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Abstract

Adequately designed prices are essential to achieve efficient coordination between the electricity

network and market participants. However, consumer prices comprise several, possibly distorting

price components. In an analytical model, we examine different regulatory settings, consisting of

alternative spot market pricing schemes and network tariff designs in a dynamic context. While

a setting with zonal pricing and fixed network tariffs achieves the highest welfare, a deviation of

either the pricing scheme or the network tariff design leads to inefficiencies. However, we show that

two inefficiently designed price components can be better than one, especially if network tariffs

correct for the static inefficiency of the pricing scheme. Besides the network tariff design, network

operators must pay attention to the allocation of network costs. It affects spatial price signals

and, therefore, the dynamic allocation of investment decisions. Considering these decisions in a

dynamic framework increases the requirements for the configuration of network tariffs, especially

with volume-based network tariffs.
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1. Introduction

The transition towards a decarbonized energy system requires investments in new electricity con-

sumption technologies, like power-to-gas facilities or electric heating systems. In liberalized electric-

ity systems, investment and operation decisions are private and based on price signals. Therefore,

adequately designed prices are of great importance to efficiently coordinate the network and deci-

sions of supply and demand. Increasingly decentralized investments and rising network costs make

spatial price signals even more relevant. In many electricity systems, however, prices for consumers

do not include spatial signals, and in most cases, they contain several price components that are

not necessarily aligned. While the demand-side has traditionally been perceived as price-inelastic,

with new demand-side technologies entering the system, consumers can participate more actively in

electricity markets. Therefore, misaligned price signals can have an increasingly negative impact on

welfare and the system’s efficiency. The adequacy of price signals depends on the design of several

components, including the spot market pricing scheme and regulatory price components, like net-

work tariffs. In many countries, network tariffs account for a significant part of the consumer price.

In addition to the sum of price components that directly affect the consumers’ decision-making, the

individual price components can interact with each other. These interactions depend on the design

of the individual components.

In this paper, we analyze the interactions of price components by combining different spot market

pricing schemes and network tariff designs. We derive static and dynamic effects within each

regulatory setting and analyze how regulatory changes impact efficiency by ranking the regulatory

settings in terms of overall welfare. The analysis particularly accounts for network tariffs’ economic

efficiency, including their function to recover network costs for the network operator and their ability

to ensure a dynamically consistent allocation of demand investments.

We develop a theoretical two-node model, including a spot market and the network tariff setting of

a transmission system operator (TSO).1 The TSO decides on welfare optimal network tariffs that

must recover the network costs. She anticipates the dynamic effects of price signals and optimizes

1In the following, we refer to the transmission network only. However, due to the stylized representation of network
constraints, this does not necessarily exclude our model’s application in the context of distribution networks.
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network tariffs such that upcoming demand investments are efficiently allocated. Subsequently, the

spot market clearing follows, if necessary, accompanied by congestion management measures. We

apply the model in four different regulatory settings - the combination of two spot market pricing

schemes and two network tariff designs. As pricing schemes, we consider zonal and uniform pricing

because they represent two contrasting approaches to incorporate network constraints in the market

clearing.2 As network tariff designs, we consider fixed and volume-based network tariffs. Economic

theory on efficient pricing suggests fixed network tariffs as they do not distort market price signals

(c.f. Pérez-Arriaga and Smeers, 2003). In contrast, volume-based tariffs increase the per-unit price

for consumers. If consumers react to prices, volume-based network tariffs induce a deadweight loss.

Ramsey-Boiteux prices minimize this deadweight-loss and constitute the least-distorting volume-

based network tariffs (c.f. Wilson, 1993).

The regulatory setting with zonal pricing and fixed network tariffs achieves the highest welfare.

Without reducing the static welfare, the TSO can ensure a dynamically consistent allocation of

demand investments by restricting the feasible cost allocation between the two nodes. In the regu-

latory setting with uniform pricing and fixed network tariffs, the TSO also achieves a dynamically

consistent allocation of demand investments without reducing the static welfare. However, the cost

allocation is further restricted, as the network tariffs are the only possibility for spatial price signals.

Additionally, the introduction of uniform pricing leads to inefficiency from congestion management,

as we assume a cost-based redispatch mechanism of generators. With volume-based network tariffs,

the inefficiency from the congestion management reduces, if the TSO includes a correction term

into the network tariff, which imitates zonal prices. Under both pricing schemes, volume-based

network tariffs induce a deadweight loss as they increase per-unit prices and, therefore, impact the

spot market outcome. In contrast to fixed network tariffs, optimal volume-based network tariffs

can lead to an additional loss in static welfare when considering a dynamically consistent allocation

of demand investments.

2We use the term zonal pricing as a general approach for spatially differentiated prices within one regulated
region. This definition includes all pricing schemes in which the spot market sends locational price signals to the
market participants. The concept of zonal pricing preserves the possibility that several nodes of a network constitute
a zone, while prices may differ between the zones of one region. Within our two-node model, nodal or zonal prices
are equivalent.
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Comparing the four regulatory settings shows that deviating from the regulatory setting of zonal

pricing and fixed network tariffs leads to inefficiencies. Under uniform pricing, additional costs occur

due to congestion management, and the use of volume-based network tariffs results in a deadweight

loss due to price distortion. If there is only one source of inefficiency, welfare increases by adjusting

the respective price component, i.e., changing either to fixed network tariffs or zonal pricing. How-

ever, suppose both sources of inefficiency are present. In that case, i.e., the combination of uniform

pricing and volume-based network tariffs, an adjustment of only one aspect can have unintended

effects on overall welfare. If optimal volume-based network tariffs structurally reduce congestion

management costs, switching to fixed network tariffs does not necessarily increase market efficiency.

This result is important considering that current electricity systems often use a combination of uni-

form pricing and mainly volume-based network tariffs. Hence, we demonstrate the importance of

addressing the interactions between price components when changing the regulatory setting.

This paper contributes to the broader literature on network cost recovery, focusing on the inter-

actions with different spot market pricing schemes in a dynamic context. Electricity networks

constitute a natural monopoly and typically face large, fixed network costs. Thus, competitive

pricing at short-run marginal costs does not generate enough revenue to cover total costs (c.f.

Pérez-Arriaga et al., 1995; Joskow, 2007). Therefore, cost recovery is necessary independently of

the spot market pricing scheme and requires an appropriate network tariff design (c.f. Brunekreeft

et al., 2005). Borenstein (2016) comprehensively discusses the aspect of fixed cost recovery in nat-

ural monopolies and the economic principles of tariff setting in electricity markets. Furthermore,

Batlle et al. (2020) and Schittekatte (2020) conceptually discuss options for residual cost alloca-

tion, with a special focus on residential consumers and distributional effects of network tariffs. This

strand of literature is expanded by empirical studies on the distributional effects, e.g., by Burger

et al. (2020) and Ansarin et al. (2020), as well as numerical simulation models, that analyze the

effects of different network tariffs on different consumer groups, e.g., Fridgen et al. (2018) and

Richstein and Hosseinioun (2020).

