

day-ahead auction, the intraday auction with 15-minute contract duration is settled one day ahead delivery

at 3pm1. Both markets exhibit a uniform market price. Additionally, both market stages are settled in rapid

succession such that there is no significant informational update that impacts trade (Knaut and Paschmann,

2017b)2. Since trade in both markets refers to physically binding contracts without pure financial clearing,

the main purpose is matching supply and demand according to the contract duration offered, rather than

1For more details on the purpose of implementing the intraday auction complementary to continuous intraday trade see
Neuhoff et al. (2016). As regards the market depth, an illustration of average trade volumes is presented in Section Appendix.7.

2The influence of forecast errors on the resulting market prices is negligible.
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speculation and risk hedging. More precisely, in Knaut and Paschmann (2017b) the authors show that the

interaction of the day-ahead and intraday auction is essentially driven by increasing product granularity

(hourly vs. quarter-hourly) and restricted participation in the intraday auction. In Knaut and Paschmann

(2017a), the authors furthermore clarify that the lack of sub-hourly market coupling may be regarded as

the most relevant driver of restricted participation in the German intraday auction.

Since the product granularity increases from the day-ahead to the intraday auction, arbitrage refers to

bundles of goods. Four evenly distributed contracts which are traded in the intraday auction may act as a

perfect substitute for the respective day-ahead contract. Arbitrage is even facilitated by the rapid succession

of the market settlements. As the market characteristics hence basically comply with the no-arbitrage

argument, it could be expected to find mean price equivalence. Nevertheless, systematic price premiums in

individual hours of the day can be identified when analyzing historical price data. For illustration purposes,

the distribution of price premiums for the individual hours of the day is presented in Figure 1. The figure

is based on price premiums which are defined as the difference between the day-ahead auction price and

the mean price level of the corresponding four intraday auction contracts. The target figure is derived

according to Equation (1). The analysis is based on historical day-ahead and intraday auction price data

from January 16, 2015 until November 2, 2016 (EPEX SPOT SE, 2016a) and the respective descriptive

statistics are presented in detail in Table .2 in Section Appendix.1.

∆p = pday−ahead −
∑t4
t=t1 p

intraday
t

4 (1)

In Figure 1 mean values are marked in red and the black lines give the median values. The green boxes

range from the second to the third quartiles, whereas the dashed lines illustrate the 10 % and 90 % percentiles.

Furthermore, the dashed horizontal lines highlight the transaction costs. Based on the exact numbers which

are presented in column Mean of Table .2, the conclusion can be drawn that in individual hours (i.e., e.g.,

h2 and h15 ) positive price premiums clearly outweigh negative ones. However, in other hours (such as in

h19 ) reverse relations can be identified. The direction of price differences hence varies during the course

of the day. In the majority of hours these price differences even exceed the direct transaction costs for

trading, which are demanded by the exchange3. More specifically, positive price premiums, for example,

range between 0 ct/MWh and 77 ct/MWh and the respective average is 29 ct/MWh. Nevertheless, the

aggregate net price premium across all hours of the day approximately equals the transaction costs.

Based on the empirical findings, it could be expected that market participants may anticipate the di-

3These are 0.04 EUR/MWh in the day-ahead and 0.07 EUR/MWh in the intraday auction (EPEX SPOT SE, 2016b).

5



Figure 1: Distribution of differences between day-ahead and intraday auction prices compared to the respective transaction
costs (January 16, 2015 - November 2, 2016)

rection of price differences and exploit additional arbitrage opportunities. As this is not reflected by the

real-world data, it is relevant to deepen the understanding of the underlying drivers.

The pattern of price premiums identified, albeit less pronounced, is comparable to the findings of prior

literature dealing with price differences between electricity forward and real-time markets (see, e.g., Longstaff

and Wang (2004) and Viehmann (2011)). This is rather counterintuitive since some basic characteristics

of the market configurations under analysis differ crucially. In particular, there is no informational update

between the day-ahead and intraday auction. The lack of risk reduction between both market settlements

does not comply with the assumption of risk premiums. Additionally, whereas in Longstaff and Wang

(2004) the authors give empirical evidence for the applicability of the equilibrium pricing model presented in

Bessembinder and Lemmon (2002), an analogous procedure is essentially not transferable to price differences
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between the day-ahead and intraday auction. More precisely, building on the empirical approach adopted

in Longstaff and Wang (2004), a simple empirical analysis may be conducted to test for the correlation of

price premiums and the variance as well as the skewness of the day-ahead spot prices. Detailed results are

presented in Section Appendix.2. In short, there is empirical evidence that this explanatory approach is not

applicable to the price premiums under analysis.

The analyses presented within this article follow the general idea presented in Knaut and Paschmann

(2017b) and seek to analyze the impact of restricted participation on sequential commodity market prices.

Whereas the respective modeling approach in Knaut and Paschmann (2017b) appears suitable to analyze

general price relations on an aggregate level, a need for extending the model may be identified when analyzing

the price formation in individual hours. More precisely, the analysis conducted within this paper is especially

motivated through the observation of pronounced stepped shapes in real-world bid curve data as examplified

in Section Appendix.3. Therefore, a theoretical framework is developed within this essay to analyze the

influence of non-convexities in only a subset of sequential markets on the resulting price relations.

4. Theoretical Analysis

Two classes of suppliers (restricted and unrestricted) are distinguished, both of which interact in two

simultaneously4 settled markets that differ in terms of product granularity and market participation. Both

types of suppliers participate in the first market, whereas in the second market only unrestricted suppliers

are able to participate. The first stage product is split up into two identical sub-contracts for the periods

t (t ∈ t1, t2) that can be traded in the second market. The sub-contracts may combined act as a perfect

substitute for the first stage product.

Consumers may demand a different positive quantity Dt in each time interval t5. Demand is satisfied

under perfect competition by both restricted and unrestricted suppliers. Both suppliers operate production

units with increasing marginal costs of production.

As the quantities of both types of suppliers are chosen under perfect competition, the following opti-

mization problem can be formulated. Simply put, the total production costs are minimized such that supply

4Due to the rapid succession of both market settlements, information in both markets is considered to be identical. This
assumption is furthermore supported by energy trading companies confirming that there is no relevant informational update
between both market settlements.

5Demand in electricity markets is characterized as being rather price inelastic. This is especially valid for short-term markets
as considered in this paper (see, e.g., Lijesen (2007) and Knaut and Paulus (2016)).
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meets demand.

min z =Cr(qr) +
∑
t

[Cu,t(qut )] (2)

s.t. Dt =qr + qut ∀t. (3)

Here Cr(qr) marks the overall costs for the production level qr of all restricted suppliers. The costs

are determined by the first market’s outcome as restricted suppliers are not permitted to participate in the

second market with shorter contracts. In contrast, Cu,t(qut ) refers to the respective production costs for

unrestricted suppliers in period t. The quantity qut may vary in each time period and results from the first

and second markets’ settlements.

The set of restricted suppliers is characterized by an aggregate marginal cost curve. In more detail,

Equation (4) depicts that a linear shape is assumed. The parameter a0 determines a fixed offset, whereas

ar1 is the gradient of the restricted supply curve.

