Schlisseltechnologien /Key Technologies
Band/Volume 255
ISBN 978-3-95806-634-2

Mitglied der Helmholtz-Gemeinschaft

/.

JULICH

Forschungszentrum

Schliisseltechnologien
Key Technologies

Neutron Scattering - Lectures

el
>
(0]
=
=
X 35
sy
~ C
L
&5
n N
= .
Hellnd
L5
C
U),,CD
E_.
[}
© o
3 O
=
o™
==

um

JQLICH

Forschungszentr

9

Laboratory Course

Neutron Scattering

Lectures

Thomas Bruckel, Stephan Forster, Margarita Kruteva, Mirijam Zobel, and Reiner Zorn
(Editors)

Schlusseltechnologien /Key Technologies
Band/Volume 255
ISBN 978-3-95806-634-2

RWTH IJ JULICH

Forschungszentrum



Schriften des Forschungszentrums Julich
Reihe Schlisseltechnologien /Key Technologies Band /Volume 255




Forschungszentrum Jilich GmbH
Jilich Centre For Neutron Science (JCNS)

Thomas Bruickel, Stephan Forster, Margarita Kruteva,
Mirijam Zobel, and Reiner Zorn (Editors)

Neutron Scattering

Lectures of the JCNS Laboratory Course held
at Forschungszentrum Julich and at the
Heinz Maier-Leibnitz Zentrum Garching

In cooperation with

RWTH Aachen

Schriften des Forschungszentrums Jilich
Reihe Schlisseltechnologien /Key Technologies Band /Volume 255

ISSN 1866-1807 ISBN 978-3-95806-634-2



Contents

1 Introduction: Neutron Scattering in Contemporary
Research

2 Elastic Scattering

3 Properties of the Neutron

4 Neutron Sources

5 Diffraction

6 Small-Angle Neutron Scattering — SANS

7  Macromolecules (structure)

8 Spin-dependent and Magnetic Scattering of Polarized

Neutrons
9 Structural Analysis

10 Reflectometry and grazing incidence small angle
scattering

11 Magnetic Nanostructures

12 Inelastic Neutron Scattering
13 Strongly correlated electrons
14 Polymer Dynamics

15 Applications of Neutron Scattering - an Overview

Th. Brickel

Th. Bruckel
P. Zakalek
J. Voigt

G. Roth

S. Jaksch
J. Stellbrink

W. Schweika

G. Roth

E. Kentzinger

U. Rucker
R. Zorn

M. Angst

M. Kruteva, R. Zorn

Th. Brickel



1 Introduction: Neutron Scattering in
Contemporary Research
Th. Bruckel
Julich Centre for Neutron Science 2
Forschungszentrum Jalich GmbH
Contents
1.1 Introduction: Why Scattering? ......ccccccceerverccscnrcsssnsecssansesssnsscsssan 2
1.2 X-Ray Scattering in Condensed Matter Research...........cccceeerunee. 3
1.3 Impact of Scattering in other Fields of Science........ccceceeeerneicrneees 6
1.4 WhY NeULIONS? ..cuveiiessnicsssrniesssasicsssssessssssessssssesssssssssssssssssasssssssssssnss 7
1.5 The Social Practice of Neutron Scattering.........ccccceeeeeeecunecsnrcnnes 11
REfEIEINCES ..coecuriesnriscnrissunisinisinicsssnesssnessasessssisssssssssessssessasssssssssssssssssesens 12
EX@ICISES cocuunrinsunicssnncssnnessnnissasisssnesssnessssessssesssssssssssssssessssessssesssssssssssssssessns 13

Lecture Notes of the JCNS Laboratory Course Neutron Scattering.



1.2 Th. Briickel

1.1 Introduction: Why Scattering?

In this chapter, we will start with a very gentle qualitative introduction entirely without
formula to give you an idea what the course is all about. The details will follow in
subsequent chapters.

Imagine you leave this lecture hall, some mean looking guys dressed entirely in black
follow, kidnap and take you to the medieval castle of Nideggen in the close-by Eifel
mountains. There you are being thrown into a pitch dark dungeon. You cannot see
anything, but you hear some noises. Are there rats? Are there other prisoners? Are there
dragons? Luckily you remember that you have some matches in your pocket. You light
a match, you can see everything around you and everything becomes clear to you...

What I have just described is essentially like a scattering experiment: figuratively it
sheds light into darkness and helps us understand the world around us. Let’s analyse
what you did in the dungeon: first when you light the match, you start a source of
radiation. Here the radiation is light. This light then gets scattered (reflected,
transmitted) from the surrounding objects. In a scientific scattering experiment, we will
call this object a “sample”. Back to the dungeon: some of this radiation gets scattered
into your eye. Your eye serves as very special radiation detector: with its lens, it is able
to even make an image of the objects on the retina, which in the language of a physicist
would be called an “area position sensitive pixel detector”. This image contains lots of
information: the colour of the backscattered light tells you something about the
absorption of certain components of the light and therefore gives information about the
material the light is scattered from. The position of the signal on the retina gives you
information about the spatial arrangement of the objects around you. And finally the
time dependence of the signal tells you that the monster is actually crawling towards
you, ready to attack. All this information has to be treated and interpreted. This is done
by our brain, an extremely powerful computer to analyse this wealth of data.

This little example shows you the importance of scattering for our understanding of the
world: nearly all information that we as individuals have about the world in which we
live comes from light scattering and imaging through our eyes. It is only natural that
scientists mimic this process of obtaining information in well controlled scattering
experiments: they build a source of radiation, direct a beam of radiation towards a
sample, detect the radiation scattered from a sample, i. e. convert the signal into an
electronic signal, which they can then treat by means of computers. In most cases one
wants an undisturbed image of the object under investigation and therefore chooses the
radiation, so that it does not influence or modify the sample. Scattering is therefore a
non-destructive and very gentle method, if the appropriate type of radiation is chosen
for the experiment.
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1.2 X-Ray Scattering in Condensed Matter Research

What other requirements must the radiation fulfill to be useful for scattering
experiments? In condensed matter science we want to go beyond our daily experience
and understand the microscopic atomic structure of matter, i. e. we want to find out
where the atoms are located inside our samples and also how they move. This cannot be
done by light scattering. Why? Well in general light is scattered from the surface and
does not penetrate enough into many materials, such as metals, for example. On the
other hand, if it penetrates like in the case of glass it is normally just being transmitted
except if we have a very bad glass with lots of inhomogeneities, but the main reason is
actually that light has too long of the wavelength, see figure 1.1.

Penetrates Earth's
Y N Y N
Ahsaiares Y Y ]
Radiation Type Radio Microwave Infrared Visible Ultraviolet  X-ray Gamma ray
Wavelength (m) 10° 1072 1073 0.5x107® 1078 10710 10712
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of Wavelength H‘ I"ﬁl{f‘;}i 5& % % e

Buildings Humans  Butterflies Needle Point Protozoans Molecules Atoms  Atomic Nucl

10* 108 10% 10%° 10® 108 10%°
Bmperature of
objects at which
this radiation is the )
M= 1K 100 K 10,000 K 10,000,000 K
slength emitted , ,000,
AR 272°C  -173°C  9,727°C ~10,000,000 °C

Fig. 1.1: Electromagnetic spectrum; shown is the wavelength and fequency of
electromagnetic waves, which have diferent names jpr diferent wavelength
regions. Also given are examples jor objects with sizes comparable to the
wavelength. ( ffom WIKIPEDIA)

It is quite intuitive to understand that if we want to measure the distance between the
atoms, we need a “ruler” of comparable lengths. Now the distance between atoms is in
the order of 0.1 nm =10"% m = 0.0000000001 m. Since the distance between atoms is
such an important length scale in condensed matter science, it has been given its own
unit: 0.1 nm = 1 Angstrgm = 1 A. If we compare the wavelength of light with this
characteristic length scale, it is 4000 to 7000 times longer and therefore not appropriate
to measure distances on an atomic lengthscale. In the electromagnetic spectrum, x-rays
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have a well adapted wavelength of about 1 A for studies on such a microscopic scale.
They also have a large penetration power as everybody knows from the medical x-ray
images.

Classical physics describes electromagnetic radiation as propagation of electromagnetic
waves. For a scattering experiment, we select waves of a certain wavelength and
propagation direction, so-called plane waves, since all points on a plane in space have
the same phase. If such a wave impinges on two point-like scattering centers (in a solid
these could be atoms), spherical waves are being emitted from these scattering centers.
This is nothing but Huygens principle for wave propagation. The emitted waves can
superimpose and lead to either enhancement or cancellation of the signal in certain
directions as depicted in figure 1.2.
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Fig. 1.2: Moiré pattern jor concentric circles with equal distances representing a planar
cut through spherical waves emitted from two scattering centers. The circles
represent sur faces o f constant phase relationship. Linear superposition o fthe
waves gives enhancement or cancellation o fthe wave amplitudes along certain
directions. This inter rence e fect is mimicked by the depicted Moiré pattern.
Ifthe distance between the scattering centers is increased, the distance in the
inter prence maxima decreases and vice versa: distances in the image created
by scattering are inverse proportional — or reciprocal - to distances in the
original objects which motivates the introduction of a reciprocal space to
describe scattering events compared to the real space of the object under
investigation.

As becomes clear from figure 1.2, scattering can be described as an interference
phenomenon of the radiation waves. However, since de Broglie and Einstein, we know
that quantum objects have a dual nature: the particle-wave-dualism. In the case of
electromagnetic waves, the quanta carrying certain energy are called photons and in the
detector, which registers the scattering pattern, we count single x-ray photons. This is
characteristic for the quantum mechanical description: during propagation of radiation a
wave picture is appropriate, while for the interaction with matter a particle is the
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description of choice. Wave and particle picture are connected by the fact that the
magnitude square of the wave at a certain position in space gives the probability density
of finding the quantum particle at the corresponding position. Within this particle-wave-
dualism it therefore becomes natural to use elementary particles as probes for scattering
investigations of condensed matter systems. This was realised for the first time by
Rutherford in 1909 in his famous experiment, where he directed a beam of a-particles
onto a gold foil and registered the transmitted and scattered particles. He found that
many particles were backscattered and from the ratio between transmitted and
backscattered o-particles he could conclude on the model of an atom, which is now
generally accepted, namely consisting of a positively charged nucleus of size about 10
femtometer = 10 fm = 10 x 10"° m surrounded by a cloud of negatively charged
electrons with an extension of about 1 A =107 m =100000 fm, see figure 1.3.

=10 fm

= 1A = 100000 fm

Fig. 1.3: Schematic model o fan atom with the atomic nucleus consisting o f neutrons
and protons having a size o fabout 10 fn surrounded by electrons in a cloud o f
a size ofabout 1 A.

The real breakthrough for structure studies of condensed matter systems came with the
idea of Max von Laue to use x-rays as scattering probes. Wilhelm Conrad Rontgen
discovered x-rays in 1895 and soon it was concluded that x-rays were electromagnetic
waves. Arnold Sommerfeld suggested that the wavelength of x-rays was about 1 A. At
the time of Max von Laue, after the experiments of Rutherford, it was accepted that
matter consisted of atoms but their periodic arrangement in crystals was maybe
suggested by the regular facets of the crystals but could not be really proven by
experiment. Max von Laue was a theoretician, who derived the famous Laue equation
describing scattering from a regular three-dimensional periodic arrangement of
scattering centers. He convinced the two experimentalists Friedrich and Knipping to
perform an x-ray diffraction experiment. The result is shown in figure 1.4.
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Fig. 1.4: Early x-ray diffaction diagrams recorded by a flm from copper sulphite
single crystals [1].

While the first transmission Laue photograph showed more or less just a fat plop, the
quality of these images was soon refined and clear so-called Laue-spots could be
identified. The impact of this discovery cannot be over-emphasized: it was the definite
proof that solids consist of atoms, which are arranged in a regular three-dimensional
periodic array and that x-rays were scattered as electromagnetic waves from such an
arrangement of atoms. It is therefore natural that Max von Laue received the Nobel
prize in 1914 for this breakthrough discovery. However, the experimentalists Friedrich
and Knipping were left empty-handed.

Nearly everything we know today about the atomic structure of matter is based on this
discovery which took place 100 years ago. Of course the techniques were significantly
refined and nowadays x-ray diffraction is heavily being used to resolve complex
structures of biological macromolecules in the field of protein crystallography. Such
investigations need very intense and bright x-ray beams, which are provided from large
accelerators, so-called synchrotron radiation sources. Many thousands of reflections are
being recorded in a few seconds. As electromagnetic waves, x-rays are mainly scattered
from the electronic charge distribution around the atoms and thus x-ray diffraction
allows one to determine the electron density in solids.

1.3 Impact of Scattering in other Fields of Science

It should be pointed out that scattering is a much more general method in science, which
is not only used by condensed matter scientists. The world’s largest accelerator is
located close to Geneva at the border between Switzerland and France in the CERN
research center. CERN stands for Centre Européenne pour la Recherche Nucléaire, i. e.



Introduction Neutron Scattering 1.7

the European organisation for nuclear research. Many accelerators are located on the
CERN site of which the LHC, the Large Hadron Collider, is the world’s largest and
highest energy particles accelerator. The LHC lies in a tunnel 27 km in circumference as
deep as 175 m beneath ground level. This huge accelerator serves nothing but a
scattering experiment, where opposing particle beams e. g. protons at energy of 7 TeV
collide in certain interaction points, which are surrounded by huge detectors built by
large international collaborations. In inelastic scattering events, new particles can be
created and the hope is that this huge investment helps us to address some of the most
fundamental questions of physics advancing the understanding of the deepest laws of
nature. At Research Centre Jiillich we have a smaller version of such a particle
accelerator, the so-called COSY synchrotron for Hadron physics. These large
accelerators are needed to achieve high particles energies corresponding to short
wavelengths, which allow one to study fine structures within nucleons. Large detectors
are needed because at these scales no imaging is possible but if all scattered particles are
being traced a reconstruction of the scattering event in the computer can take place.
While at the LHC new particles are being created during deep inelastic scattering
events, the connection to x-ray diffraction is more evident for the former HERA
accelerator, which had been in operation at DESY in Hamburg until a few years ago.
There, electrons were being scattered from protons in head-on collisions and the inner
structure of the proton consisting of quarks and gluons could be resolved.

1.4 Why Neutrons?

Coming back to condensed matter science: if x-rays are so successful for structure
determination, why do we need neutrons? Neutrons have some very specific properties
which make them extremely useful for condensed matter studies:

1. Neutrons are neutral particles. They are thus highly penetrating, can be used as
non-destructive probes and to study samples in severe environment such as
cryomagnets or furnaces.

2. The wavelengths of neutrons are similar to atomic spacings - just as is the case
for x-rays. Therefore they can provide structural information from the picometer
to the 100 um range.

3. The energies of thermal neutrons are similar to the energies of elementary
excitations in solids. Therefore neutrons can determine molecular vibrations,
lattice excitations and the dynamics of atomic motion.

4. Neutrons interact with the nuclei in contrast to x-rays or electrons which interact
with the electron cloud, see Figure 1.5. They are very sensitive to light atoms
like hydrogen, which is difficult to detect by x-rays since hydrogen in bonds has
often less than one surrounding electron. They can also distinguish between
neighbouring elements in the periodic table like manganese, iron and chromium,
for which x-rays are insensitive since these elements have nearly the same
number of electrons. Also one can exploit isotopic substitution. A famous
example is contrast variation in soft matter or biological macromolecules by
replacing deuterium for hydrogen in certain molecules or functional groups.
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Similar to tinting in light microscopy, the location and movement of these
functional groups can then be observed on the background of the other
molecules.

5. Neutrons have a magnetic moment. This dipolar moment is due to the nuclear
spin. Therefore neutrons can be used to study microscopic magnetic structures
but also the magnetic excitations in solids, which have similar energies than the

neutrons.
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Fig. 1.5: Comparison of x-ray and neutron scattering fom single atoms pr a fw
elements o fthe periodic table. The flled circles represent a measure o fthe
total cross section, i,e, o fthe probability jr scattering. For x-rays, which are
scattered from the electron cloud, this probability goes up with the number
square o felectrons. There jore Hydrogen is hardly visible jor x-rays in the
presence o fheavier atoms. The situation is quite diferent jor neutrons, which
are scattered from the atomic nucleus. Here the scattering varies not
monotonically throughout the periodic table and is diferent jpr diferent
isotopes o fthe same atom. Blue and green circles distinguish scattering with
and without 180° phase shi f, respectively.

Figure 1.6 shows the extreme range of applicability of neutrons for condensed matter
studies based on these special properties. Different scattering techniques have to be used
for different applications, as indicated in the figure.
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Fig. 1.6: Huge range of length (lef side) and time (right side) scales covered by
research with neutrons. Also indicated is the corresponding neutron technique.

Due to the huge impact of neutron scattering for condensed matter studies, it is no
surprise that the Nobel prize in physics was awarded to two of the pioneers of neutron
diffraction and inelastic neutron scattering, which Clifford G. Shull and Bertram
Brockhouse received in 1994. The famous quote “neutrons tell us where atoms are and
how they move” is due to Clifford Shull.

If you got the impression so far that neutrons are the ideal and most universal probe for
condensed matter studies on an atomic scale, you are right in principle. However, as
with everything in life, there are also some drawbacks. While neutrons are everywhere -
without neutrons we would not exist - they are extremely difficult to produce as free
particles not bound in nuclei. Free neutrons are produced by nuclear physics reactions,
which require rather large and high-tech installations. Two main routes to produce free
neutrons are being followed today:

(1) Fission of the uranium 235 nuclei in a chain reaction; this process happens in
research reactors.

(2) Bombarding heavy nuclei with high energetic protons; the nuclei are “heated up”
when a proton is absorbed and typically 20 - 30 neutrons are being evaporated. This
process is called spallation and requires a spallation source with a proton
accelerator and a heavy metal target station.

Since installations to produce free neutrons are rather expensive to build and to operate,
there exist only a few sources worldwide. JCNS is present in some of the world best
sources as shown in figure 1.7.
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Fig. 1.7: Ma jor neutron research centres worldwide which have sources o fappreciable
fux and a broad instrumentation suite jor condensed matter research. JCNS
instruments are located at pur o fthe leading sources worldwide: the neutron
research reactor FRM Il in Garching, Germany, the Institute Laue-Langevin
ILL in Grenoble, France, the Spallation Neutron Source SNS in QOak
Ridge, USA and the Chinese Advanced Research Reactor CARR close to
Beijing, China. JCNS also has a leading involvement in the European
Spallation Source project, Lund, Sweden.

The fact that there are only a few sources worldwide implies that neutron scattering
experiments have to be organised quite different from normal lab-based experiments.
Users have to be trained in special schools (our JCNS school is one of them) and access
to the experiments has to be organised (see below).

Not only the neutron research centres are rare but also free neutrons by themselves are
rare. In a high flux reactor the neutron flux i. e. the number of neutrons passing through
a given area in a given time is in the order of 10" neutrons/cm*s. If one compares this
value with particle fluxes in gases, the neutron density in high flux sources corresponds
to high vacuum conditions of about 10° mbar pressure. The neutrons have to be
transported from the source to the experimental areas, which can either be done by
simple flight tubes or so called neutron guides. These are evacuated tubes with glass
walls (often covered with metal layers to increase the performance), where neutrons are
transported by total reflection from the side, top, and bottom walls in a similar manner
like light in glass fibers. The neutron flux downstream at the scattering experiments is
then even much lower than in the source itself and amounts to typically 10° - 10°
neutrons/cm>s. This means that long counting times have to be taken into account to
achieve reasonable statistics in the neutron detector. Just for comparison: the flux of
photons of a small Helium-Neon laser with a power of 1 mW (typical for a laser
pointer) amounts to some 10" photons/s in a beam area well below 1 mm?.
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However, it is not only the low flux that limits neutron scattering experiments, but also
the fact that neutron sources are not very bright, i. e. neutron beams are rather large in
the order of a few cm” and therefore require in general rather large samples. Typical
sample sizes are again in the order of a few cm® and have masses of a few grams.
However, this does not mean that we cannot study nanosized objects with neutrons as
you will see in the subsequent lectures. However, for neutron scattering techniques, we
have to have many of such objects and we will obtain ensemble averages.

1.5 The Social Practice of Neutron Scattering

The fact that neutron sources are rare leads to a particular social practice for neutron
scattering: there are only a few major sources in Europe and worldwide and the
operation of each one of these sources costs several million Euro per year. Therefore
efforts have to be made to use the existing sources as efficient as possible. This means
(1) continuous and reliable operation of the source during a large fraction of the year; (ii)
many highly performing instruments, which can run in parallel, located around every
source; (ii1) professional instrument operation with highly qualified staff and a stringent
risk management to keep the downtime of instruments and auxiliary equipment as low
as possible; (iv) and access for as many scientists as possible.

There is no commercial market for neutron scattering instruments. Therefore these
instruments are being built by research centres, where usually one or a few staff
scientists work closely with engineers and technicians to realise an instrument for a
certain application of research with neutrons. These highly experienced scientists will
then later-on operate the instruments located at a certain neutron source. The Jiilich
Centre for Neutron Science JCNS has such staff scientists located at the outstations at
FRM II, ILL. However, neutron facilities are way too expensive to be operated just for a
small number of scientists. Beamtime is offered to external wusers from
universities, research organisations (such as Max-Planck or Fraunhofer in Germany)
and industry. In order for these users to obtain access to a neutron scattering instrument,
the user will obtain information from the internet on available instruments, contact the
instrument scientist and discuss the planned experiments with the instrument scientist.
Once a clear idea and strategy for an experiment has been worked out, the user will
write a beamtime proposal where he describes in detail the scientific background, the
goal of the planned experiment, the experimental strategy and the prior work. The
facility issues a call for proposals in regular intervals, typically twice a year. The
proposals received are distributed to members of an independent committee of
international experts, which perform a peer review of the proposals and establish a
ranking. Typically overload factors between 2 to 3 on the neutron instruments exist, i. e.
2 to 3 times the available beam time is being demanded by external users. Once the best
experiments have been selected, the beamtime will be allocated through the facility,
where the directors approves the ranking of the committee, the beamline scientist
schedules the experiments on her or his instrument and the user office sends out the
invitations to the external users. Many facilities will pay travel and lodging for 1 up to 2
users per experiment. It is now up to the user to prepare his experiment as well as
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possible. If the experiment fails because it was not well prepared, it will be very
difficult to get more beamtime for the same scientific problem. Typical experiments last
between 1 day and up to 2 weeks. In this time lots of data will be collected which users
take home and usually spend several weeks or months to treat the data and model it.

A typical neutron scattering facility will run about 200 days a year with a few hundred
visits of user from all over the world. This is also what makes research with neutrons so
attractive to young scientists: early-on in their career they will learn to work in large
international collaborations, get the opportunity to work on state-of-the-art high-tech
equipment and learn to organise their research as efficient as possible. You have
therefore chosen well to attend this laboratory course!

After this simple introduction, you can now look forward to many interesting lectures,
where more details will be explained and where you will learn the basic principles to
enable you to perform neutron experiments. Have lots of fun and success working with
this special gift of nature, the free neutron!
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Exercises

El.1

Multiple Choice

Electromagnetic radiation with a wavelength of 500 nm corresponds to:

O microwaves

O

visible light

ultraviolet

O

O

X-rays

The typical distance between atoms in a solid amounts to:
o 10 nm

o 1 nm

o 0.1 nm

o 0.0l nm

An atomic nucleus has a typical size of:
olA

o 0.1 nm

o 1 pm

o 10 fm

The typical wavelength of thermal neutrons is:
o 10 nm

o 1 nm

o 0.1 nm

o 0.0l nm

Which type of radiation would you use to distinguish iron and manganese
atoms in a given compound?

o X-rays
O neutrons
o electrons

light

O
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Which type of radiation would you use to determine the charge density
distribution in a solid?

o X-rays
O neutrons

electrons

O

o light

How many neutrons per second impact on a sample with typical lateral
dimensions of 1 x] cm in a typical neutron scattering experiment?

o 10°
o 10’
o 10'?
o 10"

Which type of radiation would you use to determine the magnetization
density distribution in a solid?

o X-rays
O neutrons
o electrons

light

O
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El1.2

a.

Comprehension

What is the difference between a scattering and an imaging experiment? When
would you choose one over the other?

Why does one observe Laue spots when a “white” beam of X-rays is scattered
from a single crystal? How about scattering from glass?

Why are neutrons sensitive to the magnetic order in a crystal?

Neutron scattering allows us to determine “where the atoms are and how the
atoms move” in a condensed matter system. Other scattering probes include:
light, x-rays, electrons, a-particles. Discuss qualitatively the strengths and
weakness of these probes in comparison to neutron scattering.

CO; has a bad reputation as green-house gas in the atmosphere. Could it,
however, be useful as a scattering probe to replace neutrons? (A high flux of
CO; molecules could e.g. be obtained by an expansion of pressurised CO, gas
from a gas bottle through a nozzle - a flux many orders of magnitude higher than
the neutron fluxes used in neutron scattering experiments! )
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E1.3 Arithmetic Problem (optional):

Huygens principle and coherence

A plane wave of wavelength A is incident on a pair of identical scatterers, which are
separated by a distance L perpendicular to the wave propagation, see figure:

/

p L é\)e\\
\ .

According to the Huygens principle, spherical waves will be emitted from the two
scatterers. In certain directions, these waves interfere constructively, i.e. the two
scattered waves are in phase.

a)
b)

c)

d)

Calculate the angles 0, where interference maxima occur in the far field limit.

What happens to the interference maxima, if there is a broad distribution of
wavelength in the incident wave, but the propagation direction remains well
defined?

What happens to the interference maxima, if the wavelength of the incident wave is
well defined, but there are many waves of different directions impinging on our
scatterers?

How would you design an instrument to measure the distance L between the two
scatterers, if light from a normal light bulb is being used as radiation? Which
requirement does L have to fulfil in this case?

According to b) and ¢) monochromatization and collimation are important to obtain
well resolved interference pattern. The corresponding requirements for the radiation
are called longitudinal (b) and transverse (c) coherence, respectively. Discuss
qualitatively the relation between coherence and resolution, i.e. in our example the
ability of the apparatus designed in d) to determine the distance L between the
scatterers.
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2.1 Introduction

After the very qualitative introduction given in chapter 1, we now have to move to a
more quantitative description of neutron scattering, giving the basic formulas for the
simplest cases.

This lecture is organized as follows: First we give a very basic general introduction into
elementary scattering theory for elastic scattering. Then a more rigorous derivation in
the framework of the Born series follows. This section can be skipped by beginners but
is provided for completeness.

We will introduce the concepts of coherence and pair correlation functions. Then we
will discuss, which probes are most relevant for condensed matter investigations and
present in some detail the interaction of neutrons with matter leading to the absorption
and scattering cross-sections. More details can be found in[1 - 6].

We will frequently make use of the particle-wave dualism of quantum mechanics,
which tells us that the radiation used in the scattering process can be described in a
wave picture, whenever we are interested in interference phenomena, and in a particle
picture, when the interaction with matter is relevant, e. g. for the detection process.

2.2 Elementary scattering theory: Elastic scattering

Throughout this lecture we assume that the atoms within our sample are rigidly fixed on
equilibrium positions in space. Therefore we only look at those processes, in which the
recoil is being transferred to the sample as a whole so that the energy change for the
radiation is negligible and the scattering process appears to be elastic. In subsequent
lectures, this restriction will be dropped and so-called inelastic scattering processes will
be discussed. These are due to excitations or internal fluctuations in the sample, which
give rise to an energy change of the radiation during the scattering process.

A sketch of the scattering experiment is shown in Figure 2.1.

detector
source

.plane wave*

20

.plane wave“

sample

Fig. 2.1: A sketch o fthe scattering process pr monochromatic radiation in the Fraun-
ho r approximation. It is assumed that plane waves are incident on sample and detec-
tor due to the fict that the distances source-sample and sam ple-detector, respectively,
are signi fcantly larger than the size o fthe sam ple.
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Here we assume the so-called Fraunho fr a pproximation, where the size of the sample
is much smaller than the distance between sample and source and the distance between
sample and detector, respectively. This assumption holds in all cases discussed in this
lecture. In addition, we assume that the source emits radiation of one given energy, i. e.
so-called monochromatic radiation. Then the wave field incident on the sample can be
considered as a plane wave, which is completely described by a wave vector k. The di-
rection of k indicates the propagation direction of the wave. The same holds for the
wave incident on the detector, which can be described by a vector &'. In the case of elas-
tic scattering (diffraction) we have (-with 4 as wavelength):

k=|k|=|k'|=k'=2—” (2.1)
A
Let us define the so-called scattering vector by
0=k'-k (2.2)

hQ represents the momentum transfer during scattering, since according to de Broglie,
the momentum of the particle corresponding to the wave with wave vector k is given by
p=hk. The magnitude of the scattering vector can be calculated from wavelength A and
scattering angle 26 as follows

Q=|Q|=\/k2+k'2—2kk'cos2¢9:>Q:47ﬁsin0 (2.3)

A scattering experiment comprises the measurement of the intensity distribution Q) as
a function of the scattering vector Q. The scattered intensity is proportional to the so-
called cross section, where the proportionality factors arise from the detailed geometry
of the experiment. For a definition of the scattering cross section, we refer to Figure 2.2.

A Area r?d$}

detector
P
.

N atoms in scatterer

Fig. 2.2: Geometryused pr the de fnition o fthe scattering cross section.

If n" particles are scattered per second into the solid angle d(2seen by the detector under
the scattering angle 26 and into the energy interval between £ and E + dF, then we
can define the so-called double di fErential cross section by:
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2 1
do __n (2.4)
dQdE'  HQdE'

Here jrefers to the incident beam flux in terms of particles per area and time. If we are
not interested in the change of the energy of the radiation during the scattering process,
or if our detector is not able to resolve this energy change, then we will describe the
angular dependence by the so-called di ferential cross section:

do (0)=[ e

_ : 2.5
aa\%)= ) aoae 4 (2)

0

Note that the integral has to be taken for the constant scattering angle of the detector.
Finally, the so-called total scattering cross section gives us a measure for the total scat-
tering probability independent of changes in energy and scattering angle:

4
o= 49 14 (2.6)
o dQ

For elastic scattering our task is to determine the arrangement of the atoms in the sam-
ple from the knowledge of the scattering cross section do /dQ. The relationship be-
tween scattered intensity and the structure of the sample is particularly simple in the so-
called Born approximation, which is often also referred to as kinematic scattering theo-
ry. In this case, refraction of the beam entering and leaving the sample, multiple scatter-
ing events and the attenuation of the primary beam due to scattering within the sample
are neglected. For simplicity, we assume that the incident beam is ideally collimated
(i.e. has no angular spread) and monochromatized (i.e. has no wavelength spread) and
describe it as a plane wave.

no refraction

no attenuation

sinole seatterine event

Fig. 2.3: A sketch illustrating the phase di ffrence between a ray scattered at the ori-
gin o fthe coordinate system and a ray scattered at the position r.
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Following Figure 2.3, the phase difference between a wave scattered at the origin of the
coordinate system (A) and at position r (D) is given by
(4B-CD)
AD=27r-——=k'r—k-r=Q-r 2.7)

Here we see the other meaning of the scattering vector Q: besides the momentum trans-
fer nQ("particle picture"), it determines the phase shift @-r during scattering ("wave
picture").

The amplitude of the scattered beam at position » depends on the type of radiation used
and the interaction of this radiation with the sample. In fact, the probability for a scatter-
ing event to occur is directly proportional to the interaction potential V, as will be
shown in paragraph 2.3. The total scattering amplitude is given by a coherent superposi-
tion (i.e. taking the phase A® into account) of the scattering from all points within the
sample, i. e. by the integral

A(Q)~ A4 [V (r) e d'r (28)

Here Ay denotes the amplitude of the incident wave field. (2.8) demonstrates that the
scattered amplitude is connected with the interaction potential J/ (r)by a simple Fourier

transform. Knowledge of the scattering amplitude A for all scattering vectors @ allows
us to determine via a Fourier transform the potential J/ (r)uniquely. This is the com-

plete information on the sample, which can be obtained by an elastic scattering experi-
ment. Unfortunately, nature is not so simple. On one hand, there is the more technical
problem that one is unable to determine the scattering cross section for all values of
momentum transfer #Q. The more fundamental problem, however, is that normally the
amplitude of the scattered wave is not measurable. Instead only the scattered intensity

1(Q)~|4(Q)

can be determined. Therefore, the phase information is lost and the simple reconstruc-
tion of the scattering potential via a Fourier transform is no longer possible. This is the
so-called phase problem of scattering. There are ways to overcome the phase problem,
e. g. by use of reference waves (e. g. holography). Then the scattering potential becomes
directly accessible. The question, which information we can obtain from a conventional
scattering experiment despite the phase problem will be addressed below.

(2.9)

|2

Which wavelength do we have to choose to obtain the required real space resolution?
For information on a length scale L, a phase difference of about Q-L ~ 27 has to be
achieved. Otherwise according to (2.7) k' and k will not differ significantly. According
to (2.3) Q =~ 2x/4 for typical scattering angles (26 ~ 60° ) Combining these two esti-
mates, we end up with the requirement that the wavelength A has to be in the order of
the real space length scale L under investigation. To give an example: with the wave-
length in the order of 1A = 0.1 nm, atomic resolution can be achieved in a scattering
experiment.
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2.3 Fundamental scattering theory: The Born series

In this chapter, we will give a simple formulation of scattering theory. Our purpose is to
derive (2.8) from fundamental principles. The conditions under which (2.8) holds and
the limitations of kinematical scattering theory will thus become clearer. The derivation
will be done for particle beams — in particular neutrons - for which the Schrodinger
equation holds. This is bonus-material: Beginners can skip this chapter and continue
with chapter 2.4.

In quantum mechanics, neutrons are described as particle wave through the Schrodinger
equation:

2
HY = —h—A+V|\P=ih£‘P (2.10)
2m ) Ot

w is the probability density amplitude, /" the interaction potential. In case of purely elas-

|
)
Assuming this time dependence, a wave equation for the spatial part of the probability
density amplitude i can be derived from (2.10):

AY +K*(r)¥ =0 2.11)

tic scattering £ = E, the time dependence can be described by the factor exp(-i Sz

In (2.11) we have introduced a spatially varying wave vector with the magnitude
square:

2m
kK (r)= h—z(E—V(r)) (2.12)
Solutions of (2.10) in empty space (i. e. V' =0) can be guessed immediately. They are
£ Gﬂwith k? :;—TE. The relations be-

tween magnitude of the wave vector k, wave length 4, and energy of the neutron E can
be written in practical units:

k[Af_l } ~0.695,/E[ meV |
A[ A]%9.045/ | E[meV (2.13)

E[meV |~81.8/2*[ 4]

given by plane waves ¥ =Y, exp[z(k- r—%t

To give an example, neutrons of wavelength A=2.44=0.24nm have an energy of
E=14.2 meV with a magnitude of the neutron wave vector of k= 2.6 4.

To obtain solutions of the wave equation (2.11) in matter, we reformulate the differen-
tial equation by explicitly separating the interaction term:

(a+k) ¥ =207 ¥ = 4 (2.14)

Here k denotes the wave vector for propagation in empty space. The advantage of this
formulation is that the solutions of the left-hand side are already known. They are the
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plane waves in empty space. Equation (2.14) is a linear partial differential equation, i.e.
the superposition principle holds: the general solution can be obtained as a linear com-
bination of a complete set of solution functions. The coefficients in the series are deter-
mined by the boundary conditions. To solve (2.14) one can apply a method developed
for inhomogeneous linear differential equations. For the moment, we assume that the
right-hand side is fixed (given as ). We define a Greens- finction by:

(A+k2)G(r,r'):5(r—r') (2.15)
A solution of (2.15) is given by:
eik‘r—r" (2 1 6)
G(r,r')=— .
(r ’ ) 4zz|r—r'|

The physical meaning of (2.16) is immediately clear: the scattering from a point-like
scatterer (O-potential) gives an emitted spherical wave. In a schematic graphical repre-
sentation:

JIRC)

—>

Using the Greens-function G(r,# ), we can write down a formal solution of the wave
equation (2.14):

‘P:‘P”+IG(r,r');((r')d3r' (2.17)

Here, we have taken the initial conditions of an incident plane wave Y“into account.
(2.17) is indeed a solution of (2.14) as can be easily verified by substituting (2.17) into
(2.14). If we finally substitute the definition of y, one obtains the so-called Lippmann-
Schwinger equation:

W (r) =¥ (1) + 22 [ G (r,r W (r) ¥ (r)dr (2.18)

(2.18) has a simple interpretation: the incident plane wave W°(r) is superimposed by
spherical waves emitted from scattering at positions #. The amplitude of these spherical
waves is proportional to the interaction potential V(¥ ) and the amplitude of the wave
field at the position #. To obtain the total scattering amplitude, we have to integrate
over the entire sample volume V.

However, we still have not solved (2.14): our solution ¥ appears again in the integral
in (2.18). In other words, we have transformed differential equation (2.14) into an inte-
gral equation. The advantage is that for such an integral equation, a solution can be
found by iteration. In the zeroth approximation, we neglect the interaction V' completely.
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This gives W =W°. The next higher order approximation for a weak interaction poten-
tial is obtained by substituting this solution in the right-hand side of (2.18). The first
non-trivial approximation can thus be obtained:

o 2m exp(ik|r—r'|) -

¥ (r =el’“+—j—V re™ dr (2.19)
( ) hz 472_ |r —r v| ( )

(2.19) is nothing else but a mathematical formulation of the well-known Huygens prin-

ci ple for wave propagation.

The approximation (2.19) assumes that the incident plane wave is only scattered once
from the potential V(¥ ). For a stronger potential and larger sample, multiple scattering
processes will occur. Again, this can be deduced from the integral equation (2.18) by
further iteration. For simplification we introduce a new version of equation (2.18) by

writing the integral over the "Greens function" as operator G:

Yoy Y (2.20)

The so-called frst Born a pproximation, which gives the kinematical scattering theory is
obtained by substituting the wave function ¥ on the right hand side by ¥*:

Y=g+ G (2.21)

This first approximation can be represented by a simple diagram as a sum of an incident
plane wave and a wave scattered once from the potential V-

O y? -

> _I_
The second approximation is obtained by substituting the solution of the first approxi-
mation (2.21) on the right-hand side of equation (2.20):

N T e 74 I T e 78\ I e ide 4\ % (2.22)

Or in a diagrammatic form:

y° vy —

> L ~{ s _.V/{,;\G
Le. in the second approximation, processes are being taken into account, in which the
neutron is scattered twice by the interaction potential V. In a similar manner, all higher
order approximations can be calculated. This gives the so-called Born series.! For weak
potential and small samples, this series converges rather fast. Often, the first approxima-
tion, the kinematic scattering theory, holds very well. This is especially the case for
neutron scattering, where the scattering potential is rather weak, as compared to x-ray-

or electron- scattering. Due to the strong Coulomb interaction potential, the probability
for multiple scattering processes of electrons in solids is extremely high, making the

! Note that Born approximation or the Born series violates energy conservation: scattered waves are cre-
ated without weakening of the incident plane wave. Born series can therefore only be applied in the limit
of very weak scattering potentials.
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interpretation of electron diffraction experiments difficult. But even for neutrons, the
kinematic scattering theory can break down, for example in the case of Bragg scattering
from large ideally perfect single crystals, where the Born series does not converge. The
wave equation has to be solved exactly under the boundary conditions given by the
crystal geometry. For simple geometries, analytical solutions can be obtained. This is
then called the dynamical scattering theory. Since for neutrons, the kinematical theory
holds in most cases, or multiple scattering events can often be corrected for, we will no
longer discuss dynamical theory in what follows and refer to [3, 7].

Let us return to the first Born approximation (2.19). In a further approximation, the
Fraunhofer approximation, we assume that the size of the sample is significantly smaller
than the distance sample-detector. The geometry to calculate the far field limit of (2.19)

is given in Figure 2.4. Under the assumption |R|>> ||, we can deduce from Figure 2.4

the following approximation for the emitted spherical wave:

ielp — exp(ik R—r‘-ﬁ) :

The probability density amplitude for the scattered wave field in the limit of large dis-
tances from the sample is thus given by:

:\PI(R)Z R 2m e* J‘V e (2.24)

h2 47 R

R=r-r />detector

scattering volume

Fig. 2.4: Scattering geometry pr the calculation o fthe fir feld limit at the detector. In
the Fraunho fr approximation, we assume that | R >> |r|.

This is just the sum of an incident plane wave and a spherical wave emitted from the
sample as a whole. The amplitude of the scattered wave is given according to (2.24):

2mh2 IV (r)eiQ"d3r~F[V(r)] (2.25)

The integral in the above equation is nothing but the transition matrix element of the
interaction potential } between the initial and final plane wave states, therefore:

Z_saz (2 hz\ i k'wk‘ (220
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This formula corresponds to Fermi’s Golden Rule from time-dependent perturbation
theory, where the transition probability per time interval from state k to states k' is given
by:

2
Wi = 2|k [ - o () (2.27)
Here, p(E,.) denotes the density of states for the final states &'.

With this exact derivation of the scattering cross section, we can now confirm by com-
parison with (2.8) that the scattering probability in the simple derivation of chapter 2.2

m
2
7h

is given by 5 Vv (r) for particle beams governed by the Schrodinger equation.

We now allow for inelastic processes, where the sample undergoes a change of its state
from « to  (a denotes a set of quantum numbers characterizing an eigenstate of the
sample). In this case, due to the different length of the wavevectors for incoming and
outgoing waves, we have to introduce factors &' and &, which arise from the density of
states factor in (2.27). Since the scattering event must fulfill energy and momentum
conservation, we arrive at the double differential cross section (without detailed deriva-
tion):

d> k' Y D
e R S n Y ke

The first summation is carried out over all possible initial states a of the system,
weighted with their thermodynamic occupation probability p.. The sum over  is the
sum over all final states allowed by energy conservation, which is guaranteed through
the d-function. 7w denotes the energy transfer of the neutron to the system. This double
differential cross section will be discussed in the following lectures on inelastic scatter-
ing.

ka) -5(ho+E,~E,) (2.28)

2.4 Coherence

In the above derivation, we assumed plane waves as initial and final states. For a real
scattering experiment, this is an unphysical assumption. In the incident beam, a wave
packet is produced by collimation (defining the direction of the beam) and monochro-

matization (defining the wavelength of the incident beam). Neither the direction k, nor
the wavelength A have sharp values but rather have a distribution of finite width about
their respective mean values. This wave packet can be described as a superposition of
plane waves. As a consequence, the diffraction pattern will be a superposition of pat-
terns for different incident wavevector k and the question arises, which information is
lost due to these non-ideal conditions. This instrumental resolution is intimately con-
nected with the coherence of the beam. Coherence is needed, so that the interference
pattern is not significantly destroyed. Coherence requires a phase relationship between
the different components of the beam. Two types of coherence can be distinguished.
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e Temporal or longitudinal coherence due to a wavelength spread.

A measure for the longitudinal coherence is given by the length, on which two compo-
nents of the beam with largest wavelength difference (4 and A+ 41) become fully out of
phase.

)

)

According to the following figure, this is the case for [=n-A= (n —15
SRAVAVAVAV
He /\/\/\/\/

m:nﬂz[n%}1+AA)

(A+AR).

Fig. 2.5: A sketch illustrating the longitudinal coherence due to a wavelength s pread.

From this, solving for n and assuming A1 << A, Wwe obtain the longitudinal coherence
length I, as

=2 (2.29)
17 2A% -
e Transversal coherence due to source extension

Due to the extension of the source (transverse beam size), the phase relation is de-
stroyed for large source size or large divergence. According to the following figure, a

first minimum occurs for % =d-sinf~d-0.

Fig. 2.6: A sketch illustrating the transverse coherence due to source extension.

From this, we obtain the transversal coherence length [ as
A 2.30
L =240 (230)
Here A0 is the divergence of the beam. Note that / can be different along different

spatial directions: in many instruments, the vertical and horizontal collimations are dif-
ferent.
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Together, the longitudinal and the two transversal coherence lengths (in two directions
perpendicular to the beam propagation) define a coherence volume. This is a measure
for a volume, in which the amplitudes of all scattered waves superimpose within the
sample to produce an interference pattern. Normally, the coherence volume is signifi-
cantly smaller than the sample size, typically a few 100 A for neutron scattering, up to
um for synchrotron radiation. Scattering between different coherence volumes within
the sample is no longer coherent, i.e. instead of the amplitudes the intensities of the con-
tributions to the scattering pattern have to be added. This limits the real space resolution
of a scattering experiment to the extension of the coherence volume.

2.5 Pair correlation functions

After having clarified the conditions under which we can expect a coherent scattering
process, let us now come back to the question, which information is accessible from the
intensity distribution of a scattering experiment. From (2.9) we see that the phase in-
formation is lost during the measurement of the intensity. For this reason the Fourier
transform of the scattering potential is not directly accessible in most scattering experi-
ments (note however that phase information can be obtained in certain cases).

Substituting (2.8) into (2.9) and applying the variable substitution R=#"-r, we obtain for
the magnitude square of the scattering amplitude, a quantity directly accessible in a
scattering experiment:

I~| A(Q) |2 ~ Id3’”'V (F') eiQ'r'JaﬂrV* (r) e e — Ud3l"d3rV (r‘)V* (r) oie(rr)
= [[@’Rd’rV (R+ry " (r)e® (2.31)

This shows that the scattered intensity is proportional to the Fourier transform of a func-
tion P(R)

1(Q)~[d’R P(R)e®" (2.32)

This function denotes the so-called Patterson finction in crystallography or more gen-
eral the static pair correlation finction:

P(R)=[d’rV (r)V (r+R) (2.33)

P(R) correlates the value of the scattering potential at position r with the value at the
position r+ R, integrated over the entire sample volume. The Patterson function P(R)
vanishes, if no correlation exists between the values of the potential at position » and
r+ R, when averaged over the sample. If, however, a periodic arrangement of a pair of
atoms exists in the sample with a difference vector R between the positions, then the
Patterson function will have an extremum for this vector R. Thus, the Patterson function
reproduces all the vectors connecting one atom with another atom in a periodic ar-
rangement. Quite generally, in a scattering experiment, pair correlation functions are
being determined. In a coherent inelastic scattering experiment, we measure the scatter-
ing law S(Q,w ), which is the Fourier transform with respect to space and time of the
spatial and temporal pair correlation function:

d’oc
dodQ

~S5(Q.w)= 21% [ate™™ [d're® G (r,t) (2.34)
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While the proportionality factor between the double differential cross section and the
scattering law depends on the type of radiation and its specific interaction potential with
the system studied, the spatial and temporal pair correlation function is only a property
of the system studied and independent of the probe used:

ZId3 '< r'—r( O))-5(r'+r—1;.(t))>=lﬁjd3r'<p(r',0)p(r'+r,t)>
(2.35)

Here, the pair correlation function is once expressed as a correlation between the posi-
tion of N point-like particles (expressed by the delta functions) and once by the correla-
tion between the densities at different positions in the sample for different times. In a
magnetic system, we scatter from the atomic magnetic moments, which are vector quan-
tities. Therefore, the scattering law becomes a tensor - the Fourier transform of the spin
pair correlations:

S“(Q, a))— j dr '@ (52 0)87 (1) (2.36)

a, fdenote the Cartesian coordinates x, ), z; Ry and R; are the spatial coordinates of a
reference spin 0 and a spin / in the system.

