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Abstract

This paper analyzes the integration of the American, European, and Asian natural gas markets over

the period 2016-2022, with a focus on how the demand shock caused by the COVID-19 pandemic and the

supply shock caused by geopolitical tensions in the European market affected this integration. We also

examine which regional market is leading in reflecting new information and shocks into the market price.

Our analysis indicates that the market integration process has been impacted by external shocks, leading to

a decrease in the degree of integration between the European and Asian markets. Additionally, we find that

the American market is no longer integrated with the other two markets after the supply shock, potentially

due to the US’s congested and fully utilized LNG infrastructure. Our analysis also shows that the gas price

differentials adjust asymmetrically in response to disturbances, suggesting that markets respond differently

to positive and negative shocks. Moreover, we show that the lead/lag relationship changes over time and

exhibits a dynamic behavior. Finally, we discuss the fundamental changes in the global gas market that

align with our empirical results.

Keywords: Natural gas markets; Market integration; Threshold Co-integration; Time-varying causality

JEL classification: C32, D40, D58, F21, F41, G13, G14, L95, Q35, Q41.

1. Introduction

International trade in natural gas is divided into three main regional markets: Asia, Europe, and North

America. This segmentation has been established due to the limited Liquefied Natural Gas (LNG)

transportation capacities among the three regions. However, the literature suggests that these markets are

gradually becoming more integrated (Neumann, 2009; Li et al., 2014). Market integration refers to the
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extent to which price shocks in one region are transmitted to other regions (McNew and Fackler, 1997;

Fackler and Goodwin, 2001). Investigating this hypothesis has implications for the security of supply, as

importers in one region must take into account market circumstances in other regions to ensure their own

security of supply.

The integration process among the three regional gas markets is facilitated by different drivers. First,

there has been surplus natural gas production in some regions, while the gas is consumed in other regions.1

This has necessitated the development of the international trade of gas, with LNG trade emerging as a

key solution to this problem. Meanwhile, decreasing shipping costs and growing export capacities have

significantly increased the technical and economic possibilities for trade between regions (IEA, 2020a). This

has made it more feasible and cost-effective for gas to be transported across longer distances, enabling

regional gas markets to become more integrated (e.g., Barnes and Bosworth, 2015; Li et al., 2014). Second,

many commercial agreements have transitioned from traditional oil-indexed pricing of long-term contracts

to an increase in the significance of hub-based pricing. For example, the Gas-on-Gas (G-o-G) competition2

share of global gas consumption increased from 31% in 2005 to 49% in 2021, whereas the oil indexation

share declined from 24% to 19% over the same period (IGU, 2021). The literature also suggests that the

relationship between oil and natural gas prices has become more volatile over time, revealing the decoupling

of the two commodities (Chiappini et al., 2019; Neumann, 2009). Meanwhile, the G-o-G has witnessed a

growing share of the spot and short-term transactions, where regional supply and demand balance changes

can encourage LNG exporters to redirect their spot volumes to other destinations (IGU, 2021). These changes

have increased the liquidity of the global gas market, introduced a powerful tool for spatial arbitrage, and

induced a growing presence of physical traders. Third, developing new exploration technologies for shale gas

has fueled a rapid increase in production in North America, commonly referred to as the shale gas revolution

(Melikoglu, 2014). As a result, the United States began exporting LNG in 2016 and has rapidly become a

major player in the global market, with export capacities increasing year over year.3 Fourth, international

trade is currently motivated by supply diversification strategies that involve a mix of supply from pipelines

and LNG. This is relevant because relying heavily on gas pipelines may lead to high transaction costs, such

as the increased risk of breaching natural gas supply contracts. (Farag and Zaki, 2021; Ritz, 2019).

1Figure A.1 in the Appendix .1 compares the development of gas production and consumption between 2012 and 2022.
It shows that production has significantly increased in export regions that do not have pipeline connections to the main gas
import regions. This has been made possible by the export of LNG.

2Gas-on-Gas (G-o-G) competition means that the gas price is determined by the intersection of supply and demand and can
be traded over different periods (daily, monthly, annually, or other periods). It comprises three mechanisms, namely trading
(where trades occur at a physical or notional hub), bilateral (several buyers and sellers provide the competitive element), Spot
and short-term LNG transactions (the price reflects the current supply-demand situation) (IGU, 2021; GIIGNL, 2022).

3For example, the U.S. expanded its LNG liquefaction terminals on a large scale from 16 bcm in 2016 to 131 bcm in 2022,
accounting for 62% of the global increase in LNG liquefaction capacity Rystad Energy (2023).

2



However, the COVID-19 pandemic and geopolitical tensions in Europe have introduced uncertainties

and disruptions in the demand and supply sides of the global gas market. In 2020, global natural gas

demand decreased by over 82 billion cubic meters (bcm), representing a 2% decline compared to 2019,

due to lockdown measures affecting economic activities, relatively mild temperatures during the winter

of 2019-2020, and increased power generation from wind in Europe (IEA, 2020a; Rystad Energy, 2023).

Consequently, underground and LNG storage facilities reached record highs at the end of winter 2019-2020.

This led to an oversupply in the global natural gas market, resulting in historic low gas prices and short-term

market uncertainty (IEA, 2020d). In the latter half of 2021, the European and Asian gas markets experienced

a price rally due to the resurgence of demand from the industrial and heating sectors as economic activity

rebounded and extreme weather events occurred. The situation was further exacerbated by geopolitical

tensions (GPT) between Russia and its European trading partners. Starting in September 2021, Russia

reduced daily gas flows to Europe to the level of nominations from long-term contracts, resulting in no

additional gas volumes being made available to the European spot market (Fulwood et al., 2022). Meanwhile,

a tightening LNG market resulted from planned and unplanned outages, unprecedented increases in charter

rates, and global LNG infrastructures being operated at maximum capacity (IEA, 2023). Accordingly,

these shocks are expected to impact the integration of the three regional gas markets by changing the

market fundamentals in each region, altering their relative bargaining power in the global LNG market, and

increasing the transaction costs4 that could impede arbitrage activity.

Against this background, our study aims to answer two main questions: (1) How have the demand shock

caused by the COVID-19 pandemic outbreak and the supply shock caused by GPT affected the global gas

market integration?; and (2) Which regional market is leading in reflecting new information and shocks into

the market price? Therefore, we aim to contribute to the literature in four ways. First, we analyze the global

gas market integration over the period 2016-2022, allowing us to consider recent dynamics in this market,

such as the rise of US LNG exports since 2016 and the market shocks caused by the COVID-19 pandemic and

GPT. Second, we provide new findings on how those shocks affect the long-run relationship by conducting

our empirical analysis over three sub-samples: the pre-pandemic period, the pandemic peak period, and the

global geopolitical tensions period.5 This allows us to examine how the degree of market integration has

changed over our sample. Additionally, we investigate qualitatively the fundamental changes and factors in

the global gas market that align with our empirical results. Third, we model the adjustment process using

the threshold co-integration technique. This enables us to understand how gas price differentials adjust

4The transaction costs do not only include transport costs, but they also include temporal and indirect expenses related
to the costs of searching for information, contract default risk, negotiating, legal duties insurance, policy uncertainty, and
financing the trading process (Ihle and von Cramon-Taubadel, 2008).

5The "pre-pandemic period" refers to the time before the COVID-19 pandemic, the "pandemic peak period" refers to the
time following the outbreak of the pandemic in March 2020, and the "global geopolitical tensions period" refers to the time
following the start of geopolitical tensions in Europe in September 2021.
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following a shock and to explicitly model the transaction costs that can impede arbitrage activity.6 Fourth,

we examine the dynamic causal relationships among the regional gas markets, which, to our knowledge,

has not been done before. Specifically, we investigate whether the bidirectional causality in the global gas

market could change over time and, thus, exhibit a dynamic behavior.

Our empirical analysis is based on the daily gas futures prices traded in the North American (Henry

Hub, hereafter HH), European (Title Transfer Facility, hereafter TTF), and East Asian (East Asian Index,

hereafter EAX) gas markets. We employ the threshold co-integration approach of Enders and Siklos (2001)

to analyze the long-run relationship and use the time-varying causality method introduced by Shi et al.

(2020) to examine the dynamic Granger causality relationship. Our findings can be summarized as follows.

First, the long-run relationship and the associated error correction process exhibit different results for each

sub-period and price pair. This implies that the market integration process in the global gas market has

been affected by the investigated shocks. For instance, our results show that the degree of integration

between the Asian and European markets decreased during the pandemic peak and global geopolitical

tensions periods. Additionally, the American market is no longer integrated with the other two markets in

the post-GPT period, possibly due to the congested and fully utilized LNG infrastructure. Second, we find

that price differentials of the three price pairs adjust asymmetrically following a shock. This means that the

adjustment process to the long-run equilibrium depends on whether the gas price spreads are increasing (i.e.,

widening) or decreasing (i.e., narrowing) from a certain threshold value, which we find to be relatively high

in the second and third sub-samples. This finding suggests that transaction costs in the global gas market

have increased following the respective shocks. Third, the Granger causality findings demonstrate that the

price discovery process in the global gas market is dynamic. This means that the leading role played by each

gas benchmark may change over time, depending on specific events or shocks in the corresponding region.

The rest of the paper is structured as follows. Section 2 provides an overview of the relevant literature.

Section 3 outlines a conceptual background of our empirical analysis. Section 4 explains our econometric

approach, and Section 5 describes our data. While Section 6 presents our results, Section 7 discusses

qualitatively what has changed in the global gas market that would be consistent with these results. Finally,

Section 8 concludes

2. Literature Review

The integration of the global gas market has been the subject of several studies, which suggest different

levels of integration depending on the time period studied. These studies primarily rely on price data analysis

to measure the degree of market integration, hypothesizing that a higher degree of convergence between gas

6See section 3.1 for more clarification on the rationale behind considering non-linearities in a spatial market integration
setting.
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prices signifies stronger spatial arbitrage and market integration. The most commonly used methodological

approach to test this hypothesis is the co-integration technique, which examines the existence of a long-run

relationship between prices.7

Siliverstovs et al. (2005) investigate the integration of North American, European, and Asian gas markets

using monthly prices from 1990 to 2004. Their co-integration analysis provides evidence of integration

between the Asian and European markets, while the North American market remains decoupled. The authors

suggest that the limited effects of inter-continental trade may have contributed to the large market power

of regional suppliers, thus hindering the integration of the North American market. A similar conclusion is

also obtained by Li et al. (2014), who use a multivariate approach aimed at detecting convergence between

the three markets from 1997 to 2011. They claim that the integration between the Asian and European

markets is probably driven by the underlying pricing mechanism that is tied contractually to the oil price.