C ′r(qr) = a0 + ar1q
r | a0 > 0, ar1 > 0 (4)

With respect to unrestricted suppliers, a stepped discontinuity within their marginal cost function is

considered. Hereby, it is accounted for a case in which unrestricted participation is somehow systematic

and its impact on the resulting market dynamics may vary depending on the market settlement being in

particular sections of the merit order (Equation (5)). For the sake of simplicity, the offset (a0) is the same

as in the case of restricted suppliers.

C ′u,t(qut ) =


a0 + au1q

u
t qut ≤ Qdisc | a0 > 0, au1 > 0

a0 + ∆disc + au1q
u
t qut > Qdisc | a0 > 0, au1 > 0

(5)

The parameter Qdisc (> 0) may be regarded as the threshold which determines the discontinuous section

of the merit order. Furthermore, a respective step height of ∆disc is considered. For illustration purposes,

Figure 2 depicts the respective relations. The lack of unrestricted suppliers within a particular section of

the merit order is transformed into a marginal cost function with a stepped shape. Thereby, the aggregated

merit order of both restricted and unrestricted suppliers is dynamic and depends on the demand quantities.

The analysis is based on the assumption of an increasing demand profile (Dt2 > Dt1) and hence the

resulting mixed complementarity problem can be solved on the basis of the corresponding Karush-Kuhn-

Tucker (KKT) conditions.
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Figure 2: Illustration of the market configuration under analysis

Proposition 1. If demand exceeds a certain threshold such that the optimal production level of unrestricted
suppliers under continuous relations would exceed the non-convexity, it is cost-optimal to fix the production
of unrestricted suppliers and satisfy additional demand exclusively by restricted suppliers. Thereby, excess
supply by restricted suppliers compared to the case of continuous relations can be identified. This quantity
choice is optimal as long as the additional costs due to exclusive supply by restricted suppliers are outweighted
by avoided costs due to the discontinuous step.

Proof. The detailed mathematical proof is outlined in Section Appendix.4. The optimal production level
of restricted suppliers depending on the respective demand level may be defined according to Equation (6).
The corresponding production level of unrestricted suppliers may be directly derived by the use of Equation
(3).

qr ∗ =



(Dt1+Dt2)
2 · au

1
ar

1+au
1

(a1)Dt2 ≤ 2·Qdisc·(ar
1+au

1 )+Dt1·au
1

2·ar
1+au

1

Dt2 −Qdisc (a2) 2·Qdisc·(ar
1+au

1 )+Dt1·au
1

2·ar
1+au

1
< Dt2 ≤ 2·Qdisc·(ar

1+au
1 )+Dt1·au

1 +∆disc

2·ar
1+au

1
(Dt1+Dt2)

2 · au
1

ar
1+au

1
+ ∆disc

2·(ar
1+au

1 ) (a3) 2·Qdisc·(ar
1+au

1 )+Dt1·au
1 +∆disc

2·ar
1+au

1
< Dt2, Dt1 ≤ 2·Qdisc·(ar

1+au
1 )+Dt2·au

1 +∆disc

2·ar
1+au

1

Dt1 −Qdisc (a4) 2·Qdisc·(ar
1+au

1 )+Dt2·au
1 +∆disc

2·ar
1+au

1
< Dt1 ≤ 2·Qdisc·(ar

1+au
1 )+Dt2·au

1 +2·∆disc

2·ar
1+au

1
(Dt1+Dt2)

2 · au
1

ar
1+au

1
+ ∆disc

ar
1+au

1
(a5)Dt1 >

2·Qdisc·(ar
1+au

1 )+Dt2·au
1 +2·∆disc

2·ar
1+au

1

(6)

Furthermore, this essay aims to shed light on the respective price implications.

Proposition 2. In the presence of non-convexities, mean price equivalence is not a necessary condition
at equilibrium. Rather to the contrary, positive price premiums may be identified that range between 0 and
0.5 ·∆disc.

Proof. As the market outcome is determined under perfect competition, the respective inverse demand
functions could directly be applied to draw conclusions on prices. The equations derived in (7) have to
be satisfied at equilibrium. Here m1 refers to the first market where both restricted and unrestricted
suppliers are permitted to participate. The second market with restricted participation and increased
product granularity is named m2

t . It is worth mentioning that the first market’s price is directly determined
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by the marginal costs of restricted suppliers as the respective production may only be traded within the first
market. Furthermore, C ′r(qr) ≥

(C′
u,t1(qr)+C′

u,t2(qr))
2 is valid.

p(m1) = C ′r(qr)
p(m2

t ) = C ′u,t(qr)
(7)

These price relations provide the basis to analyze whether the discontinuity may trigger price differences
between the sequential markets at equilibrium6. Equation (8) can be used to calculate the respective price
differences.

∆p = p(m1)− p(m2
t ) =



0 (a1)
(Dt2 −Qdisc) · ar1 −

(Dt1−Dt2+2·Qdisc)·au
1

2 (a2)
0 (a3)
(Dt1 −Qdisc) · ar1 + (Dt1−Dt2−2·Qdisc)·au

1
2 − ∆disc

2 (a4)
0 (a5)

(8)

Inserting the respective thresholds for Dt2 according to (6) into the second term of (8) yields a price
difference that ranges between 0 and 0.5 ·∆disc. Inserting the respective thresholds for Dt1 into the fourth
term (a4) yields analogous relations.

Since there are positive and negative price differences in the real-world price data, it may be worth ana-

lyzing the impact of non-convexities not only in the framework of unrestricted suppliers, but also extending

the previous considerations to restricted suppliers.

The idea of considering non-convexities in the supply curve of either unrestricted or restricted suppliers

may be motivated through a simplified illustration of the merit order for the German power plant fleet and its

neighboring countries7 assuming unlimited cross-border transmission capacity. The simplifying classification

that unrestricted suppliers embody German power plants, whereas restricted suppliers are, in particular,

located in the neighboring countries, is derived from Knaut and Paschmann (2017a). The authors stress

that the lack of sub-hourly market coupling is the most relevant driver of restricted participation in the

intraday auction. Figure 3 depicts the respective marginal costs depending on the underlying fuel costs as

well as the CO2 emission costs. Non-dispatchable renewable electricity generation is neglected. In addition,

Figure 4 illustrates the aggregate supply curve of both types of suppliers. Hereby, it is facilitated to derive

conclusions on the impact of non-convexities in either the restricted or unrestricted supply curve depending

on the overall demand level. The underlying data is extracted from the fundamental electricity market model

DIMENSION which is presented in more detail in Knaut and Paschmann (2017a) and (Richter, 2011). For

simplification purposes and as the bidding behavior of flexible pumped storage generation units is a complex

6To bridge the gap to the mathematical proof in Appendix.4, it is assumed that ε → 0.
7Denmark, the Netherlands, Belgium, France, Switzerland, Austria, Poland and the Czech Republic
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issue which is not in the focus of this paper, the respective generation capacities are illustrated in both edge

regions of the merit order. Depending on the operational mode, pumped storage power plants may buy

cheap electricity and produce electricity in periods with comparably higher prices.

Figure 3: Stylized illustration of the unrestricted and restricted supply curves

Figure 4: Stylized aggregate merit order for Germany and its neighboring countries

The figures already convey the idea that there are significant non-convexities in particular sections of

the merit order. These considerations are also reflected and observable in real-world bid curve data from

the German day-ahead and intraday auction (Section Appendix.3). The prevalence of non-convexities being
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more pronounced in either the restricted or unrestricted supply curve may vary depending on the overall

demand level. Non-convexities within the German merit order tend to be especially relevant if demand is

rather high.

