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Abstract
The shift from centralized to decentralized energy provision has created an opportunity for a wide range of distributed

energy resources. In deciding how to best serve their long-term energy needs, end consumers face a plethora of investment
options together with complex regulatory instruments as well as growing uncertainty regarding, e.g. techno-economic and
political developments. Optimization models using linear programming methods are one option to help shed light on possible
technology combinations and the economic consequences for end consumers. Yet the existing literature indicates a clear lack
of models capable of accounting for high technical, regulatory and economic detail while optimizing investments in multiple
future years. Therefore, within this paper, the mixed-integer linear programming model COMODO (Consumer Management
of Decentralized Options) is developed to determine the cost-minimal energy provision for end consumers. The model uses its
extensive technology catalog to perform an investment and dispatch optimization for multiple years, minimizing total costs
over a long-term time horizon while accounting for developments in techno-economic data, regulatory frameworks and energy
market conditions. Furthermore, piecewise-linear functions are created to represent costs and subsidies for different systems
sizes and for future years. In order to demonstrate the capabilities of the model developed, an exemplary application is presented
to investigate the energy provision of four single-family homes in Germany for the years 2025 to 2045. Three scenarios are
designed that build upon each other regarding the amount of information available to consumers and their decentralized energy
technologies. The results show a clear preference for gas boilers as a base technology coupled with electric heaters to cover
demand peaks. Households with higher demand levels invest in PV systems in 2025, while other households with lower demands
either wait until 2040 or do not invest. A sensitivity analysis then examines the effects of higher carbon pricing in the German
building sector on the consumer’s energy provision. The subsequent increase in the retail gas price leads to households choosing
to fully electrify their heat provision, i.e., installing a heat pump combined with thermal storage, PV and an electric heater.
On average, these households experience an increase in total costs ranging from 3.5% to 5.4% over the complete time horizon
and realize a long-term decrease in annual carbon emissions of up to 80% compared to the analysis with lower carbon pricing.
Lastly, this work also presents a novel method of analyzing the marginal costs of electricity and heat provision, revealing a
strong correlation between the implicit marginal costs of energy provision and the assumptions on retail energy prices.
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1. Introduction

1.1. Motivation and Research Objective

The energy landscape for end consumers has undergone a massive transformation in recent years. In

many developed countries, the standard means of energy provision have historically consisted of a centralized

electricity supplier paired with decentralized heat generation, typically using a gas or oil boiler. Yet the

range of distributed energy resources (DER) available to end consumers has widened over the past decade

not only due to technological advancements but also as a result of economic, social and political movements.

In Germany, for example, DER such as photovoltaics (PV), micro combined-heat-and-power (CHP) systems

as well as heat pumps have been subject to incentive mechanisms, which have in turn driven down the

total costs of ownership and increased their market visibility. In addition to a larger selection of affordable

technologies, consumers as well as policy-makers have become more aware of the individual carbon footprints

associated with energy provision, creating a social and economic pressure to move away from carbon-emitting

fossil fuels. As such, consumers may no longer choose the least-cost option based on today’s total costs of

ownership but may have to also account for uncertainties regarding future energy policies on, e.g., the pricing

of different energy carriers or carbon emissions.

Needless to say, the plethora of investment options combined with complex regulatory instruments and

growing uncertainty make it difficult for end consumers to decide how to best serve their long-term energy

needs. To better understand this conundrum, one method often seen in the existing literature is the use

of linear programming methods to identify a least-cost solution over a defined time horizon. Although

many of such optimization models have been developed, very few are capable of considering a high level of

technological diversity and granularity while also accounting for future economic, regulatory and technical

elements. Furthermore, the majority of such models are focused on the investment and operational decisions

of today rather than considering how these may change over time. As such, the paper at hand seeks to

address the following research questions: (i) How can linear programming methods be used to optimize

the investment in and operation of distributed generation and storage technologies for end consumers, (ii)

what technological, economic and regulatory aspects must be accounted for in order to model the decisions

surrounding end consumers’ energy provision, and (iii) how may end consumers design and manage their

DER systems to minimize the costs of energy provision over longer time horizons, especially when subject

to changes in the technological, economic and regulatory landscape?

Within the scope of this paper, the model “Consumer Management of Decentralized Options”, referred

to as COMODO, is developed to determine the cost-minimal energy provision for an end consumer or
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consumer group according to each energy use type (EUT), i.e., electricity, water heating and space heating.

The model uses mixed-integer linear programming (MILP) to perform a partial-equilibrium investment and

dispatch optimization, accounting for a wide range of distributed generation as well as storage technologies.

Apart from a large technology catalog, COMODO is able to account for an extensive amount of policy

instruments and financial incentives to more precisely valuate the costs of certain technologies or energy

carriers. One unique characteristic of COMODO compared to the existing literature is how the total costs

are minimized over the complete, long-term time horizon via a so-called ’dynamic anticipative optimization’

(Cuisinier et al. (2021)). As such, investments in DER technologies are not restricted to one single year but

rather are able to be made in multiple model years subject to developments in, e.g., techno-economic data,

regulatory frameworks and energy market conditions. In doing so, COMODO not only serves to analyze

the profitability of distributed generation and storage technologies but may also help to understand the key

economic and regulatory drivers affecting the end consumer’s energy investment choices.

In order to demonstrate the capabilities of the model developed, an exemplary application is presented

to investigate the investment and energy use decisions of four single-family homes in Germany for the

years 2025 to 2045. Three scenarios are considered and then compared: Status Quo, Smart Tech and Smart

Market. The scenarios build upon each other sequentially, with the first scenario seeking to resemble current

technological and regulatory conditions, i.e., limited information on future weather, demand, costs or price

developments. The Smart Tech scenario, on the other hand, allows for technologies to receive information

about weather conditions (e.g., renewable generation potential) and demand profiles as well as energy prices

and technology costs in future years, which allows technologies to better optimize their sizing and operation

as well as the interactions between generators and storages. The Smart Market scenario extends the amount

of information available to include transparency regarding current and future electricity market conditions

via hourly retail electricity prices. The results show a clear preference for gas boilers as a base technology

coupled with electric heaters to cover demand peaks. Households with higher demand levels invest in PV

systems in 2025, while other households with lower demands either wait until 2040 or do not invest at all.

A sensitivity analysis then examines the effects of higher carbon pricing in the German building sector

on the consumer’s energy provision. The subsequent increase in the retail gas price leads to households

choosing to fully electrify their heat provision, i.e., installing a heat pump combined with thermal storage,

PV and an electric heater. On average, these households experience an increase in total costs ranging from

3.5% to 5.4% over the complete time horizon and realize a long-term decrease in annual carbon emissions

of up to 80% compared to the analysis with lower carbon pricing. Lastly, the paper at hand also presents a
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novel method of analyzing the marginal costs of electricity and heat provision, revealing a strong correlation

between the implicit marginal costs of energy provision and the assumptions on retail energy prices.

1.2. Literature Review

There exists a large body of literature that develops mathematical models to optimize decentralized

energy supply, consumption and storage for single or aggregated consumers. The MILP approach, in partic-

ular, has established itself as the method of choice due to its both discrete and continuous nature, allowing

for technologies to be selected, sized and switched on/off using binary variables. Table 1 gives an overview

of reviewed publications that develop or methodologically extend MILP models to optimize the investment

in as well as the sizing and operation of decentralized generation and storage technologies.1 All sources

presented in Table 1 include objective functions that seek to minimize the total or annual costs of energy

provision, which in this case includes at least2 both electricity and heating.

As illustrated in Table 1 and in McKenna et al. (2017), one key difference among the literature is the

technology catalog considered in the respective models and the selected applications. While a handful of

papers focus on one specific technology (e.g., Cano et al. (2014), Merkel et al. (2015)) or on the dynamics

between two technologies such as PV and heat pumps (e.g., Beck et al. (2017), Schwarz et al. (2018)), the

majority of the publications seek to advance the number of DER types. As is the case with any investment

model, the optimal solution depends on the technology options available. As such, one major challenge

of modeling DER systems in an economic model lies with the definition of which technologies to consider

and how the operation of these technologies can be simulated with high technical complexity, all within

computational limits. Ashouri et al. (2013) and Liu et al. (2020) are examples of studies that have an

unusually vast amount of DER investment options with high levels of technical detail. In particular, the

models used in these studies, as well as in others such as Zhang et al. (2018) and Rikkas and Lahdelma

(2021), include a dynamic coefficient of performance (COP) function to account for the variable technical

efficiency of heat pumps, which is a key factor effecting their economic feasibility.

Alongside the technological scope and technical complexity exists another key distinction between pub-

lications: the ability of the models to consider regulatory aspects. Although this highly depends on the

country considered, the inclusion of incentive mechanisms in the objective function can greatly affect the

profitability of certain technologies. As can be seen in Table 1, the majority of publications in this field only

1Papers that optimize the investment in electricity grids (e.g., microgrids) and/or district heating pipelines have been
omitted from this literature review as well as from Table 1. Furthermore, papers that do not include an investment decision,
i.e., papers that only optimize the operation of DER systems, are also not considered.

2Some papers in Table 1 also consider cooling; however, for the literature selection, it is required that the provision of both
electricity and heat are optimized.

4



Ta
bl
e
1:

O
ve
rv
ie
w

of
re
vi
ew

ed
pu

bl
ic
at
io
ns

So
ur
ce

E
ne
rg
y
U
se

a
In
ve
st
m
en
t
Te

ch
no

lo
gy

b
C
O
P

c
R
eg
ul
at
io
nd

C
Fe

IO
Sf

G
Sg

E
L
SH

H
W

C
L

P
V
B
S
C
H
P
G
B
ST

B
IO

E
H
H
P
T
S
O
T

C
V

FI
T
E
M
S
O
V
M

C
P
H
P
T
IS

C
O

2
P
C

L
P
W

1Y
M
Y

R
en

an
d
G
ao

(2
01

0)
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

JP
B
uo

ro
et

al
.(
20

12
)

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
IT

A
sh
ou

ri
et

al
.(

20
13

)
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
C
H

C
an

o
et

al
.(
20

14
)

x
x

x
x

x
x

x
E
S

St
ad

le
r
et

al
.(

20
14

)
x

x
x

x
x

x
x

x
x

x
x

x
x

x
AT

M
er
ke
le

t
al
.(
20

15
)

x
x

x
x

x
x

x
x

x
x

U
K

St
ee
n
et

al
.(

20
15
)

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

U
S

B
ec
k
et

al
.(
20

17
)

x
x

x
x

x
x

x
x

x
x

x
x

x
D
E

M
cK

en
na

et
al
.(

20
17
)

x
x

x
x

x
x

x
x

x
x

x
x

D
E

Sc
hü

tz
et

al
.(

20
17
)

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

D
E

A
ch
a
et

al
.(

20
18

)
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

U
K

G
ab

ri
el
li
et

al
.(

20
18

)
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

C
H

M
a
et

al
.(

20
18

)
x

x
x

x
x

x
x

x
x

x
x

x
x

C
N

M
av
ro
m
at
id
is

et
al
.(
20

18
)

x
x

x
x

x
x

x
x

x
x

x
x

x
x

C
H

Sc
hw

ar
z
et

al
.(
20

18
)

x
x

x
x

x
x

x
x

x
x

x
x

x
D
E

Zh
an

g
et

al
.(
20

18
)

x
x

x
x

x
x

x
x

x
x

x
x

x
SE

H
ua

ng
et

al
.(
20

19
)

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
C
N

K
an

ne
ng

ie
ße
r
et

al
.(

20
19

)
x

x
x

x
x

x
x

x
x

x
x

x
x

D
E

A
la
bi

et
al
.(

20
20

)
x

x
x

x
x

x
x

x
x

x
x

x
x

x
H
K

Li
u
et

al
.(

20
20
)

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
C
N

M
av
ro
m
at
id
is

an
d
Pe

tk
ov

(2
02

1)
x

x
x

x
x

x
x

x
x

x
x

x
x

x
C
H

R
ik
ka

s
an

d
La

hd
el
m
a
(2
02
1)

x
x

x
x

x
x

x
x

x
x

x
x

x
x

FI
Pe

tk
ov

et
al
.(
20

22
)

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

C
H

T
hi
s
st
ud

y
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
D
E

a
E
L:

E
le
ct
ri
ci
ty
,S

H
:S

pa
ce

H
ea
tin

g,
H
W

:H
ot

W
at
er

H
ea
tin

g,
C
L:

C
oo

lin
g

b
P
V
:
P
ho

to
vo

lta
ic
,
B
S:

B
at
te
ry

St
or
ag

e,
C
H
P
:
C
om

bi
ne
d
H
ea
t
an

d
Po

w
er

G
as

E
ng

in
e,

G
B
:
G
as

B
oi
le
r/
G
as

C
on

de
ns
in
g
B
oi
le
r,

ST
:
So

la
r
T
he
rm

al
,
B
IO

:
B
io
m
as
s

B
oi
le
r/
St
ov
e,

E
H
:E

le
ct
ri
c
H
ea
te
rs
,e

.g
.,
H
ea
tin

g
R
od

or
E
le
ct
ri
c
B
oi
le
r,
H
P
:H

ea
t
P
um

p,
T
S:

T
he
rm

al
St
or
ag
e,

O
T
:O

th
er

Te
ch
no

lo
gi
es

th
at

ar
e
no

t
lis
te
d
in

th
e
ta
bl
e,

w
hi
ch

m
ay

in
cl
ud

e,
e.
g.
,w

in
d
tu
rb
in
es
,e

le
ct
ro
ly
ze
rs
,f
ue
lc

el
ls
,fl

ow
he
at
er
s
an

d/
or

ab
so
rp
tio

n/
el
ec
tr
ic

co
ol
in
g
sy
st
em

s
c
C
O
P
:C

oe
ffi
ci
en
t
of

Pe
rf
or
m
an

ce
of

H
ea
t
P
um

ps
(h
ou

rl
y)
,C

:C
on

st
an

t,
V
:V

ar
ia
bl
e

d
FI

T
:F

ee
d-
In

Ta
ri
ff,

E
M
S:

E
le
ct
ri
ci
ty

M
ar
ke
t
Sa

le
s,

O
V
M
:O

th
er

Va
ri
ab

le
M
ec
ha

ni
sm

s
(e
.g
.,
m
ar
ke
t
pr
em

iu
m
,
se
lf-
co
ns
um

pt
io
n
fe
es
),

C
P
:C

ap
ac
ity

P
ri
ci
ng

,
H
P
T
:

H
ea
t
P
um

p
Ta

ri
ff,

IS
:I
nv

es
tm

en
t
Su

bs
id
ie
s,

C
O

2:
C
ar
bo

n
Ta

x,
P
C
:P

ri
ce

C
om

po
ne
nt
s

e
C
F:

C
os
t
Fu

nc
tio

n,
L:

Li
ne
ar
,P

W
:P

ie
ce
w
is
e
(c
on

si
de
re
d
fo
r
at

le
as
t
on

e
te
ch
no

lo
gy

)
f
IO

S:
In
ve
st
m
en
t
O
pt
im

iz
at
io
n
St
ra
te
gi
es
,1

Y
:S

in
gl
e-
Ye

ar
(s
ta
tic

in
ve
st
m
en
t
op

tim
iz
at
io
n)
,M

Y
:M

ul
ti-
Ye

ar
(d
yn

am
ic

an
tic

ip
at
iv
e
op

tim
iz
at
io
n)

g
G
S:

G
eo
gr
ap

hi
c
Sc
op

e,
JP

:
Ja

pa
n,

IT
:
It
al
y,

C
H
:
Sw

it
ze
rl
an

d,
E
S:

Sp
ai
n,

D
E
:
G
er
m
an

y,
AT

:
A
us
tr
ia
,
U
K
:
U
ni
te
d
K
in
gd

om
,
U
S:

U
ni
te
d
St
at
es
,
C
N
:
C
hi
na

,
SE

:
Sw

ed
en

,H
K
:H

on
g
K
on

g,
FI

:F
in
la
nd

5



consider variable remuneration such as, e.g., feed-in tariffs or direct electricity sales, and ignore the possibil-

ity of subsidies or other cost savings via, e.g., alternative tariffs or carbon abatement. Schütz et al. (2017)

is one of the few papers examined that actively investigate the effect of the regulatory environment on the

optimal design of DER systems. In doing so, the authors extend an existing MILP model to include a wide

range of German legislation and market characteristics including subsidies for CHP and PV as well as heat

pump tariffs. However, the authors provide little information on the assumptions regarding the individual

price components assumed for the gas and electricity tariffs. In Germany, for example, retail electricity

prices are constructed based on the average spot market bids, grid fees, renewable surcharge and other taxes

and fees. By breaking the retail prices down to the individual components, alternative tariff structures

such as capacity pricing can be considered. Furthermore, assumptions on the future developments in, for

example, the renewable surcharge or carbon taxes can be accounted for in the tariff predictions. As shown

in Table 1, few studies offer information on price components, with only Schwarz et al. (2018) including the

option of capacity-based pricing in the model.

A third characteristic that varies across the presented literature is the design of the cost function im-

plemented in the model. As is often the case in MILP models, the investment in a technology may not be

linear but rather stepwise, as a certain technology may only be available in predefined sizes (e.g., a battery

may be bought with 3 kWh or with 7 kWh but not in between). Some of the studies shown in Table 1 use a

piecewise-linear cost approximation approach to allow for each step to have their own linear cost function.

Ren and Gao (2010), Buoro et al. (2012) and Merkel et al. (2015) are often cited as some of the first to

apply a piecewise-linear cost approximation to DER systems in MILP models. More recently, papers such as

Gabrielli et al. (2018) and Mavromatidis et al. (2018) have increased the level of detail in the cost function,

accounting for both fixed (i.e., installation) and variable (i.e., material) investment costs in the piecewise

approximation. Yet with the introduction of greater technical complexity, multi-stage investment decisions

and higher temporal resolutions, the use of piecewise-linear cost functions may lead to computational issues.

As such, many of the most recent publications assume linear capital costs regardless of a technology’s size,

ignoring effects such as economies of scale. Furthermore, none of the other studies shown in Table 1 transfer

the concept of piecewise-linear approximation to fixed operation and maintenance (FOM) costs or subsidies,

which may also vary non-linearly according to a technology’s installed capacity.

Another trend that stands out in Table 1 is the general lack of papers that optimize investments over

multi-year stages, i.e., such that the consumer may invest in technologies over multiple future time periods.

Cuisinier et al. (2021) refer to this type of optimization as "dynamic anticipative", meaning the model
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jointly optimizes investment decisions successively for the complete time horizon (i.e., perfect foresight) over

evolving data. Although many studies optimize the system costs over the complete system lifetime, the

majority of the papers considered perform what Cuisinier et al. (2021) call "static investment optimization"

in which the investment decision occurs in a single stage (e.g., one single year). In fact, only three of

the reviewed publications shown in Table 1 develop models capable of dynamic-anticipative investments,

the earliest of which being Cano et al. (2014). In their paper, the authors develop a MILP model to

optimize the energy planning in buildings and seek to complement an existing decentralized heating system

with PV, with the results showing endogenous investments in PV capacity in three out of the five future

years considered. More recently, Mavromatidis and Petkov (2021) and Petkov et al. (2022) address this

research gap in the development of their models MANGO and MANGOret, capable of performing dynamic-

anticipative investments for a large technology catalog. The former, in particular, optimizes the design of an

energy system for a hypothetical urban area assuming a 30-year planning period with six investment stages.

However, at the time of this research, the MANGO model omits the possibility of regulatory instruments

and their development over time, which may greatly impact future investment decisions.

Lastly, although Table 1 highlights the methodological variations in the selected literature, the sources

can also be characterized by the unique case studies or scenario analyses that are performed to demonstrate

the models’ abilities. Yet one interesting finding is the homogeneity of the economic analyses performed. In

fact, of the papers that provide economic results, their findings are based on the level values of the output

variables, e.g., total annual costs, total investment costs, total operational costs, etc.. Marginal values in

the form of implicit or shadow prices, on the other hand, have yet to be evaluated, most likely due to the

non-linear nature of MILP models. However, following the methodology provided in Williams (1989) and

Williams (2013), the marginal values of MILP models may be interpreted as shadow prices as long as the

optimal MILP solution is then linearized, i.e., the binary variables are set to the optimal solution. In doing

so, it is possible to determine the implicit prices for decentralized electricity and heat provision — a task

that has yet to be done in the reviewed literature.