In a dynamic context, the demand-side has received relatively little attention so far, as consumers’

investment decisions have long been considered not being influenced by electricity price signals.
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In their recent work on prosumers, Schittekatte et al. (2018) and Schittekatte and Meeus (2020)

analyze the effect of network tariffs on consumers’ investment incentives and the installation of

residential PV. Gautier et al. (2020) contribute to the discussion on investment incentives by taking

the presence of heterogeneous prosumers into account and Castro and Callaway (2020) simulate the

impact of different network tariffs on demand’s investment decisions in a numerical model. Though,

these analyses do not consider the spatial dimension and locational choices. While Ambrosius et al.

(2018) do analyze spatial demand investments under different spot market pricing schemes, they

do not consider multiple network tariff designs. In comparison, the literature acknowledging the

spatial dimension and the impact of network tariffs on location-based price signals is currently

limited to the supply side. Tangerås and Wolak (2019) analytically show how locational marginal

network tariffs can be designed to incentivize efficient supply-side investments. Bertsch et al. (2016)

analyze different pricing schemes in a dynamic numerical framework. They consider the interactions

of network tariffs (specifically a g-component) and the pricing scheme. Similarly, Grimm et al.

(2019) apply regionally differentiated network tariffs under different pricing schemes for the German

electricity market. Ruderer and Zöttl (2018) account for the interaction of congestion management

methods and network tariffs by examining the impact of volume- and capacity-based network tariffs

on generators’ investment decision in an analytical model. The importance of efficient cost recovery

mechanisms is also highlighted by Chao and Wilson (2020). In a numerical model they find volume-

based Ramsey-Boiteux tariffs to be close to the social optimum.

To the best of our knowledge, the paper at hand is the first, which explicitly considers different

network tariff designs and pricing schemes in a consistent dynamic framework to analyze the effect

on spatial demand-side decisions. Although each of these topics has been studied extensively from

an isolated perspective, integrated approaches are relatively scarce. Borenstein and Bushnell (2018)

empirically analyze the interaction of network tariffs and the pricing of externalities in the US. The

authors show that if prices are affected by more than one distortion, the effects can level each

other out. We contribute to the discussion by developing an analytical framework in which we

provide insights into the interaction of the two price components, their potential inefficiencies and

the requirements for a dynamically consistent allocation of demand-side investments.
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The remainder of this paper is structured as follows: Section 2 introduces our model set-up, and

section 3 analyzes the optimal network tariffs under different pricing schemes in a dynamic context.

Section 4 examines the effects of the regulatory settings on overall welfare. Section 5 discusses

political implications and summarizes concluding remarks.

2. The model framework

This section introduces the basic model setup to analyze different pricing schemes and network tariff

designs in the presence of a congested transmission network. We consider a two-node model with

two nodes called north and south denoted by i ∈ {n, s} with respective generation technologies with

constant marginal costs ci. Further, we assume that the generation technology in the north is strictly

cheaper, i.e., cn < cs. Both technologies have an unrestricted generation capacity. Further, we

assume perfect competition in both nodes. Thus producer surplus is equal to zero in all regulatory

settings. The aggregated market demand in each node is denoted by Di(pi), which is decreasing in

price, i.e., ∂Di(pi)/∂pi < 0 ∀ i. We assume a positive number of ωi identical consumers in each node.

The total number of consumers is therefore given by Ω = ωn + ωs.

Electricity generation qi in both nodes needs to cover total demand, i.e.,
∑

i qi =
∑

iDi(pi). Further,

the two nodes are connected by a transmission line, with power flows l and a limited capacity of

L, illustrated in figure 1. We focus on congested networks and hence demand exceeds the limited

transmission line capacity, i.e., L ≤ Di(pi) ∀ i. Since we assume that generation costs are lower

in the north, electricity flows from north to south. The transmission system operator (TSO) is

responsible for the physical feasibility of the market outcome, which, if necessary, also comprises

congestion management.

In our analysis, we consider two pricing schemes - zonal and uniform pricing that differ regarding

their congestion management. Under zonal pricing, the spot market clearing simultaneously consid-

ers network restrictions, while under uniform pricing, ex-post congestion management of the TSO

is necessary. After the spot market clearing, the TSO performs a redispatch of supplied quantities

qi until the transmission constraint L is fulfilled.
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S

Network: Capacity L and fixed costs F

Demand: Dn(pn) with ∂Dn(pn)/∂pn < 0
Supply: qn with marginal costs cn < cs

Demand: Ds(ps) with ∂Ds(ps)/∂ps < 0
Supply: qs with marginal costs cs > cn

Figure 1: The two-node model.

We assume a redispatch mechanism with incomplete participation. That means, the TSO considers

only producers for redispatch, while the demand-side is excluded.3 This reflects the common prac-

tice in many electricity systems and is, in particular, due to the complexity of remunerating the

demand for a redispatch measure. With a cost-based redispatch, the TSO compensates generators

outside the spot market based on their marginal costs.4

Additionally, the operation of the transmission network is associated with fixed costs of F ∈ ]0,∞[.

We assume that the fixed costs are smaller than the consumer surplus given the generation costs

in each node, i.e., F ≤
∫∞
ci
Di(z)dz ∀ i. This assumption ensures the participation constraint of

consumers in all settings. Fixed network costs cannot be attributed to individual network users.

Therefore, the principle of cost causality cannot be applied to recover these costs. The TSO’s total

network costs CTSO contain the fixed costs F as well as potential congestion rents. Depending

on the pricing scheme, congestion rents can be either positive or negative. We introduce the

TSO as a benevolent agent who recovers her costs by charging network tariffs. We consider two

different network tariff designs: a volume-based tariff τ := (τn, τs), and a fixed network tariff

f := (fn, fs). Volume-based network tariffs can be interpreted as an additional demand tax that

directly influences the demand decision on the spot market. Fixed network tariffs can be interpreted

as an access charge for being connected to the network. These tariffs constitute two extreme cases

3Noteworthy, under the assumption of full participation, uniform pricing with redispatch achieves the welfare
optimal result (Bjorndal et al., 2013).

4Other congestion management methods are comprehensively discussed in DeVries and Hakvoort (2002), Holmberg
and Lazarczyk (2015) and Weibelzahl (2017).
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for network cost recovery. We do not apply general non-linear tariffs, e.g., multi-part tariffs. In

both cases, we assume that only consumers pay network tariffs, as is the case in many electricity

systems in practice. The TSO can differentiate between consumers in the north and south but

cannot distinguish between consumers within one node. Consequently, network tariffs can vary

between the two nodes, but not between consumers within a node.