Proposition 3. Negative price premiums may stem from discontinuities in the marginal cost curve of
restricted suppliers. The maximum price difference is bounded by −∆disc′ , which is the step height of
the respective discontinuity. Overall, the frequency of positive and negative price differences depends on the
market clearing being in particular sections of the merit order where non-convexities in either the unrestricted
or restricted supply curve are more pronounced.

Proof. The detailed proof is similar to the previous one and outlined in Section Appendix.6. As a result,
if the merit order of restricted suppliers exhibits a non-convex section, Equation (9) depicts the optimal
production level.

qr ∗ =


(Dt1+Dt2)

2 · au
1

ar
1+au

1
(b1)Dt2 +Dt1 ≤ 2·(Qdisc′ +ε)·(ar

1+au
1 )

au
1

Qdisc′ + ε (b2) 2·(Qdisc′ +ε)·(ar
1+au

1 )
au

1
< Dt1 +Dt2 ≤ 2·(Qdisc′ +ε)·(ar

1+au
1 )+2·∆disc′

au
1

(Dt1+Dt2)
2 · au

1
ar

1+au
1
− ∆disc

ar
1+au

1
(b3)Dt1 +Dt2 >

2·(Qdisc′ +ε)·(ar
1+au

1 )+2·∆disc′
au

1

(9)

Price implications can be derived analogous to the procedure applied in Equation 8 in Proposition 2.
The relation p(m1) = C ′r(qr), however, is no longer a necessary condition as the average marginal costs of
unrestricted suppliers now exceed the respective marginal costs of restricted suppliers. Depending on the
trading decision of unrestricted suppliers, the first stage market price may either be p(m1) = C ′r(qr) or
p(m1) = (C′

u,t1(qr)+C′
u,t2(qr))

2 . However, the arbitrage-free second market’s price may exceed the respective
price in the first market at equilibrium since the non-convexity eliminates additional opportunities for
arbitrage8.

As regards the electricity markets under consideration, it may furthermore bring value added to analyze

additional costs which are attributable to the non-convexities. Against this backdrop, the costs in a frame-

work with non-convexities could be compared to a benchmark which would be a continuous merit order

for both types of suppliers. Thereby, the monetary value of smoothing non-convexities is calculated. The

respective difference in costs yields the value of additional flexibility from a system perspective. Once more,

the classification unrestricted suppliers is linked to national generation capacity.

Proposition 4. A naive proxy for the additional costs attributable to non-convexities within the supply
curve of unrestricted suppliers may be estimated as EUR 10.2 million in 2015. Furthermore, a similar proxy
for the value of additional power system flexibility in neighboring countries may be derived. The respective
estimate is EUR 6.4 million.

Proof. First, the case of a non-convexity within the cost function of unrestricted suppliers is considered. It is
sufficient to analyze the respective additional costs in terms of the scenario (a2) due to symmetric relations.
For the sake of simplicity, the lower threshold for D2 in the case of (a2) may be substituted with the term
D̂t and Equation (10) could be defined.

∆Costs(Dt − D̂t) = ∆Costs(x)

=
4 · (ar1)5 + 12 · (ar1)4 · au1 + 14 · (ar1)3 · (au1 )2 + 8 · (ar1)2 · (au1 )3 + 9

4 · a
r
1 · (au1 )4 + 1

4 · (a
u
1 )5

8 · (ar1)4 + 24 · (ar1)3 · au1 + 26 · (ar1)2 · (au1 )2 + 12 · ar1 · (au1 )3 + 2 · (au1 )4 · x2
(10)

8In the real world, the strategic rationale of agents on the demand side may support this allocation as they face an incentive
not to pay the higher marginal costs of unrestricted suppliers to all restricted suppliers within a uniform price auction.
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The respective cost implications are mainly driven by the gradient of the restricted supply curve (see
Section Appendix.5). Analogous results can be derived for the case of a discontinuous marginal cost curve
of restricted suppliers.

∆Costs(Dt − D̂t) = ∆Costs(x)

=
1
4 · a

r
1 · (au1 )2 + 1

4 (au1 )3

2 · ((ar1)2 + 2 · ar1 · au1 + (au1 )2) · x
2

(11)

Here welfare losses are mainly driven by the gradient of the unrestricted supply curve.
To derive estimates from real-world price data, as x is unobservable, the relation Dt − D̂t = x =

∆(p(m1),p(m2
t ))

ar
1

may be exploited . In the case of negative price premiums, ar1 is to be substituted by au1 .
To derive numbers for the gradients ar1 and au1 , empirical estimates presented in Knaut and Paschmann

(2017b) can be used. The aggregate day-ahead merit order exhibits a gradient of approximately 0.96 EUR/GWh
and is defined by ar,u1 = ar

1·a
u
1

ar
1+au

1
. Additionally, the aggregate gradient of the unrestricted suppliers (au1 ) may

be approximated as 7.65 EUR/GWh. This yields an estimate for ar1 which is 1.1 EUR/GWh. Inserting these
estimates into (10), additional costs due to non-convexities may be calculated according to Equation (12).

∆Costs(∆(p(da), p(idt)))
{

= 1145.5 ·∆(p(da), p(idt))2 ∆(p(da), p(idt)) < 0
= 690.94 ·∆(p(da), p(idt))2 ∆(p(da), p(idt)) > 0

(12)

The term da marks the day-ahead and id the intraday auction. Applying the respective relations to all
price differences observed in 2015 (EPEX SPOT SE, 2016a), the cost terms presented above can be derived.

As regards the interpretation of these estimates, the limits of this approach should be taken into account.
Nevertheless, the respective numbers yield a naive indication for the magnitude of the value of additional
short-term power system flexibility.

4.1. Numerical Example

For illustration purposes, this section provides a simple numerical example. More precisely, the set of

parameters is defined according to Table 1.

Parameter Value
ar1 1
au1 2
Qdisc′ 4
∆disc′ 5
Qdisc 12
∆disc 10

Table 1: Numerical example: Parameter assumptions

Motivated through empirical observations in the electricity markets under analysis, it is assumed that

the gradient of the unrestricted supply curve (au1 ) exceeds the respective gradient of the restricted supply

curve (ar1). The increment is assumed to be twice as high as in the case of restricted producers. As regards

restricted suppliers, a non-convexity (∆disc′) is considered if the production level is rather low (Qdisc′). In

contrast, in the case of unrestricted suppliers, there is a discontinuous step (∆disc) at a higher quantity

(Qdisc).
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Demand first increases according to a linear shape and then decreases again. The resulting hourly

production level over time of both restricted and unrestricted suppliers is illustrated in Figure 5.

Figure 5: Optimal production level in the numerical example

If the production level of restricted suppliers approximates the non-convexity threshold (Qdisc′ = 5), the

respective supply is fixed and compensated by an increased production level of unrestricted suppliers (b2).

Based on the gradient of the unrestricted supply curve (au1 = 2), this allows for cost savings as long as the

additional supply of unrestricted suppliers in both time periods does not exceed the quantity 2.5. If demand

continues to increase, the overall production level of restricted suppliers is adjusted downward compared to

the case of continuous relations. As a consequence, all thresholds for Dt2, which were presented in Equation

(6), are adjusted by subtracting the term ∆disc′

ar
1+au

1
. If the optimal production level of unrestricted suppliers

under continuous relations would now exceed the respective discontinuous step (Qdisc = 12), reverse relations

can be identified and additional supply by unrestricted suppliers is replaced by an increased production level

of restricted suppliers ((a2) and (a4)).