2.6 Form-factor

So far we have not specified the nature of our sample. Now we assume an assembly of
N scatterers of finite size, see Figure 2.7.

k’

~

Fig. 2.7: Sketch showing the assembly o f N scatterers o f fnite size and de fning the
quantities needed pr the de fnition o fthe prm fictor.

These could be atoms in a solid, or colloidal particles in a homogeneous solution. In
what follows, we will separate the interference effects from scattering within one such a
particle from the interference effects arising from scattering between different particles.
With the decomposition of the vector r into the centre-of-gravity-vector rj of particle
number j and a vector ¥ within the particle, the scattering amplitude can be written as
(all particles are assumed to be identical):
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Aot Ider(r)eiQ.r _ ZN: Id3rV(r)eiQ"

Vg Ay,

- iQ'rj 3.0 1) ,i0r' - 0 o
:Ze '[drV(r)e :.lee Ve f(0)
J=

A v

(2.37)

With (2.37), we have separated the scattering from within the single particles from the
interference between different particles. 7" denotes the total scattering power of the

particle. The prm- fictor fQ)is defined as the normalized amplitude of scattering from
within one particle? (it describes the “form” of the particle):

[arv(r)e
b

Q)= (7 (7) (2.38)

For a homogeneous sphere

( 0 |r| >R
= 2.39
(")={c <r (239)
, the form-factor can be calculated by using spherical co-ordinates:
N f(Q)=3.sinQR—QR-c0sQR (2.40)

(ORY’

The function (2.40) is plotted in Figure 2.8. In forward direction, there is no phase dif-
ference between waves scattered from different volume elements within the sample
(note: we assume the Fraunhofer approximation and work in a far field limit): the form-
factor takes its maximum value of one. For finite scattering angles 26, the form-factor
drops due to destructive interference from waves scattered from various parts within
one particle and finally for large values of the momentum transfer shows damped oscil-
lations around 0 as a function of QR.

9: o homogeneous

S . spherical

5 )

8 particle

£ 04

—

L
0.24
g 2 i H F] 1
02/ QR

Fig. 2.8: Form- factor pr a homogeneous sphere according to (2.40),

2 For simplicity we now drop the index j
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2.7 Scattering from a periodic lattice in three dimen-
sions

As an example for the application of (2.8) and (2.9), we will now discuss the scattering
from a three dimensional lattice of point-like scatterers. As we will see later, this situa-
tion corresponds to the scattering of thermal neutrons from a single crystal. More pre-
cisely, we will restrict ourselves to the case of a Bravais lattice with one atom at the
origin of the unit cell. To each atom we attribute a “scattering power” B. The single
crystal is finite with N, M and P periods along the basis vectors a, b and c. The scatter-
ing potential, which we have to use in (2.8) is a sum over d-functions for all scattering
centers:

V(r):NZ:;mzo Foﬂ-é(r—(n-a+m-b+p-c)) (2.41)

The scattering amplitude is calculated as a Fourier transform:
Nl M P
A(Q) - ﬂzemga Z elmQ'bZel’Q“‘ (242)
n=0 m=0 =0
Summing up the geometrical series, we obtain for the scattered intensity:

) sinzleQ-a sinzleQ-b sinzleQ-c

] ; 1 (2.43)
sin’ jQ-a sin” ZQ'b sin’ §Q~c

1(0)~| 4(@)] = 4]

The dependence on the scattering vector Q is given by the so-called Laue finction,
which factorizes along to the three directions in space. One factor along one lattice di-
rection a is plotted in Figure 2.9.

"Laue" function N=5 and N=10
30 T T T T T
N a
i ‘ H
20 - :
o)
‘B
©
= —> <—2n/N
10 i 4
0 MAAMU | u. v ] |

Fig. 2.9: Laue finction along the lattice direction a pr a lattice with fve and ten peri-
ods, respectively.

3 We will later see that this ,,scattering power* is connected to the so-called scattering length of the atom.
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The main maxima occur at the positions Q=n-27/a. The maximum intensity scales with
the square of the number of periods N, the half width is given approximately by AQ =
27/ N-a). The more periods contribute to coherent scattering, the sharper and higher are
the main peaks. Between the main peaks, there are N-2 side maxima. With increasing
number of periods N, their intensity becomes rapidly negligible compared to the intensi-
ty of the main peaks. The main peaks are of course the well-known Bragg re fections,
which we obtain for scattering from a crystal lattice. From the position of these Bragg
peaks in momentum space, the metric of the unit cell can be deduced (lattice constants
a, b, c and unit cell anglese, B, ). The width of the Bragg peaks is determined by the
coherently scattering volume (parameters N, M, and P) - and some other factors for real
experiments (resolution, mosaic distribution, internal strains, ...).

2.8 Probes for scattering experiments in condensed
matter science

In this chapter, we will discuss which type of radiation is suitable for condensed matter
investigations. For neutron beams, we will then discuss the relevant interaction process-
es with matter in detail.

A list of requirements for the type of radiation used in condensed matter investigations
looks as follows:

(1) The achievable spatial resolution should be in the order of the inter-particle dis-
tances, which implies (see section 2.2) that the wavelength A is in the order of
the inter-particle distance L.

(2) If we want to study volume effects, the scattering has to originate from the bulk
of the sample, which implies that the radiation should be at most weakly ab-
sorbed within matter.

(3) For a simple interpretation of the scattering data within the Born approximation
(see section 2.2), multiple scattering effects should be negligible, i. e. the inter-
action of the radiation with matter should be weak.

(4) For the sake of simplicity, the probe should have no inner degrees of freedom,
which could be excited during the scattering process (i. e. avoid beams of mole-
cules, which have internal vibrational or rotational degrees of freedom).

(5) To study magnetic systems, we need a probe which interacts with the atomic
magnetic moments in the sample.

(6) If, in addition to structural studies, we want to investigate elementary excita-
tions, we would like the energy of the probe to be in the order of the excitation
energies, so that the energy change during the scattering process is easily meas-
urable.

This list of requirements leads us to some standard probes in condensed matter research.
First of all, electromagnetic radiation governed by the Maxwell equations can be used.
Depending on the resolution requirements, we will use x-rays with wavelength A of
about 0./ nm to achieve atomic resolution or visible light (4 ~ 350 - 700 nm) to investi-
gate e. g colloidal particles in solution. Besides electromagnetic radiation, particle
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waves can be used. It turns out that thermal neutrons with a wavelength A~0./nm are
particularly well adapted to the above list of requirements. The neutron beams are gov-
erned by the Schrodinger equation of quantum mechanics. An alternative is to use elec-
trons, which for energies of around /00keV have wavelengths in the order of 0.005nm.
As relativistic particles, they are governed by the Dirac equation of quantum mechanics.
The big drawback of electrons as a condensed matter probe is the strong Coulomb inter-
action with the electrons in the sample. Therefore, neither absorption, nor multiple scat-
tering effects can be neglected. However, the abundance of free electrons and the rela-
tive ease to produce optical elements makes them very suitable for imaging purposes
(electron microscopy). Electrons, but also atomic beams, are very powerful tools for
surface science: due to their strong interaction with matter, both types of radiation are
very surface sensitive. Low Energy Electron Diffraction LEED and Reflection High
Energy Electron Diffraction RHEED are both used for in-situ studies of the crystalline
structure during thin film growth, e.g. with Molecular Beam Epitaxy MBE. In what fol-
lows we will concentrate on neutron scattering as one of the probes, which is best suited
for bulk studies on an atomic scale. We will introduce the properties of the neutron,
discuss the absorption of neutrons in matter and derive the scattering cross sections for
the main interaction processes with matter.
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Exercises

Multiple choice

1. Kinematic scattering theory takes into account
[ ] refraction
[ ] attenuation
[ ] multiple scattering
[] none of the above

2. You have measured the scattered intensity [/Q ) as a function of the scattering
vector Q. Which of the following statements are correct for kinematic scattering:
[ ] The Fourier transform of Q) is proportional to the scattering density.
[ 1 X(Q)is always described by the Laue function.
[] I(Q)is the Patterson- or static pair correlation function.
[ ] The phase problem does not allow one to determine the atomic position
directly by a simple mathematical procedure.

E2.1 Bragg scattering

Bragg had the idea to describe scattering from a three-dimensional periodic arrangement
of scatterers (e.g. atoms in a crystal) by the interference of waves reflected from parallel
atomic planes, see sketch below. For constructive interference, sharp intensity maxima
appear as a function of scattering angle. These peaks are called “Bragg reflections”.

a) After scattering, the waves reflected from the two planes show a path length dif-
ference. Which relation does this path length difference have to fulfil in order to
achieve coherent superposition and thus an intensity maximum?

b) Derive the condition for the occurrence of such a Bragg peak in terms of wave-
length 4, scattering angle 20 and distance between the planes d, the so-called

Bragg equation.

c) How does the Bragg equation relate to the Laue conditions?
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3.1 Introduction

We mentioned in the introduction that neutron beams provide a particularly useful
probe for condensed matter investigations. The neutron is an elementary particle, a
nucleon, consisting of three valance quarks, which are hold together by gluons (see
Fig. 3.1). It thus has an internal structure, which, however, is irrelevant for condensed
matter physics, since the energy scales involved in its internal excitations are much too
high. Keeping in mind the difference in lengths scales (diameter of an atom: about
0.1 nm =1071" m; diameter of a neutron: about 1 fm =10"1°> m), we can safely consider
the neutron as a point-like particle without internal structure for our purposes. Due to
the weak interaction, the neutron is not a stable particle. A free neutron undergoes a f3-
decay into proton p, electron e~ and electron-antineutronino v, after an average lifetime
of about 15 minutes:

MIRCALLGSSPE v (3.1)

This leaves ample time for scattering investigations. In contrast to the massless photon,
the neutron has a mass m of about one atomic mass unit ~ 1.675-1072 kg. The finite
neutron mass is comparable to the mass of a nucleus and thus an appreciable amount of
energy can be transferred during the scattering process. The neutron is a neutral particle
and thus does not show the strong Coulomb interaction with matter. This results in large
penetration depths. Finally, the neutron has a nuclear spin 1/2 giving rise to a magnetic
dipolar moment of

Wp=YuN;Y=1.91;un=5.05-10"27J/T (3.2)

Due to this magnetic moment, the neutron can interact with the magnetic field of un-
paired electrons in a sample leading to magnetic scattering. Thus, magnetic structures
and excitations can be studied by neutron scattering.

To calculate the interference effects during the scattering process, a neutron has to be
described as a matter wave with momentum

p=m-v=hkp="h/\ (3.3)

and energy
E_1mv2_h2k2_ h = kpT (3.4)
277 T om  2mazT B '

Here v is the velocity of the neutron and T., defines the temperature equivalent of the
kinetic energy of the neutron. In practical units:

400
ANnm]= (3.5)
vim/ s]
0.818
E[meV]= ———— (3.6)

© Nnm]
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Fig. 3.1: Schematics o fthe neutron being composed o fthree quarks and gluons and the main
quantities characterisingthe neutron as a particle.

Let us consider the example of so-called thermal neutrons from a moderator at ambi-
ent temperature corresponding to a temperature equivalent of T, ~ 300 K. According
to (3.4), their wavelength is 0.18 nm, matching perfectly the distance between atoms.
The energy of thermal neutrons is around 25 meV, which matches well the energy of
elementary excitations, such as spin waves (magnons) or lattice vibrations (phonons).
Together with the usually large penetration depths (charge = 0) and the magnetic inter-
action, these properties make neutrons so extremely useful for condensed matter inves-
tigations.

In the elementary scattering theory of chapter 2.3, we saw that the relevant quantity is
the interaction potential V(r) of the probe with the system from which the probe is scat-
tered. This potential enters in the cross-section in kinematical theory derived either from
Born approximation or from Fermi’s golden rule. To determine this interaction potential,
we will look in more detail at the interaction of neutrons with matter. For neutrons there
exist two dominant interactions: the interaction of the neutron with nuclei and its inter
action with the magnetic field in the sample. The nuclear interaction results from the
so-called strong interaction of particle physics, which is also responsible for the binding
of neutrons and protons in the atomic nuclei. The interaction with the magnetic field is
nothing but the magnetic dipole interaction of the neutron due to its dipolar moment
with the magnetic field of unpaired electrons. There are other interactions, which are
significantly weaker. One is the interaction of the neutron with the electric fields in the
sample due to the neutrons magnetic dipole moment. This is a purely relativistic ef-
fect. Another is the magnetic dipole interaction of the neutron with the magnetic field
produced by the nuclei. Since such interactions are several orders of magnitude weaker
than the nuclear and magnetic interaction, they can usually be neglected and we will
not discuss them further in this lecture.

3.2 Nuclear interaction: Scattering and absorption

To evaluate the cross section (2.26) for nuclear scattering, we have to specify the interac-
tion potential with the nucleus. To derive this interaction potential from first principles
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Fig. 3.2: Scatteringlength as a function o fatomic weight throughout the periodic table ( ffom
Research, London 7 (1954), 257 ).

is one of the fundamental challenges of nuclear physics. Instead, Fermi has proposed a
phenomenological potential based on the argument that the wavelength of thermal neu-
trons is much larger than the nuclear radius. This means that the nuclei are point-like
scatterers which leads to isotropic, Q-independent, (so-called s-wave) scattering. We will
therefore use the so-called Fermi-pseudo-potential:

2

2nh
V(r) =
m

bd(r—R) (3.7)

to evaluate the cross section (2.26).

Despite the fact that the strong interaction of high energy physics is responsible for the
scattering of the neutron with the nucleus, the scattering probability is small due to the
small nuclear radius. Therefore, we can apply the first Born approximation. The quan-
tity b introduced in (3.7) is a phenomenological quantity describing the strength of the
interaction potential and is referred to as the scatteringlength. Tabulated values of b can
be found in [8] or at http:// www.ncnr.nist.gov/ resources/ n-lengths/. The total cross sec-
tion of a given nucleus is o = 471 b|?, corresponding to the surface area of a sphere with
radius b. Since the interaction potential obviously depends on the details of the nuclear
structure, b is different for different isotopes of the given element and also for differ-
ent nuclear spin states. This fact gives rise to the appearance of so-called coherent and
incoherent scattering, see section 2.12. Figure 2.11 shows the variation of the scattering
amplitude as a function of atomic weight throughout the periodic table. The scattering
length is mostly positive but can also adopt negative values. Since —1 = exp(in) this neg-
ative sign corresponds to a phase shift of n (or 180°) during the scattering process. The
scattering length roughly follows the dashed line labelled potential scattering contribu-
tion, despite the fact that there are rather large excursions from this line.
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In the simplest one-dimensional model, we can describe the nucleus as a rectangular
potential well, see Figure 2.12.

The wave function of the neutron being scattered from such a potential well can be writ-
ten as:

W(r)~ ek 4+ fe”” (3.8)

Here the first term describes the incident plane wave and the second term describes a
spherical wave emitted from the nucleus. f describes the scattering amplitude. In the
limit of a hard sphere, the wave function on the surface of the nucleus has to vanish
since the neutron cannot penetrate inside the hard sphere. Mathematically this is de-
scribed by the condition W(R) =0 or — f= R. The scattering length is defined as b:= - f,
so that its value is positive for most nuclei. Therefore, for pure potential scattering,
where the nucleus is assumed to be a hard sphere, b attains the value of the nuclear
radius b = R, which is plotted in Figure 2.11 as a dashed line: the potential scattering
contribution. The marked deviations from this overall behaviour are due to so-called
resonance scattering. In a simplified picture, such resonances occur, when the neu-
tron energy is such that absorption of the neutron in the nucleus produces a bound
excited state. This can lead to a resonant absorption process, but it can also lead to
resonance scattering, a typical second order perturbation process: in the initial state,
the nucleus is in its ground state and the interaction with the neutron can be described
as a virtual transition into an excited state of the compound nucleus and back with a
re-emission of the neutron, where the nucleus decays back from the excited compound
system into its ground state. This process n+ K — C« — K+ n has a cross-section given
by the famous Breit — Wigner — formula:

const
op=4n|R+ ———— (3.9)
E—Eg+1/2iT

Here R is the radius of the nucleus, E the neutron energy, Er the resonance energy and
I' a damping term connected with the life-time of the excited state. As one can see, this
formula describes a very strong energy dependence with a pronounced maximum when
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o4(25meV)[barn]
5333 n+3He— “He*—p+3T
940 n+%Li— “Li*— 3T+*He
3837 n'0B— '1B*— “He “Li +y
681 n+235U— fission

Table 3.1: Examples jor neutron absorption processes due to nuclear reactions. The absorp-
tion cross-section is given or neutrons o fenergy 25 meV in barn =102 m? = 100 fin?.

the neutron energy equals the resonance energy. Moreover, the resonance amplitude has
an imaginary part, which describes the resonance absor ption. In the resonant absorp-
tion process, the neutron is captured by the nucleus, leading to a compound nucleus
in an excited state, containing one more neutron then the original nucleus. In a subse-
quent nuclear reaction, the compound nucleus gets rid of its excess energy. Examples
for such absorption reactions will be given in the subsequent section. Finally, the Breit-
Wigner-formula gives an indication that the scattering length can be negative whenever
the resonant term is negative (i. e. E < Eg), and its magnitude is larger than the contri-
bution from potential scattering.

3.3 Neutron absorption

As explained above, neutron absorption can occur during nuclear reactions. Far away
from the resonance, the absorption cross section is given by

Gy A~ = (3.10)
v

This proportionality to the wavelength A or the inverse velocity 1/A is a result of the den-
sity of states appearing in Fermi’s golden rule. One can argue that wavelength and neu-
tron velocity v are inversely proportional and thus, for longer wavelength i. e. smaller
velocity, the neutron remains correspondingly longer close to the nucleus, which leads
to a higher absorption cross-section. Table 3.1 gives examples for neutron absorption
processes connected with nuclear reactions.

As an example, there is a high probability of neutrons to be absorbed by *He nuclei,
be-cause the *He or a-particle is very stable since it corresponds to a closed nuclear
shell. However, during the absorption of the neutron, the 4He nucleus is produced in
an excited state. It gets rid of its surplus energy by decay into a proton and a triton
(the triton 3T nucleus is a hydrogen isotope with one proton and 2 neutrons) 3T. Since
these two particles have very high energies of about 0.5 MeV due to the nuclear reaction,
charged particles are created during this decay, which can be used for neutron detection
in a proportional counter. In a similar manner, the reaction with ®Li, 1°B or #°U can
be used to build neutron detectors. It should be mentioned, however, that the neutron
absorption in 3He is very strongly dependent on the relative orientation of the nu-clear
spins of both particles. While for antiparallel spin direction (singlet state), the absorp-
tion cross-section is ~ 6000 barn, it reduces to 2 barn for parallel spin direction (triplet
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Nucleide | o Y [barn] | Eresonance [meV]
13cd 20600 178
BlEy 9200 321
15Gd 60900 26.8
157Gd 254000 31.4

Table 3.2: Examples for (n, Yy )-resonances with the cross-section in barn and the resonance
energyin mevV.

state). This effect can be used to build efficient neutron polarization filters. By optical
pumping with laser light, the nuclear moment of the *He nuclei can be aligned along
one direction (so-called hyperpolarized *He gas). If an unpolarized neutron beam passes
a filter cell filled with hyperpolarized *He, the neutrons with spin moment antiparallel to
the nuclear moment of the 3He have a high probability to be absorbed, while neutrons
with the other spin direction have a high probability to be transmitted. For an appropri-
ate thickness of the filter cell, a very high neutron beam polarization can be achieved in
this manner.

Another class of absorption processes are so-called (n,Yy)—resonances. Examples are
given in Table 3.2. In these processes, a nucleus is produced, which contains one ad-
ditional neutron and this compound nucleus decays into the ground state by emission
of y-radiation. Prominent (7, y)—resonances occur for Cadmium or Gadolinium where,
depending on the isotope, the absorption cross-section can be very high, see Table 3.2.
These metals are often used as neutron absorbers in shieldings or diaphragms, which
define the size of the neutron beam. One should, however, be aware that in these re-
actions, y-radiation of very high energy is being released, which requires additional lead
shielding for radiation protection.

As described by the Breit-Wigner-Formula, these resonance absorption cross-sections
have very strong energy dependencies. The simple proportionality to the wavelength
given in equation (3.10) no longer holds close to the resonance energies. As an exam-
ple, we show the energy dependence of the absorption cross-section for Cadmium in
Figure 3.4. Such data can be found in the compilation [9].

Figure 3.4 shows that for lower energies, i. e. long wavelengths, the proportionality of the
absorption cross-section to the wavelength holds to very good approximation. How-ever,
there is a strong resonance for a wavelength of 0.64 A, where the cross-section attains
a maximum of about 20 kbarn. Above this energy, i. e. for shorter wavelengths, the
absorption cross-section drops drastically. At a wavelength of 0.2 A it attains a value
of only 8 barn. This shows that in the thermal energy range, Cadmium can be used as
an efficient neutron absorber. How-ever, one has to be careful and not use it for the
same purpose in case of hot neutrons, where Cadmium becomes virtually transparent.
There are many more resonances for higher neutron energies, which are not relevant
for neutron scattering, where only hot (T.; = 2000 K), thermal (T.; = 300 K) and cold
(Teq = 20 K) neutrons are being used.

A similar strong energy dependence occurs for the element Gadolinium. Usually, neu-
tron scatterers try to avoid samples containing Gadolinium since it is the most absorb-
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Fig. 3.4: Absorption cross-section o fthe element Cadmium as a fiunction o fenergyin a double
logarithmic representation (adopted from [8]).

ing element, especially the isotope °’Gd. However, the resonances lay right in the ther-
mal neutron energy range. If the scattering experiment is performed with hot neutrons,
the absorption cross-section of Gadolinium becomes much smaller and scattering exper-
iments become feasible!.

3.4 Coherent and incoherent scattering

As mentioned above, the nuclear interaction potential depends on the details of the nu-
clear structure and thus, the scattering length b is different for different isotopes of a
given element and also for different nuclear spin states. In this section, we will discuss
the effects of these special properties of the interaction of neutrons and nuclei for the
scattering from condensed matter. Let us assume an arrangement of atoms with scatter-
ing lengths bi on fixed positions R;. For this case, the scattering potential writes:

2nth?
V(r)=

n

Zb,ﬁ(r— R;) (3.11)

The scattering amplitude is obtained from a Fourier transform:

! Another possibility is to use isotope enriched Gadolinium. While the isotope '’ Gd with natural abundance
15.7% has a thermal absorption cross section of 259000 barn, the isotope '°Gd, which is the most abundant
with 24.8%, has an absorption cross section of only 2.2 barn.
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AQ)=) b;e'® (3.12)

When we calculate the scattering cross section, we have to take into account that the dif-
ferent isotopes are distributed randomly over all sites. Also the nuclear spin orientation
is random, except for very low temperatures in high external magnetic fields. Therefore,
we have to average over the random distribution of the scattering length in the sample:

d OR < x _IOR.
TS (Q~1AQI* = (L bie' - T be M) (3.13)
i J

In calculating the expectation value of the product of the two scattering lengths at sites
i and j, we have to take into account that according to the above assumption, the dis-
tribution of the scattering length on the different sites is completely uncorrelated. This
implies that for i # j, the expectation value of the product equals to the product of the
expectation values. Only for i = j a correlation occurs, which gives an additional term
describing the mean quadratic deviation from the average:

(b)(b) = (b)?, i#j
(bib j)= L (3.14)
Y {<b2> =((b—(bN?), i=j
The line for i = j results from the identity:
((b—(b))?)y = (b* = 2b(Db) +(b)*) = (b*) — (D)* (3.15)
Therefore, we can write the cross section in the following form:
do 2
_ — 2 iQR; "
dQ(Q) (b) ;e coherent (516)

+N{(b-(bY)?® "incoherent"

The scattering cross section is as a sum of two terms. Only the first term contains the
phase factors e!QR which result from the coherent superposition of the scattering from
pairs of scatterers. This term takes into account interference effects and is therefore
named coherent scattering. The scattering length averaged over the isotope- and nu-
clear spin- distribution enters this term. The second term in (3.16) does not contain any
phase information and is proportional to the number N of atoms (and not to N? as for
coherent scattering in fully constructive interference!). This term is not due to the in-
terference of scattering from different atoms. As we can see from (3.15) (line i = j), this
term corresponds to the scattering from single atoms, which subsequently superimpose
in an incoherent manner (adding intensities, not amplitudes!). This is the reason for
the intensity being proportional to the number N of atoms. Therefore, the second term
is called incoherent scattering. Coherent and incoherent scattering are illustrated in
Figure 3.5.
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Fig. 3.5: Two-dimensional schematic illustration o fthe scattering process from a lattice of
N atoms ofa given chemical species, jor which two isotopes (small dotted circles and large
hatched circles) exist. The area o fthe circle represents the scattering cross section o fthe single
isotope. The incident wave (top part o fthe figure jor a special arrangement o fthe isotopes)is
scattered coherently only from the average structure. This gives rise to Bragg peaks in certain
directions. In the coherent scatteringonlythe average scatteringlength is visible. Besides these
inter ference phenomena, an isotropic background is observed, which is proportional to the
number N o fatoms and to the mean quadratic deviation from the average scattering length.
This incoherent part o fthe scatteringis represented bythe lower part o fthe figure.
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Isotope | Natural Abundance | Nuclear Spin | Scattering Length [fm]
58Nj 68.27% 0 14.4(1)
60N 26.10% 0 2.8(1)
6INj 1.13% 3/2 7.60(6)
62Nj 3.59% 0 -8.7(2)
64Nj 0.91% 0 -0.37(7)
Ni 10.3(1)

Table 3.3: The scattering lengths o fthe nickel isotopes and the resulting scattering length of
natural g Ni [8].

The most prominent example for isotope incoherence is elementary nickel. The scat-
tering lengths of the nickel isotopes are listed together with their natural abundance in
Table 3.3 [8]. The differences in the scattering lengths for the various nickel isotopes are
enormous. Some isotopes even have negative scattering lengths. This is due to resonant
bound states, as com-pared to the usual potential scattering.

Neglecting the less abundant isotopes ®'Ni and %*Ni, the average scattering length is cal-
culated as:

(b)=~[0.68-14.4+0.26- 2.8+ 0.04-(-8.7)] fm=10.2 fm, (3.17)

which gives the total coherent cross section of:

= Oeoherent = 4M(b)? = 13.1 barn(exact: 13.3(3) barn) (3.18)

The incoherent scattering cross section per nickel atoms is calculated from the mean
quadratic deviation:

01 3°fP¢  — 471[0.68-(14.4—10.2)%+0.36- (2.8—10.2)%+ 0.04- (—8.7—10.2)] fm?

incoherent

=5.1 barn (exact: 5.2(4) barn)

(3.19)

Values in parentheses are the exact values taking into account the isotopes %' Ni and 54Ni
and the nuclear spin incoherent scattering (see below). From (3.18) and (3.19), we learn
that the incoherent scattering cross section in nickel amounts to more than one third of
the coherent scattering cross section.

The most prominent example for nuclear spin incoherent scattering is elementary hydro-
gen. The nucleus of the hydrogen atom, the proton, has the nuclear spin I =1/2. The
total nuclear spin of the system H+ n can therefore adopt two values: J=0 and J=1.
Each state has its own scattering length: b_ for the singlet state (J=0) and b, for the
triplet state (J=1) - compare Table 3.4.

Just as in the case of isotope incoherence, the average scattering length can be calcu-
lated:
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Total Spin Scattering Length Abundance
J=0 b_ =-475 fm }Z (one mj state)
(singlet: mj=0)
J=1 b, =10.85 fm i—’ (three myj state)
(triplett: my=-1,0,+1)
(by=-3.739(1) fm

Table 3.4: Scatteringlengths jor hydrogen [8].

(by = i(—47.5)+ 2(10.85) fm=-374 fm (3.20)

This corresponds to a coherent scattering cross section of about = 1.76 barn [8]:

= Oconerent = 4m(b)? =1.7568(10) barn (3.21)

The nuclear spin incoherent part is again given by the mean quadratic deviation from
the average:

) 1 3
puctear SDIN _ gn| ~(~47.5+3.74)%+ ~(10.85+3.74)2| fm®=80.2 barn
incoherent 4 4 (3.22)

(exact :80.26(6) barn)

Comparing (3.21) and (3.22), it is immediately clear that hydrogen scatters mainly inco-
herently. As a result, we observe a large background for all samples containing hydrogen.
We should avoid all hydrogen containing glue for fixing our samples to a sample stick.
Finally, we note that deuterium with nuclear spin [=1 has a much more favourable ratio
between coherent and incoherent scattering:

oD, =5.592(7) barn; o}, =2.05(3) barn (3.23)
The coherent scattering lengths of hydrogen (-3.74 fm) and deuterium (6.67 fm) are sig-
nificantly different. This can be used for contrast variation by isotope substitution in
all samples containing hydrogen, i. e. in biological samples or soft condensed matter
samples, see corresponding chapters. A further important element, which shows strong
nuclear incoherent scattering, is vanadium. Natural vanadium consists to 99.75 % of the
isotope >V with nuclear spin 7/2. By chance, the ratio between the scattering lengths b,
and b_ of this isotope are approximately equal to the reciprocal ratio of the abundances.
Therefore, the coherent scattering cross section is very small and the incoherent cross
section dominates [8]:

oy . =0.01838(12) barn, o

incoh.

=5.08(6) barn (3.24)

For this reason, Bragg scattering from vanadium is difficult to observe above the large
incoherent background. However, since incoherent scattering is isotropic, the scattering
from vanadium can be used to calibrate multi-detector arrangements.
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Here, we will not discuss scattering lengths for further elements and refer to the values
tabulated in [8].

3.5 Magnetic neutron scattering

So far, we have only discussed the scattering of neutrons by the atomic nuclei. Apart
from nuclear scattering, the next important process is the scattering of neutrons by the
magnetic field created within the sample from the moments of unpaired electrons. This
so-called magnetic neutron scattering comes about by the magnetic dipole-dipole inter-
action between the magnetic dipole moment of the neutron and the magnetic field of
the unpaired electrons, which has spin and orbital angular momentum contributions.
This magnetic neutron scattering allows us to study the magnetic properties of a sample
on an atomic level, i. e. with atomic spatial- and atomic energy- resolution. Here we
do not discuss magnetic neutron scattering any further and refer to the corresponding
chapter on "Spin Dependent and Magnetic Scattering".

3.6 Comparison of probes

In this lecture, we have so far introduced the elementary formalism to describe the scat-
tering process and discussed the interaction of neutrons with matter. We now want to
ask the question, for which problems in condensed matter research neutrons can be uti-
lized successfully also in comparison to other probes, such as x-ray scattering or elec-
tron microscopy and electron scattering. To answer this question, we have to look at the
ranges of energies, wave-lengths or scattering vectors, which can be covered by various
probes as well as the different contrast mechanisms.

Figure 3.6 shows a double logarithmic plot of the dispersion relation "wavelength versus
energy"' for the three probes neutrons, electrons and photons. The plot demonstrates
how thermal neutrons of energy 25 meV are ideally suited to determine interatomic dis-
tances in the order of 0.1 nm, while the energy of x-rays or electrons for this wave-length
is much higher. However, with modern techniques at a synchrotron radiation source, en-
ergy resolutions in the meV-region become accessible even for photons of around 10 keV
corresponding to a relative energy resolution AE/E = 10— 7! The graph also shows that
col-loids with a typical size of 100 nm are well suited for the investigation with light of
energy around 2 eV. These length scales can, however, also be reached with thermal neu-
tron scattering in the small angle region. While Figure 3.6 thus demonstrates for which
energy-wave-length combination a certain probe is particularly useful, modern experi-
mental tech-niques extend the range of application by several orders of magnitude.

It is therefore useful to compare the scattering cross sections as it is done in Figure 3.7
for x-rays and neutrons. Note that the x-ray scattering cross sections are in general a
factor of 10 larger as compared to the neutron scattering cross sections. This means that
the signal for x-ray scattering is stronger for the same incident flux and sample size. But
caution has to be applied that the conditions for kinematical scattering are fulfilled. For
x-rays, the cross section is proportional to the square of the number of electrons and
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Fig. 3.6: Comparison o fthe three probes - neutrons, electrons and photons - in a double loga-
rithmic energy-wavelength diagram.

thus varies in a monotonic fashion throughout the periodic table. Clearly it will be diffi-
cult to determine hydrogen positions with x-rays in the presence of heavy elements such
as metal ions. Moreover, there is a very weak contrast between neighbouring elements
as can be seen from the transition metals Mn, Fe and Ni in Figure 2.16. However, this
contrast can be enhanced by anomalous scattering, if the photon energy is tuned close
to the absorption edge of an element. For neutrons the cross section depends on the de-
tails of the nuclear structure and thus varies in a non-systematic fashion throughout the
periodic table. For example, there is a very high contrast between Mn and Fe. With neu-
trons, the hydrogen atom is clearly visible even in the presence of such heavy elements
as Uranium. Moreover there is a strong contrast between the two Hydrogen isotopes H
and D. This fact can be exploited for soft condensed matter investigations by selective
deuteration of certain molecules or functional groups. This will vary the contrast within
the sample.

Finally, both neutrons and x-rays allow the investigation of magnetism on an atomic
scale. Magnetic neutron scattering is comparable in strength to nuclear scattering, while
non-resonant magnetic x-ray scattering is smaller than charge scattering by several or-
ders of magnitude®?. Despite the small cross sections, non-resonant magnetic x-ray
Bragg scattering from good quality single crystals yields good intensities with the bril-
liant beams at modern synchrotron radiation sources. While neutrons are scattered from
the magnetic induction within the sample, x-rays are scattered differently from spin and
orbital momentum and thus allow one to measure both form factors separately. Inelas-
tic magnetic scattering e.g. from magnons or so called quasielastic magnetic scattering
from fluctuations in disordered magnetic systems is a clear domain of neutron scatter-

2 Typically between 6 to 9 orders of magnitude.
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ing. Finally, resonance exchange scattering XRES of synchrotron x-rays allows one not
only to get enhanced intensities, but also to study magnetism with element- and band
sensitivity.

With appropriate scattering methods, employing neutrons, x-rays or light, processes in
condensed matter on very different time and space scales can be investigated. Which
scattering method is appropriate for which region within the "scattering vector Q - en-
ergy E plane" is plotted schematically in Figure 3.8. A scattering vector Q corresponds to
a certain length scale, an energy to a certain frequency, so that the characteristic lengths
and times scales for the various methods can be directly determined from the figure.
Examples for applications and information on instrumentation will follow in subsequent
lectures.
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Exercises

E3.1 Multiple choice

1. 1. The typical diameter of an atom is closest to

O 1 pum
O1mm
olpm
O1 fm

2. The typical diameter of a neutron is closest to

O 1pum
0O 1mm
01 pm
01 fm
3. Neutrons are neutral particles, neutron counting is done electronically, i.e. an elec-
tronic pulse has to be generated in a neutron detector. What would you use as
counting gas in order to build a neutron detector:
0 3He
O “He
OH
o D
4. You have to build a slit in order to define a beam size for neutrons of wave-length
1 A Which material could you use:
O Pb
0O Gd
O Cd
O Al
5. For a scattering experiment on Ni, you need a sample with strong coherent scat-
tering, but as little background as possible. Which isotope mixture would you
chose?
O 100%°®Ni
O 100%° Ni
O 100%°*Ni
O 57%°°Ni + 43%° Ni

6. Kinematic scattering theory takes into account
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refraction
attenuation

multiple scattering

[ I R N N

none of the above

7. You have measured the scattered intensity I[(Q) as a function of the scattering vec-
tor Q. Which of the following statements are correct for kinematic scattering:

The Fourier transform of I(Q) is proportional to the scattering density:.

I(Q) is always described by the Laue function.

I(Q) is the Patterson- or static pair correlation function.

o 0O o O

The phase problem does not allow one to determine the atomic position di-
rectly by a simple mathematical procedure.

E3.2 Braggscattering

Bragg had the idea to describe scattering from a three-dimensional periodic arrangement
of scatterers (e.g. atoms in a crystal) by the interference of waves reflected from parallel
atomic planes, see sketch below. For constructive interference, sharp intensity maxima
appear as a function of scattering angle. These peaks are called “Bragg reflections”.

a) After scattering, the waves reflected from the two planes show a path length dif-
ference. Which relation does this path length difference have to fulfil in order to
achieve coherent superposition and thus an intensity maximum?

b) Derive the condition for the occurrence of such a Bragg peak in terms of wave-
length A, scattering angle 20 and distance between the planes d, the so-called
Bragg equation.

c¢) How does the Bragg equation relate to the Laue conditions?




Neutron Properties 3.19

E3.3 Neutron scattering from Ti-Zr alloys

Ti and Zr form a continuous alloy series with hexagonal crystal structure. Your task is
to build a sample chamber from a TixZr;.x alloy for diffraction experiments with ther-
mal neutrons. The chamber should produce as little background due to coherent Bragg
reflections as possible.

a) Which stoichiometry would you choose for the alloy? (It is sufficient to specify the
condition, the actual calculation is optional)

b) What is the disadvantage of such a sample chamber?

nuclid natural scattering | nuclid natural scattering
abundance | length b [fm] | nuclid | abundance | length b [fm]
46T 8.2% 4.93 0 7y 51.45% 6.4
47T 7.5% 3.63 N Zr 11.32% 8.7
48T} 73.8% -6.08 92 7r 17.19% 7.4
49T 5.4% 1.04 % 7r 17.28% 8.2
50Ty 5.2% 6.18 % 7r 2.76% 5.5

E3.4 Neutron absorption

Aluminium has a face centred cubic crystal structure (cubic close packed lattice) with a
lattice constant of ag = 4.04959 A The absorption cross section for neutrons of velocity
2200 m/s amounts to 0.231 barn.

a) Calculate the absorption cross section of Aluminium for neutrons of wavelength
A=1A

b) Besides pure absorption, do we have to take into account other processes when
calculating the total attenuation?

The following exercise parts ¢ and d are optional!

c) c¢) Due to absorption, the neutron beam is attenuated according to dl=—-p-1-dx
or I=1Ipe ™™ where u is the linear absorption coefficient. Calculate pu for neutrons
of wavelength 1 A for Aluminium.(Hint: Calculate the absorption cross section per
unit cell and compare to the unit cell dimensions).

d) Determine the attenuation of a 1 A neutron beam in an Al slab of 10 cm thickness
due to absorption only in percentage of the incident flux.
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4.1 Introduction

Neutrons are an extremely versatile probe to investigate the fundamental properties of matter.
The possible applications range from fundamental questions (e.g. electrical dipole moment
of the neutron) over condensed matter physics and chemistry to material science and life
sciences. The reason for this is threefold:

* The neutron is electrically neutral: hence it can penetrate deeply into matter and prove
truly the bulk properties. If you use other massive particles to investigate the properties
of matter such as « particles or electrons, you probe usually only the regions close to
the surface. Even for x-ray, which is also considered as a bulk technique in general,
you penetrate only several hundreds of nm, if you use the wavelength delivered by a
laboratory x-ray tube.

* The neutron interacts with the sample via nuclear forces: hence the interaction cross
section depends on the internal structure of the nuclei in your sample and not on the
mass or electric charge of the whole atom. Neutrons are sensitive more or less equally
to heavy and light atoms, making them an ideal probe for samples containing hydrogen,
carbon or oxygen next to any other heavier atom.

* The neutron has a large magnetic moment: hence it is extremely sensitive to the mag-
netic properties of your sample. The magnetic field created by the sample scatters the
neutron and the analysis of the direction, into which the neutrons are scattered, and the
number of scattered neutrons provides the information about the magnetic structure,
the size of the magnetic moments and the coupling between different magnetic sites.

Neutrons are in particular useful, because the wavelength corresponds very well with the in-
teratomic distances and the energy is similar to the energy of typical excitations in condensed
matter problems. We calculate the kinetic energy of a free neutron

Eiin = %m|v|2 (4.1)
— 4.2

2m ( . )

= o3 (4.3)

using the de Broglie relation, that expresses the wavelength of a quantum mechanical particle
with momentum p:

o b (4.4)
Pl
If we insert the natural constants, we get
E()\) = 81.805 meVA”® x A2 (4.5)
v(A) = 3956 msTtA  x 7! (4.6)

In other words, if we provide neutrons with a wavelength 0.8 < X\ < 20 A suitable for
resolving interatomic distances in condensed matter, these neutrons are also ideally suited to
study the dynamics in the energy range 0.001 < £ < 100 meV.
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Apparently the properties of the neutrons make them an attractive probe for a wide variety
of applications. In the reminder of the lecture I will try to answer the question, what the
providers of neutrons, e.g. JCNS, FRM II, ILL, SNS..., can do to make their users happy.
Therefore we first need do understand, what users want. We consider an generic neutron
spectrometer, that allows to measure transfer of energy and momentum between neutron and
the sample, see Fig. 4.1. How this is done, you will learn in the other lectures of the
course and mainly during the practical part. The signal you get finally at the detector of your

Primary

Monochromator spectrometer

Beam from
a neutron source

Secondary
spectrometer

Sample

Analyzer N\

Fig. 4.1: Generic layout of a
neutron spectrometer

Detector ——

instrument can be expressed in the following way:
]det = IOEp'rEsecedethampleVsample + baCkgfound (47)

Iy is the incident neutron brilliance, i.e. the number of neutrons per second emitted from
the source normalized by area, solid angle and energy or wavelength interval, €, denotes the
efficiencies of the primary and the secondary spectrometer and the detector, o sampie, Vampie
is the cross section and the volume of the sample, respectively. If you have an interesting
scientific question that has not been answered yet, usually the both the cross section and
volume are small. Hence to get good data, you need first an efficient instrument with a good
signal to noise ratio, which detects ideally all and only the neutrons scattered by the sample.
Second you need a low background that allows you to distinguish also tiny signals. And last
but not least you need an intense source of neutrons, that brings a lot of useful neutrons to
the instrument.

4.2 How do we get free neutrons?

The free neutron has a mean lifetime of about 900 s, hence it is necessary to produce the free
neutrons as you run your experiment. While most nuclei are constituted to more then 50 %
by neutrons, nuclear forces confine them and hence it is rather difficult to set neutrons free.
Nowadays free neutrons for scientific applications are released by nuclear reactions mainly in
fission reactors or in spallation sources. Both routes require large scale facilities, that operate
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the source and provide state-of-art instrumentation. One example for the nuclear research
reactor is the FRM II, where you will perform the practical part of the Laboratory Course.
The most powerful spallation source today is the SNS installed at the Oak Ridge National
Laboratory in the USA.

The neutron as a free particle was discovered by James Chadwick in 1932, when he inves-
tigated the radiation from Beryllium illuminated with « particles. Finally he described the
ongoing reaction as

sa+9 Be =2 C 44 n. (4.8)

The uncharged particle in this equation was called neutron. The flux of free neutrons released
by the reaction was about 10° n cm~2s~!. Such a small number would prevent any scattering
experiment.

4.2.1 Nuclear fission reactors

With the development of nuclear fission reactors in the 1940ies the situation changed. Using
the fission reaction

L5 +é n — fission fragments + 2.52 X é n + 180MeV 4.9)

the first experimental reactors released about 107 n cm~2?s™!. Beside the investigation of the

nuclear reaction, such a flux enabled the first scattering experiments with neutrons. In the
following the thermal neutron flux increased dramatically until it saturated in the mid fifties.
The still most powerful research reactor at the ILL became critical in 1974. The modern
FRM I reactor has 0.5 x the flux of the ILL, but the thermal reactor power is lower by a
factor 0.33 due to special core design. Furthermore, the flux of cold neutrons (see Sec. 4.3)
is more or less the same.

In the nuclear fission reaction eq. (4.9) a slow neutron is captured by an *>U nucleus, which
then splits into two fragments releasing 2 or 3 prompt neutrons, which carry an energy of
1.29 MeV. Each of this instantaneously (within 10 ns) emitted neutrons can fission another
nuclei so that each of them will emit another 2 to 3 neutrons. The process is called chain
reaction. If the mass of the fissile material is larger than the so called critical mass M¢
the number of neutrons will increase exponentially, leading to an uncontrollable reaction. If
the mass of the fissile material is smaller than M- the number of neutrons will decrease
over time and the nuclear chain reaction stops. If you want to sustain the nuclear reaction
for a long time it is necessary to control the neutron flux such that the number of neutrons
that drive the chain reaction remains constant. The control of the reactor is possible, if the
nuclear reaction is not only triggered by the prompt neutrons. The fission fragments are
also highly excited nuclei and relax to their ground state by the emission of neutrons among
other nuclear reactions. Concerning only the prompt neutrons, the reactor is operated below
its critical mass M, but the delayed neutrons, which are comprised by the prompt neutrons,
which are moderated in the cooling medium and the secondary neutrons from the fission
fragments, sustain the chain reaction. The number of delayed neutrons is controlled by rods
of neutron absorbing material (usually Boron), which can be inserted in the reactor core.
Beside the control rods, which are used to steer the reactor, additional rods exist to fully stop
the flux of neutrons and shut down the reactor.
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With the development of the nuclear research reactors the thermal neutrons flux increased
rapidly until it reached a flux ® = 10'5 n/cm?/s at the end of the 1960ties. An increase
in neutron flux goes simultaneously with an increase in the thermal power of the reactor.
However, the installations for extracting the neutrons suffers strongly by heat and radiation
damage. Therefore the development of more powerful research reactors has stopped with the
design of ILL reactor. The modern FRM II reactor has a very compact reactor core, which
provides half of the thermal neutron flux using only one third of reactor power as compared
to the ILL.