For the network tariff setting, the TSO wants to ensure a dynamically consistent allocation of de-

mand investments. By definition, new consumers choose the location of their investment depending

on the prices in each node. We define a pricing schedule P Ii that includes two price components: the

payments at the spot market for each unit demanded and the network tariff payments. The pricing

schedule is given by P Ii = piD + fi, where D is a fixed additional demand for new consumers.5 If

volume-based network tariffs are applied, the per unit price pi also includes the network tariff τi.

The TSO aims at achieving a dynamically consistent allocation of demand investments. From a

welfare perspective, dynamic consistency is achieved if the new demand investments are in line with

the welfare-maximizing result in future periods. As we consider a congested network with lower

generation costs in the north, consumers should place new demand investments into the north. The

demand invests in the north, if and only if, the pricing schedule is lower in the north compared to

the south, i.e., iff P In ≤ P Is , which is:

pn(c, τ ) ·D + fn ≤ ps(c, τ ) ·D + fs (1)

The TSO anticipates the rationale of the demand’s investment decision and, therefore, accounts for

the pricing schedule (1) when setting the network tariffs. The structure of this constraint holds in

each setting and only the spot market price and the network tariff may change depending on the

regulatory setting.6

5By assuming a price-inelastic demand, we ignore quantity effects, which additionally restrict the optimal solution,
but do not change our main results.

6We simplify the investment decision by only considering the costs in both nodes and add the investment decision
to the pricing problem of the TSO. If the investment decision is modeled endogenously in a sequential setting, i.e.,
by maximizing the consumer surplus of the invested demand, the rationale slightly differs between the settings, but
our main results do not change.
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3. The interactions of network tariffs and pricing schemes considering dynamic con-
sistency

We analyze the interactions between the different combinations of pricing schemes and network

tariff designs and their effect on a dynamically consistent allocation of demand investments. The

model set-up consists of two steps.

At first, the benevolent TSO introduces a vector of network tariffs for the current time period

that can either be fixed (f) or volume-based (τ ). The TSO has perfect foresight and anticipates

the impact of network tariffs on the spot market outcome and possible network congestion while

ensuring the dynamic consistency of the pricing schedule.7

Second, the spot market clearing takes place, which depends on the pricing schemes. Under zonal

pricing, the spot market clears with a cost-minimal dispatch considering the transmission constraint.

The solution is equal to the optimal dispatch of a social planner, as we show in Appendix A.

Production is equal to q∗n = Dn(pn) +L and q∗s = Ds(ps)−L. Prices differ among nodes and reflect

marginal costs of generation, with p∗n = cn and p∗s = cs. The spot market clearing under zonal

pricing yields a positive congestion rent (cs− cn)L. The TSO anticipates this rent and offsets fixed

costs F with it. Under uniform pricing, both nodes belong to the same bidding zone. In contrast to

zonal pricing, both nodes trade irrespective of network constraints. Consequently, the generation

in the north is dispatched to fully cover the demand in both nodes at marginal costs of cn. The

resulting spot market prices are p∗n = p∗s = cn.8 The spot market clearing requires a production

of qn = Dn(cn) + Ds(cn), which is technically not feasible as it requires the producer at node

n to export more than L. The TSO is responsible for ensuring the system’s physical feasibility

by conducting congestion management measures. To do so, the TSO performs a redispatch of

suppliers. The TSO instructs the producer at node n to reduce generation to qn = Dn(cn) +L and

instructs the producer at node s to increase generation to qs = Ds(cn)−L. The TSO compensates

the producers outside the spot market for redispatching their generation. This leads to additional

7The assumption regarding the TSO’s benevolence is critical for the formulation of the optimization problem.
Otherwise, the TSO would only consider her budget and neglect the impact on consumer surplus or dynamic consis-
tency.

8With volume-based network tariffs, the per-unit price in each node also includes τn and τs, respectively, and
hence, in sum pi may differ between both nodes. However, the spot market price component is the same, regardless
of the network tariff design.
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costs of (cs − cn)(Ds(p
∗
s)− L). In the following, we use these spot market results to determine the

optimal network tariffs.

3.1. Fixed network tariffs under zonal pricing

The TSO maximizes welfare by setting the fixed network tariffs under zonal pricing (2a). The

optimization is subject to the budget constraint (2b) to ensure full network cost recovery. Due

to the positive congestion rent under zonal pricing, the TSO has to recover the following costs

CTSOZP,f = F − (cs− cn)L. Further, the TSO anticipates the impact of network tariffs on the dynamic

allocation of demand investments. Therefore, the optimization is additionally restricted by (2c).

max
f

WZP,f (p∗,f) =

∫ ∞
p∗n=cn

Dn(z) dz +

∫ ∞
p∗s=cs

Ds(z) dz − F + (cs − cn)L (2a)

s.t.
∑
i

ωifi − F + (cs − cn)L = 0 (2b)

cnD + fn ≤ csD + fs (2c)

The fixed network tariffs do not impact the welfare function and the TSO only has to ensure, that

the constraints (2b) and (2c) hold. See Appendix B for a proof and the derivation of possible

solutions for the optimization problem (2a-2c). As consumers are homogeneous and fixed costs

do not exceed consumer surplus in each node, fixed network tariffs cannot exceed the individual

consumer surplus. Hence, the participation constraint holds for each consumer. Thereby, fixed

network tariffs do not change the cost-minimal dispatch of supply and demand and thus, do not

distort welfare. This is a well-known result from the literature on fixed cost recovery in network

industries (e.g. Wilson, 1993; Joskow, 2007; Borenstein, 2016). Within the boundaries of constraints

(2b) and (2c), the TSO can allocate the costs freely among the nodes.9 Allocating network costs

equally among consumers in all nodes would be a practical solution that ensures a dynamically

consistent allocation of demand investments. In practice, this approach is often called horizontal

cost allocation. Such a simple allocation rule would ensure that network tariffs do not distort spatial

price signal from the spot market while fully recovering the fixed network costs.

9We ignore income and distribution effects in our model. Considering these effects may change the socially
desirable cost allocation, e.g. if additional restrictions are included in the optimization problem. See for example
Batlle et al. (2020) for a discussion on this topic and a proposed alternative to fixed network tariffs.
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3.2. Fixed network tariffs under uniform pricing

Under uniform pricing, the optimization problem of the TSO changes to (3a-3c). First, the spot

market prices differ from zonal pricing, and second, the budget constraint of the TSO (3b) changes.