In a next step, conclusions on the resulting price differences between both markets may be drawn. Figure

6 presents the simulated prices for the numerical example. For illustration purposes, the maximum feasible

price difference for the case of a non-convexity within the restricted supply curve is considered.

Dependent on the demand level, the direction of price differences at equilibrium may vary. If the

non-convexity in the restricted supply curve causes an unbalanced increase of production by unrestricted

suppliers, the price in the market with shorter contracts is higher compared to the first market with unre-
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Figure 6: Price implications in the numerical example

stricted participation and vice versa. If the demand level exhibits a high temporal variability (Dt1 6= Dt2),

the impact of a non-convexity in the unrestricted supply curve on the respective price premiums is limited

to half the step height (∆disc). Finally, it is worth mentioning that price volatility may temporarily increase

significantly if unrestricted supply in only one period exceeds the non-convexity.

5. Empirical Application

Following the theoretical model, price premiums in sequential markets with differing product granularity

may stem from non-convexities being more pronounced in only a subset of the sequential market stages.

As a prerequesite, a differing supplier structure in the German day-ahead and intraday auction can be

identified which is triggered by restricted participation in the market with sub-hourly products (Knaut

and Paschmann, 2017a). The sharp stepped shape of the underlying bid curves may result in a varying

frequency of non-convexities dependent on the market settlement being in particular sections of the merit

order. Bearing this is mind, a systematic correlation between the individual supply curves and the resulting

price differences is to be expected. An analysis of the correlation of load and price premiums by the use of

historical data facilitates to test for these relations.

Based on the illustration of marginal cost curves for generation units in Germany and its neighboring

countries in Figure 3 and Figure 4, the following expectations could be formulated9:

9It is worth stressing that actual bidding data may not fully comply with the fundamental merit order.
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1. Non-convexities are more pronounced in the right area of the German merit order. The day-ahead

price may hence be expected to exceed the respective intraday auction price if demand is rather high.

2. Compared to its neighboring countries, Germany has a comparably large share of low-cost generation

units, for example, due to nuclear and lignite-fired power plants. Negative price premiums, if any,

would rather be expected to coincide with low demand.

3. The overall stepped shape of the merit order is less pronounced within the smoother marginal cost

curve of restricted suppliers. The extremes of positive price premiums may hence exceed the maximum

negative price differences.

It has to be annotated that the use of a common aggregate supply curve crucially depends on the

assumption of sufficient cross-border capacity. A respective lack may trigger additional non-convexities.

The empirical analysis will provide insights with respect to the validity of the three hypotheses. Since

in short-term electricity markets the residual load is commonly used in order to map demand, data was

gathered which is provided by ENTSO-E (2017) and EEX (2017) to derive the residual demand as the

difference between the overall system load and the electricity generation from renewable energy plants. The

period of observation ranges from January 16, 2015 until November 2, 2016. Figure 7 illustrates the average

hourly deviation of the residual demand from its overall mean. Positive values hence embody hours with a

comparably high residual demand. Apparently, daily profiles of the residual load exhibit distinct recurrent

patterns. Furthermore, the corresponding average price premiums for each hour of the day along the period

of observation are presented. The figure indicates a high correlation between the residual load and the

resulting price differences. If the residual demand tends to be comparably high, the day-ahead price is on

average higher than the respective intraday auction price. Reverse relations are applicable to hours with a

tendency of lower demand.

The initial hypotheses are confirmed by the empirical observations. The historical data yield an indication

that in peak hours the non-convexities in the German supply curve are more pronounced. A lack of national

peak load generation units or pumped storage power plants may trigger additional electricity imports.

There are incentives to target excess supply within the day-ahead market to avoid extremely high costs

of purchasing additional quantities from unrestricted suppliers in the intraday auction. As a result, the

day-ahead price could be above the respective average intraday auction price10 (Hypothesis 1 ).

10Both types of suppliers are expected to prefer trading in the day-ahead market. In order to meet the residual demand
profile, unrestricted suppliers which committed their production capacity via hourly contracts are willing to pay a price equal
to their marginal production costs to reduce their electricity generation by trading sub-hourly contracts within the intraday
auction.
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Figure 7: Average correlation of residual demand and price premiums (January 16, 2015 - November 2, 2016)

In contrast, if the residual demand is rather low, the discontinuous shape of the supply curve of restricted

producers tends to drive the resulting price premiums. A comparably large share of demand is satisfied by

unrestricted suppliers. The German intraday auction price may exceed the respective day-ahead price as

restricted suppliers do not face the opportunity to shift their trade quantities into the intraday auction. At

the same time, the respective price difference is arbitrage-free due to the non-convexity within the restricted

supply curve (Hypothesis 2 ). It is finally worth mentioning that the maximum positive price premium is

higher than the maximum negative price difference (Hypothesis 3 ).

To deepen the understanding of the analysis, Figure 8 presents empirical results with respect to the

role of seasonality. The classification of seasons is based on metereological dates. As to be expected, the

difference between the average residual load and its overall mean is more pronounced in winter than in

summer periods. Accordingly, the extremes of the price premiums increase by approximately 70% ranging

from 0 to 130 ct/Mwh. These relations support the hypothesis that the impact of non-convexities is especially

relevant in case of extreme demand values.

6. Conclusion

This article begins with an analysis of price premiums between two sequential short-term electricity

markets in Germany, namely the day-ahead and intraday auction. The framework under analysis is char-

acterized by decreasing contract duration and differing market participation. As both markets are settled
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Figure 8: Average correlation of residual demand and price premiums in specific seasons(January 16, 2015 - November 2, 2016)

in rapid succession without any relevant informational update, it is initially puzzling to identify significant

price premiums in specific hours of the day. Furthermore, these price premiums can be both positive or

negative.

There is empirical evidence that the explanatory approach for price premiums in electricity markets,

which was developed in Bessembinder and Lemmon (2002), is not applicable to the market dynamics under

analysis. To address these issues, a theoretical model is developed within this article which seeks to analyze

the impact of non-convexities in sequential market designs with differing market participation. The approach

is motivated through the observation of pronounced stepped shapes in real-world bid curve data. Based

on the model, it can be identified that if non-convexities are more pronounced in individual sequential

market stages, which is feasible due to the differing supplier structure, significant price premiums may exist.

Additionally, the difference in prices may be both positive or negative depending on the relevance of non-

convexities in particular sections of the underlying supply curves. This article presents an empirical analysis

of real-world data from German electricity markets. The respective results reveal a correlation between load

and price differences what essentially complies with the underlying model.

The empirical observations suggest that non-convexities in the supply curve of neighboring countries are

especially relevant if the German residual demand is rather low. As a consequence, the average intraday

auction price may be significantly higher than the respective day-ahead price. Reverse relations can be

observed in peak hours indicating sharp non-convexities in the German merit order due to a lack of flexible
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peak load generation units. There are incentives to target excess supply in the day-ahead auction and hence

the respective price may go beyond the average intraday auction price.