4.2.2 Spallation neutron source

As an alternative to nuclear fission reactors a large number of neutrons can be released from
the nucleus via spallation reactions.Here, high energy protons (E ~ 1GeV') are accelerated
onto a target made of a neutron rich material. Due to the large energy, the de Broglie wave-

length
B2
A= 4.10
\/ZmE ( )

is so short, that the protons interacts with the single nucleons instead of the nucleus as a
whole. The kicked nucleon may either leave the nucleus leading to an inter-nuclear cascade
or may be scattered by other nucleons leading to an intra-nuclear cascade. However, as a
result of stage 1 of the spallation process, the nucleus is in a highly excited state. In stage
2 this energy is released by evaporation of a whole particle zoo, including neutrons. The
neutron yield per spallation event depends on the target material. For typical materials 20-50
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neutrons are released per spallation event. The deposited heat depends on the target material,
too, and is on the order of 20 to 50 MeV/jn.

Concerning safety, the spallation source can never run out of control as no chain reaction
is running. Neutrons are only produced, as long as the protons are accelerated onto the
target. Even better, this feature can be used to impose a precise time structure on the neutron
spectrum. The spallation process happens on a time scale of 1071 s. Therefore the length
of the proton pulse determines the length of the neutron pulse. If one measures the time of
flight of a neutron from the source to the detector at your instrument, the neutron velocity
can be determined, as the flight path is also known. You will learn more about time-of-
flight spectroscopy and diffraction in the remaining lectures. Among the spallation source

RF structures
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Fig. 4.3: Schematic o fa long pulse and a short pulse spallation source.

on distinguishes so called long pulse spallation sources (LPSS) and short pulse spallation
sources. Using a linear accelerator a proton bunch with a width of several ms can be tailored.
If the neutron pulse should be shorter, the protons have to be compressed. This is done by
feeding the protons from the Linear accelerator into a synchrotron. The next bunch is then
feed in, when the former one has revolved once, to make a denser proton bunch. Using
the compressor, the 1us duration pulses. While the latter type provides a higher peak flux,
1. e., more neutrons in a short time intervall, the former type yields a significantly higher
average neutron flux, in particular in the energy range that is typically used for diffraction
experiments. Therefore certain experiments are better of at a SPSS, while the LPSS provides
a more versatile spectrum and clearly is superior for ’slow’ neutrons. The most powerful
existing spallation source, the 1.4 MW SNS at Oak Ridge is a SPSS, while the planned ESS
in Lund, Sweden, will be a LPSS with 5 MW power.
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4.2.3 Compact Neutron Sources

Recently we observe a trend to explore 'low’ energy nuclear reactions for the realisation
of low to medium flux sources, which are supposed to be scalable both in power and in
cost [6, 7]. They are also accelerator driven, but since the particle energy ranges from 5 <
E <100 keV, the target monolith can become much more compact. A variety of potential
reactions exist , e.g. protons or deuterons on Be or Li or electrons on Tungsten. The lower
projectile energy enables more compact target-moderator assemblies (see below), so that a
larger fraction of the produced neutrons can be made useful for the actual thermal or cold
neutron experiment.

For the low energy accelerator commercial solutions often exist already, e.g. for medical
applications. This makes the construction and the operation of such a facility an easier task
compared to reactors or spallation sources. Therefore it is envisioned to create a network
of such low power sources, which provide sufficient flux to perform the experiments, which
are not very flux demanding, but rely on a close distance and immediate access, e.g. when
feedback for the sample preparation is needed. Furthermore such source could be extremely
valuable for the education of future neutron users, as students could acquire there much more
experience than on a lab course like this one.

4.2.4 Comparison of the different sources

Comparing the different sources, we have to consider a number of features:

Neutron Flux Nowadays reactor sources still provide the highest average neutron flux. This
flux is still higher as the flux at the 1.4 MW SPSS. The 5 MW spallation source will
actually reach a similar average flux. However, for most experiments it is necessary, to
select only a narrow range in energy or wavelength, respectively. At a pulsed source
this can be done natively using time-of-flight monochromatization. Then not the aver-
age flux, but the peak flux, 1. e., the flux during the proton pulse, counts. In that case,
the monochromatic intensity at the spallation source can be higher. For the compact
sources the flux dependes strongly on the accelerator power and hence the budget of
the operating facility. Small sources with less than 10 KW power have a sample flux 20
to 100 times smaller than spallation sources. For the high power compact sources with
100 KW power, the sample flux is expected to be comparable to nowadays medium
flux reactors.

Safety While the fissile material inside the reactor core of a research reactor is only a small
fraction of the amount in a nuclear power plant, there is still a nuclear chain reaction
ongoing, which in principle can run out of control. The spallation sources and the
compact sources rely on the operation of the accelerator and are therefore inherently
safe.

As all sources use nuclear reactions and create high energy particles, they both produce
radioactive waste, which must be treated or stored after the operation of the facility. In
case of the spallation source the waste has generally shorter life times. Concerning
radiation safety, the energy spectrum of spallation neutrons contains more very fast
neutrons, compared to the reactor spectrum and the spectrum of the low energy nuclear
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reaction. Hence spallation sources require heavier and more complex shielding around
the target and around the beamlines, which is an important cost driver of a spallation
facility. In particular for the low power compact sources, the radiation level is rather
low, so that compact shielding assemblies enable a close access to the source and easy
operation.

Stability In fact, the operation of a GeV proton accelerator is quite delicate. As already

mentioned this makes the source very safe. On the other hand, sometimes it may
also happen, that the proton beam is not available for quite some time during your
allocated beam time. The neutron reactor runs usually very stable without interruption.
Additionally the neutron flux is more stable at the reactor making it easier to compare
individual measurements.

Technical feasibility The source neutron flux at a reactor could be increased only by an in-

crease of the thermal power. There have been attempts to build a more powerful reactor
in the US in the nineties, which have been abandoned for economical reasons. The heat
removal from the core becomes extremely complex and also the radiation damage to
the installations necessary for the extraction of the neutron is a severe issue. For the
SPSS exist similar arguments. The intense proton beam implants a large amount of
heat in a very short time interval. Again the major problem is the removal of this heat.
There seems to be a technological limit also for the short pulse spallation sources to
increase their power far beyond the present state. For the long pulse spallation sources,
the situation seems to be slightly relaxed. Since the heat is implanted during a longer
time interval, the heat removal is facilitated. The 5 MW of power for the ESS could
possibly increased up to 10 MW. There exist even estimates, that one could design a
long pulse spallation target running at 20 MW. However, these are plans for the very
far future, as already the ESS will be operational in the 2020ies only. For the compact
sources, the accelerator issue is relaxed. For the realisation of the high power version,
the requested beam currents are on the edge of today’s technology. Still the pressing
question is the heat that has to be removed. For 4.1 it is clear, that this reaction pro-
duces the same heat for 60 times less neutrons as compared to the spallation reaction.

Reaction Energy (GeV) Neutron yield Deposited heat (MeV)

per event per event per neutron
235U fission 1 180
Pb spallation 1 20 23
9Be(d,n) 0.025 0.006 1200

Table 4.1: Comparison o fneutron producing reactions

4.3 How do we make free neutrons useful?

After the nuclear reaction the released neutrons have energies in the MeV range correspond-
ing to a wavelength according to eq. (4.10) A ~ 10=° A. The energies we are interested
in solid state physics, chemistry or biology rather range from the peV range for relaxation
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phenomena to the eV range for the bonding of the valence electrons in molecules. One my
also compare the energy scale to the corresponding temperatures via

Eperm = kpT. (4.11)

From here we see that 1 meV is equivalent to a temperature of 11.6 K or vice versa 300 K
are equivalent to 25.6 meV.

The distances we want to resolve in a neutron scattering experiment are on a atomic or
molecular length scale and range from 1 A to 1um and therefore the neutrons should have
comparable wavelength to have an appropriate resolution. If we use again the expression
for the de Broglie wavelength eq. (4.10), we find that a neutron with an energy £/ = 25.6
meV has a wavelength A = 1.8 A, fulfilling both requirements simultaneously. This is also
the reason, why neutron scattering is so versatile for studies of the dynamics of crystalline
materials, because all atoms in a crystal show coherent motions due to their arrangement and
bonding.

How can we change the neutron energy to the range, we are interested in? The best way is,
if they collide elastically with other partners of much lower energy and spread this energy
in a large volume ( don’t forget, that 1 MeV= 1.6 x 1073 J). The energy loss per collision
depends on the mass of the colliding partners: The highest energy transfer is achieved, if the
mass of both partners is equal. Therefore ' H or 2H are the best partners, making water an
ideal choice for the moderator. Since protons like to react with neutrons, the moderator often
contains heavy water, i.e. D,O, which has a smaller absorption cross section. For the FRM
II the reactor core is surrounded by the heavy water tank. The outer area of the water tank
is filled with light water, hence the flux of neutrons hitting the biological shielding outside
the tank is already reduced.

Typically it takes several tens of ps to moderate the neutron to the temperature of the sur-
rounding water. This process is therefore called thermalization. Within this time the neutron
travel away from the reactor core, where they are produced. On the other hand, there is a
finite probability for the absorption of a neutron, if the flight path inside the water is too
long. The maximum of the thermal neutron flux density is displaced from the reactor core
with the fuel element by 10 to 15 cm, as shown in Fig. 4.4 a).

For an experiment it is now of main interest to collect as many useful neutrons from the
reactor, but not to get the fast neutrons or the I' radiation that are created in the nuclear
reactions into the experimental area. Therefore the beam tubes, as indicated in Fig. 4.4
b) don’t face the reactor core, but tangentially look onto the maximum of the thermal flux
distribution.

In the end of the thermalization process the neutrons are in thermal equilibrium with the
surrounding medium. The energy distribution takes the form of the Maxwell distribution:

_ WVE E
O(F) = Wexp— ( kaM> (4.12)

The neutrons are commonly classified for certain energy and wavelength ranges according to
the position of the maximum of the Maxwell distribution for a given moderator temperature
TMZ
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a)

Fig. 4.4: a) Radial distribution o fthe thermal neutron fux density in the reactor vessel. The
green line indicates the distribution, where the fill thermalization is reached, the blue line
indicates that the absorption decreases the neutron fux. b) Schematic o fthe reactor vessel
ofthe FRM II showing the reactor core and the beam tubes extracting the neutrons to the
experiments. The reactor tank with internal diameter approx. Sm is filed with light water (1).
In the centre o fthe arrangement the reactor core is situated. The experimental installations as
horizontal beam tubes (2), a cold (3) and a hot (4) neutron source are arranged in the heavy
water tank (5) around the fiel element (6).

b)

Energy range(meV) Wavelength range (A)

Ultra cold E < 0.0005 A > 400
Very cold 0.0005 < E < 0.005 40 < A < 400
Cold 0.0b< E<5b 4 < A< 40
Thermal 5< E <100 0.9< A< 4
Hot 100 < E < 1000 0.3<A<09

To access the respective energy range the moderator should again effectively moderate the
neutrons but also be transparent for the neutrons. A liquid hydrogen vessel fulfills the re-
quirements for cold neutrons. A more effective but also more difficult technique employs
solid methan as a moderator in a cold source. A carbon block heated to a temperature above
1000 K is used in reactors to provide an intense source of hot neutrons . In Fig. 4.5 the
spectra for the different moderator temperatures show clearly, that the maximum is shifted
towards shorter wavelength, when the temperature is increased. In a short pulse spallation
source usually a different route is used to yield an intense beam of hot neutrons: All neutrons
are released during the very short period, when the proton beam interacts with the target. Be-
fore the thermal equilibrium is reached, the epithermal neutron flux is therefore even higher
than the flux at a hot source. Extracting the neutron in this transient state very intense ep-
ithermal neutron beams can be realized. The time structure of the source might then be used
to discriminate the eventually increased background.
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T=2000K ——

T=20K ——

T=300K ——

10

Fig. 4.5: Neutron wave-
length distribution pr dif
Jfrent moderator tempera-
tures.Cold spectrum, T" =
20 K, blue line, thermal
spectrum, T' = 300 K,
green line, hot spectrum,
T = 2000 K, red line.

4.4 How do we bring the neutrons to the experiment?

The angular distribution of the thermal flux distribution at the end of the thermalization pro-
cess is fully isotropic. To calculate the flux at the exit of a beam tube approximately one has
to divide the thermal flux at the maximum by the surface area of the sphere with the respec-
tive radius, in the case of the FRM II 2.5 m, see Fig. 4.4 b). Already at this distance the flux
is reduced by 6 orders of magnitude. If the distance required to build an actual instrument is

added, the flux is lowered by 8 orders of magnitude.

air, n=1 Cilass, n=1 zur,llln—l Gilass, n<1

a)

c)

Fig. 4.6: a) Schematic ofa light wave guide. External total re fection occurs, because the
fbre is optically denser than the air. b) Schematic o fa neutron guide. Total re flection occurs,
because the index o fre faction o fthe mirror coating is smaller than 1. c) Picture ofa super

mirror neutron guide, taken fom www.swissneutronics.ch.
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To overcome this problem, neutron guides are used. These consist of 4 neutron mirrors,
enclosing the flight path of a neutron. The principle of the neutron guide is similar to light
wave guides: External total reflections prevents the neutrons from leaving the guide and they
are transported to the end of the guide. In the case of the light wave guide, the fibre has
a larger index of refraction than the surrounding air, giving rise to typical critical angles
Oc =~ 45°. For the neutron guide, the vacuum inside has a larger index of refraction and the

critical angle is given by
2pb,
Oc = A\/ P (4.13)
T

with the particle density p and the coherent scattering length b.. The element with the largest
critical angle is Nickel and for the element the critical angle can simply be approximated
Oc = O.1°A_1. If we install such a neutron guide behind a beam tube, all neutrons, that
impinge on the Ni surface under a shallower angle than the critical angle, will be guided to
the instrument. If we calculate for A\ = 5 A neutrons we loose only 4 orders of magnitude
independent of the distance from the reactor core. Hence such a neutron guide can be used
to provide more space for instruments by going further away from the reactor. Nowadays
so called supermirrors consisting of thin layers of e.g. Ni and Ti increase the critical angle
of Ni by a factor up to 7. In that case it becomes possible to build neutron guides not only
for cold neutrons but also for thermal neutrons. Furthermore complex focusing optics can be
realized by neutron guides to increase the number of useful neutrons at the spectrometer and
simultaneously keep the background low.

At least as important as gaining space is the fact, that the direct sight from the instrument
onto the reactor core can be omitted. Fast neutrons and I' radiation leave the moderator
through the holes for the neutron beamlines. They go mainly in a straight line from where
they have been created, because their scattering cross section is very small. When these
particles are captured they release a shower of secondary particles, the higher the energy
of the primary particle is. In the case of the neutron reactor, the spectrum of high energy
particles is limited by the energy of the nuclear reaction, ca. 200 MeV. At spallation source
neutrons can be generated up to the energy of the proton beam, i.e. 3 GeV.

The primary and the secondary particles contribute mainly to the radiation background
around the instruments. They can of course also contribute to the background in your detec-
tor. The particles are kept away from users and detectors by massive shielding, containing a
lot of concrete (for fast neutrons) or lead (for I' radiation). If a neutron guide is bend with
a large radius, the direct line of sight hits the wall of the neutron guide at a position, that
cannot be seen from the sample position and the background of the instrument can be further
suppressed. Of course your shielding must then be strongest in the direct line of sight.

4.5 How do we detect neutrons?

On of the strongest advantages of the neutrons is their neutrality. It allows to probe deeply
into matter. On the other hand, this makes the detection of a neutron difficult, as it penetrates
large volumes of matter without interaction. Luckily there exists a hand full of isotopes that
have a large absorption cross section for thermal or cold neutrons, such as *He '°B, Gd or
235U. The nuclear reactions create charged particles, which can be analyzed by interaction
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with the electric fields. Since the absorption cross section in the thermal to cold energy
range increases more or less linearly with the wavelength, the detection of cold neutrons is
more effective than the absorption of thermal neutrons.

One type of detector is the gas proportional counter filled either with *He gas or gaseous
10BF,. The absorption process releases a certain number of photons, which create secondary
electrons by Compton scattering or the photo effect, or high energetic charged particles. The
particles are accelerated onto the cathode or anode according to their charge and the resulting
current can be related to the neutron absorption event. A refinement of the apparatus allows
also the localization of the absorption event yielding a position sensitive detector. Features
of the gas proportional counter are a high detection probability, which can be tuned by the
filling pressure, and a low sensitivity to I' radiation. Disadvantages are a limited count rate
before the detector saturates and a position sensitivity > 1 cm.

Due to the shortage of *He and the toxicity of '°BF; alternative detector concepts have been
developed, where the neutron is absorbed in a thin °B layer evaporated on a thin Al sub-
strate. The neutron absorbing layer must be thin enough (< 10um) for the charged particles
to leave the layer and achieve the signal amplification in the counting gas. As the absorption
probability within a single layer is low, several films are stacked behind each other to improve
the detection efficiency. As a result, the detector provides an additional depth information,
which might in future be applied to improve the signal quality.

A szintillation detector provides a much higher spatial resolution. Here the neutron absorp-
tion at a neutron absorber embedded in the solid szintillation material yields photons that
are detected by the photo electric effect. This detectors provides a higher spatial and timing
resolution but has also a larger I' sensitivity.

4.6 The take home messages

Today, intense neutron beams are available a nuclear research reactors and spallation sources.
Reactors deliver a very stable continuous beam, while spallation sources provide a very high
peak flux that can be effectively used by time-of-flight methods. And the compact (and
cheap) neutron sources aim at bringing neutrons close to user and revolutionise the access
scheme to analysis methods with neutrons.

Neutrons are extremely useful for condensed matter research, if the wavelength and kinetic
energy match the length scale and energy scale of e.g. magnetic compounds, polymers or
biological samples. The neutron spectrum is shaped by moderating the fast neutrons released
in the nuclear reaction in a volume containing a lot light elements, e.g. water for thermal
neutrons, liquid hydrogen or solid methan for cold neutrons or heated graphite for hot neu-
trons. The most important quantity describing a moderator/source complex is the spectral
brilliance, i.e the number of neutrons per energy or alternatively wavelength, solid angle,
area and time.

Neutron guides are used to transport neutrons with only small losses quite far away from
the actual neutron source. This gives more space for instruments, improves the background
conditions and may even be used to tailor the neutron beam properties using complex optics
similar to light optics.

At present we observe a revolution in the neutron detection technology. With the shortage
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of the traditional neutron detection gas *He novel concepts have been conceived, which go
now from area detectors to volume detectors. The exact of route of the developments is still
open, but we can see exciting new properties of the detectors, which will improve the signal
quality yielded by neutron scattering instruments.

The developments at all stages of the neutron instrumentation will provide new opportunities
for science, that you will hopefully explore during your career.
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Exercises

E4.1 How are neutrons characterized?*

Write down the kinetic energy of a free neutron as a function of its momentum!
What is the velocity in ms™! and energy in meV of neutrons with a wavelength A = 1,1.8.5
A, respectively?

m, =1.675x 10~%*"kg
h =6.626x 10 34Js
e =1.602x 10719As

E4.2 How many neutrons are produced?**

Calculate the neutron flux density of a 20 MW reactor, assuming that the flux maximum
is displaced 10 cm from a point-like reactor core! What would be the flux density of a
hypothetical spallation source with the same thermal power?

E4.3 How do the neutrons come to your experiment?

Why is the neutron flux reduced, when you build the diffractometer/spectrometer at larger
distance without a neutron transport system? When is it advantageous to have the instrument
close to the neutron source? What reasons can you imagine to separate the instrument from
the neutron source?
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5.1 Introduction to part1

The term “crystal” derives from the Greek kpvotaiioc, which was first used as a descrip-
tion of ice and later - more generally - of transparent minerals with regular morphology
(regular crystal faces and edges).

Fig. 5.1: Example: Quartz (SiO 7 ), mineral specimen fom the Gotthard-Massi f

Matter is usually classified into three states: gaseous — liquid — solid. Crystals are repre-
sentatives of the solid state. Crystalline solids are thermodynamically stable in contrast
to glasses and are characterised by a regular three-dimensional periodic arrangement
of atoms (ions, molecules) in space. In this chapter we discuss basic concepts which are
used to describe the structure of crystals.

5.2 Crystal lattices

The three-dimensional periodicity of crystals can be represented by the so-called crystal
lattice. The repeat unit in form of a parallelepiped - known as the unit cell —is defined by
3 non-linear basis vectors ay, a2, and a3, whose directions form the reference axes X Y,
and Z of the corresponding right-handed crystallographic coordination system. The 6 lat-
tice parameters are given as the lengths of the basis vectors a =| al , b= ad , ¢ =| aj
and the angles between the basis vectors: angle (asaz2) = y, angle (aza;3) = «, angle (az,ar)
= [. The faces of the unit cell are named as face (az,az2) = C, face (aza3) = A, face (az,ai)
=B.

If the vertices of all repeat units (unit cells) are replaced by points, the result is the crystal
lattice in the form of a point lattice. Each lattice point is given by a vector a =
uartvartwas, with u, v, w being integers. a acts as the symmetry operation of parallel
displacement also known as a translation and maps the atomic arrangement of the crystal
(crystal structure) onto itself.
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7 210
Fig. 5.2: Unit cell with basis vectors, point lattice, and notation pr: lattice point 210,
lattice direction [121 ] and lattice plane (211)

A lattice point is named “uvw”, according to the coefficients (integers) of the translation
vector @ = uart+vaz+wasfrom the origin to the lattice point. A lattice direction - given by
the symbol [uvw] - is defined by the direction of the corresponding translation vector.

A plane passing through three lattice points is known as a lattice plane. Since all lattice
points are equivalent (by translation symmetry) there will be infinitely many parallel
planes passing through all the other points of the lattice. Such a set of equally spaced
planes is known as a set of lattice planes. If the first plane from the origin of a set of
lattice planes makes intercepts a/h, b/k, ¢/l on the X Y, Z axes, respectively, where A, k, [
are integers, then the Miller indices of this set of lattice planes are (4k/), the three factors
h, k, [ being enclosed in parentheses.

The equation of lattice planes can be written in intercept form as
(hx/a) + (ky/b) + (Iz/c) = n, (5.1)

where n is an integer. If n = 0 the lattice plane passes through the origin; if n=1 the plane
makes intercepts a/h, b/k, ¢/l on the X Y, Z axes respectively; if n=2 the intercepts
are 2a/h, 2b/k, 2¢/l; and so on.

The line of intersection of any two non-parallel lattice planes is a row of lattice-points
common to both planes. This lattice point row defines a lattice direction [#vw] which is
known as zone axis. All lattice planes intersecting in a common lattice-point row are said
to lie in the same zone. The condition for lattice planes to be parallel to a lattice vector a
= uartvartwas is the zone equation

uh+vk+wl=0 (5.2)

The zone axis symbol [uvw] for the zone containing the two planes (/:k:l;) and (h2k2l2) is
obtained by solving the simultaneous equations uh; + vk; + wl; = 0 and uh> + vk, + wi> =
0,

luvw] =[kil2>-kal1, L1h2-12h1, hiko-hoki) (5.3)
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5.3 Crystallographic coordinate systems

The first step in the description of a crystal structure is to choose the basis vectors of a
unit cell as the smallest repeat unit of the crystal. While in physics and chemistry, Carte-
sian coordinate systems are commonly used, crystallography uses symmetry adapted co-
ordinate systems. In this way a crystal-specific coordinate system is defined which is
then used to localize all the atoms in the unit cell. Crystal symmetry requires, in 3 dimen-
sions, 7 different crystal systems and hence 7 crystallographic coordinate systems to be
defined:

System Name Minimum Symmetry Conventional Unit Cell
triclinic lor 7 azb#cazf+y
monoclinic )
(unique axis b) one diad — 2orm (|| ¥) a#b#c, a=y=90°, f>90°
three mutually perpendicular di-
orthorhombic ads — 2orm (|| X Y and Z) a#b+#c; a==y=90°
tetragonal one tetrad — 4 or Z(H Z) a=b+#c, a=p=y=90°
trigonal : a=b#c a=90°,
(hexagonal cell) one triad — 3 or (| 2) 7=120°

a=>b#c, a=90°,

hexagonal one hexad — 6 or 4l 2) =120°

: four triads — 3or 3 o
cubic (|| space diagonals of cube) a=b=c;, a=p=r=90

The choice of the origin of the coordinate system is arbitrary, but for convenience it is
usually chosen at a centre of symmetry (inversion centre), if present, otherwise at a point
of high symmetry.

In order to complete the symmetry conventions of the coordinate systems it is necessary
to add to the 7 so-called primitive unit cells of the crystal systems (primitive lattice types
with only one lattice point per unit cell) 7 centred unit cells with two, three or four lattice
points per unit cell (centred lattice types). These centred unit cells are consequently two,
three or four times larger than the smallest repeat units of the crystal. The resulting 14
Bravais lattice types with their centrings are compiled in figure 5.3.
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triclinic P monoclinic P monoclinic A orthorhombic P

monoclinic axislle (0,0,0 +0, %, /2)

orthorhombic C orthorhombic I etragonal P
(0,0.0 + 1, 4.0

tetragonal | hexagonal P hexagonal/ cubic P

rhombohedral R

cubic I cubic F

Fig. 5.3: The 14 Bravais lattices consisting o fthe 7 primitive lattices P pr the 7 crystal
systems with onlyone lattice point per unit cell and the 7 centred (non- primitive)
lattices A, B, C, I, R and F with 2, 3 and 4 lattice points per unit cell.
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A set of lattice planes (/kl) is separated by a characteristic interplanar spacing d(hkl).
According to the different crystallographic coordinate systems these d(hkl) values are

calculated in a specific manner:
For the cubic lattice (a =b=c, a= = y=90°)
L
d(hkl)=a-(h* +k* +1°)
For the hexagonal lattice (a = b, ¢, a = f=90°, y=120°)

1
2 2 2\ >
d(hkl):(gh +k2+hk+l |\

a c’ )
For the tetragonal lattice (a = b, ¢, a= = y=90°)

1

2,72 12\
d(hkl):(h tk +1_2|\
a c)

For the orthorhombic lattice (a, b, ¢, == y=90°)

I? \‘15
+—|

)

For the monoclinic lattice (a, b, ¢, & = y=90°, > 90°)

2 2
d(hkl) =[z—2+’;—2

1
ook _2h1cosﬂ|\'2

——+—+
a’sin’f b* c’sin’f  acsin’ )

d(hkl) =[

For the triclinic lattice (a, b, ¢, &, f, ), the most general case,

1

d(hkl) = (1 —cos’a—cos” f—cos’y +2cosa- cosf3- cosy)i

2 kZ 2
-2 - 2 < 2
—sin“a +—sin” f+—sin’y
a b c

+ i_kl(c cos’3 —cosa ) + %(C cos’y —cos )+ %(C cos’a —cosy)

C ca a

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)
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5.4 Crystallographic symmetry-operations and sym-
metry-elements

The symmetry operations of a crystal are isometric transformations or motions, i.e. map-
pings in space which preserve distances and, hence, also angles and volumes. An object
and its transformed object superpose in a perfect manner, they are indistinguishable.

The simplest crystallographic symmetry operation is the translation, which is a parallel
displacement of the crystal by a translation vector a (see chapt. 5.2). There is no fixed
point, the entire lattice is shifted and therefore the crystal lattice is considered to be infi-
nite.

Crystallographic rotations n around an axis by an angle ¢ = 360°/n (n-fold rotations) and
rotoinversions (combination of rotations and inversions) n are called point symmetry
operations because they leave at least one point in space invariant (at least one fixed
point). An important fact of crystallographic symmetry is the restriction of the rotation
angles to ¢ =360° (n=1),180° (n=2),120° (n=3), 90° (n=4), 60° (n = 6). This derives
from the assumption of three-dimensional translational symmetry. Only for such crystal-
lographic rotations the space can be covered completely without gaps and overlaps. The
rotoinversion n= 1 is an inversion at a point, n= 2 = m (mirror) describes a reflection
through a plane.

The combination of n-fold rotations with (m/n)-a translation components (m < n) parallel
(|| ) to the rotation axis leads to the so-called screw rotations nm, €.g. 21, 32, 42, 65. These
symmetry operations have no fixed points.

The combination of a reflection through a plane (glide plane) with translation components
(glide vectors) of a1/2, a2/2, as/2, (art+az2)/2, ... || to this plane are known as glide reflec-
tions a, b, ¢, n, ..., d. Again no fixed points exist for these symmetry operations.

The objects which actually mediate to the symmetry operations are the symmetry ele-
ments. They form the geometrical locus, oriented in space, of the symmetry operation (a
line for a rotation, a plane for a reflection, and a point for an inversion) together with a
description of this operation. Symmetry elements are mirror planes, glide planes, rotation
axes, screw axes, rotoinversion axes and inversion centres. The geometrical descriptions
of selected crystallographic symmetry operations are illustrated in Figs. 5.4 - 5.6.

A symmetry operation transforms a point X with coordinates x, y, z (corresponding to
a position vector X = xa; + yaz + zas3) into a symmetrically equivalent point X with
coordinates x’, y’, zZ mathematically by the system of linear equations
X =Wnx+ Wiy + Wisz+w
y = Wax + Way + Waz +ws (5.10)
Z = Wax+ Wiy + Wiz +ws
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Point symmetry operations

Fig. 5.4: Rotations: n=1 (identity), n=2 (angle 180°), n=3 (120°), n=4 (90° )n=6 (60° )

Rotoinversions: 1 (inversion), 2 =m (refection) 3=3+ 1, 4, 6 = 3/m.
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|

+ 42, 43 and 65

Fig. 5.5: Screw rotations nn: combination o frotations n and translation components
(m/m)a/l tothe rotation axis.

Ay e G &

reflection: mirror plane m L image plane (plane of the paper)

glide reflection: glide plane a L with glide vector a/2

Fig. 5.6: Examples o fre fections and glide re fections.
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Symmetry operation in matrix notation:

X)) Wi W, W, N (X)) Wi \
Y| =| Wy Wy, Wyloly| +|w,
z7) \Wy Wy, Wi ) (z) (w;)

The (3x3) matrix W is the rotation part and the (3x1) column matrix w the translation

part of the symmetry operation. The two parts W and w can be assembled into an aug-
mented (4x4) matrix W according to

. X =WeX+w=(W,wrX (511)

X)) W W, W, ow ) (X))

y _ Wy W, W, w, Y = WoX (5.12)
z W, W, W, w, z

1Y) 0 0 0 1Y 1Y

Since every symmetry transformation is a “rigid-body” motion, the determinant of all
matrices W and W is det W =det W ==+ 1 (+ 1: preservation of handedness; - 1: change
of handedness of the object).

The sequence of two symmetry operations (successive application) is given by the prod-
uct of their matrices Wy and Wz

Ws=WrW, (5.13)

where W3 is again a symmetry operation.

5.5 Crystallographic point groups and space groups

The symmetry of a macroscopic crystal and of its crystal structure can be described by
mathematical group theory. The symmetry operations are the group elements of a crys-
tallographic group G and the combination of group elements is the successive execution
of symmetry operations. All possible combinations of crystallographic point-symmetry
operations in three-dimensional space lead to exactly 32 crystallographic point groups
(= crystal classes) which all are of finite order (order: number of elements, maximum

order: 48 for the cubic crystal class m3m). For the different crystal systems they are
represented by stereographic projections in figure 5.7. There are two types of group sym-
bols in use: for each crystal class the corresponding Schoenflies symbol is given at the
bottom left and the Hermann-Mauguin (international) symbol at the bottom right. A
maximum of 3 independent main symmetry directions (“Blickrichtungen”) is sufficient
to describe the complete symmetry of a crystal. These Blickrichtungen are specifically
defined for the 7 crystal systems and they define the sequence in which the symmetries
are listed in the Hermann-Mauguin symbols. As an example the Blickrichtungen of the
cubic system are shown in figure 5.8.
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. Monoclinic / , .
Triclinic ORGHRRbIE Trigonal Tetragonal Hexagonal Cubic

Ci i

Coy mm2

Cav

AN

z
K
AR ANz,
[

Dop mmm Dsn 4/mmm| Dgn 6mMmm

Y
N\

Dzp ©&m2

Fig. 5.7: The 32 crystallographic point groups (crystal classes) in three-dimensional
space represented by their stereographic pro pctions. The group symbols are
given according to Schoen fies (bottom le f) and to Hermann-Mauguin (bottom
right )
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Fig. 5.8: Symmetry directions (“ Blickrichtungen”) of the cubic lattice (a=b=c,
a=B=y=90° ). Along [100]: 4/m, along [111]: 3, along [110]: 2/m.

The point-group symmetries determine the anisotropic (macroscopic) physical proper-
ties of crystals, i. e. mechanical, electrical, optical and thermal properties. The crystal
class can be deduced from a diffraction experiment, however, as diffraction introduces
an (additional) centre of symmetry, only the 11 centrosymmetric Laue classes can be
distinguished:

Crystal System Laue Class
triclinic 1
monoclinic 12/ml=2/m
orthorhombic 2/m2/m2/m=mmm
4/m
tetragonal 4/m 2/m 2/m = 4/m m m
trigonal 2/m =
2 2l
6/m
hexagonal 6/m 2/m 2/m = 6/m m m
2/m F=m 3
. 3 3
cubic 4/m P/m=m zm
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In three dimensions all possible combinations of the point symmetries of the 32 crystal-
lographic point groups with the lattice translations of the 14 Bravais lattices lead to
exactly 230 space groups, all of infinite order. As already mentioned, the combination
of point symmetry operations with translations results in new symmetry operations: screw
rotations and glide reflections. The conventional graphical symbols for the three dimen-
sional space group symmetry elements according to the International Tables for Crystal-
lography Vol. A (ITA, 2002 [1]) are shown in figure 5.9.

T ——
e Rhale

—
—
3 A 43\§\ o. @ |2 P
e il g
C/" ———|| Al

d e

Fig. 5.9: Conventional graphical symbols pr symmetry elements:
Le f: axes (a) perpendicular, (b) parallel, and (c ) inclined to the image plane;
Right: planes: (d) per pendicular and (e ) parallel to the image plane.

In the International Tables for Crystallography Vol. A [1] all space groups are described
in detail with their Hermann-Mauguin symbols and corresponding crystal classes, the rel-
ative locations and orientations of the symmetry elements with respect to a chosen origin
and the crystal-specific basis vectors, a listing of the general and all special positions
(with their symmetrically equivalent points) and the related reflection conditions.
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5.6 Example of the crystal structure description of
YBa;Cu307.5 using the ITA

The crystal structure determination with atomic resolution is achieved by diffraction ex-
periments with X-rays, electron or neutron radiation. As an example, the results of a struc-
ture analysis by neutron diffraction on a single crystal of the ceramic high-T . supercon-
ductor YBaxCu3O7.5 with T, = 92 K are presented. The atomic arrangement of the ortho-
rhombic structure, space group Pmmm, and the temperature-dependent electrical resis-
tivity is shown in figure 5.10.

T T T T T
250 1
=
° 200f -
o]
= 150f |
>
e
= 100F 4
g5
2 sof -
[]J-————-—- _______________
5 1 L 1 1 L
0 50 _ /100 150 200 250 30
C 3
YBa2 07-6 Temperature (X)

Fig. 5.10: Crystal structure (unit cell) o fYBa>Cus3O7.s with the CuO-polyhedra (lef)
and the electrical resistivityas a finction o ftem perature /| and L to the [001 ]
direction (right).

Information from ITA on the relative locations and orientations of the symmetry elements
(symmetry operations 1, 2, 2y, 2, 1, m, my, my) of the orthorhombic space group
Pmmm, together with the choice of the origin (in an inversion centre), is shown in figure
5.11. The general position (site symmetry 1) of multiplicity 8 (symmetry produces 7 ad-
ditional copies of this atom in the unit cell) and all special positions with their site sym-
metries are listed in figure 5.12. There are no special reflection conditions for this space

group.
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1 .
Pmmm D mmm Orthorhombic
No. 47 P 2/??‘! 2/"1 2/m Patterson symmetry Pmmm
pL22 pLZ2
! t t t b | t t t ¢
—9 0—>0 — —¢ —
~lE | l ’ ~IE ’ J
o —9 T S Lo T T -
- ; 0 0 — -— ! [ 0 —
| | } | } |
a a
Piil
| t t t
-—90 g——>0 — «@- -@- -@- P
‘@_m_@
~E i |
;;; — 0 0 0 — '
! ‘ NCREe -®-|-0-
-— [ 6 — ®-- +@--D-+
| | |
Cc
Origin at centre (mmm)
Asymmetric unit 0<x<t;, 0<y<y; 0<:z<t
Symmetry operations
(1 (2) 2 0,0,z (3) 2 0,y,0 4 2 x,00
(51 0,00 6) m x,y,0 (M m x,0,z (8) m 0,y.2

Fig. 5.11: Description o fthe orthorhombic space group Pmmm in [ ].
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CONTINUED ‘ No. 47 Pmm)

Generators selected

Pasitions

2 p m2m Lyt Lyd I h mmm 144
2 0 m2m  4,y,0 45,0 1 ¢ mmm 044
2 n m2m 0y4 0,74 I f mmm +4.0
2 m m2m 0,90 0,5,0 I e mmm 0,40

2 i 2mm x,00 £,0,0 1 a mmm 0,00

Fig. 5.12: General and special positions (coordinates o fall symmetrically equivalent
positions) o fspace grou p Pmmm with their site symmetries and multi plicities as
well as refection conditions [l1] The special positions occupied in the
YBa>Cus3O;._s-structure are indicated by fames.
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The atomic parameters for YBaxCu3Oe..96 obtained from the structure refinement of single
crystal neutron diffraction data taken at room temperature [2] are given in the following
Table:

Atomic positions of YBa;Cu3O¢.96
orthorhombic, space group type P 2/m 2/m 2/m
a=3.858 A, b=3.846 A, c=11.680 A (at room temperature)

atom/ion multiplicity site symmetry X y V/

Cul /Cu?* 1 2/m 2/m 2/m 0 0 0

Cu2/Cu?* 2 mm 2 0 0 0.35513(4)
Y/YH 1 2/m 2/m 2/m ) ) Y
Ba/Ba** 2 mm 2 V2 V2 0.18420(6)
01 /0* 2 mm 2 0 0 0.15863(5)
02/0* 2 mm 2 0 V2 0.37831(2)
03/0* 2 mm 2 V2 0 0.37631(2)
04/0* 1 2/m 2/m 2/m 0 V2 0




5.18 G. Roth

5.7 Introduction to part 2

Each scattering experiment performed with any type of radiation - regardless of whether
it involves massive particles like neutrons and electrons or electromagnetic waves like x-
rays or visible light - has a total of four attributes which altogether characterize the type
of the scattering experiment as well as the information that can be obtained from such an
experiment. These attributes and their characteristics are:

Elastic scattering, which involves the conservation of the energy of the particle or quan-
tum during the scattering process, inelastic scattering, corresponding to a loss or gain of
particle or quantum energy during the scattering event, coherent scattering which in-
volves the interference of waves (recall that, according to the particle-wave dualism first
stated by de Broglie (1924), each particle may also be described by a wave which can
interfere with other particle waves) and finally incoherent scattering which is scattering
without interference.

This chapter will deal exclusively with neutron di ffaction which is, in the above nomen-
clature of a general scattering experiment, equivalent to elastic, coherent scattering o f
neutrons.

It is assumed that most of the readers of this chapter will be familiar with x-ray diffraction
from crystals, which has been demonstrated for the first time by Laue in 1912 and, since
then, has developed into the most powerful method for obtaining structural information
on crystalline materials. Diffraction - in sharp contrast to imaging techniques like optical
or electron microscopy - has no principal limitation as to the spatial resolution, expressed
in units of the wavelength of the radiation used for diffraction or imaging: While the
resolution of imaging is limited to half the wavelength (recall the Abbe diffraction limit)
diffraction can yield useful information, for instance, on bond distances between atoms
on a length scale that is by two to three orders of magnitude smaller than the wavelength.
On the other hand, diffraction, other than imaging, requires 3-dimensional periodicity
(see chapter 5.2).

This chapter will discuss the basics and some peculiarities of neutron diffraction from
either single- or polycrystalline matter. We will start by discussing the geometry of dif-
fraction from crystals, treat the subject of diffraction intensities and end with a discus-
sion of a few experimental issues connected to the instruments which will be used in
the practical part of the course. Examples of applications of these methods will be given
in a later chapter on “Structural Analysis”. The subject of magnetic neutron diffraction
and scattering will be discussed in a separate chapter.

5.8 Diffraction geometry

For purely elastic scattering, the scattering function S(Q,®) reduces to the special case
without energy transfer (Eo = E; and i@ = Eo — E; = 0) and equal length of the wave
vectors of the incident and scattered beams (| kdl = | kil ). S(Q,c0 = 0). The scattering
intensity then only depends on the scattering vector Q = ko - ki. The coherent elastic
neutron scattering ( = neutron di ffaction) yields information on the positions (distribu-
tion) of the atomic nuclei and the arrangement of the localised magnetic spins in
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crystalline solids, the pair correlation function of liquids and glasses, and the confor-
mation of polymer chains.

Figure 5.13 shows a sketch of a general diffraction experiment. More specifically, it is
a typical setup of a constant wavelength, angular dispersive diffraction experiment. There
are other methods to perform a diffraction experiment (e.g. time of flight- (TOF-), Laue-
, energy-dispersive diffractometers etc.) but these are outside the scope of this introduc-
tory lecture.

For constant wavelength diffraction, the energy (wavelength) and direction (collimation)
of the incident neutron beam needs to be adjusted. For that purpose, the diffractometer is
equipped with a crystal monochromator to select a particular wavelength band (A £ AL/L)
out of the “white” beam. Collimators are used to define the beam direction and divergence
pretty much as it is done in x-ray diffraction.

In the case of a crystalline sample, the diffraction geometry is most conveniently de-
scribed by the concepts of the reci procal lattice and the Ewald construction which are
both well-known from x-ray-diffraction.

Detector

| -k ko

AE=0 (ko=k)

Fig. 5.13: Schematic re presentation o fa constant wavelength di ffactometer.

Reciprocal lattice

The characteristic feature of the crystalline state (see chapter 5.2) is its periodic order,
which may be represented by a (translation) lattice. In the 3D case, three basis vectors ay,
az, a3 define a parallelepiped, called unit cell. Each lattice node of the crystal lattice can
be addressed by a general lattice vector

a=uartvatwas (5.14)
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which results from a linear combination of the basis vectors with coefficients u, v, and w
(positive or negative integers, including 0).

The position of atom j in the unit cell is given by the vector
ri=Xxjartyja:+tzjas. (5.15)
The coefficients x; y; and zjare called atomic coordinates (0<x<l; 0<y;<l; 0<z<l).

For an ideal crystal and an infinite lattice with the basis vectors a;, a2, as there is only
diffraction intensity I( 7) at the vectors

t=hnagtkntls (5.16)

of the reciprocal lattice. 4,k,/ are the integer Miller indices and 7z, 72, 73 are the basis vec-
tors of the reciprocal lattice, satisfying the two conditions

nar=mna=naz=1and n-az=n-az=mnar=..=0 (5.17)
or in terms of the Kronecker symbol with i, jand k=1, 2, 3
0ij=0 fori# jand &ij=1 fori= jwith dij= 71- 7; (5.18)

The basis vectors of the reciprocal lattice can be calculated from those of the unit cell in
real space

5 = (ajxaK)/Ve, (5.19)
where x means the cross product, and V. = ai-(azxag3) is the volume of the unit cell.
In solid state physics,
0=2nrt (5.20)
is used instead of 7

Here is a compilation of some properties of the reciprocal lattice:

¢ Each reciprocal lattice vector is perpendicular to two real space vectors: 71 L ajand ak
(fori# }, k)

e The lengths of the reciprocal lattice vectors are | 7 =1/V¢|aj-|ay-sinZ(ajax).

e Each point /4l in the reciprocal lattice refers to a set of planes (44/) in real space.

e The direction of the reciprocal lattice vector zis normal to the (44/) planes and its length
is reciprocal to the interplanar spacing duw: |4 =1/dau.

¢ Duality principle: The reciprocal lattice of the reciprocal lattice is the direct lattice.

Performing a diffraction experiment on a single crystal actually means doing a Fourier
transform of the 3D-periodic crystal (see chapter diffraction 1) followed by taking the
square of the resulting (complex) amplitude function. The Fourier transform of the (in-
finite) crystal lattice is essentially the reciprocal lattice derived above and yields di-
rectly the positions of the reflections in space (directions of the diffracted beams). The
Fourier transform of the unit cell contents (kind and positions of all atoms) determines
the reflection intensities. These reflection intensities may be envisaged as a weight at-
tached to the nodes of the reciprocal lattice. Doing a (single crystal) diffraction experi-
ment therefore corresponds to measuring the positions and weights of the reciprocal lat-
tice points.
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Ewald construction

The concept of reciprocal lattice (reciprocal space) also provides a handy tool to express
geometrically the condition for Bragg diffraction in the so-called Ewald construction. In
this way geometrical aspects of the different diffraction methods can be discussed.

We consider the reciprocal lattice of a crystal and choose its origin 000. In Fig. 5.14 the
wave vector ko (defined in the crystallographers’ convention with |ko = 1/A) of the inci-
dent beam is marked with its end at 000 and its origin at P. We now draw a sphere of
radius |ko| = 1/A around P passing through 000. Now, if any point Akl of the reciprocal
lattice lies on the surface of this “Ewald sphere”, then the diffraction condition for the
(hkl) set of lattice planes is fulfilled: The wave vector of the diffracted beam k (with its
origin also at P) for the set of planes (4kl), is of the same length as ko (|kl = |ko|) and the
resulting vector diagram satisfies k = ko + t. Introducing the scattering angle 26 (and
hence the Bragg angle 0:x), we can deduce immediately from 2|k|-sin® = |t| the Bragg
equation 2duxrsinOuu = A.