Since redispatch comes with additional costs for the TSO, she has to recover total costs of CTSOUP,f =

F + (cs − cn)(Ds(p
∗
s) − L). Again, the TSO ensures the dynamic consistency for the allocation of

future demand investments (3c). As the per-unit spot price is equal in both nodes, the additional

demand quantity D cancels out.

max
f

WUP,f (p∗,f) =

∫ ∞
p∗n=cn

Dn(z) dz +

∫ ∞
p∗s=cn

Ds(z) dz − F −
[
(cs − cn)(Ds(p

∗
s)− L)

]
(3a)

s.t.
∑
i

ωifi − F −
[
(cs − cn)(Ds(p

∗
s)− L)

]
= 0 (3b)

fn ≤ fs (3c)

Proposition 1. With fixed network tariffs and homogeneous consumers, the TSO can ensure dy-
namic consistency without impacting static welfare by restricting the feasible cost allocation between
the two nodes. Under uniform pricing, the cost allocation between the nodes is further restricted
compared to zonal pricing.

Again, the fixed network tariffs do not affect welfare and the TSO only has to ensure that the con-

straints (3b) and (3c) are met.10 However, under uniform pricing, the solution to the optimization

problem is more constrained by the dynamic consistency condition compared to the setting under

zonal pricing. The boundary on network tariffs changes from cnD + f∗n ≤ csD + f∗s under zonal

pricing to f∗n ≤ f∗s under uniform pricing. Thus, to ensure a dynamically consistent allocation,

the TSO has to choose network tariffs that compensate for the spot market’s missing spatial price

signals under uniform pricing.

3.3. Volume-based network tariffs under zonal pricing

As in section 3.1, spot market prices differ between the nodes and reflect the respective marginal

costs. However, unlike fixed network tariffs, volume-based network tariffs constitute a levy on

consumption and directly influence the demand decision at the spot market. The total price,

10It is straightforward to see that the solution of this optimization resembles to the solution of the previous chapter,
which is depicted in Appendix B.
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that consumers pay per unit, is the marginal costs of generation ci plus the network tariff τi, i.e.

pi = ci + τi. The demand-side reduces demanded quantities accordingly.

The TSO maximizes welfare by choosing the optimal vector of volume-based network tariffs (4a-

4c). The optimization is subject to the TSO’s break-even constraint (4b).11 The TSO accounts

for the positive congestion rent from zonal pricing, and consequently, recovers costs of CTSOZP,τ =

F − (cs − cn)L. Additionally, the optimization is restricted by the dynamic consistency constraint

(4c). With volume-based network tariffs, the constraint is independent of the fixed additional

demand of new consumers (D) and only depends on the per unit price pi(ci, τi).

max
τ

WZP,τ (p∗(τ )) =

∫ ∞
p∗n=cn+τn

Dn(z) dz +

∫ ∞
p∗s=cs+τs

Ds(z) dz +
∑
i

τiDi(p
∗
i )− F + (cs − cn)L

(4a)

s.t.
∑
i

τiDi(p
∗
i )− F + (cs − cn)L = 0 −→ λ (4b)

cn + τn ≤ cs + τs −→ µ (4c)

Proposition 2. If the dynamic consistency constraint is binding, the network tariffs deviate from
the optimal static volume-based network tariffs. In this case and under the assumption of constant
marginal costs, a dynamically consistent allocation of demand investments lowers static welfare
since consumer surplus in the north increases less than consumer surplus in the south decreases.

To solve the TSO’s optimization problem we derive the first-order condition of the Lagrangian

∂L/∂τi. Rearranging for τ∗n and τ∗s yields

τ∗n =
λ

1 + λ
· Dn(cn + τ∗n)

−∂Dn(cn+τ∗n)/∂τ∗n
− µ

1 + λ
· 1

−∂Dn(cn+τ∗n)/∂τ∗n
(5)

and

τ∗s =
λ

1 + λ
· Ds(cs + τ∗s )

−∂Ds(cs+τ∗s )/∂τ∗s
+

µ

1 + λ
· 1

−∂Ds(cs+τ∗s )/∂τ∗s
(6)

11Note that the TSO is unbundled. Unlike the case of a classical, vertically integrated natural monopoly, the
TSO does not increase the spot market price to recover her fixed cost but introduces a separate network tariff. The
difference is that network tariffs are a payment from consumers to the TSO. Therefore, the congestion rent (cs−cn)L
and producer profits are not affected by the network tariffs and remain constant.

12



We distinguish between two cases:12 First, assume that the constraint for dynamic consistency (4c)

is non-binding and µ = 0. Then, the optimal network tariff in both nodes is equal to:

τ∗i =
λ

λ+ 1
· Di(ci + τ∗i )

−∂Di(ci+τ∗i )/∂τ∗i
(7)

In this case, the optimal network tariff (7) can be interpreted as a modified version of the Ramsey-

Boiteux inverse elasticity rule (see Appendix C.1). A high variation in demand in response to a

variation in price leads to lower network tariffs. To solve for the optimal network tariffs, we define

the quasi-elasticity ρi, insert it into (7) and equate for both nodes. We obtain the following relation:

τ∗n
τ∗s

=
ρs(τ

∗
s )

ρn(τ∗n)
with ρi(τ

∗
i ) = −

∂Di(ci+τ
∗
i )/∂τi

Di(ci + τ∗i )
(8)

The relationship between the network tariffs in the two nodes corresponds to the relationship

between the quasi-elasticities. By using the relationship from (8) and the budget constraint of the

TSO (4b), we solve for the optimal network tariff in the south:

τ∗s =
F − (cs − cn)L

ρs(τ∗s )
ρn(τ∗n)Dn(cn + τ∗n) +Ds(cs + τ∗s )

(9)

The result can be derived analogously for τ∗n. Similar to the Ramsey-Boiteux inverse elasticity rule,

we see that when the ratio of the quasi-elasticities between the south and the north decreases, i.e.,

when the price sensitivity of the north increases compared to the south, demand in the south covers a

higher share of the residual network costs and vice versa. In this case, the condition for dynamically

consistent allocation is already met without any further adjustments to the network tariffs. The

optimal static volume-based network tariffs thus provide dynamic consistency by themselves.

Second, assume that (4c) is binding and µ > 0. This is the case if the optimal static network tariffs

reverse the ratio of price schedules between the two nodes so that the north would become more

expensive than the south. This depends on the ratio of the demand functions, particularly the

quasi-elasticities, in the two nodes (see (8)). We denote the resulting network tariffs with τ̂i.13 As

µ > 0 it follows from (5) and (6) that τ̂i deviate from τ∗i . In the north, the optimal volume-based

12There exists a third case where µ = 0 and the constraint is binding. This case leads to the same solution as our
first case.

13In Appendix C.2, we solve for the optimal network tariffs for the case that the constraint is binding and derive
at what point the constraint restricts the optimal static network tariffs for dynamic consistency.
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network tariff decreases due to the latter part of (5), i.e. τ̂n < τ∗n. The opposite effect occurs in

the south. From (6) it follows that τ̂s > τ∗s . By setting τ̂ instead of τ∗ the TSO deviates from the

optimal static (unconstrained) volume-based network tariffs.