Using the Kalman Filter technique, Neumann (2009) examines the impact of intercontinental arbitrage on

price convergence in the Atlantic Basin. She uses daily price data from the UK (i.e., NBP), Belgium (i.e.,

Zeebrugge), and the US (i.e., Henry Hub) from 1999 to 2008. The findings show that the time-varying

market integration coefficient moves to one for the NBP-Henry Hub and Zeebrugge-Henry Hub pairs. The

study concludes that increasing the liquefaction capacities in either Europe or North America will enhance

further arbitraging opportunities in the Atlantic basin.

However, Nick and Tischler (2014) point out that linear co-integration models may not accurately

represent the dynamics of arbitrage in the global gas market, as they do not consider transaction costs,

which can hinder arbitrage activity. Therefore, they investigate the degree of integration between Henry

Hub and NBP through a threshold co-integration approach that can model these transaction costs. The

results find strong evidence in favor of non-linearity in the investigated sub-samples (2000-2008 &

2009-2012), with high threshold estimates in the latter period indicating obstacles to arbitrage. More

recently, Chiappini et al. (2019) use a non-linear co-integration approach with daily price data over the

period 2004-2018, confirming the asymmetric convergence in the global gas market. Their analysis also

shows that the degree of integration between the American and European regions has increased, whereas

this is not the case between the American and Asian markets.

Our analysis is also related to another strand of literature that has explicitly focused on the analysis of

the price discovery process. To date, few studies have examined this question in the natural gas markets,

limiting their analysis to the inter-temporal context. For example, Nick (2016), Dergiades et al. (2012), and

Gebre-Mariam (2011) rely on the theory of storage, which states that there is a relationship between spot

and futures markets for storable commodities. Thus, they argue that the two markets are connected through

7For a detailed review of the different empirical methods employed to examine the degree of spatial integration of natural
gas markets, see Dukhanina and Massol (2018).

5



transactions of market participants who optimize their portfolios inter-temporally. They conclude that price

discovery generally occurs in the futures market. Nevertheless, empirical research on price discovery along

the horizontal dimension of the gas market is rather scarce. The only study that focuses on this question so

far is Park et al. (2008), analyzing the price discovery among eight North American natural gas spot market

prices using the Vector Error Correction Model (VECM).

Three main points stand out from this literature review. First, the conclusion on the integration of the

regional gas markets varies depending on the time period studied, reflecting that the market integration

process in the gas market is time-varying. Second, LNG trade provides more opportunities for spatial

arbitrage, leading to greater price convergence among the three regional markets. However, accurately

modeling this convergence requires considering transaction costs and asymmetric dynamics in the

adjustment process. Third, the price discovery process in the global gas market remains poorly examined

and understood, particularly given recent dynamics in the market. Consequently, it remains unclear which

regional benchmark plays the dominant role in the global gas market.

3. Conceptual Background

Before proceeding with our empirical analysis, we first provide a conceptual background of the market

integration hypothesis and the gas pricing mechanisms. We incorporate these definitions in the remainder

of the paper.

3.1. Market integration hypothesis

In the context of multiple markets for a certain commodity, market integration refers to how new

information and shocks in one market are transmitted to the prices of other markets via an arbitrage

mechanism. The definition of market integration was first introduced by Cournot, who stated that it is "an

entire territory of which the parts are so united by the relations of unrestricted commerce that prices take

the same level throughout with ease and rapidity" (Cournot, 1838). Empirical studies have examined the

market integration hypothesis along vertical (i.e., prices at different stages of the supply chain), horizontal

(i.e., prices between locations), and inter-temporal (i.e., prices of spot and futures markets) dimensions

using co-integration methods and related forecasting techniques (e.g., impulse response functions) (Ihle and

von Cramon-Taubadel, 2008; Roman and Žáková Kroupová, 2022). Our analysis focuses on the horizontal

dimension of market integration, which is theoretically motivated by the Enke-Samuelson-Takayama-Judge

spatial equilibrium model (Enke, 1951; Samuelson, 1952; Takayama and Judge, 1971). More concretely,

this model provides two equilibrium conditions, which can be expressed as follows:

PA
t − PB

t ≥ τ (1)
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Equ.1 represents two alternative states of the market. The first one, which corresponds to strict equality,

refers to the case where the price in two spatially separated markets should not differ by more than the

transaction costs between them. The second state, which corresponds to inequality, refers to the case where

rational traders will engage by shifting supply from market B to market A, causing PA
t to decrease and PB

t

to increase. However, this state will only be achieved if the LNG infrastructure in market A is not congested.

In other words, there are no arbitrage opportunities in the second case unless the LNG terminals are not

fully utilized in the market with the higher price.8 However, it should be noted that the price transmission

process between Asia and Europe differs from that between the US and Asia and Europe. While the

price transmission can occur through physical trade facilitated by a third party or a swing supplier9, the

transmission between American and the other two prices can happen through direct physical trade from the

American to the European and Asian markets.

However, it should be noted that trade is neither necessary nor sufficient to achieve spatial market

integration. This is because there are other mechanisms, such as information exchange among traders and

suppliers (i.e., trader networks), through which price transmission may occur when trade flows do not exist.

Therefore, access to new market information can affect the price expectations of spatial arbitrageurs and

eliminate price differences across markets, even in the absence of physical trade activities (Stephens et al.,

2012; Jensen, 2007).

3.2. Gas Pricing Mechanisms

The pricing mechanism is one of the key instruments in the gas market because it determines how

changes in market fundamentals can be reflected in the price levels. The predominant price mechanisms in

the gas market include oil price indexation and hub indexation (gas-to-gas competition). According to the

oil indexation, natural gas prices are contractually linked to crude oil prices (mainly in Asia) or refined fuels

prices (mainly in Europe). Based on the hub indexation, the gas price is competitively determined by the

interplay between supply and demand. Other gas price mechanisms include bilateral monopoly (i.e., the

price is determined bilaterally between a large seller and a large buyer) and different regulated gas prices

(Hafner and Luciani, 2022; IGU, 2021).

The pricing mechanism in each region has distinctive characteristics. While the North American market

totally follows hub-based pricing, the European and Asian markets historically relied on oil indexation. The

rationale behind the oil indexation mechanism was that oil and natural gas were substitutes, especially in

the electricity sector and heavy industries (Corbeau et al., 2016). However, changing regulatory settings and

8This was the case in the summer months of 2022 in the European gas market. Despite the relatively high price in the
latter market, there were limited arbitrage opportunities because the LNG regasification terminals (e.g., the Gate terminal)
were operating at their maximum capacity.

9A swing supplier, such as Qatar, is able to respond flexibly to unexpected shocks in the market and can reroute shipments
based on current market conditions (Kim et al., 2020).
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trading developments have made natural gas not directly compete with oil (Simkins et al., 2022). Therefore,

the transition to a hub-based pricing mechanism has recently increased in Northwest Europe and East

Asia. The transformation in Europe is basically motivated by market liberalization and competition policies

(Simkins et al., 2022). Also, some East Asian countries, such as Japan, Singapore, and China, have already

started to switch from the dominant oil-indexation mechanism to establish their own regional gas pricing

benchmark (Wang et al., 2022; Shi and Variam, 2016). In this study, the scope of our analysis is limited to

the hub-based pricing of natural gas. Specifically, we analyze the market integration hypothesis among the

three trading hubs in the North American, European, and East Asian Markets.

4. Methodology

Our analysis primarily relies on the co-integration approach, commonly used to investigate price

relationships. When two non-stationary price series have a stationary linear combination, they are

considered co-integrated, indicating that the difference between the two price series is restricted by a

long-term relationship resulting from arbitrage activities between markets. A primary co-integration

method is the two-step procedure developed by Engle and Granger (1987), which assumes a symmetric

relationship between variables. However, adjustments to the long-run equilibrium due to positive and

negative divergences may take place at different speeds and, accordingly, can be asymmetric. This means

that the conventional Engel and Granger co-integration test can be misspecified when the adjustment

process is asymmetric or nonlinear.

To account for this nonlinearity, Enders and Granger (1998) and Enders and Siklos (2001) extend the

threshold-autoregressive (TAR) and momentum-TAR tests for unit roots to a multivariate context, allowing

for threshold co-integration testing. This approach has been widely used by several studies in the literature

to test for asymmetric co-integration between energy price series (e.g., Hammoudeh et al., 2008; Ghoshray

and Trifonova, 2014; Chiappini et al., 2019). In this study, we apply the threshold co-integration approach to

evaluate the price dynamics in the global natural gas market, allowing for the assessment of the asymmetric

price transmission process.

4.1. Linear co-integration analysis

We concentrate on examining the daily futures prices for three regional gas markets, North America,

Europe, and East Asia. To determine their nonstationarity and integration order, we conduct three

different unit root tests, namely Augmented Dickey–Fuller (ADF), Phillips–Perron (PP), and

Kwiatkowski–Phillips–Schmidt–Shin (KPSS). If these tests indicate that the price series have a unit root,

then the co-integration analysis is applied to assess their long-run relationship.

Engle and Granger (1987) propose a two-step approach that focuses on the time series property of

the residuals from the long-term equilibrium relationship. Suppose PA
t and PB

t are price series that are
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stationary in the first difference (i.e., integrated of order one or I(1)). The first step is to estimate the

following simple bi-variate equation using the Ordinary Least Squares (OLS):

PA
t = β0 + β1P

B
t + εt (2)

where PA
t and PB

t are two gas price series in their logarithmic transformation, β1 is the long-run coefficient

of price transmission between the two prices, β0 measures the margin between them, and εt is the error

term. We estimate three sets of gas price pairs: (A,B) = (TTF, EAX); (HH, TTF); and (HH, EAX). In the

second step, the estimated ε̂t derived from Equ.2 are used to estimate the following procedure:

△ε̂t = ρε̂t−1 +

P∑
i=1

ϱi△ε̂t−i + µt (3)

where ε̂t represents a divergence from the long-run relationship. If the null hypothesis of ρ = 0 is

rejected, this means that ε̂t is stationary and the two price series PA
t and PB

t are linearly co-integrated.