1.3. Contribution and Paper Structure

In light of the existing literature, the paper at hand seeks to both (i) advance the individual criterion

outlined in Section 1.2 as well as (ii) offer a unique combination of these criteria not previously seen, empha-

sized by the distinct combination of x’s in the last line of Table 1. As such, this work offers several significant

contributions within the methodology developed as well as the application performed, in particular:
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• The model includes an extensive technology catalog with a comparably large number of generation and

storage technologies for space and water heating as well as electricity. The DER systems are modeled

with a great deal of technical detail, including the design of an hourly COP profile for heat pumps

dependent on regional temperature profiles.

• The cost minimization in COMODO takes into account a wide range of incentive mechanisms including

variable remunerations such as feed-in tariffs, market premiums and direct electricity sales as well as

investment subsidies. Due to the detailed depiction of the individual price components for electricity

and gas, further regulatory aspects such as capacity pricing, heat pump tariffs and carbon taxes may

also be considered.

• The ability of the model to optimize investments in multiple future years, i.e., perform a dynamic

anticipative optimization, is a unique characteristic of COMODO. The model therefore requires that

assumptions for techno-economic input data be made for each model year for the complete model

horizon. This includes detailed assumptions on regulatory and market developments.

• Although several studies have designed piecewise-linear functions for the investment costs of DER

for static, single-year optimization, the study at hand uses learning rates to create piecewise-linear

cost functions for all future model years. Furthermore, the piecewise-linear approximation approach

is also applied to FOM costs as well as investment subsidies, which has also yet to be performed in

the reviewed literature.

• To the best of the authors’ knowledge, the paper at hand is the first to analyze the future marginal

costs of decentralized heat and electricity provision for individual exemplary households in Germany

based on a MILP optimization.

The remainder of the paper is structured as follows: Section 2 presents a detailed explanation of the

methodology and the model equations. The scenario application and optimization results are given in Section

3, including a description and evaluation of the marginal costs of energy provision. The assumptions as well

as findings of the sensitivity analysis are also included in Section 3. Section 4 concludes.
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2. Model Description

2.1. Model Overview

The COMODO model is a mixed-integer problem that uses linear programming methods to minimize

the total system costs of supplying energy to a specific consumer or consumer group. Consumers are defined

according to criteria such as building type (e.g., single-family home, multi-family home, industry building,

etc.), building age, modernization standard, living area, available roof space, number of inhabitants, inhabi-

tants’ working schedules and building location. These key criteria, in turn, determine how the consumers are

parameterized according to, e.g., their energy demand levels, load profiles, investment options, generation

potentials as well as economic and regulatory conditions. The model developed then determines the con-

sumer’s private economic optimum in satisfying its electricity as well as space and water heating demands

using a partial-equilibrium investment and dispatch optimization. In doing so, COMODO is able to deter-

mine the cost-minimal energy provision for a consumer class according to each energy use type (EUT), i.e.,

electricity, water heating and space heating, over a predefined period of time. Although the model considers

individual years, the optimization takes place over the complete time horizon.3

In order to cover the consumer’s energy needs, COMODO may choose one or multiple investment objects

from its extensive DER catalog or may purchase electricity or district heat4 from the grid. Figure 1 gives a

schematic overview of the investment objects, available fuels and energy flows that are currently accounted

for in the model COMODO, with yellow boxes and lines indicating electricity flow and red indicating heat

flows for both space and water heating.

The current DER catalog accounts for 18 distributed generation and storage technologies5, represented

by the grey boxes in Figure 1.6 All technologies are subject to their specific investment and installation

costs, operating costs and other fixed costs as well as technical specifications such as efficiency, lifetime

and generation potential. Several investment objects require natural gas, oil or wood pellets as input,

which can be bought at the local commodity price (see the boxes and arrows in green, black and brown

in Figure 1, respectively). Others require electricity, which can either be produced and supplied by the

3In other words, the model benefits from perfect foresight.
4Although the functional layout of COMODO is designed to include district heat, it is not considered in this analysis and

therefore omitted from Figure 1.
5Currently, these include PV, solar thermal (hot water, combined hot water and space heating), micro-CHP (gas, diesel),

fuel cell CHP (gas), gas condensing boiler, gas-fired boiler, gas flow heater, oil condensing boiler, pellet stove, thermal storage,
battery storage, electric heater, heat pump (air-to-water, water-to-water, geothermal) and power flow heater. Electric networks
and pipelines are not included in the technology catalog as these are excluded as investment objects within the work at hand.
This also holds true for investments in building envelope refurbishment.

6The model structure allows for the technology catalog to be expanded to include additional electricity or heat production,
storage and/or consumption technologies and is in no way limited to the technologies shown in Figure 1.

9



Gas Condensing

Boiler

Gas Flow Heater

Gas-Fired Boiler

Solar Thermal

Heat Supply (Space 

and /or water)

PV

Electricity

Grid Electricity

SupplyBattery Storage

CHP

Electric Heater

Thermal 

Storage

Power Flow Heater

Heat Pump

Natural 

Gas

Grid

Oil Condensing

Boiler

Wood 

Pellets

CHP
Oil

Tank

Pellet Stove

Figure 1: Overview of the energy supply flows and DER systems in the model COMODO, with the yellow boxes and
lines indicating electricity, the red boxes and lines indicating heating and grey boxes indicating technologies

consumer or bought from the electricity market at the retail price. In the case of PV and solar thermal, the

energy input is solar irradiation7 and depends on the weather conditions in the consumer’s region. Weather

conditions may also affect other technologies such as heat pumps, whose efficiency may, e.g., decrease in

colder temperatures (see Section 2.4). Three types of heat pumps are considered in COMODO, namely

air-to-water, water-to-water8 and geothermal9.

Next to the investment decision, the model also optimizes the resulting consumption, generation and

storage-use profiles of the chosen DER systems in order to satisfy demand of all EUTs at each point in

time. For example, the decision of the consumer to, e.g., directly consume her own production, store her

own production and/or immediately feed-in her own production is simultaneously optimized against the

consumer’s load, weather conditions, regulatory framework and market signals until the cost-minimizing so-

lution is found. For electricity, demand may be both exogenous and endogenous as the consumer’s immediate

electricity needs —the exogenous part— may be accompanied by an endogenously-determined heat-driven

demand for electric power from, e.g., an electric heater. Space and water heating demands, on the other

hand, are defined completely exogenously.10 The standard temporal resolution of the model is hourly but

can be adjusted to account for more (e.g., quarter-hourly) or fewer (e.g., via clustering) time slices.

As emphasized in Sections 1.2 and 1.3, the model is also able to accommodate current as well as planned

or hypothetical regulatory frameworks and energy market conditions relative to the location of the consumer.

7Not pictured in Figure 1.
8I.e., including a ground collector
9I.e., including vertical drilling

10In other words, it is assumed that no technology uses heat as an input energy source. The thermal storage systems are an
exception to this assumption, as heat losses can lead to an additional endogenous heat demand.
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These include, among others, remuneration mechanisms such as investment subsidies, feed-in tariffs, market

premiums and direct sales of distributed generation as well as transparent market signals via, e.g., variable

electricity prices. The tariff structure may also be adjusted for either energy (€/kWh) or capacity (€/kW)

prices. Further constraints to account for, e.g., emission reduction targets may also be applied. The model

can be used to examine future years by adjusting, among others, the regulatory and market conditions as

well as the economic and technical assumptions. In doing so, COMODO provides the opportunity to analyze

the diffusion of DER systems over time for specific consumer classes or accumulated consumer groups.

2.2. Minimizing Total Costs of Meeting Demand

The objective function in COMODO is a minimization of the sum of the individual cost components

that consumers11 face when satisfying their energy needs over a predefined period of time.12 As shown in

Equation (1a), these can be broken down into fixed costs (FC) and variable costs, which may either be

energy-based (EBC) and13/or capacity-based14 (CBC), for each year y. Furthermore, certain technologies

used to supply certain energy use types (EUT ) may also be eligible for an energy-based remuneration15

(EBR) via incentive programs, which dampen the consumer’s variable costs.16 Before summing over all

modeled years, the annual costs are discounted according to an interest rate i and the starting year y0.

min!T C =
∑

y

[ 1
(1 + i)(y−y0) ·

(
F Cy + EBCy + CBCy −EBRy

)]
(1a)

s.t. dy,t,EUT +
∑

x

[
XF Iy,t,x,EUT + GF Iy,t,x,EUT

]
=∑

x

[
XSy,t,x,EUT + GSy,t,x,EUT

]
+ GSy,t,EUT =EUTdemand

(1b)

Qy,x ≥ XSy,t,x,EUT (1c)

qgrid,EUT ≥
∑

x

[
GSy,t,x,EUT

]
+ GSy,t,EUT =EUTdemand

(1d)

capCO2,y ≥
∑

t,fx,EUT

[(∑
x

[XSy,t,x,EUT

ηt,x,EUT

]
+ GSy,t,EUT =EUTdemand

)
· factorCO2,t,fx/EUT

]
(1e)

11It is important to note that, in order to simplify the nomenclature, the dependence on the consumer definition has been
excluded from the equations. In other words, all the equations shown in Sections 2.2, 2.3, and 2.4 apply to a single or an
aggregated group of consumers. More information on the consumer definition may be found in Section 3.1.1.

12The period of time is usually defined to be anywhere from a 10-year to 30-year interval.
13Both may be possible if, for example, a combination of multiple fuels with different price structures are consumed or if the

retail price of an energy use type is made up of a combination of energy-based and capacity-based price components.
14Capacity-based costs depend on the size of the consumer’s connection to the grid. Per definition, this depends on the

energy use type or on the fuel being transported, as infrastructure costs differ for, e.g., electricity or gas (see Equation (5)).
15Energy-based remuneration is awarded according to energy units (kWh), e.g., feed-in tariffs (see Equation (6)).
16A complete list of the notations used for all model sets, parameters and variables can be found in Appendix A. Unless

otherwise noted, optimization variables are indicated using bold, uppercase letters.
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Equations (1b) - (1e) summarize the main constraints of the minimization problem. The first of these

equations requires that equilibrium between demand and supply be maintained in every time slice t. In

addition to an exogenously-defined energy demand d for each y, t and EUT , an endogenous energy demand

may arise from feeding an EUT into a technology (XFI ) or feeding an EUT into the grid17 (GFI ). The

exogenous and endogenous demand may be supplied by a decentralized technology x (XS) and/or by an

energy provider via the grid18 (GS), which may be directly consumed to meet exogenous demand d of an

EUT (indicated by the subscript EUT = EUTdemand
19) or fed into a technology to store or transform the

EUT (indicated by the subscript x). Equation (1c) shows the capacity constraint for the DER systems,

meaning that the supply XS can not exceed the installed capacity Q of a certain technology x for every time

slice t and year y.20 Similarly, Equation (1d) limits the amount of energy that can be supplied from the grid

(GS)21 according to the size of the connection capacity (qgrid) for the corresponding EUT , which may vary

strongly depending on the consumer definition. The last constraint shown, Equation (1e), is only included

in the model if a carbon emission reduction target is considered. In this case, total emissions of a single

consumer or consumer group are determined by adding the energy consumption of decentralized generation

technologies (XSy,t,x,EUT

ηt,x,EUT
)22 to the energy consumed directly from the grid (GSy,t,EUT=EUTdemand

) and then

multiplying by the corresponding CO2 factor. If the energy source of technology x is a fuel fx23 such as

gas or oil, then the CO2 factor is equal to the combustion emissions factor (factorCO2,fx
)24; however, in

the event that an EUT is bought from an energy provider to be used directly (EUT = EUTdemand) or as

an input energy source for technology x, then the CO2 factor is equal to an average emissions factor of the

generation technologies used to produce the respective EUT (factorCO2,t,EUT ).25 The total CO2 emissions

emitted by the consumer are then limited by an exogenously-given target value CO2,cap for year y.

17Grid feed-in is only possible if a suitable bidirectional grid connection is available to the consumer. Currently, this is most
commonly the case for electricity. However, from a technical standpoint, grid feed-in may also be possible for heat.

18In this case, grid supply pertains solely to the buying of an EUT , namely electricity or heat, from an energy provider to
cover a consumer’s energy demand. Grid supply is only possible if a suitable grid connection is available to the consumer.

19The subscript EUT = EUTdemand is necessary for the notation of variables that describe a direct energy consumption
without conversion in a technology x.

20Equation (1c) holds for y ∈ [y∗x, y∗x +ltx], where y∗x indicates the installation year and ltx the technical lifetime of technology
x. If the model chooses to remove the technology before the end of its technical lifetime, XS would then be equal to zero.

21Analogous to Equation (1b), grid supply is separated into two variables depending on whether it is stored or converted by a
technology x or if it is directly used to cover the exogenous demand d, the latter indicated by the subscript EUT = EUTdemand.

22The technical efficiency included in Equation (1e) depends not only on the technology x but also on the time slice t and
the EUT . The temporal differentiation is important for heat pumps, whose efficiency may differ over time due to changes in
the source temperature (e.g., outside air temperature), whereas the dependence on EUT is essential for technologies such as
micro-CHP, whose efficiency depends strongly on the type of energy being produced.

23The subscript fx denotes the matching between the input fuel f and technology x.
24This factor represents the carbon intensity of the fuel emitted in combustion, i.e., according to the chemical composition.

Any emissions arising in the construction and decommissioning of energy systems are not taken into account.
25The parameter factorCO2,t,EUT depends on the time slice t as the amount of CO2 emitted during the energy conversion

to the EUT may be variable depending on, e.g., the electricity generation mix.
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The fixed costs (FC) in year y include the annualized investment costs (AIC) and fixed operation and

maintenance costs (FOMC), summed over all technologies installed x,

F Cy =
∑

x

[
AICy,x + F OMCy,x

]
, (2)

with

AICy,x = jx

1− (1 + jx)−wx
·
(

ICy∗,x − Sy∗,x

)
. (3)

The investment costs (IC), which are discussed in detail in Section 2.3, may be partly compensated by

a subsidy S in the event that a subsidy program for the technology exists. Both the investment costs and

subsidy amounts depend on the year in which the technology is installed (y∗). Using a financing rate j,

the remaining investment costs are then annualized over a financing period w, which may vary according

to technology x. As such, Equation (3) holds for y ∈ [y∗
x, y

∗
x +wx]; however, the fixed costs in Equation (2)

may hold for y ∈ [y∗
x, y

∗
x + ltx], where ltx indicates the technical lifetime of technology x and ltx ≥ wx.26

In other words, the fixed operation and maintenance costs may extend past the financing period, as long as

the technology is still installed and the technical lifetime has not been reached.

In addition to the fixed costs, a significant share of the consumer’s energy expenses result from the

variable costs that arise from purchasing either an energy use type from an energy provider or a fuel to be

consumed by a DER system. Currently, it is most common to see these costs defined according to energy

units, i.e., kWh. Within the scope of this paper, these are referred to as energy-based costs (EBC) and are

defined in Equation (4),

EBCy =
∑

t,EUT

[
GSy,t,EUT =EUTdemand

·
∑
epc

[
epy,t,EUT,epc

]]
+

∑
t,fx,EUT

[∑
x

[XSy,t,x,EUT

ηt,x,EUT

]
·
∑
epc

[
epy,t,fx/EUT,epc

]]
. (4)

The energy price ep can be defined either for an energy use type, e.g., electricity, or for a fuel, e.g.,

gas (indicated by the subscript fx/EUT ). In both cases, the retail price for the consumer is made up of

energy price components (epc) such as acquisition, taxes and grid fees, which may vary over time slice t and

year y. The corresponding energy price is then used to determine the annual costs arising from consuming

energy use types directly from the grid (GSy,t,EUT=EUTdemand
) as well as the transformation or storage of

26It should be noted that, by definition, the model may choose to remove a technology before the end of its technical lifetime
or even before the end of the financing period if it leads to an overall decrease in the total costs.
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an energy use type or fuel by a technology (XSy,t,x,EUT

ηt,x,EUT
).

As the regulation of energy prices in future years remains uncertain, COMODO allows for prices as well

as individual price components of energy use types to be defined according to capacity (kW) rather than

energy units.27 In this case, the consumer pays a capacity price (cp) for the grid capacity relative to the

maximum28 amount of energy use type needed to be supplied by the grid over time slices t in year y, referred

to in Equation (5) as capacity-based costs (CBC):

CBCy =
∑
EUT

[maxt

(∑
x

[
GSy,t,x,EUT

]
+ GSy,t,EUT =EUTdemand

)
t

·
∑
cpc

[
cpy,t,EUT,cpc

]]
. (5)

The variable costs EBC and CBC may be reduced if a consumer’s DER system is eligible to benefit

from incentive programs offering energy-based remuneration (EBR). Classic examples include compensation

for feeding-in energy to the grid via, e.g., feed-in-tariffs or market premiums; however, certain technologies

may also be eligible for remuneration for self-consumption, i.e., if an energy use type is locally generated

and then consumed on site. On the other hand, some technologies are restricted as to how much they are

allowed to produce and self-consume, paying a fee for each kilowatt-hour over the limit. The yearly amount

of variable remuneration29 a consumer may receive is calculated according to Equation (6),

EBRy =
∑

t,x,EUT

[
GF Iy,t,x,EUT · ery,t,x,EUT +

(
XF Iy,t,x,EUT −GSy,t,x,EUT

)
·
(
scry,x,EUT − scfy,x,EUT

)]
, (6)

such that the amount of energy fed into the grid GFI is compensated according to a energy remuneration

er, and the amount of energy fed into technology x that does not come from the grid (XFI -GS) is rewarded

or penalized according to a self-consumption remuneration scr or self-consumption fee scf , respectively.

2.3. Piecewise Linearization of Costs for Current and Future Years

Investment costs are equal to the capital costs that must be paid to install a certain decentralized energy

technology, as introduced in Equation (3). These include not only the costs for the technology itself but also

for additional hardware or labor costs that are needed for the technology to run. Investments in decentralized

27Technically speaking, although only energy use types are mentioned here, Equation (5) could also be applied to a grid-
supplied fuel such as gas. This is, however, omitted to simplify the explanation.

28It should be noted that Equation (1d) still holds for Equation (5). In other words, maxt

(∑
x

[
GSy,t,x,EUT

]
+

GSy,t,EUT =EUTdemand

)
would be equal to qgrid,EUT if the maximum amount demanded by the consumer over time slice

t reached the size of the connection capacity. Furthermore, it is also possible to allow for time-variable capacity prices by
calculating the maximum of a subset of time slices, e.g., in the case of peak pricing.

29As opposed to investment subsidies, which are accounted for in Equation (3).
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technologies are done linearly, meaning the consumer may install the exact capacity (kW) that is optimal for

the individual or communal energy system.30 As explained in Section 1.2, many existing studies using MILP

methods assume linear, capacity-specific investment costs for each technology. Capacity-specific investment

costs (€/kW), however, may vary drastically depending on the total size of the technology installed: For

example, a larger system may benefit from lower costs per kW due to, e.g., economies of scale or a decrease

in the specific installation costs. Especially for very small systems (e.g., less than 5 kW), the cost difference

from one kW to the next may be substantial.
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Figure 2: Graphical example of the piecewise-linear function used to determine investment costs

In order to mimic this non-linear cost structure in a linear model, a piecewise-linear cost function is built

for each technology’s investment costs.31 In doing so, individual linear costs functions (so-called ’function

parts’) for different system sizes are joined together to create a curve-like form similar to a logarithmic

growth function for each DER technology.32 Figure 2 presents an illustrative example for a technology

with a minimum achievable capacity Qmin,fp=1 and maximum achievable capacity Qmax,fp=n. As shown in

30Restrictions limiting the minimum size of the investment object are taken into account, as many decentralized technologies
are only available starting from, e.g., 2 kW.