Consequently, this creates a deadweight loss in the current period to benefit the dynamically con-

sistent allocation of future demand investments. While network tariffs rise in the south and, thus,

lower consumer surplus there, network tariffs in the north decrease and increase consumer surplus.

However, the increase in consumer surplus in the north does not compensate for the decrease in

the south. The adjustments are not equal because of the ratio of the two demand functions, which

would lead to higher (lower) network tariffs in the north (south) without the constraint for a dy-

namically consistent allocation of demand investments. For example, consider a situation where the

demand function of the north is almost perfectly inelastic, and there is very price-sensitive demand

in the south. Without the requirement for dynamic consistency, consumers in the north would bear

most of the fixed network costs, while network tariffs in the south would be low. If the difference in

network tariffs exceeds the difference in marginal generation costs, dynamic consistency is violated.

In order to ensure dynamic consistency, the TSO reduces the network tariffs in the north. However,

due to the inelastic demand in the north, consumer surplus increases only slightly. Conversely,

increasing network tariffs in the south lead to a significant loss of consumer surplus.

3.4. Volume-based network tariffs under uniform pricing

In a regulatory setting with uniform pricing, the spot market clearing results in pi = cn + τi. Total

prices pi may differ between the two nodes depending on the network tariffs τi.

The TSO maximizes welfare, anticipating the spot market result, her own budget and the dynamic

consistency constraint (10a-10c). Due to uniform pricing, the spot market result is physically

infeasible, and the TSO is obligated to redispatch generators. From this, the TSO bears additional

costs that sum up to CTSOUP,τ = F + (cs − cn)(Ds(cn + τ∗s )− L). In contrast to the other regulatory
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settings, the TSO’s network costs depend on the network tariffs, because volume-based network

tariffs impact the quantities demanded and they, in turn, impact redispatch costs.

max
τ

WUP,τ (p∗(τ )) =

∫ ∞
p∗n=cn+τn

Dn(z) dz +

∫ ∞
p∗s=cn+τs

Ds(z) dz

+
∑
i

τiDi(p
∗
i )− F − (cs − cn)(Ds(p

∗
s)− L)

(10a)

s.t.
∑
i

τiDi(p
∗
i )− F − (cs − cn)(Ds(p

∗
s)− L) = 0 −→ λ (10b)

τ∗n ≤ τ∗s −→ µ (10c)

The first-order conditions of the Lagrangian ∂L/∂τi are no longer identical between north and south.

The optimal network tariff in the north has the same structure as under zonal pricing, shown in

(5). For the south, the optimal network tariff slightly changes to:

τ∗s =
λ

1 + λ
· Ds(cs + τ∗s )

−∂Ds(cs+τ∗s )
∂τ∗s

+
µ

1 + λ
· 1

−∂Ds(cs+τ∗s )
∂τ∗s

− cn + cs (11)

Compared to the structure derived under zonal pricing (6), the network tariff in the south consists

of an additional component, which functions as a correction-term for redispatch. Under uniform

pricing, the optimal volume-based network tariffs mimic zonal prices and partially correct for the

inefficiency of the pricing scheme. Plugging equation (11) into the demand function of the south

Ds(cn + τ∗s ) yields a similar result as under zonal pricing, i.e. Ds(cs + τs). However, the result is

not equivalent to the setting under zonal pricing, as the values of the network tariffs τi differ.

Under uniform pricing, the ratio between the network tariffs not only depends on the ratio of the

quasi-elasticities but also on the generation costs in the respective nodes. We derive the optimal

network tariffs in Appendix C.3 and show the relationship in detail. Like in the setting under

zonal pricing, the TSO might adjust the optimal static network tariffs if the dynamic consistency

constraint is binding. The rationale is the same as under zonal pricing: Deviating from the optimal

static (unconstrained) volume-based network tariffs creates a deadweight loss in the current period

to the benefit of the dynamically consistent allocation of future demand investments. However,

under uniform pricing, missing dynamic consistency is even more severe, as network tariffs are the

only possibility of creating spatial price signals. Investments in the south would amplify the system
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costs by increasing redispatch and additionally increase the burden from network cost recovery for

the consumers in the north.

4. Welfare implications of the different regulatory settings

In this chapter, we compare the four combinations of network tariffs and pricing schemes in terms

of their static welfare. This way, we can show how different regulatory price components affect

static efficiency and interact with each other. Based on the results of section 3, we further discuss

the results for the static welfare in the context of a dynamically consistent allocation of demand

investments. From sections 3.1- 3.4, we derive the optimal static welfare for each regulatory setting:

Fixed network tariffs and zonal pricing:

W ∗ZP,f =

∫ ∞
cn

Dn(z) dz +

∫ ∞
cs

Ds(z) dz − F + (cs − cn)L, (12)

Fixed network tariffs and uniform pricing:

W ∗UP,f =

∫ ∞
cn

Dn(z) dz +

∫ ∞
cn

Ds(z) dz − F −
[
(cs − cn)(Ds(cn)− L)

]
(13)

Volume-based network tariffs and zonal pricing:

W ∗ZP,τ =

∫ ∞
cn+τZP∗

n

Dn(z) dz +

∫ ∞
cs+τZP∗

s

Ds(z) dz (14)

Volume-based network tariffs and uniform pricing:

W ∗UP,τ =

∫ ∞
cn+τUP∗

n

Dn(z) dz +

∫ ∞
cn+τUP∗

s

Ds(z) dz. (15)

With volume-based network tariffs, the TSO’s costs are indirectly displayed in the lower bounds of

the integrals as per definition they are refinanced by the sum over all τi-payments. Note that the

volume-based network tariffs are not identical under the two pricing schemes.

First, we analyze the isolated effects of changing either the pricing scheme or the network tariff

design. Comparing zonal and uniform pricing with the same network tariff design, we show the
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inherent inefficiency that results from the incomplete redispatch scheme under uniform pricing.