This is done by applying the Dickey-Fuller unit root test. The number of lags in Equ.3 is chosen using the

Akaike Information Criterion (AIC) to avoid serial correlation in the residuals.

4.2. Threshold Co-integration analysis

The above Engle-Granger two-stage approach assumes that prices adjust symmetrically to deviations

from the equilibrium, regardless of whether those deviations are positive or negative. As an alternative, the

Enders and Siklos (2001) model extends the Engle and Granger (1987) co-integration approach by letting

the divergence from the long run behave asymmetrically as follows:

△ε̂t = ρ1Itε̂t−1 + ρ2(1− It)ε̂t−1 +

K∑
i=1

ϑi△ε̂t−i + µt (4)

It = 1 if ε̂t−1 ≥ τ ;and 0 otherwise (5a)

It = 1 if △ε̂t−1 ≥ τ ;and 0 otherwise (5b)

where It is the Heaviside indicator, the coefficients ρ1 and ρ2 refer to the rate at which positive and

negative divergences (or shocks) are adjusted, respectively, and K is the number of lags that is selected by

the AIC to account for serially correlated residuals.

The Heaviside indicator It can be specified with two different definitions of the threshold variable: either

the lagged residual (ε̂t−1) or the change of the lagged residual (△ε̂t−1). Accordingly, Equations 4 and 5a

refer to the Threshold Autoregression (TAR) model, whereas Equations 4 and 5b represent the Momentum

Threshold Autoregression (MTAR) model. While the TAR model allows the degree of autoregressive decay

to rely on the state of the residuals, the MTAR model allows the residuals to display differing amounts of

9



autoregressive decay depending on whether they are increasing or decreasing. Thus, the latter can consider

steep variations in the residuals when the adjustment is believed to exhibit more momentum in one direction

than the other (Enders and Granger, 1998).

The threshold value (τ) can be set to zero since the regression deals with the residual series. Alternatively,

Chan (1993) suggests a search method to obtain a consistent estimate of the threshold value that requires

multiple steps. First, we sort the threshold variable (i.e., ε̂t−1 or △ε̂t−1) in ascending order. Second,

we apply a trim to the upper and lower end of the threshold variable to obtain a reasonable number of

observations in each regime. For example, if we apply a trim of 15 %, this means that the middle 70% values

of the sorted threshold variable are used as potential threshold values. Third, the TAR or MTAR model

is estimated with each potential threshold value and the sum of squared residuals (SSR) for each trial is

estimated. Finally, the threshold value resulting in the lowest SSR is considered a consistent estimate of the

threshold τ .

According to the above specifications, we estimate four models: 1) TAR - Equ.5a with (τ) = 0; 2)

consistent TAR — Equ.5a with (τ) estimated; 3) MTAR — Equ.5b with (τ) = 0; and 4) consistent MTAR

— Equ.5b with (τ) estimated. we do not assume a particular specification for each price pair. Therefore,

following Enders and Siklos (2001), we choose the appropriate adjustment mechanism for each price pair

using the model selection criteria of AIC and BIC. Accordingly, the model with the lowest information

criteria will be used for the respective price pair.

We obtain evidence on the asymmetric adjustments in the long-term relationship from two tests. First,

we employ an F-test to examine the null hypothesis of no co-integration (H0 : ρ1 = ρ2 = 0) against

the alternative hypothesis of long-run relationship with either TAR or MTAR threshold adjustment. We

use the critical values provided by Enders and Siklos (2001) because this test does not follow a standard

distribution. Second, we examine the null hypothesis of the symmetric adjustment process toward the long-

run equilibrium (H0 : ρ1 = ρ2) using a standard F-test. If the null hypothesis is rejected, we conclude that

there is an asymmetric adjustment process.

4.3. Asymmetric error correction model with threshold co-integration

The Error Correction Model (ECM) considers each variable as endogenous and consists of two elements:

a linear combination of past values of all variables in the system; and an error correction term, which is

the one period-lagged error of the long-run equilibrium relationship between each price pair. The ECM is

described as follows:

△Yt = λ+ δECTt−1 +

k∑
l=1

βk△Yt−k + ϵt (6)
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where Yt is a two-dimensional price vector containing the pairs of gas price series (i.e., (TTF, EAX);

(HH, TTF); and (HH, EAX)). If there is any deviation from the equilibrium position, in the price differential

of a natural gas pair, δ reveal the time taken (in days) for the equilibrium adjustment to occur.

If there is a threshold co-integration between the price series, the asymmetric Error Correction Model

(ECM) can be estimated to analyze differential adjustments to positive and negative short-term deviations

as follows (Enders and Granger, 1998; Enders and Siklos, 2001):

△Yt = λ+ δ+ECT+
t−1 + δ−ECT−

t−1 +

k∑
l=1

βk△Yt−k + ϵt (7)

The error correction term in Equ.7 is constructed based on the threshold co-integration regressions in

Equ.4, 5a, and 5b. Moreover, this error correction term definition considers the asymmetry of price response

to deviations from long-term equilibrium and incorporates the impact of threshold co-integration through

the Heaviside indicator in Equ.5a and 5b. For the TTF-EAX model, the high (low) regime is associated

with the time period when positive (negative) divergences in the long-run equilibrium result from increases

(decreases) in TTF or decreases (increases) in EAX. For the HH-TTF and HH-EAX models, the high regime

corresponds to the time period when positive (negative) divergences in the long-run equilibrium result from

increases (decreases) in HH or decreases (increases) in TTF and EAX.

4.4. Granger causality relationship

We use Granger causality tests to examine the lead-lag relationship in the global gas market. This

allows us to infer whether one market helps forecast the pricing of the other. For example, suppose there

is a uni-directional causality running from TTF to EAX. In that case, past values of TTF should contain

information that helps predict EAX prices beyond the information contained in past values of EAX alone.

In such a case, the lead-lag relationship between the two markets can be defined, leading to opportunities

for abnormal returns in the global gas market.

To account for the dynamic behavior of this hypothesis, we employ the time-varying Granger causality

test developed by Shi et al. (2020). This test allows us to determine if the causal relationships change over

a specified time period by defining the starting and ending dates of any episodes of causality. Additionally,

the test accommodates non-stationary variables in the Vector Auto-Regressive (VAR) model following the

approach of Toda and Yamamoto (1995) and Dolado and Lütkepohl (1996). To obtain a sequence of test

statistics over time, we utilize the rolling window algorithm (Swanson, 1998). We also specify the model using

heteroscedasticity-robust test statistics and calculate the critical values through bootstrapping procedures

with 200 replications. For brevity, we move the detailed description of this test to Appendix .3.

4.5. Conducting the analysis over sub-samples

As mentioned above, the global natural gas market experienced two major shocks during the investigated

period, namely the COVID-19 pandemic at the beginning of 2020 and geopolitical tensions at the end
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of 2021. These shocks are likely to have impacted the price transmission process, affecting the market

fundamentals in each regional market, changing the transaction costs, and influencing market regulation in

the respective regions. Not accounting for those breaks in the time series can lead to misleading results when

analyzing the cointegration of the three regional gas markets over the period of 2016-2022. Additionally,

the threshold cointegration approach utilized in this study is based on the premise of constant transaction

costs throughout the analyzed period. However, this assumption may be overly restrictive in light of the

current market dynamics. Moreover, market integration theory states that the existence of demand and

supply shocks makes the validity of the integration process time-varying (Dukhanina and Massol, 2018;

Spiller and Huang, 1986). Therefore, to explore how those shocks have affected the long-run relationship in

the global gas market, we conduct our analysis over three subsamples: the pre-pandemic period (01/01/2016

- 20/03/2020), the pandemic peak period (23/03/2020 - 24/09/2021), and the global geopolitical tensions

period (27/09/2021 - 31/10/2022). We also gain insight from the co-integration test of Maki (2012) over

the entire period of 2016-2022, which suggests that these events have impacted the long-term relationship

in the global gas market. For brevity, we move the results of this test to Appendix .2.

5. Stylized Facts

Our empirical analysis uses daily gas price series for the one-month ahead futures for the North American,

European, and Asian gas markets. These prices are quoted for delivering a specified quantity of natural

gas, with a delivery period of one month in the trading futures contract. The price data are collected for

the respective trading hubs in the three regions: HH, TTF, and EAX10 gas futures from 01/01/2016 to

31/10/2022. They are measured in USD per million British Thermal Unit (MMBtu).

Figure 1 presents the trend of the three gas price series from 2016 to 2022. The graphs demonstrate

that the three gas prices exhibit a comparable pattern throughout the period under examination. It is

clearly visible that there is a substantial decrease in prices in March 2020, likely caused by the outbreak

of COVID-19 and its impact on natural gas demand. This was further exacerbated by historically mild

temperatures.11 Accordingly, the global natural gas market was oversupplied, which prompted the oil and

gas industry to implement cost-saving measures and postpone investments to compensate for the substantial

decline in revenue (IEA, 2020a). Figure 1 also shows that natural gas prices began to increase again in the

second half of 2021. This can be attributed to the resurgence of demand from the industrial and heating

sectors as economic activity rebounds and extreme weather events occur. It is also clear that while the

10The EAX price is an average of the front-month prices for the East Asian Countries, namely Japan, China, South Korea,
and Taiwan. We refer the reader to this hyperlink for more information on this index: EAX index.

11For example, the decreased demand for heating in the residential and commercial sectors due to milder temperatures led
to a drop of more than 3% year-over-year during the first quarter of 2020. This resulted from a decrease of over 5% in heating
degree days across the main regions where gas is consumed (IEA, 2020e).

12

https://www.icis.com/explore/resources/news/2021/02/25/10610468/buyers-question-indexation-amid-asian-spot-lng-volatility/


three price series follow a similar pattern of fluctuation, the HH series consistently remains lower than both

the EAX and TTF indices throughout the entire period, with this gap becoming particularly pronounced

towards the end of the period. This is because the European and Asian markets rely on international trade

and the availability of flexible gas volumes (i.e., especially in Europe, due to the decreasing indigenous

production). Additionally, the United States is a net exporter of natural gas, which contributes to the low

price levels near the production costs. Despite this general trend, the data reveal that the HH price was

relatively higher than the TTF and EAX prices between the end of April and mid-June 2020. This can be

attributed to a confluence of factors, including the economic slowdown caused by the COVID-19 pandemic,

an uptick in LNG deliveries to Europe and Asia, and high levels of European gas inventories (IEA, 2020d).