These findings allow to draw the conclusion that the price premiums under consideration reflect a value

of additional short-term power system flexibility. In more detail, numerical proxies can be derived yielding a

value for smoothing non-convexities of approximately EUR 10.2 million in 2015 in the case of additional Ger-

man power system flexibility. In contrast, the respective estimate for neighboring countries is EUR 6.4 million

in 2015. Even if these are relatively small numbers, the inefficiencies uncovered may be exacerbated if the

share of renewable energies continues to increase and if there is a lack of investment incentives for flexible

generation units. It may furthermore be beneficial to urge the implementation of cross-border trade on a

sub-hourly level to align the supplier structures in the day-ahead and intraday auction.

The model developed in this article supports a better understanding of price premiums and its under-

lying properties in short-term sequential electricity markets. However, it may also be applicable to other

frameworks, for example, sequential auctions with block and single unit bids. Finally, the findings presented

in this article may favor the evaluation of business strategies targeting to exploit the price differences iden-

tified. A lack of a respective business case is to be expected, as the market depth in the intraday auction is

limited and since the price premiums identified do not reflect unexploited arbitrage opportunities.
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Appendices
Appendix.1. Descriptive Analysis of Historical Price Premiums

Hour Mean Mean (abs difference) Probability positive Min/Max Percentiles (10/90)

h1 -0.2 2.0 44.7% -18.3/13.2 -3.0/3.0
h2 -0.6 2.0 39.0% -10.9/16.1 -3.5/2.5
h3 -0.6 2.4 41.4% -17.8/16.2 -4.2/3.1
h4 -0.5 2.5 42.6% -13.2/17.5 -4.3/3.6
h5 -0.4 2.3 41.2% -12.7/11.8 -3.6/3.2
h6 -0.3 2.1 44.1% -18.6/20.2 -3.6/2.9
h7 -0.3 2.2 48.6% -29.5/16.3 -3.6/3.0
h8 0.1 1.8 53.1% -21.7/9.5 -2.6/3.0
h9 0.2 1.8 55.1% -8.6/13.2 -2.7/3.1
h10 0.2 1.7 53.7% -13.4/9.2 -2.3/2.7
h11 0.2 1.7 55.1% -21.3/9.7 -2.5/2.9
h12 0.0 2.0 50.4% -44.2/13.4 -2.9/3.2
h13 -0.2 2.0 46.0% -29.5/18.6 -3.3/3.0
h14 -0.4 2.1 44.4% -27.0/13.5 -3.5/2.9
h15 -0.7 2.1 41.9% -41.7/17.7 -3.5/2.3
h16 -0.5 1.9 44.0% -37.8/10.7 -3.1/2.4
h17 -0.2 1.8 49.8% -39.5/14.3 -2.9/2.5
h18 0.5 1.9 60.3% -8.2/18.9 -2.4/3.3
h19 0.8 1.9 63.7% -10.6/11.9 -2.0/3.5
h20 0.7 1.9 64.5% -7.5/11.3 -2.2/3.7
h21 0.2 1.7 57.0% -8.0/9.1 -2.5/3.0
h22 0.0 1.8 51.2% -7.4/8.5 -2.8/2.8
h23 0.0 2.0 52.4% -8.5/10.6 -3.3/3.2
h24 -0.7 2.1 41.6% -12.4/12.7 -4.1/2.7
Total -0.1 2.0 49.4% -44.2/20.2 -3.1/3.0

Table .2: Descriptive statistics on price premiums between the day-ahead and intraday auction (day-ahead
price - average intraday auction price) [EUR/MWh] (January 16, 2015 until November 2,2016)

The numbers presented in column Mean (abs difference) reveal that the mean of the four 15-minute

intraday auction prices is on average 2 EUR/MWh lower or higher respectively than the corresponding hourly

day-ahead auction price. Thus, there tend to be significant differences in prices in each hour. Additionally,

the probability of differences in prices being positive or negative is presented in column Probability positive.

Appendix.2. Empirical Analysis of Price Premiums and the Underlying Drivers

Table .3 depicts descriptive statistics on price premiums between the day-ahead and intraday auction.

Furthermore, the table shows the respective variance and skewness of the underlying day-ahead spot prices.

The analysis is based on real-world data which is provided by (EPEX SPOT SE, 2016a) and ranges from
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January 16, 2015 until November 2,2016. The Pearson’s first coefficient is used as the skewness measure

which is the difference between the mean and the mode divided by the standard deviation.

Hour Mean price difference Variance of day-ahead prices Skewness of day-ahead prices

h1 -0.2 88.7 -1.17
h2 -0.6 84.8 -1.13
h3 -0.6 82.4 -1.55
h4 -0.5 81.3 -1.42
h5 -0.4 84.3 -1.54
h6 -0.3 102.0 -1.50
h7 -0.3 178.2 -0.80
h8 0.1 191.7 -0.30
h9 0.2 199.1 -0.23
h10 0.2 155.7 0.01
h11 0.2 153.5 0.46
h12 0.0 214.8 2.58
h13 -0.2 129.8 -0.50
h14 -0.4 159.2 -1.65
h15 -0.7 157.1 -1.85
h16 -0.5 147.2 -0.71
h17 -0.2 149.2 -0.66
h18 0.5 176.4 0.20
h19 0.8 179.9 0.38
h20 0.7 149.6 0.54
h21 0.2 107.8 -0.08
h22 0.0 75.0 -0.26
h23 0.0 73.5 -0.16
h24 -0.7 73.4 -0.54

Table .3: Descriptive statistics on price premiums between the day-ahead and intraday auction (day-ahead
price - average intraday auction price) [EUR/MWh] (January 16, 2015 until November 2,2016)

To analyze the correlation between the individual figures in a condensed way, a simple Ordinary Least

Squares (OLS) estimation may be applied which is following the general idea adopted in Longstaff and

Wang (2004). The respective results are illustrated in Table .4. Even if there are issues linked to the small

sample size, it is yet to be expected that the results provide insights on the question of basic correlations.

The respective results yield an indication that there is no significant impact of the price volatility on the

respective price premiums. Furthermore, the correlation between the skewness of day-ahead prices and price

premiums is at least questionable. Finally, the F test does not allow for a unique conclusion on whether the

model is more accurate than basically no model at all.
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Dependent variable: Price Premium

Explanatory variable OLS

day-ahead price volatility 0.0015
(0.0013)

day-ahead price skewness 0.248
(0.124)

intercept (ν) -0.19
(0.21)

observations 24
adj. R2 0.48
F 2.97 (p-value:0.07)
Notes to Table .4: Robust standard errors in paren-
theses. ∗ / ∗∗ / ∗∗∗ : significant at the 0.05 /0.02
/ 0.01 error level respectively. Data from January
16, 2015 until November 2,2016 is used.

Table .4: Regression of price premiums between the day-ahead and intraday auction (day-ahead price -
average intraday auction price) [EUR/MWh]

Appendix.3. Exemplary Historical Bid Curves

Exemplary historical bid curves are illustrated in Figure .9.

Appendix.4. Mathematical Proof (Proposition 1)

Since the procedure is based on cost minimization, the overall production costs for restricted suppliers

can be calculated with the use of Equation (.1).