31Although the description presented focuses on the investment costs, a piecewise-linear function is also used to determine
the capacity-specific FOM costs as well as the capacity-specific subsidy values, as these may also greatly depend on the system
size. See Appendix C for a graphical overview of the piecewise-linear functions assumed for the investment and FOM costs in
the application in 3, as well as a thorough presentation of the subsidies included in COMODO.

32The cost functions for some technologies, such as thermal storage and solar thermal, do not display a logarithmic curve.
In fact, the capacity-specific costs may increase once the systems size exceeds a certain capacity. The additional costs result
from technical requirements in scaling-up system size, e.g., construction, system control or design.
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the figure, each function part has a minimum33 and maximum capacity, which defines the range of system

sizes that are assumed to exhibit the same capacity-specific investment costs. For example, all systems

with installed capacities that fall between the minimum (Qmin,fp=1) and maximum (Qmax,fp=1) of the first

function part are assumed to have the same marginal costs, which is determined by the linear slope of the

first function part, δIC
δQ fp=1

. A decrease in the slope from one function part to the next reveals how the

capacity-specific investment costs may be reduced by an increase in total installed capacity.

The corresponding equation for determining the investment costs IC in year y for technology x using

the piecewise-linear function shown in Figure 2 can be seen in Equation (7),

ICyx,x = ICQmin,x · γyx,x,fpx=0 +
N∑

fpx=1

[
(Qmax,yx,x,fpx −Qmax,yx,x,fpx−1) ·

[
δIC

δQ

]
x,fpx

· γyx,x,fpx

]
−
[

(Qmax,yx,x,fpx=N −Qyx,x) ·
[
δIC

δQ

]
x,fpx=N

· γyx,x,fpx=N

]
, (7)

with N ≤ n, where n is the maximum number of function parts and N indicates the function part in

which the total installed capacity Qyx,x falls on the x-axis, i.e.,

Qmax,yx,x,fpx=N−1 ≤ Qyx,x ≤ Qmax,yx,x,fpx=N . (8)

and

Qmax,yx,x,fpx=0 = Qmin,yx,x,fpx=1. (9)

As illustrated in Equation (7), the investment costs for a system with installed capacity Qyx,x are

determined by first taking the investment costs of the minimum achievable capacity Qmin (ICQmin,x) and

then adding the investment costs of each additional unit of capacity until the full system size has been

reached. As shown in Figure 2, this is done piecewise for each function part according to the capacity

increase from one function part to the next, namely the difference between the maximum capacity of the

current function part and of the previous function part (Qmax,yx,x,fpx - Qmax,yx,x,fpx−1), multiplied by

the slope of the linear cost function for the current function part ( δICδQ
x,fpx

). This is done up until the

Nth function part containing Qyx,x, as shown in Equation (8). As the total installed capacity may not be

equal to the maximum capacity of the Nth function part, the investment costs must be "corrected" for the

difference in capacity, Qmax,yx,x,fpx=N −Qyx,x. The decision whether to install the technology as well as

33The minimum capacity of a function part is equal to the maximum capacity of the previous function part, with the exception
of the first function part where a starting value (Qmin,fp=1) is given (see Equation (9)).
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the navigation of the function parts are imposed using binary variables.34

A learning rate γ is included in Equation (7) to account for changes in the investment costs that may

occur over future time periods. In addition to the investment year y and the technology x, the learning rate

may also differ according to each function part as systems of varying sizes may be subject to different cost

degressions over time.35

2.4. Technology Specifics

In addition to designing the objective function and building the piecewise cost function, another major

contribution of the paper at hand is the modeling of complex decentralized energy technologies. As discussed

in Section 2.1, COMODO can optimize both investment and dispatch decisions simultaneously. In doing so,

additional constraints must be included for certain DER systems to ensure technical accuracy of the model.

Generation from solar technologies, which include PV for electricity and solar thermal for space and

water heating, is subject to a modified version of the capacity constraint shown in Equation (1c), i.e.,

XSy,t,x=P V/ST,EUT =elec/heat ≤ Gt · ηt,x=P V/ST,EUT =elec/heat ·Qy,x=P V/ST , (10)

where Gt represents the global solar irradiation on a tilted area measured in kW/m2. The parameter Gt

is determined not only relative to the orientation and tilt angle of the solar system itself but also according to

the direct and indirect solar radiation at the location at a specific time, the latter depending on both the solar

altitude and azimuth.36 The global solar irradiation on a tilted area is then multiplied by the technology-

specific efficiency ηt,x=PV/ST,EUT=elec/heat, which represents the ability of the system to transform the solar

energy into the desired EUT. For PV systems, the factor ηt,x=PV,EUT=elec is equal to α0
spacefactorP V

, where

α0 represents the optical efficiency37 and spacefactorPV is equal to the maximum amount of PV capacity

per square meter38. For the case of solar thermal, the efficiency is determined by a quadratic function

ηt,x=ST,EUT =heat = α1 − α2 ·
Tcollector,t − Tambient,t

Gt
− α3 ·

(Tcollector,t − Tambient,t)2

Gt
, (11)

34Binary variables are excluded from the equations to increase readability.
35In Equation (7), the learning rate corresponding to the investment costs for the minimum installed capacity (ICQmin,x)

is shown using the subscript fp = 0. As there is no function part equal to zero, this should be understood as the learning rate
for the starting (i.e., minimum) capacity Qmin.

36The global solar irradiation on a tilted area may also be influenced by the building characteristics specific to the consumer,
e.g., roof construction, surrounding topography, etc. The global solar irradiation on a tilted area is calculated according to
Eicker (2012). See Appendix C.8 for more information.

37 The optical efficiency accounts for losses due to, e.g., reflection, shade, heat or residue on the PV panels. Although these
conditions may vary from one time slice to the next, the optical efficiency within the model is assumed to be an average value
held constant over time.

38This assumption is based on the current PV module types available.
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as recommended by the European Solar Thermal Industry Federation (2007). In this case, α1 describes

the technical efficiency of the system, accounting for optical efficiency losses. The remaining part of Equation

(11) accounts for any heat loss due to the radiation and convection of the heat transfer medium used in the

collector. The quadratic function contains two heat-loss coefficients, α2 and α3, multiplied by the tempera-

ture difference between the mean collector temperature Tcollector,t and ambient temperature Tambient,t.

Furthermore, as the roof size for a single consumer or consumer group is limited, rooftop installations of

PV and ST systems must compete for the available roof space rs,

rs ≥ Qy,x=ST +
Qy,x=P V

spacefactorP V
, (12)

where the optimal installed capacity of PV in kW (Qy,x=PV ) is converted to area according to the

parameter spacefactorPV .39

Next, additional technology-specific equations must be included in COMODO to account for battery and

thermal storage. In particular, storage technologies introduce a temporal shift into the model, allowing for

energy to be consumed or transformed at a different point in time than it was generated or purchased. In

other words, the amount of energy that can be injected into or discharged from the storage in time slice t

depends on the storage level, SL, which is relative to the storage level in the previous time slice t− 1,

SLy,t,x=storage,EUT = SLy,t−1,x=storage,EUT · (1− βt,x=storage,EUT )−XSy,t,x=storage,EUT

+
( ∑

x1 6=storage

[
XF Iy,t,(x1−→x2=storage),EUT

]
+ GSy,t,x=storage,EUT

)
· ηt,x=storage,EUT . (13)

The temporal shift between t− 1 and t results in storage losses equal to β, while the injection of energy

either from a technology other than storage (XF Iy,t,(x1−→x2=storage)), in this case x1
40, or from the grid

(GSy,t,x=storage,EUT ) must be corrected for the storage’s technical efficiency η. The amount of energy

discharged from the storage (XSy,t,x=storage,EUT ) can then be used either directly by the consumer in its

current energy use type or fed into another technology to be transformed to another energy use type.

Similar to the investment costs discussed in Section 2.3, the available storage volume (in kWh) for

technology x in year y is calculated using piecewise-linear functions according to an installed storage capacity

(in kW). Therefore, storage level SL in time slice t must be less than or equal to the available storage volume

SV for technology x, energy use type EUT and year y, i.e., SLy,t,x,EUT ≤ SVy,x,EUT .

39For solar thermal, the installed capacities, e.g., Qy,x=ST in Equation (12), are given in square meters.
40The subset (x1, x2) is included in Equation (13) to specify that, in this case, the energy flows from one technology x1 into

a storage technology x2.
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Furthermore, technologies that handle multiple energy use types, such as CHP or power-to-heat (PtH)

systems, require additional mathematical constraints. For example, CHP systems may consume gas, diesel or

even hydrogen to produce both electricity and heat according to a power-to-heat ratio ηEUT=elec/ηEUT=heat,

XSy,t,x=CHP,EUT =elec =
ηt,x=CHP,EUT =elec

ηt,x=CHP,EUT =heat
·XSy,t,x=CHP,EUT =heat, (14)

where XS indicates the amount of energy production by the CHP system for the energy use type

electricity (EUT = elec) and heat (EUT = heat) in time slice t. PtH technologies, which include electric

heaters and heat pumps, consume electricity either produced by another technology (XF I), in this case

x1
41, or purchased from the electricity grid (GS) to generate heat supply (XS), as shown in Equation (15):

XSy,t,x=P tH,EUT =heat = ηt,x=P tH,EUT =heat ·
(∑

x1

[
XF Iy,t,x1,x2=P tH,EUT =elec

]
+ GSy,t,x=P tH,EUT =elec

)
. (15)

Whereas the efficiency η of an electric heater (e.g., a heating rod or electric boiler) tends to be less than

one and remain constant for every time slice t, the efficiency of heat pumps not only reaches levels at least

3x higher but also fluctuates from one time slice to the next. The performance of electric heat pumps, i.e.,

the COP, is highly dependent on the temperature delta between the source temperature and the desired

flow temperature of the heating system. In order to determine the temperature-dependent, variable COP

of electric heat pumps, the following equation is developed42,

COPt = ηt = 0.0016(Tflow − Tsource,t)2 − 0.2058(Tsupply − Tsource,t) + 8.7302 (16)

where Tflow indicates the desired flow temperature, Tsource,t the outside source temperature in time

slice t and COPt the resulting COP in time slice t. A larger delta between the outside source temperature

and the desired flow temperature leads to lower COPs, i.e., colder days lead to lower efficiency levels. The

flow temperature for the heating system is assumed to depend on the technical construction of the heating

system and, in turn, on the modernization standard of the building considered.43

41The subset (x1, x2) is included in Equation (15) to specify that in this case, the energy flows from one technology x1 into
a PtH technology x2.

42The construction of the equation is based on data from Ruhnau (2019), Bundesamt für Wirtschaft und Ausfuhrkontrolle
(2019) and industry data.

43For example, it is assumed that an existing building has a flow temperature of 50°C and newly-built buildings a flow
temperature of 35°C.
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3. Application

To demonstrate the capabilities of the model developed, three scenarios are defined and examined using

COMODO. The Status Quo, Smart Tech and Smart Market scenarios as well as the corresponding assump-

tions pertaining to the consumer types, market conditions and DER systems are explained in Section 3.1.

Section 3.2 presents and compares the scenario results with regards to investment behavior, energy genera-

tion and consumption as well as the costs for each household. The next subsection, Section 3.3, investigates

the yearly and hourly marginal costs of energy provision. Finally, a sensitivity analysis is performed in

Section 3.4 to explore the impact of higher carbon prices on the choices of the households considered.

3.1. Scenario Definition

Three scenarios are constructed that vary according to their technical and regulatory frameworks. More

specifically, the scenarios aim to depict a progression in the amount of information available to consumers

and their DER systems. Figure 3 shows an overview of the scenario definitions and corresponding attributes.

Figure 3: Overview of the scenario definitions

The first scenario, a so-called Status Quo scenario, assumes that the technologies receive no information

regarding electricity market conditions, i.e., consumers see only a constant retail price. Furthermore, the

consumers’ investment decisions are made based on the data for only one model year rather than the

entire time horizon. As such, it is assumed that consumers have no knowledge of how investment costs,

remunerations, heat and electricity demand as well as weather profiles and retail prices will develop and

therefore assume that all future model years will be identical to the first model year, in this case 2025.44 The

operation of the DER systems, however, is optimized on a daily basis, meaning the technologies themselves

are only capable of forecasting weather and demand patterns for a single day. As a result, the optimization

strategy is limited in its ability to plan generation and storage flows, similar to the current status quo.

44Although the consumer can not see future price or costs developments at the time of the investment decision, the consumer
will still pay the, e.g., retail price that is assumed for the model year according to Figure 4 in Section 3.1.2. This is done
ex-post in order to normalize the results shown in Section 3.2.
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The second scenario, referred to as the Smart Tech scenario, assumes that DER systems are capable

of receiving information on the demand and weather conditions for all time steps in all model years. In

terms of operation, this means that technologies can better manage their energy provision by, e.g., using

storage to optimize generation and consumption over a single week rather than a single day.45 Furthermore,

households are exposed to forecasts on energy price developments as well as expected changes in investment

costs and subsidy values for decentralized energy technologies. In other words, investment decisions can be

made with knowledge on future economic and regulatory conditions.

The third scenario, i.e., the Smart Market scenario, builds upon the Smart Tech scenario and allows

for additional information on the current and future electricity market to be available to consumers and

their technologies. In this scenario, the constant retail electricity price is replaced with a variable tariff to

reflect changes in electricity supply and demand occurring in the market.46 As a result, the profitability

of decentralized electricity generators, storages as well as electricity-based heaters may increase as these

technologies seek to optimize operation according to the hourly variations in electricity prices.

3.1.1. Defining the Consumer

COMODO is particularly well designed for analyzing the energy provision of privately-owned single-

family homes in which the owner is also the resident of the house. In this case, the investment decision lies

solely with one party such that a cost minimization can be performed without a mismatch in the incentives

between investor and technology user.47 Therefore, within each of the three scenarios, four privately-

owned, single-family household types are considered, two with four residents and two with two residents.

Table 2 shows the assumptions on the key consumer characteristics of each household type.48 All consumers

considered are assumed to live in Cologne, Germany.

Each household type is defined by individual load profiles for electricity and heat consistent with the

annual demand values shown in Table 2. For electricity, the hourly demand for lighting, information and

communication technology as well as household appliances is determined using a tool49 developed in Pflu-

gradt (2016). In doing so, an individual load profile is generated for each household type according to the

45At the time of this paper, the standard setting in COMODO is that the storage technologies are able to shift energy
consumption within a time frame of one week. Other storage systems would have to be considered to expand this time frame.

46It should be noted that the electricity market price is assumed to be unaffected by the electricity consumption and generation
behavior of the individual consumer. In other words, the variable tariff is not endogenously coupled with the single consumer’s
energy provision and is handled rather as an exogenously-defined input parameter.

47Especially for multi-family homes, the landlord/tenant dilemma distorts the incentives for investment: While the landlord
bears the investment costs, the tenant may financially profit from using certain technologies.

48The key characteristics are defined in line with Shamon et al. (2021), with the household types presented being closely
linked to the household types HH1b_A_t3 (HH1), HH2b_A_t3 (HH2), HH1b_N_t1 (HH3) and HH2b_N_t1 (HH4).

49Load profiles are derived using the Loadprofilegenerator (Version 7.2): https://www.loadprofilegenerator.de/.
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HH1 HH2 HH3 HH4

number of residents 4 2 4 2
share of residents employed 25% 100% 25% 100%
building age existing existing new new
living space [m2] 122.4 96.0 122.4 96.0
roof size [m2] 60 60 60 60
appliance type standard standard efficient efficient
annual electricity demand [kWhel] 5674 3414 3723 2469
annual heat demand [kWhth] 18051 14158 8849 6940
peak electricity demand [kWel] 4.7 4.8 4.1 3.7
peak heat demand [kWth] 15.4 12.1 15.6 12.2
financing rate [%] 5 5 5 5
financing period∗ [a] 15 15 15 15
*Financing period holds as long as the technical lifetime is exceeded

Table 2: Consumer characteristics of each household type based on Shamon et al. (2021)

consumer characteristics affecting electricity consumption behavior such as, e.g., location, number of resi-

dents, appliance efficiencies, working hours50 and vacation periods51. The sum of the hourly load profiles

results in the annual electricity demand shown in Table 2. For heat, on the other hand, first the annual heat

demand is estimated before being broken down into an hourly consumption profile. The demand is assumed

to be for both space and water heating, i.e., via a central heating system. As can be seen in Table 2, the

annual heat demand varies with living space and building age, with the latter being indicative of the insu-

lation status: While existing buildings are assumed to have a specific heat demand of 147.5 kWhth/(m2a),

newly built homes are assumed to require 72.3 kWhth/(m2a). The annual heat demand is transformed into

daily values following the concept of heating degree days52 based on temperature profiles taken from 2015

weather data measured at the Cologne Airport location.53 The daily values are then converted into hourly

profiles using the structures of the typical days described in the German engineering guidelines.54

All consumers are assumed to make an energy investment in the year 2025, installing either the first

system in a new building or a replacement system in an existing building. In other words, for households

50The share of residents employed indicated in Table 2 are assumed to work for eight hours per day, five days a week during
daytime hours at a location other than the residence.

51It is assumed that each household type is on vacation for two weeks in July.
52The heating degree days are calculated according to Alt (2013). In line with the assumptions in Verein Deutscher Ingenieure

(2019), it is assumed that the heating is turned on once the daily average outside temperature goes below 15°C for existing
buildings and below 12°C for newly-built buildings.

53The weather data published by Deutscher Wetterdienst can be found at ftp://opendata.dwd.de/climate_environment/
CDC/observations_germany/climate/10_minutes/air_temperature/historical/, ftp://opendata.dwd.de/climate_
environment/CDC/observations_germany/climate/10_minutes/solar/historical/ and ftp://opendata.dwd.de/climate_
environment/CDC/observations_germany/climate/10_minutes/wind/historical/

54The German engineering guidelines "Verein Deutscher Ingenieure" (VDI) provide profiles for 15 different so-called "typical
regions" in Germany, with Cologne falling under Region 5. The daily profiles from the VDI are constructed based on mea-
surements taken from the existing German building stock and therefore account for building-specific (e.g., absorption of heat
from building materials) as well as inhabitant-specific (e.g., opening/closing of windows) characteristics. Ten "typical days" are
given for each region, differentiated by criteria such as summer/winter/between seasons, workday/Sunday and cloudy/sunny.
These typical days are matched to the heating degree days using the limit values given by Verein Deutscher Ingenieure (2019).
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with existing technologies, it can be assumed that any technology installed beforehand will no longer be able

to operate in the year 2025, requiring a new investment. The time period considered in the optimization

runs up to 2045, with 2040 being the last possible year for investment. Investments in solar systems are

limited to the roof size, which is assumed to be equal for each household type regardless of the living space.

Furthermore, it is assumed that each household type is equipped with the necessary infrastructure to allow

for an investment in any of the DER systems considered. In other words, sufficient electric grid capacity55

as well as a connection to the gas grid is implicitly assumed.

3.1.2. Defining the Market

A cornerstone of the scenario definition are the assumptions regarding future energy prices, as the mini-

mization of variable costs is a key component of determining the least-cost energy provision. As described in

Section 2.2, energy prices for private consumers consist not only of the day-ahead (i.e., spot) market bids but

also include a wide range of taxes, surcharges and fees. The left-hand side of Figure 4 presents an overview

of the retail price structures assumed for the year 2025, i.e., the first year of investment, for electricity, wood

pellets and gas.56 This is complemented by the line graph in the middle of Figure 4, which depicts the

development of the retail prices between 2025 and 2040, i.e., the last year of investment considered in the

scenarios. As shown in the bar graph, the retail prices in Germany are composed of a combination of four

main cost components: grid fees, acquisition, renewable surcharge and concession and taxes. The future

retail prices are determined by making assumptions on the developments of these individual energy price

components, which are then summed up for each fuel type. The assumptions on the price components and

their developments are made according to the regulatory state of affairs in Germany as of November 2021.

Additional details on the fuel prices and individual price components can be found in Appendix B.