Direction of diffracted beam
ko: Vector along direction of primary beam for reflection (hkl)
k:  Vector along direction of diffracted beam
Bragg-reflection condition fulfilled,

if k-ko is a reciprocal lattice vector T.

Ewald sphere
Radius R = 1/,
runs through
the origin of

. recip. lattice
Primary beam

Assumed: 0,0,0

Beam divergence o =0°
Monochromatic wavelength A
Wavelength spread AL/L =0

Fig. 5.14: Ewald construction in reciprocal space, showing the di ffaction
condition pr re fection (hkl)

In the case of single crystal diffraction a rotation of the crystal and therefore also of the
corresponding reciprocal lattice (which is rigidly attached to the crystal) is often used to
set the diffraction conditions for the measurement of intensities I(t).

If |t > 2/A (then duw < A/2) the reflection Akl cannot be observed. This condition defines
the so called limiting sphere, with center at 000 and radius 2/A: only the points of the
reciprocal lattice inside the limiting sphere can be rotated into the diffraction position.
Vice versa if A > 2dmax, Where dmax is the largest interplanar spacing of the unit cell, then
the diameter of the Ewald sphere is smaller than | t|min. Under these conditions no node of
the reciprocal lattice can intercept the Ewald sphere. That is the reason why diffraction of
visible light (wavelength = 5000 A) can never be obtained from crystals. Amin determines
the amount of information available from a diffraction experiment. Under ideal
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conditions, Amin should be short enough to measure all points of the reciprocal lattice with
significant diffraction intensities.

For a real crystal of limited perfection and size the infinitely sharp diffraction peaks (delta
functions) evolve into broadened reflections. One reason can be the local variation of the
orientation of the crystal lattice (mosaic spread) implying some angular splitting of the
vector T. A spread of interplanar spacings Ad/d, which may be caused by inhomogeneities
in the chemical composition or by inhomogeneous strain in the sample, gives rise to a
variation of its magnitude |t]. The previously assumed ideal diffraction geometry also
needs to be modified: In a real experiment the primary beam has a non-vanishing diver-
gence and wavelength spread. The detector aperture is also finite. A gain of intensity,
which can be accomplished by increasing the angular divergence and wavelengths band-
width, has to be paid for by some worsening of the resolution function (see below) and
hence by a limitation of the ability to separate different Bragg reflections.

All of these influences can also be studied by the Ewald construction. As an example, the
influence of a horizontal beam divergence on the experimental conditions for a measure-
ment of Bragg-intensities of a single crystal is illustrated in Fig. 5.15. Strictly monochro-
matic radiation (only one wavelength A with AA/A = 0) is still assumed. To collect the
complete intensity contained in the spread out reflection, a so-called m-scan, where the
crystal is rotated around the sample axis perpendicular to the diffraction plane, needs to
be used. The summation over the whole reflection profile yields the so-called integral
diffraction intensities.

Diffracted beam
for reflection hkl

... background

0 02 04 06 08 1 12 14 16

o []

Primary beam [ ——o—4f e

Assumed:

Beam divergence o > 0°
Monochromatic wavelength &
Wavelength spread AL/AL =0

Fig. 5.15: Ewald-construction: In fuence o fthe horizontal beam divergence on the ex-
perimental conditions pr the measurement o fBragg-intensities. In-
set: Atypical w-scan o fa re fection.
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As a final example, the geometry of powder diffraction experiments can also be discussed
in terms of the Ewald-construction:

Diffracted beam
Diffraction cone for each hkl

Primary beam ko |T| = 1/d(hkI)

Assumed:

Beam divergence o =0°
Monochromatic radiation A
Wavelength spread AA/A =0

Reciprocal lattice sphere
for reflection hkl after
orientational averaging

Fig. 5.16: Ewald construction pr a powder di ffaction experiment.

An ideal polycrystalline sample is characterised by a very large number of arbitrarily
oriented small crystallites. Therefore, the reciprocal lattice points hkl are smeared out on
a sphere and the 3D-information contained in vector t is reduced to only 1 D-information
contained in|t|. In Figure 5.16 the corresponding sphere with radius |t| = 1/dsu is drawn
around the origin of the reciprocal lattice at 0,0,0. For each Bragg-reflection the circle of
intersection of the “reciprocal lattice sphere” with the Ewald-sphere yields a diffraction
cone. These cones (Fig. 5.17) are recorded on a point or position sensitive detector. The
resulting information is plotted as an intensity vs. diffraction angle (or Q) diagram. All
reflections with equal interplanar spacing d« are perfectly superimposed and cannot be
separated experimentally.

- " Incident beam (111)
orientations X-rays or neutrons
of crystallites

possible.

Powder Diffraction gives
Scattering on Debye-Scherrer Cones

Fig. 5.17: Sketch o fa powder di ffaction experiment, di ffaction cones are recorded
on a 2D- or 1 D- detector (reproduced fom [3])
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5.9 Diffraction intensities

As stated in chapter 5.8, a scattering experiment is equivalent to performing a Fourier
transform of the scattering object followed by taking the square of the resulting complex
amplitude. The latter step is very simply due to the fact, that our detectors can measure
the magnitude (the absolute value) of a diffracted wave but are completely insensitive to
its phase. This results in an intrinsic loss of information and poses the so-called “phase
problem of crystallography”. There are methods to reconstruct the missing phase infor-
mation from the measured magnitudes and from a-priori information about the scattering
object (e.g. the so-called direct methods of structure determination), but these methods
are again outside the scope of this lecture. The first step of a diffraction experiment - the
Fourier transform - needs some further elaboration: In a diffraction (elastic, coherent scat-
tering) experiment we can safely ignore time as a variable and concentrate only on the
spatial Fourier transform of the scattering object (here: the crystal). For those who are not
particularly familiar with the Fourier transform, figure 5.18 shows a very simple one-
dimensional analogue. The transformation from A to E (labelled FT, ||) corresponds to
the diffraction experiment: Fourier-transform (harmonic analysis) plus calculation of the
absolute value. If we could also retrieve the phases @, the inverse Fourier transform (la-
belled FT, @) would lead directly to the structure of the scattering object A (harmonic
synthesis).

Fourier-Transform: Harmonic Analysis/Synthesis

Fourier space Crystal space

E|Fr] /N A

. n N
n I 1 Y ; FT' ¢

Reflections h = 2, 3, 5 in Fourier
space are strong, phases are lost

Reflections h=2, 3, 5 used
to approximate A (using the ;
correct phases) N . — &

Summation of the 3 density waves
yields the scattering density in
Crystal space

frea 2 N\ E D

freq 3 —
freq 5 - - .8

total —/

Fig. 5.18: [Dillustration o fthe Fourier trans prm, A: scattering ob pct: 1 D-density
finction, assumed: periodic in 1D, B-D: decomposition o fAinto 3 har-
monic (co- Jsine waves, F: synthesis o fA (red curve ) via summation o fB-D
with the correct phases, E: “di ffactogramm” o fA: Fourier trans prm, only
the magnitudes o fwaves in B to D are plotted, fgures taken fom[4].
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Without the phase information, we need an approximate model of the crystal structure
and a formula to calculate diffraction intensities from the model. In the kinematical scat-
tering approximation we use the so called structure factor formula for that purpose (see
below). The model is then iteratively improved to give an optimum match between ob-
served and calculated intensities. This is referred to as the structure re fnement.

Structure factor and Bragg intensities

In the kinematical approximation, which assumes that the magnitude of the incident
wave is the same at all points in the specimen (this implies a small sample size, weak
interaction between radiation and matter, no multiple diffraction and negligible absorp-
tion) and that the diffracted beams are much weaker than the primary beam, the diffracted
intensity is proportional to the square of the amplitude of the scattered wave for each
individual reflection; it can be regarded as a weight ascribed to the reciprocal-lattice
nodes.

(0 ~|F(D)2 (5.21)

The structure factor F(t) is the Fourier transform of the scattering density within the unit
cell. For a 3D-periodic scattering density function composed of discrete atoms (the crys-
tal), the threefold spatial integral describing the Fourier transform in its most general
form, simplifies to a sum over all atoms jin the unit cell The structure factor F(t) contains
the complete structural information, including the atomic coordinates r;= Xja; + yjaz +
zjas (see eqn. 5.15), site occupations and the thermal vibrations contained in Tj;

F(7) = ; bj exp[2ni(zr)] T(7) =| F(7) explig(7)]. (5.22)

In the case of nuclear scattering of neutrons the structure factor has the dimension of a
length, as has the scattering length b(7) = b;= const. of nucleus j T{7) is the Debye-
Waller factor which takes into account dynamical and static displacements of the nucleus
j from its average position r;in the unit cell. With the fractional coordinates xj, yjand z;
the scalar product in the exponential function can be written as

7 1= hxj + kyjHz; (5.23)

In a diffraction experiment normally only relative Bragg intensities are measured. A scale
factor SCALE takes into account all parameters which are constant for a given set of
diffraction intensities. Additional corrections have to be applied, which are a function of
the scattering angle. For nuclear neutron diffraction from single crystals the integrated
relative intensities are given by

K7 =SCALE-L-A-E-|F(7)? (5.24)

The Lorentz factor L is instrument specific. The absorption correction A depends on the
geometry and linear absorption coefficient of the sample and the extinction coefficient E
takes into account a possible violation of the assumed conditions for the application of
the kinematical diffraction theory.

Information on the crystal system, the Bravais lattice type and the basis vectors ay, az, a3
of the unit cell (lattice parameters a, b, ¢, a, £, ) may be directly deduced from the re-
ciprocal lattice. Systematic absences (zero structure factors) can be used to determine
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non-primitive Bravais lattices or detect the presence of symmetry operations with trans-
lation components (screw axes, glide planes).

As an example, consider a body centered cubic lattice with atoms at 0,0,0 and '5,%,%.
Using eqn. 5.22 and dropping the Debye-Waller factor for the moment, the structure fac-
tor equation may be rewritten as:

F(hkl) = Z; bj exp[2mi(hx; + ky; +lz))] =
b exp[2mi(h0 + k0 +10)] + b - exp[2mi(h/2 + k/2 +1/2)] )

(5.25)

For this simple structure, index j just runs over the two equivalent atoms with scattering
length b within the unit cell. For a centrosymmetric structure, F is a real quantity (instead
of being complex), the exponentials in (5.25) reduce to cosines and the phase factor as-
sumes only the values + or -1.

Thus we get:
F(hkl)=b-cos[27c(h-0+k-0+1-0]+b-cos[2z(h/2+k/2+1/2)] (5.26)

The first term cos(0) =1 and we therefore have:

F(hkl) =b+b-cos|2z(h/2+k/2+1/2)|=b-( +cos[ z(h+k+1I)]) (5.27)

If htk+1 is even, the cosine term is +1, otherwise it is -1.
Reflections with h+k+1=2n+1 are therefore systematically absent.

These statements apply equally well to x-ray and neutron diffraction and to powder as
well as to single crystal diffraction data.

In the case of a powder sample, orientational averaging leads to a reduction of the di-
mensionality of the intensity information from 3D to 1D: Diffraction intensity I is rec-
orded as a function| 7 | =1/dsu or, by making use of Bragg’s law, of sin(0)/A or just as
a function of 20. For powders, two additional corrections (M and P in eqn. 5.28) need to
be applied in order to convert between the measured intensities I and the squared structure
factor magnitudes F*

I7|)=SCALE-L-A-E-M-P-|F(z])? (5.28)

M is the multiplicity of the individual reflections and takes into account how many sym-
metrically equivalent sets of lattice planes correspond to a given hkl. In the cubic crystal
system, for instance, Mi11=8 (octahedron) while Mjo=6 (cube). P is the so-called pre-
ferred orientation parameter which corrects the intensities for deviations from the as-
sumption of randomly oriented crystals in the powder sample.
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5.10 Diffractometers

Single Crystal Neutron Diffractometry

Hot source
Collimator

) Source
Collimator

Eulerian cra-  petector
dle
Sample

Monochromator

Detector

Fig. 5.19:  Principle com ponents o fa constant wavelength single crystal di ffactome-
ter.

Monochromator and collimator

For constant wavelength diffraction, the energy (wavelength) and direction (collimation)
of the incident neutron beam needs to be adjusted. For that purpose, the diffractometer is
equipped with a crystal monochromator to select a particular wavelength band (A £ AL/L)
out of the “white” beam according to the Bragg condition for its scattering plane (44l )

2dpirsinOpu = A, (5.29)

with the interplanar spacing dsx and the monochromator scattering angle 20,1 = 20m. The
width of the wavelengths band AA/A, which is important for the Q-resolution, depends on
the divergences of the beam before and after the monochromator (collimations o and
a.2), on the mosaic spread of the monochromator crystal, and on the monochromator angle
20m. In order to increase the intensity of the monochromatic beam at the sample position
the monochromator crystal is often bent in vertical direction perpendicular to the diffrac-
tion plane of the experiment. In this way the vertical beam divergence is increased leading
to a loss of resolution in reciprocal space. The diffracted intensity from the sample is
measured as a function of the scattering angle 20 and the sample orientation (especially
in case of a single crystal). 26 is again defined by collimators.

As there is no analysis of the energy of the scattered beam behind the sample, the energy
resolution AE/E of such a 2-axes diffractometer is not well defined (typically of the order
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of some %). In addition to the dominant elastic scattering also quasi-elastic and some
inelastic scattering contributions are collected by the detector.

Neutron filters and the problem of A/2 contamination

Unfortunately, the monochromator crystals not only “reflect” the desired wavelength A
by diffraction from the set of lattice planes (hkl) but also the higher orders of A/2 or /3
etc. from 2h,2k,21 or 3h,3k,31 to the same diffraction angle:

sinf=A/dn = (A/2)/don 2k 21 = (A/3)/d3n 3k 31 (5.30)

The only requirement is, that the higher order reflection (2h,2k,21) or (3h,3k,31) has a
reasonably large structure factor. Higher order contamination causes sizeable reflection
intensities at “forbidden” reflection positions and in addition to that can modify intensities
at allowed positions. Thus it can very much affect the correct determination of the unit
cell as well of the space group symmetry (from systematically absent reflections). The
solution to this problem is to minimize the A/2 contamination by using filters which sup-
press the higher orders stronger than the desired wavelength. One such type of filters uses
resonance absorption effects - completely analogous to the suppression of the Kg line in
x-ray diffractometers. Another way to attenuate short wavelengths is to use the scattering
from materials like beryllium or graphite. These filters use the fact that there is no Bragg
diffraction if A > 2dmax, Where dmax 1s the largest interplanar spacing of the unit cell. As
we have shown above, for such long wavelengths the Ewald sphere is too small to be
touched by any reciprocal lattice point. Below this critical wavelength, the neutron beam
is attenuated by diffraction and this can be used to suppress higher order reflections very
effectively. Frequently used materials are polycrystalline beryllium and graphite. Due to
their unit cell dimensions, they are particularly suitable for experiments with cold neu-
trons because they block wavelengths smaller than about 3.5 A and 6 A respectively.

Resolution function:

Animportant characteristic of any diffractometer is its angular resolution. Fig. 5.20 shows
(on the right) the resolution function (reflection half width as a function of scattering
angle) for the four circle single crystal neutron diffractometer HEiDi at FRM II shown on
the left. The resolution depends on a number of factors, among them the collimation, the
monochromator type and quality, the 20 and (hkl) of the reflection used for monochro-
matization etc.
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Fig. 5.20:  Lef: Experimental setup o fthe pur circle single crystal diffactometer
HEiDi at FRM II. Right: Resolution finction o fHEiDi pr di ferent collima-
tions, monochromator: Cu (220), 20 Mono = 40° — A= 0.873 A.

Powder Neutron Diffractometry:
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shielding __ﬂ"_'f B
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Fig. 5.21:  Lef: Typical setupo fa (constant wavelength ) powder neutron di ffactome-
ter with position sensitive detector (PSD). Right: Neutron powder di ffac-
tometer SPODI at FRM 11
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Neutron Rietveld analysis:

The conversion from 3D- to 1 D-intensity data caused by the averaging over all crystallite
orientations in a powder sample severely restricts the informative value of powder neu-
tron (or x-ray) diffraction experiments and makes the resolution function of the instru-
ment even more important than in the single crystal case. Even with optimized resolution,
the severe overlap of reflections on the 20-axis often prohibits the extraction of reliable
integrated intensities from the experiment. Instead, the Rietveld method, also referred to
as fill pattern re fnement, is used to refine a given structural model against powder dif-
fraction data. The method, which is widely used in powder x-ray diffraction, has actually
been invented by Hugo Rietveld in 1966 for the structural analysis from powder neutron
data. Full pattern refinement means that along with the structural parameters (atomic co-
ordinates, thermal displacements, site occupations) which are also optimized in a single
crystal structure refinement, additional parameters like the shape and width of the reflec-
tion profiles and their 26-dependence, background parameters, lattice parameters etc.
need to be refined.

l1'=3u|c | T=35 K
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Fig. 5.22:  Results o fa Rietveld re fnement at the magnetic phase transition o fCoGeQ3
[5 ] red: measured intensity, black: calculated fom model, blue: di ference,
green: tick-marks at allowed re fection positions. The fgure shows the low-
angle part o ftwo di ffactograms measured at SPODI at 35K and 30K. Note
the strong magnetic re fection a ppearing below the magnetic ordering tran-
sition (in the inset ).
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Exercises Diffraction 1

ES.1 Lattice points, lattice directions and lattice planes

A projection of an orthorhombic lattice on the lattice plane (001 ) is given in the following figure
(this means a pro jection parallel to the c-axis). The dots represents the lattice points (not atoms)
according to the translation symmetry of a crystal with the general translation vector a =
uartvartwas (ai, az and as are the basis vectors of the unit cell and u, v, w being integers)

Please indicate in the figure

a) The lattice points uvw = 030, -120, 1-20, and 450,

b) The lattice directions [uvw] =[100], [21 0], [-2-10] and [-250],

c) The traces of the lattice planes (4#k7) = (100), (210), (-210), and (140).

©o o o o o o o o o
© o o o o o o o o
o o = o o 0 o o
o o o o o o o o
©o o o o o o o o o
©o o o o o o o o o
©o o o o o o o o o
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©o o o o o o o o o
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ES.2 Crystal structure of YBa;Cuz07.s:

The following figure reproduces the upper left projection (of fig. 5.11) of the arrangement of
the symmetry elements in the unit cell (from the international tables).

m
T ) !
c
®

- —ob —

~|E

NIE o °

~|E

Make sure you understand the meaning of the symbols for the symmetry elements.
(see fg.5.9)

a) Draw the positions of all atoms (Y, Ba, Cu, O) into the above given projection.
(Take the coordinates fom the table o fthe atomic positions given in the lecture book; mark

the heights (z-coordinates) o fthe atoms along the pro pction direction by attaching the corre-
sponding coordinates to the atoms. )
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b) Given the space group P2/m2/m2/m: What is the crystal system (re gr to the conditions pr
the lattice parameters on page 5.17 ) and the Bravais lattice type (see the space group symbol)
of YBa;CuzO7.5?

¢) How many formula units are in one unit cell of YBa;Cu3zO7.5?
(refrto fg 5.10)

d) Give the coordination numbers and describe the polyhedra of oxygen around atoms Cul
and Cu2 (re gr, pr simplicity, to fg 5.10).

e) For all atoms: Check if the atom sits on an inversion centre (either fom the above plot or
fom fg 5.10 or fom the table on page 5.17.)

Cul: @ Cu2: Y: Ba: Ol: 02: 03: 04:

f) Calculate the interplanar spacings d(hkl ) (choose the appro priate prmula on page 5.6 ) for
the lattice planes (100), (200), (020), (002), (00-2).

g) List all symmetry equivalent lattice planes with identical d-spacing (including all di ffrent
orientation possibilities ) for the following types of lattice planes of YBaxCuzO7.s:

(h00 ), (001 ), (0kl), and (hkl)
Example for (h0!) in the orthorhombic crystal system: d(h0!)= d(-h0l)= d(-h0-1) = d(h0-I).

h) How many symmetry equivalent lattice planes result in each case? (This is the multi plicity
Jfactor M o fre fections needed as a correction fictor in powder di ffaction. )
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Exercises Diffraction 2

ES.3 Types of Scattering Experiments

a) Discuss/define the following terms:
A. Elastic scattering, B. Inelastic scattering,

C. Coherent scattering, D. Incoherent scattering

b) What does the term “diffraction” correspond to in this context?

ES.4 Ewald Construction

The Ewald-construction serves as a tool to visualize a number of geometrical aspects of dif-
fraction.

a) Sketch the Ewald-construction for a single crystal experiment ( fgure & caption)

b) Starting from the idealized geometry in fig. 5.14 and the modification for non-vanishing
beam divergence in fig. 5.15: Do the Ewald-construction for a beam with zero divergence but
non-vanishing wavelength-spread AA / A.

ES.S Filtering

a) What is the purpose of a beryllium (or graphite) filter for neutron diffraction?

b) To discuss how it works: Use the Ewald construction for a given reciprocal lattice and a very
short / very long wavelength.
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ES.6 Structure determination & refinement

Diffraction data — irrespective of whether it has been collected in an x-ray, electron or neutron
diffraction experiment - is notoriously incomplete.

a) Describe, in simple terms, in which respect it is incomplete and how this leads to the “phase
problem of crystallography”

b) What does the term “structure refinement” (as o pposed to “ structure determination” ) mean?

ES.7 Structure factor equation:

The structure factor equation is the central formula that allows us to calculate diffracted inten-
sities from structural parameters. It corresponds to a Fourier-transform of the unit cell contents.

a) Write down the structure factor equation
b) Identify and discuss all parameters in the formula.

¢) Under which conditions does this formula hold (kinematical di f¥action conditions J?

ES.8 Neutron diffractometers

a) What is the purpose of a monochromator?

b) How does it work?

¢) What does the term “collimation” mean?

d) What is the resolution function of a diffractometer? (sketch)
e) Why is it important?

f) What is the purpose of a hot neutron source?

g) How does it work?
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ES.9 Rietveld refinement

a) Discuss the basic problem of refining crystal structures from powder diffraction data
(as o pposed to single crystal data).

b) Describe in simple words the fundamental idea (by Rietveld) to solve this problem.

¢) Name the kind of data that can be obtained from a Rietveld refinement?
(Collect a list and sort into categories: Structural parameters and instrumental parameters)
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6.1 Introduction

Small-Angle Scattering (SAS) investigates structures in samples that generally range from
approximately 0.5 nm to a few 100 nm. This can both be done for isotropic samples such as
blends and liquids, as well as anisotropic samples such as quasi-crystals. In order to obtain
data about that size regime scattered intensity, mostly of x-rays or neutrons, is investigated
at angles from close to zero, still in the region of the primary beam up to 10°, depending on
the wavelength of the incoming radiation.

The two primary sources for SAS experiments are x-ray (small-angle x-ray scattering, SAXS)
sources and neutron (small-angle neutron scattering, SANS) sources, which shall be the two
cases discussed here. Also scattering with electrons or other particle waves is possible, but
not the main use case for the purpose of this manuscript.

For most small-angle scattering instruments, both SAXS and SANS, the science case covers
the investigation of self-assembled polymeric and biological systems, multi-scale systems
with large size distribution of the contained particles, solutions of (nano-)particles and soft-
matter systems, protein solutions, and material science investigations. In the case of SANS
this is augmented by the possibility to also investigate the spin state of the sample and hence
perform investigations of the magnetic structure of the sample.

In the following sections the general setup of both SAXS and SANS instruments shall be
discussed, as well as data acquisition and evaluation and preparation of the sample and the
experiment in general. The information contained herein should provide sufficient informa-
tion for planning and performing a SAS experiment and evaluate the gathered data.

6.1.1 General concept

All SAS experiments, irrespective of the setup used in any specific case, rely on the concept
of pinhole cameras to work. Fig.6.1 illustrates the geometric concept of the interplay between
pinhole cameras and SAS.

In the usual case, pinhole cameras map every point of the sample (object) to a discrete point
on the screen (film or detector). The smaller the hole, the better the point-to-point mapping
works, since in the ideal case only a single path between object and image is available.
However, this of course comes with a penalty in intensity, since the smaller hole lets less light
pass through. Due to the geometry, an image taken with a pinhole camera is always upside
down. While the mathematical implications shall be discussed later on in this manuscript at
this point we only want to grasp the underlying concept. The information about the object is
at the beginning stored in real space. Colors (wavelength) and locations are given as points
on the surface of the object. When all beams have converged to the single point that is ideally
the pinhole, the information is then encoded in direction of the path (or light-beam) and the
wavelength of the light. This is the change between direct and indirect space, locations and
directions. When the light falls onto the screen the information is reversed again, to location
and color of a spot on the screen, into direct space.

This concept is exploited by SAS. Since we are looking at very small objects (molecules
and atoms) the determination of the location with the naked eye, or even a microscope, and
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real , , real
space information space
encoded as
- direction
- intensity
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real information
Space encoded as
- direction
- intensity

Fig. 6.1: a) Sketch ofa pinhole camera and b) a simpli fed SAS instrument. The encoding of
the real space injormation is in one case done inside the pinhole, in the other case the direction
(and wavelength) encoded in prmation is directly displayed on the screen (shaded area with
waves). Positioning o fthe screen farther away improves the angular resolution and there jore
the encoded in ormation.
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Hot
cathode

Detector

Fig. 6.2: Laboratory SAXS setup. The le f boxis a sketch o fa x-ray tube, all the components are
in vacuum. The fight path is also usually evacuated. LI and L2 are the collimation and sample
detector distance (SDD) respectively. In the case o flaboratory setup those range usually fom
about 20 cm up to 1-2 m in modern setups. The collimation blocks por LI and L2 are usually
set up in both x and y direction to constrict the fight path, widely used openings are around
I mmx 1 mm or below. In some setups, also a slit collimation instead o fa point collimation is
realized to increase the intensity.

encoding of direction is easily achievable by increasing the distances and adjusting the size of
the pinhole. However, instead of using the information that has been transferred to real space
again, this time the object in real space is put close to the window. This way, the information
about the location of atoms and molecules in the sample is encoded into direction or indirect
space. Since there should be no information about the light before the pinhole, the light
needs to be collimated down to a small, point-like source with no angular divergence.

6.2 SAXS instruments

In general there are two classes of SAXS instruments. One is the laboratory type setup that
can be set-up in a single laboratory with a conventional x-ray tube, or more general any
metal anode setup, while the other one is a large-scale facility setup at a synchrotron that
can provide higher intensities. Since the setup of both instruments differs, and also the use
case is not fully identical, we shall discuss both setups separately. One thing that should be
kept in mind is that the fundamental principle is identical, i.e. any experiment that can be
performed at a synchrotron can also in principle be performed at a laboratory SAXS setup
and is only limited in intensity. This is important for the preparation of beamtimes at a
synchrotron, which in general should be thoroughly prepared in order to fully exploit all
capabilities offered there.
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Fig. 6.3: Characteristic x-ray spectrum fom a metal anode x-ray tube. The high-energy cut-o ff
wavelength is given jor the case that a single electron, filly accelerated by the voltage in the
x-ray tube, de posits all its kinetic energy in a single photon. In an optimal setup this distribution
is very narrow. Then the K, line filly dominates the spectrum and gives a clean wavelength to
per orm a SAXS instrument.

6.2.1 Laboratory SAXS setup

Over the years a wide range of specialized SAXS instruments has become commercially
available. The oldest concepts date back to the early 20th century, right after the discov-
ery of x-rays. [1] Most of them offer specific advantages in certain use cases, such as the
measurement of isotropic samples in a Kratky Camera [2], or highly adaptable sample en-
vironments. Here we shall only concentrate on the basic principle of operation. A general
sketch of a SAXS instrument is shown in Fig.6.2. The x-rays are produced in an x-ray tube
and then collimated by a set of slits. Here the collimation as such is already sufficient to ob-
tain a coherent beam, since most of the intensity of standard x-ray tubes (and essentially all
metal target x-ray sources) is concentrated into the characteristic spectral lines of the target
material (see Fig.6.3). Common materials for the target anode are copper and molybdenum,
delivering wavelengths of the most intensive K-a lines of 1.54 A and 0.71 A respectively.
Under the assumption of a usual characteristic spectrum for the anode material the x-ray
tubes can be considered monochromatic sources.

In order to achieve spatial as well as wavelength coherence most x-ray tubes work with a
focused beam that is as small as technically feasible. This allows very narrow collimation
slits, since it is not improving the coherence, and therefore the signal-to-noise ratio, to narrow
the slit further than the initial beam spot or the pixel size of the detector, whichever be
smaller. This however leads to a very high energy density, why some x-ray tube designs
forgo a solid anode all together and either opt for a rotating anode, where the energy of the
beam spot is distributed over a larger surface or a metal-jet anode, where the material is
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Parameter value

SDD 0.8-4 m

Pixel resolution | 172x 172um

Flux 107 photons s~*
wavelength \ 1.35 A

Q-range 4-1073-8-1071 At

Table 6.1: Perjprmance parameters pr state ofthe art laboratory SAXS setups, in this case
with a liquid metal jet anode at the GALAXI instrument. [3]

refluxed and can therefore not heat up beyond the point of deformation and therefore also
defocussing of the beam.

Some performance figures of current laboratory SAXS setups are given in Tab.6.1. It is
worth noting that with the last generation of metal-jet anode setups even laboratory setups
can achieve intensities comparable to what was achievable one or two decades ago at a world-
class synchrotron. While this of course allows for faster measurements and smaller beam, it
also means that beam damage to the sample has to be taken into account.

6.2.2 Synchrotron SAXS setups

While the setup in general is similar to that of a laboratory setup there are some key dif-
ferences between a synchroton and a laboratory SAXS setup. Most of the differences are
based on radio protection needs and are therefore immaterial to this description in terms
of the SAXS measurement itself. The other main difference is in the production of the x-
rays itself. Current setups at synchrotrons use undulators in order to periodically accelerate
charged particles (usually electrons/positrons) perpendicular to the direction of propagation of
the particle beam. This creates a very brilliant, nearly perfectly monochromatic x-ray beam
along the direction of the electron beam. The monochromaticity can further be improved by
a monochromator crystal. Fig.6.4 shows an example of an synchrotron SAXS setup. After
that, the collimation is very similar to that of a laboratory SAXS setup, only the materials
are chosen to be thicker in most cases to improve the absorption characteristics. Due to the
monochromaticity the brilliance, coherence and signal-to-noise ratio are significantly better
than that of a laboratory SAXS setup, since there is no bremsstrahlung spectrum to con-
tribute to the background. In terms of achievable wavelength there is no limitation to use a
specific K-« line of any specific material. Often common wavelengths are chosen to better
correspond to laboratory measurements on identical samples. One option that is also avail-
able in some synchrotrons is the tunability of the wavelength in order to measure resonance
effects in the atomic structure of the sample (anomalous SAXS, ASAXS) [4] or better chose
the accessible Q-space. Tab.6.2 summarizes some of the performance figures of current syn-
chrotron SAXS setups. For most synchrotron SAXS beamlines beam damage, especially for
organic samples, is an issue and has to be taken into account when planning an experiment.
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Parameter value

SDD 0.8-4 m

Pixel resolution | 172x172um
Flux 10'8 photons s+
wavelength \ 0.54-1.38 A

Table 6.2: Per oprmance parameters jpor a state o fthe art synchrotron SAXS beamline, here PO3
at DESY. [5]

Detector

Monochromator 26

Undulator

Fig. 6.4: Synchrotron SAXS setup. Here the radiation is produced in the storage ring ofa
synchrotron. In earlier designs, the x-rays were produced at the bending magnets in the ring
(kinks in the ring here). This however lead to a wide spread o fthe produced wavelength and a
high angular distribution o fthe radiation. An undulator fom a magnet array as de picted here
produces a narrow distribution o fwavelength and angular divergence. The rest o fthe setupis
comparable to the laboratory setup, albeit the intensity o fthe radiation is orders o fmagnitude
higher, which allows pr fner collimation slits and longer collimation distances and SDDs.
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6.3 SANS setups

In contrast to x-rays, sufficient numbers of free neutrons can only be obtained by nuclear
processes, such as fission, fusion and spallation. As large-scale facilities are needed to create
the processes at a suitable rate to perform scattering experiments with them, the only facilities
where neutron scattering today can be performed is at fission reactor sources and spallation
sources. This of course also leads to larger efforts in terms of biological shielding.

It is an inherent feature of those reactions that the reaction products show a wide distribution
of energies, with peak energies ranging up to 3 MeV kinetic energy per neutron. This leads
to deBroglie wavelengths in the fermi meter region, which is unsuitable for SANS scattering
experiments. Thus, in order to obtain a coherent beam it is not only necessary to collimate
the neutrons but also to moderate and monochromatize them. Both processes result in losses
in usable flux, since the phase space of neutrons cannot be compressed by lenses, as is the
case for photons.

The moderation process is performed by collision processes in a moderator medium. The
moderator is a material at temperatures around 25 K or below and the resulting neutron
spectrum is a Maxwell-Boltzmann spectrum of the corresponding temperature. This results
in peak wavelengths around 4 A for the neutron beam. Neutron scattering instruments can
be run both in time-of-flight mode or monochromatic mode.

A schematic of a SANS instrument is shown in Fig.6.5. Both cases with a monochromator
and a chopper setup for time-of-flight are presented. In a continous source the neutron flux
has to be interrupted for the timing of time-of-flight mode while for pulsed sources there is
an inherent interruption of the neutron flux.

This moderation and collimation process in consequence means that neutrons always show
an albeit small distribution of wavelenghts and therefore a lower signal to noise level than
x-ray sources. Spin and isotopic incoherence add to that. Beam damage however is nigh on
impossible with the weakly interacting neutrons.
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Fig. 6.5: a) Continuous source SANS setup and b) pulsed source SANS Setup. In both cases
the neutron source (red) creates hot neutrons o fa short wavelength. A cold source (blue) vessel
(usually filed with cold ?>H or 2 D) is moderating the neutrons down to slower speeds, i.e. longer
wavelengths. In both cases the collimation distance and SDD is widely ad justable jor most
instruments, with lengths between I m up to 30 m. In a SANS instrument at a continuous
source a monochromator (a turbine with slightly inclined channels) selects a certain wavelength
(usually between 3 and 15 A) and a ferwards the setupis very much like the one shown pr SAXS
setups, exce pt that the whole instrument is larger. In case o fa pulsed source cho ppers (rotating
discs with transparent openings jor neutrons) de fne a start and an end time jr each pulse.
Since neutrons, diferent from x-rays, are particle waves, their wavelength determines their
speed. Thus, the wavelength is determined by measuring the time o farrival at the detector pr
each neutron. For an optimized neutron transport all components are usually evacuated.
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oIS
,\ _ to detector

Fig. 6.6: Construction ofQ. The incoming and final wavevectors k; and K¢ de fne both the
scattering vector Q as well as the path length di ference 6 = Asy — Asy. Here it is important
to note that the selection o fthe center o forigin is arbitrary and thus can be chosen to be at the
center o fthe construction. The calculation o fthe length o fQ is then given by Eq.6.2.

6.4 Indirect space and Small-Angle Scattering

The need for the resolution of small angles can be directly derived from Bragg’s equation

nA = 2d - sind (6.1)

with n being the order of the diffraction, d being the distance between two scatterers, ¢ as
the scattering angle and )\ the wavelength of the incoming beam. In order to get interference
the incoming beam has to have a wavelength that corresponds to the investigated size regime,
which in both cases is on the order of a few Angstroms. Using Bragg’s equation with n =1,
d = 50A and A = 1A we arrive at 0.01 = sinf ~ 6. Thus, the largest structures to be
resolved are determined by the smallest achievable angle.

In order to allow for a setup and wavelength independent data evaluation the data is recorded
in terms of Q or indirect space. The construction of that Q-space from two scattering points
is shown in Fig.6.6. From that the magnitude of Q, which here for simplicity is |Q| = @,
can be derived as

4
Q= - sind. (6.2)

Even though Q is strictly speaking a vector, for most small angle problems only the absolute
value () is of interest, hence this simplification is reasonable. This is due to the isotropic
scattering picture of a majority of small-angle scattering data. Another simplification that is
often used is the small-angle approximation for the sine with sin# = #, which is very well
valid for small angles. Combining Egs.6.1 and 6.2 also delivers a useful expression for the
approximation of inter-particle distances or correlation lengths

d=—. (6.3)
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6.5 Resolution limits

SAS is working based on the interference of coherent radiation. That in itself imposes some
limitations on the samples and properties that can be investigated.

In term of size, the object under observation has to be of the same order of magnitude as
the wavelength of the incoming radiation, analogous to light interference at a double slit.
Concerning the analysis in indirect space, also the limited size of the detector and coherence
volume of the sample has to be taken into account.

The second limitation that should always be considered is that only elastic scattering renders
useful results, i.e. any change in speed or wavelength of the incoming radiation will render
unusable results.

Finally, multiple scattering is usually not considered for the evaluation of SAS data. This
means, mostly thin samples, or those with a high transmission (usually 90% or higher), can
be investigated.

6.6 Fourier Transform and Phase Problem

Considering the spacing of only two scattering centers as in the last section needs to be ex-
tended to an arrangement of scattering centers for evaluation of macroscopic samples, where
each atom/molecule can contribute to the scattered intensity. Since the incoming wave at
location x can be considered to be an even wave it can be described by

A(x, 1) = Ay exp(i27r(l/t - ;f)) (6.4)
With a A being the amplitude as a function of position x and time t. A is the modulus of
the amplitude, v the frequency and lambda the wavelength.

In order to calculate the correct phase shift A¢ after scattering from two centers as in Fig.6.6
we need to know the differences in travelled distance between the two waves 0. This then
yields

Ag = 2)\i5 = Qr, (6.5)

which is equivalent to the expression 272/ in Eq.6.4. Here also the relation Q = ky — k;
was used. This then leaves us with the spherical wave scattered by the first scattering center

Ai(x,t) = Apbexp(i2m(vt — x/\)) (6.6)

and the corresponding scattered wave from the second scattering center

As(x,t) = Ai(x,t)expil¢ (6.7)
= Apbexp(i2n(vt — x/\)) expiQr (6.3)
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This can then be combined into the full description of the amplitude with both contributions
to

A(x,t) = Ai(x t) + As(x, 1) (6.9)
Agbexp(i2m(vt — x/A))(1 + expiQr) (6.10)

here an arbitrary scattering efficiency b for each scattering center has been introduced, which
will later be discussed for both x-rays and neutrons.

Since only intensity can be observed at the detector, we need to consider the square, calcu-
lated with the complex conjugate of the expression itself

I(Q) = A(x t)A*(x,t) (6.11)
= A2*(1 4 exp (iQr))(1 + exp (—iQr)). (6.12)

Here the time and absolute location dependencies in Eq.6.10 have cancelled each other out,
so we can neglect them and are left with a function that solely depends on the scattering
vector Q and the location of the particles r. Neglecting those dependencies allows us to
generalize Eq. 6.10 to the case of /V identical scattering centers with

N
A(Q) = Agb Y _ exp(iQr;). (6.13)
i=1

The r; here signify the relative locations of all scattering centers in the sample, relative to
either simply the first scattering center or any arbitrary center chosen. Indeed all arrange-
ments are mathematically identical. Replacing the sum by a weighed integral allows also the
calculation for the case of a (quasi)continuous sample with number density p(r):

AQ) = AOb/v p(r) exp iQrdr (6.14)

This is the Fourier transform of the number density of scattering centers with scattering
efficiency b, it can also be applied for numerous scattering efficiencies.

However, since the phase information got lost while obtaining the intensity as an absolute
square of the amplitudes, there is no direct analytic way of performing an inverse Fourier
transform. This is why this is called the phase problem. Also, as described above, in a wide
range of cases it is enough to investigate the modulus of QQ, neglecting its vector nature.

6.7 Scattering Efficiency

Since the physical scattering event is very dissimilar for x-rays and neutrons they shall be
discussed separately here. However, it should be noted, that the nature of the scattering
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process does not impact on the method of data evaluation in general. Only in very specific
cases, such as contrast matching or polarized scattering there is any discernible difference.

6.7.1 Scattering with x-rays

X-rays, as photons, interact with the sample via electromagnetic interaction. For the purpose
of this manuscript it is sufficient to note that the vast majority only interact with the electron
shell around the atoms and thus effectively map the electron density within the sample. Inter-
actions with the nucleus would only occur at very high energies, which are not usually used
in elastic scattering. In a rough approximation the strength of the electromagnetic interaction
scales with Z2, meaning that heavy elements, such as a wide range of common metals, scat-
ter considerably stronger than light ones, like hydrocarbon compounds. For element analyses
there is also the possibility of resonance scattering, where the chosen x-ray energies are close
to the resonance gaps in the absorption spectrum of specific elements (ASAXS). [4]

Based on Thomson scattering the scattered intensity at angle 26 is

e? \ 1+ cos?26
1(2 = 1 1
o — £ o5
I do o1 + cos? 20
L (A 1
To (dQ)2 T (616)

Here we also introduced the differential scattering cross section j—g for a single electron and
r. being the radius of an electron. This means that the total probability for a scattering
event to occur into a solid angle df) is exactly that value for a single, isolated electron. This
probability is in units of an area. Thus, the scattering length for a single electron b, is defined
as the square root of that:

1 290
m=n¢i%§—- (6.17)

With those previous equations it is again important to note that small-angle scattering is
mainly concerned with small angles, thus that cos2f ~ 1 is a very good approximation.
This is also, together with backscattering, the location of the highest intensity and negligible
polarization effects. The numeric values for the constants used here are r, = 2.818 x 1071°
m and the scattering cross section for a single electron o, = 6.65 x 1072 m?> = 0.665 barn
after integration over the full solid angle. As apparent with integration over the full solid
angle, the relation is o = 47b2.

Since usually the goal is to find the distribution of scattering centers in a volume, the density
of scattering length per unit volume is of interest. This is the scattering length density (SLD)

p(r) = v (6.18)
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A very common way of expressing scattering efficiency is using electron units. As can be
seen in Eq.6.13 the scattering amplitude is only determined by the SLD of a single electron
apart from the Fourier transform of the local density. This means the scattering intensity in
electronic units can be expressed as

I..(Q) = (6.19)

This means, with appropriate calibration, if there is an intensity of I, = 200b? at a certain
Q, that the size scale corresponding to that Q vector has 200 electrons per unit volume.

Since photons interact mainly with the electron shell, there is also an angle dependency
accounting for the time averaged location probability of the electrons in the shell, which may
or may not be spherical, depending on the electronic configuration of that specific atom. This
would then lead to a SLD in terms of b.(Q) = b.fs(Q)) with f; being the atomic scattering

factor for any specific element. This important to take note of, when there is a structure or
. . D -1 .
form factor on the same size scale as a single atomic distance @ = ; 521 1 = 4.08 A" This

is usually not in the regime of interest for small-angle scattering and will mostly vanish in
the incoherent background.

Another incoherent background effect is Compton scattering, where inelastic processes
change the wavelength during the scattering process. This is however again strongly sup-
pressed at small angles. The wavelength shift occurring based on Compton scattering is
following this expression

h
AN = —2¢in’ 60 (6.20)
mc

The prefactor is n% — 0.02426 A. It is also obvious that at large angles 20 = 180°the energy

transfer is maximal. Since we are always investigating angles close to § = 0 the wavelength
shift and hence the incoherent background is negligible compared to other experimental fac-
tors, such as slits and windows scattering.

6.7.2 Scattering with neutrons

Neutrons interact with the nuclei directly, which results in the atomic form factor being al-
ways spherically symmetric (billiard balls) and them being sensitive to different isotopes and
spin-spin coupling. In contrast to x-rays, there is no simple expression for scattering strength
as a function of isotope or atomic number. Directly neighboring elements and isotopes may
have vastly different cross sections.

This is due to the fact that the Schrodinger equation has to be solved for each combination
of incoming neutron and nucleus. The solution for the problem is illustrated by Hammouda
or Tong [6,7] in more detail. For here it is sufficient to note that Schrédinger’s equations
is solved by taking into account an approximately MeV deep square well for the nucleus
with a free particle outside the well. This results in an approximate solution for the relation
between the radius of the atomic nucleus R and the scattering length b:
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Fig. 6.7: Behavior o fscattering length b as a jfinction o fnuclear radius R and momentum
transr Q. Using representative values pr example pr hydrogen (R = 8.5 - 10716 m) and
deuterium (R = 2.1 - 107° m) and reasonable Q-values pr small angle scattering (such as
jorward scattering with Q = 1 - 107°A~") it becomes apparent how those strong di ferences in
scattering length happen, and also why this has an especially strong impact pr light elements,
where the radius strongly changes by adding or removing one nucleon. Values jr hydrogen
and deuterium are marked.

b tanqR
—=1- 6.21
7 R (6.21)

A reprensentation of this is given in Fig. 6.7. The strong variation due to minute changes in
the numerical value make it clear, why tabulated values are used in most cases.

Based on that we usually rely on tabulated values for the cross sections and scattering lengths
of different elements and isotopes (see Tab.6.3) and can then write the cross section and
scattering length relation as

do

R b? (6.22)

Element | scattering length b, /10~ 4m

'H -0.374
’D 0.667
C 0.665
N 0.936
O 0.580
Si 0.415
Br 0.680

Table 6.3: Coherent scattering length o fseveral elements and isoto pes.
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That said, only coherent scattering can form interference patterns, i.e. no change of the nature
of the radiation can take place during the scattering process. However, since the neutron
can change its spin orientation through spin-spin coupling during the scattering process that
may happen, depending on the spin orientation of the sample nuclei. Those are completely
statistical processes.