With fixed network tariffs, the difference in welfare under zonal and uniform pricing is equal to:

∆W ∗ZP,f−UP,f = (12)− (13)

= (cs − cn)Ds(cn)−
∫ cs

cn

Ds(z) dz

=

∫ cs

cn

Ds(cn)−Ds(z) dz > 0 =⇒ WZP,f > WUP,f

(16)

The result is always greater than zero as demand decreases in price. It is straightforward to show

that the same relation holds with volume-based network tariffs, i.e. WZP,τ > WUP,τ . Thus, regard-

less of the network tariff design, zonal pricing is welfare-superior to uniform pricing. Consumption

at the spot market is higher under uniform pricing, as market-participants neglect transmission

capacities. The TSO corrects the spot market result ex-post. Due to restricted participation of

the supply-side, redispatch induces additional costs. The resulting welfare loss is depicted in the

shaded triangle in the south in figure 2.

pn = cn

D∗n

D

p

pZPs = cs

pUPs = cn

L DZP
s DUP

s

D

p

Figure 2: Additional costs from redispatch under uniform pricing compared to zonal pricing; both with fixed
network tariffs.
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Comparing welfare under zonal pricing with either fixed or volume-based network tariffs, we derive

the inefficiency of volume-based network tariffs. Under zonal pricing, the difference in welfare with

fixed and volume-based network tariffs yields:

∆W ∗ZP,f−ZP,τ = (12)− (14)

=

∫ cn+τZP∗
n

cn

Dn(z) dz +

∫ cs+τZP∗
s

cs

Ds(z) dz − F + (cs − cn)L

=

∫ cn+τZP∗
n

cn

Dn(z) dz +

∫ cs+τZP∗
s

cs

Ds(z) dz −
∑
i

τZP∗i Di(ci + τZP∗i )

=

∫ cn+τZP∗
n

cn

Dn(z)−Dn(cn + τZP∗n ) dz +

∫ cs+τZP∗
s

cs

Ds(z)−Ds(cs + τZP∗s ) dz

>0 =⇒ WZP,f > WZP,τ

(17)

Since z < ci + τi and demand decreases in price, the welfare difference must always be positive.

According to economic theory, fixed network tariffs are welfare-neutral from a static perspective,

whereas volume-based network tariffs cause a deadweight-loss. Figure 3 depicts the deadweight loss

in the static setting, which is in both nodes depicted in shaded triangles.

cn

cn + τ∗n

D′n←−D∗n

D

p

cs

cs + τ∗s

D∗sD′s�

D

p

Figure 3: Deadweight loss associated with volume-based network tariffs under zonal pricing.

One could now assume that when applying uniform pricing, the relationship between the network

tariffs is identical with the one under zonal pricing, or the inefficient pricing scheme even increases

the inefficiency of the network tariff design. However, when both sources of inefficiency are present,
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it is not so clear-cut, as the following comparison between uniform pricing with fixed tariffs and

volume-based network tariffs shows:

∆W ∗UP,f−UP,τ =(13)− (15)

=

∫ cn+τUP∗
n

cn

Dn(z) dz +

∫ cn+τUP∗
s

cn

Ds(z) dz − F − (cs − cn)(Ds(cn)− L)

=

∫ cn+τUP∗
n

cn

Dn(z) dz +

∫ cn+τUP∗
s

cn

Ds(z) dz −
∑
i

τUP∗i Di(cn + τUP∗i )

− (cs − cn)(Ds(cn)−Ds(cn + τUP∗i ))

=

∫ cn+τUP∗
n

cn

Dn(z)−Dn(cn + τUP∗n ) dz +

∫ cn+τUP∗
s

cn

Ds(z)−Ds(cn + τUP∗s ) dz

− (cs − cn)(Ds(cn)−Ds(cn + τUP∗s ))

(18)

The result can be either positive or negative, meaning that the welfare effect is ambiguous. On the

one hand, fixed network tariffs do not impact the spot market result, while volume-based network

tariffs induce a deadweight loss. On the other hand, equation (18) shows that the redispatch costs

differ between the two network tariff designs. Since the quantity demanded in the south is lower

with volume-based network tariffs, the market outcome requires less redispatch than the setting

with fixed network tariffs. However, this is not only due to the general demand reduction associated

with the higher prices in both nodes. As shown in equation (11), the optimal volume-based network

tariff in the south includes a correction term that accounts for the difference in marginal generation

costs between both nodes and, therefore, structurally reduces demand in the south. If the welfare-

enhancing effect of reducing redispatch costs exceeds the deadweight loss, volume-based network

tariffs can increase overall welfare. Whether this is the case depends on the particular demand

functions.

Proposition 3. If multiple market inefficiencies are present through the pricing scheme and net-
work tariff design, it may not be sufficient to offset only one distortion. Uniform pricing with
volume-based network tariffs can outperform a regulatory setting of uniform pricing and fixed net-
work tariffs if the redispatch costs outweigh the deadweight loss of volume-based tariffs. Vice versa,
the higher the fixed costs of the network, the more likely it is that regulation with fixed network
tariffs is welfare superior.
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We analyze the interactions if both the network tariff design and the pricing scheme are varied

between the two settings. To do so, we compare the welfare under uniform pricing and fixed

network tariffs with the welfare under zonal pricing and volume-based network tariffs:

∆W ∗UP,f−ZP,τ = (13)− (14)

=

∫ cn+τZP∗
n

cn

Dn(z) dz +

∫ cs+τZP∗
s

cn

Ds(z) dz − F − (cs − cn)(Ds(cn)− L)

=

∫ cn+τZP∗
n

cn

Dn(z)−Dn(cn + τZP∗n ) dz +

∫ cs+τZP∗
s

cn

Ds(z)−Ds(cs + τZP∗s ) dz

− (cs − cn)Ds(cn)

(19)

The result can also be either positive or negative. In this case, the overall effect on welfare depends

on whether the deadweight loss from volume-based tariffs, i.e., the inefficiency of the welfare inferior

network tariff design, or the redispatch costs under uniform pricing, i.e., the inefficiency of the

welfare inferior pricing scheme, predominates.

If the redispatch costs are high enough, they can exceed the deadweight loss from volume-based

network tariffs, making zonal pricing with volume-based network tariffs welfare superior. Hence,

the higher the inefficiency of redispatch is, the more important the pricing scheme is to manage

congestion. Vice versa, if fixed network costs rise, it becomes more likely that the fixed network

tariffs become welfare superior as the inefficiency of volume-based network tariffs outweighs the

redispatch costs in W ∗UP,f . Using (19), we can show that with rising F , the welfare difference

between the two network tariff designs increases, i.e. ∂∆W ∗
UP,f−ZP,τ/∂F > 0. From equation (9), we

can derive that with increasing fixed network costs F , the network tariffs in both nodes increase,

too, i.e., ∂τZP∗
i /∂F > 0 ∀i. It is straightforward to show that ∂∆W ∗

UP,f−ZP,τ/∂τZP∗
i > 0. Therefore,

with volume-based network tariffs, the deadweight loss increases as fixed network costs rise. Thus,

from a welfare perspective, the higher the fixed network costs F rise, the more advantageous the

application of fixed network tariffs becomes.

For the sake of completeness, the difference between W ∗ZP,f and W ∗UP,τ can be derived from the

results above: W ∗UP,τ < W ∗ZP,τ < W ∗ZP,f and thus, ∆W ∗ZP,f−UP,τ > 0 . Figure 4 summarizes the

findings.
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W ↑

W ∗UP,τ W ∗ZP,τ W ∗ZP,f

W ∗UP,f

Figure 4: Welfare comparison of the different regulatory settings.