As per Figure 3 and explained in the scenario description, the Smart Market scenario allows for end

consumers and their technologies to receive transparent market signals in the form of variable electricity

prices. The box plot on the right-hand side of Figure 4 summarizes the data set for the hourly acquisition

prices assumed in the Smart Market scenario between 2025 and 2040.57 The boxes specify the interquartile

ranges, whose height grows significantly between 2025 and 2040. The lines in the boxes on the right-hand

55An upper limit for the size of the electricity grid connection is included in the model.
56Only the energy carriers shown in Figure 4 are considered in the scenario analysis. Further energy carriers such as oil,

hydrogen and steam (i.e., district heating) are omitted from the application.
57 The hourly acquisition prices for future years are taken from the study Gierkink et al. (2021), which was completed at

the Institute of Energy Economics at the University of Cologne (EWI). The prices can be understood as the marginal costs
of electricity generation in Germany, which are estimated using the energy system model DIMENSION. DIMENSION is a
European investment and dispatch model that accounts for, e.g., national and European decarbonization targets. For more
information about the DIMENSION model, see Helgeson and Peter (2020).

23



0 0.1 0.2 0.3

Non-HP
Electricity

HP
Electricity

Gas

Wood

€/kWh
Acquisition

Grid Fee & Logistic

Renewable Surcharge

Concession, Tax & Other Fees

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2025 2030 2035 2040

€
/k
W
h

Non-HP Electricity
HP Electricity
Gas
Wood
Gas Sensitivity

Figure 4: Assumptions on fuel prices including the individual price structures in 2025 (left) and developments in the
retail prices up to 2040 (middle) for all three scenarios as well as the variance of the hourly electricity acquisition
prices assumed in the Smart Market scenario (right)

side of Figure 4 indicate the average of the acquisition price over each year. These are then used in the

Status Quo and Smart Tech scenarios as the constant yearly acquisition price, consistent with the dark grey

area in the graph on the left-hand side of Figure 4. The retail price is then calculated by taking the hourly

acquisition prices and adding the other price components (i.e., grid fees, renewable surcharge and concession,

taxes and other fees), which are assumed to remain constant for every hour within a single year.

Unlike the other fuels, electricity is separated into two categories in Figure 4, namely "Heat-Pump

Electricity" and "Non-Heat-Pump Electricity". Whereas the latter indicates the price for "typical" electricity

consumption for, e.g., lighting and appliances, the former refers to a lower electricity tariff that is solely

available for heat pump operation as imposed by German energy regulation at the time of this analysis (see

Mailach and Oschatz (2021)). On average, the retail electricity price decreases from 31.2 €-ct./kWhel in

2025 to 26.3 €-ct./kWhel in 2040 for non-heat-pump electricity use and from 22.4 €-ct./kWhel in 2025 to

15.5 €-ct./kWhel for heat-pump electricity use.

Furthermore, as of the year 2021, the use of fossil fuels such as natural gas in Germany requires that

consumers pay a price for the resulting carbon emissions. In Figure 4, this is indicated in the gas price by

the renewable energy surcharge shown in green, equal to 1.1 €-ct./kWhth in 2025 and 1.8 €-ct./kWhth in

2040.58 Since German policymakers have yet to define the mid- to long-term carbon pricing strategy for the

residential and commercial building sector, an alternative gas price labelled "Gas Sensitivity" in Figure 4 is

used in the sensitivity analysis in Section 3.4, which assumes a higher carbon price in 2030 (2.5 €-ct./kWhth),

58These values are calculated based on a carbon price of 55 €/tCO2 in 2025, as set by the German federal government (see
https://www.bundesregierung.de/breg-en/issues/nationaler-emissionshandel-1685054). For the remaining years up to
2040, the carbon price is determined endogenously by the energy system model DIMENSION (see Footnote 57) based on the
scenario examined in Gierkink et al. (2021), equal to 61 €/tCO2 in 2030, 78 €/tCO2 in 2035 and 89 €/tCO2 in 2040. These are
then converted to €/kWh based on the carbon emissions factor of natural gas.
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2035 (4.0 €-ct./kWhth ) and 2040 (5.5 €-ct./kWhth).59 In sum, the energy price components for gas add up

to an overall price of 7.5 €-ct./kWhth in the main and sensitivity analyses in 2025 and rise to 8.4 €-ct./kWhth

in the main analysis in 2040 and to 12.8 €-ct./kWhth in 2040 in the sensitivity analysis.

3.1.3. Techno-Economic and Regulatory Assumptions for DER Systems

As explained in Section 1.3, key contributions of this work include the high level of technical as well

as regulatory detail for a wide range of technologies together with the piecewise linearization of investment

costs, FOM costs and subsidies for multiple future years. Appendix C provides an overview of the techno-

economic and regulatory assumptions for each technology considered in the application. More specifically,

technical descriptions including assumptions on, e.g., efficiencies and lifetimes are presented in individual

subsections for condensing boilers, micro-CHP, electric heaters, electric heat pumps, pellet stoves, solar

thermal systems, thermal storage, PV and battery storage. Moreover, graphical overviews of the piecewise-

linear investment and FOM costs are shown for each technology, derived from an extensive data set collected

from a wide range of industry and academic sources based on values for the year 2020. In order to determine

the future investment costs for each investment year between 2025 and 2040, technology-specific learning

rates are derived and used to scale the 2020 values (see Table D.5 in Appendix D). All investment costs are

assumed to decrease over time, with some newer technologies reaching reductions of 50% by 2040.

The subsections in Appendix C also provide details on the regulatory assumptions on investment subsidies

as well as variable remunerations and fees specific to the respective technologies. Incentive programs that

exist in Germany as of November 2021 are accounted for in this analysis. The households considered are

therefore eligible to receive investment subsidies for heat pumps, solar thermal systems and pellet stoves.60

With the revision of the subsidy program in 2021, compensation that was historically set as a fixed amount

per technology was replaced with a percentage of the capital (i.e., investment plus installation61) costs that

were to be refunded. As such, the piecewise-linear investment costs determine the magnitude of the subsidy,

which then decrease according to the same learning rates. Furthermore, electricity feed-in from a PV system

is assumed to be remunerated according to the hourly acquisition price, as summarized on the right-hand

side of Figure 4, plus a market premium (see Appendix C.8). CHP systems, on the other hand, receive a

fixed feed-in tariff for electricity supplied to the grid and are also subject to remuneration for any electricity

generation that is self-consumed (see Appendix C.2).

59The carbon prices used in the sensitivity analysis are taken from Repenning et al. (2021) and are calculated in the same
manner as described in Footnote 58.

60As outlined in Bundesamt für Wirtschaft und Ausfuhrkontrolle (2021a).
61See Bundesamt für Wirtschaft und Ausfuhrkontrolle (2021b)
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3.2. Results of the Household Optimization

The results of the investment decisions as well as the subsequent total annual costs (TAC), CO2 emissions

levels, volumes of electricity and gas consumption, the self-consumption shares of PV systems and the yearly

averages of the marginal costs for electricity and heat provision for each household type within each model

year and scenario are shown in Table 3. The TAC are equal to the sum of the annualized investment costs

(AIC), variable costs and FOM costs corrected by the remuneration for a single year, as shown in Table E.6

in Appendix E.62 The total costs, i.e., the objective values of the optimization variable TC given in Equation

(1a) in Section 2.2, are presented in Table E.7 in Appendix E for each household type and scenario.63

Status Quo Smart Tech Smart Market
HH 2025 2030 2035 2040 2025 2030 2035 2040 2025 2030 2035 2040

1 GB [kW ] 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.4 8.4 8.4 8.4
PV [kW ] 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
EH [kW ] 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 7.0 7.0 7.0 7.0
BS [kW ] - - - - - 3.6 3.6 3.6 - 3.6 3.6 3.6
TAC [€/a] 4054 4035 4040 2251 4054 4052 4091 2024 4054 4045 4082 2013
CO2 [t/a] 4.0 3.9 3.7 3.6 4.0 3.7 3.6 3.6 4.0 3.7 3.6 3.6
EG [ kW h

a
] 3091 3091 3091 3091 3088 1282 1282 1282 3104 1299 1311 1316

GG [ kW h
a

] 16020 16510 16447 16443 16023 17275 17241 17207 16005 17256 17222 17188
PVSC [%] 52.7 47.7 48.4 48.4 52.7 62.8 63.2 63.5 52.7 62.9 63.3 63.6

2 GB [kW ] 7.1 7.1 7.1 7.1 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8
PV [kW ] - - - - - - - 10.0 - - - 10.0
EH [kW ] 5.0 5.0 5.0 5.0 5.3 5.3 5.3 5.3 5.3 5.3 5.3 5.3
TAC [€/a] 2906 2885 2877 2413 2904 2882 2873 2386 2902 2880 2872 2397
CO2 [t/a] 3.7 3.5 3.3 3.2 3.7 3.5 3.3 2.7 3.7 3.5 3.3 2.7
EG [ kW h

a
] 3605 3605 3605 3605 3658 3658 3658 2168 3668 3668 3668 2172

GG [ kW h
a

] 14362 14362 14362 14362 14309 14309 14309 12378 14299 14299 14299 12372
PVSC [%] - - - - - - - 35.7 - - - 35.7

3 GB [kW ] 4.7 4.7 4.7 4.7 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.5
PV [kW ] 5.3 5.3 5.3 5.3 - - - 10.0 - - - 10.0
EH [kW ] 10.8 10.8 10.8 10.8 10.9 10.9 10.9 10.9 11.0 11.0 11.0 11.0
TAC [€/a] 2655 2636 2626 1466 2492 2456 2416 1967 2484 2446 2403 1975
CO2 [t/a] 2.2 2.1 2.0 1.9 2.7 2.4 2.2 1.8 2.7 2.4 2.2 1.8
EG [ kW h

a
] 2309 2309 2309 2309 4067 4067 4067 2136 4082 4082 4082 2151

GG [ kW h
a

] 8007 8238 8212 8181 8682 8682 8682 7863 8667 8667 8667 7848
PVSC [%] 48.1 43.4 44.0 44.7 - - - 29.1 - - - 29.1

4 GB [kW ] 3.7 3.7 3.7 3.7 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6
EH [kW ] 8.5 8.5 8.5 8.5 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6
TAC [€/a] 1886 1864 1841 1549 1886 1863 1840 1552 1882 1860 1837 1548
CO2 [t/a] 2.0 1.8 1.7 1.6 2.0 1.8 1.7 1.6 2.0 1.8 1.7 1.6
EG [ kW h

a
] 2737 2737 2737 2737 2755 2755 2755 2755 2771 2771 2771 2771

GG [ kW h
a

] 6833 6833 6833 6833 6815 6815 6815 6815 6797 6797 6797 6797

GB: Gas Condensing Boiler Capacity, PV: Photovoltaic Capacity, EH: Electric Heater Capacity, BS: Battery Storage Capacity,
TAC: Total Annual Costs, CO2: Annual Carbon Dioxide Emissions from Gas and Electricity Consumption, EG: Annual
Electricity Grid Consumption, GG: Annual Gas Grid Consumption, PVSC: PV Self-Consumption Share

Table 3: Results of the main analysis

62The values for TAC given in the tables are not discounted but rather the present value. As such, summing the TAC over
the complete time horizon will not equal the total costs shown in Table E.7 in Appendix E.

63The total costs are calculated assuming an interest rate (i.e., i in Equation (1a)) equal to 3%.
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The installed capacities in all three scenarios shown in Table 3 present a clear trend for gas-driven

solutions. Households combine gas boilers for base generation together with electric heaters to cover any

demand peaks. All households install a cumulative capacity equal to their heat peak as given in Table 2 in

Section 3.1.1. As the information available in each of the scenarios becomes more complex, the size of the

gas boilers decreases by 0.1 kW while the electric capacity rises by 0.1 kW. In the Smart Market scenario, in

particular, the opportunity of low electricity prices in certain hours creates an incentive for some households

to slightly increase their electricity-consuming capacities. However, as can be seen by cross-referencing

Table 3 with Table E.6 in Appendix E, variable costs remain more or less unchanged between the Smart

Tech and Smart Market scenarios despite the small shift from gas to electricity grid consumption found in

the latter. As such, it may be concluded that the simultaneity of hours with higher heat demand and high

retail electricity prices prevents the electric heater from taking full advantage of low retail electricity prices.

Surprisingly, the variable electricity prices in the Smart Market scenario do not create an incentive for the

endogenous investment in a thermal storage, which would be a logical decision if households could financially

benefit via arbitrage. The lack of thermal storage prevents the decoupling of generation and consumption

such that heat must be used directly at the time of production, regardless of the electricity price.

Nevertheless, the model results reveal that installed capacities vary stronger across household types

than across scenarios. While the heat demand peaks of HH1 and HH2 resemble those of HH3 and HH4,

respectively, the annual heat demands differ for each household type (see Table 2 in Section 3.1.1). Existing

buildings, i.e., HH1 and HH2, are assumed to have higher annual heat demands and are found to install

larger gas boilers compared to the newly-built buildings, i.e., HH3 and HH4, who demand less heat over

the year. The latter two household types choose to combine smaller gas boilers with larger electric heaters,

using electricity to cover their absolute peak heat demand. As such, it may be lucrative for consumers to

invest in larger gas capacities, despite higher specific investment costs compared to electric heaters, as long

as a certain number of full-load hours can be reached.64

Furthermore, high energy demand is found to be a key driver for decentralized PV electricity generation

and consumption. Household types HH1 and HH3 have comparatively high electricity and heat demands

as these household types are assumed to have four, as opposed to two, residents (see Table 2 in Section

3.1.1). In fact, as can be seen in Table 3, the substantial energy demand of HH1 triggers an investment

in a 10 kW PV system (i.e., the largest capacity possible given the assumed roof size) across all scenarios

immediately in the first year 2025. In doing so, HH1 is able to consume more than 50% of the generated

64Full-load hours of the gas boilers lie between 1675 (HH3, Status Quo) and 2092 (HH2, Smart Market) per year.
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electricity directly via, e.g., the electric heater as well as for other appliances. In 2030 of the Smart Tech

and Smart Market scenarios, HH1 decides to complement its PV system with a battery storage to further

increase the self-consumption share to 63%. Following a similar logic, the relatively high energy demand

of HH3 drives an investment in a 5.3 kW PV system in 2025 in the Status Quo scenario; however, in the

other two scenarios, the transparency of future reductions in investment costs and electricity prices results

in the installation of a 10 kW PV system being delayed until 2040.65 The larger capacities in the Smart

Tech and Smart Market scenarios, in turn, yield a lower self-consumption share of roughly 30% compared

to 50% in the Status Quo scenario. For the other two-person households, the lower energy demand appears

to hinder the investment in a PV system: HH2 only installs a PV system in 2040 in the Smart Tech and

Smart Market scenarios for reasons analogous to those discussed above for HH3. For HH4, the energy needs

of the household are too low to reach the self-consumption shares large enough to justify the capital costs.

As is to be expected, the installation of a PV system reduces the annual electricity consumption from

the grid, as shown in Table 3. Moreover, the amount of gas that is consumed from the grid is also reduced,

e.g., in HH2 and HH3, as a greater amount of heat is provided by the electric heater using PV electricity. In

turn, these households are able to lower their CO2 emissions more effectively than households without PV

systems who only benefit from the predefined reduction in the carbon intensity of the German power mix.

For each household type, a drop in the TAC can be observed in Table 3 in 2040 as investments made

in 2025 have reached the end of their financing period, thus strongly decreasing the AIC (see Table 2 in

Section 3.1.1 and Table E.6 in Appendix E).66 As is to be expected, the similarities in the investment

decisions lead to very little discrepancies in the TAC across scenarios.67 In fact, just looking at the annual

costs, it may appear that the Status Quo scenario is more economical than the other, more efficient scenarios.

However, when considering the discounted total costs over the complete time horizon shown in Table E.7

in Appendix E, the increase in the amount of information available tends to have a positive effect on cost

savings, especially for households with larger energy demands (i.e., HH1 and HH3).68 It is also worth noting

that neither gas boilers nor electric heaters benefit from governmental funding. In other words, under the

65In the Status Quo scenario, the consumer believes that the relatively high electricity prices in 2025 will remain constant for
the complete time horizon, making self-consumption from a PV system more attractive. On the other hand, in the scenarios
with foreseeable price reductions, HH3 abstains from an investment in a PV system in 2025; however, by 2040, the capital costs
of the PV system have decreased such that an investment is economical despite the lower retail electricity price.

66As electric heaters have a technical lifetime of fifteen years, systems that are built in 2025 must be replaced in 2040. As
such, households who only invest in 2025 (e.g., HH4) will have paid off all of their annualized investment costs by 2040, yet
will begin a new financing period for the replacement electric heater in 2040. This is equal to roughly 24-27 €/a, depending
on the thermal capacity (see Table E.6 in Appendix E).

67The one noteworthy exception is the difference between the Status Quo scenario and the Smart Tech and Smart Market
scenarios for HH3 due to the difference in the investment decisions, as explained below.

68It should be noted that any additional costs associated with a technology’s ability to handle increased amounts of infor-
mation (e.g., software, digital infrastructure, hardware accessories) are not considered in this analysis.
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assumptions outlined in Section 3.1, the incentive mechanisms offered for other heating technologies such as

heat pumps and micro-CHP are not effective in instigating investment for the household types considered.

3.3. Investigating the Marginal Costs of Energy Provision

As explained in Sections 1.2 and 1.3, one key contribution of this work is the evaluation of the implicit

shadow prices for each EUT, referred to in this paper as the marginal costs of energy (i.e., heat or electricity)

provision. Generally speaking, an interpretation of the shadow prices in MILP models is not possible due to

their non-linear nature. However, in this analysis, the technique outlined by Williams (1989) and Williams

(2013) is used such that a second model run is performed for each household type and scenario in which

all binary variables are set equal to the values found in the first unrestricted optimization. In doing so,

the non-linear model is then linearized, allowing for the marginal values of the equilibrium constraint (i.e.,

the first-order condition of Equation (1b)) to be interpreted as the marginal costs of heat or electricity

provision. Simply put, the marginal costs of energy provision reveal the price that the consumer pays for

the energy used, which is estimated by the model as the change in the total costs (i.e., the objective value)

if the consumer were to demand an additional kWh of energy. As such, the marginal costs depend strongly

on the options available to the consumer to supply or generate energy at each point in time.