As neutrons are fermions, which have spin 1/2 the possible outcomes after a scattering pro-
cess with a nucleus of spin 7 are ¢ + 1/2 and 7 — 1/2, and the associated possible spin states
are

number of states i +1/2 : 2(i+1/2)+1=2i+2 (6.23)
number of states i — 1/2 : 2(i—1/2)+1=2i (6.24)
total number of states : 4i 4 2. (6.25)

This immediately shows, that only for the case ¢ = 0 there can be only two states. Since it
is impossible to know the spin state of non-zero spin nuclei under ambient conditions, the
differential cross section becomes a two-body problem of the form:

d
% =57 (biby) exp—iQ(r; — 1)) (6.26)
i,J

Here (b;b;) is the expectation value of the SLD for each b;b; combination possible given
isotope and spin variability. For this there is only one coherent outcome, where b; = bj,
which then results in

(bib;) = (b7) = (b%). (6.27)

All other cases result in b; # b; and therefore

(bibj),s ;= (bi) (bj) = (B)*. (6.28)
This then results in
d
d_g = (b?) - %: exp (—iQ(ri — r3)) + N((b?) — (b)*). (6.29)

Here \/ <b_2> = b.on, signifies the coherent scattering length density, since it contains informa-
tion about the structure of the sample via rij and \/(b2) — (b)2 = by, is the incoherent cross
section not containing any information about the sample structure. This cannot be suppressed
instrumentally, therefore often isotopes with low incoherent scattering length are chosen in
neutron scattering to suppress the incoherent background. Both coherent and incoherent scat-
tering lengths can separately used together with Eq.6.18 to obtain the corresponding scatter-
ing length densities.



6.18 Sebastian Jaksch

H D C N @) Br

H D C N O Br

Fig. 6.8: Coherent cross-sections jr selected elements jfor x-rays (top) and neutrons (bottom,).
The coherent scattering cross section scales linearly with the diameter o fthe circles. It is appar-
ent, that the Z* dependency strongly emphasizes heavy elements in x-ray scattering, whereas
Jor neutrons even single isotopes can be distinguished. However, jor neutrons there is no simple
analytic expression jr the scattering cross-sections.

6.7.3 Scattering Cross Section and Contrast Matching

As described above there is a Z? dependency of the cross section of atoms in case of x-
rays and the cross section values for neutrons are taken from tabulated values. The resulting
differences in cross section are illustrated in Fig.6.8. Because different isotopes have very
different cross sections for neutron scattering, in some cases it is possible to replace certain
isotopes in order to arrive at desired contrast conditions.

One of the most important examples for that technique, called contrast matching, is replacing
hydrogen by deuterium. This leaves the chemical composition of the sample unchanged, and
hydrogen is extremely abundant in most organic compounds. The concept can in some cases
be extended to be used as the Babinet principle, in order to suppress background scattering,
since it is extremely preferable to have a solvent with a low background and a solute with a
higher background than vice versa. A sketch of the concept is shown in Fig.6.9.

This method allows highlighting otherwise hidden features of the sample or suppressing dom-
inant scattering in order to better determine a structure with a lower volume fraction and
therefore less scattering contribution. Examples for that application are highlighting the shell
of a sphere, by matching the core or vice versa. Also for protein samples certain structures
can be matched, so that only distinct features are visible.

In order to apply contrast matching, mostly the solvent is changed. In some rare cases also
the polymer or other sample is synthesized with a different isotope composition. Here the
finding of the correct H/D fraction of the solvent shall be shown. Fig.6.10 gives an example
of how to find the correct H/D fraction in a semi-analytic way. The underlying principle is
expressed by
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Fig. 6.9: lllustration ofthe concept o fcontrast matching. In step @ there are micelles with
a corona (pink) dissolved in a solution (blue). The scattering length density o fthe corona is
between the SLD o fthe solvent and its deuterated counterpart (red). In step @ the deuterated
solvent is added to the solution, which changes the contrast conditions. Finally, in step @ a
su ffrcient amount o fdeuterated solvent has been added, so the contrast between the corona and
the solvent has vanished. Now the micellar cores can be measured directly.

— D0

— H20

—— mixed D,0/H,0

—— polyethylene

—— polystyrene

—— polyethylene terephthalate
—— polyether ether ketone
polytetrafluorethylene

w

SLD/107%A2
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Fig. 6.10: Semi-analytic way to determine the necessary solvent deuteration jor contrast match-

ing. The concentration at the matching point, where the solvent has the same SLD as the poly-

mer particles, is determined by the crossing o fthe mixed DO /H>0 SLD line and the SLD line o f
the respective polymer. For the calculation the scattering length density o fwater is calculated

t0 -0.6:107 %A% and the SLD o fheavy water is calculated to 6.3-1076 A2,
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SLDgympe = SLDp,0ox H+ SLDp,ox D (6.30)

H = 1 (6.31)
SLDsam le — SLDH 0]

D = L = 6.32

SLDp.o (6.32)

This way the volume of heavy water for each unit volume of protonated (usual) water can
be calculated. It is also apparent from that calculation that only mixtures with a scattering
length density between water and heavy water can be matched, and that the equations above
only cover the non-trivial cases, where pure water or heavy water is not suitable. The actual

volumes can then be calculated with Viyater = HIj—D and Vheavy water = }%.

A prominent example for contrast matching is the matching out of the shell or core of a
micelle. The contrast behavior and the resulting scattering curves are shown in Fig.6.11.
Essentially contrast matching can improve the fitting procedure, if well known parts of the
structure are matched out or emphasized by the contrast matching. This then delivers two
or more different data sets that all should return comparable results. Another option is the
reconstruction of embedded particles in a larger structure. Also here, the overall fitting pro-
cedure can profit from two fits with mutually corroborating results.

One concept that shall also be mentioned here is magnetic (spin-) contrast. In this context
Fig.6.9 can be understood to be particles with a magnetic shell. As long as the spins are not
aligned there is no contrast between the shell and the solvent (step ®). When an external
magnetic field aligns the spins in the shell, a contrast between the shell and the solvent
emerges (D). Several other possibilities with and without polarization analysis are possible,
however that is beyond the scope of this manuscript.

6.8 Form factors

As described above, the phase problem usually prevents an analytic reconstruction of the
structure from the scattered intensity by an inverse Fourier transform. There are approaches
attempting the direct reconstruction of direct space information [8] or reconstruction from
bead model annealing / Monte Carlo simulation [9,10]. All these approaches have in com-
mon that a direct analytic expression for the scattering is not foreseen, and can therefore
not be used as a starting point of the analysis. In the past, the model based analysis
has been the most applied approach for the analysis of small-angle scattering data. Here,
predetermined structures undergo a Fourier transform, whose result is then used to calcu-
late a scattering pattern. This results in the most cases in analytic expressions that can
be directly fitted to the data and are often used in a catalog-like manner in order to de-
termine the structure of the sample. As most geometric forms can be approximated ei-
ther as a sphere, a disk or a rod (see Fig.6.12) these are the forms that are going to be
discussed here. More elaborate structures are available and can in principle be calculated
for any structure where the form can be described by an analytic expression. A short,
and by no means complete, list of programmes for the evaluation of SAS data is SasView
(https://www.sasview.org), SasFit (https://kur.web.psi.ch/sansl /SANSSoft/sasfit. html) and
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Fig. 6.11: Scattering curves jr micelles with unmatched, partially matched and completely
matched corona. The curves correspond to the scenarios ©, @ and @ in Fig.6.9. Here two e f
Jcts can be observed. The corona is only 50% o fthe radius o fthe core, hence it in fuences the
scattered intensity at higher angles than the core itsel f the scattering fature at Q=0.15A"" cor-
responding to the micellar core is there fore quite stable, while the intensity at higher () changes
drastically. Considering the jorward scattering the dependence o fthe scattering contrast be-
tween solvent and core is directly visible. The matched out corona shows the least contrast, and
there pore the lowest jorward scattering intensity, while the unmatched corona has the highest
contrast and the highest intensity. This approach is also used, when an analytic approach to
Jfnd the matching D,O/H5;0 concentration cannot be jound. Several concentrations are tested
and where a minimum in the scattered intensity is jound, the contrast can be assumed to be
matched.
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Fig. 6.12: Form factors jor several scattering geometries. The slopes at the onset o fthe jorm
Jactor afer the plateau are shown, which is mostly determined by the factal dimension o fthe
scattering ob ject. Here it also becomes apparent that solely relying on that slope may lead to
misinter pretation between similarly scaling ob jects, here Gaussian coils and discs.

Scatter (http://www.esrf.eu/Users AndScience/Experiments/
CRG/BM26/Saxs Waxs/DataAnalysis/Scatter#).

6.8.1 Sphere

The analytic expression for the scattering created by a sphere of radius R is

sin(QR) — QRcos(QR)1*
(QR)?

(6.33)

with NV being the number of the scattering particles, V' being the volume of a single sphere
and py being the SLD contrast between the sphere and the solvent.

This expression can be reached by using a SLD description like a step function as depicted
in Fig.6.13. As a sphere is already spherically symmetric this can be directly put into the
Fourier transform
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Fig. 6.13: Depiction o fthe SLD distribution along the radius o fa sphere. pg is the SLD contrast,
i.e. the SLD diference between the scattering particle and the solvent. R is the radius o fthe

sphere.
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(6.38)

(6.39)

(6.40)

(6.41)
(6.42)
(6.43)

(6.44)

Here Eq.6.37 used the identity of Qr = Qrcosf with theta being the enclosed angle and
in Eq. 6.38 cosf was replaced by u. In addition, spherical symmetry was exploited for the
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integration over the solid angle. The factor (27r)3 is to correct for scaling differences during
the Fourier transform.

This corresponds exactly to the squared term in Eq.6.33 which is nothing else than the
squared amplitude that we calculated here. As this is only the scattering for a single, isolated
sphere, the number density needs to be included to reflect the absolute scattered intensity. In
case of neutron scattering this is the case for most of the instruments. X-ray instruments are
often not calibrated to absolute scattering intensities and therefore need an arbitrary scaling
factor. Similar approaches can be used for other analytic representations of form factors.

6.8.2 Thin Rod

The scattered intensity by a dilute solution of thin rods of length L is given by

Q) = ngQ( ﬁ) sinQ( % cos 9) (6.45)
PR’ oL <S1(QL) %2“) . (6.46)

Here v is the volume of the particle and the average over all orientations has been performed
in the second step. The substitution Si(QL) = |, OQL S04y was used.

6.8.3 Circular Disc

An infinitely thin circular disk of radius R scatters the incoming intensity as follows:

I(Q) = pov QZQRQ (1 - Jl(égR)) (6.47)

J1 here is the first order Bessel function.

6.8.4 Non-particulate scattering from a flexible chain

A flexible chain in solution cannot be described by a simple analytic form, since one needs to
integrate over all possible conformations of the chain. Nevertheless, an analytic expression,
the Debye scattering, can be found:

2exp(—~QR2) + Q*R2— 1)
QR

1(Q) = pgv* (6.43)

Here R, = { [, r’podr is the radius of gyration (in this case for constant SLD). A very
important aspect of that scattering curve is, that it essentially scales with (2.
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For better comparison the radius of gyration for a solid sphere of radius R is Ry = \/ %R,

the one for a thin rod of length L is R, = \/1—ﬁL and the one for a very thin circular disc
with radius R is Ry = J5R

6.8.5 Polydispersity

All analytic form factors, that deliver the scattered intensity, are determining the scattered
intensity for particles of one exact size. In real systems, however, there are mostly distri-
butions of different sizes. This leads to a superposition of scattering from different particle
sizes. Since most particle sizes follow a Gaussian distribution, this is also a good way to
fold in the particle size distribution analytically. For extremely long, or very polydisperse,
particles then Schulz-Zimm distribution is used, which looks very similar to the Gaussian
distribution, however has a cut-off at zero to prevent negative sizes of the particles. For
specialized problems also other distributions, such as La-Place, multi-modal or other size
distribution functions can be used.

The general idea is that the scattered intensity I((Q), r) is folded with the size distribution
function f(r)

Treal(@, 1) = Ligeal( @, 1) * f(7). (6.49)

Here the subscripts real and ideal identify the real measured intensity or the ideal intensity
for any calculated particulate size and form.

The effects of the convolution can be seen in Fig.6.14. Most notably, the minima are smeared
out, and in some cases vanish completely, so they can only be estimated. Another important
effect is that the slopes of inclinations cannot be completely reproduced anymore, which is
especially important to distinguish scattering from different contributions. The magnitude of
the polydispersity is described by the polydispersity index PDI = o(f(r))/u(f(r)) where
o(f(r)) is the standard deviation of the size distribution function and p( f(r)) is the mean of
the size distribution function. Values of PDI > 0.3 are usually discarded during fitting, as
then the results become unreliable in such a polydisperse sample.

In addition to this, the usual polydispersity (approximated by a Gaussian distribution) is by
its very nature similar to a resolution smearing of the instrument itself. Therefore, it can
easily happen to overestimate the polydispersity. If the resolution function of the instrument
is known, it should be used for deconvolution before performing the fits.

6.9 Structure Factors

Structure factors in general describe the scattered intensity due to the arrangement of single
particles. This can be because the solution is becoming to dense, and therefore the particles
arrange following a nearest neighbor alignment or because the particles are attractive to each
other and form aggregates. Thus, more generally a structure factor S(()) is a measure of
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Fig. 6.14: Efect o fpolydispersity. While the positions o fthe minima can still be pund at higher
polydispersity, the higher order undulations o fthe jorm factor vanish.

interaction between the single particles in the solution and connected with the correlation
function ¢(r) (the probability to find a particle at a certain distance) with the relation

1

Since the structure factor and the form factor need to be convolved in real space, in indirect
space this converts to a multiplication, following the convolution theorem. Therefore the
scattered intensity, described by form factor F(Q)) and structure factor S(Q)

1(Q) = F(Q) - 5(Q). (6.51)

From this equation it also follows, that for a system of uncorrelated, identical particles the
structure factor must be S(Q)) = 1. Since the correlation between particles usually leads to
either an aggregation or repulsion of particles over long length scales the contribution of the
structure factor is most prominent at low Q-values. Also, this means that for large distances
the structure factor has to level out to unity, to preserve the fact that at large Q only the inner
structure of the particle is visible, not its arrangement in space. A few instructive examples
for the structure factor are shown in Fig.6.15.

6.9.1 Hard Sphere Structure Factor

The hard sphere structure factor assumes an infinitely high potential below a radius R and a
zero potential at higher radii. This can be described by

o forr< R

Vir) = {O forr > R. (6.52)
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Fig. 6.15: Examples por structure factors. The intensity o fthe peaks roughly scales with the
volume fraction 1 o fthe particles. Also the position o fthe peaks is slightly de pendent on that

volume fraction, which makes a direct calculation o fR = an’fm invalid (The hard sphere radius

used here was 60 A). A distinct di ference can be noted at low Q. Here, in general, attractive
interaction (sticky hard spheres) leads to an increase in scattering, while re pulsive interaction
leads to a decrease in intensity.

Using Eq.6.50 this can be rewritten as

1
) = T 205G 0R) 2GR (6:53)
Here G(z) is defined as
Glo) = Ot(sin(:v) ;Qxcos(x)) N (6.54)
: o B
_ ﬁ(2xsm(x) + (2:63@ ) cos(z — 2)) N (6.55)
_ 7(—954 cos(x) + 4[(3z* — 6) czj(x) + (23 — 62) sin(z) + 6)) 6.56)
with these definitions for o, 8 and ~:
oo (LF2mms)” g = 6nms(1 +nus/2)” _ ns/2(1 + 2nns)°
(1 —nms)* (1 = nus)* ’ (1= nus)*
(6.57)

In all equations the volume fraction that is occupied by hard spheres of radius R is designated
NHS-
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Fig. 6.16: Diverse scattering curves from identical spherical jorm fuctor and di flerent structure
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6.10 Reading a curve

In an experimental environment it can be useful to determine the fundamental features in a
preliminary fashion without computer aided data evaluation, also known as fitting. In addi-
tion, this helps determining good starting parameters for fits. In order to do so, we are going
to look at the curves shown in Fig.6.16. There we can determine different regions of the
scattered intensity (forward scattering, Guinier regime, Debye regime and Porod regime) and
determine several properties of the sample from that intensity. When applying the described
techniques for directly reading a curve it has to be kept in mind that most of them are either
restricted in their validity concerning the ()-space or are very general and rough descriptions
of the sample.

6.10.1 Forward scattering

As pointed out in the discussion of the structure factor, large aggregates mostly show their
presence by an increased scattering intensity at low (). This also becomes apparent when tak-
ing Eq.6.3 into account. This means, in general, an increased scattering at low () is indicative
of large aggregates being present in the sample. This also correlates with an attractive poten-
tial between the single particles.

Another possibility is strongly suppressed scattering at low (). This can be the case for
strongly repulsive interaction potentials between the particles, close to what is described for
the hard sphere factor above.

A leveling out of the intensity at low () is indicative of an either dilute solution or a very
weak potential between the particles. Then there is no influence at low () and only the
structure factor of the single particles is visible.
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Fig. 6.17: Sphere orm factor and Guinier approximation from Eq.6.58 in a Guinier plot. The
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6.10.2 Guinier regime

The Guinier regime is usually the crossover region, where the forward scattering is not dom-
inant anymore and the slope of the scattering curve changes to the scattered intensity of the
form factor. In this regime the overall size of the particle can be examined. This is similar
to seeing something from far away: One may be able to discern the size of the particle but
the distinct form remains hidden. Imagine a football and a pumpkin seen from 100 m away.
They are close in size, you can properly judge it to be approximately 20 cm in diameter,
but the exact form (ridges, stem of the pumpkin) remains hidden. A description that is only
taking into account the scattered density of the particles as a whole, valid in that scattering
regime is the Guinier Law:

QR

1(Q) = pov* exp(— 3

) (6.58)

For details of derivation, which include a Taylor series expansion around zero of the scattered
amplitude (Eq.6.36) and an averaging over all directions, please refer to the literature. [11,12]
Another option is to develop a series expansion for the Debye Law (Eq.6.48) at low Q.

In order to evaluate the data using the Guinier Law, the data needs to be plotted as shown
in Fig.6.17. The log-log representation and plotting versus Q2 allow to directly read the
inclination of the system, multiply by 3 and use the square root in order to retrieve the
particle radius.
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6.10.3 Debye regime

In contrast to the Guinier regime, where the data can be evaluated by the Guinier law, the
Debye regime signifies the area, where the particulate form manifests in the scattering, which
in general cannot be fitted by the Debye law. The Debye law is only valid for the scattering
from Gaussian chains. As can be seen in the form factors section 6.8, there is a direct
correlation to the dimensionality of the scattering particle (sphere, disc, rod) and the slope in
log-log plot, since the scattering scales with I(Q) ~ Q~, where D is the dimensionality of
the scattering object (sphere: D = 3; disc: D = 2; rod: D = 1). Also the scattering from
fractal objects is possible, which then results in non-integer numbers for the slope. It should
be noted that this is an approximation that is only valid for the case when 1 /particle radius <
() < 1/fundamental building block. The fundamental building block in this case can be for
example atoms or single monomers of a chain.

6.10.4 Porod regime

The Porod regime, is the regime where the interface between the particle and the solvent
dominates the scattered intensity. It is valid for large () (before leveling out into the inco-
herent background) and therefore a good approach is extrapolating the sphere form factor to
large Q. The decisive property of the scattered intensity is the scaling of I(Q) ~ Q~*. This
behavior can be derived from an extrapolation of the sphere form factor (Eq.6.33) to very

large Q:

4 >9(sin QR — QR cos QR)?
Q) (§WR3) (sin i cos QR) (6.59)
2 3 _
_ SWQ( R*(1 —|—C§ZS 20Q0R) 2R 8122152@1&’ N 1 c;s62QR) (6.60)

The higher order terms vanish at large @) delivering the characteristic Q~* behavior of the
scattered intensity. Here only proportionality is claimed, which is strictly true in this case.
If the scattered intensity is recorded in absolute intensities, here also information about the
surface of the particles can be obtained. This then follows the form

lim 1(Q) = TP

Jim - =g (6.61)

Ap is here the SLD difference between the particle and the surrounding medium and S the
inter-facial area of the complete sample between particles and medium. This means, the
absolute intensity of the Porod regime allows to determine the complete amount of surface
in the sample.
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6.10.5 Estimation of particle and feature Size

As described previously for low () in most cases it is a good approximation to assume all
particles in the sample have spherical symmetry (Section 6.10.2). The roots of the expression
for the spherical form factor are in the locations tan(QQR) = QR, which is true for QR =~
4.49,7.73,10.90..... In many cases anyway only the first minimum of the form factor will be
visible. This allows a fast approximation of the radius with R ~ 4.5/Q),,;,. Here it needs
to be noted, that this is the rotational average of the particle, neglecting any structure of the
particle whatsoever.

Another approach of determining the size or correlation of features is using Eq.6.3:

.
Q

Although this is in general only strictly true for lamellar systems and the corresponding

correlations, it is still a good approximation for a summary data examination during the

experiment. With that restriction in mind it can be used for virtually any feature in the

scattering curve and the size of the corresponding feature in the sample.

6.11 Further Reading

Most of the concepts shown in this manuscript are based on previous publications. The
following selection of textbooks gives the reader a good overview of the principles of SAS.

6.11.1 A. Guinier: X-ray diffraction in crystals, imperfect crystals, and
amorphous bodies

This early textbook concentrates on SAXS, as neutron scattering at the time of writing was
still in its infancy. While some of the terminology may have changed slightly over time, in
many aspects this book still gives a good fundamental overview of what can be done with
small-angle scattering, and how to perform a solid data analysis. In addition, this is literally
the book on the Guinier Law, and where some of the basic ideas of reading scattering curves
were first collected.

6.11.2 R.J. Roe: Methods of x-ray and neutron scattering in polymer sci-
ence

Here the author nicely manages to emphasize the commonalities and differences between x-
ray and neutron scattering. An overview of the methods and technologies is given, as well
as a helpful mathematical appendix, reiterating some of the concepts used in the book.
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6.11.3 G. Strobl: The physics of polymers

For soft-matter researchers this book, even though not being focused on scattering as such,
gives a good overview of applicable concepts for scattering with soft-matter samples. A wide
range of helpful examples highlight in which particular area any evaluation concept of the
data is applicable and useful.
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Exercises

E6.1 Multiple Choice

1.) The resolution of a SANS experiment is determined by

(a) The chosen wavelength

(b) The proportion of elastic and inelastic scattering from the sample
(c) The sample size

2.) Which components of a SANS instrument define the beam?
(a) Monochromator/Choppers

(b) Slits

(¢) Detector

3.) Which pairs are correct, when trying to understand a SANS curve?
(a) Forward scattering: Aggregation

(b) Gunier Regime: Approximation of the shape

(c) Porod Regime: Size of particles

4.) The difference between coherent and incoherent scattering in SANS and SAXS is

(a) Core/neutron interactions do not allow for pure elastic scattering

(b) Current SANS instruments are not developed enough to suppress incoherent scattering
(c) For isotopically pure samples, there would be no difference

5.) Form Factors ...

(a) ... are used to deal with the phase problem

(b) ... are used because experimenters are lazy and like quick answers
(c) ... do not render unique results

6.) Contrast matching experiments

(a) are unique to neutron experiments

(b) are possible because different isotopes give different contrasts
(c) distort the results, because the sample chemistry is changed

7.) The Structure Factor

(a) can be calculated by the experimental setup of the instrument
(b) encodes the correlation between particles in the sample

(c) shows the structure of the scattering particles

E6.2 Scattering by a sphere

Find the first two roots of the intensity scattered by a sphere. Use this value to create a
sketch that:

1.) Shows the scattered intensity by a sphere

2.) Indicates a change happening by increased polydispersity

3.) Indicates aggregation of large particles in the sample

Bonus: What would this curve look like if there was no aggregation, but the particles would
push away from each other?
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E6.3 Properties of the scattering curve

Decide and explain which properties of the scattering curve you need to evaluate if you are
interested in

1.) the particle size

2.) the size distribution

3.) shape of the particle

4.) interaction between the particles
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7.1 Introduction

Macromolecules are an integral part of Soft and Living Matter. In Living Matter,
macromolecule-based functional systems are built from molecular units consisting of
only a few different building blocks: amino acids are assembled into proteins, which in
turn function individually, or cooperatively in nano- and micro-machines. The secret of
success is the intrinsic hierarchical structuring over a large range of length scales. In So f
Matter, synthetic macromolecules are of much simpler structure. Nevertheless, there is a
vast variety of material properties that can be realized with synthetic macromolecules.
Theoretical concepts have been developed, and are essential for the rational design of soft
materials, that are of paramount importance in a multitude of technical applications.

Synthetic polymers have crucially changed daily life since its development in the 1 930ies.
Modern polymers can be divided into two major classes (i) commodity polymers for daily
life use which are produced in millions of tons per year and (ii) specialty polymers for
high-performance applications which are niche products but highly profitable[1]. Typical
commodity polymers are polyolefines like polyethylene (PE) or polypropylene (PP) used
for packaging, films etc. Examples for specialty polymers are polydimethylsiloxane
(PDMS) derivatives used in dental implants.

Currently, both classes of polymers in use are based on petrochemical feedstock, thus
considered not “carbon-neutral” and “environment-friendly”. Due to changing global
conditions and growing concerns about the mounting disposal problems, research on
sustainable commodity polymers has been intensified during the last decade, both on the
level of fundamental research and applied science [2]. To find the required balance
between material properties and bioavailability/-degradability is the key for establishing
sustainable polymers on a large scale industrial level and therefore a major challenge of
future polymer science.

The development of new biomimetic specialty polymers is another major challenge.
Biopolymers, like spider silk, are high-performance materials with material properties
superior to any synthetic polymer. To transfer these properties to artificial biomimetic
polymers, one has to fully understand, on the molecular level, the structure-property-
relationships and enzymatic synthesis processes in living organisms.

In this lecture some recent applications of neutron scattering methods to characterize
quantitatively on a microscopic length scale structure and interactions of synthetic
macromolecules and its hierarchical structuring are given. A more comprehensive
overview is found e.g. in[3].

7.2 Polymers in dilute solution

7.2.1 Linear polymers

A linear polymer is a sequence of molecular repetition units, the monomers, continuously
linked by covalent bonds. The degree of polymerisation, D, i.e. the number of monomers
constituting the polymer, the (weight average) molecular weight, M,,=D, M,,, with M,,
the molecular weight of the monomer, and the radius of gyration, R, ~ M, are the most
important structural parameters of a polymer. On a coarse-grained level, structural details

arising from the explicit chemical composition of the polymer like bond lengths and
angles can be neglected and what remains is the so-called scaling relation given above
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that links molecular weight to size and which is generally valid for all polymers [4]. The
numerical value of the scaling exponent v depends on the strength of interactions. In the
so called #-state, when monomer-monomer interactions are as strong as monomer solvent
interactions, the polymer structure can be described by a random walk, therefore Gaussian
chain statistics are valid and v=1/2, see Appendix A7.1. When monomer solvent
interactions are stronger than monomer-monomer interactions, so called excluded volume
forces are effective, the polymer chain is “swollen” and v=3/5.

Here one has to emphasize that synthetic polymers, unlike biopolymers, always have an
intrinsic  polydispersity, i.e. there is a distribution of molecular weights. The
polydispersity is given usually in terms of M,,/M,, with M, the number average molecular
weight. Its precise number depends on the polymerisation reaction by which the polymer
was synthesized. For a (theoretical) monodisperse polymer M,/M,=1 holds, the most
monodisperse synthetic polymers with M,/M,=1.02 can be synthesized by “living”
anionic polymerisation, classical polycondensation yields M,/M, =2, radical
polymerisation can even result in extremely broad distributions, M,,/M, >10.

Although in technical applications polymers are mostly used as bulk materials, polymer
characterisation is usually performed in (dilute) solution. Historically, light scattering was
the method of choice to characterise synthetic polymers [5], but nowadays size exclusion
chromatography (SEC), also called gel permeation chromatography (GPC), is the
standard technique to characterize routinely polymers [6].

Neutron scattering, due do its limited accessibility and high experimental costs, usually
is found in basic academic research, but here it played a crucial role in confirming
fundamental theoretical concepts of polymers [3].

For macromolecules the measured intensity /(Q ) can be expressed in first approximation
as a product of particle form factor P(Q ) given by the intramolecular architecture, i.e. the
particle geometry, and structure factor S(Q ) given by the intermolecular structure arising
due to particle-particle interactions. Please note, that both P(Q )and S(Q ) must be properly
normalized, P(Q)p=o = 1 and S(Q)gr»1 = 1, for details see chapter 6.9:

Ap?
Na

I1(Q) = ¢ Vi P(Q) S(Q) (7.1)

Ao? . . . .
Here NLIS the contrast factor, ¢ is the polymer volume fraction and ¥ =M, /dis the

a

molecular volume and d the polymer density in [g/cm?].

To characterize properly the intramolecular form factor P(Q) one has therefore to
investigate a concentration series in the dilute regime and extrapolate finally to infinite
dilution. The form factor of a Gaussian chain (Debye function) is given by (for its
derivation see Appendix A7.1).

Jo(x) = Z(exp(—x) —1 +x) (7.2)

With x=0?R,’ and R, the radius of gyration describing the overall dimension of the single
polymer chain.
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The Debye function describes the (ideal) polymer scattering well from length scales of
the overall coil down to length scales where the polymer becomes locally rigid. The
corresponding asymptotic limits are:

P(Q)~N (1 — § Q? R2) for small Q (7.3)
~ 2N /(Q? R}) for large Q (7.4)

Equation 7.3 describes the conventional Guinier scattering of the overall polymer
(compare chapter 6.10.2, equation 6.58), equation 7.4 describes a power law. At these
length scales, the sub-chains of different lengths are self-similar and so they reveal a
fractal behaviour. The prefactor is connected to the magnitude R,’/N that is the effective
segment size. From this magnitude, one can calculate back to the local rigidity that is
responsible for the effective segments.
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Figure 7.1: The theoretical Debye finction, equation 7.2, describes the polymer
scattering o finde pendent polymers without interaction. The two plots show the finction
on a linear and double logarithmic scale.

Particle-particle interactions as seen in S(Q) are weak in the dilute regime, but still
effective, so that one can apply the virial expansion.
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¢/ 1[Q=0)=1/V +2A4¢+... (7.5)

Equation 7.5 is formulated neglecting the contrast factor so it holds for all types of
scattering experiments, i.e. SANS, SAXS and SLS. A crucial concentration separating
dilute and semi-dilute regime is the so-called overlap concentration ¢* =

41T 3 . . e . .
w a s
(Vw/NJ)/ ( . Ry ), which describes the “internal concentration” per volume of a single

polymer chain.

The value of the second virial coefficient A> directly reflects particle-particle interactions,
i.e. a positive A is found for repulsive interactions (good solvent i.e. excluded volume
interactions), a negative one for attractive interactions (marginal/bad solvent) and finally
A>=0 characterizes no interactions (8-solvent). Without any data fitting, this distinction
can easily be made by plotting the intensity data /(Q )of a concentration series normalized
to the corresponding volume fractions /(Q )/¢ (Since scattering arises due to an exchange
of a volume element of solvent by a volume element of polymer with different scattering
contrast, the natural concentration unit for any scattering experiment should be volume
fraction ¢). This is schematically shown in Figure 7.2. If no particle-particle interactions
are present all data for all O-vectors exactly fall on top of each other.
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Figure 7.2: Calculated scattering intensities in absolute units I(Q ) (le f) and normalized
to polymer volume faction I(Q)/ ¢ (right) pr solutions o fa linear polymer at di ffrent
volume factions given in percent, see legends, assuming a virial ansatz pr particle
interactions. From topto bottom: No interactions A>=0 (6-solvent, re pulsive interactions
A>>0 good solvent, attractive interactions A><0 marginal or bad solvent )

Irrespective what kind of interactions are present this also holds for high O-vectors, since
high O-vectors mean small length scales and the local (intramolecular) structure is not
affected by particle-particle interaction (S(Q J=1). In contrary, at low Q-vectors there are
crucial differences between the individual concentrations in this representation. For
repulsive interactions the forward scattering is reduced by S(Q) therefore the lowest
concentration shows the highest normalized intensity. For attractive interactions, on the
other hand, the forward scattering is increased by S(Q ), therefore the lowest concentration
shows the lowest normalized intensity. This sequence can be easily understood, because
attractive interactions finally result in clustering of the individual particles.

For more details about synthesis and characterisation of macromolecules the interested
reader is referred to standard textbooks e.g. [7], [8].

7.2.2 Branched polymers

Branching crucially influences the mechanical properties of polymers therefore
characterisation and control of branching reactions during polymerisation processes are
of vital interest not only for polymer industry to tune semi-empirically material
properties, but also for fundamental research to derive a proper quantitative structure
property relationship.

The simplest branched polymer is a regular star polymer, where farms, each of same
molecular weight M, .-, are emanating from a microscopic central branch point, the star
core. Experimentally, such regular star polymers are nowadays most precisely realized
by using chlorosilane dendrimers as branch points. The arms forming the star corona or
shell are grafted to the dendrimer core by “living” anionic polymerisation [9]. The precise
control of the dendrimer generation is reflected in the precise functionality of the final
star polymer so that functionalities as high as f128 can be achieved. However, with
increasing functionality there is a polydispersity in functionality since the last arms are
extremely difficult to graft since they have to diffuse through the already very crowded
star polymer corona to react at the star core [10].
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R e

Figure 7.3: Schematic illustration of diffrent polymer architectures: a) linear
homo polymer, b) linear block co polymer, c) regular mikto-arm star polymer (f4), d)
regular star polymer (8 ), and e) comb polymer.

The form factor of a regular star polymer with Gaussian chain statistics has been derived
by Benoit already in 1953 [11].

2 2 2 ( 7Q2R2 am \ fl:\/ _1 ( 7Q2R2 am > —|
Pu(0) = —————x| Q?R2,,, —[1 - @ Foom |\ Je [y R 7.6
star (Q) fWQ“R;’Wm X |:Q g,arm e |} + > e |) |_] ( )

The overall size of the star polymer Rga- is related to the size of the individual arm by

Rg,star = 1 (3 ff_ 2) Rg,arm'

There is no rigorous analytical formula for a star polymer with swollen chain statistics,
but experimental data for star polymers in a good solvent can be nicely described either
by the Dozier function [12] or the approach derived by Beaucage [13]. His equation can
be viewed as a "universal form factor" for an arbitrary mass fractal that can also be applied
to many other polymeric systems:

(7.7)

1
o

with Q* = Q/fer fOkRy/\J6 ). Here er fis the error function and G and B are amplitudes,
which for mass fractals can be related to each other by B=G- P/ R;D -T(P) (polymeric

P(Q)=G-exp(—Q*R? /3) + B( )

constraint). Pis the fractal dimension of the internal substructure, k an empirical constant
found to be ~1.06 and 7/"is the Gamma function. The fractal dimension is related to the
scaling exponent by P=I /v. The Beaucage expression can be nicely extended to describe

hierarchical structures over multiple levels i P(Q) = Z P(Q) where Pi(Q ) are given by

Equation 7.7. Figure 7.4 shows form factors obtained for polybutadiene (PB) star
polymers with varying functionality f but same R,~50nm in d-cis-decalin.
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Figure 7.4: SANS intensity I(Q) normalized by volume faction ¢ pr regular
polybutadiene star polymers with varying finctionality fbut same radius o f gyration
R=50nm. The asymplotic power law observed at high scattering vectors I~Q7 clearly
indicates excluded volume interactions relevant in a good solvent , i.e. swollen chain
statistics [14 ] (Reprinted by permission o fSpringer Nature: Springer, Appl. Physics A:
Materials Science & Processing, partial structure fictors in star polymer/colloid
mixtures, J. Stellbrink et al., co pyright 2007 )

At low Q-vectors, Q <8x1073 A™!, data could be modelled using the Benoit form factor,
Equation 7.6 for a Gaussian star, which gives the explicit dependence on functionality f
For describing the complete data set we used the Beaucage form factor, Equation 7.7,
which describes also the observed power law at high O-vectors. One should note that this
power law extends over more than one order of magnitude in Q and starts at the same Q-
value of = 8x107> A forall fdue to the same R, The observed power law slope of Q)
~ Q975 reflects the good solvent quality of cis-decalin for polybutadiene and decreases
slightly with increasing f, indicating increasing arm stretching due to the increasing
monomer density in the star corona.

The effect of branching becomes easily visible by using a so called Kratky representation,
IQ) O° vs. Q. Whereas a linear polymer with Gaussian chain statistics reaches
monotonically an asymptotic plateau, any branched structure shows a maximum. For the
here discussed regular star polymer the height quantitatively depends on the arm number
or functionality f'see figure 7.5.
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Figure 7.5: Kratky representation I(Q) Q° vs. Q pr same data as in Figure 7.4. The
increasing peak height with increasing finctionality fdue to branching becomes clearly
visible as well as the discre pancy between experimental data (symbols) and Beaucage
finction used to model the data. The fict that no asymptotic plateau is observed results
fom the excluded volume interactions relevant in a good solvent, i.e. swollen chain
statistics.

7.2.3 In-situ experiments during polymerisation

For understanding and controlling any chemical reaction a detailed understanding of
reaction mechanism, type and role of intermediate species as well as reaction kinetics are
prerequisite. How the microscopic structure of a growing polymer chain is evolving in
the different steps of polymerisation reactions has to be resolved by non-invasive, real-
time measurements. The ideal tool is small angle neutron scattering (SANS), since the
microscopic structure of polymer-based materials can be resolved on a micrometer-to-
nanometer-level by modern neutron scattering techniques. In addition, contrast variation,
i.e. H/D exchange, can even “stain” certain parts of the polymers giving access to
unprecedented structural information. So neutron scattering is a unique and outstanding
technique to investigate polymerising systems in real-time, in particular since new, more
powerful neutron sources became available worldwide (FRM-2, SNS, J-PARC). But for
a complete description of the polymerisation process additional information in terms of
reaction kinetics etc. are prerequisite. Thus, in-situ SANS experiments have to be
supported by complementary methods like NMR, SEC, UV/VIS and IR spectroscopy,
favourably also in real-time mode.

Recently we investigated reaction mechanism and kinetics of different polymerisation
techniques like “living” anionic polymerisation [15] or post-metallocene catalyzed olefin
polymerisation [16] by such an in-situ multi technique approach. Figure 7.6 shows time
resolved SANS intensities //Q )in absolute units obtained during the polymerisation of 1 -
octene by a pyridylamidohafnium catalyst in toluene at 20°C. Experiments have been
performed using the KWS-1 instruments at the former FRJ-2 reactor in Jiillich which
allowed a temporal resolution of about several minutes.
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Figure 7.6: Time resolved SANS intensities I(Q ) in absolute units obtained during the
polymerisation o f1-octene by a pyridylamidoha fiium catalyst in toluene at 20°C [16]
(reprinted with permission fom Macromolecules, 42, 1083, 2009. Copyright 2009,
American Chemical Society)

The monomer solution shows a O-independent intensity over the whole accessible SANS
Q-range typical for small molecules, which act as “incoherent scatterers”. Note by: the
actual incoherent background for all components, as described in Chapter 6, can be
dz(Q)iMC 36t Ny
o am v,
O-dependence of the intensity can be described by a Beaucage form factor, equation 7.7.
With ongoing polymerisation, increasing polymerisation time ¢ the general shape of Q)
does not change any further, only the forward scattering /(O=0)1is increasing due to the
increasing molecular weight and concentration of the growing polymer chain. Finally, the
polymerisation is almost finished after half an hour as can be seen by comparison with
the terminated polymer. A detailed quantitative analysis of /Q,¢) reveals that during this
type of polymerisation reaction no aggregation phenomena of the growing polymer chain
are relevant. Similar experiments at high flux sources allow today temporal resolutions
smaller than 1 second if experiments are repetitively performed using a stopped flow
mixer.

estimated by . After four minutes a polymer is already formed and the

7.3 Block copolymer Micelles

When amphiphilic block copolymers are dissolved in a selective solvent, i.e. a solvent
which is good for one block but a precipitant for the other, they spontaneously self-
assemble into supramolecular aggregates known as micelles, in which the insoluble block
forms the inner part or core, whereas the soluble block forms a solvent-rich shell or
corona. The general behaviour of block copolymers in selective solvents has been subject
of copious theoretical and experimental studies during the past decades. They are
reviewed in several books [17][18] and review articles [19][20] related to this topic.

Extensive studies demonstrated that the micellar morphology can be tuned (going from
spheres, cylinders, worms and vesicles) by varying the block-copolymer molecular
weight, the chemical nature and the ratio of the blocks. One of the most extensively
studied block-copolymers is poly(butadiene-ethylene oxide) (PB-PEO). As a function of
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the hydrophilic block length (in term of PEO weight fraction wpeo) spherical micelles
(wpeo >0.6), worm-like micelles, WLM (0.47 <wpeo < 0.59) or bilayers (wpeo <0.47) are
formed. Different theoretical studies contributed to define the scaling laws for the
parameters of equilibrium structures. Among them, a quantitative theory defining the
thermodynamic stability of different morphologies in selective solvents has been recently
developed [21 ]. The theory expresses the free energy contributions of the core, the corona
and the interface as a function of the blocks structural parameters and the interfacial
tension between the solvent and the insoluble block for different micellar morphologies.
Solvent selectivity can be more easily tuned than the above mentioned parameters
(molecular weight, block ratio etc) and moreover in a continuous way by varying the
solvent composition. Therefore, solvent composition is a very natural and easy parameter
to control the micellar structures. The change in the morphology of the self-assembled
structures can be attributed to a change of solvent selectivity, which influences the
different energy contributions responsible for the morphology: core-chain stretching,
corona-chain repulsion and interfacial tension between the core and the solution.

The interest is to relate changes on the smallest relevant length scale, i.e. diameter and
aggregation number per unit length, density profile in the corona, to changes in the
macroscopic structure, i.e. the contour and persistence length of wormlike micelles and
the transition from wormlike-to-spherical micelles etc. This molecular level
understanding can help to elucidate the mechanisms involved in non-equilibrium
conditions. Besides, it is expected that these quantities have a pronounced effect on the
rheological behavior of the systems, and as such solvent composition could be used to
tune the flow properties of micellar solutions.

7.3.1 Form factor

Figure 7.7 (left) shows the partial form factor normalized to volume fraction @, P(Q )/,
in shell and core contrast for micelles formed by a symmetric amphiphilic block
copolymer poly(ethylene-alt-propylene)—poly(ethylene oxide), h-PEP4-dh-PEO4 (the
numbers denote the block molecular weight in kg/mol) [22]. Already, a qualitative
discussion of the data reveals important features of the micellar architecture. First, the
forward scatterings, /Q=0), in the two contrasts are the same. This is expected for
micelles formed by a symmetric diblock copolymer in shell and core contrast (we should
note that the two blocks have the same molar volume V'y) and is in this sense a proof of
the applied contrast conditions. This means that the scattering profiles shown in figure
7.7 are directly reflecting pure shell and core properties. Second, both scattering profiles
show well defined maxima and minima, up to four in core contrast, which arise from
sharp interfaces typical for a monodisperse, compact spherical particle, see chapter 6,
equation 6.33. These minima occur whenever QR = tan(QR), i.e. at OR = 4.493, 7.725,
... (n+1/2) m (We should note that one has to consider that these oscillations are already
smeared by the instrumental resolution function, so the data shown offer even more
confirmation of the strong segregation between the core and corona and the low
polydispersity of the micelles).

Also shown is Porod’s law 7~ Q* which describes the limiting envelope of all form
factor oscillations. We should emphasize that in core contrast no blob scattering is visible
[22]. This also corroborates the compact PEP core. A quantitative analysis in terms of a
core—shell model gave the following micellar parameters: aggregation number P = 1600,
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core radius Reore =145 A and shell radius R = 280 A with a polydispersity of ~5%. The
solvent fraction in the swollen shell is @so1y = 60%.

Figure 7.7 (right) shows the corresponding partial form factor data, P(Q )@, in shell and
core contrast for an asymmetric h-PEP1-dh-PEO20. The differences compared to figure
7.7 (left) are obvious: the difference in forward scattering of the two contrasts is reflecting
the asymmetry of the block copolymer. Moreover, no maxima or minima are visible (also
not at high Q in core contrast) and the power law observed in shell contrast has a slope of
only / ~Q 3, which is typical for a polymer chain in a good solvent and arises from the
swelling of the PEO in the shell (blob scattering). A quantitative analysis gives the
following micellar parameters: aggregation number P =130, core radius Reore = 34 A and
shell radius Rm =260 A.

10 2z,
&, o shell contrast

A core contrast

l/tblcnfl |

A core contrast
o shell contrast
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Figure 7.7: Form fictors o fblock co polymer micelles with varying architecture in core
(red) and shell contrast (blue). Le f symmetric PEP4-PEO; right asymmetric PEPI-
PEO20, the numbers denote the block molecular weight in kg/mole [22 ] (Reprinted by
permission o fIOP Publishing, co pyright 2004 ).

7.3.2 Micellar exchange dynamics

Polymeric micelles are macromolecular analogues of well-known low-molecular
surfactant micelles. As a consequence of random stochastic forces, the constituting chains
will continuously exchange between the micelles. From the theory of Halperin and
Alexander (HA), this exchange kinetics is expected to be dominated by a simple
expulsion or insertion mechanism where single chains (unimers) are required to overcome
a defined potential barrier [23]. Higher order kinetics including fusion and fission is not
expected to take place since these mechanisms are neither favoured energetically nor
entropically [24]. Experimentally, relatively few studies have been devoted to the
exchange kinetics of polymeric micelles in equilibrium. This is most likely related to the
associated experimental difficulties. Recently, we used a newly developed time resolved
small angle neutron scattering (TR-SANS) technique [25]. This technique is perfectly
suited for determination of exchange kinetics in equilibrium as, unlike other techniques;
virtually no chemical or physical perturbations are imposed on the system. The labelling
is restricted to a simple hydrogen/deuterium (H=D) substitution using fully hydrogenated
(h) and fully deuterated (d) polymers with identical molar volumes and compositions. By
mixing the corresponding H- and D-type micelles in a solvent with a scattering length
corresponding to the average between the two, the kinetics can be determined. The
average excess fraction of labelled chains residing inside the micelles is then simply
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proportional to the square root of the excess SANS intensity. The corresponding
correlation function is given by R(r) ={ [ I(1) - 100] /[ I(t =0)— ]OO]}'/2 was measured from
a reference sample where the polymers have been completely randomized and /(#=0) from
the scattering of the reservoirs at low concentrations.