Cr(qr) =
∫ qr

0

[
a0 + ar1 · q

]
dq

= a0 · qr + 0.5 · ar1 · (qr)2

(.1)

As regards the production level of unrestricted suppliers, the respective optimization variables (qu ∗t1 and

qu ∗t2 ) can directly be substituted according to the equilibrium condition (3). Thus, the relation qu ∗t = Dt−qr ∗

may be used so that the variable qr remains the only decision variable as demand is assumed to be inelastic.

The cost function of unrestricted suppliers in period t (Cu,t(qr)) may hence be formulated according to

Equation (.2).
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(a) Day-ahead auction May 22, 2015 (7:00/8:00) (b) Intraday auction May 22, 2015 (7:45/8:00)

(c) Day-ahead auction October 8, 2015 (18:00/19:00) (d) Intraday auction October 8, 2015 (18:15/18:30)

Figure .9: Exemplary bid curves observed in the day-ahead and intraday auction

Cu,t(qr) = 0.5 ·



|1〉 0.5 ·
∫Dt−qr

0 a0 + au1q dq

= 0.5 ·
[
a0 · (Dt − qr) + 0.5 · au1 · (Dt − qr)2] Dt − qr ≤ Qdisc

|2〉 0.5 ·
[ ∫ Qdisc

0 a0 + au1q dq +
∫Dt−qr

QDisc+ε a0 + ∆disc + au1q dq
]

= 0.5 ·
[
a0 · (Qdisc) + 0.5 · au1 · (Qdisc)2

+(a0 + (Qdisc + ε) · au1 + ∆disc) · (Dt − qr −Qdisc − ε)

+0.5 · au1 · (Dt − qr −Qdisc − ε)2] Dt − qr ≥ Qdisc + ε

(.2)

An infinitesimal small number ε is considered in order to formulate the optimization problem with weak

inequalities only. The value of ε reflects the smallest tradeable increment of the production level. As the

cost function to apply depends on the value of the decision variable, the respective Lagrangian can be set
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up depending on both cases i) Dt − qr ≤ Qdisc and ii) Dt − qr ≥ Qdisc + ε for each of the time periods

t1 and t2 to solve the optimization problem. For the sake of simplicity, is is assumed that the demand

profile is increasing and consequently there is a reduced number of cases to be considered. That is to say,

Dt2 > Dt1 + ε is valid. As the second derivative of the total cost function (Ctotal = Cr(qr) +
∑
t Cu,t(qut ))

is always positive (∂
2Ctotal

∂qr2 = ar1 + au1 > 0), all optima are local minimums.

Appendix.4.1. Case1: Dt − qr ≤ Qdisc ∀ t

In the first case, the discontinuity is negligible due to comparably low demand. The respective Lagrangian

is presented in Equation (.3).

L = (−1) · (Cr(qr) +
∑
t

Cu,t(qr)) + µt1 · (Qdisc −Dt1 + qr) + µt2 · (Qdisc −Dt2 + qr) (.3)

Applying the respective Karush-Kuhn-Tucker (KKT) conditions, the optimal solution has to satisfy the

conditions listed in (.4).

(−1) · ∂Cr(q
r)

∂qr
+
∑
t

[
(−1) · ∂Cu,t(q

r)
∂qr

+ µt · (Qdisc −Dt + qr)
]

= 0

Dt − qr ≤ Qdisc ∀ t

µt · (Qdisc −Dt + qr) = 0 ∀ t

µt ≥ 0 ∀ t

(.4)

The respective marginal cost functions are formulated in Equation (.5).

∂Cr(qr)
∂qr

= a0 + qr · ar1

∂Cu,t(qr)
∂qr

= −0.5 · a0 − 0.5 · au1 · (Dt − qr)
(.5)

There is a need to apply a distinction of cases. More precisely, the following four scenarios have to be

considered to derive the optimal solution.

1. Scenario1: µt1 = 0, µt2 = 0

2. Scenario2: µt1 = 0, Qdisc −Dt2 + qr = 0

3. Scenario3: Qdisc −Dt1 + qr = 0, µt2 = 0

4. Scenario4: Qdisc −Dt1 + qr = 0, Qdisc −Dt2 + qr = 0

Due to the assumption of an increasing demand profile (Dt2 > Dt1 + ε), Scenario4 may be ignored.

Furthermore, Scenario3 is to be neglected because of the definition of Case1. In the following, both relevant
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scenarios are analyzed in detail.

Scenario1: µt1 = 0, µt2 = 0

Solving the KKT conditions, the optimal choice for qr can be formulated according to Equation (.6).

This is essentially the same solution as presented in Knaut and Paschmann (2017b) for the case of continuous

relations.

qr ∗ = (Dt1 +Dt2)
2 · au1

ar1 + au1
(.6)

Such quantity choice yields a valid solution (Dt2 − qr ∗ ≤ Qdisc) if condition (.7) is met.

Dt2 ≤
2 ·Qdisc · (ar1 + au1 ) +Dt1 · au1

2 · ar1 + au1
(.7)

Scenario2: µt1 = 0, Qdisc −Dt2 + qr = 0

According to the scenario definition, qr is defined as follows:

qr ∗ = Dt2 −Qdisc. (.8)

Solving for µt2, Equation (.9) can be derived.

µt2 = (−1) · (Dt1 +Dt2) · a1u

2 · (ar1 + au1 ) (.9)

Equation (.9) does not yield a feasible solution as the respective condition µt2 ≥ 0 is not satisfied. This

is due to the assumption of positive values for both the gradients of the supply curves as well as the demand

in the periods t1 and t2 (Dt1, Dt2, a
r
1, a

u
1 > 0).

Appendix.4.2. Case2: Dt1 − qr ≤ Qdisc, Dt2 − qr ≥ Qdisc + ε

Based on the solution for Case1, a threshold for Dt2 can be derived above which the discontinuity has

to be considered (Equation (.7)).

The resulting KKT conditions in Case2 are depicted in (.10).
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(−1) · ∂Cr(q
r)

∂qr
+
∑
t

[
(−1) · ∂Cu,t(q

u
t )

∂qr
]

+ µt1 − µt2 = 0

Dt1 − qr ≤ Qdisc

Dt2 − qr ≥ Qdisc + ε

µt1 · (Qdisc −Dt + qr) = 0

µt2 · (Qdisc + ε−Dt + qr) = 0

µt ≥ 0 ∀ t

(.10)

The respective marginal cost functions are listed in (.11).

∂Cr(qr)
∂qr

= a0 + qr · ar1

∂Cu,t1(qr)
∂qr

= −0.5 · a0 − 0.5 · au1 · (Dt1 − qr)

∂Cu,t2(qr)
∂qr

= −0.5 · (a0 + (Qdisc + ε) · au1 + ∆disc)− 0.5 · au1 · (Dt2 − qr −Qdisc − ε)

(.11)

A distinction of cases is to be applied.

1. Scenario1: µt1 = 0, µt2 = 0

2. Scenario2: µt1 = 0, Qdisc + ε−Dt2 + qr = 0

3. Scenario3: Qdisc −Dt1 + qr = 0, µt2 = 0

4. Scenario4: Qdisc −Dt1 + qr = 0, Qdisc + ε−Dt2 + qr = 0

Scenario4 is irrelevant due to the assumption of an increasing demand profile. In the following, each

scenario is outlined in more detail.