Status Quo Smart Tech Smart Market
HH 2025 2030 2035 2040 2025 2030 2035 2040 2025 2030 2035 2040

1 HM [ €-ct
kW h

] 5.4 5.5 5.7 5.8 5.4 5.6 5.8 5.9 5.4 5.6 5.8 5.9
EM [ €-ct

kW h
] 22.9 22.3 21.1 20.1 22.9 17.9 17.3 16.7 22.9 17.6 17.1 16.4

2 HM [ €-ct
kW h

] 5.5 5.5 5.8 5.9 5.6 5.6 5.9 5.6 5.6 5.6 5.8 5.6
EM [ €-ct

kW h
] 31.3 30.1 28.2 26.4 31.3 30.1 28.2 19.3 31.2 29.9 28.1 19.4

3 HM [ €-ct
kW h

] 4.6 4.7 4.8 4.9 4.7 4.8 5.0 4.9 4.8 4.8 5.0 4.9
EM [ €-ct

kW h
] 23.1 22.4 21.2 20.1 31.3 30.1 28.2 19.2 31.2 29.9 28.1 19.4

4 HM [ €-ct
kW h

] 4.7 4.7 4.9 5.0 4.7 4.8 5.0 5.1 4.7 4.8 5.0 5.1
EM [ €-ct

kW h
] 31.3 30.1 28.2 26.4 31.3 30.1 28.2 26.4 31.2 29.9 28.1 26.2

HM: Average Marginal Cost for Heat Provision, EM: Average Marginal Cost for Electricity Provision

Table 4: Marginal costs of energy provision for each household type, year and scenario in the main analysis

The results of the marginal costs of electricity provision as well as as the marginal costs of heat provision

averaged over all hours of each model year are shown in Table 4 for each household type and scenario. To

aid in the understanding of the marginal costs, Figure 5 shows the electricity provision and demand, the

heat provision and demand as well as the marginal costs of energy provision for HH1 (left) and HH3 (right)

for the second and first weeks in February69 2040, respectively, in the Smart Tech scenario. Looking first at

69These weeks were chosen because these include the hour in which the household’s heat demand is at its absolute peak.
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Figure 5: Hourly supply, demand and marginal costs of electricity and heat provision in the second week of February
2040 for HH1 (left) and first week of February 2040 for HH3 (right) in the Smart Tech scenario in the main analysis

the marginal cost of electricity provision depicted by the yellow line in the bottom graph in Figure 5, the

profile frequently flattens at a level equal to the retail electricity price (i.e., 26.4 €-ct./kWhel in 2040) for

both household types. In these hours, an additional kWh of demand would be covered by electricity from

the grid, hence the marginal cost equaling the retail price. For households without PV installations, this

holds true in every hour, as depicted by similarities in the average marginal costs of electricity provision

in Table 4 for HH2 (i.e., Status Quo scenario as well as 2025-2035 of the Smart Tech and Smart Market

scenarios), HH3 (i.e., 2025-2035 of the Smart Tech and Smart Market scenarios) and HH4.70

However, in hours in which PV generation is consumed, the marginal costs of electricity provision sink. In

fact, in hours in which solar irradiation coincides with low energy demand, the marginal costs of electricity

provision approach zero as excess PV electricity is fed into the grid. In this case, PV electricity would

hypothetically be available if demand were to increase, hence the marginal costs undercutting the retail

electricity price.71 This can be seen for example, on the right-hand side of Figure 5 via the dips in the

yellow line in the bottom graph (i.e., the marginal costs of electricity provision) that coincide with the peaks

of the yellow line in the top graph (i.e., PV electricity generation), with the yellow line in the bottom graph

70The values in the Smart Market scenario listed here may deviate slightly (i.e., < 1%) from the constant retail electricity
prices seen in the Smart Tech scenario results due to minor shifts in the operation of the electric heater in response to hours
with lower electricity prices.

71The self-consumption of decentralized PV electricity presents consumers with an indirect financial incentive by facilitating
the evasion of taxes, levies and surcharges that are charged when consuming electricity from the grid, as explained in Jägemann
et al. (2013).
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meeting the x-axis in the 757th hour when the black lines in the top and middle graphs (i.e., electricity and

heat demand, respectively) are at their weekly lows. As a result of the PV self-consumption, the average

marginal costs of electricity provision for HH2 and HH3 in 2040 in the Smart Tech and Smart Market

scenarios as well as HH3 in the Status Quo scenario drop significantly (i.e., > 24%) compared to the retail

electricity price (see Table 4). For HH1, high energy demand drives an investment in battery storage in the

Smart Tech and Smart Market scenarios to shift the consumption of PV generation to cover demand in, e.g.,

peak evening hours, which can be seen in the structure of the blue line in the top graph on the left-hand side

of Figure 5. The battery storage coupled with a PV system, in turn, leads to HH1 being able to decrease

its electricity supplied from the grid. In fact, as can be seen in Figure E.11 in Appendix E, HH1 is able to

reduce it’s electricity consumption from the grid to zero in many more hours in the Smart Tech and Smart

Market scenarios compared to the Status Quo scenario.72 These effects, in turn, drive down the average

marginal costs of electricity provision even further, reaching a lowest average value of 16.4 €-ct./kWhel in

2040 in the Smart Market scenario (see Table 4).

The marginal costs of heat provision follow a similar trend as electricity, with the majority of hours

following the gas price corrected by the boiler efficiency (e.g., reaching 8.5 €-ct./kWhth in 2040). However,

unlike with electricity, heat demand may drop to zero in certain hours, causing the marginal costs of heat

provision to also fall to zero — an effect that can clearly be seen for HH1 when examining the middle

and lower graphs on the left-hand side of Figure 5.73 On the other hand, contrary to what is seen with

the marginal costs of electricity provision, the marginal costs of heat provision spike upwards in moments

of higher heat demand. For the majority of these peaks, the household would be able to ramp up the

production from the electric heater, which results in a marginal cost of heat provision equal to the marginal

cost of electricity provision (see, e.g., the meeting of the red and yellow lines in the lower graphs of Figure 5

coinciding with times of electric heater production, indicated by spikes in the red line in the middle graphs

of Figure 5). However, as heat can not be bought from a central supplier, it must be able to be generated by

the household, which in turn requires sufficient generating capacity. Yet the investment decision in the peak

technology of the households is based on the absolute peak heat demand, which in the case of HH1 occurs

in the 852nd hour and for HH3 in the 822nd hour. Therefore, the marginal costs of heat provision in these

72This effect can be profitable for more than just the household. Smart technologies can strongly influence the consumers
grid consumption pattern, therefore potentially reducing the expansions to the distribution grid.

73It should be noted that the two household types shown in Figure 5 have very different hourly demand structures due to
the difference in building age. HH3 is a newly-built building that is equipped with, e.g., floor heating, which is rarely turned
on or off and thus creates a small amount of base demand. HH1, on the other hand, is an existing building with radiatiors and
a central heating system, which can be adjusted as need be. This creates a more volatile demand structure that may reach a
higher level but also drop to zero during, e.g., nighttime hours. A strong peak is given in both profiles, which are constructed
based on Verein Deutscher Ingenieure (2019) (see Section 3.1.1).
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peak hours not only reflect the increased variable costs but also the additional investment costs needed to

provide the extra kW of heat.74

The average marginal costs of heat provision shown in Table 4 reflect the combination of the effects

discussed above. All values are significantly under the gas price, indicating the frequency of hours with zero

heat demand, i.e. 2996h/a for existing buildings and 3956h/a for newly-built buildings. The high share

of hours in which zero demand occurs in the latter drastically reduces the average marginal costs of heat

provision. Furthermore, the newly-built HH3 and HH4 cover a larger share of their heat demand with gas,

which also helps to lower the average marginal costs compared to existing buildings HH1 and HH2, who use

their electric heater more frequently.

3.4. Sensitivity Analysis

3.4.1. Motivation and Design of the Sensitivity Analysis

A common challenge associated with the modeling of future energy systems is the inability to predict the

unpredictable. In fact, a large body of literature is dedicated to assessing uncertainty and its effect on MILP

optimization results (e.g., Mavromatidis et al. (2018)). Estimating future energy prices based on today’s

information is particularly precarious, as unforeseen shifts in, e.g., regulation, geopolitics or market dynamics

may significantly effect price developments. Nevertheless, studies such as the IEA’s World Energy Outlook

(International Energy Agency (2020)) have emerged as standard sources for commodity price predictions.

Yet for the end consumer, it remains unclear how the different price components will evolve over time.

This is especially true when considering the fee for CO2 emissions that was just recently introduced by

the German government. Currently, CO2 emissions in Europe are priced according to a European certificate

trading system known as the EU-ETS. At the time of this paper, emissions arising from end energy use

in residential and commercial buildings are not included in the EU-ETS. Therefore, German policymakers

have introduced an independent pricing system for the buildings sector, setting a price of 55 €/tCO2 in 2025;

however it is unclear how this price will develop in the longer term.

In the main analysis, the CO2 price post-2025 is set equal to the EU-ETS price, which is determined

endogenously by the energy system model DIMENSION. However, studies such as Repenning et al. (2021)

have suggested that the carbon price in the building sector will far exceed the certificate price, reaching

levels equal to 125 €/tCO2 (i.e., 2.5 €-ct./kWhth) in 2030, 200 €/tCO2 (i.e., 4 €-ct./kWhth) in 2035 and 275

€/tCO2 (i.e., 5.5 €-ct./kWhth) by 2040. In order to examine the consequences of alternative carbon price

74Supplementary model runs with increased peak demand indicate that the marginal costs of energy provision in the peak
hours shown in Figure 5 reflect the investment in one additional kW of electric heater capacity.
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pathways, a sensitivity analysis is performed for the Smart Tech and Smart Market scenarios in which the

values from Repenning et al. (2021) are assumed for the CO2 prices in the German buildings sector.75 In

doing so, the long-term retail gas price is increased significantly compared to the main analysis, reaching

9.2 €-ct./kWhth in 2030 and 12.8 €-ct./kWhth in 2040 (see Figure 4 in Section 3.1.2).76

3.4.2. Key Findings of the Sensitivity Analysis

Analogous to the results of the main analysis, the results of the sensitivity analysis are presented in

Table 5, with a detailed overview of the annual cost results shown in Table E.8 and the total costs shown

in Table E.7 in Appendix E. As expected, the increase in the long-term retail gas price leads to significant

changes in the investment decisions in all four household types in the Smart Tech and Smart Market

scenarios. Below, the key findings of the sensitivity analysis are outlined and compared to the results of the

main analysis.

Sensitivity Finding #1: Electric heat pumps replace gas boilers as the base heating technologies, which dras-

tically reduces the emissions of the households considered

The increase in the retail gas price leads to higher variable costs for gas boilers, making the investment

unattractive for three out of four household types. Instead, electric heat pumps emerge as the base tech-

nology, once again combined with an electric heater to cover hours of peak heat demand. Just as in the

main analysis, the model chooses to cover a large share of the heat demand with the more capital-intensive

technology, while the more inexpensive technology is built to be turned on in select hours when consumption

spikes.77 Whereas, HH1, HH3 and HH4 cover their heat demand completely with electricity, HH2 installs a

gas boiler to be used in the first fifteen years before switching over to an electric heat pump in 2040. The

delay in investment can be attributed to the assumptions regarding the building characteristics: HH2, just

like HH1, is assumed to be an existing building, which means that a radiator heating system is assumed. In

this case, heat pumps require higher flow temperatures to reach the same target room temperature, which in

turn decreases the COP (see Section 2.4).78 Since HH2 only has two residents, the lower annual heat demand

75The Status Quo scenario is not included in the sensitivity analysis as, by definition, the investment decision is unaffected
by future price developments, i.e., the consumer sees only the retail gas price in 2025. Although the AIC remain unchanged
between the two scenarios, the variable costs increase in the sensitivity analysis due to the higher carbon prices. Therefore, for
completeness, the total costs of the Status Quo scenario in the sensitivity analysis are included in Table E.7 in Appendix E.

76Although the sensitivity analysis is centered around a scenario with higher CO2 prices, it should be noted that a more
expensive retail gas price may in reality be due to increases in any of the price components including, e.g., the costs of gas
acquisition. In other words, the results presented in Section 3.4.2 may be more generally interpreted as a consequence of rising
retail gas prices in the German building sector.

77Similar to the main analysis, information gains tend to decrease the capacity of the base technology while the capacity of
the peak technology slightly increases.

78New buildings, on the other hand, are often heated with floor heating systems, which can process lower flow temperatures.
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Smart Tech Smart Market
HH 2025 2030 2035 2040 2025 2030 2035 2040

1 HP [kW ] 6.0 6.0 6.0 6.0 5.9 5.9 5.9 5.9
TS [kW ] 49.1 49.1 49.1 49.1 51.6 51.6 51.6 51.6
PV [kW ] 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
EH [kW ] 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.5
TAC [€/a] 4479 4358 4189 1847 4467 4350 4178 1817
CO2 [t/a] 1.8 1.3 1.0 0.8 1.8 1.3 1.0 0.8
EG [ kW h

a
] 7558 7578 7599 7607 7571 7602 7625 7642

PVSC [%] 53.4 52.9 52.6 52.5 53.7 53.1 52.9 52.6
HM [ €-ct

kW h
] 5.2 4.9 4.4 4.0 5.2 4.9 4.4 3.8

EM [ €-ct
kW h

] 24.3 23.3 21.9 20.6 24.2 23.3 22.0 20.6

2 GB [kW ] 6.7 6.7 6.7 - 6.6 6.6 6.6 -
HP [kW ] - - - 4.4 - - - 4.4
TS [kW ] - - - 34.2 - - - 34.1
PV [kW ] - - - 10.0 - - - 10.0
EH [kW ] 5.4 5.4 5.4 4.1 5.4 5.4 5.4 4.2
TAC [€/a] 2906 3101 3289 2762 2903 3098 3286 2748
CO2 [t/a] 3.7 3.5 3.3 0.6 3.7 3.5 3.3 0.6
EG [ kW h

a
] 3685 3685 3685 5377 3701 3701 3701 5416

GG [ kW h
a

] 14281 14281 14281 - 14266 14266 14266 -
PVSC [%] - - - 39.2 - - - 39.3
HM [ €-ct

kW h
] 5.7 6.7 7.8 4.1 5.7 6.7 7.7 4.0

EM [ €-ct
kW h

] 31.3 30.1 28.2 19.9 31.2 29.9 28.1 20.0

3 HP [kW ] 3.0 3.0 3.0 3.0 3.1 3.1 3.1 3.1
TS [kW ] 31.9 31.9 31.9 31.9 28.0 28.0 28.0 28.0
PV [kW ] 6.8 6.8 6.8 6.8 - - - 10.0
EH [kW ] 7.8 7.8 7.8 7.8 8.1 8.1 8.1 8.1
TAC [€/a] 2868 2808 2726 972 2749 2652 2511 1574
CO2 [t/a] 1.0 0.7 0.5 0.4 1.4 1.0 0.7 0.4
EG [ kW h

a
] 3891 3888 3888 3884 6390 6393 6398 3694

PVSC [%] 39.1 39.3 39.4 39.6 - - - 29.0
HM [ €-ct

kW h
] 4.0 3.8 3.4 3.1 4.5 4.2 3.8 2.9

EM [ €-ct
kW h

] 23.2 22.5 21.2 20.0 31.2 29.9 28.1 19.5

4 HP [kW ] 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7
EH [kW ] 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5
TAC [€/a] 2098 2030 1931 1305 2085 2018 1918 1286
CO2 [t/a] 1.1 0.8 0.6 0.5 1.1 0.8 0.6 0.5
EG [ kW h

a
] 4715 4715 4715 4715 4726 4726 4726 4726

HM [ €-ct
kW h

] 4.5 4.3 3.8 3.4 4.5 4.2 3.8 3.4
EM [ €-ct

kW h
] 31.3 30.1 28.2 26.4 31.2 29.9 28.1 26.2

GB: Gas Condensing Boiler Capacity, HP: Heat Pump Capacity, TS: Thermal Storage
Capacity, PV: Photovoltaic Capacity, EH: Electric Heater Capacity, TAC: Total Annual
Costs, CO2: Annual Carbon Dioxide Emissions from Gas and Electricity Consumption,
EG: Annual Electricity Grid Consumption, GG: Annual Gas Grid Consumption, PVSC:
PV Self-Consumption Share, HM: Average Marginal Cost for Heat, EM: Average Marginal
Cost for Electricity

Table 5: Results of the sensitivity analysis

compared to HH1 causes the investment in a heat pump to be uneconomical as the full-load hours can not

be reached that would justify the lower efficiency gains. By 2040, significant reductions in the investment

costs of heat pumps combined with the increased retail gas price drive HH2 to modify their heating system.

The change in the main source of energy from gas in the main analysis to electricity in the sensitivity

analysis leads to a drastic change in carbon emissions, as can be seen by comparing Table 3 with Table 5.
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High efficiencies of electric heat pumps combined with the avoided fossil fuel consumption lead to a reduction

of emissions by at least 45% in 2025 for the case in which the household does not install a PV system (i.e.,

HH4, Smart Market). This emission reduction is then increased as soon as households begin covering

shares of their electricity consumption using a PV system, and even more so when introducing a thermal

storage. By maximizing the self-consumption share of PV electricity in both heat generation as well as direct

electricity use, consumers are able to reduce their consumption of carbon-intensive electricity from the grid.

In doing so, emissions can be reduced in 2025 by up to 64% (HH3, Smart Tech) compared to the main

analysis, reaching up to 80% in 2040 depending on the household type. As such, it can be concluded that

the increase in the carbon price in the German building sector assumed in the sensitivity analysis would be

effective in incentivizing investments in renewable generators and lowering the emissions of the household

types considered.79

Aggregated over the entire time horizon, up to an additional 50 tonnes of CO2 can be avoided in the

sensitivity analysis compared to the main analysis, as shown in Table E.9 in Appendix E. The decrease

in carbon emissions increases the households’ total costs, which vary according to the timing and the type

of new investments. Additional abatement costs arising from the deeper decarbonization in the sensitivity

analysis compared to the main analysis are found to be highest for HH2 at 293 €/tCO2 in the Smart Tech

Scenario, as shown in Table E.9 in Appendix E. All other households exhibit lower carbon abatement costs,

ranging between 36 €/tCO2 (HH3, Smart Tech Scenario) and 56 €/tCO2 (HH1, Smart Tech Scenario). These

households experience earlier investments in lower-carbon technologies, which result in a greater amount of

emissions savings over time combined with lower gas consumption and, in turn, CO2 levies.

Sensitivity Finding #2: Increase in electricity demand via heat pumps makes investments in PV systems

even more attractive

As explained in Section 3.2, PV systems are only lucrative if a certain self-consumption share can be reached.

In the sensitivity analysis, HH2 and HH3 achieve even higher self-consumption shares by using PV electricity

to run their heat pumps. Furthermore, contrary to the Smart Tech results of the main analysis, the increased

electricity demand drives HH3 to invest in a PV system in 2025 rather than waiting until 2040. This is not

seen in the Smart Market scenario, as dips in the electricity price during daytime hours tend to negate the

benefits of distributed PV generation. Lastly, even with complete electrification, the low electricity and heat

demands assumed for HH4 do not exceed the threshold to make an investment in a PV system economical.

79It should be noted that this analysis only accounts for the carbon emissions resulting from the final energy consumption of
the households. There is no crediting for emissions reduction that may arise in the German power sector due to the household’s
feed-in of renewable electricity.
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Sensitivity Finding #3: Investments in thermal storage emerge to help manage heat demand peaks as well

as increase self-consumption of PV generation and maximize heat pump efficiency

As can be seen in Table 5, both four-person households, i.e., HH1 and HH3, choose to install thermal storage

in the first year of investment (i.e., 2025) in the sensitivity analysis with higher retail gas prices. In fact, the

results show a clear preference to couple thermal storage with investments in heat pumps and PV systems.

In doing so, the heat pump is able to maximize the use of PV electricity generation by supplying heat

into the thermal storage during sunny periods and discharging the storage, e.g., during heat demand peaks

in evening hours. In other words, thermal storage is able to alleviate the mismatch in hours with strong

solar irradiance and high heat consumption. HH2, for example, switches from a gas boiler/electric heater

system to a heat pump/thermal storage/PV/electric heater system in 2040. As a result, HH2 reaches a

self-consumption share of 39.2% in the sensitivity analysis compared to 35.7% in the main analysis despite

significantly larger electricity demand. Furthermore, thermal storage create an opportunity for heat pumps

to adjust their operation to make the most of their COP profile, i.e., by ramping-up production in hours

with high efficiencies and ramping-down in hours with low efficiencies, independent of demand. This is

particularly clear when looking at the hourly production and consumption profiles, as discussed below.

Finally, thermal storage systems allow the household to install heat pumps and electric heaters with lower

capacities, with the cumulative capacity sized to cover roughly 70% of the heat demand peak. Households

without a thermal storage system install heating capacity up to their heat peak, similar to the main analysis.