=0 deuterated 10 . e,
L S -
(o] LIS S S w
4 a 'S
° ° $ LA *tr -—-.
— e - s
—.E VEEE - ¥¥
/-f‘ma . 5 51!.» 5&-;
—_ . v.,qi
ol g =
1 L=
t=00 ‘%
) . . 0.01 1
= time-dependent intensity m Q[A"]

Figure 7.8: Le f: Schematic illustration o fthe TR-SANS technique to pllow micellar
exchange kinetics. Right: Corresponding time-resolved SANS data prPEPI-PEO20
micelles in H2O/DMF 7:3 showing slow exchange (5min, 2h @ 50°C) (Reprinted by
permission o f Springer Nature: Adv. Polymer Sci., 184, 1, 2013, Kinetics o f Block
Copolymer Micelles Studied by Small- Angle Scattering Methods, R. Lund et al., co pyright
2013).

7.3.3 Structure factor

How the structure factor S(Q) can be derived from the pair correlation function g(r) by
liquid state theory has been shown in Chapter 6.9. g(r) finally results from the effective
pair potential V(7), which describes the direct interactions between the solute only, after
eliminating the rapidly moving degrees of freedom of the solvent molecules. From the
position Quax of the first peak in S(Q ) the average distance D between scattering particles
can be derived by D= 27/Qmax

We recently showed that micelles formed by the amphiphilic block copolymer
poly(ethylene-alt-propylene)— poly(ethylene oxide) (PEP—PEO) provide an interesting
system to conveniently tune the ‘softness’ in terms of particle interactions (intermolecular
softness) and the deformability of the individual particle (intramolecular softness). This
is achieved by changing the ratio between hydrophobic and hydrophilic blocks from
symmetric (1:1, Hard Sphere-like) to very asymmetric (1:20, star-like). One must
emphasize that to approach the star-like regime is not a trivial task.
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Figure 7.9: Di ferent e fective interaction potentials. The one pr star polymers, i.e. so f
colloids, is in-between the two limits Gaussian Chain (le f) and Hard Spheres (vight )

Figure 7.9 compares the effective interaction potential for soft colloids to those of the
limiting cases Gaussian Chain, i.e. no interactions, and Hard Spheres, i.e. infinite strength
of the potential at contact. The explicit form of V(7 ) for star polymers, the limiting ultra-
soft colloids, was derived by Likos et al. [26] and is explained in detail in Appendix 7.1.

Figure 7.10 shows the corresponding experimental structure factors S(Q ) for Hard
Sphere and Soft interactions and its comparison with theoretical predictions.

5(Q)

Figure 7.10: Experimental structure fictor S(Q) o f block copolymer micelles with
varying architecture obtained by SANS in core contrast (symbols) and the theoretical
description (lines) resulting fom the corresponding interaction potentials: Symmetric
PEP4-PEO4 / Hard Sphere potential le f, asymmetric PEPI-PEO20/ ultra so f potential
right, see text and [22 ] (Re printed by permission o fIO P Publishing, co pyright 2004 ) [28 ]
(Re printed by permission o f American Physical Society, co pyright 2005 ).

7.4 Soft Colloids

Soft colloids in general, e.g. polymer-coated silica particles, block copolymer micelles,
star polymers etc., are hybrids between (linear) polymer chains and (hard sphere) colloids.
Due to this hybrid nature, soft colloids macroscopically show interesting (phase)
behaviour resulting from its unique microscopic structure. The combination of polymer-
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like properties, i.e. the formation of (transient) geometric constraints due to overlapping
polymeric coronas and direct colloidal interactions due to the (hard) core in particular
affects flow properties and non-equilibrium behaviour of soft colloids. Therefore soft
colloids are frequently used in many technical applications (paints, shampoos, motor oils,
polymer nano-composites etc.).

More recently, the interest of colloid scientists in fundamental science has shifted towards
the study of soft particles, among which star polymers have emerged as a model system
for a wide class of soft spheres. For a star polymer, softness can be controlled by varying
its number of arms (or functionality j, allowing to bridge the gap between linear polymer
Gaussian chains (f= 2) and Hard Spheres (f=w). Therefore, star polymers feature
tuneable softness, which is responsible for the observation of anomalous structural
behaviour and for the formation of several crystal structures [ 28]. Hence, mixtures of soft
particles offer an even higher versatility with respect to their hard counterparts, both in
terms of structural and rheological properties and of effective interactions. Recently, we
confirmed experimentally by combining SANS and rheology the theoretical phase
diagram of soft colloids [29] and mixtures of soft colloids with linear polymers [29]. As
experimental realization again the previously described PEP-PEO star-like micelles have
been used. Figure 7.11 shows the phase diagram in the functionality vs. packing fraction
representation. We have to point out that quantitative agreement starting from
experimental parameters is achieved without any adjustable parameter. For this the
determination of the interaction length ¢ by SANS in core contrast was inevitable.
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Figure 7.11: Phase diagram o fultra so f colloids (symbols experiment: o fuid, m bcc
A amorphous solid;, lines theory) [28 ] (Re printed by permission o fAmerican Physical
Society, copyright 2005 )
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Appendices

A7.1 Scattering of a polymer

In this section we derive the scattering of a single (isolated) polymer coil. This model is
the basis for many more complicated models of polymers in solution, polymeric micelles,
polymer melts, diblock and multiblock copolymers and so on. So the understanding of
these concepts is rather important for scattering experiments on any kind of polymer
systems.

This example starts apart from many other calculations from point-like. These monomers
are found along a random walk with an average step width of Ix. We try to argue for non-

ideal chain segments, but finally will arrive at an expression for rather ideal polymers.

For the scattering function we obtain:

N
1
P(Q) o kz exp (i@ (R, — R) )) (7.8)
jk=0
1 & 2
X~ z exp(— % (Q(Rj - Rk)) ) (79)
jk=0
ol N IEDCYIRNEN 7.10)
N exp gQ (Rj Rk) )
jk=0

At this stage, we use statistical arguments (i.e. statistical physics). The first rearrangement
of terms (equation 7.8) moves the ensemble average of the monomer positions (and
distances 4Ry) from the outside of the exponential to the inside. This is an elementary
step which is true for polymers. The underlying idea is that the distance 4R arises from
a sum of | #4| bond vectors which all have the same statistics. So each sub-chain with the
indices j is only distinguished by its number of bond vectors inside. The single bond
vector b has a statistical average of <b >=0 because there is no preferred orientation. The
next higher moment is the second moment <b 7>=Ix2 This describes that each bond vector
does a finite step with an average length of /i. For the sub-chain we then find an average
size <AR;*>=|jk| Ix>. The reason is that in the quadrature of the sub-chain only the
diagonal terms contribute because two distinct bond vectors show no (or weak)
correlations.

Back to the ensemble average: The original exponential can be seen as a Taylor expansion
with all powers of the argument iQAR . The odd powers do not contribute with similar
arguments than for the single bond vector »=0. Thus, the quadratic term is the leading
term. The reason why the higher order terms can be arranged that they finally fit to the



Macromolecules (structure) 7.17

exponential expression given in equation 7.9 is the weak correlations of two distinct bond
vectors. The next line equation 7.10 basically expresses the orientational average of the
sub-chain vector 4R i with respect to the O-vector in three dimensions.

This derivation can be even simpler understood on the basis of a Gaussian chain. Then
every bond vector follows a Gaussian distribution (with a centre of zero bond length).
Then the ensemble average has the concrete meaning

<"'>:J"'CXP(%AR3( /(| j—k|I2)d AR ¥ This distribution immediately explains the

rearrangement of equation 7.4. The principal argument is the central limit theorem: When
embracing several segments as an effective segment any kind of distribution converges
to yield a Gaussian distribution. This idea came from Kuhn who formed the term Kuhn
segment. While elementary bonds still may have correlations at the stage of the Kuhn
segment all correlations are lost, and the chain really behaves ideal. This is the reason
why the Kuhn segment length /x was already used in the above equations.

In the following we now use the average length of sub-chains (be it Kuhn segments or
not), and replace the sums by integrals which is a good approximation for long chains
with a large number of segments N.

! ([ 1 7.11
P(Q)Ocﬁfdjfdk exp(—gQZ(j_k)l%{) )
= N LQR) 7.12)
Jo(%) =§(€Xp(—x) -1+ x) 7.13)

In this integral one has to consider the symmetry of the modulus. The result is basically
the Debye function which describes the polymer scattering well from length scales of the
overall coil down to length scales where the polymer becomes locally rigid.

A7.2 The ultra-soft potential (Likos-Potential)

The effective potential V(7 JksT between star polymers as a function of functionality fand
interaction length o was derived by by Likos et al. [26]. The interaction length o is the
distance between two star centres when the outermost blob overlaps. For larger distances
two stars interact via a screened Yukawa-type potential whereas at distances smaller than
o when there is overlap of the star coronas, the potential has an ultra-soft logarithmic
form.

V(r) (%8 f/2<1+\/_f/2)" (O‘/r)exp[—\/?(r—o-)/zo-] (r>o-)

() 7.14)
k,T [

g /2| -lefo) i+ Y 712)" (r<o)
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All numerical factors have been chosen in such a way that the potential as wells as its first
derivative are smooth at crossover. Figure 7.12 shows the Likos-potential for different

functionalities. At f'= oo the Hard Sphere potential is recovered.
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Exercises

E7.1%* Contrast or no contrast?

Due to synthetic (and financial) limitations only protonated material is available for a SANS
experiment, for both polymer (poly(ethylene propylene), PEP, and solvent dimethyl-
formamide, DMF.

2

Ap

A

a) Calculate the contrast factor following equation 5.16 and 7.1.

b) What is the necessary molecular weight M,, to achieve a signal-to-background ratio of 5 at
0=0 for a given polymer volume fraction ¢ =0.01? (Remember: The incoherent scattering
contributes to the background too and there is an empirical “rule of thumb” that the
experimental incoherent scattering is twice the theoretical value due to inelastic and multiple
scattering!)

c¢) At which O-value the signal vanishes in the background?

(Assuming good-solvent conditions with a prefactor 0.01 [nm] for the R M,-relation and
assuming the Guinier approximation for P(Q))

d) For which combination of molecular weight and volume fraction ¢ the experiment could be
performed in the dilute regime, i.e. $<0.1$*?

Given are sum formulae and densities

h-PEP = CsHio, dpep=0.84g/cm’

h-DMF = C3H7NO, dpro=0.95g/cm?

and coherent and incoherent scattering lengths bcor and bine in units [cm]:
C: beon =6.65E-13,  binc=0

H: beon =-3.74E-13,  binc=2.53E-12

D: beon =6.67E-13,  binc = 4.04E-13

O: beon =5.80E-13,  bine=0

N: beon =9.36E-13,  bine=0
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E7.2 Contrast Variation Experiment on Micelles
100
10
e
8
2 o1
0.01 :
0.001 et =
0.001 0.01 0.1
alA

The three symbols O, © and A indicate the characteristic small angle scattering of spherical
polymer micelles under different important contrast conditions. There are three conditions
called: shell contrast, core contrast and zero average contrast. The shell contrast highlights the
shell of the micelle (being hydrogenated) while the rest is deuterated. The core contrast
highlights the core of the micelle (being hydrogenated) while the rest is deuterated. For the zero
average contrast the average contrast of the deuterated core and the hydrogenated shell matches

with the solvent.

Which condition can be connected to which symbol (or curve)?
A A -shell O -core and O-zero
B O -shell O-core and A -zero

C O-shell A-core and O -zero
Why?

E7.3 Aggregation number of micelles

In aqueous solution, the diblock copolymer poly(ethylene propylene-block-ethylene oxide),
PEP-PEO, forms spherical micelles, with PEP the non-soluble and PEO the soluble block. In
dilute solution using core contrast, i.e. the scattering length density of the solvent is matched to

the scattering length density of the micellar shell (formed by the soluble block PEO), the first

form factor minimum is observed at 0=0.12 A",

Calculate
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a.) the aggregation number N4, i.e. the number of diblock copolymers forming a single
micelle, assuming full segregation, i.e. a non-swollen micellar core.

b.) How can N,g. derived in this way be cross-checked without performing another experiment?
Known are the monomer sum formulae and densities

h-PEP = CsHio, dpep=0.84g/cm’

h-PEO = C,H40, dpeo=1.12g/cm?

and the degree of polymerisation, D,, of the blocks:

Dp,PEp =15
Dp,PEo =40
E7.4 Interactions of Gaussian chains

Calculate S(Q ) for Gaussian chains at a volume fraction ¢ = ¢”.

E7.5 Peak position in S(Q)

A solution of compact spherical colloids, R=250A, with volume fraction 0.25 should be
characterised by SANS. At which O-vector do you expect the first peak in the structure factor

S(Q ) to appear?

E7.6 Structure factor contributions

Which type of particle interactions can be determined from the total scattering intensity /(Q ) at
high scattering vectors only?

A. Repulsive interactions
B. Attractive interactions
C. No interactions at all
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8.1 Introduction

Among the properties that make the neutron a unique and valuable probe for condensed
matter research, its spin and magnetic moment is of particular importance in the scattering
process. There are two aspects to consider, firstly, the strong nuclear interaction of the neu-
tron with an nucleus depends on the either parallel or antiparallel alignment of the spins of
neutron and nucleus, and secondly, the neutron’s magnetic moment interacts with the unfilled
electron shells of atoms or ions in magnetic scattering. The scattering process will also have
an impact on the spin state of the neutron probe. Hence, one may expect that controlling
the neutron spin in a scattering experiment will provide further valuable information, which
leads us to the subject of this lecture: polarized neutron scattering and polarization analysis.
Indeed, it is possible by working with polarized neutron and polarization analysis to separate
scattering terms with respect to their different structural or magnetic origins, and moreover,
to uncover scattering contributions that remain hidden in usual unpolarized scattering exper-
iments.

The method of polarized neutron scattering is mature and well developed. The theoretical
description of magnetic neutron scattering by Halpern and Johnson 1939 [1] was essentially
completed by the general theory by Blume and Maleyev, independently, in 1963 [2,3]. The
first implementation of neutron polarization analysis by Moon, Riste and Koehler [4] laid
the foundation for experimental work and some of their examples will be discussed in this
lecture. In 1972, Mezei [5] developed the neutron spin echo technique, ten years later Scharpf
accomplished the XYZ polarization analysis on a multidetector spectrometer, the D7 at ILL
[6], and from 1988 Tasset and Brown developed neutron polarimetry [7, 8].

This lecture will give an introduction first to polarized neutrons, how they interact with mag-
netic fields and upon experimental devices. The following sections will cover the scattering
interaction of polarized neutrons with matter, the nuclear and magnetic scattering, followed
by applications.

8.2 Neutron spins in magnetic fields

Basic properties

The neutron has a spin S = +1/2 with angular momentum L = AS. The magnetic mo-
ment of the neutron results from the spins of the individual quarks and their orbital motions,
and the relation between spin and magnetic moment is given by the neutron g-factor, g, =
—3.8260837(18), in units of the nuclear magneton yy = 59— = 5.05078324(13) - 10727 JT*

2my,

fn = GnSun =~ FLI3un = £ynfin,

where v, = —g¢,5 is the gyromagnetic factor of the neutron (see Refs. [9]) . Because of
the small ratio y,/pup = m./m,, the neutron magnetic moment /i, is small compared to the
magnetic moment of the electron y. = ¢g.Sup ~ 1up, with the Bohr magneton up = foje
and the Lande-factor g. = 2(1 + /27 — 0.328a%/7%) ~ 2 (see Refs. [10] ), « is the fine
structure constant. A peculiarity to note is that different to the electron and proton, the

neutron magnetic moment is aligned opposite to its spin.
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Polarization

Next we consider the many particle ensemble of neutrons in a neutron beam. Polarization of
a neutron beam is defined by the normalized average over the neutron spins.

P = 2(S) (8.1)

Applying a magnetic field H defines a quantization axis and the neutrons split in spin up and
down states, n4 and n| respectively. Measuring the beam polarization will take the projection
of the spins in up- and down state states with proper normalization.

lep=0TM g (8.2)
ny+ny

8.2.1 Interaction of neutrons with magnetic fields
Zeeman splitting

The dipolar interaction potential of a neutron with the magnetic field is given by

where B is the magnetic induction. For neutrons passing from zero-field into a magnetic field
the potential energy changes by the Zeeman term +/,,B depending on the relative orientation
of the magnetic moment. The according change in kinetic energy to conserve the total energy
is small, 0.06 eV /T, which in experimental practice is of relevance only in rare cases.

Equation of motion and Larmor precession

The characteristic motion of the neutron magnetic moment in a magnetic field is Larmor
precession, which for simplicity can be considered in a classical treatment. In fact, even the
quantum mechanical treatment, which introduces Pauli spin matrices & into the Schrédinger
equation, is effectively a classical treatment considering the origin of these matrices. Orig-
inally [11], they result from the problem of mapping three dimensions onto two by intro-
ducing a complex component describing the classical problem of a spinning top. [12] The
magnetic interaction tends to align the neutron moment with the magnetic induction in order
to minimize the interaction energy. The magnetic moment is related to the angular momen-
tum as

r =L, (8.4)
where 7 is the gyromagnetic ratio given by v = 2u,/h = 2v,uy/h = —1.83 - 103s71T!
or, in cgs units, /27 = —2916Hz/Oe. There is a torque g x B = L equal to the time
derivative of the angular momentum, which leads to the Bloch equation of motion:

L =~vp x B. (8.5)

Because of the cross product, the time derivative of the magnetic moment is always per-
pendicular to the moment itself. Therefore, the resulting motion is a precession, where the
angular momentum, the component L, along the field, and the energy are constants of the
motion, see Fig.8.1. The precession frequency is the Larmor fequency w;, = —~B, and
hw = 2uB, the Zeeman splitting energy.
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Fig. 8.1: Zeeman splitting (le f) and Larmor precession (right). The motion o fthe neutron in a
constant magnetic feld conserves energy and angular momentum.

Motion in time dependent fields

The polarization will behave like the individual neutron spin in a constant magnetic field
and will be a constant of motion. However, if we consider time-dependent fields, the finite
velocity distribution in a neutron beam will result in a different time dependence. Hence de-
phasing of neutrons spins and degrading of the polarization are possible experimental effects
and have to be taken into account.

Thermal neutrons move with a speed of thousands of meters per second. When passing
through spatially varying magnetic fields, the neutrons experience time-dependent field changes
in their reference system. Replacing the constant B by B(%), the differential equation Eq. (8.5)
can be used to calculate numerically the effect of all relevant field variations in an experi-
mental set-up.

Asymptotic cases

Usually, it is possible to work within two simple limiting cases of either (i) slow adiabatic
field variation , in which the non-precessing spin component parallel to the field smoothly
follows the field direction, or of (ii) sudden field reversal, in which the non-precessing spin
component has no time to reorient itself, when traversing abruptly from a parallel to anti-
parallel field or vice versa. Slow field variation means that the field B changes or rotates in
the coordinate system of the neutron with a frequency that is small compared to the Larmor
frequency, see Fig. 8.2.

8.2.2 Experimental devices
Polarizer and polarization analyzer
The most common methods to polarize neutrons are (i) using the total reflection from mag-

netic multi-layers, (ii) using Bragg reflection of polarizing single crystals (typically Heusler
crystals) and (iii) polarized He-3 filters, in which for anti-parallel spins the (n,®He)-compound
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sudden field changes w, >>wW
slow, adiabatic field changes Wy <<, 9 B Larmor
B
S, S, B, B,=-B,
P RRERR] GRNE
neutron
— travel direction Meissner shield,

current sheet

Fig. 8.2: Neutron polarization can be best preserved in the asymptotic cases o feither slowly
or suddenly varying felds. The second case is used in a cryo fi pper to reverse the polarization
with respect to the external feld.

has a large absorption cross-section while all neutrons with parallel spins may pass the fil-
ter cell. The first two methods use an interference effect of nuclear and magnetic scattering
amplitudes having the same absolute value as discussed below.

(i) Polarizing total reflecting supermirrors are an easy experimental tool to obtain a broad
wavelength band of cold polarized neutrons. The angle of total reflection for a single ferro-
magnetic (FM) layer is given by

0F = \/n(b+ p)/. (8.6)

Hence, the critical angle may vanish for one orientation of the neutron spin and there is total
reflection for the other one. Here n denotes the particle density and b and p the nuclear and
magnetic scattering lengths, respectively. However, the critical angle can be further increased
by artificial multi-layers (supermirrors) of alternating FM and non-magnetic layers of varying
thickness [13], see Fig. 8.3. The A dependence of the total reflectivity makes this type of
polarizer less favorable for thermal neutrons of shorter wave length as it reduces the accepted
divergence of the beam.

0.80

oo L1 M A
g 0.60 \ f f \
g o0so { \
2 0.0 | ~Rup \

it ’ ~R-down

0.20 / L —polarization | &
0.10 1 ‘ ' \
/ [ | L {08

0.0 0.5 1.0 15 2.0 25 3.0 35 4.0 45 5.0 55 €
m - value

Fig. 8.3: Spin dependent re fectivity and polarisation o fFe/Si polarizing supermirror m = 5.5.
m=1 corresponds to the total re fectivity o fNi. ( fom SwissNeutronics.ch [14])
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(i1) Bragg reflection from a crystal monochromator with similar nuclear and magnetic
scattering amplitudes b and p, which yields constructive interference b + p for one spin
state and destructive interference b — p for the other. E.g. the (111) Bragg reflection of the
Cuy;MnAl Heusler alloy gives 95 % polarization. However, the reflectivity of such crystals
is low compared to usual non-polarizing monochromators and a saturating field is required
over the entire monochromator, which makes it technically more complicated to combine
with focusing though this is feasible.

(iii) *He filter cells, see Fig. 8.4, are of growing importance for polarizing neutrons, partic-
ularly for the more challenging case of thermal neutrons, although such cells are technically
rather demanding and still under development. In case of spin-exchange optical pumping
(SEOP) the spin polarization of He gas is achieved in several steps. The cell is filled with
additional Rb, K and Ny vapor. Rb electrons are polarized with a a circular polarized laser,
by collisions the spin is exchanged with K, which most efficiently exchanges spin with *He.
Since polarization results from absorption, such a device does not interfere with the beam
divergence. One may note that requirements for field homogeneity are very high and it is
a kind of art and glass alchemy to make cells with small depolarization all determining the
lifetime of *He polarization. The neutron polarization P raises with increasing *He cell size
or pressure, while the transmission 7' decreases. The optimum in efficiency is usually chosen
by the maximum of a quality factor P>T.

EAV Lo | B | | {

80 |

70 |

He polarization (%)

603 decay 100h 3200h -

oM f )
0 6 12 18 24 30 36 42 48

time (hours)

Fig. 8.4: (lef) 3He-cells made o fSi-crystal (avoiding small angle scattering background) and
ofglass ( or wide angle di ffraction). 3 He in-situ polarization o fa SEOP He-3 cell and measured
polarization o fneutron beam in transmission. ( fom Babcock et al. [15])

Guide-fields

A magnetic guide feld is used to maintain the direction of the spin and the polarization
of the neutron beam. The guide field preserves the quantization axis to which the neutron
moments have to align either parallel or anti-parallel. Typical guide fields in the order of 10
G are strong compared to earth field and other possible stray fields and usually sufficient to
prevent depolarization along the beam path. Such guide fields are usually too weak to have
any significant impact on the sample magnetization.

Depolarization effects may occur for an inhomogeneous distribution of field directions over
neutron beam cross-section, which is typically a few cm?. This can easily occur if a fer-
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romagnetic material is used close to the beam or if the sample itself is ferromagnetic. A
neutron beam passing through a ferromagnet is usually completely depolarized by differently
oriented ferromagnetic domains in the beam path, unless a saturating magnetic field is used
to align the domains. Depolarization will depend also on the path length through the sample,
therefore, usually such effects are negligible in neutron re fectometry of thin ferromagnetic
films.

XYZ-coils

In order to probe the orientation of the magnetic moments in the sample, it is desirable to
align the polarization to any desired direction at the sample position. This can be done with
a set-up of three orthogonal pairs of so-called xyz-coils. Fig. 8.5 illustrates the field setting
along x-direction. In the example, one can see that the z-coil has been used to compensate
the guide field at the sample position, and that the x-coils produce a field of a few Gauss. The
field needs to be sufficiently strong so that the neutron polarization can follow the smooth
variation of the field direction adiabatically, finally turning back into the z-direction of the
guide field outside the xyz-coils.

5 | T T T | T T T |

B (Gauss)

o

-40 0 40
d (cm)

Fig. 8.5: (lef) Magnetic feld setting in a xyz-coil system pr an adiabatic nutation o f the
polarization o fcold neutrons in horizontal x-direction at the sample turning to a vertical (guide)
feld B, at further distance from the sample. (right) A photo o fthe xyz-coil system in the DNS
instrument at the FRM-2.

Flipper

The purpose of a m-flipper is to reverse the polarization and to detect whether the sample
causes spin-flip scattering.

When applying a magnetic field perpendicular to the polarized neutron beam, the polarization
immediately starts its Larmor precession. A flipper that reverses the neutron polarization with
respect to the guide field has to induce a well-defined field pulse so that the polarization
precesses by an angle w. For this purpose one can use the homogeneous field of a Meze:
flipper, a long rectangular coil, see Fig. 8.6. Neutrons see a sudden field change when they
enter and exit the coil, in between they precess around the perpendicular flipping field, whose
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magnitude is tuned with respect to the time of flight that the neutrons spend inside the coil.
Therefore, the device is A\-dependent and currents (fields) need to be proper tuned for a m-flip.

Fig. 8.6: Principle ofa neutron m-spin fipper. The neutrons perjorm a Larmor- precession
0f180° inside a long rectangular coil. The feld B is perpendicular to spin orientation and
ad justed to the speed o fthe neutrons.

The purpose of a w/2-flipper is to set the polarization in precession mode by turning the
polarization perpendicular to the guide field. A precessing polarization is used for instance
in high resolution Neutron Spin Echo spectroscopy and for Larmor diffraction, see below.
Both methods use the property of the neutron spin as an internal clock independent of the
scattering process itself and achieve highest resolution.

The classical experimental set-up of Moon, Riste and Koehler (1969) combines the above
discussed devices for polarized neutron scattering with so-called longitudinal polarization
analysis. Principles and examples from this study [4] will be discussed in the following

section.
Guide fields Polariser
. Analyzer Guide field #
Detector
“ 1,,
e N -
' X
\‘ z) P
L Electromagnet

Fig. 8.7: The scheme o fthe triple axis instrument equipped jpor polarization analysis as used
by Moon, Riste and Koehler (1969). Reprinted from [4]. Copyright (1969) by the American
Physical Society.
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8.3 Polarized neutron scattering and applications

8.3.1 Nuclear interaction of neutrons with matter

For thermal and cold neutrons, the range of the nuclear interaction is small compared to the
neutron wavelength and can be described by a point-like and isotope-specific Fermi potential,
which is proportional to the scattering length b,

B 2mh?

My

V(r) bié(r— R) (8.7)
The scattering amplitude Nq for an ensemble of nuclei is determined by the transition matrix
elements for the scattering potential Vg

Nq = (K'S'|Vq|kS) (8.8)

which in general depends on the scattering vector k — k/ = Q, the related energy transfer,
and the spin states before and after the scattering process.

First, we consider the scattering of nuclei of one element only and assume further that these
nuclei have zero spin ( e.g. 12C, %0 ..., and typically ” gg” isotopes with even number of
protons and neutrons ). The scattering length operator?) is a scalar and the scattering will be
independent of the neutron spin orientation. This leads to the scattering intensity, where we
replace the actual scattering length by the average b; and deviations, by including the mean
square deviations

d , — — ,
d_; = N bibpe@RR) = N2 5 450 ) QR (8.9)
w 174

The first term on the right side is the isotopic incoherent scattering, it relates to random fluc-
tuations in the scattering length. In contrast, the second term, the coherent nuclear scattering,

. . 2 i : )
is proportional to b and contains phase information.

Next we consider that scattering nuclei may have a spin / # 0 and that the interaction is
spin-dependent. There are two possible spin states of the compound, coupling the neutron
spin with the spin of a nucleus, which are either J = J, =+ 1/20orJ =J_=1-1/2,
associated with different scattering lengths b, and b_. The multiplicity of the spin states
2J + 1 equal 27 + 2 and 2/ for parallel and anti-parallel spin alignment respectively. For an
equiprobable occupation of all states, the probabilities for the J, and .J_ states are

I+1 I

e 8.10
o+1 T aryr ®.10)

D+
defining the weights for the average coherent scattering length and its mean square average
b=piby +pb, b2=p.b>+ p_b>. (8.11)

Again this will lead to a scattering intensity as given by Eq.(8.9), only that the spin-incoherent
scattering term is now related to the randomness of spin states.
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In order to understand what will happen to the spin states of neutron and nuclei, we consider
the transition matrix element Eq. (8.8) for the scattering length operator, which is the sum of

7 . . by—b_
the average, coherent part, A (= b), and the fluctuating spin-dependent part, B = % e

b=A+B & 1 (8.12)
Here, & is the Pauli spin operator given by Pauli spin matrices

o= 0 ) a=(0 0 ) e=(y 5) (8.13)

We choose the quantization axis z for the neutron polarization P = 2(S) = ( &), with
spin-up states [+) = () and spin-down states |—) = (}). With

bt =1-) = -, ald = |4 -
Bal=) =14) oy=) = —il+), ad=) = —|-) (E19
we obtain the transition matrix elements
<+|b|+> (A+ BL,) (+|+) nsf
g/ <—!b\ )= (A—BL)(—|—-) nsf
STOIS) = by = B(L— k) (414) sf &1
(=|b|+) = B(I,+il,) (—|-) sf

for the non-spinflip (nsf) and spinflip (sf) scattering amplitudes, respectively. The non-
spinflip scattering is given by the coherent scattering and one third of the spin-incoherent
scattering, while two thirds of the spin-incoherent scattering is spinflip scattering. If we con-
sider only coherent scattering, the final polarisation P’ = P, whereas in case of only spin-
incoherent scattering P’ = — %P. The combination of coherent and spin-incoherent scattering
may result in a change of magnitude and sign of polarization, however, the final polarization
will not deviate from the initial polarization axis. Furthermore, the obtained result is simply
independent of the direction of P with respect to Q. This is an important feature, which is
in contrast to the dipolar magnetic interaction that will be discussed below.

In summary, we can distinguish three contributions to the nuclear scattering | Nq|? aris-
ing from the total nuclear scattering amplitude Ng = > ; b;e’QRi, the average coherent
scattering, the isotopic, non-spin dependent part of the incoherent scattering, and the spin-

incoherent scattering

do ™ N2 = do ™ +daN daN (8.16)
dQQ Q Q dQ spin—inc ds2 isotope—inc dQ Q,coh' '
The sum of the coherent and isotopic incoherent nuclear scattering can be separated from the
spin-incoherent scattering by measuring spin-flip and non-spin-flip scattering.

do ~ 3do SE 8.17)
ds? spin—inc N 2 dS2 )
N N NSF SF
1
do do = d_(f — _d_(f (818)

EQ,coh * Eisotopefinc d) 2 dS2
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Fig. 8.8: Left: Nuclear isotopic incoherent scattering fom nickel obtained by rocking the
analyzer crystal through the elastic position, which is essentially all non-spin- fi p scattering.
Right: Nuclear spin-incoherent scattering fom vanadium show 2/3 and 1/3 contributions in the
spin- fip and non-spin- fip channel respectively. There is no dependence on the direction o fP
relative to Q pr all nuclear scattering. Reprinted fom [4]. Copyright (1969) by the American
Physical Society.

There are two good examples of isotope and spin-incoherent scattering, Nickel and Vana-
dium respectively. Because Vanadium has essentially no coherent scattering, it is often used
as a reference sample to calibrate data for detector efficiencies. It consists to 99.75% of
the stable isotope °'V with a nuclear spin I = 7/2. Polarization analysis reveals that 2/3
of the spin-incoherent scattering is spinflip and 1/3 is non-spinflip scattering, see Fig. 8.8.
The second example Nickel consists of various isotopes, mostly with I = 0. As expected,
the related isotope incoherent scattering is purely non-spinflip scattering, as also shown in
Fig. 8.8. Note, the magnetic scattering vanishes for applying a saturating field H || @, see
also Fig. 8.7.

Applications to local order in disordered hydrogeneous materials

Typical soft matter samples contain hydrogen which causes a huge spin-incoherent back-
ground (0;,.(H) = 80b) in the wide-angle scattering that contains information about local
correlations (o.,(H) = 1.76b). Here, a precise determination of coherent scattering can
be achieved by measuring spin-flip and non-spin-flip scattering. It is particularly valuable to
combine this further with the method of contrast variation using A and D isotopes, having
rather distinct scattering lengths, beon(H) = —0.374-10"2cm and b.,,(D) = 0.667-10" 2cm.
Fig. 8.9 shows the separated coherent scattering of a polymer glass. Such results provide
most useful information about local order that can be compared to molecular dynamics sim-
ulations of theoretical polymer models [17].
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S(Q)coh / S(Q)inc

Fig. 8.9: Neutron polarisation analysis separates coherent scattering from spin-incoherent
scattering, which is typically a disturbing large background in materials that contain hydro-
gen, while here it provides a precise intrinsic calibration. In addition, H/D contrast varies the

coherent scattering o fa polymer glass PMMA. [17]

Applications to dynamics in liquids

Since in a liquid all atoms are moving around, the scattering is not elastic as in the case
of Bragg peaks from a solid, single crystal. Diffraction - the energy integrated scattering
- provides us with structural properties from a snap-shot of typical atomic configurations.
Since neutron energies are comparable to thermal energies involved in atomic motions, it is
relatively simple to achieve an adequate energy resolution to study the dynamics for instance

in liquids, see example in Fig. 8.10.
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Fig. 8.10: Time-of fight spectra ofa) spin-incoherent and b) coherent scattering o f liquid
sodium at T=840 K separated by polarization analyis ( fom O. Scharpf [18]). The dotted
mesh corresponds to the coordinates o ftime-o f fight and scattering angles.

Therefore, a typical instrument set-up uses the time-of-flight technique: the monochromatic
beam is pulsed by a mechanical chopper and the measured time-o f fight of the neutrons can
be related to an energy transfer in the sample. Note, the separation by polarization analysis
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in coherent scattering and spin-incoherent scattering distinguishes pair-correlations from
single particle correlations, respectively. The study of liquid sodium [18], see Fig. 8.10,
demonstrates instructively the complementary information that can be obtained. From simple
liquid models one expects that the incoherent scattering has a Lorentzian shape in energy at
constant Q, related to exponential relaxations in time, with a width that for the macroscopic
limit, ) — 0, is related to the diffusion constant. In contrast, the coherent scattering very
differently exhibits a pronounced peak related to typical nearest neighbor distances reflecting
precursors of Bragg peaks and crystalline order.

8.3.2 Magnetic interaction of neutrons with matter

Spin and orbital moments exert dipolar fields

te X R e ve X R
Bs=Vx(————), B,=- 8.19
s x ( g ), Br c( o8 ) (8.19)
and result in a dipolar magnetic interaction potential for the neutron
Vin=—p - (Bs+By). (8.20)
The derivation of the scattering law is lengthy and can be found in [16]; it leads to
do 1 A
hmag — (170) 2,578 Mg Sz)I*, (8.21)

where 7 is the classical electron radius. MJQ is the operator of the magnetic interaction
vector, defined in units of yp,

Mg = eq x Mq X eq (8.22)

which is reduced to only the perpendicular components of Mq with respect to Q. Mq rep-
resents the total Fourier transform of the spin and orbital contribution to the magnetization
density. Consequently, and in fundamental contrast to nuclear scattering, the magnetic scat-
tering depends on a form factor, similarly to x-ray scattering. Because unpaired electrons
are typically in the outer shells, such as the 3d or 4d shell of transition elements or the 4 f
shell of rare earth elements, the form factor drops typically faster than for the total electron
cloud as seen in the x-ray form factor Measuring the form factor in detail can reveal the
relevant spin and orbital contributions to the magnetic moments.

The anisotropy of the interaction is due to the dipolar interaction of the neutron spin with
the magnetic moments, which is illustrated in Fig. 8.11. The components of a magnetic
dipole field parallel to the scattering vector Q cancel out. Therefore, in contrast to the spin-
incoherent scattering, magnetic scattering is anisotropic with respect to Q and only Mg, the
components perpendicular to Q can be observed.

In analogy to the spin-dependent nuclear interaction, we obtain the transition matrix elements
for the magnetic interaction, choosing z-polarization and x parallel to Q, MiQ =0, and

(+] & - 1\:/I$H-> = le,Q’ nsf
A —l&-M§|-)= -M: nsf

S| & Mgsy = (17 Ma 2Q 8.23
(—| & - Mé\—f—) = iMy{Q, sf
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Fig. 8.11: Illustration why only MJQ is measured. For M 1 Q, magnetic dipole feld amplitudes
show constructive inter erence, or M || Q destructive inter frence. ~ Right: Polarized small
angle scattering (QQ = 0 in centre) probing the magnetization o firon oxide nano particles. [19]
Hence, as illustrated in Fig. 8.12, the component of P parallel to Mé remains unchanged,
1 1 1
MQ MQ MQ MQ
b
AP e Al PRAP
Fig. 8.12: Change o finitial polarization P to final polarization P’': the component per pendic-
ular to MJQ reverses sign, the parallel component o fP is invariant.

1

while the component of P perpendicular to MJQ reverses its sign. This selection rule com-
bined with the Q-dependence provides another simple rule: If P || Q, the total magnetic
scattering will be spin-flip.

Therefore, as exemplified in Moon, Riste, Koehler’'s seminal paper [4] nuclear and mag-
netic Bragg peaks can be separated from non-spin-flip and spin-flip scattering respectively
by scanning with P || Q, see the separation for Fe;O; in Fig. 8.13.
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Fig. 8.13: Separation o fmagnetic and nuclear Bragg peaks jor powder di ffaction ffom Fe;05
by non-spin- fi p and spin- fip scattering with P || Q. Reprinted fom [4]. Copyright (1969) by
the American Physical Society.
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8.3.3 Scattering and polarization analysis, the Blume-Maleyev equations

However, turning from the individual expressions for the scattering amplitudes to scattering
and interference of nuclear and magnetic scattering amplitudes, we have to face more com-
plex expressions. A complete description of magnetic and nuclear neutron scattering has
been given by Blume [2] and Maleyev [3] by two master equations. The first equation gives
the scattering cross-section oq, the second one describes the final polarization P,

oQ = |NQ| 2 + Oisotope,inc + O spin,inc + |MJQ| 2 (824)
+P(N_qMg + M1oNq) + iP(MIq x Mg)

1
P/UQ = |NQ| 2P + O-isotope,incP - go-spin,incP (8.25)

+Mg(PM=q) + M2o(PMg) - PMgM-
+MgN_q + MigNq + iMg x Mg +i(MgN_q — MigNq) x P

The notation uses —(Q to denote the complex conjugate. Here, for simplicity only the Q-
dependence is specified for Bragg scattering or diffuse scattering. However, in the more
general form the scattering cross sections apply to inelastic scattering and can be related to
van Hove correlation functions in space and time.

These equations readily show the different information that can be obtained from an unpo-
larized with respect to a polarized experiment. While unpolarized neutrons only measure
the sum of nuclear and magnetic intensities, for polarized neutrons additional intensity may
arise first, due to possible structural-magnetic (NM-terms) interference and second, due to
cross products of the magnetic interaction vector iMé X MfQ describing chiral correlations
in non-collinear spin systems. A look at the second equation for the final polarization re-
veals that we can identify such terms NM” and "M x M” even with unpolarized neutrons,
because they may create final polarization (set P = 0).

Eq. 8.25 can be written as a tensor equation [8] (neglecting for brevity the incoherent parts)
P'c = (IN*1+R)P+P’ (8.26)

in which the first term (| N|?1 + R)P consists of the scalar nuclear scattering | N|%, 1 is the

unity matrix , the matrix R describes the rotation of P, and P” is the created polarization.

Using the common convention for the specific orthogonal setting x parallel to QQ, and y and
z perpendicular to Q, horizontally and vertically set to the scattering plane respectively, R
and P” are obtained as

—|M,|2—|M.J2  2Im[NM.  2Im[NM,

R = —2Im[NM.] +|M,|>—|M.J*> 2Re[M,M.] (8.27)
—2Im[NM,]  2Re[M.M,] —|M,*+|M.|>?

P’ = (—2Im[M,M.], 2Re[NM,), 2Re[NM.)) (8.28)

The diagonal elements can be obtained by longitudinal polarization analysis, in which we
consider spin-flip and non-spinflip for either x, y or z direction of initial and final polariza-
tion. For measuring the off-diagonal elements, for example R, obtained by P = (0, P,, 0)
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and P’ = (0,0, P!), the magnetic field needs to switch from y to z-direction, which can be
achieved by a zero-field at the sample. Alternatively, but so far not much used in practice,
one can work with precessing neutron polarization [20,21]. The conventional approach, how-
ever, is to access all elements of the tensor R by spherical neutron polarimetry (SNP).
Experimentally, a zero-field can be achieved with a CryoPad or MuPad device [22] using
superconducting material or a p-metal [23] to shield the sample area from magnetic fields.
In particular, SNP allows to distinguish a rotation of P’ from a depolarization of the beam.
Depolarization may occur due to an incoherent superposition of intensities with different
polarization, this includes spin-incoherent scattering, and more important for determining
magnetic structures, intensity from different magnetic domains. See Ref. [8] for detailed
examples and analysis. The interested reader is also referred to the recent user software
Mag?2Pol: a program for the analysis of spherical neutron polarimetry and flipping ratio data,
see below [24].

It is noteworthy that the information in the off-diagonal elements, related to nuclear-magnetic
interference and chirality, reappears in the diagonal elements in P” and can therefore also be
obtained by conventional longitudinal polarization analysis. Polarization reversal and consid-
ering the sum and differences of intensities will separate P” from the trace of R [25].

Next we consider two important cases, the so called (i) “flipping ratio” or "half-polarized”
experiments to determine the magnetic structure or spin density, and (ii) XYZ polarization
analysis with multi-detectors.

Magnetization and spin density distribution. The usual approach [26] is to measure the
“flipping ratio” of Bragg reflection, defined as the intensity ratio between spin-up and spin-
down neutrons with respect to a vertical applied magnetic field

and is given by

I*  NQN_q+(NqMiq + N_qMg) + MgM=,

R=—= .
I NQN_Q — (NQMJ;Q —+ N_QMJQ) =+ MJQMJ;Q

(8.29)

To illustrate the advantage of polarized neutrons consider the case of a weak magnetic ampli-
tude, M, = 0.1 N. For unpolarized neutrons the interference term N M, vanishes. Therefore,
the unpolarized intensity 7 is less interesting, but in contrast the ratio I*/I~ is very sensitive:

I (1+01)N? 121
I =1.01|NJ? d —= = ~
NP and == )M T 0w

1.5. (8.30)

In order to solve Eq. 8.29 for the magnetic amplitudes and the magnetic structure, we need
apriori an accurate crystallographic structure determination for the nuclear amplitudes N.

In the experiment a flipper is used to switch the polarization with respect to the applied field,
which led to the name “flipping ratio”. The term could be misleading, since the scattering
process is purely non-spinflip as PHMéHz In such an experiment one uses polarized neu-
trons without polarization analysis, which has led to another deceptive term, describing this
as a "half-polarized” set-up. Still, P is favorably large, close to one, just P’ does not matter.

With respect to applications, the samples could be ferromagnets, where the magnetization is
best near saturation using a strong field. However, one can also study paramagnets, and the
induced magnetic moments will represent the spin density distribution. An example is given
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in Figure 8.14 for the organic compound [Cus(t—Bupy)4(N3)2](ClO4).. Here, the two Cu
spins are the triplet ground state, and a part of the spin density is spreading from the Cu sites
to ligands. The contours of the map start at a level of 0.01 up, which nicely demonstrates
the sensitivity of such measurements.

Fig. 8.14: [Cusy(t— Bupy)s(N3)2J(ClO4), spin density map
(unit cell in ab, integration £0.25 in c), adapted with per-
mission from [27]. Copyright 1998 American Chemical
Society.

One may also study the response with respect to different field directions, which yields the
susceptibility tensor on atomic scale. Strong anisotropies can be found for f-electrons of rare
earth ions. It is noteworthy that such information can be obtained also from powder sam-
ples, when using a 2D detector which identifies the actual inclination of the Bragg planes
with respect to the applied vertical magnetic field [28]. These are typical applications us-
ing Bragg intensities providing local information on atomic scale. If we turn to low Q and
small angle neutron scattering, the intensities relate to the morphologies of magnetic struc-
tures, which refers to an example discussed already before: Fig. 8.11 shows the interference
pattern M N(Q) and contains the information on the magnetic morphology of iron oxide
nanoparticles [19].

Chirality. The last term in Eq. 8.24 refers to the vector product of spin components perpen-
dicular to QQ, and therefore, iMfQ X MJQ itself points in Q-direction. The magnetic moments
in real space are real quantities and the imaginary sign i says that this term is antisymmet-
ric in QQ and relates to the sin-Fourier transform of chiral pair correlations S,(R)S,(R’),
which also implies the characteristic chiral feature of point inversion symmetry. A beautiful
example depicted in Fig. 8.15 shows the antisymmetric chiral scattering from a spin liquid
obtained by polarization reversal with respect to QQ and taking the difference of the intensi-

Fig. 8.15: Chiral spin liquid ground state in YBaCosFeO7, Re f Schweika et al. PRX 2020 .
(left) Chiral scattering measured with polarization reversal along Q.
(right) Fourier analysis and model scattering based on purely cycloidal chiral correlations.
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ties [29]. The antisymmetry perpendicular to Q, reveals that C = S x S’ is perpendicular
to the propagation, i.e. a cycloidal chirality. In contrast for a helix, the antisymmetry and C
would be in Q direction.

Depending on the propagation direction parallel or perpendicular to Q, we can distinguish
a helix from a cycloid spin structure, respectively. The chiral intensity can be separated
by polarized neutron scattering with measuring the intensity difference for P parallel and
antiparallel to QQ, which cancels out other nuclear and magnetic intensities, while there are
no NM terms parallel to Q. The chiral interference is purely spinflip scattering, however, it
can be separated without applying polarization analysis like the VM interference.