Ranking the regulatory settings in terms of static welfare demonstrates the importance of addressing

the interactions between price components. Contrary to the first intuition, there is no clear order

regarding the four analyzed settings. Our analysis finds that the distortions of one regulatory

element can either amplify or compensate for the distortions of another element. If either the pricing

scheme or the network tariff design leads to inefficiencies, it is best addressed by restructuring the

respective price component. However, suppose both sources of inefficiency are present. In that

case, i.e., the combination of uniform pricing and volume-based network tariffs, an adjustment of

only one aspect can have unintended, welfare-adverse effects. As optimal volume-based network

tariffs structurally reduce redispatch costs, it is impossible to ensure that switching to fixed network

tariffs increases market efficiency. Due to this compensation effect, the two inefficiencies can perform

better than a regulatory setting with only one inefficiency in place. This compensation effect is

particularly relevant for the static welfare, the higher the costs for redispatch are.

As section 3 shows, the static welfare of the four regulatory settings interacts with the requirements

for dynamic consistency. The interaction can be divided into two main effects. The first interaction

occurs in regulatory settings with volume-based tariffs. The TSO reduces static welfare in the reg-

ulatory settings with volume-based network tariffs if it is necessary to adjust the optimal (static)

network tariffs to ensure dynamic consistency. Under zonal pricing, this adjustment only increases

the deadweight loss. Under uniform pricing, this adjustment additionally increases the compensa-

tion effect. The redispatch costs decrease as the volume-based network tariffs in the south increase

to ensure dynamic consistency. This effect partially makes up for the increase in deadweight loss.

However, the overall static welfare still decreases due to the adjustment of the volume-based network

tariffs. In contrast, the TSO can adjust fixed network tariffs without impacting the static welfare

to ensure dynamic consistency. Hence, the welfare-ranking of the regulatory settings changes if the
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TSO must adjust the volume-based network tariffs to ensure dynamic consistency. It becomes more

likely that the regulatory setting with fixed network tariffs and uniform pricing is welfare superior

to the regulatory settings with volume-based network tariffs. Second, the importance of dynami-

cally consistent network tariffs increases with the difference in generation costs, regardless of the

network tariff design. Under zonal pricing, misaligned demand-side investments, i.e., investments

in the south, would lead to higher generation costs in the future and, therefore, lower consumer

surplus. Under uniform pricing, costs for redispatch would increase. To prevent congestion from

being further exacerbated in the future, investment decisions should be made dynamically consis-

tent. Thus, there is a bi-directional relationship between dynamic consistency of network tariffs

and static welfare that policymakers should account for when changing the regulatory setting.

5. Conclusion

The transformation of the energy system from mainly inelastic consumers towards active market

participants challenges the principles of network tariff design. If appropriately designed, network

tariffs can serve as a coordination mechanism between the network operator and market partici-

pants. Otherwise, network tariffs can distort efficient price signals.

In an analytical model, we examine different regulatory settings, consisting of alternative spot mar-

ket pricing schemes and network tariff designs, while considering a dynamically consistent allocation

of demand investments. In our analysis, we assess the interactions of spot market pricing schemes

and network tariff designs. The regulatory setting with zonal pricing and fixed network tariffs yields

the highest welfare. A deviation of either the pricing scheme or the network tariff design leads to

inefficiency. While under uniform pricing, additional costs occur due to redispatch, the application

of volume-based network tariffs leads to a deadweight loss at the spot market. If both sources of

inefficiency are present, i.e., the combination of uniform pricing and volume-based network tariffs,

an adjustment of one single aspect can have unintended effects on overall welfare. As optimal

volume-based network tariffs structurally reduce redispatch costs, it is not possible to ensure that

market efficiency increases by switching to fixed network tariffs. Besides the network tariff design,

network operators must pay additional attention to the allocation of network costs. It affects spa-

tial price signals and, therefore, the dynamic allocation of demand investments. The restrictions on
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cost allocation are tighter under uniform pricing, as network tariffs are the only spatial price signal.

However, under both pricing schemes, the TSO can ensure a dynamically consistent allocation of

demand investments with fixed network tariffs without adversely affecting welfare. In contrast,

with volume-based tariffs, the case may arise where the TSO must trade off between static welfare

and dynamic consistency. The TSO can adjust the volume-based network tariffs deviating from the

optimal static network tariffs to ensure dynamic consistency. By doing so, the TSO reduces static

welfare in benefit of a dynamically consistent allocation of demand investments.

In current political debates, pricing schemes and network tariffs are often discussed separately. Our

results highlight the relevance of jointly assessing network tariffs and pricing schemes for policy-

makers and regulating authorities. Our results are important, considering that today’s electricity

systems often use a combination of uniform pricing and mainly volume-based network tariffs. In

such a regulatory setting, it seems advisable to identify the predominating inefficiency instead of

partly adjusting the regulatory setting. Especially when a change to zonal pricing and fixed net-

work tariffs seems unlikely, regulators could consider the possibility of using volume-based tariffs in

favor of their steering possibilities. Our analysis suggests that an integrated regulatory framework

is important to avoid unintended distortions.

Moreover, regulators tend to use simplified rules for cost allocation in practice, which are not aligned

with spot market prices and typically do not consider dynamic consistency. Spatial price signals

become more important in a system under transition as they impact investment decisions. There-

fore, these cost allocation rules have an essential impact on static welfare and dynamic consistency,

especially in regulatory settings with uniform pricing.

Future research could include other network tariff designs such as general non-linear tariffs. Those

tariffs could improve system efficiency and compensate for the frictions of distorted price compo-

nents. The analytical model could further be expanded by including concerns on zonal pricing in

practice, e.g., market power and illiquid markets. In addition, empirical studies could complement

our theoretical findings to distinguish between the ambiguities that we found in our theoretical

model and measure the associated welfare loss for the static and dynamic effects.
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Appendix A. Optimal spot market result

Consider a social planner solving the optimization problem (A.1a-A.1e). The social planner maxi-

mizes overall welfare, consisting of the consumer surplus from the participation at the spot market

minus the electricity generation costs. Thus, she jointly optimizes the cost-minimal dispatch at the

spot market level. The solution is constrained by the equilibrium condition, which requires supply

to equal demand (A.1b-A.1c) and the restriction of the transmission line (A.1d).

max
l,q,D

W =

∫ Dn

0
[pn(z)] dz +

∫ Ds

0
[ps(z)] dz −

∑
i

ciqi (A.1a)

s.t. Dn + l = qn (A.1b)

Ds − l = qs (A.1c)

|l| ≤ L (A.1d)

qn, qs, Dn, Ds ≥ 0 (A.1e)