Sensitivity Finding #4: Stricter emission pricing increases total costs of households’ energy provision

The increased carbon price for the German building sector in the sensitivity analysis drives the households

to spend more on their energy provision than in the main analysis. This comparison holds true for all

household types and for each scenario. As explained above, the higher retail gas price leads to three out

of four households avoiding gas investments completely, choosing a more capital-intensive investment in

2025 compared to the main analysis, as can be seen by comparing the AIC in Table E.8 with Table E.6 in

Appendix E.80 For example, HH4 faces in both the Smart Tech and Smart Market scenarios of the sensitivity

analysis AIC that are twice as high compared to the main analysis. An even more extreme example is HH3,

whose early investment in PV in the Smart Tech scenario of the sensitivity analysis leads to nearly five times

higher yearly capital costs than in the Smart Tech scenario of the main analysis. For HH1, the difference

in the AIC between analyses is not as pronounced due to the investment in a capital-intensive battery

80It should be noted that the AIC shown in Table E.8 in Appendix E have already been corrected for the heat pump subsidy,
consistent with Equation (3) in Section 2.2.
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storage seen in the main analysis. However, in electrifying their heating systems in the sensitivity analysis,

household types HH1, HH3 and HH4 are able to benefit from lower heat pump tariffs together with higher

efficiency levels of the heat pump and increased self-consumption shares of the PV system. This results in

an immediate reduction in the variable costs in the first year of investment, i.e., 2025, for the households

with fully electric heating systems by 3% (HH4, Smart Tech) up to 44% (HH3, Smart Tech). By 2040,

decreasing electricity prices continue to lower variable costs, achieving a 14% (HH1, Smart Tech, 2040) up

to a 34% (HH2, Smart Market, 2040) reduction compared to the main analysis.

These counteracting effects result in HH1, HH3 und HH4 in the sensitivity analysis increasing their TAC

anywhere from 10% (HH1, both scenarios) to 15% (HH3, Smart Tech) in 2025 and decreasing their TAC by

9% (HH1, Smart Tech) to 51% (HH3, Smart Tech) in 2040 compared to the main analysis.81 All in all, these

household types see a rise in total costs in the sensitivity analysis ranging from 3.5% (HH3, Smart Market)

to 5.4% (HH1, Smart Tech) over the complete time horizon (see Table E.7 in Appendix E). For HH2, as

explained above, an early investment in a gas boiler remains the least-cost option in the sensitivity analysis

despite higher retail gas prices. As a result, total costs increase by 8.2% in the Smart Tech scenario compared

to the main analysis, which is the greatest discrepancy seen across all household types. Consistent with the

results of the main analysis, the total costs across the scenarios of the sensitivity analysis also decrease as

more information becomes available to the households and their DER systems.

Sensitivity Finding #5: Electrification of heat production increases marginal costs of electricity provision

and decreases marginal costs of heat provision

Contrary to the presentation of the main results, the average marginal costs of electricity and heat provision

for the sensitivity analysis are included with the other results in Table 5. In addition, Figure 6 shows

the retail energy prices, the electricity provision and demand, the heat provision and demand, the thermal

storage levels, the COP of the heat pump as well as the marginal costs of energy provision for HH1 for the

second week in February 2040 in the Smart Tech (left) and Smart Market (right) scenarios.

The trends described in Section 3.3 hold true for the marginal costs of electricity provision found in the

sensitivity analysis. As such, the average values for households without PV systems are found to be equal to

the retail electricity prices and are thus identical to the results of the main analysis (i.e., the values for HH2 in

years 2025-2035 of the Smart Tech and Smart Market scenarios, HH3 in years 2025-2035 of the Smart Market

scenario and HH4). Furthermore, similarities can also be seen in the results for HH2 and HH3 in 2040, with

decentralized generation of PV systems once again driving down the marginal costs of electricity provision

81By 2040, decreases in variable costs outweigh increases in AIC as the financing period for investments from 2025 has ended.
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Figure 6: Hourly results of the sensitivity analysis for HH1 in the second week of February 2040 for the Smart Tech
scenario (left) and the Smart Market scenario (right)

in certain hours. In the sensitivity analysis, however, slightly higher average values arise as the increase in

electricity demand via the heat pumps drives a higher amount of grid consumption (see Tables 3, 4 and

5). Nevertheless, two distinct anomalies stand out when comparing the average marginal costs of electricity

provision in the two analyses: First, an earlier investment in a PV system in the Smart Tech scenario of

the sensitivity analysis leads to HH3 reducing their marginal costs of electricity provision in all model years

rather than just in 2040. Second, the lack of battery storage together with the increased electricity demand

result in HH1 facing higher average marginal costs for electricity provision in the sensitivity than in the

main analysis. As a result, the average marginal costs of electricity provision increase by up to 30% in the

years 2030-2040 in both scenarios of the sensitivity analysis.
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For the marginal costs of heat provision, the shift in the investment decision away from gas and towards

a fully electric energy provision has some interesting consequences. Contrary to the main analysis, marginal

costs of heat provision shown in Table 5 decrease over time as the fuel prices, in this case the retail non-

heat-pump and heat-pump electricity prices, also decline. As explained in Section 3.3, the marginal costs

of heat provision may equal the marginal costs of electricity provision in times when electricity could be

consumed to ramp up heat production. In this case, two electricity-consuming technologies are available yet

are subject to different tariffs. Looking at Figure 6, the marginal costs of heat provision and the marginal

costs of electricity provision (i.e., the red and yellow lines, respectively, in the bottom graphs) meet at a

level equal to the retail non-heat-pump electricity price (i.e., the yellow line in the top graphs) in several

instances during the first three days of the week (i.e., hours 841-912). Here, it can be concluded that the

electric heater fueled with electricity from the grid would be the next least-cost option.82

The heat pump, on the other hand, is designed as a base generator and is therefore limited in its ability

to increase production due to capacity constraints. Nevertheless, the combination with thermal storage

allows heat pumps to play a crucial role in driving down the marginal costs of heat provision by (i) ramping

down production despite higher demand levels to evade lower COPs, no PV generation and/or high retail

electricity prices, and (ii) continuing to run in times of low or no demand to benefit from strong COPs,

PV generation and/or low retail electricity prices. Examples of the second effect can be seen by looking

at Figure 6: Marginal costs of heat provision remain below the marginal costs of electricity provision for

most of the second half of the week, e.g., hours 933 to 994. During this time, heat demand drops below

the levels of the previous days, which in turn allows HH1 to avoid using the electric heater (see the black

and red lines in third graphs from the top). As such, heat demand is covered by the heat pump together

with thermal storage, who optimize the charging and discharging of the storage to minimize the costs of

heat provision. In doing so, the heat pump uses the correlation between PV generation and high COPs to

continue generating heat in times of zero heat demand in order to feed heat into the thermal storage, e.g.,

in hours 937-938, 960-962 and 984-986 in the Smart Tech scenario. Heat produced from the heat pump is

then supplied by the thermal storage in hours with higher heat demands, resulting in the marginal costs of

heat provision staying between 3.5 and 6.6 €-ct./kWhth over this time frame.

In the 852nd hour, i.e., the hour of peak heat demand for HH1, the marginal costs of heat provision also

reach their maximum value, as can be seen in Figure 6. Whereas the marginal costs of heat provision in the

82It is interesting to note that the curves of the marginal costs of heat provision discussed here do not plateau at the level
equal to the retail price, as seen with the marginal costs of electricity provision, but rather have a slightly increasing slope.
This is due to the hourly losses of the thermal storage that occur over time, referred to as β in Equation (13) in Section 2.4.
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peak demand hour in the main analysis include the investment costs for 1 kW of additional heating capacity,

the availability of thermal storage offers a less capital-intensive option.83 In this case, the storage could,

e.g., shift one unit of heat discharge from the previous hour to the peak hour, using an electric heater in the

previous hour to supply the missing kW. Comparing Figures 5 and 6, this effect leads to the maximum value

for HH1 decreasing from 0.70 €-ct./kWhth in the main analysis to about 0.33 €-ct./kWhth in the sensitivity

analysis. All in all, the flexibility introduced via thermal storage leads to significant reductions in the yearly

averages of the marginal costs, as can be seen in Table 5. In fact, the absolute values of the average marginal

costs of heat provision are found to be up to 38% lower than those seen in the main analysis.

Sensitivity Finding #6: Variable electricity prices have little effect on the costs of energy provision for the

households considered

The main analysis and the sensitivity analysis present different investment strategies for the household

types to cover their energy demands. Nevertheless, in both cases, the investment decisions appear to be

unaffected by the differences in the definitions of the Smart Tech and Smart Market scenarios. In other

words, the introduction of hourly, market-based variable electricity prices does not drive a major change in

the cost-minimizing technology mix for the households considered. Yet the presence of a thermal storage

coupled with electricity-consuming heating technologies in the sensitivity analysis creates an opportunity

for households to take advantage of the variable electricity price structure. For example, comparing the

Smart Tech (left) and the Smart Market (right) scenarios in Figure 6, the heat pump in the Smart Market

scenario ramps up in times of lower electricity prices (e.g., in hours 961-963 and 985-987) to deliver larger

heat volumes to the thermal storage. The thermal storage can then be discharged to relieve the heat pump

in hours with unfavorable electricity prices (i.e., in hours 967/968 and 983). Moreover, dips in the electricity

price also incentivize the electric heater to increase production compared to the Smart Market scenario,

as seen in hour 996 in Figure 6. In this case, the peak heating technology is activated in addition to the

baseload electric heat pump, increasing electricity consumption. This effect leads to a slight increase in

the maximum amount of electricity consumed from the grid in a single hour in the Smart Market scenario,

which occurs in times of low electricity prices and high thermal storage feed-in (see Tables E.10 and E.11 in

Appendix E).84

83In fact, additional model runs of the sensitivity analysis show that an increase in the peak demand by 1 kW leads to only
a 0.1 kW increase in the capacity of the electric heater, with the capacities of all other technologies remaining unchanged.

84Though the model results reveal a minimal effect between scenarios, alternative "smart" price signals that account for,
e.g., grid conditions or grid availability could support the technologies in exploiting their flexibility potential. Furthermore, it
should be noted that households do not pay or redeem compensation for changes in grid connection size as the costs of electric
networks are not considered within this analysis.
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Surprisingly, however, neither the variable costs nor the marginal costs of energy provision presented in

Table E.8 in Appendix E and Table 5, respectively, differ significantly across scenarios.85 This insinuates

that (i) the thermal storage is limited in its ability to benefit from arbitrage and (ii) households in the

Smart Tech and Smart Market scenarios optimize operation, for the most part, according to the same

criteria: maximizing of the use of PV electricity in the heat production of heat pumps and using thermal

storage to shift the consumption of this heat to hours with demand peaks. Because both the solar irradiation

and demand profiles are identical across scenarios, the possibilities for discrepancies in the operation of the

technologies are limited, leading to similar costs despite different price structures.

4. Conclusion

Within this paper, the mixed-integer linear programming model COMODO is developed to determine

the cost-minimal energy provision for an end consumer or consumer group accounting for electricity, water

heating and space heating. The model uses its extensive technology catalog to perform an investment and

dispatch optimization for multiple years, minimizing total costs over a long-term time horizon in a dynamic

anticipative optimization. Developments in techno-economic data, regulatory frameworks and energy market

conditions are taken into account to help understand the key drivers affecting the end consumer’s energy

investment choices. Furthermore, piecewise-linear cost functions are developed to more accurately represent

the technology investment costs, FOM costs and subsidies for different systems sizes and for future years.

In order to demonstrate the capabilities of the model developed, an exemplary application is presented to

investigate the investment and energy use decisions of four single-family homes in Germany for the years 2025

to 2045. Three scenarios are designed that build upon each other regarding amount of information available

to consumers and their decentralized energy technologies. Finally, a sensitivity analysis then examines the

effects of higher carbon pricing in the German building sector on the consumer’s energy provision.

The results reveal the investment and operational strategies as well as the energy costs of the households

under changing technical, market and regulatory conditions. The Status Quo scenario, which is meant to

resemble the technical and regulatory standard of today, shows a clear preference for gas boilers as a base

technology coupled with electric heaters to cover demand peaks. The inability of households to receive

forecasts on future developments in technology costs, energy prices or demand structure leads to households

deviating from the long-term, cost-minimal investment and therefore spending more on their energy provision

85This comparison holds true as long as the installed capacities are the same across scenarios. For HH3, for example,
differences in the investment decision between 2025-2035 lead to cost deviations, as explained above.
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compared to the other two scenarios. The introduction of transparent information on future costs, prices

and demand in the Smart Tech scenario affects each household type differently, with the energy demand

levels playing a central role. Households with higher demand levels invest in PV systems immediately in

2025, while other households with lower demands either wait until 2040 (i.e., the last year of investment)

or do not invest at all. The household with the highest energy demand invests in a battery storage in 2030

to maximize the self-consumption of PV electricity. The choice of heating technologies, however, remains

unchanged compared to the Status Quo scenario. These results also hold for the Smart Market scenario,

which extends the Smart Tech scenario such that households are exposed to variable retail electricity prices.

While the opportunity of hourly retail electricity prices does not have a strong effect on the investment

decision or household expenditures, increases in carbon pricing is found to play a significant role. When

subject to higher carbon prices, the retail gas price increases to the point where most of the households

choose to fully electrify their heat provision, i.e., installing a heat pump combined with thermal storage, PV

and an electric heater. With this alternative technology mix, households on average experience an increase

in total costs ranging from 3.5% to 5.4% over the complete time horizon and realize a long-term decrease in

annual carbon emissions of up to 80% compared to the analysis with lower carbon pricing.

The paper at hand also presents a novel method of analyzing the marginal costs of electricity and

heat provision, i.e., the shadow prices of the model’s equilibrium constraints. The results reveal a strong

correlation between the implicit marginal costs of electricity provision and the retail electricity price in

all scenarios and both analyses (i.e., with lower and higher carbon pricing). As such, the decrease in the

retail electricity price that is assumed for future years drives the yearly average of the marginal costs of

electricity provision downwards over time. Deviations are found to occur in hours with PV electricity

generation or during peak demand. The self-consumption of PV electricity, in particular, is identified to

have significant potential in reducing marginal costs. Similarly, the marginal costs of heat provision are

also found to be linked to the fuel price: If gas-fired technologies are used, as is the case in the analysis

with lower carbon pricing, the average marginal costs increase over the years following the upwards trend

in the gas price development. However, if electricity-consuming technologies are used, the average as well

as hourly marginal costs of heat provision tend to equal the marginal costs of electricity provision. The use

of electricity generated by decentralized PV systems via electric heat pumps coupled with thermal storage

yields drastic reductions in the marginal costs of heat provision.

As is the case in any model-based analysis, this research is subject to several limitations. First, the pro-

posed model assumes perfectly rational behavior and perfect foresight over the full model horizon. Although

42



this assumption is typical for MILP energy models, the information on future developments may result in

more capital-intensive technologies being selected than would be chosen under real-world conditions. Sec-

ond, consumers may make decisions on their energy provision based on additional non-monetary preferences

or risk assessments, which are difficult to include in a cost-minimizing model.86

The model COMODO presented in this paper offers a wide range of opportunities for future research.

For example, in this analysis, only single-family homes are considered. However, COMODO is designed

to be able to optimize any consumer type or group. As such, additional analyses examining, e.g., larger

living complexes, industry consumers or other non-residential buildings could be an interesting extension of

this work. Increasing the heterogeneity of the consumer types could allow for a larger pool of consumers

to be considered, e.g., on a neighborhood, national or even multi-country level.87 Furthermore, although

the technology catalog developed is already relatively extensive, investment objects could be added to

allow for a more realistic depiction of the current scope of installed and available decentralized technologies

(e.g., air conditioning, gas heat pumps, electric vehicles, electrolyzers, etc.) as well as building retrofits

(e.g., insulation improvements). Additional options for energy supply such as district heating or hydrogen

could also be implemented; however, uncertainty regarding aspects such as prices and pipeline accessibility

may pose challenges. Investigating the marginal costs of heat provision, as done in this work, offers a

promising research avenue for understanding the costs of decentralized heat supply and the competitiveness

to centralized heat providers. Moreover, the input data used in the application could be increased in

complexity to account for, e.g., weather phenomena or smaller (<1h) time steps to improve the accuracy

on generation, grid consumption and storage cycles. Lastly, research questions surrounding shifts in the

regulatory landscape could be complementary extensions to the sensitivity analysis performed in this work.

Topics such as the consequences of capacity pricing, carbon reduction targets or restrictions on fossil fuel

use could provide valuable insights for, e.g., policymakers.

86The concept of including preferences in MILP models is addressed in Shamon et al. (2021).
87For example, the German residential building stock is examined using COMODO in Arnold et al. (2023).
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Appendix A. Nomenclature and Abbreviations

Throughout the paper, notation as listed in Tables A.1 and A.2 is applied. Unless otherwise noted,

optimization variables are indicated using bold, uppercase letters.

Sets
y - year
x - technology
f - fuel
EUT - energy use type
fp - function part
t - time resolution
cpc - capacity price components
epc - energy price components
Parameters
i - interest rate
jx - financing rate of technology x
wx a financing period of technology x
y a year
y0 a start year
y∗x a installation year of technology x
ltx a technical lifetime of technology x
γx - learning rate of technology x
ICx,min e minimal investment costs of technology x
δIC/δQ e/kW , e/kWh, e/m2 capacity-specific investment costs
n - maximum number of function parts
dy,t,EUT kW exogenously-defined energy demand for energy use type EUT

in time slice t and year y
capCO2,y tCO2 consumer emissions cap in year y
factorCO2,fx g/kWh CO2 factor of fuel f used in technology x
factorCO2,t,EUT g/kWh average CO2 factor of an energy use type EUT supplied

by the grid in time slice t
ηt,x,EUT - efficiency of technology x producing energy use type EUT in time slice t
rs m2 roof size
qgrid,EUT kW size of the connection capacity for the corresponding EUT
epy,t,EUT,epc e/kWh energy price
cpy,t,EUT,cpc e/kW capacity price
ery,t,EUT e/kWh energy remuneration
scry,x,EUT e/kWh self-consumption remuneration
scfy,x,EUT e/kWh self-consumption fee
Gt kW/m2 global solar irradiation on a tilted area
α0 - optical efficiency
Tcollector,t K mean collector temperature
Tambient,t K ambient temperature
Tflow K flow temperature
Tsource,t K source temperature of heat pumps
rs m2 available roof space

Table A.1: Model sets and parameters
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T C e total costs
F Cy e/a fixed costs in year y
AICy,x e/a annualized investment costs in year y
ICy∗

x,x e investment costs for technology x in the installation year y∗x
Sy∗

x,x e subsidy allocation for technology x in the installation year y∗x
F OMCy,x e/a fixed operation and maintenance costs for technology x in year y
EBCy e/a energy-based costs in year y
CBCy e/a capacity-based costs in year y
EBRy e/a energy-based remuneration in year y
HRy,x,EUT e/a remuneration received via a time-variable (hourly) compensation

for eligible technology x and energy use type EUT in year y
Qy,x kW , kWh, m2 capacity, storage volume or panel area for technology x in year y
GF Iy,t,x,EUT kW feed-in of energy into grid
XF Iy,t,x,EUT kW feed-in of energy into technology x
GSy,t,EUT =EUTdemand kW energy supply from the grid to cover exogenously-defined

energy demand dy,t,EUT

GSy,t,x,EUT kW energy supply from the grid
XSy,t,x,EUT kW energy supply from a decentralized energy technology
N - number of the function part comprising the optimal

installed capacity of a certain technology
Qmin kW , kWh, m2 minimum achievable capacity
SLy,t,x,EUT kWh storage level in time slice t
SVy,t,x,EUT kWh available storage volume for a certain technology x

Table A.2: Model variables

AIC annualized investment costs
CHP combined-heat-and-power
COMODO consumer management of decentralized options
COP coefficient of performance (heat pump)
DER distributed energy resources
el electric
EU-ETS European Emissions Trading System
FIT feed-in tariff
FOM fixed operation and maintenance
MILP mixed integer linear programming
PtH power-to-heat
PV photovoltaic
TAC total annual cost
th thermal

Table A.3: Abbreviations
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Appendix B. Additional Information on the Assumptions on Fuel Price Developments

Within this analysis, three energy carriers are available to households: wood pellets, gas and electricity.

In the following, the assumptions on the price components and price developments shown in Figure 4 in

Section 3.1.2 are explained for each fuel type.