Scenario1: µt1 = 0, µt2 = 0

In the case of Scenario1, Equation (.12) depicts the optimal choice with respect to the production level

of restricted suppliers(qr).

qr ∗ = (Dt1 +Dt2)
2 · au1

2 · (ar1 + au1 ) + ∆disc

2 · (ar1 + au1 ) (.12)

In Case2 the discontinuity is relevant and thus the quantity supplied by restricted suppliers is revised

upwards by ∆disc

2·(ar
1+au

1 ) to account for the stepped shape of the merit order of unrestricted suppliers. Equa-

tion (.6) may be regarded as a feasible solution (Dt2 − qr ≥ Qdisc) if condition (.13) is fulfilled.

qr ∗ = (Dt1 +Dt2) · au1 + ∆disc

2 · (ar1 + au1 ) ≤ Dt2 −Qdisc − ε (.13)
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Condition (.13) may be transferred into three possible cases:

1. −2 ·Dt2 · ar1 + 2 · (Qdisc + ε) · (ar1 + au1 ) +Dt1 · au1 −Dt2 · au1 + ∆disc = 0, ar1 + au1 6= 0

2. au1 < −ar1,−2 ·Dt2 · ar1 + 2 ·Qdisc · ar1 +Dt1 · au1 −Dt2 · au1 + 2 ·Qdisc · au1 + ∆disc > 0

3. −ar1 < au1 , 2 ·Dt2 · ar1 − 2 · (Qdisc + ε) · (ar1 + au1 )−Dt1 · au1 +Dt2 · au1 −∆disc > 0.

Following the case definition, the conditions ar1 + au1 6= 0 as well as −ar1 < au1 are met. However, as both

gradients of the supply curves are assumed to be positive (au1 , ar1 > 0), the second case is not feasible. The

first and third case may finally be condensed into the inequality constraint which is presented in (.14).

2 ·Dt2 · ar1 − 2 · (Qdisc + ε) · (ar1 + au1 )− au1 · (Dt1 −Dt2)−∆disc >= 0 (.14)

Formulating inequality (.14) in terms of Dt2, condition (.15) can be derived.

Dt2 ≥
2 · (Qdisc + ε) · (ar1 + au1 ) +Dt1 · au1 + ∆disc

2 · ar1 + au1
(.15)

Condition (.15) embodies a threshold which reflects the trade-off between avoiding higher costs of pro-

duction by unrestricted suppliers due to the step ∆disc and taking losses due to both unrestricted suppliers

with comparably low production costs being forced to reduce their production level to meet Dt1 as well as

higher costs of an increased production of restricted suppliers.

Besides an upper bound for Dt2 , inequality (.16) is necessary to identify a valid solution (Dt1 − qr ≤

QDisc).

D1 ≤ 2 ·Qdisc · (ar1 + au1 ) +Dt2 · au1 + ∆disc

2 · ar1 + au1
(.16)

Scenario2: µt1 = 0, Qdisc − ε−Dt2 + qr = 0

It is to be tested whether the quantity choice in Scenario2 (Equation (.17)) yields a valid solution.

qr ∗ = Dt2 −Qdisc − ε (.17)

The resulting term for µt2 is defined in Equation (.18).

µt2 = −(Dt2 −Qdisc − ε) · (ar1 + au1 ) + (Dt1 +Dt2) · 0.5 · au1 + 0.5 ·∆disc (.18)

As a result, a valid solution (µt2 ≥ 0) has to satisfy the inequality constraint which is presented in (.19).
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Dt2 ≤
2 · (Qdisc + ε) · (ar1 + au1 ) +Dt1 · au1 + ∆disc

2 · ar1 + au1
(.19)

Due to the discontinuous shape of the merit order for unrestricted suppliers, the production level of

unrestricted suppliers in t2 is held constant for a range ∆Dt2 = ∆disc

2·ar
1+au

1
if Dt2 increases. The lower

production level is compensated by restricted suppliers that increase their production level according to

the increase in Dt2. Due to the choice of qr ∗, the supply of unrestricted suppliers in t1 never exceeds the

discontinuity. Finally, as the intersection of Scenario1 and Scenario2 according to the inequalities (.15) and

(.19) exactly yields the same choice of qr ∗ (qr ∗ = Dt2−Qdisc− ε), there is no need to compare the resulting

costs in both scenarios due to the steadiness in the overlap.

Scenario3: Qdisc −Dt1 + qr = 0, µt2 = 0

Equation (.20) depicts the resulting term for µt1.

µt1 = (Dt1 −Qdisc) · (ar1 + au1 ) + (−0.5 ·Dt1 − 0.5 ·Dt2) · au1 − 0.5 ·∆disc (.20)

For this to be a valid solution (µt1 ≥ 0), inequality (.21) has to be applicable.

Dt1 ≥
2 ·Qdisc · ar1 + (Dt2 + 2 ·Qdisc) · au1 + ∆disc

2 · ar1 + au1
(.21)

This inequality is analogous to the respective one for Dt2 as there are symmetric relations.

Appendix.4.3. Case3: Dt1 − qr ≥ Qdisc + ε,Dt2 − qr ≥ Qdisc + ε

Case3 refers to a situation in which the non-convexity is relevant in both periods. The respective KKT

conditions may be formulated as presented in (.22).

(−1) · ∂Cr(q
r)

∂qr
+
∑
t

[
(−1) · ∂Cu,t(q

u
t )

∂qr
]
− µt1 − µt2 = 0

Dt1 − qr ≥ Qdisc + ε

Dt2 − qr ≥ Qdisc + ε

µt · (Qdisc + ε−Dt + qr) = 0 ∀ t

µt ≥ 0 ∀ t

(.22)

The respective marginal cost functions are presented in (.23).
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∂Cr(qr)
∂qr

= a0 + qr · ar1

∂Cu,t1(qut 1)
∂qr

= −0.5 · (a0 + (Qdisc + ε) · au1 + ∆disc)− 0.5 · au1 · (Dt1 − qr −Qdisc − ε)

∂Cu,t2(qut 2)
∂qr

= −0.5 · (a0 + (Qdisc + ε) · au1 + ∆disc)− 0.5 · au1 · (Dt2 − qr −Qdisc − ε)

(.23)

A further distinction of cases is applied.

1. Scenario1: µt1 = 0, µt2 = 0

2. Scenario2: µt1 = 0, Qdisc + ε−Dt2 + qr = 0

3. Scenario3: Qdisc + ε−Dt1 + qr = 0, µt2 = 0

4. Scenario4: Qdisc + ε−Dt1 + qr = 0, Qdisc + ε−Dt2 + qr = 0

As has been outlined before, Scenario4 does not play a role. Additionally, Scenario2 does not comply

with the definition of Case3 as this would mean that the unrestricted production level in t1 would be below

the discontinuity threshold.

Scenario1: µt1 = 0, µt2 = 0

Equation (.24) characterizes the optimal quantity choice (qr ∗).

qr ∗ = (Dt1 +Dt2) · au1 + 2 ·∆disc

2 · (ar1 + au1 ) (.24)

Once more, the term presented in Equation (.24) includes an upwards adjustment ( ∆disc

ar
1+au

1
) compared to

the case of continuous relations due to the non-convexity. Inserting Dt1 − qr ≥ Qdisc, condition (.25) may

be defined as a necessary condition with respect to the optimal solution.