Figure (1) Daily natural gas prices from Jan-2016 to Oct-2022 (USD/MMBTU)
Source: Own construction

Table 1 provides summary statistics for the daily price series and gives initial insights into the overall

behavior of the three gas prices over three distinct periods: pre-pandemic, pandemic peak, and global

geopolitical tensions12. Three main insights stem from this table. Firstly, a comparison of the statistical

measures of the three price series across the three periods shows a clear difference. Specifically, the mean,

variance, and coefficient of variation (CV)13 for TTF, EAX, and HH all exhibit a significant increase from

pre-pandemic to pandemic peak and global tensions, with the most notable increases seen in the latter

period. Secondly, the skewness of the gas prices has increased over time, indicating that the distribution

of prices has become more asymmetrical. Specifically, there is an excess of high-priced observations in the

global tensions period, which deviates from the symmetrical distribution of a normal distribution. Similarly,

the kurtosis increased, indicating that the data had more extreme values than a normal distribution would

have. This suggests that the gas prices were more volatile than expected. The Jarque-Bera test confirms

12Note that we use "global geopolitical tensions" or "global tensions" interchangeably.
13The coefficient of variation (CV) is a metric for comparing the relative variability of different data sets. It is obtained by

dividing the standard deviation by the mean and multiplying the result by 100, which expresses the outcome as a percentage.
In the context of Table 1, the CV for TTF, EAX, and HH reflects the degree of variation in gas prices across the three periods,
with a higher CV indicating a greater level of volatility.
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that the data does not conform to a normal distribution, which is consistent with these observations. Lastly,

there are discernible distinctions between the TTF and EAX time series compared to the HH time series.

The mean, variance, and CV for TTF and EAX are consistently higher than those for HH, and this trend

is particularly pronounced in the post-GPT periods.

Table (1) Summary statistics

Pre-pandemic Pandemic peak Global Geopolitical Tensions
TTF EAX HH TTF EAX HH TTF EAX HH

Mean 5.650 6.868 2.785 6.829 7.806 2.828 39.177 34.843 6.188
Variance 2.284 5.167 0.239 25.117 28.026 0.634 216.752 97.661 2.851
CV (%) 26.746 33.093 17.552 73.384 67.822 28.164 37.579 28.362 27.288
Skewness 0.577 0.699 0.340 1.552 1.340 0.842 1.301 1.151 0.291
Kurtosis 2.910 2.681 4.127 5.463 4.713 3.850 4.254 4.728 1.941
JB (test statistic) 61.550 94.300 79.517 259.079 166.866 58.696 96.955 96.279 16.958
JB (p-value) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Number of obs. 1101 1101 1101 396 396 396 279 279 279
Note: The data for this table was constructed by the authors. Note that CV stands for the coefficient of
variation, which measures the relative variability of the natural gas price series. It is calculated as the ratio of
the standard deviation to the mean, expressed as a percentage. Additionally, the Jarque-Bera (JB) test was
used to determine if the data is normally distributed. The null hypothesis of the JB test is that the sample
data is normally distributed.

6. Empirical Results

In this section, we analyze the impact of the pandemic and geopolitical tensions on market integration

by conducting a comprehensive examination of three subperiods: pre-pandemic, pandemic peak, and global

geopolitical tensions. The steps of our analysis include assessing the stationarity property of the three price

series, examining linear and non-linear co-integration relationships, estimating error correction models, and

evaluating the time-varying Granger causality hypothesis. Through this approach, we can gain a better

understanding of the degree and dynamics of market integration before and after the identified shocks.

6.1. Unit root tests

A necessary condition for conducting cointegration analysis is the presence of a unit root, which

indicates that the price series are integrated of order I (1). To ensure reliable outcomes, we conducted

three unit root tests: the Augmented Dickey–Fuller (ADF), Phillips–Perron (PP), and

Kwiatkowski–Phillips–Schmidt–Shin (KPSS). The null hypothesis for ADF and PP states that the data

series has a unit root, with the alternative being that it is stationary. Conversely, the null hypothesis for

KPSS indicates that the variable is stationary.14 Table 2 summarizes the results of the tests for the levels

and first differences of the three price series in each sub-period. The results indicate that the three price

series are not stationary in levels but are stationary in first differences at the 1% significance level. Thus, it

is concluded that the three gas prices are I(1).

14We conduct these additional tests to confirm the univariate properties of the three price series. For a detailed review of
the employed unit root tests, please see Maddala and Kim (1998).
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Table (2) Time series properties of the data

ADF Philips Perron KPSS
Period Levels First difference Levels First difference Levels First difference

EAX Pre-pandemic -0.8894 -14.160* -0.906 -29.700* 2.139* 0.117
Pandemic peak -2.714 -11.721* -2.492 -16.491* 0.426* 0.592
Global tensions -2.427 -11.360* -2.811 -14.613* 0.329* 0.062

TTF Pre-pandemic -0.326 -24.090* -0.0313 -34.215* 2.283* 0.137
Pandemic peak -2.222 -13.823* -2.491 -19.304* 0.350* 1.303
Global tensions -2.949 -8.056* -2.098 -15.359* 0.248* 0.094

HH Pre-pandemic -1.738 -19.167* -1.957 -35.082* 1.728* 0.111
Pandemic peak -1.956 -14.749* -1.954 -20.863* 0.479* 0.856
Global tensions -1.926 -12.142* -1.801 -17.643* 0.414* 0.121

Notes: The lag selection for ADF and KPSS tests is based on Akaike Information Criteria (AIC). The test equations are estimated,
including an intercept and trend for the variables in levels, whereas they include only an intercept for the first differences. * represents
the 1% significance level. The three series are expressed in logarithms. The Critical values are obtained from MacKinnon (2010). For
brevity, we move them to Table ?? in the Appendix. "Global tensions" stands for the global geopolitical tensions period.

6.2. Co-integration analysis

Since the time-series properties of the gas prices indicate that they are stationary in their first differences,

a co-integration test can be applied to examine the long-run relationships between them. The analysis

estimates both the linear and non-linear (threshold-based) co-integration relationships between pairs of the

three gas prices.

In the context of linear co-integration, we use the two-step approach proposed by Engle and Granger

(1987). This approach involves estimating the long-run relationship for each price pair in the first step,

according to the specification in Equation 2. Then, we use the residuals obtained from this regression

to perform a unit root test as specified in Equation 3. However, a significant challenge in the Engle-

Granger method is the selection of dependent and independent variables for the regression, which can lead

to inconsistent conclusions. To address this issue, we use the asymptotic test proposed by Phillips and

Ouliaris (1990).15 By combining the Engle-Granger approach with the Phillips-Ouliaris test, we obtain a

more robust assessment of linear co-integration.

Table 3 presents the results of the two-step analysis. The first two columns report the estimated

coefficients, while the last two columns provide the test statistics for the residuals’ order of integration.

Our results show that the TTF-EAX gas price series are linearly co-integrated over the three sub-periods,

whereas the HH market is co-integrated with the other two markets only in the first two sub-periods,

suggesting that the American market decoupled from the European and Asian markets in the global

geopolitical tensions period. Additionally, our findings indicate a decrease in the cross-price elasticity

coefficient (β1) for the pandemic peak and global tensions periods, suggesting a reduction in the global gas

15This test comprises two residual-based tests: the variance ratio test (Zt) and the multivariate trace statistics (Zα). These
tests are residual-based co-integration tests that use scalar unit root tests to compare a null hypothesis of no co-integration to
the alternative of co-integration. The two tests are based on residuals of an AR(1) equation. However, Zα has an advantage
over Zt in being invariant to normalization and providing consistent results regardless of the dependent variable choice.
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market’s degree of integration. Furthermore, the estimated β1 coefficient for HH-TTF and HH-EAX is

smaller than that of TTF-EAX, indicating that HH moves in the long run with TTF and EAX, but its

levels might be significantly different in the short run due to structural differences in the North American

market (i.e., it is a highly competitive market and oversupplied due to the shale gas revolution, resulting in

lower price levels). Lastly, we observe that the constant coefficient (β1) for the three price pairs varies

among the three sub-samples, with an increasing value in the second and third sub-samples, implying a

widening margin between the price pairs during those periods.

Table (3) Testing for linear cointegration

OLS estimation results Testing for linear co-integration
Period β0 β1 ADF test (Zt, Zα)

EAX - TTF
Pre-pandemic -0.077 [0.021] 1.150 [0.012] -6.078*** (-5.940, -68.260)***
Pandemic peak 0.292 [0.017] 0.923 [0.009] -5.137*** (-4.919, -45.596)***
Global tensions 1.137 [0.098] 0.659 [0.027] -4.963*** (-5.054, -48.366)***

HH - TTF
Pre-pandemic 0.210 [0.025] 0.471 [0.014] -3.330** (-3.697, -26.893)**
Pandemic peak 0.402 [0.014] 0.357 [0.008] -3.352** (-3.656, -24.004)**
Global tensions 0.425 [0.160] 0.377 [0.044] -1.923 (-1.965, -07.729)

HH - EAX
Pre-pandemic 0.299 [0.023] 0.379 [0.012] -3.238** (-3.482, -23.995)**
Pandemic peak 0.310 [0.016] 0.376 [0.008] -3.487** (-3.605, -22.948)**
Global tensions 0.961 [0.214] 0.234 [0.061] -1.532 (-1.635, -05.323)

Note: Standard errors of the estimated coefficients are given in the squared brackets. The CV for Zt/Za of the Phillips and Ouliaris
(1990) are: CV(1%):-3.962/-28.322; CV(5%): -3.365/-20.494; CV(10%):-3.066/-17.039. The critical values for the ADF test are:
CV(1%):-3.936;CV(5%):-3.358;CV(10%):-3.060. Critical values of both tests are obtained from MacKinnon (2010). A rejection of
the null hypothesis of a unit root at the 1 and 5 percent significance level is denoted by *** and ** and, respectively. "Global
tensions" stands for the global geopolitical tensions period.