For wood, the price composition is relatively straightforward. Unlike the other energy carriers, the price

for wood pellets consists only of acquisition together with concession, taxes and fees. Wood acquisition

and processing make up 74% of the overall price of wood pellets.88 The remaining share of the retail price

includes, e.g., the value added tax as well as costs for logistics and storage. Wood pellet prices are assumed

to increase drastically by more than 55% from 7.2 €-ct./kWhth in 2025 to 11.1 €-ct./kWhth in 2040 as a

result of increasing material costs (Shamon et al. (2021)).89

Gas, on the other hand, is made up of all four price components. Generally speaking, grid fees, which

are paid by the end consumer to the energy provider, are passed on to grid operators in order to manage,

maintain and expand the grid infrastructure. For gas, the grid fee makes up a 21% share of the overall gas

price in 2025 and is assumed to stay constant at 1.6 €-ct./kWhth up to 2040. The price for gas acquisition

follows the assumptions of the Sustainable Development Scenario in the IEA’s World Energy Outlook 2020

(International Energy Agency (2020)) and equals 1.54 €-ct./kWhth in 2025 and increases by a mere 2% by

2040.90 Furthermore, as explained in Section 3.1.2, end consumers in Germany are now required to pay a

price for their resulting carbon emissions from energy provision, assumed to equal 1.1 €-ct./kWhth in 2025

and reach 1.8 €-ct./kWhth by 2040. The higher carbon prices assumed in the sensitivity analysis in Section

3.4 are assumed to equal 2.5 €-ct./kWhth in 2030, 4.0 €-ct./kWhth in 2035 and 5.5 €-ct./kWhth in 2040.

Lastly, more than 40% of the retail price in 2025 is composed of payments for concession fees, taxes and other

surcharges, which for the most part remain constant over the time period considered. All in all, the energy

price components for gas add up to an overall price of 7.5 €-ct./kWhth in 2025 and rise to 8.4 €-ct./kWhth

in 2040 in the main analysis and to 12.8 €-ct./kWhth in 2040 in the sensitivity analysis.

Unlike the other fuels, electricity is subject to two separate tariffs, as illustrated in Figure 4 in Section

3.1.2, namely "Heat-Pump Electricity" and "Non-Heat-Pump Electricity". The discrepancy between the two

tariffs is primarily due to differences in grid fees: As electricity demand from heat pumps is more predictable

due to strong correlations with weather conditions, they tend to provide less strain on the electricity grid.

88See https://gas.info/energie-gas/energie-preisvergleich/preisentwicklung-holzpellets
89See https://www.depi.de/pelletpreis-wirtschaftlichkeit#dau2v
90It should be noted that the analysis at hand was performed prior to the Russian invasion of Ukraine in February 2022.

Any consequential economic developments concerning the gas acquisition costs or supply restrictions are not considered in this
work.
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As such, heat pumps are subject to lower grid fees, making up 9% of the overall electricity price as opposed

to 27% for non-heat-pump electricity use in 2025. The grid fee for both heat-pump and non-heat-pump

electricity use is assumed to increase linearly after 2025, reaching 2.4 €-ct./kWhel and 10.5 €-ct./kWhel

by 2040, respectively. Furthermore, around 30% of the retail price for both non-heat-pump and heat-pump

electricity use is composed of payments for concession, taxes and further fees. These remain mostly constant

up to 2040. The third component is the renewable surcharge, as specified in the German Renewable Energies

Act from the year 2000. This levy serves to refinance the renewable energy subsidies to support renewable

expansion in Germany. In 2025, the renewable surcharge is assumed to reach its peak at 8 €-ct./kWhel

for all electricity use before steadily decreasing to zero by 2040.91 The final price component, i.e., the

costs of electricity acquisition, is the only market parameter that differs across scenarios: For the Smart

Market scenario, hourly electricity prices are assumed, as shown in the box plot on the right-hand side of

Figure 4 in Section 3.1.2. For the Status Quo and Smart Tech scenarios, yearly averages of the hourly

variable prices are set as constant electricity prices. At an average of 5.2 €-ct./kWhel in 2025, this cost

component makes up the lowest share of the electricity retail price for both heat-pump and non-heat-pump

use. By 2040, however, changes in electricity generation and demand in Germany yield an annual average

acquisition cost of 6.5 €-ct./kWhel. On average, the retail electricity price decreases from 31.2 €-ct./kWhel

in 2025 to 26.3 €-ct./kWhel in 2040 for non-heat-pump electricity used and from 22.4 €-ct./kWhel in 2025

to 15.5 €-ct./kWhel for heat-pump electricity use. For the Smart Market scenario, a minimum retail price

of 26.2 €-ct./kWhel and a maximum retail price of 37.7 €-ct./kWhel in 2025 and a minimum retail price of

20.0 €-ct./kWhel and a maximum retail price of 33.7 €-ct./kWhel in 2040 are assumed.

91Analogous to the carbon prices, the renewable energy surcharge is an endogenous result of the energy system model
DIMENSION (see Footnote 57).
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Appendix C. Detailed Description of the Economic and Technical Assumptions according to

Technology Type

A significant contribution of the paper at hand is the inclusion of a wide range of technologies in the

model. Each technology is subject to different technical, economic and regulatory characteristics, all of which

must be accounted for in order to determine the cost-minimal energy provision. The following subsections

present the technologies that are available to consumers, including a thorough explanation of the techno-

economic assumptions. More specifically, the piecewise-linear investment costs, including installation and

material costs, as well as the fixed annual operation and maintenance costs are shown in a series of figures.92

For certain technologies, investment costs may be subsidized via incentive programs offered by the German

government (c.f. Bundesamt für Wirtschaft und Ausfuhrkontrolle (2021a) and Bundesamt für Wirtschaft

und Ausfuhrkontrolle (2021b)), as long as these fulfill certain technical requirements (see, e.g., Bundesamt für

Wirtschaft und Ausfuhrkontrolle (2020)). Furthermore, technologies may also be eligible to receive financial

remuneration for, e.g., decentralized electricity generation. Such regulatory aspects are also discussed below

as they pertain to the specific technology.

Appendix C.1. Condensing Boilers

Conventional fuels such as natural gas or heating oil can be burned in a condensing boiler, achieving

higher efficiencies compared to older non-condensing systems by taking advantage of upper, rather than

the lower, heating values.93 Oil condensing boilers are assumed to have an efficiency of 96% while gas

condensing boilers are assumed to have an efficiency of 99%.94 After installation, the household can use a

gas condensing boiler for up to 25 years, while oil condensing boilers can be used for up to 20 years.95

92It should be noted that the investment costs illustrated in the following subsections do not include fuel storage systems
(e.g., pellet or oil tank) or the installation of heating circuits such as radiators.

93Condensing boilers withdraw heat from the exhaust gas, causing the water in the exhaust to condense. This is not the
case in conventional non-condensing boilers. Non-condensing boilers are not considered in this paper as new investments are
assumed to be fully focused on the state-of-the art technology.

94Both assumptions are based on Fleiter et al. (2016) and Energinet.dk and Energi Styrelsen (2012).
95The lifetime of gas condensing boilers is based on a life span of 17 to 30 years (see Fleiter et al. (2016), Energinet.dk and

Energi Styrelsen (2012), Bettgenhäuser and Boermans (2011), Palzer (2016), Hedegaard and Münster (2013), Heinen et al.
(2016), Brown et al. (2018), Omu et al. (2013), Gerhardt et al. (2015) and Kemna et al. (2007)). The lifetime of oil condensing
boilers is taken from Fleiter et al. (2016), Energinet.dk and Energi Styrelsen (2012), Bettgenhäuser and Boermans (2011),
Kemna et al. (2007) and Palzer (2016).
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Figure C.1: Investment and FOM costs of condensing boiler systems in 2020

Condensing boilers have the lowest specific investment costs compared to the other base heating tech-

nologies considered in this analysis. An exception are electric heaters, which are typically used as peak

technologies. Investment costs for oil and gas condensing boilers are shown in Figure C.1 and are calculated

based on Mailach and Oschatz (2016), Mailach and Oschatz (2017) and Energinet.dk and Energi Styrelsen

(2012). Further data from Adolf et al. (2013) and Fleiter et al. (2016) as well as additional industry sources

were used for the investment cost analysis for gas boilers. The FOM costs are based on Bettgenhäuser and

Boermans (2011), Fleiter et al. (2016) and Energinet.dk and Energi Styrelsen (2012) and are depicted in

Figure C.1 by the dotted lines.

The costs of storage systems for fuels, e.g., the construction of an oil or gas tank, are not included in

these costs. As such, it is assumed that adequate storing options either already exist or are not needed, i.e.,

a grid connection is readily available. Furthermore, it is assumed that condensing boilers are already at an

advanced development state and are therefore subject to only minimal reductions in investments costs in

the coming years (see Table D.5 in Appendix D).

Moreover, it is assumed that no government-funded subsidies or other variable remunerations are available

for condensing boilers at the time of this paper.96

96In reality, gas-condensing boilers could potentially qualify for subsides: According to Bundesamt für Wirtschaft und
Ausfuhrkontrolle (2021a), 20% of the full investment costs (including installation (see Bundesamt für Wirtschaft und Aus-
fuhrkontrolle (2021b))) would be refunded if the system is "renewable ready" within two years after installation. In other
words, a renewable energy heating system would have to be integrated into the the system and be able to supply a specific
share of the energy demand (Bundesamt für Wirtschaft und Ausfuhrkontrolle (2020)). Technically speaking, the condensing
boilers considered in this analysis could easily be combined with a renewable system, e.g., a solar heating system. Nevertheless,
subsidies are modeled in COMODO according to the individual, as opposed to coupled, technology investment.
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Appendix C.2. Combined-Heat-and-Power Systems

Combined-heat-and-power (CHP) systems allow for the simultaneous generation of both thermal and

electrical energy, with natural gas or oil being converted into electricity and heat according to a so-called

’power-to-heat’ ratio.97 As such, the systems can achieve a high total efficiency by making use of the energy

which may have been lost as heat. The consumer can choose between three CHP systems, namely an oil-

or gas-fired motor or a gas-fueled fuel cell. The three systems do not only vary with respect to the fuel

used but also according to their technical build, which leads to differences in the power-to-heat ratios and,

in turn, the electric and thermal efficiencies, which are shown in Table C.4 for the CHP systems modeled.

CHP System Type Electric Efficiency Thermal Efficiency Selected Sources
ηt,x=CHP,EUT =elec ηt,x=CHP,EUT =heat

Gas CHP 30% 61% Klotz et al. (2014), Verbraucherzentrale
Nordrhein-Westfalen Energieberatung (2013),
Wünsch et al. (2011), Bürger et al. (2016),
Energinet.dk and Energi Styrelsen (2012),
Diefenbach et al. (2017), Björnebo et al. (2018),
Hamzehkolaei and Amjady (2018), Karmellos
and Mavrotas (2019), Klein et al. (2014), Fleiter
et al. (2016)

Oil CHP 32% 57% Verbraucherzentrale Nordrhein-Westfalen En-
ergieberatung (2013), Wünsch et al. (2011)

Fuel Cell 40% 52% Klotz et al. (2014), Verheyen (2011), Wünsch
et al. (2011)

Table C.4: Efficiencies of CHP systems

Figure C.2 shows the assumed gas, oil and fuel cell CHP investment costs.98 The graph clearly shows

that fuel cells have higher costs than the other technologies, which is due to the difference in technical

complexity as well as maturity of fuel cells compared to motor CHP systems. Motor CHP systems are

typically modular such that higher capacities may be achieved by installing multiple motors. Therefore,

the scaling effect is rather limited. Moreover, the assumed learning rates show that costs for fuel cells are

expected to be reduced by 50% while costs for gas- and oil-fired motor CHPs see cost reductions of 23% by

2040 (see Table D.5). Furthermore, the assumptions for the FOM costs are depicted in Figure C.2.99

97The CHP systems in the model are assumed to have a constant power-to-heat ratio. Larger CHP plants may run flexibly
and, as such, have varying power-to-heat ratios.

98The investment costs for gas-fired CHP are based on Bürger et al. (2016), Energinet.dk and Energi Styrelsen (2012), Mailach
and Oschatz (2016), Adolf et al. (2013) and Klein et al. (2014); for oil-fired CHP based on Verbraucherzentrale Nordrhein-
Westfalen Energieberatung (2013),Wünsch et al. (2011); and for fuel cells based on Verbraucherzentrale Nordrhein-Westfalen
Energieberatung (2013), Klotz et al. (2014), Pehnt et al. (2012), Ammermann et al. (2015), Verheyen (2011) and industry data.

99The FOM costs for gas-fired CHP are based on Klotz et al. (2014). Because of the technical similarities, it is assumed
that the FOM costs of oil-fired CHP make up the same percentage share of investment costs as the FOM costs of gas-fired
CHP. The FOM costs for fuel cells are based on Klotz et al. (2014), Pehnt et al. (2012), Ammermann et al. (2015) and Battelle
Memorial Institute (2017).
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Figure C.2: Investment and FOM costs of CHP systems in 2020

Electricity generation via CHP systems up to a capacity of 50 kWel
100 is promoted with a feed-in tariff of

16 €-ct./kWhel for electricity fed into the grid and a remuneration of 8 €-ct./kWhel for all electricity which

is not (see Bundesamt für Justiz (2020a)). Both are granted for up to 30,000 full-load hours (see Bundesamt

für Justiz (2020b)).101 Once installed, technical lifetimes of 15 years for motor CHP systems and 10 years

for fuel cell systems are assumed 102

Appendix C.3. Electric Heater

The simplest form of power-to-heat technologies is the electric heater. This heating system is able to

convert electricity into heat with near-zero energy losses.103 Figure C.3 shows the assumed power to heat

system investment costs based on Beck et al. (2017) and Bechem et al. (2015). Electric heaters are usually

used in combination with other heating technologies such as condensing boilers, CHP or electric heat pumps.

In multi-technology systems, electric heaters typically supply heat in times of peak demand, i.e., serve as a

peak technology. It is assumed that electric heaters are not subject to FOM costs. According to Beck et al.

(2017), investments must be renewed every 15 years due to limited technical lifetimes.

100The restriction on electric capacity of 50 kWel is equal to about 101 kWth for gas-fired CHP, 89 kWth for oil-fired CHP
and 65 kWth for fuel cells.

101For simplicity, it is assumed in the model that the remuneration of 8 €-ct./kWhel for 30,000 full-load hours of electricity
generation is directly redeemed at the time of investment. Because of this one-time compensation, the feed-in tariff is then
corrected to 8 €-ct./kWhel.

102The assumption for motor CHP is based on Ren and Gao (2010), Mailach and Oschatz (2016), Diefenbach et al.
(2017),Björnebo et al. (2018), Hamzehkolaei and Amjady (2018),Energinet.dk and Energi Styrelsen (2012) and Fleiter et al.
(2016). For fuel cells, see Ren and Gao (2010), Fleiter et al. (2016), Verheyen (2011) and Brandoni and Renzi (2015).

103An efficiency of 100% is assumed.
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Figure C.3: Investment costs of electric heaters in 2020

Appendix C.4. Electric Heat Pumps

Electric heat pumps use the enthalpy of an electricity input to extract energy from low-temperature

energy sources in order to generate high-temperature space and warm water heating. Possible energy

sources for this technology are ambient air (air-to-water), ground (water-to-water) or geothermal energy.

Figure C.4 shows the investment costs for the three different electric heat pumps included in COMODO:

air-to-water, water-to-water (also known as collector) and geothermal.104 The costs presented include the

construction of the system to retrieve the source energy (e.g., collector or drilling). For water-to-water and

geothermal systems, high investment costs are strongly driven by construction costs in order to access the

energy source. Geothermal systems, in particular, have high installation costs due to the need for vertical

drilling. Furthermore, FOM costs are also depicted in Figure C.4 for each heat pump type.105 Once installed,

electric heat pumps are assumed to have a technical lifetime of 20 years. 106

104The investment costs for air-to-water electric heat pumps are based on Beck et al. (2017), Bettgenhäuser and Boermans
(2011), Bürger et al. (2016), Henning and Palzer (2013), Petrović and Karlsson (2016), Pfnür et al. (2016), Brown et al. (2018),
Mailach and Oschatz (2016), Mailach and Oschatz (2017), Omu et al. (2013),Herkel et al. (2018), Palzer (2016), Adolf et al.
(2013), Heinen et al. (2016), Hedegaard and Münster (2013), Karmellos and Mavrotas (2019) and industry data; for water-to-
water electric heat pumps based on Bettgenhäuser and Boermans (2011), Bürger et al. (2016), Henning and Palzer (2013) and
Petrović and Karlsson (2016); and for geothermal electric heat pumps based on Hardy et al. (2016) and industry data.

105The FOM costs assumed for air-to-water electric heat pumps are based on Beck et al. (2017), Bettgenhäuser and Boermans
(2011), Henning and Palzer (2013), Petrović and Karlsson (2016), Pfnür et al. (2016), Heinen et al. (2016), Brown et al. (2018),
Hedegaard and Münster (2013), Mailach and Oschatz (2016), Mailach and Oschatz (2017), Palzer (2016) and Heinen et al.
(2016); for water-to-water electric heat pumps based on Bettgenhäuser and Boermans (2011), Henning and Palzer (2013) and
Petrović and Karlsson (2016); and for geothermal electric heat pumps based on Brown et al. (2018) and Palzer (2016).

106Henning and Palzer (2013), Omu et al. (2013), Palzer (2016), Petrović and Karlsson (2016), Gerhardt et al. (2015), Heinen
et al. (2016), Beck et al. (2017), Brown et al. (2018), Herkel et al. (2018), Karmellos and Mavrotas (2019) and Hedegaard and
Münster (2013) assume lifetimes in the range of 15 to 30 years.
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Figure C.4: Investment and FOM costs of electric heat pump (HP) systems in 2020

As explained in Section 2.4, the performance of electric heat pumps is determined according to the COP,

a variable efficiency factor that is highly dependent on the temperature delta between the source temperature

and the desired flow temperature of the heating system. Whereas the desired flow temperature depends on

the consumer preference and building age, the heat source temperature is different for each type of heat

pump. For air-sourced heat pumps, the heat-source temperature is the outside temperature. Thus, the

temperature delta fluctuates strongly over time, with the COP decreasing when the outside temperature

drops and the delta becomes larger. This variance in performance explains the relatively low investments

costs shown in Figure C.4 compared to the other heat pump types. For the ground-sourced water-to-water

heat pumps, the heat-source temperature at a depth of one meter below surface is calculated according

to Benker and Heidt (2000).107 In a depth of one meter, the temperature still varies with the outside

temperature; however, the variance is reduced due to the insulation effect of the ground. This leads to a

more stable COP compared to that of the air-to-water electric heat pump. For geothermal heat pumps, a

heat-source temperature of 10°C is assumed. As a result, the temperature delta of geothermal heat pumps

and the subsequent COP are constant over all time slices. All in all, heat pumps are capable of achieving

COPs ranging from 2 and 6.

Electric heat pumps are eligible for subsidies equal to up to 35% of the full investment costs (see Bunde-

samt für Wirtschaft und Ausfuhrkontrolle (2021a)) including installation costs (see Bundesamt für Wirtschaft

und Ausfuhrkontrolle (2021b)), as long as they reach an annual performance factor108 of 3.5 for air-sourced

107Data on the specific heat capacity (1175.75 J/(kg*K), density (1742.25 kg/m3) and thermal conductivity (1.5025 W/(m*K))
is taken as a mean from Bundesindustrieverband Deutschland Haus-, Energie- und Umwelttechnik e.V. and Bundesverband
Wärmepumpe e.V. (2011)

108The annual performance factor is equal to the demand weighted average of the COP over the year.

53



or 3.8 for ground-sourced heat pumps in existing buildings and 4.5 for all heat pumps (i.e., regardless of

source) in newly-constructed buildings (see Bundesamt für Wirtschaft und Ausfuhrkontrolle (2020)).