Dt1 ≥
2 · (Qdisc + ε) · (ar1 + au1 ) +Dt2 · au1 + 2 ·∆disc

2 · ar1 + au1
(.25)

Scenario3: Qdisc + ε−Dt1 + qr = 0, µt2 = 0

Scenario3 yields the Lagrange multiplier which is defined in Equation (.26).

µt1 = −(Dt1 −Qdisc) · (ar1 + au1 ) + 0.5 · au1 · (Dt1 +Dt2) + ∆disc (.26)

This may be regarded as a valid solution (µt1 ≥ 0) if condition (.27) is fulfilled.

Dt1 ≤
2 · (Qdisc + ε) · (ar1 + au1 ) +Dt2 · au1 + 2 ·∆disc

2 · ar1 + au1
(.27)

30



These relations are basically similar to Case2. There is steadiness with respect to the optimal solution

(qr ∗) in the intersection of the scenarios considered. To sum up, the optimal supply of restricted suppliers

for different demand levels may be defined according to Equation (.28).

qr ∗ =



(Dt1+Dt2)
2 · au

1
ar

1+au
1

(a1)Dt2 ≤ 2·Qdisc·(ar
1++au

1 )+Dt1·au
1

2·ar
1+au

1

Dt2 −Qdisc − ε (a2) 2·(Qdisc+ε)·(ar
1+au

1 )+Dt1·au
1

2·ar
1+au

1
< Dt2 ≤ 2·(Qdisc+ε)·(ar

1+au
1 )+Dt1·au

1 +∆disc

2·ar
1+au

1

(Dt1+Dt2)
2 · au

1
ar

1+au
1

+ ∆disc

2·(ar
1+au

1 ) (a3) 2·(Qdisc+ε)·(ar
1+au

1 )+Dt1·au
1 +∆disc

2·ar
1+au

1
< Dt2, Dt1 ≤ 2·(Qdisc+ε)·(ar

1+au
1 )+Dt2·au

1 +∆disc

2·ar
1+au

1

Dt1 −Qdisc − ε (a4) 2·(Qdisc+ε)·(ar
1+au

1 )+Dt2·au
1 +∆disc

2·ar
1+au

1
< Dt1 ≤ 2·(Qdisc+ε)·(ar

1+au
1 )+Dt2·au

1 +2·∆disc

2·ar
1+au

1

(Dt1+Dt2)
2 · au

1
ar

1+au
1

+ ∆disc

ar
1+au

1
(a5)Dt1 >

2·(Qdisc+ε)·(ar
1+au

1 )+Dt2·au
1 +2·∆disc

2·ar
1+au

1

(.28)

Appendix.5. Decoding the Impact of Both Supply Curve Gradients on the Resulting Cost Implications

The cost factor which was derived in Equation (10) is illustrated in Figure .10. Different combinations

of ar1 and au1 are considered.

Figure .10: 3D plot for the resulting factor dependent on the parameterization of ar
1 and au

1

Appendix.6. Mathematical Proof (Proposition 2)

In this section, a situation in which the merit order of restricted suppliers exhibits non-convexities is

considered. The following proof is a condensed formulation as it is essentially similar to the first proof which
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is presented in Section Appendix.4.

As the non-convexity is exclusively relevant for restricted suppliers, there are essentially two cases which

have to be differentiated. In the first case (Case1 ), the discontinuity threshold is not exceeded by the

production level of restricted suppliers, whereas in the second case (Case2 ) the non-convexity has to be

considered. The non-convexity is addressed by a stepped shape with height ∆disc′ at the threshold quantity

Qdisc′ .

Appendix.6.1. Case1: qr ≤ Qdisc

The previous considerations may be transferred into the Lagrangian representation of the optimization

problem as presented in Equation (.29).

L = (−1) · (Cr(qr) +
∑
t

Cu,t(qr)) + µ · (Qdisc′ − qr) (.29)

The respective Karush-Kuhn-Tucker (KKT) conditions are defined in (.30).

(−1) · ∂Cr(q
r)

∂qr
+
∑
t

[
(−1) · ∂Cu,t(q

u
t )

∂qr
]

+ µ = 0

qr ≤ Qdisc′

µ · (Qdisc′ − qr) = 0

µ ≥ 0

(.30)

The relations identified within Case1 are similar to the respective ones in the first proof. Thus, Equa-

tion (.31) depicts the optimal solution.

qr ∗ = (Dt1 +Dt2)
2 · au1

ar1 + au1
(.31)

Equation (.31) yields a valid solution as long as the inequality constraint (.32) is satisfied (qr ∗ ≤ Qdisc′)

.

Dt1 +Dt2 ≤
2 ·Qdisc′ · (ar1 + au1 )

au1
(.32)

Appendix.6.2. Case2: qr ≥ Qdisc

In Case2 the production level of restricted suppliers exceeds the discontinuity threshold. The according

KKT conditions are defined in (.33).
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(−1) · ∂Cr(q
r)

∂qr
+
∑
t

[
(−1) · ∂Cu,t(q

u
t )

∂qr
]
− µ = 0

qr ≥ Qdisc′ + ε

µ · (Qdisc′ + ε− qr) = 0

µ ≥ 0

(.33)

The respective marginal cost functions are listed as equations in (.34).

∂Cr(qr)
∂qr

= a0 + ∆disc′ + qr · ar1

∂Cu,t(qr)
∂qr

= −0.5 · a0 − 0.5 · au1 · (Dt − qr)
(.34)

It is sufficient to consider two scenarios:

1. Scenario1: µ = 0

2. Scenario2: qr −Qdisc′ − ε = 0.

Scenario 1: µ = 0

The optimal quantity choice with respect to qr is derived in Equation (.35). The quantity is adjusted

downwards as additional supply of unrestricted producers compensates for the discontinuous step.

qr ∗ = (Dt1 +Dt2)
2 · au1

ar1 + au1
− ∆disc′

ar1 + au1
(.35)

Condition (.36) has to be satisfied to identify a valid solution.

Dt1 +Dt2 ≥
2 · (Qdisc′ + ε) · (ar1 + au1 ) + 2 ·∆disc′

au1
(.36)

Scenario2: qr −Qdisc′ − ε = 0

The scenario definition directly yields Equation (.37).

qr ∗ = Qdisc′ + ε (.37)

Condition (.38) has to be satisfied to guarantee a valid solution (µ ≥ 0).

Dt1 +Dt2 ≤
2 · (Qdisc′ + ε) · (ar1 + au1 ) + 2 ·∆disc′

au1
(.38)

To sum, up the optimal production level of restricted suppliers can be defined according to Equation

(.39).

33



qr ∗ =



(Dt1+Dt2)
2 · au

1
ar

1+au
1

(b1)Dt2 +Dt1 ≤ 2·(Qdisc′ +ε)·(ar
1+au

1 )
au

1

Qdisc∗ + ε (b2) 2·(Qdisc′ +ε)·(ar
1+au

1 )
au

1
< Dt1 +Dt2 ≤ 2·(Qdisc′ +ε)·(ar

1+au
1 )+2·∆disc′

au
1

(Dt1+Dt2)
2 · au

1
ar

1+au
1
− ∆disc

ar
1+au

1
(b3)Dt1 +Dt2 >

2·(Qdisc′ +ε)·(ar
1+au

1 )+2·∆disc′
au

1

(.39)

Appendix.7. Average Intraday Auction Trade Volumes

Figure .11: Average intraday auction trade volumes [MWh] in each hour of the day
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