The Engle-Granger approach assumes symmetric price transmission between markets, meaning that it

is independent of the magnitude of the deviation from the long-run equilibrium. Therefore, this approach

is misspecified when the adjustment process to the equilibrium level is non-linear. To account for this

asymmetry, we conduct a threshold co-integration analysis using the consistent TAR and M-TAR models

(Enders and Siklos, 2001), as explained in section 4. We estimate the TAR and M-TAR models and their

consistent counterparts for each price pair over the three sub-periods. Then, we choose between the models

using model selection tests proposed by Enders and Siklos (2001). Our analysis shows that the consistent

M-TAR model is optimal for modeling the adjustment mechanism of EAX-TTF and HH-EAX, while the

consistent TAR model is optimal for HH-TTF. Detailed results of these selection criteria are presented in

the Appendix.

Table 4 provides the results of the threshold co-integration test. Based on the information criteria,

our analysis suggests that the appropriate adjustment mechanism for the EAX-TTF and HH-EAX price

pair is the M-TAR model. In contrast, the appropriate mechanism for the HH-TTF pair is the TAR model.

Column (1) presents the estimated threshold values, which reflect the change in the spread required to adjust

asymmetrically back to the long-run position. We find that these threshold estimates also differ across the
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sub-periods considered in our analysis. This finding suggests that the transaction costs in the global gas

market have been affected by the uncertainty and risk associated with the two investigated shocks, leading

to changing threshold values. Therefore, analyzing the sub-periods helps us account for these changes in

transaction costs and their effect on the price transmission process. Columns (2) and (3) show the estimated

parameters of ρ1 and ρ2 as specified in equation 4. Note that ρ1 represents positive deviations from long-run

equilibrium, whereas ρ2 reflects the negative deviations. If the absolute value of ρ1 is greater (smaller) than

that of ρ2, this reveals that faster convergence occurs with positive (negative) deviations from the long-run

equilibrium. For example, the results for the TTF-EAX price pair in the pre-pandemic period show that

|ρ1| > |ρ2|, suggesting that positive deviations from the long-run (i.e., resulting from increases in TTF or

decreases in EAX) would be eliminated faster than the negative deviations (i.e., resulting from increases in

EAX or decreases in TTF).16 Column (4) gives the first F-statistic for the null hypothesis (H0 : ρ1 = ρ2 = 0)

against the alternative of cointegration with either TAR or M-TAR threshold adjustment. The estimated

results indicate that the test statistics exceed the corresponding critical values for the EAX-TTF price pair

in all three sub-periods and for the HH-EAX and HH-TTF pairs in the first two periods. Column (5) reports

the results of testing the null hypothesis of symmetric adjustment (H0 : ρ1 = ρ2). The results suggest that

the adjustment process in the global gas market is asymmetric, and, accordingly, traders respond differently

depending on the direction the spread is moving from its long-run equilibrium.

Overall, the results indicate non-linear co-integration between the EAX-TTF price pair in all three

periods, meaning that the adjustment process to the long-run equilibrium depends on whether the spread

is widening or narrowing. Specifically, we consistently observe that |ρ2| is greater than |ρ1|, which suggests

that negative deviations from the long-run equilibrium (i.e., resulting from increases in TTF or decreases

in EAX) are corrected faster than positive deviations (i.e., resulting from increases in EAX or decreases in

TTF). Consequently, there is substantially faster convergence for deviations below the threshold than for

deviations above the threshold. One possible explanation for this asymmetry is the existence of financial

market frictions, transaction costs, and institutional and regulatory limitations, which could lead to faster

convergence to the long-term equilibrium for negative deviations. However, the findings for the HH-TTF

and HH-EAX price pairs differ. Although both pairs exhibit non-linear co-integration in the pre-pandemic

and pandemic peak periods, there is no evidence of non-linear co-integration in the global tensions period.

These results suggest that supply shocks associated with geopolitical tensions in the European market have

resulted in a persistent price differential between HH and the other two markets. This differential is lower

than the transaction costs between them, indicating a lack of non-linear co-integration.

16Note that this interpretation is only applicable if the two null hypotheses of Φ(H0 : ρ1 = ρ2 = 0) and F (H0 : ρ1 = ρ2 = 0)
are rejected. Hence, this does not hold for the relationship between HH and EAX in the last sub-sample (Global tensions).
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Table (4) Results of threshold co-integration analysis

(1) (2) (3) (4) (5)
Threshold ρ1 ρ2 Φ(H0 : ρ1 = ρ2 = 0) F(H0 : ρ1 = ρ2 = 0)

EAX – TTF

Pre-pandemic -0.028 -0.050 -0.113 18.707*** 5.764**
[0.012] [0.024] (0.017)

Pandemic peak 0.014 -0.060 -0.173 14.530*** 5.779**
[0.036] [0.033] (0.017)

Global tensions 0.112 0.188 -0.193 15.684*** 6.166**
[0.152] [0.036] (0.014)

HH – TTF

Pre-pandemic -0.122 -0.009 -0.045 7.231** 5.989**
[0.007] [0.012] (0.015)

Pandemic peak -0.115 -0.033 -0.122 8.570*** 5.740**
[0.020] [0.032] (0.017)

Global tensions 0.394 -0.042 -0.022 2.050 0.374
[0.027] [0.017] (0.541)

HH – EAX

Pre-pandemic -0.024 -0.023 0.007 5.785* 3.145*
[0.007] [0.016] (0.076)

Pandemic peak 0.022 -0.130 -0.035 9.245*** 6.164**
[0.034] [0.018] (0.013)

Global tensions 0.079 0.063 -0.023 2.453 2.397
[0.054] [0.012] (0.123)

Note: Column (1) provides the estimated threshold values, reflecting the required change in the spread to adjust asymmetrically
to the long-run equilibrium. Columns (2) and (3) provide the estimated coefficients ρ1 and ρ2 in Equ. (3). Column (4) shows
the null hypothesis Φ(H0 : ρ1 = ρ2 = 0) tests for null hypothesis of no co-integration with the critical values from Enders and
Siklos (2001) as follows: C.V(1%) is 8.310; C.V(5%) is 6.050; C.V(10%) is 5.060. Column (5) gives the second null hypothesis
F (H0 : ρ1 = ρ2 = 0), which examines the asymmetry of the price transmission process with a standard F-test. ***, **, and
* denote significance at the 1%, 5%, and 10% levels. Based on Information Criteria, the asymmetric price transmission for the
EAX-TTF and HH-EAX are estimated using the M-TAR model, whereas the TAR model is used for the HH-TTF. The details on
the selection criteria are available in Table ??. "Global tensions" stands for the global geopolitical tensions period.

6.3. Results of the (a)symmetric error correction model

In this step, we estimate the symmetric and asymmetric error correction models (ECMs) to examine

the adjustments of individual prices to the long-run equilibrium. We estimate the symmetric (asymmetric)

ECM for each price pair if the corresponding co-integration results from the previous step show symmetric

(asymmetric) adjustments to the long-run equilibrium in the corresponding sub-period. It is important to

note that price transmission between EAX and TTF can occur through physical trade facilitated by a third

party or a swing supplier17, whereas the transmission between HH and the other two prices can happen

through direct physical trade from the American to the European and Asian markets.

Table 5 presents the estimation results of the ECM for the three sub-samples.18 Two general points

are noted from these results. First, based on our specification, the signs (-) and (+) are expected for the

adjustment coefficients of the ECT of PA
t and PB

t , respectively, meaning that both prices contribute to the

error correction mechanism. Second, the magnitude of the ECT is interpreted in terms of how many days

17A swing supplier, such as Qatar, is flexible to unexpected shocks in the market fundamentals in both European and Asian
gas markets and can change their production/exports plans to meet the changes in those markets (Kim et al., 2020).

18The results of the diagnostic checks for each estimated ECM (such as the serial correlation and normality tests) indicate
that the estimated models perform reasonably well. For brevity, we do not report the diagnostic checks here. However, they
are available upon request from the corresponding author.
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are required for the deviations from the equilibrium to be corrected. For example, if the ECT is 0.250, then

this implies that the respective price responds in the short-term to the deviations by about 25% per day

(i.e., it takes four days to be eliminated).

Table (5) Results of symmetric and asymmetric VECM

Regime EAX TTF HH TTF HH EAX
Pre-pandemic Symmetric -0.034*** 0.024*** -0.015** 0.008 -0.014** 0.011*

(0.007) (0.007) (0.006) (0.006) (0.006) (0.006)

Asymmetric High regime -0.029*** 0.020** -0.009 0.010 -0.018** 0.012**
(0.007) (0.008) (0.007) (0.007) (0.007) (0.006)

Low regime -0.055*** 0.042*** -0.035*** 0.004 0.008 0.003
(0.015) (0.016) (0.013) (0.013) (0.015) (0.014)

Pandemic peak Symmetric -0.086*** 0.039** -0.043*** 0.026 -0.032*** 0.062**
(0.019) (0.018) (0.015) (0.022) (0.015) (0.023)

Asymmetric High regime -0.040* 0.031 -0.036** 0.022 -0.094** 0.112**
(0.027) (0.026) (0.017) (0.024) (0.032) (0.049)

Low regime -0.125*** 0.046* -0.080** 0.065 -0.018 0.036
(0.025) (0.024) (0.033) (0.048) (0.017) (0.026)

Global tensions Symmetric -0.107*** 0.031
(0.030) (0.039)

Asymmetric High regime 0.205 0.188
(0.130) (0.168)

Low regime -0.119*** 0.025
(0.031) (0.039)

Note: The high and low regimes are divided by the sign of ECT (i.e., whether the differential between the two prices multiplied by the co-integrating
vector is greater or less than the threshold). The asterisks *,**, and *** attached to the significance levels at the 10%, 5% or 1%, respectively. The
number of lags are defined based on the VAR model selection criteria. The number of lags for models estimated for the periods (2016-2021) and
(2016-2019) is 3, whereas the number of lags for the models estimate of the period (2020-2021) is 1. The autoregressive coefficients are not reported
to conserve space. "Global tensions" stands for the global geopolitical tensions period.