The optimal solution yields a node-specific result. The optimal level of generation in each node is

given by (A.2) and depends on the spatial choice of the demand investment.

q∗i =


D∗n + L for i = n

D∗s − L for i = s

(A.2)

Since by assumption, generation costs are higher in the south and demand exceeds the capacity

limit of the transmission line, the network is congested and fully utilized up to the capacity limit,

i.e. l∗ = L. The prices reflect the marginal costs at the respective nodes with p∗n = cn and p∗s = cs

and thus, producer surplus equals zero. Due to the price difference between the nodes and the

quantity transmitted from node n to node s, a positive congestion rent (cs − cn)L results, which is

accounted to the TSO budget.
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Appendix B. Fixed network tariffs

The first-order conditions of the Lagrangian of the optimization problem (2a-2c) are:

∂L

∂fn
= λωn − µ = 0 (B.1)

∂L

∂fs
= λωs + µ = 0 (B.2)

∂L

∂λ
=
∑
i

ωifi − F + (cs − cn)L = 0 (B.3)

µ
∂L

∂µ
= µ[csD + fs − cnD − fn] = 0 (B.4)

∂L

∂µ
= cnD + fn ≤ csD + fs (B.5)

µ ≥ 0 (B.6)

The complementary slackness condition (B.4) is true if either (1) µ = 0, (2) cnD + fn = csD + fs,

or (3) both.

Case 1: µ = 0. Plugging µ = 0 into the first two equations yield λ = 0, as ωi > 0. The fixed

network tariffs f can take every possible values that satisfy equation (B.3) and (B.5).

Case 2: µ > 0 and cnD + fn = csD + fs. Using the equality, we can solve for the fixed network

tariffs, e.g. fs = F−(cs−cn)(L+Dωn)
ωn+ωs

. In addition, λ = −µ
ωs

and λ = µ
ωn

. We can rule this case out, as

it would require ωn = −ωs.

Case 3: µ = 0 and cnD + fn = csD + fs. Again, we can solve for the fixed network tariffs, e.g.

fs = F−(cs−cn)(L+Dωn)
ωn+ωs

. Again, plugging µ = 0 into the first equation yields λ = 0.

Hence, cases 1 and 3 are possible solutions of the optimization and both require λ = 0. As the

shadow variable of the budget constraint is zero, the constraint (and the fixed network tariffs) has

no influence on social welfare. Hence, fixed network tariffs can be considered as a welfare neutral

payment.
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Appendix C. Volume-based network tariffs

Appendix C.1. Deriving the Ramsey-Boiteux inverse elasticity rule

We use equation (7), substitute pi = ci + τi on the right-hand side and make use of the relationship

τi = pi − ci to expand the equation. We denote the elasticity of demand with

εi(pi) = −∂Di(pi)/∂pi
Di(pi)/pi

(C.1)

Plugging the elasticity in, we then obtain the Ramsey-Boiteux formula, which is the classical inverse

elasticity rule:

pi − ci
pi

=
λ

λ+ 1
· 1

εi(pi)
(C.2)

We can see that a change in price ∂pi is equivalent to a change in network tariff ∂τi.

Appendix C.2. Solution for restricted volume-based network tariffs and boundary for binding dy-
namic consistency constraint

To solve for the optimal volume-based network tariff with a binding dynamic consistency constraint,

we use the relation of network tariffs from (4b) and (4c). As (4c) is binding, it follows that

τn = τs + cs − cn. Using the budget constraint (4b), we yield

τ̂s =
F − (cs − cn)(L+Dn(cn + τ̂n))

Ds(cs + τ̂s) +Dn(cn + τ̂n)
(C.3)

and

τ̂n = cs − cn +
F − (cs − cn)(L+Dn(cn + τ̂n))

Ds(cs + τ̂s) +Dn(cn + τ̂n)
. (C.4)

To derive the boundary at which the dynamic efficiency constraint is binding, we plug in the optimal

static volume-based network tariff (9) into cn + τ∗n = cs + τ∗s :

cn +
F − (cs − cn)L

ρn(τ∗n)
ρs(τ∗s )Ds(cs + τ∗s ) +Dn(cn + τ∗n)

= cs +
F − (cs − cn)L

ρs(τ∗s )
ρn(τ∗n)Dn(cn + τ∗n) +Ds(cs + τ∗s )

, (C.5)

which simplifies to

∂Ds(cs+τ∗s )
∂τ∗s

Dn(cn + τ∗n)− ∂Dn(cn+τ∗n)
∂τ∗n

Ds(cs + τ∗s )

∂Dn(cn+τ∗n)
∂τ∗n

Ds(cs + τ∗s )2 + ∂Ds(cs+τ∗s )
∂τ∗s

Dn(cn + τ∗n)2
=

cs − cn
F − (cs − cn)L

. (C.6)
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The solution depends on the costs that need to be recovered, the relation of the generation costs

and the relation of the demand functions in the respective nodes.

Appendix C.3. Volume-based network tariffs under uniform pricing

To solve for the case that the dynamic efficiency constraint is non-binding, i.e., µ = 0, we make use

of equation (11) and substitute the quasi-elasticity ρi.

τ∗s =
ρn(τ∗n)

ρs(τ∗s )
τ∗n + cs − cn (C.7)

It still holds that the elasticity in one node affects the network tariff in the other node. In addition,

the network tariffs also depend on marginal generation costs. Again, we can solve for the respective

network tariffs using the budget constraint of the TSO. The network tariff in the south is equal to:

τ∗s =
F − (cs − cn)L

ρs(τ∗s )
ρn(τ∗n)Dn(cn + τ∗n) +Ds(cn + τ∗s )

+ cs − cn, (C.8)

while the structure of the solution for the north is similar to the one under zonal pricing:

τ∗n =
F − (cs − cn)L

ρn(τ∗n)
ρs(τ∗s )Ds(cn + τ∗s ) +Dn(cn + τ∗n)

(C.9)

For the case that the dynamic efficiency constraint is binding, we can use (10b) and (10c). This

yields:

τ̂s = τ̂n =
F − (cs − cn)(L+Ds(cs + τ̂s))

Ds(cs + τ̂s) +Dn(cn + τ̂s)
(C.10)

We can check when the dynamic efficiency constraint gets binding, by substituting (C.8) and (C.9)

into τn ≤ τs :

Dn(cn + τ∗n)∂Ds(cs+τ
∗
s )

∂τ∗s
[R+ (cn − cs)Ds(cs + τ∗s )] ≤ ∂Dn(cn+τ∗n)

∂τ∗n
Ds(cs + τ∗s )[R+ (cn − cs)Dn(cn + τ∗n)]

with R = F − (cs − cn)L

(C.11)

The result is similar to the regulatory setting with zonal pricing and depends on the costs that

need to be recovered, the relation of the generation costs and the relation of the demand functions

in the respective nodes.
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