XYZ Polarization analysis with multi detectors

So far it has been implicitly assumed that the data are measured with a single detector related
to a single Q set parallel to x. Multi-detector systems can collect scattering data in a much
more efficient way and were used also for the previous example Fig. 8.15. The instrument D7
at ILL in Grenoble [30] was pioneering with covering a wide angle range with supermirror
based polarization analyzers in front of a multi-detector. A similar instrument DNS [31] is
operated by JCNS at the MLZ and FRM-2 in Munich, see Fig. 8.16.

monochromator
neutron guide

A%
chopper

polariser chopper
polarisation
analyser flipper

XyZ
cgils

detectors

Fig. 8.16: Polarization analysis on a time-o f fight multi-detector instrument, the DNS instru-
ment at FRM-2, see Ref [25] jpor the speci fc setting o f polarization.

Instead of measuring each data point with P 1 Q, using Pythagoras’ theorem, we can
construct the parallel and perpendicular components to Q from any two orthogonal settings
(«',y') in-plane and measure simultaneously with a multi-detector. Assuming isotropy, e.g.
for powders and paramagnets, the pure magnetic scattering contribution separated from nu-
clear scattering can be obtained by either of the two combinations of spin flip and non-

spinflip scattering, which is the ”XYZ-method” introduced by Otto Schirpf [33]:

d doSF 4o SF do SF do NSF g5 NSF do NSF
T A P T L (8.31)
A€ magn d)x dQdy s, dQ)x dQy .,

The magnetic contribution is separated by the directional dependence with respect to P and
identifies the magnetic contribution, while all nuclear scattering is independent of the direc-
tion of P.
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An application example for the XYZ-separation is given in Fig. 8.17 and identifies the weak
magnetic diffuse scattering from a Keplerate, a molecular magnet MozsFe3oX of high sym-
metry with 30 magnetic vertex sites of Fe (X represents a larger number of H, C, and N
atoms). The magnetic intensity (right figure) agrees favorably with the predicted structure
resulting from a model with antiferromagnetic exchange between the Fe moments.
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% * — Paramagnetic scattering —— Simulation
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Fig. 8.17: Mo;Feso X molecule (magnetic Fe-ions at vertices, Mo-purple; X: O-black, H, C not
shown) and a 3-sublattice non-collinear spin model resulting fom AF Heisenberg exchange
(left). XYZ-separation o fweak magnetic intensities (middle). Comparison o fthe magnetic
intensity and the spin-model calculation (right). [34]

Of course, single crystals can be also measured efficiently with multi-detectors by rotating the
sample, i.e. by rotating the Ewald circle in the scattering plane. In the following example, see
also Fig. 8.18, a study [35] on the spin-ice” system Ho,TiyO7, a cubic pyroclore structure,
the horizontal scattering plane has been mapped with measuring spin flip scattering and P
vertical, obtaining the in-plane magnetic scattering (plus some weak flat background from
spin-incoherent scattering). The tetrahedral network and Ising (111) spin-anisotropy leads to
strong frustration for ferro-type exchange. In the ordered state the local spin-correlations can
be described for each tetrahedra by a simple rule: two spins are pointing along the (111)
cube diagonals towards the center of the tetrahedra and two spins point outwards. Actually
this rule is the perfect analogue to the ice rules in hexagonal ice, describing the hydrogen
bonds around the tetrahedral environment of the O ions.

Hence Pauling’s famous ice model also explains why there should be a residual entropy due
to remaining disorder in spin-ice, which is the origin of the broad diffuse scattering at low
temperatures.

The extraordinary features of this diffuse scattering are so-called pinch-points, the saddle-
points in intensity at (111) and (200) positions; on one hand the intensity variation radially,
along the modulus of Q, is rather smooth, involving short-range correlations, on the other
hand the transverse variation at constant Q is almost discontinuous and singular, which in-
volves many Fourier coefficients and long-range correlations. The explanation is that the
ice-topology creates effectively long-range interactions, — any local decision for a specific
two-in two-out spin configuration imposes far-reaching constraints for the other tetrahedra —,
an effective interaction that can be mapped to Coulomb interaction between monopoles and
provides a picture, where the dipole moments in their local sums over four tetrahedral sites
can be viewed as two separated monopoles. [35]
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Fig. 8.18: Spin-ice. left: Topological magnetic mono poles, middle: measured di ffise scattering
fom HoyTisO7 at T=1.7K with P|| z in spin- fip mode; note pinch points at (002) and (111);
right: Monte Carlo simulations o fbased on a nearest neighbor exchange model. From [35].
Re printed with permission ffom AAAS.

From the methodological point of view, for the case above, polarization analysis with mea-
suring spin flip intensities for P = P, is simple and most appropriate to access correlation
of spin components in the scattering plane. However, for a rigorous and systematic sep-
aration the interested reader is referred to two important recent extensions of the classical
XYZ-method of Schirpf [33]: (i) for single crystals and multi-detectors separating all mag-
netic and nuclear contributions by including polarization reversal [25], (ii) for a separation
of out-of-plane scattering using 2D detector systems using two additional measurements with
orthogonal in-plane polarizations. [36]

8.4 Final remarks and outlook

Polarized neutrons certainly prove to be very useful and may reveal structural and dynamic
properties that are hidden to conventional neutron scattering. Applications are growing,
slowly, since experimental techniques are more challenging and also because of the addi-
tional time requests for experiments. While there has been little gain in the average bright-
ness of neutron sources since the early days, instrumentation has become much more effi-
cient. Looking at count rates of Ni of MRK in Fig. 7.8 a comparison to the instrument DNS
using multiple detectors shows a gain of about three orders of magnitude.

The most modern and intense neutron sources are the MW pulsed spallation sources SNS in
the USA, JPARC in Japan and in near future the European Spallation Source ESS. There
is a great challenge and potential gain in using a pulsed beam with wide wavelength band
rather than a monochromatic beam.

At ESS, there is currently a dedicated polarized instrument under construction called MAGIC.
Its scheme is depicted in Fig. 8.19. Based on a time-of-flight Laue technique combined with
position sensitive area detectors, it gives access to large volumes in reciprocal space with fa-
vorable resolution. Characteristic features are a 1.7 A bandwidth of highly polarized neutrons
within a spectrum of 0.6 to 6 A wavelength from the peak fluxes of the thermal and cold
moderators.
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Fig. 8.19: Scheme o fthe ESS instrument MAGIC

In virtual experiments, simulating instrument, sample and scattering, the performance of this
instrument has been studied and optimized. A few examples are shown in Fig. 8.20.
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Fig. 8.20: Virtual experiments (McStas, Xavier Fabreges) on the ESS instrument MAGIC.
left: time-o f fight Laue diagram fom a 1mm? sample o fCg;

middle: reconstructed spin density map (in pg) fom a molecular nano-magnet

right: Ho.Ti>O7 spin-ice scattering with 3 dim mapping in Q space..

The first one shows a Laue pattern from a small mm? crystal (Cg). In contrast to normal
Laue diffraction, with measuring the time-of-flight of the pulsed white beam all Bragg peaks
are separated with a 3D access to reciprocal space. The gain compared to a conventional
monochromatic instrument with a single detector is of course very high. Considering the
determination magnetic structures with spin densities and weak moments, see Fig. 8.14 for
comparison, it took two weeks counting with a single detector, while the best current instru-
mentation with a multi-detector and monochromatic beam would require two days, and the
simulations, see middle of Fig. 8.20, show this will be possible with the same high quality
already in 15 minutes. The example Fig. 8.20 (right) shows the simulation of the spin-ice
scattering of Ho,TioO7 based on the model of [37]. Here, with shorter wavelength a larger
Q-range can be seen, compare Fig. 8.18 and again, with white beam and position sensitive
detectors the Q-space is explored in 3D. The gain in efficiency, which is about three orders
of magnitude will open capabilities to measure even very small samples and weak magnetic
features.
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Exercises

Exercise 1: How good is the polarization? Consider a few cases:

(i) Spins are evenly distributed within a cone of +7/4 around z. i
Make first a good estimate and calculate P.,.

(i1) An initially ideally polarized beam scatters from a Vanadium sample. What is the polar-
ization after scattering? Next, looking more closely, if the sample is relatively thick and has
a 20% scattering probability, calculate the polarization for two consecutive scattering events.

(iii) Among the isotopes of Ni (see https://ncnr.nist. gov/resources/n-lengths/elements/ni. html),
you find few, which give spin-incoherent scattering causing a bit of spin-flip scattering. What
is the polarization after scattering from natural Ni?

(iv) Actually, Ni is a ferromagnet, so how can we explain the figure 7.8 (left) and would
one not expect also magnetic scattering and spin-flip scattering? However, by applying a
magnetic field, how could you avoid magnetic scattering?

Exercise 2: Which is the required field in a flipper coil to rotate the polarization by 7 with
respect to a external guide field H,. Consider neutrons of 4 A wavelength and a path of 1
cm in the flipper.

Exercise 3: Sprint competition of spin up and spin down neutrons. The course is 1 m and
neutrons start with a speed of 4000 m/s. Immediately after the start a field of 1 T is switched
on, when do the spin-up and spin-down neutrons arrive at the goal?

Exercise 4: Recall the rules about magnetic scattering:
(i) which component of the magnetic moments with respect to Q are not scattering?

(i1)) which components with respect to P cause spinflip and non-spinflip scattering, respec-
tively.

Exercise 5:

t
!

The unit cell displays two sites of different atoms , whose spins are antiferromagnetically
ordered. This is an example of a so-called q=0 structure, where magnetic and the nuclear
crystallographic Bragg peaks coincide. a) How to distinguish the contributions with polar-
ization analysis and which Bragg peaks would you measure? b) Do you see a possibility to
distinguish magnetic from nuclear scattering without polarization analysis?



Structural Analysis

G. Roth
Institute of Crystallography
RWTH Aachen University

Contents

9.1  INtrodUCHiON....uueeeeiieiiriicnerrecissssnnnreccssssnssnnecssssssssnesssssnssssnssssssssssssses 2
9.2 Diffraction Contrast Variation.....cccccecereeccsscsnereccssscsnnennccssccnnseneces 2
9.3 The hydrogen problem in structural analysis ......ccccccceereececccnneencee 4
9.4 Atomic coordinates and displacement parameters.........cccceeeeceecens 7
9.5 Magnetic structures from neutron diffraction.............ceeeeesccnneencee. 9
9.6 Electron densities from x-rays and neutrons ......ccccceeeerececccnnneees 12
9.7 Magnetization densities from neutron diffraction....................... 14
ReferenCes . .cccuvuueiriiiiiiinnrriicsiissnnniiicsssssnennecsssssnssenecsssssssssnecssssssssssscssssssssns 15
EX@ICISES..ciiiiiiissnrrricsssssnennicsssssnsrnecssssssssnnecsssssssssnecsssssssssnsssssssssssssssssssssns 16

Lecture Notes of the JCNS Laboratory Course Neutron Scattering. This is an Open
Access publication distributed under the terms of the Creative Commons Attribution
License 4.0, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited. (Forschungszentrum Jiilich, 2022)



9.2 G. Roth

9.1 Introduction

The analysis of crystal structures and magnetic ordering is usually based on diffraction
phenomena caused by the interaction of matter with x-rays, neutrons or electrons. Even
though modern electron microscopy (HRTEM) can achieve atomic resolution, more
detailed and quantitative information on the 3D atomic arrangement in crystals and on
3D magnetic structures and spin densities requires diffraction methods. In a more
general nomenclature, diffraction is equivalent to coherent, elastic scattering. The basic
theory of diffraction used for structural analysis (the so called kinematical theory) is
similar for all types of radiation. Due to the different properties of x-rays, neutrons and
electrons and their specific interaction with matter, complementary information is
obtained from experiments with different types of radiation.

Considering only x-rays and thermal neutrons one finds that their wavelengths are
similar (0.5 A < 1 <2.4 A) but they are scattered very differently by matter: While the
electromagnetic x-radiation is scattered from the electrons and yields the total electron
density distribution in the crystal, the nuclear scattering of neutrons is sensitive to the
density distribution of the nuclei and the magnetic neutron scattering probes the
magnetisation density of unpaired electrons.

x-ray diffraction using conventional laboratory equipment and/or synchrotron
installations is the most frequently used method for structure analysis. Neutrons are,
however, indispensable in a number of applications. The purpose of this chapter is to
discuss a few typical examples of structural analysis, for which, instead of or
complementary to x-rays, neutrons are required to solve structural problems.

9.2 Diffraction Contrast Variation

A great advantage of neutrons over x-rays in the context of structural analysis is the
very much different variation of the scattering length of atoms within the periodic
system of the elements: The contrast in conventional x-ray diffraction is directly related
to the ratio of the number of electrons Z;j of the different atoms or ions j involved. The
atomic scattering factor fin the structure-factor formula, which represents the Fourier
transform of the atomic electron density distribution, is proportional to Z; (f = Z;j for
siné/4 = 0). Standard x-ray techniques can hardly differentiate between atoms/ions with
a similar number of electrons (like Si and Al or Cr and Mn). Even if the atoms are fully
ordered on different sites, x-ray diffraction just ‘sees’ the average structure.

For neutrons the atomic scattering factor fis replaced by the nuclear scattering length
(or coherent scattering amplitude) b; which is of the same order of magnitude for all
nuclei but varies from nucleus to nucleus in a non-systematic way. b; values can be
either positive or negative and depend on the isotopes and nuclear spin states of the
element j(see previous chapters).
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Crystal structure and site occupation of (Mni-xCryx)1+5Sb.

As an example of contrast variation, the combination of x-ray and neutron diffraction
information is demonstrated for the intermetallic compounds (Mn;.xCrx)i+sSb, with
0 <x <1 [1]. This solid solution system is interesting for its magnetic properties: One
end member of the solid solution series (Mni+sSb) shows isotropic ferromagnetic
behaviour while the other one (Cri+sSb) is a uniaxial antiferromagnet. Intermediate
compositions are characterized by competing magnetic interactions leading to a
complex magnetic phase diagram. The crystal structure is closely related to the
hexagonal NiAs-type structure (space group: P63/mmc) with some additional partial
occupation (< 0.14) of the interstitial site 2(d) (see Fig. 9.1):

L

{Mn,Cr) 2{a)

Fig. 9.1: Lef: NiAs structure, right: (Mn;-<Cry)1+sSb structure

Conventional x-ray diffraction can hardly differentiate between chromium (Zc= 24)
and manganese (Zmn= 25) but still yields information on the overall occupation
probabilities by (Mn,Cr) for site 2(a) (denoted as a) and site 2(d) (denoted as d). The Sb
position is assumed to be fully occupied, thus serving as an internal standard for the
scattering power.

The compound formula can now be reformulated site-specifically as:

(Mnl -y Cry)a (Mnl -z CrZ)d Sb
site 2(a) site 2(d)

corresponding to a chemical composition of Mny( -y + (1-z)d] C1{ya +zd] Sb.
On the other hand, the nuclear scattering lengths of Cr and Mn for neutron diffraction
are extremely different with bc, = +3.52 fm and b = -3.73 fm (see also chapter 4).

In the structure analysis of the neutron data, site-specific effective scattering lengths b s
(2a) and bes(2d) are refined, which in turn are expressed as:

bef2a)=a[(1-y)y bun+y bc] and beg2d) =d [(1-z) bsm + z bc]
solving for the unknown parameters y and z gives:
y =[besg2a)/a - bam) /[bcr - bam] and  z =[be£2d)/d - bam] / [bcr - Dam).



9.4 G. Roth

The combination of the overall occupation probabilities a and d - from conventional x-
ray studies — with the effective scattering lengths b.2a) and b.z2d) determined in a
neutron diffraction experiment allows the evaluation of the Cr and Mn concentrations
on the different sites 2(a) and 2(d).

It is evident, that the individual (Cr,Mn) distributions on the two crystallographically
different sites 2(a) and 2(d) are not accessible merely by a chemical analysis. For most
of the samples studied, the site 2(a) was found to be fully occupied: a ~ 1.0. But the
formula (Mn;xCrx)1+5Sb used normally is only correct for the special case of equal Cr:
Mn ratios on both sites:

x=y=z and 1 +d=a+d

Note that, in general, a statistical occupation of one crystallographic site with three
kinds of scatterers - e.g. Mn, Cr and "vacancies" - requires at least two independent
experiments with sufficiently different relative scattering power of the atoms involved
to determine the fractional occupancies.

The detailed information on the (Cr,Mn) distribution is needed to explain the magnetic
properties of these intermetallic compounds, but we will not further elaborate on this.

9.3 The hydrogen problem in structural analysis

The determination of the structural parameters (coordinates, displacement parameters)
of hydrogen atoms in crystals is a special problem involving again the different
properties of x-rays and neutrons. It is obvious that H or D atoms with Z =1 give only a
small contribution to the electron density and, therefore, they are hardly visible in x-ray
structure analysis, particularly if heavy atoms are also present in the structure. However,
there is an even more fundamental problem: The single electron of H or D is engaged in
the chemical bonding and is by no means localised at the proton/deuteron position.
Therefore, bond distances from x-ray diffraction involving hydrogen are notoriously
wrong and any comparison with quantum mechanical calculations is quite hard to
perform. This lack of sound experimental information is in sharp contrast to the
importance of hydrogen bonding in solids, particularly in biological molecules like
proteins, where hydrogen bonds govern to a large extent structures and functionalities of
these ‘bio-catalysts’. A combination with neutron diffraction experiments is important
to determine the structural parameters of the H/D atoms properly. More generally, the
structure analysis by neutron diffraction yields separately and independently from the x-
ray data the structure parameters of all atoms including the mean square displacements
due to static and dynamic (even anharmonic) effects.
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H/D ordering in ferroelectric RbH,PO4 (RDP):

The hydrogen problem in crystal structure analysis is of special importance for
structural phase transitions driven by proton ordering. KH,PO4 (KDP) is the most well-
known representative of hydrogen-bonded ferroelectrics. Here, we discuss the isotypic
RbH>PO4 (RDP). The crystal structure consists of a three-dimensional network of PO4-
groups linked by strong hydrogen bonds (Fig. 9.2).

Fig. 9.2:  Crystal structure o fthe paraelectric phase o fRDP (RbH>PO4)with a s plit-
model representation o fthe hydrogen disorder [3 ]

In the paraelectric phase at room temperature KDP as well as RDP crystallise in the
tetragonal space group I 42d, where the H-atoms are dynamically disordered in
symmetric O---H:--O bonds, which are almost linear with short O-O distances,
typically in the range of 2.5 A. The disordered H-distribution may be interpreted as
corresponding to a double-well potential [2].

Figures 9.3 and 9.4 show the corresponding results for RDP, obtained from single
crystal neutron diffraction [3].
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Fig. 9.3:  Local con fguration o ftwo PO s-tetrahedra in the paraelectric phase o fRDP
(RbH>PO4)at T: + 4 K)linked by a strong, disordered hydrogen bond [3 ].

0.0 |
00

model: dynamic H-disorder according to a double-well potential

Fig. 9.4:  Di ference-Fourier-plot o fthe negative proton density in the hydrogen bond
o f paraelectric RDP indicated by broken contour line [3]. The double-well
potential model used to describe this densityis inscribed in green.

The two very close hydrogen positions with 50% occupation probability are, of course,
an artefact of the time-space averaging that is inherent to diffraction. In this case, the
hydrogen disorder is assumed to be a dynamic hopping process between the two
energetically degenerate sites.

At T, =147 K, RDP transforms to a ferroelectric phase of orthorhombic symmetry
(space group: Fdd2) in which the protons order in short asymmetric O-H:-- O bonds
(Fig. 9.5). The PO4-tetrahedra show a characteristic deformation with two shorter and
two longer P-O distances due to a transfer of electron density to the covalent O—H
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bonds. The electrical dipole moments are oriented ||z which give rise to a polarisation
along the c-direction.

AR 14
aa N [110],

é\;o | \:\\@(O Ic

2-fold axis 2-fold axis

Fig. 9.5:  Ferroelectric, hydrogen-ordered structure o fRDP close to the phase

transition at Tc — 1 K (ma pr changes indicated by arrows, presentation as
in Figure 9.3) [3].

The phase transition temperatures of KDP-type compounds change drastically when H
is substituted by D. For K(H,D),POs, for instance, the para- to ferroelectric Tc changes
from 122 K in the protonated to 229 K in the deuterated compound. This huge H/D-
isotope effect proves that hydrogen-ordering and -dynamics is the major factor
controlling this phase transition. Another type of H/D-isotope effect was found for
TI(H,D)PO4 (TDP/DTDP) and Rb(H,D),PO4 (RDP/DRDP), where a different poly-
morphism between the protonated and deuterated phases exists.

Clearly, the use of neutron diffraction is detrimental to a better understanding of these
compounds and their interesting physical properties.

9.4 Atomic coordinates and displacement parameters

As discussed above, neutron diffraction is very useful for obtaining precise atomic
coordinates and displacement parameters. The improved accuracy (compared to x-rays)
stems mainly from the absence of the form-factor fall-off. We will use measurements on
Cobalt-olivine, Co2Si04, (crystal size 3 x 2 x 2 mm) taken at the four-circle
diffractometer HEiDi at the hot-neutron source of the FRM II reactor (A = 0.552 A) for
demonstrating this advantage for the thermal displacements:
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Fig. 9.6:  Structure of CoSiO4 olivine at room temperature, pro pcted along c.
Green: SiOgstetrahedra, Dark blue: Co(l JOs-octahedra, light blue:
Co(2 )JOs-octahedra. Displacement ellipsoids are plotted at the 95%
probability level ( fom [4]).

The olivine structure (fig. 9.6) consists of chains of two types of edge-sharing CoOs-
octahedra connected by SiOs-tetrahedra. A large data set with 1624 independent
reflections up to sin §/4 =1.05 A" had been measured. The data were then successively
cut off in shells of sin 8/4 and the resulting partial data sets were used to analyse the dis-
placement parameters. Figure 9.7 shows two interesting observations: First of all, the
precision improves significantly with increasing (sin 8/4)max, as is evident from the
decreasing size of the error bars. In the x-ray case, high angle reflections are usually
very weak and their measurement does often not lead to improved precision. Secondly,
there is a systematic change of the displacement values themselves, resulting from
systematic errors that vary with (sin 6/2)max.

%1073

Usco (A%

06 08 3
sinb/A (A1)

Fig. 9.7:  Lef: Statistical (error bars) and systematic errors o fisotropic displace-
ments parameters in Co:SiOy4 as a finction o fmeasured sin /1 range fom
single-crystal neutron di ffaction data at room temperature [4] Right:
Clinographic view o fthe CoOs and SiO4 polyhedra in Co:Si04 at room
tem perature [4].
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High dw-value resolution data from neutron diffraction is also useful to derive precise
temperature dependent displacement parameters (fig. 9.8):

x1073

Uisa (-"iz]

0 100 200 300
T (K)

Fig. 9.8: Temperature dependence of the isotropic displacement parameters of
CosSi04 [4].

Just as in the case of high quality single crystal x-ray diffraction data, anisotropic
displacement parameters can be determined as well. In addition to that, the quality of
single crystal neutron data also often allows refining anharmonic displacement
parameters. Anharmonic oscillations of atoms in crystals occur if the atoms are
vibrating in a non-parabolic potential well. In such cases, the harmonic approximation,
which is the basis of the description of thermal displacements by the Debye-Waller
factor, fails. Analysis of the anharmonic displacements allows to reconstruct the non-
parabolic potential at the site of the vibrating atom.

9.5 Magnetic structures from neutron diffraction

Cobalt-Olivine, C02S104, orders magnetically below about 50 K. The magnetic
moments of the Co**-ions turn from a paramagnetic phase with no long range order of
the magnetic moments into an antiferromagnetically ordered arrangement. We use
C02Si104 again to briefly demonstrate the application of neutron diffraction to the
structural analysis of magnetic structures. This time, a powder neutron diffraction
experiment has been performed at the diffractometer D20 (ILL, France) in its high-
resolution mode, at temperatures between 70K and 5K, with a neutron wavelength of 4
=1.87 A and approximately 2 g of powdered C0,SiO4 [4].
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Fig. 9.9:  Thermal evolution o fthe neutron powder di ffaction pattern (low angle
part) o fCo8i04 [4].

At about 50 K, new magnetic reflections (001 ), (100), (110), (300) etc. appear (fig. 9.9).
The nuclear reflections don’t change much at the magnetic phase transition. The new
reflections can be indexed with the same unit cell as the nuclear reflections, but they
were forbidden in the paramagnetic phase with space group P n m a. Obviously, the
symmetry has changed at the magnetic ordering transition. The task is then - just as in
‘ordinary’ structure determination - to find a structural model (that is: magnetic
moments and their orientation on the magnetic ions, here Co**) that fits the observed
positions and intensities of the magnetic Bragg peaks. Magnetic structure determination
is outside the scope of this chapter, but assumed such a model has been constructed, it
can be refined - in the case of powder data by the Rietveld method (fig. 9.10).
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Fig. 9.10: Neutron powder diffaction pattern (dots), Rietveld fi (black line) and
allowed Bragg re fections (green marks)at 5 K o0 fC02Si0Oy4 [4].
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The lower trace (blue) is the difference lobs - Icalc on the same scale. The upper row of
the green marks shows Bragg reflections corresponding to the nuclear phase and the
lower row represents the allowed positions of the magnetic peaks. Some of the Bragg
peaks are indexed. ‘N’ and ‘M’ denote the nuclear and magnetic contributions,
respectively [4]. Note that the magnetic Bragg peaks are only visible at low diffraction
angles.
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Fig. 9.11: Graphical representation o fthe magnetic structure o fC02Si04 below 50 K.
The non-magnetic atoms (Si and O ) are excluded pr simplicity. The fgure
shows the zigzag chains o fCo(1 ) and Co(2)in layers perpendicular to the c
axis [4].

From the Rietveld refinements, one can derive the exact spin orientation (fig. 9.11) as
well as parameters describing quantitatively the magnetic moments on the two
symmetrically non-equivalent Co?*-sites (see table below). However, magnetic neutron
diffraction from single crystals often gives additional and more accurate information:

Col (0,0,0) Co2 (r,1/4,2)
M, (up) 1.18 +0.05 —
M, (ug) 361 +0.04 3.37 +£0.04
M; (pg) 0.66 +0.18 —
M (pp) 3.86 4 0.05 3.37 £ 0.04
¢ () 719 +0.7 90
6 (°) 80.2 £27 90

X% =223, R[F? > 2¢(F?)] = 0.033, wR(F2) = 0.044.

The table shows cartesian (Mx, My and M;) and spherical (M, ¢ and 0) components of
the Col and Co2 magnetic moments according to the single-crystal neutron diffraction
data at 2.5 K. The directions of the magnetic moments for other cobalt ions in the unit
cell can be obtained by applying the symmetry operations of the magnetic space group
(Schubnikov group) Pnma.
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9.6 Electron densities from x-rays and neutrons

Another advanced application of neutron diffraction in structural analysis is the
determination of 3-dimensional high resolution maps of the electron density in the unit
cell to study, for instance, details of the chemical bonding. The most involved method
of electron density studies (called x-N-synthesis) uses a combination of high quality
single crystal neutron and x-ray diffraction experiments. In the present case, a single
crystal of Co02Si04 with dimensions 3 x 2 x 2 mm, was measured on the four-circle
diffractometer HEiDi at the hot-neutron source of the FRM II reactor (Garching) at 4 =
0.552 A, the single crystal x-ray (synchrotron) experiment was performed on
Diffractometer D3 at the synchrotron facility HASYLAB/DESY (Hamburg) with a
C02Si0s-sphere, diameter 150 um as the sample and an x-ray wavelength of A =0.5 A
The next step is to take the x-ray-data, do a Fourier-transform (Fourier-synthesis) to
obtain the electron density map:

p(r) =1/V - Z F(7) - exp[2ni(zr)], with F(7)=|F(7)| exp[ip(7)].

The phases @(7) are calculated from the atomic model (structure factor equation, see ch.
4), the moduli |F(7) are taken from the measured x-ray intensities. The result is a 3-
dimensional map of the total electron density p(r) within the unit cell:

Fig. 9.12: Electron density distribution p(r) o fC0Si04 at 12 K fom Fourier synthesis
o fx-raydata. Contours range fom —8 e/A’ (blue)to 10 e/A’ (red). A plane
which intersects the Col Os octahedron and contains the Col, Ol and O3
atoms is shown together with a sketch o fthe crystal structure [4].
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In favourable cases, such a map already shows interesting features of the (anisotropic)
bonding electron density, however, the information content of the map can be very
significantly improved by taking the coordinates and displacement parameters from the
more accurate neutron diffraction experiment (see above for the reasons) and calculate,
in a second step, the so called deformation density. This is done by subtracting from the
total electron density p(r) the density p(r)spherical corresponding to a superposition of
spherical atoms at the nuclear positions. More specifically: atomic positions x;, y; zjand
thermal displacements T of atoms j derived from the neutron experiment, ‘decorated’
with the calculated spherical single atom electron densities.

p(F)deform = P(r) — Y. p(F)spherical, Where the sum runs over all atoms in the unit cell.

p(F)spherical corresponds to the expectation value of the electron density within the unit
cell without any effects which are due to chemical bonding. The deformation density
then represents the deformation of the charge distribution as a result of the formation of
chemical bonds. Figure 9.13 shows such a deformation density map for Co2SiO4. In
favourable cases, the electron density in the hybridized bonding orbitals (in this case of
Co3d- and O2p character) can be directly observed.

(a) <

Fig. 9.13: De prmation density fom the x-N-di ference Fourier mapo fCo:Si04 at
300 K: Section through the O1—-Col—03 plane The di ference density varies
fom —1.25 e/A (blue)to 1.15 e/A (red) [4]
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9.7 Magnetization densities from neutron diffraction

As a final example for the application of neutron diffraction in structural analysis, we
briefly sketch how a 3-dimensional map of the magnetization density, that is: the
density of magnetic moments (spin- as well as orbital-moments) within the unit cell can
be determined. These maps are sometimes lucidly called ‘spin density maps’, but in
systems with non-vanishing orbital moments, the term magnetization density is really
the correct one.

The experiment is performed by polarized neutron diffraction on a single crystal using
the flipping ratio method For details on the experimental method see the chapter on
magnetic scattering. The flipping ratio method allows to separate nuclear and magnetic
contributions to the diffracted intensities. It is performed above the magnetic phase
transition in the paramagnetic state (in the case of C02SiO4 above Tn=50K) and the
sample is in a strong external magnetic field (here: 7 T). 207 Bragg reflection flipping
ratios were measured at diffractometer 5CI of the ORPHEE reactor (Laboratory Léon
Brillouin, CEA Saclay, France) for C0,SiO4 at 70K up to sin /4= 0.62 A™! at a neutron
wavelength of 1 = 0.845 A. Given the flipping ratios and the nuclear structure factors,
the magnetic structure factors can be calculated which are then Fourier transformed to
give the spatially resolved magnetization density shown in figure 9.14 in a section
through the unit cell of Co2SiOa.

N3
o1 — )
2x03
§ Co2
2x03
N
2xCol
02

Fig. 9.14: Reconstruction o f the density (pro pcted along the b axis) corres ponding to
the observed magnetization distribution o fC0:S5i04 at 70 K with contours
ranging fom 0 up/A> (blue)to 2 ug/A’ (red) [4].
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Among the interesting features of this map is the observation of magnetization density
on the, nominally non-magnetic, oxygen atoms coordinating the Co?*'-ions. These
‘transferred moments’ are direct experimental evidence for the hybridization of the
oxygen 2p- with Co-3d-orbitals which is not only responsible for covalent bonding but
also for the magnetic exchange interaction along the Co-O-Co-bond network.
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Exercises

E9.1 Displacement Parameters

The Debye-Waller-factor T 7) enters the structure factor formula as the exponential factor
exp[ B (sin0/A%) ].

a) Discuss the physical origin of this factor.

b) Describe the overall effect of this displacement factor on the diffracted intensities.

c) It is generally said, that neutron diffraction yields much more precise displacement
parameters than x-ray diffraction. Is that statement correct? If so: Why?

d) What are anisotropic displacement parameters and how can they be visualized?
e) Is it correct, that all atoms in cubic crystals have to vibrate isotropically? (Yes/No, Why? )

f) Discuss the non-zero values of the displacements parameters in fig.9.8 for T => 0 K:
(Is it real? An arte fict? Why? )

E9.2 Diffraction contrast & site occupancies

a) Assume you have grown a compound containing both Pb and Bi. Which kind of diffraction
experiment is better suited to distinguish Pb and Bi: X-ray or neutron? Why?

Check htt pr //webster.ncnr.nist. gov/resources/n-lengths/ pr the coherent neutron scatterings
lengths and use your knowledge o fthe PSE pr the x-ray scattering lengths.

b) Assumed Bi and Pb sit on the same site in your structure and this site is also supposed to
contain vacancies. Is one diffraction experiment sufficient to uniquely determine the
occupation probabilities? (Yes/No, Wh)? )



Structural Analysis 9.17

E9.3 Choice of neutron wavelengths

a) Magnetic neutron diffraction experiments are usually done with rather long wavelengths
(see chapter 9.7: A= 1.87 A} Why?

b) Diffraction experiments aiming at obtaining precise atomic coordinates and displacements
are done with much shorter wavelengths (see chapter 9.8: 1= 0.552 A} Why?

c) Powder diffraction experiments usually use longer wavelengths than single crystal
experiments: Why?

Discuss this issue in terms o fthe com petition between angular resolution (se paration o f
re fections ) and direct space resolution (se paration o fatoms ).

E9.4 Hydrogen bonded crystals

Assume you have grown a new hydrogen-bonded compound in the form of a single crystal
and you want to know how the hydrogen bonds are arranged within the structure.

a) Collect arguments Pro & Con the usage of a single crystal x-ray- vs. single crystal neutron
diffraction experiment to study your new crystal.

Consider, prinstance, fictors like: Availability /costs o fthe experiment, time and e fprt
required to get beam time, required size o fthe crystal; scattering power o fhydrogen,
expected precision o fthe H- position,; absor ption & incoherent scattering; additional e fprt
needed pr deuteration etc.

E9.5 Density maps from diffraction experiments

a) How can one obtain (from diffraction) the bonding electron density map?
(discuss brie [y the experiment(s), the necessary calculations and the in prmation obtained)

b) Discuss the difference between the bonding electron density map and a magnetization
density map. (kind o fdata used, speci fc in prmation the experiment will yield? )
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10.1 Introduction

Neutron reflectometry is a very efficient tool to determine the nuclear and magnetic density
profiles along the depth of nanometric thin films. It has been used a lot to solve soft matter
problems like the self organization of diblock copolymers, the structure of liquid-liquid in-
terfaces or the structure of biomembranes [1]. Those studies benefit a lot from the possibility
of contrast variaiton, i.e. the exchange of hydrogen by deuterium.

In the mid 1980’s a new field of application of neutron reflectometry emerged. Following the
discoveries of interlayer exchange coupling and giant magnetoresistance effect in magnetic
multilayers [2], there has been an interest to determine, depth-resolved, the magnetic profile
(see lecture 11 of this book).

More recently, the interest evolved towards the determination of the correlations of in-plane
fluctuations in thin films. Those fluctuations can be nuclear or magnetic, in the bulk of the
layers or at their interfaces, or nanometric objects deposited on a surface. The breaking of
in-plane invariance introduced by those fluctuations produce scattering of radiation out of the
specular direction, called grazing incidence small angle scattering (GISAS).

In this lecture, we will concentrate on neutron and x-ray reflectometry and GISAS for the
determination of nuclear and chemical profiles. Section 10.2 shows the calculation of specu-
lar reflection at flat and homogeneous surfaces, introducing the concepts of scattering length
density, index of refraction and total external reflection. It then describes the reflectivity from
various types of layered structures and the effect of interfacial roughness and interdiffusion.
The two types of reflectometers one can encounter and the practical aspects of a reflectometry
experiment are discussed in section 10.3. Finally, an example of the application of grazing
incidence small angle x-ray scattering (GISAXS) for the depth-resolved investigation of the
lateral arrangement of nanoparticles is depicted (section 10.4).

10.2 Description of specular reflection’

A monochromatic, well collimated beam impinges under a well defined, small angle «; = 6
(in most cases < 5°) onto the surface of the sample. It is then partly reflected specularly
from the surface, i.e. the outgoing angle oy = ¢ as well, and partly refracted into the ma-
terial (See Fig. 10.1). As we will derive below, the reflection from a laterally homogeneous
medium can be treated according to classical optics. Only the proper index of refraction n
has to be used.

For most material, the index of refraction for neutrons is slightly smaller than 1, leading
to total external reflection for small angles of incidence 6 < 6., where . depends on the
material.

In the case of a single layer on the substrate, reflection and refraction take place at both the
surface and the interface (Fig. 10.2). Then, the reflected beams from the different interfaces
interfere with each other. Maximum intensity is received, when the path length difference
between the two reflected beams is an integer multiple of the wavelength.

! A large part of this section is taken from Ref. [3-6].
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For the case of perfectly smooth surface and interfaces, an exact description of the reflected
and transmitted intensity can be deduced from quantum theory, as will be shown in the next
subsections.

When the in-plane invariance of the layers or interfaces is broken, some diffuse signal can
be observed out of the specular direction (Fig. 10.3). This is grazing incidence small angle
scattering (GISAS). Its theoretical description goes beyond the scope of this lecture [7,8].

reflected beam
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transmitted beam

- ~
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Fig. 10.1: Re fection and re fraction fom a free sur face
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Fig. 10.2: Re fection and re fraction fom a single layer on a substrate

10.2.1 Wave equation in homogeneous medium. Optical index

The starting point is the Schrodinger equation for the wave function of the neutron:
h2
{— %A + V(r)} P(r) = Ey(r) (10.1)

The kinetic energy of the neutron is given by E = h*k?/(2m) with the modulus k = 27/\
of the wave vector k.
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[TTT]

Fig. 10.3: Re fection, re faction and grazing incidence small angle scattering (GISAS) from a
single layer on a substrate showing broken in- plane invariance

Due to the small |Q| values that are probed, a reflectometry experiment does not resolve
the atomic structure of the sample in any of the three directions. Therefore, it is a valid
approximation to describe the potential V; of the homogeneous material as

27h?
V1=7T

p (10.2)

m

where p if the scattering length density (SLD) defined by
p=> N (10.3)
J

where NV, is the number of nuclei per unit volume and b; is the coherent scattering length of
nucleus j With that we receive

2

[A+ (k% — dmp)] o(r) = {A+k~2(1 - )\?p)} () =[A+ k] v(r)=0 (10.4)

with the wave vector k; inside the medium. From this equation, it is justified to introduce
the index of refraction in the material

k1 A2
= — ~]—- — 10.
n - n 27Tp (10.5)

It is a number very close to 1 for thermal and cold neutrons. The quantity 1—n is of the order
of 107° to 107°. For most materials it is positive (because the coherent scattering length b,
is positive for most isotopes), so that n is smaller than 1. This means that the transmitted
beam is refracted towards the sample surface, which is opposite to the daily experience with
light refracted at a glass or liquid surface.
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10.2.2 Solution for a sharp surface. Fresnel’s formulas

In analogy to classical optics, we can derive e.g. Fresnel’s formulas. For the solution of the
wave equation at a sharp surface between air and a semi-infinite medium, we assume the
surface of the sample to be at z = 0. The potential is then

|0 for 2>0
V(z)—{vl for <0 (10.6)

As the potential V is independent of the in-plane coordinates x and y, the wave function in
the Schrodinger equation (10.4) is of the form

P(r) = elFerthubly, (2) 10.7)

with the in plane components &, and k, of k independent of z. The Schrédinger equation
then reduces to the one dimensional equation

d*,(2)
dz?

+ E2(2)Y.(2) = 0 (10.8)

with k.(z) depending on the medium. The general solution is given by

Va(2) = tie™=1* 4 pem*az, (10.9)

where the index [ distinguishes between vacuum (1=0) and medium (I=1). The unique so-
lution is determined by the boundary conditions. The incoming wave in the vacuum before
interaction with the sample is a plane wave of norm 1, i.e. ¢y is equal to 1. In a half-infinite
medium, there is no reflected wave, because there is nothing to reflect from, i.e. r; vanishes.
In addition, the wave function and its first derivative must be continuous at the interface. So
we receive the following boundary conditions:

dz/)z() 0) = dz/)zl

to=1; n=0; t(z=0)=9a(:=0); —=(2=0)=—=(z

=0). (10.10)
When we insert (10.9) into (10.10) we receive the continuity equations for the wave function:

1+7"0:t1 ) kz()(l—?”o):kzltl. (1011)

t; is the amplitude of the transmitted wave and 7 is the amplitude of the reflected wave. The
reflectivity R is defined as the modulus squared of the ratio of the amplitudes or reflected and
incoming waves, the transmissivity T is defined as the modulus squared of the ratio of the
amplitudes or transmitted and incoming waves.

R=|ro|* ; T=|t| (10.12)
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In conclusion, we arrive at the Fresnel’s formulas for the reflection and the refraction at a
flat interface

2

o . kzO - kzl
Reflectivity : R=|——— 10.13
y kzO + kzl ( )
e e 2kz0 2
Transmissivity : T=|—"— 10.14
Y ‘ kzO + kzl ( )

10.2.3 Snell’s law of refraction. Total external reflection

Taking into account the continuity relation for the wave vector component tangential to the
surface

kro = ka1 kyo = ki (10.15)
together with k; = kgny (Eq. 10.5), Snell’s law for refraction follows from trigonometry:

cos ki

cost; ko ! ( )
The fact that in most cases the index of refraction is n; < 1 means that the transmitted beam

is refracted towards the sample surface (¢; < 6 in Fig. 10.1). For angles of incidence 6
below the so called critical angle 6. with

ny = cos . 0, ~ )\\/ﬁ (10.17)
T

total reflection is observed, i.e. all intensity is reflected and no wave propagating in z-
direction exists in the sample. Only an evanescent wave in the z-direction with propagation
parallel to the surface is induced. For angle of incidence above 6., the beam can partially
penetrate the sample and is only partly reflected.

From Snell’s law (Eq. 10.17) and the definition of the index of refraction in Eq. (10.4) one
can relate the normal components of the incoming and refracted wave vectors

2 S
B2 =K — kY, with ke, = Tﬁsin 0. = \/dmp. (10.18)
This confirms that, for angles of incidence 6 below 6., k,; becomes purely imaginary and
the refracted wave is an evanescent wave in the z-direction.

The last relation allows to express the Fresnel coefficients (Eq. 10.13 and 10.14) as a function
of one variable only. In general the measured reflectivity is represented as a function of ¢ or
the magnitude of the scattering wave vector () = 2k.¢:
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2
_ 7 )2
R'gj%' 1019)
When @ > @), the preceding equation reduces to:
1 4
R~ 1_6222_2 (10.20)

which is the formula for the reflectivity within the Born approximation [9]. This shows that
the reflectivity above the critical angle decreases sharply with Q.

Once again, coming back to the wave function inside the surface, one finds using Eq. (10.18)
that, when 6 < 0.

. 1/2 1 1/2
ba(2) = telFokoe) 7 = ¢ o= a(Q2-07) 2, (10.21)

This result is very important, because it shows that when the energy of the particle normal
to the surface is smaller than the potential barrier, the wave still can penetrate the medium
on a characteristic depth of 2/ \/ (Q)? — (2. This evanescent wave propagates itself along the
surface with a wave vector equal to (k,, k,) and then leaves the volume in the specular
direction. For example for Ni (p = 9.41 x 107 A~2), the penetration depth is of the order
of 200 A at Q = 0; if one neglects absorption, it raises rapidly to infinity at Q = Q..
No conservation rule is broken: the reflectivity equals 1 because this wave represent no
transmitted flux in the medium.

Fig. 10.4 represents, on a linear scale, the reflectivity and the transmissivity of a substrate
as a function of the angle of incidence 6. The reflectivity equals 1 for angles smaller than
the critical angle 6. and decreases rapidly above this value (Eq. 10.20). The transmissivity
increases monotonously up to a value of 4 at 6. and decreases to 1 at large angles. This result
might look very surprising at first sight. The value of 4 for the transmissivity comes from
the fact that the incident and the reflected waves in vacuum superpose to form a stationary
wave of amplitude exactly equal to 2 at the interface with the medium. For the intensity, we
obtain a factor of 4.

R T

|
0 : 0
0

1
1
ec

C

Fig. 10.4: Re fectivity and transmissivity o fa substrate as a fiunction o fthe angle o fincidence
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10.2.4 Reflectivity from layered systems

In a layered system, the same Ansatz as in Eq. (10.9) can be written in each layer 1. The co-
efficients of reflection r; and transmission ¢; can be deduced recursively from the continuity
relations of the wave function and its derivative at each interface. If N is the number of lay-
ers, and considering the vacuum on top of the multilayer and the substrate below, 2(N+2) co-
efficients have to be calculated. The number of interfaces being N+1, the continuity relations
lead to 2(N+1) equations. Two other equations are obtained considering that the transmission
into the vacuum is equal to one (ty = 1) and that, in the substrate, there is no reflected wave
(ryv+1 = 0), leading in total to a number of equations equal to the number of coefficients
to determine. The calculation of the coefficients of reflection and transmission in each layer
and, in particular, the calculation of the reflectivity in air are therefore possible [10].

Here we just want to demonstrate with very simple arguments how interference effects from
layered structures arise and how the intensity modulations in Q-space are related to real space
length scales.

Fig. (10.2) shows how interference can occur in a system composed of a single layer of
thickness d deposited on a substrate. Interference occurs between beams reflected from the
surface and those first transmitted in the layer, reflected from the interface between layer and
substrate and then leaving the layer into vacuum. To a good approximation, refraction at the
top surface can be neglected for incident angles twice the critical angle or total reflection. In
this case # = #; in Fig. (10.2) holds. Since the index of refraction of the neutrons is very
close to one, this approximation is valid even for rather small angles of incidence. Then the
optical path length difference between the two beams is:

A = 2dsind (10.22)

We can now determine the distance between interference maxima from the condition that the
path length difference has to differ by one wavelength: A = 2d - §(sinf) ~ 2d - 60. With

Q = = sinf ~ 20 we final obtain:

50 ~ 1 (10.23)

We can see that the interference phenomena in Q-space are connected with real space length
scales in a reciprocal way. (10.23) tells us that there will be a number of interference maxima
at a distance in () of 27“. These interference phenomena are called “Kiessig fringes”. Fig.
10.5 shows calculations of the reflectivity of a Ni layer deposited on a Si substrate. One
observes that the reflectivities above the critical angle for total reflection decrease rapidly,
therefore the ordinate is on a logarithmic scale. The oscillations of the reflectivity due to the
above described interference effect can be observed. At small angles, due to the effect of
refraction, the interference maxima are a bit denser distributed than at higher angles where
formula (10.23) can be used to determine the layer thickness from the distance between the
interference maxima. The thinner layer corresponds to an interference scheme with a bigger
period. In both cases the minima of the interference scheme lay on the reflectivity of the Si
substrate.
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Fig. 10.5: Re fectivity o fa Si substrate and re fectivity o fa Ni layer (p = 9.41 x 1076 A=2) on
Si substrate (p = 2.15 x 1075 A=2). Simulations are per prmed fr two layer thicknesses d.