Regarding the price transmission between EAX and TTF, our results indicate that in the first sub-

sample, both prices have a significant effect on the correction towards the long-run equilibrium in both

high and low regimes. This highlights the active role of both gas prices in responding to deviations from

the long-run equilibrium in the short run, albeit at different adjustment speeds. Specifically, the correction

speed of the two prices is higher in the low regime, implying that discrepancies caused by rising TTF or

falling EAX are eliminated quickly, whereas other discrepancies persist. In the second sub-sample, the EAX

price continued to have a significant impact on the correction towards the long-run equilibrium in both

regimes, while the TTF price was only significant in the low regime. This suggests that the EAX price

played a more dominant role in driving the correction towards the long-run equilibrium, while TTF only

responded to negative deviations. In the third sub-sample, the EAX price’s impact on the correction towards

the long-run equilibrium was limited to the low regime, implying that TTF was leading the market during

this period. Moreover, we observe that the magnitudes of the error correction terms of the two prices were

relatively higher in the pandemic peak and global tensions sub-samples, implying that the gas prices adjusted

more quickly to deviations from the long-run equilibrium during these periods. This is likely because gas

prices were high enough to cover the increased transaction costs of arbitraging natural gas between TTF
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and EAX, or that information transmission among traders and suppliers was quick enough, leading to closer

integration of the markets during times of crisis (i.e., contagion effect (Eichengreen et al., 1996)).

The estimated results of the adjustment process between the pairs of HH-TTF and HH-EAX are presented

in Columns 3 to 6 of Table 5. The ECM is not estimated for the global tensions sub-period as there is no

evidence of co-integration between HH and the other two markets. The results of the ECM analysis for the

price transmission between HH and TTF showed that, in the first sub-sample, HH adjusted to divergences

from the long-run equilibrium in the low regime (where TTF was relatively higher than HH), while in

the pandemic peak sub-sample, HH had a significant ECT in both high and low regimes, with a higher

magnitude in the latter. Meanwhile, the ECT of TTF was insignificant in both regimes. In the case of

the price transmission between HH and EAX, the results showed that, in the pre-pandemic sub-sample,

both HH and EAX had a significant ECT only in the high regime. In the pandemic peak sub-sample, the

ECT of HH and EAX remained significant only in the high regime. These findings suggest that the price

transmission process between HH and TTF differed from that between HH and EAX, with HH playing a

dominant role in correcting towards the long-run equilibrium in the case of HH-TTF, while both HH and

EAX actively participated in the correction toward the long-run relationship.

6.4. Time varying Granger Causality test

We examine the Granger causality relationship based on Fama (1970)’s simultaneous information

processing hypothesis (i.e., the price discovery process in the global gas market). The Granger causality

hypothesis is used here to infer whether one regional market helps forecast the pricing of the other region.

For instance, if TTF is found to Granger cause EAX, then past values of TTF hold additional information

that helps in predicting EAX prices, beyond the information that is contained in past values of EAX. This

implies the presence of instant information spillovers from TTF to EAX.

Figure 2 displays the sequence of test statistics from the rolling window algorithm along with the

bootstrapped critical values of 10% and 5%.19 A significant causality relationship is found when the

estimated Wald test statistic exceeds the critical values during a particular period. Our findings reveal

that EAX exerts a Granger causal influence on TTF and HH at the end of 2017 and certain dates in 2020

and 2021, which align with different shocks in the Asian gas market, such as the gas supply shortage at the

end of 2017 and the reduction of gas demand due to lockdown measures in 2020. Additionally, our analysis

reveals that TTF has a significant causal influence on both HH and EAX during two specific time periods.

The first instance occurs in the first quarter of 2020 and is associated with the demand shocks that took

place in the European gas market due to the pandemic. The second instance is observed in the last quarter

of 2021, until the end of our sample. This is attributed to the supply shocks that impacted the European

19As the three gas price series are integrated of order one, we conduct the estimation of time-varying causality through a
Vector Autoregression (VAR) model augmented with one lag.
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gas market during this period. Lastly, we note significant causality from HH to TTF and EAX, which

occurred mainly during 2018 and 2019, coinciding with the availability of cheap and abundant natural gas

resources in the North American market. Overall, our results demonstrate that the Granger causality

relationship among the three regional gas markets is dynamic, meaning that the information spillover

among these regions changes over time, indicating evolving market linkages in the global gas market.

Figure (2) Time-varying Granger causality with heteroskedastic-robust specification

7. Discussion

This section provides an overview of the econometric analysis results obtained in the previous section.

Then, we investigate which changes in the global natural gas market are consistent with these empirical

findings

7.1. An Overview of our Empirical Findings

As previously mentioned, the market integration hypothesis refers to the degree to which a price shock in

one regional market affects other regions. In this study, we use linear co-integration, threshold co-integration,

and asymmetric error correction models to analyze price dynamics in the global natural gas market and assess

asymmetric price transmission. Evidence of a co-integration relationship suggests a long-term link between

markets that constrains the divergence of price series. However, the COVID-19 pandemic in early 2020 and

geopolitical tensions at the end of 2021 may have disrupted the integration process among the three regional

natural gas markets. Therefore, we examine how these external shocks affected the long-run relationship

in the global gas market by dividing our analysis into three sub-samples: the pre-pandemic period, the
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pandemic peak period, and the global geopolitical period. We summarize the empirical results from the

previous section and explain the connection between the results and events in the global gas market for

each sub-period. Our goal is to provide insight into the importance of understanding market integration

dynamics and their response to external shocks.

Overall, the results suggest that the degree and nature of price convergence vary across sub-periods and

market pairs, indicating that external shocks affect the integration process among the three regional gas

markets. Firstly, the Asian and European gas prices were found to be co-integrated in all three sub-periods,

while HH is co-integrated with those two markets only in the first and second sub-periods. Secondly, the

degree of integration between each price pair has decreased, particularly in the third sub-sample, suggesting

that the convergence in the global gas market has declined due to recent demand and supply shocks.

Thirdly, price differentials of the three price pairs adjust asymmetrically following a shock, indicating that

they respond differently to positive shocks and negative deviations. Three possible reasons exist behind the

asymmetric price transmission process in the international natural gas market. First, the interaction between

heterogeneous market participants’ expectations and risk aversion speculations can lead to asymmetric

price transmissions among the three regions (i.e., based on the magnitude of deviations from the long-run

equilibrium). Second, noise traders - those who make decisions based on false perceptions and analysis of

the market circumstances - can push the price in one regional market up (or down), leading to increasing

(or decreasing) price differentials until informed traders engage in this process and restore the equilibrium

relationship.20 Third, futures contract availability and market frictions might also result in an asymmetric

price transmission with two regimes (Hammoudeh et al., 2008; Ihle and von Cramon-Taubadel, 2008).

Fourthly, the Granger causality hypothesis analysis of information processing for price discovery between

the three gas markets, depicted in Figure 2, suggests that this causality relationship changes over time and

exhibits a dynamic behavior. In a relaxed market situation with abundant supply, the HH price provides

price signals for forecasting prices in other markets, while in case of supply shortages and tight market

conditions, the TTF becomes the leading reference point for price discovery. Lastly, the East Asian markets

could always gain short-term influence through unexpected events and demand shocks.

7.2. Market conditions and shocks affecting the integration process

Building on our empirical findings, this section provides a qualitative analysis that examines the events

and facts that have occurred in the global gas market across the three sub-periods we investigated, resulting

in varying degrees of market integration.

20For example, the European Securities and Markets Authority (ESMA) has recently suggested allowing pauses in natural
gas trading to give more time to market participants to process the flow of information and avoid noisy trading activities(ESMA,
2022).
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7.2.1. Sub-period 1: Global gas markets on a growth path - Emergence of the U.S. as a global LNG exporter

The first sub-period of our analysis spans from the beginning of 2016 to March 2020 and featured

relatively stable global gas market conditions. During this period, global natural gas demand significantly

increased by 10%, or 354 billion cubic meters (bcm), primarily driven by Asia (+129 bcm or +17%) and

North America (+116 bcm or +12%), compared to the previous growth of 4% between 2012 and 2016. This

growth was mainly fueled by economic growth and coal-to-gas switching policies, such as China’s coal-to-gas

conversion program in 2017. As natural gas is produced and consumed in different regions, the global gas

trade had to increase to meet the rising demand. As shown in Figure 3, global LNG exports increased from

358 bcm in 2016 to 480 bcm in 2019, with an average annual increase of 9%. The US played a significant

role in this growth, accounting for an average annual share of 35% (Rystad Energy, 2023).

Figure (3) Annual global and U.S. LNG export volumes and capacities from 2012 to 2022 (Billion cubic meters)
Source: Own construction based on Rystad Energy (2023).

Several factors supported this growing trend in the LNG market during this period. First, as depicted

in Figure 3, the US started exporting LNG in 2016 and has since become a significant player in the global

market, with a growing export volume every year. In contrast, other exporters have seen only a small

rise in their export volumes throughout the years. Moreover, the US has continuously expanded its export

capacity since 2016, with a steep rise in 2019, accounting for 52% of the global liquefaction capacity growth

between 2016 and 2019.21 Also, the global fleet for LNG cargoes grew by an average of 9% annually over

this sub-sample (Rystad Energy, 2023). Second, the market witnessed structural changes in the contractual

agreements. The share of total contracts with fixed destination clauses declined from 67% in 2016 to 24%

in 2019, and new flexible destination volumes were introduced in the market (IEA, 2020c). Further, the

21Figure 3 shows that the total US export capacity increased from 16 bcm in 2016 to 95 bcm in 2019, accounting for about
500% increase over this period (EIA, 2023). This led to increasing LNG exports from 5 bcm in 2016 to 48 bcm in 2019
(Rystad Energy, 2023).
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US LNG contracts provided more flexibility to the LNG market in two ways. On the one hand, they

had no restrictions in the form of destination clauses. On the other hand, if the buyer did not take the

contracted amount, the penalty was limited to the tolling or liquefaction fee instead of the full take-or-pay

(ToP) penalty imposed by traditional contracts (IEA, 2020b). Third, relatively low charter rates were also

responsible for the growth in the LNG market. Fourth, the LNG market witnessed an increase in spot and

short-term transactions 22 during this period, leading to high market liquidity and lower transaction costs.

For example, the share of spot and short-term volumes increased from 28% in 2016 to 34% in 2019 (GIILNG,

2017, 2020). The main reason for this increase is the growing LNG volume being handled by traders who

can efficiently manage their portfolios by buying and selling LNG on different contract durations (GIILNG,

2019).