Appendix C.5. Pellet Stove

Renewable heat can be provided by burning wood pellets in a stove. Figure C.5 shows the investment

costs assumed for pellet stoves based on Raab et al. (2013). These do not include the costs of storage

and transportation of wood pellets. Up to 35% of the costs illustrated in Figure C.5 may be subsidized

by the German government (see Bundesamt für Wirtschaft und Ausfuhrkontrolle (2021a) and Bundesamt

für Wirtschaft und Ausfuhrkontrolle (2021b)). Furthermore, the FOM costs are also depicted in the figure,

calculated as a share of 4.8% of the investment costs.109 Once installed, wood pellet stoves can provide

energy with an efficiency of 92% 110 for a technical lifetime of 20 years (see Raab et al. (2013)).
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Figure C.5: Investment and FOM costs of pellet stoves in 2020

Appendix C.6. Solar Thermal Plant

Solar thermal plants convert direct and indirect solar irradiation into heat for both space and water

heating. Solar thermal systems are typically rooftop installations and thus depend on the solar irradiation

on a tilted surface analogous to PV, as described below in Section Appendix C.8. In order to determine

the heat production of such a system, the solar irradiation on the tilted surface is adjusted according to the

energy losses. Based on European Solar Thermal Industry Federation (2007), these losses can be estimated

109The literature states that the annual FOM costs range from 3.2% up to 6% of the investment costs. Sources for the FOM
costs are Breitschopf et al. (2010), Bürger et al. (2016), Stuible et al. (2016) and Härdtlein et al. (2016).

110This efficiency is a mean between the different manufacturers, models and load levels.
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using optical losses, which are included as a percentage, as well as first- and second-order heat losses.111 The

total heat losses then depend on the difference between the mean collector temperature112 and the outside

air temperature. Solar thermal systems are the only systems considered in the model whose size is measured

in square meters (i.e., m2) and not in kilowatts.

Figure C.6 shows the investment costs assumed for solar thermal systems for space and water heating.113

Furthermore, the FOM costs are also depicted, calculated as a 1.6% share of investment costs.114 Investments

in solar thermal plants may receive subsidies up to 30% (see Bundesamt für Wirtschaft und Ausfuhrkontrolle

(2021a)) of the overall investment costs (see Bundesamt für Wirtschaft und Ausfuhrkontrolle (2021b)). Once

installed, solar thermal plants can be operated for 20 years.115
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Figure C.6: Investment and FOM costs of solar thermal systems for water and space heating in 2020

Appendix C.7. Thermal Storage

Thermal storage systems can be used in combination with any of the heat generation technologies de-

scribed in order to decouple the time of heat generation and consumption. The thermal storage assumed

in this paper is a sensible heat storage based on the storage medium water. Storage systems are designed

according to a storage volume measured in kWh, which in turn defines the maximal amount of storable

energy. Moreover, the maximum energy flow that can be fed into or be discharged from the storage system

111Within this paper, an optical efficiency of 80%, a first-order heat loss coefficient of approximately 3 W/(m2K) and a
second-order heat-loss coefficient of 0.008 W/(m2K2) based on Trier (2012) are assumed.

112Mean collector temperatures of 50°C for warm water systems and 60°C for space heating systems are assumed.
113The investment costs are based on Thiel and Ehrlich (2012), Gerhardt et al. (2015), Wiemken et al. (2008), Bettgenhäuser
and Boermans (2011), Ebert et al. (2011) and industry data.

114Brown et al. (2018), Henning and Palzer (2013) and Gerhardt et al. (2015) provide data on the FOM costs as a share of
the investment costs ranging between 1% and 2%.

115According to the technical lifetimes given in Brown et al. (2018) and Henning and Palzer (2013).
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needs to be taken into consideration when designing the system. The maximal flow level is measured in kW.

Figure C.7 illustrates the relationship between the maximum flow level and the storage volume.116 As can

be seen in the figure, the maximum flow level rises when the storage volume is increased.
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Although thermal storage systems are not energy generators, they may also experience energy losses.

When storing heat in a thermal storage, heat radiates from the storage tank and therefore lost from one

point in time to the next.117

Figure C.8 shows the investment costs assumed for thermal storage based on industry data. For any

storage volume above 76 kWh, specific installation costs increase drastically as a pre-assembling of parts is

no longer possible due to the height and width of the larger storage tank. Furthermore, it is assumed that a

thermal storage system itself is not subject to any FOM costs; however, it is assumed that the maintenance

of the storage is carried out together with the inspection of the heat generating technology and is thus

included in the FOM costs of the generating technology. Within this paper, a technical lifetime of 30 years

is assumed for a simple thermal sensible heat storage.

116The relationship between the maximum flow level and storage volume shown in Figure C.7 was constructed by evaluating
the specifications of storage systems from many different manufacturers.

117Within this paper, a loss equal to 1% of the stored energy is assumed for each hour in which the energy is stored.
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Appendix C.8. Photovoltaics

Photovoltaic (PV) panels are a renewable energy system used to convert irradiation from the sun into

electricity, often installed on rooftops. To determine the amount of electricity produced, the calculation

of the global irradiation on the inclined surface follows the functional estimations of the isotropic diffuse

irradiation model stated in Eicker (2012). Put simply, the radiation depends on the position of the sun

relative to the PV panel and the losses in the atmosphere. The sun’s position, in turn, depends on the

location of the PV panel as well as the time of day.118 For the research at hand, all PV systems are assumed

to be south-facing119 with an inclination of 35.5° 120. Furthermore, a reflection coefficient of 0.2 is assumed in

order to calculate the diffused reflection from the ground. Shade as well as other non-optimal conditions for

the PV system that may vary according to the individual location of the installation of a specific consumer

are ignored, assuming a full conversion of the direct incident sunlight.

Figure C.9 shows the investment costs of the PV system assumed.121 As PV panels are modular installa-

tions, the cost function is almost linear and thus have near-constant specific investment costs. Furthermore,

the figure also presents the FOM costs based on Bergner and Quaschning (2019) and industry data.

118In order to calculate the solar position, a standard time-meridian (zonal) of 15 and a local meridian of 6.667 are assumed.
Germany can be found on latitude 51.

119South-facing corresponds to a surface azimuth of 180°.
120For the assumptions in this paper, this inclination gives the highest observed generation.
121These are based on Balcombe et al. (2015), Beck et al. (2017), Karmellos and Mavrotas (2019), Omu et al. (2013) and
industry data.
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Figure C.9: Investment and FOM costs of photovoltaic systems in 2020

Once installed, it is assumed that the PV system can operate for 25 years 122. The electricity produced

by the PV system can either be used directly to cover the consumer’s individual electricity demand or fed

into a heat generating technology, battery storage or the electricity grid. If the electricity is fed into the grid,

consumers receive a market premium of 2.3 €-ct./kWhel plus the compensation for selling the PV electricity

to the market, i.e., the hourly spot-market electricity price at the time of feed in.123

Appendix C.9. Battery Storage

In order to allow for the flexible use of electricity, the consumer can choose to invest in an electricity

storage system, i.e., a lithium-ion battery storage. With an efficiency of 81%124, electric energy can be

stored and supplied at a later point in time.125 The installed capacity (kW) of a battery storage defines

the installed storage volume (kWh) according to a so-called energy-to-power ratio.126 Once installed, the

122Beck et al. (2017), Brown et al. (2018), Palzer (2016), Omu et al. (2013), Ren and Gao (2010), Henning and Palzer (2013),
and Gerhardt et al. (2015) provide operational time frames between 20 and 30 years.

123According to German regulation, consumers with rooftop PV systems qualify for so-called "reference values", which are
made up of the market premium plus the spot-market electricity price. The German government sets the reference value,
which decreases by about 1.4% every month and is guaranteed for 20 years from the time of installation. In order to estimate
the market premium in COMODO, the yearly average of the reference values are corrected for the yearly average of the spot-
market price assumed in the scenario definition (see Figure 4 in Section 3.1.2) for the future years. For more information, see
https://www.bundesnetzagentur.de/EN/Areas/Energy/Companies/RenewableEnergy/RegisterDataTariffs/start.html.

124The efficiency is calculated based on Beck et al. (2017), Lazard (2017), Diefenbach et al. (2017), Fisher et al. (2019),
Bakhshi Yamchi et al. (2019), Henning and Palzer (2013), May et al. (2018) and Brown et al. (2018). This value represents an
efficiency for the storage cycle independent of the duration of storage, i.e., it accounts solely for energy losses resulting from
the feeding in and discharging of electricity.

125At the time of this paper, the standard setting in COMODO is that a battery storage can be used to shift electricity
consumption within a time frame of one week. Longer storing periods are not taken into account.

126In line with Tsiropoulos et al. (2018) (see page 21), it is assumed that the storage volume in kWh is twice the amount of
the storage capacity in kW.
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battery storage can be used for up to 15 years.127
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Figure C.10: Investment and FOM costs of lithium-ion battery storage systems in 2020

Figure C.10 shows the investment costs of assumed lithium-ion battery storage systems.128 The invest-

ment costs are assumed to decrease significantly (-50%) by 2040 (see Table D.5 in Appendix D). The FOM

costs, based on Lazard (2017) and Diefenbach et al. (2017), are also depicted by the dotted line.

At the time of this research, the purchase of a battery storage is not directly subsidized. Nevertheless,

storage can help to reduce variable costs if they are used to optimize the use of decentralized electricity

generation from, e.g., PV.

127A technical lifetime of 15 years is assumed based on analyses from Fisher et al. (2019), Karmellos and Mavrotas (2019),
May et al. (2018), Brown et al. (2018), Diefenbach et al. (2017) and Balcombe et al. (2015).

128These are based on Beck et al. (2017), Lazard (2017), Karmellos and Mavrotas (2019), Diefenbach et al. (2017), Fisher
et al. (2019), Henning and Palzer (2015) and industry data.
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Appendix D. Assumptions on Learning Rates to Approximate Future Investment Costs

Costs for technology investments are assumed to decrease over time. This effect is included in the model

via learning rates, consistent with manufacturer data. Technologies that are currently undergoing research

are expected to face stronger decreases in costs than more mature technologies. The assumed learning rates

are given in Table D.5, which illustrates the percentages of the costs in the specific year compared to the

costs in 2020.

Technology 2025 2030 2035 2040 based on
CHP (Gas and Diesel) 94 89 83 77 Bürger et al. (2016)
Fuel Cell 88 75 63 50 Bürger et al. (2016)
Oil Condensing Boiler 99 98 97 96 own assumption
Gas Condensing Boiler 99 98 97 96 own assumption
Electric Heater 99 98 97 96 own assumption
Air-to-Water Heat Hump 97 93 91 89 Bürger et al. (2016), Palzer (2016), Energinet.dk

and Energi Styrelsen (2012), Petrović and Karls-
son (2016)

Water-to-Water Heat Pump 97 94 91 88 Bürger et al. (2016), Palzer (2016), Energinet.dk
and Energi Styrelsen (2012), Petrović and Karls-
son (2016)

Geothermal Heat Pump 98 95 93 91 Bürger et al. (2016), Henning and Palzer (2015)
Photovoltaic 90 79 69 58 Gerbert et al. (2018), Palzer (2016), Bürger et al.

(2016)
Lithium-Ion Battery Storage 100 58 54 50 Henning and Palzer (2015), World Energy Coun-

cil (2016)
Solar Thermal 96 93 89 86 Energinet.dk and Energi Styrelsen (2012), Ger-

hardt et al. (2015)
Thermal Storage 99 98 97 96 own assumption
Pellet Stove 98 96 94 91 Bürger et al. (2016), Nitsch et al. (2010), Hen-

ning and Palzer (2015), Gröger (2016)

Table D.5: Learning rates for technology cost developments in % compared to 2020
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Appendix E. Additional Results

Status Quo Smart Tech Smart Market
HH a 2025 2030 2035 2040 2025 2030 2035 2040 2025 2030 2035 2040

1 AIC [€/a] 1799 1799 1799 25 1800 2111 2111 25 1795 2109 2109 25
FOM [€/a] 426 426 426 426 426 515 515 515 426 515 515 515
VCtot[€/a] 2170 2195 2201 2190 2169 1709 1754 1776 2174 1704 1747 1765
VCel[€/a] 968 931 872 817 967 386 362 339 974 382 356 330
VCgas[€/a] 1201 1265 1328 1373 1202 1323 1392 1437 1200 1322 1391 1436
RC[€/a] 231 265 266 272 231 197 205 208 231 197 204 208
MP[€/a] 110 121 119 119 110 86 85 85 110 86 85 84
TAC [€/a] 4054 4035 4040 2251 4054 4052 4091 2024 4054 4045 4082 2013

2 AIC [€/a] 464 464 464 24 450 450 450 845 448 448 448 846
FOM [€/a] 235 235 235 235 235 235 235 423 235 235 235 423
VCtot[€/a] 2207 2186 2178 2153 2219 2197 2188 1607 2220 2198 2189 1618
VCel[€/a] 1130 1086 1018 953 1146 1101 1033 573 1148 1102 1034 585
VCgas[€/a] 1077 1100 1160 1200 1073 1096 1156 1034 1072 1095 1155 1033
RC[€/a] 0 0 0 0 0 0 0 341 0 0 0 341
MP[€/a] 0 0 0 0 0 0 0 148 0 0 0 148
TAC [€/a] 2906 2885 2877 2413 2904 2882 2873 2386 2902 2880 2872 2397

3 AIC [€/a] 1165 1165 1165 27 336 336 336 848 332 332 332 848
FOM [€/a] 360 360 360 360 230 230 230 418 230 230 230 418
VCtot[€/a] 1324 1326 1315 1294 1925 1890 1849 1222 1922 1883 1841 1229
VCel[€/a] 723 695 652 611 1274 1225 1148 565 1272 1219 1141 574
VCgas[€/a] 723 695 652 611 651 665 701 657 650 664 700 655
RC[€/a] 131 147 147 147 0 0 0 357 0 0 0 357
MP[€/a] 63 68 68 67 0 0 0 163 0 0 0 163
TAC [€/a] 2655 2636 2626 1466 2492 2456 2416 1967 2484 2446 2403 1975

4 AIC [€/a] 288 288 288 26 283 283 283 26 279 279 279 26
FOM [€/a] 229 229 229 229 228 228 228 228 228 228 228 228
VCtot[€/a] 1370 1347 1324 1294 1374 1351 1328 1297 1375 1353 1330 1294
VCel[€/a] 857 824 773 724 863 829 778 728 865 832 781 726
VCgas[€/a] 512 523 552 571 511 522 550 569 510 521 549 568
TAC [€/a] 1886 1864 1841 1549 1886 1863 1840 1552 1882 1860 1837 1548

a The cost values given are not discounted but the actual payment in the described year. The costs are AIC:
Annualized Investment Cost, FOM: Fixed Operation and Maintenance Cost, VCtot: Total Variable Costs, VCel/gas:
Variable Cost for Electricity/Gas (included in VCtot), RC: Remuneration for Direct Electricity Sales of PV Electricity
Feed-In, MP: Market Premium for PV Electricity Feed-In, TAC: Total Annual Costs

Table E.6: Annual costs of energy provision in the main analysis
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Figure E.11: Electricity supplied from the grid in each of the three scenarios as well as the corresponding electricity
acquisition prices of the main analysis for HH1 in the second week of February 2040

HH Status Quo Smart Tech Smart Market

Main Analysis 1 51690 51295 51210
2 39176 39077 39087
3 33745 33082 32993
4 25268 25265 25220

Sensitivity Analysis 1 56011 54087 53888
2 43112 42271 42202
3 35922 34258 34140
4 27140 26412 26216

Table E.7: Total costs of energy provision in the main and sensitivity analyses
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Smart Tech Smart Market
HH a 2025 2030 2035 2040 2025 2030 2035 2040

1 AIC [€/a] 2196 2196 2196 24 2201 2201 2201 24
FOM [€/a] 630 630 630 630 624 624 624 624
VCtot[€/a] 1982 1867 1699 1533 1968 1858 1687 1509
VCel[€/a] 1004 965 905 848 1008 973 917 856
VCHP [€/a] 977 901 794 685 960 885 770 653
RC[€/a] 221 226 226 231 220 225 225 231
MP[€/a] 108 109 110 110 107 109 109 110
TAC [€/a] 4479 4358 4189 1847 4467 4350 4178 1817

2 AIC [€/a] 444 444 444 1587 441 441 441 1586
FOM [€/a] 235 235 235 521 235 235 235 518
VCtot[€/a] 2227 2422 2610 1093 2227 2422 2611 1084
VCel[€/a] 1155 1110 1040 621 1158 1112 1043 632
VCHP [€/a] 0 0 0 472 0 0 0 451
VCgas[€/a] 1073 1312 1569 0 1070 1310 1568 0
RC[€/a] 0 0 0 299 0 0 0 299
MP[€/a] 0 0 0 141 0 0 0 141
TAC [€/a] 2906 3101 3289 2762 2903 3098 3286 2748

3 AIC [€/a] 1698 1698 1698 26 717 717 717 847
FOM [€/a] 373 373 373 373 237 237 237 425
VCtot[€/a] 1087 1030 946 866 1795 1699 1558 811
VCel[€/a] 752 723 678 635 1337 1281 1197 602
VCHP [€/a] 335 307 269 231 458 418 361 209
RC[€/a] 195 197 196 198 0 0 0 345
MP[€/a] 95 95 95 94 0 0 0 163
TAC [€/a] 2868 2808 2726 972 2749 2652 2511 1574

4 AIC [€/a] 556 556 556 26 554 554 554 26
FOM [€/a] 209 209 209 209 207 207 207 207
VCtot[€/a] 1333 1265 1166 1070 1324 1257 1157 1053
VCel[€/a] 968 930 872 817 968 930 873 813
VCHP [€/a] 365 335 294 253 357 327 284 240
TAC [€/a] 2098 2030 1931 1305 2085 2018 1918 1286

a The cost values given are not discounted but the actual payment in the described
year. The costs are AIC: Annualized Investment Cost, FOM: Fixed Operation and
Maintenance Cost, VCtot: Total Variable Costs, VCel/gas/hp: Variable Cost for Elec-
tricity/Heat Pump/Gas (included in VCtot), RC: Remuneration for Direct Electricity
Sales of PV Electricity Feed-In, MP: Market Premium for PV Electricity Feed-In,
TAC: Total Annual Costs

Table E.8: Annual costs of energy provision in the sensitivity analysis
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HH Smart Tech Smart Market

1 ATC [€] 2792 2678
ACA [tCO2 ] 50.01 49.88
ACAC [€/tCO2 ] 55.83 53.70

2 ATC [€] 3194 3115
ACA [tCO2 ] 10.89 10.89
ACAC [€/tCO2 ] 293.44 286.06

3 ATC [€] 1176 1147
ACA [tCO2 ] 32.59 27.55
ACAC [€/tCO2 ] 36.09 41.64

4 ATC [€] 1147 997
ACA [tCO2 ] 21.24 21.2
ACAC [€/tCO2 ] 53.98 47.02

a ATC: Additional Total Costs, ACA: Additional Carbon
Abatement, ACAC: Additional Carbon Abatement Costs

Table E.9: Carbon abatement in the sensitivity analysis compared to the main analysis aggregated over the model
years 2025-2045

Status Quo Smart Tech Smart Market
HH 2025 2030 2035 2040 2025 2030 2035 2040 2025 2030 2035 2040

1 6.75 6.75 6.75 6.75 6.73 6.73 6.73 6.73 6.82 6.82 6.82 6.82
2 5.23 5.23 5.23 5.23 5.49 5.49 5.49 4.10 5.53 5.53 5.53 4.14
3 10.98 10.98 10.98 10.98 11.11 11.11 11.11 11.11 11.18 11.18 11.18 11.18
4 9.26 9.26 9.26 9.26 9.35 9.35 9.35 9.35 9.44 9.44 9.44 9.44

Table E.10: Maximum amount of electricity consumed from the grid in a single hour for each model year and scenario
in the main analysis

Smart Tech Smart Market
HH 2025 2030 2035 2040 2025 2030 2035 2040

1 9.81 9.81 9.81 9.81 9.85 9.85 9.85 9.85
2 5.60 5.60 5.60 8.31 5.66 5.66 5.66 8.34
3 9.60 9.60 9.60 9.60 9.81 9.81 9.81 9.81
4 11.18 11.18 11.18 11.18 11.19 11.19 11.19 11.19

Table E.11: Maximum amount of electricity consumed from the grid in a single hour for each model year and scenario
in the sensitivity analysis
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