The aforementioned factors contributed to greater market integration in the global gas market by

increasing market liquidity, reducing transaction costs, and facilitating inter-regional arbitrage. The

growth of the global fleet of LNG carriers, the expansion of the U.S. LNG infrastructure, and the

increasing flexibility of LNG contracts all played a significant role in this development.

7.2.2. The onset of the COVID-19 pandemic has triggered a downturn in global gas demand

The COVID-19 pandemic significantly impacted the global gas market, causing a demand shock. Global

natural gas demand fell by over 82 bcm or more than 2% year-on-year in 2020, in contrast to the more

than 2% annual growth observed in the past decade. The European, North American, and Asian markets

experienced negative year-on-year growth of 3.5%, 2%, and 0.5%, respectively (Rystad Energy, 2023). The

decline in demand was due to lockdown measures affecting economic activities, mild temperatures in the

northern hemisphere during the winter of 2019-2020, and increased power generation from wind in Europe

(IEA, 2020a).

As a result, storage levels reached record highs in underground storage facilities and LNG storage

reservoirs, particularly in Europe and Asia.

For instance, Figure 4 shows that in Europe, the average storage level at the end of the withdrawal

period in April 2020 was 25% (+28 bcm) above the average of the last five years (GIE, 2022). In Asia,

stored LNG volumes were in June 2020 over 25% (+2 bcm) higher than the five-year average in 2020.

This subsequently led to a discontinuation of the long-lasting growth rate of LNG imports in Europe.

As a result, there was a lower competition between Europe and Asia in the global market. The natural

gas market also faced uncertainties and bottlenecks that affected the transaction costs of trading natural

gas. First, oil and gas companies cut back or postponed investments in gas infrastructure projects due to

the collapse of gas prices in regional markets caused by the pandemic (IEA, 2020a). Second, there were

22Spot and short-term contracts refer to trading LNG over one year but less than four years (IGU, 2021).
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Figure (4) Difference between current storage inventories and the average inventories of the past 5 years (Billion
cubic meters)

Source: Own construction based on (EIA, 2023; GIE, 2022; IEA, 2022)

supply restrictions of Norwegian gas to Europe due to maintenance work on pipelines in Norway in the first

half of 2021 (ECB, 2022). Meanwhile, there was a decrease in European gas imports from Russia, with a

drop of -36 bcm (-11%) in 2020 (Fulwood et al., 2022). Third, charter rates increased on average by about

23% compared to the first sub-period. The increased transaction costs, due to the increased transport and

non-transport cost, were reflected in our empirical analysis through the threshold estimates (see Table 4).

Overall, the COVID-19 pandemic and its associated demand shock and increased storage levels in Europe

and Asia led to reduced LNG imports, especially in Europe, while supply restrictions and bottlenecks also

affected the transaction costs of trading natural gas. This resulted in lower market integration during this

sub-period.

7.2.3. Geopolitical tensions in Europe affecting global natural gas supply

After COVID-19 restrictions were eased or lifted in many countries around the world, global gas demand

increased by nearly 200 bcm (+5%) from 2020 to 2021, mainly due to the recovery of economic activities.

On a continental basis, gas demand increased the most in Asia at 61 bcm (+7%), followed by Europe at

18 bcm (+3%) and North America at 13 bcm (+1%) (Rystad Energy, 2023). This was followed by the

start of a gas price rally in the summer of 2021 on the gas market, driven by the uncertain supply situation

associated with the loss of Russia as the largest gas supplier to the European gas market (ECB, 2022).

On the supply side, since September 2021, Russia has reduced daily gas flows23 to Europe to the level of

nominations from long-term contracts, resulting in no additional gas volumes being made available to the

European spot market (Fulwood et al., 2022). This is clearly shown in Figure 5.a, which depicts the changes

23Russia has continuously curtailed its gas exports via the four main pipeline corridors: Nord Stream, Yamal, the Ukrainian
route, and Turk Stream.
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in Russian gas exports. For example, Russian pipeline natural gas exports to Europe decreased from 11.8

bcm in October 2020 to 9.1 bcm and 2 bcm in October 2021 and 2022, leading to year-on-year changes of

about 25% and 80%, respectively (ENTSOG, 2022). This supply shock has caused gas prices in Europe and

Asia to climb to new temporary record levels since September 2021. As a result, many European countries

have started seeking ways to enhance the security and diversification of their energy supply from the global

LNG market. Additionally, in the first half of 2022, many Western oil and gas companies announced the

discontinuation of cooperation and investment in Russian stakes and assets (Refinitiv, 2022).

Figure (5) Changes in Russian pipeline exports to Europe and utilization rates of LNG infrastructure (%)
Source: Own construction based on (ENTSOG, 2022; GIE, 2022; EIA, 2023)

The supply-side distortions in the European gas market also had an impact on the levels of gas storage

facilities. With the start of the injection period after the winter of 2020-2021, gas storage faced significant

challenges as gas imports from Russia, which are crucial for gas storage injection, were increasingly reduced.

Poor injection rates during the summer of 2021 resulted in average storage levels in the EU at the beginning

of winter 2021-2022 of a maximum of 77%. Compared to previous years in Figure 4, this is an all-time low

(GIE, 2022). At the end of winter 2021-2022, gas storage facilities in the EU were about 25% full on average.

The concern about insufficient storage reserves during the winter, which could lead to a gas shortage, led

the EU Council to introduce a regulation in June 2022 requiring all EU member states to fill their gas

storage facilities to at least 80% by November 1, 2022, to prevent a critical situation like last winter’s from

occurring again 24. On the demand side, gas demand in Europe responded to gas prices starting in July

2021. Within the European Union alone, gas demand dropped by 14% from 2021 to 2022 (-54 bcm) (of the

European Union, 2023). In order to maintain a sufficient gas supply in Europe, efforts were focused on

utilizing all other import corridors. Pipeline imports from the remaining pipeline corridors had already been

24https://www.consilium.europa.eu/en/press/press-releases/2022/06/27/council-adopts-regulation-gas-storage/
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increased to nominal capacity at the end of 2021, so any further shortage of gas exports from Russia could

not be compensated for with additional pipeline gas from Norway, North Africa, or Azerbaijan (Fulwood

et al., 2022).

The aforementioned shocks on the supply side have significantly impacted the global LNG market.

European LNG imports increased by 67% YoY in 2022, amounting to an additional 65 bcm (Rystad Energy,

2023). As a result, LNG import capacities in many regions of the continent were fully utilized as of December

2021 (Fulwood et al., 2022), as shown in Figure 5. Europe’s importance in the global LNG trade consequently

increased significantly within a year, with a significant share of the increased imports originating from the

U.S. Between 2019 and 2021, the EU’s share of total LNG exports from the US averaged 37%, but in 2022,

nearly 70% of total U.S. LNG exports were sent to Europe, making it the top market for U.S. LNG. In the

meantime, the U.S. LNG liquefaction plants in this sub-period were almost fully utilized, averaging nearly

90%, as depicted in Figure 5. However, the global LNG market faced further tightening of supply due to a fire

in June 2022, causing the outage of the Freeport LNG terminal, which offers 20 bcm of annual liquefaction

capacity (IEA, 2023). Furthermore, charter rates for the transport of LNG continued to rise, with rates for

the Atlantic prompt and Pacific prompt increasing by 26% and 37%, respectively, compared to the second

sub-period, contributing to rising transaction costs. Furthermore, we observe that China experienced a drop

in LNG imports due to COVID-related disruptions, as depicted in Figure 6. This decreased demand for

LNG from the Asian market may explain the relatively low degree of integration, especially during the third

sub-sample.

Figure (6) Changes in China’s natural gas domestic demand and LNG imports( Year-on-Year Changes %)
Source: Own construction based on (GIE, 2022; EIA, 2023)

In summary, the global geopolitical tensions period was characterized by greater uncertainties in the

global gas market, triggered by the supply shock in the European gas market. This was also reflected in

market integration and transaction costs. Our results confirm that, in addition to increased transaction costs,
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market integration between the U.S. and the other two markets no longer exists. While market participants

in Europe fully utilized the global LNG spot market, the U.S. tried to export more LNG to Europe, even

though capacity limits had been reached. This may explain the decoupling of the European and American

markets. Additionally, due to the high capacity utilization of LNG import terminals in Europe and decreased

demand for LNG from China, the degree of integration between European and Asian gas markets declined

during this period.

8. Conclusion

This study aims to investigate the long-term relationship between TTF, HH, and EAX, which are price

benchmarks for Europe, the US, and Asia, respectively, between January 2016 and October 2022. Our

analysis is divided into three periods: pre-pandemic, pandemic peak (due to the associated demand shock),

and global geopolitical tensions (due to the corresponding supply shock). Using different techniques such as

linear and threshold co-integration approaches, an asymmetric error correction model, and a time-varying

Granger causality test, we examine the extent of the shocks’ effects on market integration among the

three benchmarks, establish whether the adjustment process is asymmetric, and test whether the Granger

causality relationship in the global gas market is dynamic. Additionally, we investigate various gas market

fundamentals and conditions that we believe are aligned with our empirical results from these approaches.

Our analysis shows that the extent and nature of price convergence vary across sub-periods and market

pairs. This implies that the integration process among the three regional gas markets is affected by external

shocks. Our results are summarized as follows. First, the Asian and European gas prices are found to

be co-integrated in the three sub-periods, whereas the HH is co-integrated with those two markets only in

the first and second sub-periods. A possible explanation for the decoupling in the third sub-sample is the

congested LNG infrastructure in the US market. Second, our results reveal that the degree of integration

between each price pair has decreased, particularly in the third sub-sample. This might indicate that

the convergence in the global gas market has declined due to the associated demand and supply shocks.

Third, we find that gas price differentials adjust asymmetrically following a shock, suggesting that they

respond differently to positive shocks and negative deviations from a certain threshold value. This also

reflects that traders’ strategies in the gas market are spread-dependent. Meanwhile, our results indicate the

threshold estimates also differ across the sub-periods considered in our analysis. This finding suggests that

the transaction costs in the global gas market have been affected by the pandemic and geopolitical tensions,

leading to changing threshold values. Furthermore, these threshold values vary for each price pair, reflecting

the different underlying market forces affecting each pair. Finally, the results obtained from the time-varying

Granger causality approach suggest that the leading role played by each benchmark may be dynamic and

driven mainly by disruptive events or shocks that occur in the corresponding region. Such events include
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demand growth due to economic growth or policy changes, supply disruptions due to infrastructure outages,

and geopolitical risks that may change the procurement structure and contractual agreements.

Our analysis provides some implications. First, the interdependence between the Asian and European

gas markets, despite being influenced by external shocks, suggests that changes in one market’s situation

could affect the other. This highlights the importance of considering the broader market circumstances

when assessing the supply security of each market. Therefore, bilateral policies between the two regions

should be adopted to effectively manage demand and supply shocks. This may include sharing information

on LNG trade flows, production levels, and demand forecasts. This would facilitate better coordination

between the regions and enhance supply security amidst market fluctuations. Second, the decreased degree

of integration between the US and the other two markets implies that the US market can promote the

development of new liquefaction facilities to expand their export capacity further. This can increase the

availability of LNG in global markets and help integrate the three regions. Third, high transaction costs and

other arbitrage obstacles caused by external shocks should be taken into consideration to facilitate market

integration. Therefore, market participants could incorporate more flexible pricing mechanisms and shorter-

term delivery options in their traditional long-term LNG contracts to enhance market integration, reduce

transaction costs, and increase liquidity. This is because spot and short-term trading in LNG are expected

to increase, following its increasing pattern in the past decade. Finally, the time-varying Granger causal

relationship implies that the predictive power of each regional gas benchmark should not be ignored because

it might give useful and relevant pricing signals. Thus, it is necessary to fully understand the price discovery

process and its dynamic behavior during periods of shocks in the respective region. Also, the time-varying

Granger causality approach may provide a helpful tool for market participants in terms of price prediction

and risk management.

Despite meeting the purpose of the analysis, it should also be noted that our study is not without

limitations. The adopted non-linear co-integration approach assumes that the threshold value (the proxy for

the transaction costs) is constant throughout the investigated period. However, if we expect the integration

process in the gas market to change over time, the analysis should allow for time-varying thresholds. We

try to avoid this limitation by running our analysis over the three sub-samples. Our suggestion about future

research, which might be possible with more available data, could quantitatively investigate the different

factors impacting the price differential between each price pair.
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Appendix

Appendix .1. Historical developments of natural gas supply and demand

Figure (A.1) Worldwide and regional developments of natural gas a) production and b) demand from 2012 to
2022 (Billion cubic meters)

Appendix .2. Analysis of the entire time period 2016 - 2022

In this section, we provide further analysis of the entire sample from 2016 to 2022. The objective here is

to gain some insights into the structural breaks that have affected the long-run relationship in the global gas

market. To achieve this, we undertake two key steps: (1) testing the unit root properties of the three-time

series; and (2) performing a co-integration test that considers multiple structural breaks.

We conduct three unit root tests, including the Augmented Dickey-Fuller (ADF), Phillips–Perron (PP),

and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests. The null hypothesis for ADF and PP tests is that

the series has a unit root, while the null hypothesis for the KPSS test is that the time series is stationary.

However, those conventional tests could result in incorrect conclusions in the presence of structural shifts,

as they may falsely fail to reject the unit root hypothesis due to misspecification bias and size distortion, as

highlighted by Perron (1989).To address this issue, we apply the Zivot and Andrews unit root test Zivot and

Andrews (2002), which allows for the possible impact of structural breaks in the estimation period. This

test is an adaptation of the Perron unit root test Perron (1989) and considers the endogenous presence of

potential structural breaks in the series. In this analysis, both the structural break and the lag length are

allowed to vary endogenously.

The results of the unit root tests are reported in Tables A.1 and A.2. The results of ADF, PP, and KPSS

tests indicate that the time series are stationary in the first differences. This conclusion is further supported

by the Zivot and Andrews unit root test, which considers the possibility of a structural break. This result

suggests that even with the presence of a potential structural break, the series still exhibit an I(1) property.

Since the three price series are (1), we test the existence of co-integration between the pairs of natural gas

price series. To accomplish this, we apply the Maki (2012) co-integration test, which is selected to handle
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Table (A.1) Time series properties of natural gas prices

ADF PP KPSS
Level 1st diff Level 1st diff Level 1st diff

EAX -1.271 -14.645* -1.554 -36.114* 2.794* 0.141
TTF -1.378 -17.746* -1.488 -39.983* 3.068* 0.231
HH -1.872 -17.953* -2.073 -44.219* 2.812* 0.142
Notes: The lag selection for ADF is based on Akaike Information
Criteria (AIC). The test equations are estimated, including an
intercept and trend for the variables in levels, whereas they include
only an intercept for the first differences. * represents the 1%
significance level. The three series are expressed in logarithms.
The Critical values are obtained from MacKinnon (2010).

Table (A.2) Zivot–Andrews minimum t-statistics

t-statistics Break date
EAX -2.907 26mar2020
TTF -2.908 24mar2020
HH -3.458 14may2020
Notes: Critical values are those
reported in Zivot and Andrews
(1992) as follows: CV(1%):-4.93
;CV(5%): -4.42; CV(10%):-4.11

the potential presence of breaks in the long-term relationship. This test can identify up to five unknown

breaks and is based on residuals, with the assumption that the number of breaks in the cointegrating vector

is less than or equal to the maximum number of breaks.

According to the Monte Carlo simulations performed by Maki (2012), the proposed test outperforms

previous methods (Gregory and Hansen, 1996a,b) when there are three or more breaks in the co-integration

relationship. The test is also informed by the structural break tests of Bai and Perron (1998) and the unit

root tests of Kapetanios (2005). Accordingly, each time period is considered as a potential structural break,

t-statistics are calculated, and the dates with the lowest t-statistics are considered breakpoints.

Maki (2012) proposes four different models to test for cointegration with multiple breaks: model 1

considers multiple breaks in the intercept without a trend (level shift), model 2 considers multiple breaks in

both the intercept and slope coefficients without a trend (level shift with trend), model 3 allows for multiple

breaks in the intercept and slope coefficients with a time trend (regime shift), and model 4 accounts for

multiple breaks in the intercept, slope coefficients, and trend (regime shift with trend). In this paper, we

utilize models 3 and 4, which are specified as follows:

Model (3): regime shift

P 1
t = α+

k∑
i=1

αiDi,t + λt+ βyt +

k∑
i=1

βiP
2
t Di,t + αt,2 (.1)
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Model (4): regime shift with a trend

P 1
t = α+

k∑
i=1

αiDi,t + λt+

k∑
i=1

λitDit + βyt +

k∑
i=1

βiP
2
t Di,t + αt,2 (.2)

The results of Maki (2012) co-integration test with multiple structural breaks are estimated on the price

pairs (EAX - TTF), (HH - EAX), and (HH-TTF). The results are shown in Table A.3, showing that the null

hypothesis of no-co-integration is rejected. With regard to the structural breaks, we decided to concentrate

on the dates that occur in the early months of 2020 and the latter months of 2021. These dates were selected

due to the first break being associated with the demand shock caused by the pandemic, while the second

break corresponds to the geopolitical tensions in the European market and restrictions on gas exports from

Russia to the region.

Table (A.3) Results of Maki co-integration test with three breaks

Price pair Test statistic Break dates

TTF – EAX Regime -6.824*** 2017-09-14; 2019-01-07;2021-10-04
Regime with trend -7.329*** 2020-04-23; 2021-01-15; 2021-10-04

HH – TTF Regime -5.416* 2019-12-20; 2020-12-25; 2021-09-17
Regime with trend -6.511* 2018-07-17; 2020-03-27; 2021-09-14

HH – EAX Regime -5.969** 2019-03-05; 2020-12-25; 2021-09-29
Regime with trend -5.277 2020-03-24; 2021-01-15; 2021-09-29

Notes: Note: Critical values are obtained from Table 1 of Maki (2012). *, **, *** reveals
the rejection of the null hypothesis of no cointegration.
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Appendix .3. Description of the Shi et al. (2018, 2020) Time Varying Granger causality test

To examine the time-varying causal relationship among the three gas price series, we employ the recent

causality procedure introduced by Shi et al. (2018, 2020). They develop three time-varying causality

algorithms, namely forward recursive causality, rolling causality, and recursive evolving causality.

To estimate this procedure, suppose that Yt is a vector, with the three gas price series, which can be

estimated as follows:

yt = δ0 + δ1t+ ut (.3)

With ut follows this VAR(p) process:

ut = α1ut−1 + α2ut−2 + ......+ αput−p + ϵt (.4)

Where ϵt is the error term. If we substitute ut = yt− (δ0+δ1t) from Equ..4 into Equ..3, we get the following

equation:

yt = ρ0 + δρ1t+ α1yt−1 + .....+ αpyt−p + ϵt (.5)

Where ρi is a function of δi and αj with i = 0,1 and j = 1,....,p.

To control for the integrated characteristics of our variables, the lag augmented VAR suggested by Toda

and Yamamoto (1995) and Dolado and Lütkepohl (1996) is employed. It is a VAR model that is augmented

with additional d lags to account for the possible maximum order of integration of the variables. This model

is represented as follows:

Y = λΓ′ +XΘ′ +BΦ′ + ε (.6)

Where Y = (y1, ....., yT )T × n′ , λ = (λ1, ...., λT )T×2′ , t = (x1, ...., XT )T×np′ , xt = (yt−
′
1, ...., yt−p′), Θ =

(β1, ...., βp)n×np, B = (b1, ...., bT )T×nd′ , bt = (yt−p−1′,....,yt−p−d′)nd
, Φ = (βp+1, ...., βp+d)n×nd, and ε =

(ε1, ....., εT )T×n′ , with d is the maximum oder of integration of yt.

The heteroskedastic-consistent Wald statistic of the null hypothesis that variable 1 does not Granger

cause variable 2 H0 : R1⇒2 Π is given by

W1⇒2 = [R1⇒2θ̂]
′[R1⇒2(Ω̂⊗ (X ′QX)−1)R′

1⇒2]
−1[R1⇒2θ̂] (.7)

Where θ̂ = vec(Θ̂) represents the row factorization with Θ̂ is the OLS estimator Θ̂ = X ′QX(X ′QX)−1,

Ω̂ = T−1ε̂′ε̂, and R is a m × n2p matrix where m is the number of restrictions. The Wald statistic is

asymptotically X2
m under the null hypothesis.
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