Note that for a 100 A thick layer of Ni, that has a scattering length density (SLD) approx-
imately 4 times larger than the one of Si, the critical angle of total reflection is determined
by the SLD of Si and not by the one of Ni. This comes from the penetration depth of the
neutrons that is bigger than 100 A. For a 400 A thick Ni layer, the 6. approaches the one of
Ni and the total reflection plateau is somewhat rounded.

1 I n substrate g
01 - Al bilayer i
' . j multllayer
g TN AQ=2
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O '\\ \ AT
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[g‘:') \ \
1e-05 T
1e-07 . :
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Fig. 10.6: Re fectivities o fa Ni/li bilayer and o fa Ni/Ii multilayer on Si substrate. Simulations
are per prmed fr Ni and Ti thicknesses 070 and 30 A respectively.

Fig. 10.6 shows the simulation of the neutron reflectivity from a multilayer on a Si substrate.
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This multilayer is composed of 10 double layers of 70 A Ni and 30 A Ti. On can clearly
see the pronounced maxima due to the periodicity of the Ni/Ti double layer of thickness 100
A. In between, one observes many weaker oscillation (be attentive to the logarithmic scale)
with a period given by the total thickness of the multilayer.

10.2.5 Roughness and interdiffusion

Until now we assumed perfectly flat interfaces. A real interface will, however, always show
a certain roughness at the atomic level, as shown in Fig. 10.7. The height profile of the
interface is completely described by the parametrization z(z, y). Such a detailed information
is not at all interesting. Much more interesting are parameters that statistically describe the
interface, such as the mean squared deviation from an ideally flat interface, or the lateral
correlation length. Those parameters can be determined from reflectometry and scattering
under grazing incidence [7].

2(0)
m [\

A x [ A
Y Vi W

n.

Fig. 10.7: Roughness ofa real inter fice, characterized by the parametrization z(x,y) and
dependency o fthe re fractive index on z.

As simplest model, we assume that the height coordinate z follows a random distribution
of values around the nominal value z; of the flat interface. The random distribution being
described by a Gaussian function

1 Az?
P(Az) = ——exp| ——= |, 10.24
(39 = o - 55 ) (10.24)
the profile of index of refraction between layers j and j + 1 takes the form:
N+ N Ny — Ny d‘(z— zj)
n(z) = — e — 10.25
(2) 5 5 Vi, (10.25)

with the “Error” function:
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erf(z) = 2 / e~ dt, (10.26)
VT Jo

The reflectivity from such a rough interface is obtained from the average of the reflectivi-

ties from a sequence of layers that describe the profile of refraction index. This average is

performed in detail in Ref. [11]. As a result one obtains that the Fresnel coefficient for an

ideally flat interface has to be modified by an exponential damping factor in the following

way:

Riough = Riiar - exp(—405k k- ). (10.27)

In this equation, o; is the root mean squared deviation from the nominal position of the flat
interface.

The effects of interfacial roughness on the neutron reflectivity from a Si substrate and from
a Ni layer on Si substrate have been simulated in Fig. 10.8. On the left side of Fig. 10.8 one
can observe that the effect of roughness is to decrease the reflectivity at large wave vector
transfers. The effect of roughness will be seen, if the value of the scattering wave vector
gets bigger than 1 /0. Therefore, if one wants to determine very small roughness amplitudes,
one has to measure the reflectivity till very large reflection angles and over a large dynamical
range.

The right side of Fig. 10.8 shows the effect of the roughness of a single layer. The simula-
tions have been performed for ideally flat interfaces, for a rough surface of the layer, for a
rough interface between layer and substrate and for the case where both interfaces are rough.
One can see that the four cases can be well differentiated. When only one of the two inter-
faces is rough, the interference pattern due to the reflection on the top and bottom interfaces
is suppressed at large wave vectors. If both interfaces are rough, a faster decrease of the
averaged reflectivity takes place.

1= G
“;'l nomughneﬁ
=15A —
0.01 F %%'_15;& 4
0.00m
1e-05
| 1 1 1 1 |
0 004 008 012 016 0.2 0 004 008 012 016 0.2
G = 4nisin(8) [A "] Q = 4n/Asin(8) [A "]

Fig. 10.8: Lef: Neutron re fectivity at the inter face between vacuum and Si. Right: Neutron
re fectivity fom a 400 A thick Ni layer on Si substrate. Efect o finter ficial roughness.

Finally, one should point out that a specular reflectivity measurement can only describe the
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profile of scattering length density normal to the interface. This means that a reflectivity
measurement can not differentiate between interfacial roughness and interdiffusion, as inter-
diffusion will induce the same profile of refraction index as in Fig. 10.7. But what happens to
the intensity loss described by the exponential factor of Eq. (10.27)? In the case of a diffuse
interface, this intensity goes into the transmitted beam because there is no potential gradient
in a direction different than the one normal to the interface. On the other hand, in the case
of a rough interface, the intensity loss comes from scattering by lateral fluctuations of the
potential, leading to intensities that can be observed in directions other than the specular di-
rection: this is off-specular diffuse scattering. A statistical function like the height-height pair
correlation function can be determined from the measurement of off-specular scattering [7].

10.3 Measurement of neutron reflectivity

The principal components of a reflectivity experiment are (i) a radiation source, (ii) a wave-
length selector (monochromator, choppers), (iii) a collimation system, (iv) the sample and (v)
a detection system.

The aim of a neutron specular reflectivity experiment is to measure the reflectivity as a func-
tion of the scattering wave vector () perpendicular to the sample surface:

Q= Tsing (10.28)

The measurement can be done by changing either the angle of incidence # on the sample or
the wavelength A, or both.

10.3.1 Monochromatic instruments

At a nuclear reactor source, the measurements are usually performed at a fixed value of A,
using #-20 scans (26 being the detector angle). The wavelength selection can be obtained
by Bragg scattering on a monochromator crystal or by using a velocity selector. Fig. 10.9
describes such an instrument. This is the MARIA reflectometer of the JCNS located at the
FRM-II source in Garching [12]. The neutrons are brought from the cold source to the in-
strument using a supermirror coated guide (see lecture 2 of this book). A certain wavelength
with a spread of 10 % is chosen by adjusting the rotation speed of a velocity selector. The
wavelength spread can be reduced by using a Fermi chopper and time-of-flight detection.
The neutron beam is then collimated by a pair of slits in order to define the angle of inci-
dence of the neutrons relative to the sample surface with a certain precision. The neutrons
are then detected on a two dimensional position sensitive detector. Such a detector allows
to record at the same time not only the specular reflectivity signal but also the signals of
off-specular scattering and grazing incidence small angle scattering. The projection of the
spin of the neutron on a quantization axis can be selected before interaction with the sample
by using a polarizer and after interaction with the sample by using a polarization analyzer,
allowing to retrieve information about the norm and angle of the layer magnetizations in a
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magnetic sample (see lecture 10). The polarizer uses magnetic supermirrors and the analyzer
uses a nuclear polarized *He gas to select the spin projection.

e @ ®
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I— Y (Y
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E—

@ Neutron Guide NL5-N

@ Velocity selector

® Fermi chopper

@ Polarizer

® Slit pair

® Hexapod sample table

@ Polarization analyzer (*He)
Detector

Fig. 10.9: A monochromatic instrument: MARIA o fthe JCNS at MLZ [12].

10.3.2 Time-of-flight instruments

At a spallation source, the measurements are performed at fixed values of # and as a function
of A\. This is the time-of-flight technique, that consists in sending a pulsed white beam on
the sample. Since the speed of the neutron varies as the inverse of the wavelength, the latter
is directly related to the time ¢ taken by the neutron to travel from the pulsed source to the
detector (over the distance L) by:

h

A= —t.
mL

(10.29)

For a reflectivity measurement, the angle is fixed and the reflectivity curve is obtained by
measuring the reflectivity signal for each wavelength of the available spectrum, each wave-
length corresponding to a different scattering wave-vector magnitude. Sometimes it is neces-
sary to use several angles of incidence because the Q range is not large enough.

An example of time-of-flight reflectometer is presented in Fig. 10.10. This is the magnetism
reflectometer of the Spallation Neutron Source (SNS) in Oak Ridge, USA [13]. Neutrons
coming from the moderator are first deflected by 2.5° using a channel beam bender, com-
posed of a stack of supermirrors, in order to achieve enough separation with the neighbour
instrument (a liquid reflectometer) and in order to deliver to the sample a “clean” neutron
beam, essentially free of fast neutrons and 7 radiation. As much useful neutrons as possi-
ble are transported to the sample by using a supermirror coated tapered neutron guide that
focuses the beam horizontally and vertically to a size comparable to usual sample sizes, i.e.
several cm?. The bandwidth choppers are used to select a wavelength width (\ from 2 to 5
A), in order to avoid frame overlap. A chopper is a rotating disk with windows transparent
to neutrons. When two choppers are mounted at a certain distance one with respect to the
other, the delay between the window openings and the width of the windows can be chosen
to achieve a transmission of only those neutrons having speeds contained in a certain range.
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The phenomenon of frame overlap happens when the slow neutrons of a pulse are overtaken
by the fast neutrons of the next pulse. A time-of-flight detection cannot differentiate between
those neutrons. Therefore, frame overlap has to be avoided. The function of the second of
the three choppers is to absorb the very slow neutrons. This instrument has also collimation
slits, a position sensitive detector and polarizing and analyzing devices whose functions are
the same as the ones explained in the preceding section.

enelyzer

Fig. 10.10: A time-of fight instrument: The magnetism re fectometer o fthe SNS [13].

10.3.3 Resolution

The reflectivity signal decreases very rapidly above the critical angle of total reflection when
Q increases (see Eq. (10.20), R o 1/ Q*). In order to win some intensity, either the collima-
tion slits can be opened or the wavelength spread )\ can be increased, at the price of a loss
in resolution in scattering wave vector. The dispersion in () is given by (for § < 1 rad.):

2 2
s (172%)" (a0 1030)

where 00 is the beam angular divergence. The divergence of the incident beam is usually
determined by the two collimation slits if the beam is smaller than the effective width of the
sample seen by the neutron beam, or by the first slit and the sample itself if the sample is
small enough to be totally illuminated by the neutron beam. The experimental reflectivity
is then the calculated reflectivity convoluted by a resolution function whose width is given
by 0Q). Experience shows that a Gaussian function works well to reproduce the resolution
effects. In Fig. 10.11 the reflectivity is calculated for a perfect instrument and by taking into
account the effects of angular divergence and wavelength spread. As can be inferred from Eq.
(10.30), angular divergence induces a loss of resolution independent of ¢, and wavelength
spread degrades the resolution as 6 increases. This example shows that, when preparing




Reflectometry and GISAS 10.15

a reflectometry experiment and depending on the sample under study, a good compromise
between intensity and resolution has to be found.

1 perect Instrument —— -
AM=1mrad —
Al=10% ——
= L
% Q.01
o 0.0001 +
15‘-[6' | ] |

Q 0.04 0.08 Q.12
G = 4nAsin(8) [A 1]

Fig. 10.11: Efect 0 f00 and 0)\. Comparison between a per fct instrument, an instrumental 60,
and a S\ or a measurement on a 400 A thick Ni layer on Si substrate

10.4 Crystallography at the nanoscale: GISAXS from a
nanoparticle assembly

The prime aim of this section is to emphasize on the added information provided by Graz-
ing Incidence Small Angle Scattering (GISAS) with respect to other surface characterization
techniques like Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM).
AFM and SEM give information on the in-plane fluctuations of the order parameter, while
GISAS allows a full 3 dimensionnal investigation, i.e. gives depth-resolved infomation on
those in-plane fluctuations.

The study reported here [14] concerns the investigation of the ordering in an assembly of
magnetic nanoparticles deposited on a surface. Those nanoparticles, of truncated cubic shape,
were deposited under an applied magnetic field, leading to the formation of mesocrystals,
i.e. columns (see Fig. 10.12), several hundreds nanometres high and several micrometres
diameter, composed of a single crystalline arrangement of nanoparticles (see insert of Fig.
10.13). The whole assembly is a 2 dimensional orientational average of such mesocrystals.

The in-plane arrangement of the nanoparticles in each mesocrystal has been determined by
SEM and consists of a square lattice (see insert of Fig. 10.13) of lattice parameter 13.1 nm.
Only five different cubic and tetragonal Bravais lattices are compatible with this 2 dimen-
sional arrangement: simple cubic (sc), simple tetragonal (st), body centred cubic (bcc), body
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centred tetragonal (bct) and face centred cubic (fcc). Two (bee and fcc) of those five lattices
can be excluded from packing and geometrical conditions.

The actual 3 dimensional Bravais lattice has been determined by GISAXS, the geometry of
the experiment being depicted in Fig. 10.12: a beam of x-rays, well collimated in both
directions perpendicular to k;, impinges on the surface under an angle of incidence «; and
the scattered x-rays are collected on a position sensitive detector. Each detector pixel is
defined by the values of the angles ¢ and o. Taking into acount the smallness of those three
angles, the components of the scattering wave vector along the three axes depicted in Fig.
10.12 are given by:

P
Qu=k(a2—a2=6%) /2, Q,=kb, Q.=k(ai+as), with k:%. (10.31)

sample
horizon

Fig. 10.12: Atomic Force Microscopy (AFM) image o fthe assembly o fmagnetic nano particles
and geometry o fthe GISAXS experiment. GISAXS signal is collected on a 2 dimensional posi-
tion sensitive detector. Taken from [14].

The thus obtained GISAXS pattern at a certain angle of incidence «; of the incoming beam
close to the critical angle of total reflection is given in Fig. 10.13. This pattern shows a
whole bunch of local intensity maxima at positions in (), and (), that are characteristic of
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the crystalline stacking respectively in-plane and out-of-plane. A relation connecting all the
(). coordinates of the local maxima to their (), coordinates is obtained by a combination of
Snell’s law and Bragg’s law leading to an extinction rule and an out-of-plane lattice parame-
ter (17.8 nm) characteristic of a bct packing of the nanoparticle lattice.

;102

10°

10~

1072

1073

-1.5 0.0 1.5
Qy [(nm~]

Fig. 10.13: GISAXS pattern o fthe assembly o fmagnetic nano particles. Insert: Scanning Elec-
tron Microscopy (SEM) image o fthe top o fa mesocrystal o fnano particles; scale bar represents
100 nm. Taken fom [14].

10.5 Conclusion

This chapter has given an overview of reflectometry and GISAS as a tool for the investi-
gation of thin films, their interfaces or mesocopic objects deposited on a surface. We have
presented a formalism which makes it possible to describe the specular reflectivity on non-
magnetic systems. The formalism of neutron reflectometry for the investigation of the mag-
netic moment orientations in magnetic multilayers is presented in the next chapter of this
book, together with several application examples.
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10.6 Take-Home Message

Reflectometry of X-rays and neutrons from thin films with thicknesses in the mesoscopic
range gives access to the scattering length density profile along their depth. The information
is an average over the in-plane coordinates. With GISAS, in-plane correlations of the scatter-
ing length density can be investigated. Moreover, depth resolution is accessed by interpreting
the GISAS signal as a function of «; or ay.
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Exercises

In the following the nuclear scattering length densities (in 10~ A~2) of several elements are
displayed:

Cu: 6.53; Ag: 3.5; St: 2.15; Auw: 4.5

E10.1 * Reflection and transmission by a flat substrate

The following figure shows the neutron reflectivity from a flat substrate.

01k ]

aa1 | .

0001 1 ! 1 1 !
Q 0.05 a1 015 Q.2 025 03

G [nm™]

Fig. 10.14: Re fectivity fom a substrate.

¢ Determine the element of which this substrate is made of

* Explain why the amplitude of the wave transmitted in the substrate is equal to 2 at an
angle of incidence equal to the critical angle of total reflection
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E10.2 * Layers on substrate

The figure below shows two simulations of reflectivity from a Cu layer deposited on Ag
substrate. Determine for both cases (red and blue curves) the thickness of the Cu layer.

a.m

Q.qa1

' Substrate onl'lly
Cuon Ag
Cuon Ag

]

01

02 03 04 05 06 07 08 0%

1

Qnm™|

Fig. 10.15: Layer ofCu on Ag substrate

In the next figure, the reflectivity from a [Cu/Au]x n multilayer is depicted. Determine the
[Cu/Au] thickness, the total thickness of the multilayer and the number n of bilayers the
multilayer is composed of.

1 'Subsfrateoﬁly -
CuAu multilayer =———
Q.01
Q.0001 -
16-06
g 02 04 06 0B 1 1.2 14 16 18 2

Q [nm"']

Fig. 10.16: Cu/Au multilayer on Ag substrate
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E10.3 * GISAXS from nanoparticles on surface
The figure below shows a simulation of GISAXS from a square lattice of cubic nanoparticles

of 5 nm edge length. The radiation wavelength is 1 A and the plane of incidence of the
X-rays is parallel to one edge of the cubes. Determine the lattice parameter.

2.00

10°
175
4
1.50 107
=
0
1.25 8
— >
< 1.00 =
S §
2
0.75 1% £
0.50
101
0.25
0.00 10°

-20 -15-10-05 00 05 10 15 20

zA°)

Fig. 10.17: GISAXS fom a square lattice ofcubic nanoparticles. The horizontal axis shows
¢ and the vertical one oy as de fned in Fig. 10.12. This simulation was per ormed by Asma
Qdemat (JCNS-2) using the BornAgain so fware [8].
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11.1 Introduction

The physical properties of a layered structure of nanometer size, as it is shown schematically
in Fig. 11.1, differ from the bulk properties of the constituents. There are several origins of
new effects due to miniaturization:

The ratio between surface and volume is much higher than in bulk. Therefore, the amount of
atoms with reduced coordination is significant and can change the crystalline structure as well
as the electronic structure of the whole layer. Boundary conditions, e.g. for the magnetic
induction B become important, introducing shape anisotropies. The magnetization tends to
align along the long edges of the magnetic nanostructure because the dipolar fields are smaller
then. At the interface between two layers, the electronic structures and the crystal lattices have
to be matched, which leads to structural stress, interfacial disorder and electronically to charge
transfer (e.g. a Shottky barrier in semiconductor heterostructures) or splitting of the layers’
bandstructures.

Nanostructures can be prepared in several dimensions: thin films with a thickness in the nm
range are 2D nanostructures, stripes with thickness and width in the nm range are 1D nano-
structures, and dots or nanoparticles with all three dimensions in the nm range are 0D nano-
structures. The dimension number indicates, in how many directions the dimension remains
macroscopic.

Magnetic nanostructures are nanostructures which contain at least one magnetic constituent.
Typical systems are layered structures with ferromagnetic and nonmagnetic layers or arrays of
ferromagnetic dots on a nonmagnetic substrate. The interesting aspect of 2D magnetic
nanostructures is the fact that two ferromagnetic (FM) layers with a nonmagnetic (NM)
spacer in between have a connection between their electronic systems across the spacer layer.
This connection influences as well the magnetic behaviour as the electron transport through
the system.

Fig. 11.1:  Sketch o fa layered structure o ftwo materials
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The first fundamental phenomenon found in magnetic layered structures has been the
oscillating magnetic interlayer coupling in FM / NM / FM trilayer structures. Depending on
the NM interlayer thickness, the magnetizations of the two FM layers tend to align parallel or
antiparallel to each other [1]. It turned out that the coupling is mediated by electronic states in
the NM interlayer close to the Fermi surface [2].

Subsequently, the most important discovery followed, the Giant Magnetoresistance Effect
(GMR) [3] [4]. For this discovery, P. Griinberg and A. Fert were honoured with the Nobel
Prize for Physics 2007. They have found out that the resistivity of a layered structure
containing more than one ferromagnetic layer depends on the mutual orientation of the
magnetization directions, see Fig. 11.2. They used the antiferromagnetic coupling in
Fe / Cr/ Fe trilayer structures to be able to influence the mutual orientation of the magne-
tization of the Fe layers by changing the applied magnetic field.

Fe/Cr/Fe

-500 -1000 -500 0 S00 1000 1500

B, (10°T)

Fig. 11.2:  Giant Magnetoresistance e flect in an Fe /Cr / Fe trilayer compared to the aniso-
tropic magnetoresistance e fect in a single Fe layer. Reprinted fgure with per-
mission from G. Binasch et. al., Phys. Rev. B. 39 (1989), 4828 [3]. Copyright
1989 by the American Physical Society.

It turns out that the resistivity is highest in the case of antiparallel alignment of the two
magnetization directions. This effect is much stronger and much more sensitive to changes in
the magnetization direction of each ferromagnetic layer than the anisotropic magneto-
resistance effect in single ferromagnetic layers, which was known before. The microscopic
origin of the GMR effect is the matching between the spin-split bandstructures of the two
ferromagnetic layers. The conductivity of the entire structure is the sum of the conductivities
for the two spin channels. As the Fermi surface is different for the two spin channels, the
matching between the FM and the NM layer is different.
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Parallel alignment Antiparallel alignment

ERXIEN

Fig. 11.3:  Di ferent matching o fthe bandstructures between frromagnetic and non-
magnetic layers changes the resistivity jor the di ferent spin channels

As shown in Fig. 11.3, in the case of parallel alignment, the scattering probability of a con-
duction electron is the same at both interfaces. For one spin channel, the scattering probability
is high while for the other one it is low. The conductivity is then dominated by the spin
channel with the smaller scattering probability. The resistivity of the entire structure, which
can be described as a parallel wiring of the two resistors for the two spin channels, is small.

In the case of antiparallel alignment, the scattering probability for each spin channel is high in
one of the FM layers. This results in a relatively low conductivity for both spin channel, so
that the resulting resistivity is much higher compared to the case of parallel magnetization.

As GMR structures are easy to prepare and easy to use, the sensor technology based on this
effect quickly became standard in the readout system of computer harddisks and many other
applications. Today, it has been replaced by Tunneling Magnetoresistance (TMR), where the
nonmagnetic interlayer is insulating and electrons travel across this tunneling barrier while
preserving their spin state. Then, the height of the tunneling barrier depends on the spin of the
electron and the magnetization direction of both ferromagnetic layers. A detailed overview
over the field of spin transport in layered systems is given in Ref. [5].

11.2 Why are neutrons useful to investigate magnetic
nanostructures?

For the investigation of magnetism, many methods are well known. In most cases the magne-
tization of a sample is measured. A different, but more indirect approach is the measurement
of spin-dependent bandstructures by absorption and photoemission spectroscopy of polarized
light or x-rays.

The first (and oldest) approach is to measure the integral magnetization of a sample by
classical magnetometry, e.g. by using a Vibrating Sample Magnetometer (which measures the
induction when moving the magnetic sample in a coil), a Faraday balance (which measures



Magnetic Nanostructures 11.5

the force on the magnetic sample in a field gradient), or more recently a SQUID
magnetometer (which measures the magnetic flux inside a superconducting loop). In case of
magnetic nanostructures deposited on any macroscopic substrate, the small signal coming
from the nanostructure is always superimposed by the signal from the substrate which is
typically 10000 times larger in volume. Even if the nanostructure is ferromagnetic and the
substrate only diamagnetic, the correction due to the substrate is in most cases much stronger
then the signal itself.

Better adapted to thin structures are methods that are surface sensitive. The magnetooptical
Kerr effect (MOKE) measures magnetization with polarized light reflected from a magnetic
surface. Due to the magnetization of the sample the polarization direction of the light is
modified. This method is surface sensitive in the range of the penetration depth of the light
used (typically some 10 nanometers). At synchrotron x-ray sources one can use X-ray Magne-
tic Circular Dichroism (XMCD). The energy dependence of the absorption of circularly
polarized (soft) x-rays is measured at the absorption edges of the magnetic materials. Again,
the information is integrated over the penetration depth of the x-ray photons used, but it is
element specific due to the choice of the x-ray energy in resonance with the magnetic orbitals
of a certain element.

Magnetic domains can be imaged using e.g. Magnetic Force Microscopy (surface sensitive,
measuring the stray fields above the sample), Lorentz microscopy (the transmission of
electrons through a very thin sample is observed; due to the Lorentz forces the electrons are
deviated according to the magnetization strength and direction), or Kerr microscopy
(observing the MOKE using an optical microscope; again it integrates over the penetration
depth of the light, with the lateral resolution of the optical microscope). Photoemission
electron microscopy (PEEM) with soft x-rays can give an overview about the density of
certain electronic states with a lateral resolution in the nanometer range and time resolution
down to nanoseconds. In combination with XMCD, XMCD-PEEM can visualize the
evolution of magnetic domains under variable magnetic fields. But again, the depth resolution
is only determined by the penetration depth and the element specific absorption of the x-rays.

What is missing is a method that can access the magnetism of buried layers using the depth
information. Here, we need a probe that is sensitive to magnetic fields while having a spatial
resolution (at least in depth) in the nm regime. Cold neutrons have a wavelength appropriate
for resolving nm length scales and they carry a spin that interacts with the magnetic fields.
For most of the magnetic investigations, the neutron’s spin has to be prepared in a certain
state, so we use polarized neutrons for the investigation of magnetic nanostructures.

Polarized neutron reflectometry with polarization analysis is a method for depth-resolved
investigation of magnetic layered structures; I will introduce this method in the following
chapter. Together with the analysis of off-specular scattering, lateral structures in the pm
range can be investigated, allowing to access magnetic domains in buried layers. Polarized
SANS reveals information about magnetic structures in the nm range perpendicular to the
beam direction, while polarized GISANS (Grazing Incidence Small Angle Neutron Scatte-
ring) combines the possibilities of both methods and allows to access lateral magnetic
structures in the nm range in buried layers.
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11.3 Specular reflectivity of polarized neutrons

In the previous lecture, you have learned about specular reflectivity of neutrons on layered
structures with nuclear scattering contrast. For the investigation of magnetic layered
structures, we have to remind that the neutron is a spin %2 particle and therefore interacts with
the magnetic induction B.

To treat the neutron’s spin properly, we have to work with wave functions in the 2-dimen-
sional quantum mechanical spin space, where the usual space-dependent functions, e.g. the
potential, become operators on the neutron’s spin.

In analogy to eq. (10.2), the potential of a homogeneous magnetic material in layer number /
can be separated into two parts

V, =V +V M (11.1)

where VN is the nuclear interaction known from eq. (10.2), and 1 is the unity operator, which
does not affect the spin state, so that the nuclear interaction is described independently on the

neutron’s spin. The magnetic dipole interaction is described by the operator VIM =-u.6-B,
which is a scalar product of the neutron magnetic moment operator x4, 6 and the magnetic
induction B; inside the material.

For the description in coordinates, we need to define a coordinate system which is convenient
to describe the experiment. Typically, the magnetic field H is applied in the plane of the
sample. We choose this direction to be the x-direction of the coordinate system H = Hex and

also as the quantization axis for the neutron spin. Under this assumption, the spin operator
6=(o,, o,,0,)is the following:

(1 0) (0 1) (0 —i)
0“(0 —1'} 0“(1 o|) 62_(1 0‘) (1.2)

In analogy to chapter 10.2, the Schrodinger equation can be solved in coordinate and spin
space, where the eigenvectors |+> and |—> of the operator 6-b, = o, with the eigenvalues

+1 and -1, respectively, define states of the neutron with “spin up” and “spin down”. The
solution of the Schrédinger equation is the neutron wave function |‘P(r)>, which is again a

linear combination of those two spin states.

(11.3)
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After some calculation which you can find in Ref [6] we end up with a set of two coupled
one-dimensional linear differential equations for every layer, which are the analogue to
equation (10.8).

82\I’+ < + _
?()Jf[kfz —4z(p +P1mez)]‘i’l (Z)—47rp,Mmy,‘P, (2)=0 (11.4)
0°W (z ) .
—azlz( )+[k22/ —4r(p) —P,me,)]‘l’, (z)—47rp,Mmy,‘P, (2)=0 (11.5)

In these formulae, you find the nuclear scattering length density p” that you know from

eq. (10.3) together with its magnetic analogue p", the magnetic scattering length density. It

is proportional to the net magnetization M of the material. In case of a ferromagnetic material,
the magnetization vector M typically is aligned in some direction, which is described by the
unit vectorm =M/ M.

Now, we can have a closer look at the different terms in equation (11.4) and (11.5). As Non-
Spinflip (NSF) interaction, one finds in (11.4) for spin + (“spin up”) the sum of the nuclear
interaction and the magnetic interaction with the magnetization along the quantization
direction and in (11.5) for spin — (“spin down”) the difference. In case of a magnetically
saturated layer (all the magnetization is aligned with the external field), the scattering length
density for spin + neutrons is enhanced and for spin — neutrons reduced compared to the
nonmagnetic case.

R- R+

1

L L
0 ' '

o 8-

c

Fig. 11.4:  The total re fection angle 0. o fthe sur face o fa magnetized material is di flerent
Jpr both spin directions

This has an influence on the index of refraction, on the total reflection angle, and of course on
the reflectivity, which is a function of the change of the index of refraction at a certain
interface. Fig. 11.4 shows schematically the splitting of the total reflection angle.

In case that the magnetization is not fully aligned with the field, the component along the field
direction influences the scattering length density for NSF. The in-plane magnetization
component perpendicular to the field induces a spin-flip (SF) interaction that is equally strong
for both spin-flip channels +— and —, as is described in the last term of eq. (11.5) or (11.4),
respectively.

Specular reflectivity of polarized neutrons is not sensitive to any magnetization component
perpendicular to the layer plane. This is in agreement with the statement in lecture 8 (eq.
(8.22) f.) that only the magnetization component M perpendicular to Q contributes to the
magnetic interaction with the neutron’s spin.
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As an example, I would like to show the polarized neutron reflectivity of a [Co / Cu] multi-
layer. The respective nuclear and magnetic scattering length densities are

Co: pn=230-10°A2  py=4.24-10°A"
Cu: p)n=6.5310°A2  py=0.

Obviously, the sum of the magnetic and the nuclear scattering length density of Co is almost
equal to the scattering length density of Cu. In the case of magnetic saturation, spin + neu-
trons will not feel any contrast at the Co / Cu interfaces because they see the sum of nuclear
and magnetic scattering length density in the Co layer. The multilayer structure is invisible for
spin + neutrons. In contrast, spin —neutrons experience the difference of nuclear and magnetic
scattering length density (which is in fact negative), so that the contrast is huge.

Fig. 11.5 makes the contrast situation visible by using colours representing the different
scattering length densities.

Co
B -
Co
N -
Co
nuclear sc;ttering nuclear +:magnetic. nuclear —:magnetic
length density sc. length. density  sc. length density

Fig. 11.5:  The contrast between Co and Cu depends on the magnetization state. It almost
vanishes jor spin up neutrons, but is strong jor spin down.

Fig. 11.6 shows the measured polarized neutron reflectivity of such a multilayer. The total
reflection edge is identical for both spin channels, because the biggest scattering length
density in the layered structure is the one of Cu, which is not magnetic. But the multilayer
Bragg peaks at 26 = 3° and 20 = 6° are strongly spin split. For spin — neutrons, the Bragg
peak is about 30 times stronger than for spin + neutrons. Here, one can see that the contrast is
responsible for the reflectivity, not the strength of the scattering potential, as the scattering
length density (which describes the scattering potential) is higher for spin +, but the contrast
between the layers is much stronger for spin —
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Fig. 11.6:  Specular re fectivity o f polarized neutrons from a [Co/Cu] multilayer with 20
periods at magnetic saturation

11.4 Layer-by-layer magnetometry

One important application of polarized neutron reflectometry with polarization analysis 1s
layer-by-layer magnetometry. As an example, I present the magnetization evolution in
exchange bias multilayers of the type [IrMn / CoFe]n with the number of periods [7]. The
exchange bias effect is the coupling between a ferromagnetic layer and a neighbouring
antiferromagnetic layer. If the antiferromagnet has been cooled below its Néel temperature
with the ferromagnet being saturated, it conserves the interface magnetization without being
sensitive to the applied magnetic field. This induces an additional unidirectional anisotropy on
the ferromagnetic layer, i.e. the original magnetization direction is preferred over all others.
The hysteresis loop is shifted away from H = 0.

The green curve in Fig. 11.7 shows the exchange biased magnetization curve of an IrMn /
CoFe double layer shifted left together with the magnetization loop of the NiFe buffer layer,
which is not affected by exchange bias and therefore symmetric around H = 0 field. The CoFe
layer shows a nice square hysteresis loop, indicating spontaneous magnetization flip at the
coercive field.

Strangely, the shape of the magnetization loop of the exchange biased CoFe layers changes,
when the number of [IrMn / CoFe]n bilayers is increased. In addition, the strength of the
exchange bias is increased.
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Fig. 11.7: SQUID magnetization measurements (at room temperature, le f) and AFM
micrographs o fthe sur face (right) o f polycrystalline multilayers o fthe type
SiO2 /10 nm NiFe /[5 nm IrMn /3 nm CoFe]y with N= 1, 3, or 10, resp.

An AFM study of the surfaces shows that the grain size of the polycrystalline layers is
reduced from layer to layer during the preparation procedure, but no information could be
found that justifies the slope of the magnetization curves and that could eventually explain the
origin of a magnetization rotation process responsible for the gradual evolution of the
magnetization as a function of the applied field.

Therefore, a polarized neutron reflectivity study was performed, to investigate the individual
behaviour of the ferromagnetic layers in the multilayer structure. As an example, Fig. 11.8
shows the specular polarized neutron reflectivity at one of the coercive fields (i.e. the net
magnetization vanishes) together with the fit.

The polarized neutron measurement shows no spin flip signal at all, immediately excluding
the idea of a magnetization rotation process. Furthermore, the fit of the measured data shows
that the magnetization of the upper 5 CoFe layers is aligned antiparallel to the field while the
magnetization of the lower 5 CoFe layers is still aligned along to the field. Le., the exchange
bias on the upper layers (with smaller grains) still can hold the magnetization in the preferred
direction, while the magnetization of the lower layers already has followed the field.
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Fig. 11.8:  Polarized neutron re fectivity o fthe sample with N=10 at ywH = -0.1 mT a fer
positive saturation

Together with measurements at several other magnetic field values on both branches of the
hysteresis loop it turned out that every single layer has a square magnetization loop, but the
strength of the exchange bias effect (i.e. the shift of the centre of the loop away from H = 0)
increases with reduced grain size. The overlaying of the differently shifted square loops then
results in the inclined net magnetization loop measured with magnetometry.

11.5 Vector magnetometry

The second important application of polarized neutron reflectometry with polarization
analysis is vector magnetometry in layered structures. The ability to distinguish between SF
and NSF channels offers an independent access to the in-plane magnetization components
perpendicular and parallel to the field direction. As a magnetization direction perpendicular to
the sample surface is rare (due to the shape anisotropy) one can determine the full
magnetization vector in most cases.

] B Fig. 11.9: Layer sequence o fan epitaxially grown
and anti erromagnetically coupled

Cr 1 nm :
Fe 10nm [Fe /Cr]n multilayer

Cr 1 nm . _

Fe 10 nm I would like to explain the power of vector magnetome-

try using the example of an epitaxially grown and
antiferromagnetically (AF) coupled [Fe /Cr]ny multi-
layer with an odd number of Fe layers [8]. Fig. 11.9
Fe 0,5nm shows the layer sequence of such a sample grown on
GaAs [100]  a GaAs single crystal with a Ag buffer layer to improve

Ag 150 nm
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the surface quality. The magnetic behaviour is determined by the competition between 3
different interactions (see Fig. 11.10): The crystalline anisotropy in the single crystalline Fe
layers tries to align the magnetization in every Fe layer along one of the in-plane [100]
directions. This results in 4 equivalent easy axes. The antiferromagnetic coupling (mediated
by the Cr interlayer) has the tendency to align the magnetization of two neighbouring Fe
layers antiparallel to each other. The Zeeman term tries to align the magnetization of every
ferromagnetic layer along the applied field.

[100]

Fe single crystal layers: 4 easy axes

AF coupling through Cr interlayer

Applied field: Zeeman energy
/‘ /

Fig. 11.10: The magnetic behaviour in an applied magnetic feld is governed by 3 competing
interactions

As the multilayer under investigation has an odd number of Fe layers, the antiparallel
orientation of the magnetization in remanence (where the Zeeman term is weak) will leave the
magnetization of one layer uncompensated, so that the Zeeman energy does not vanish even
at very small fields. This effect is supposed to align the remanent magnetization of all layers
along or antiparallel to the field direction.

Fig. 11.11 shows MOKE measurements of such a sample with N = 7 Fe layers in the
multilayer sequence. The MOKE signal is a function of the magnetization, but not
proportional to it, because it is a superposition of the longitudinal Kerr effect (proportional to
the magnetization along the field) and the transverse Kerr effect (proportional to the
magnetization perpendicular to the field). Furthermore, the weight of the layers close to the
surface is much higher than the weight of lower lying layers due to the limited penetration
depth of the light. Therefore, one should not worry about the MOKE curve not being
monotonous. Nevertheless, a jump in the MOKE curve always indicates a spontaneous
change of the magnetization state.

In addition, Fig. 11.11 shows a simulation of the integral magnetization component along the
field based on a numerical minimization of the three energy terms mentioned above. This
kind of simulation cannot reproduce effects of activation barriers leading to hysteresis.

The simulation and the MOKE measurement have a good qualitative agreement. In saturation,
the magnetic moment of every layer is aligned with the field. In the intermediate field range,
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the magnetization is alternatingly pointing left or right from the field direction, so that the
magnetization component along the field is almost equal for every layer and the
magnetization components perpendicular to the field fulfil as much as possible the AF
coupling.

At remanence, the magnetization of all layers is turned by 90°, so that 4 layers have the
magnetization along the field and 3 layers antiparallel to the field. This configuration fulfils as
well the AF coupling condition as the alignment of the net magnetization along the applied
field.

2
T 1
5,
B
o 0
w
|
X
g 1
& - simulated
measured
measured
D . .

-150 -100 -50 0 50 100 150
magnetic field [mT]

Fig. 11.11: MOKE measurement of[Fe /Cr]n multilayers with N= 7 Fe layers.
The simulation o fthe magnetization curve is based on minimization
o fthe total energy.

Fig. 11.12 shows the polarized neutron reflectivity together with the offspecular scattering at
saturation field. One can see a structured signal with total reflection and several Bragg peaks
according to the periodicity in the multilayer structure only in the R++ channel. For spin —
neutrons the contrast between fully magnetized Fe and Cr vanishes, so the R—— shows only
the total reflection (with a reduced critical angle compared to R++), but no Bragg peaks. As
no magnetization component perpendicular to the field direction exists, there is no real spin
flip signal. What you see in R+—and R — is a parasitic signal due to the limited efficiency of
the polarizing equipment of the instrument. The Bragg sheets crossing the specular Bragg
peaks are due to vertically correlated roughness of the Fe / Cr interfaces.

Fig. 11.13 shows the same in the intermediate field range. Additional Bragg peaks of half
order appear, which are stronger in SF compared to NSF. This is the indication of the
alternation of the magnetization directions due to the antiferromagnetic coupling. Mainly the
magnetization component perpendicular to the field oscillates while the component remaining
along the field is modulated less. As the sample is no more saturated, the magnetization
component in field direction is reduced, so that the contrast for spin — neutrons does not
vanish any more. Therefore, the full order Bragg peaks also come up in R—— They are now
mainly induced by the nuclear structure while the magnetic contribution is collected in the
half order signal. The strong off-specular signal around the half order Bragg peaks in the SF
channels is a signature of magnetic domains.
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Fig. 11.12: Polarized neutron
refectivity and o [fpecular
scattering of an AF-coupled
[Fe /Cr]; multilayer in satu-
ration feld o f300 mT.
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Fig. 11.13: Polarized neutron
refectivity and o ffpecular
scattering of an AF-coupled
[Fe /Cr]; multilayer in inter-
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80

Fig. 11.14: Polarized neutron
refectivity —and  offspecular
scattering of an AF-coupled
[Fe /Cr]; multilayers in rema-
nence feld of5 mT.

Indicated are the AF superstruc-
ture Bragg peaks o forder Y2 (1).
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At remanence, as shown in Fig. 11.14, all half order peaks appear only in the NSF channels.
The small contribution in the SF channels can be explained due to the limited polarization of
the neutron beam. This shows that the magnetization of all layers of the [Fe / Cr]7 sample is
aligned alternatingly parallel and antiparallel to the field direction, as has been proposed by
the simulation for the MOKE measurement.

In addition to the qualitative description presented here, a quantitative analysis of the
measurements allows to determine the angle of the magnetization vector of every layer
independently. This analysis is presented in Ref. [8].
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11.6 Conclusion

Neutron reflectometry with polarized neutrons and polarization analysis is a tool to determine
depth-dependent magnetization in layered magnetic nanostructures.

Non-Spinflip (NSF) reflectivity contains information about the magnetization components
along the field direction of the different layers inside the structure. As (in magnetic saturation)
the spin + neutrons are sensitive to g + p™ and the spin — neutrons to g — p, the contrast
seen by the neutrons with different spin is different due to the magnetized layers.

Spinflip (SF) reflectivity is purely induced by magnetization components perpendicular to the
field direction. This is a very sensitive tool to determine magnetization rotation or tilting
processes in magnetic structures.

Together with a quantitative modeling of the 4 reflectivity components, the user can
determine size and direction of the in-plane components of the magnetization vector in all
layers in a layered magnetic structure.
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Exercises

E11.1  Magnetic contrast

We measure the polarized neutron reflectivity of a [NiFe /Pty multilayer structure in
magnetic saturation. The NioFe alloy is ferromagnetic.

*a) Calculate the nuclear and magnetic scattering length densities for the two constituents
of the multilayer:

Ni Fe Pt
density [ g/cm?3] 8.90 7.86 21.4
atomic weight [ g/mol] 58.71 55.85 195.09
nuclear scattering length [IE-14 m] |1.03 0.954 0.95
magnetic scattering length density | 1.52 512 0
[1E-6 A?]

If you don’t want to calculate all the values yourself, you may continue with the tabulated

values of the nuclear scattering length densities:
Ni: 9.41E-6 A, Fe: 8.09E-6 A2, Pt 6.29E-6 A

** b) Which of the 5 reflectivity curves presented below is the one measured on this alloy?
Think about the critical angle (has to do with the highest scattering length density in all
layers) and the contrast between adjacent layers (influences the height of the diffraction
peaks) for both spin directions parallel (R+ +) and antiparallel (R— —) to the applied
magnetic field (saturation!).

Reflectivity
Reflectivity
Reflectivity

100

6 [mrad]

Reflectivity
Reflectivity

6 [mrad] 6 [mrad]



Magnetic Nanostructures 11.19

** ¢) The other 4 curves have been measured on different samples. Which curve belongs to

which sample?

L. The sum of nuclear and magnetic scattering length density of the magnetic layers is
equal to the nuclear scattering length density of the nonmagnetic layers

II. The sample contains an additional nonmagnetic layer with a scattering length
density higher than the sum of the magnetic and nuclear scattering length densities
of NizFe on top of the [NizFe / Pt]n multilayer

III. No layer is magnetic
IV. The nuclear scattering length density of the nonmagnetic layers is somewhere

between the sum and the difference of nuclear and magnetic scattering length

density of the magnetic layers

E11.2  Vector magnetometry

** The following figures show polarized neutron reflectivity measurements with polarization
analysis from a ferromagnetic single layer on a nonmagnetic substrate. Find out which figure

belongs to which magnetization state:

I The sample is magnetized perpendicular to the field direction
IL. The sample is magnetized parallel to the field direction
III. The magnetization of the sample is inclined by 45° against the field direction

IV. This set of curves is wrong. (Why?)

Reflectivity
Reflectivity

Reflectivity
Reflectivity

0 [mrad] 0 [mrad]
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12.1 Introduction

One of the most important benefits of neutron scattering is the possibility to do inelastic
scattering and by this way gain insight into the dynamics of materials as well as the structure.
Neutrons tell us where the atoms are and how they move [1]. Although this feature is shared
with inelastic x-ray scattering and dynamic light scattering, there is still a considerable range
of slow dynamics in molecular systems which can be studied exclusively by inelastic neutron
scattering.

This lecture can only present a short glimpse on the theoretical foundations and instrumental
possibilities of inelastic neutron scattering. For those who are interested in more details,
several textbooks can be recommended [2-6]. Also supplementary information on correlation
functions [7] and Fourier transforms [8] may be found in earlier editions of this school.

Fig. 12.1: De fnition o fthe scattering vector Q in terms o fthe incident and final wave vectors k
and X'. The black (isosceles) triangle corresponds to elastic scattering. The blue and red ones
correspond to inelastic scattering with energy loss or gain o fthe scattered neutron, respectively.

12.2 Theory

12.2.1 Kinematics of neutron scattering

Up to this lecture it has always been tacitly assumed that the wavelength (or wave vector,
or energy) of the neutrons is the same before and after scattering. The defining quality of
inelastic neutron scattering is that this is not anymore the case. The neutrons may lose or
gain energy in the collision with the nuclei. The characteristic quantity for the inelasticity is
the energy transfer,

hw=AE=F —FE. (12.1)

Here, ¥ and E’ are the energies o fthe neutron before and after the scattering. In the follow-
ing the notation hw will be used preferentially because it reveals the meaning of the energy
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transfer controlling the time scale of the observed dynamics, 1/w.

Note that in some books £ and E’ represent the energy of the scattering system. This leads
to a change of sign in AF. Even the wording “energy gain/loss” becomes ambiguous and
should always be supplemented by “of the neutron” or “of the system”. Also, some authors
prefer to write &/ = Egpa — Finitial. S0, it should always be checked whether £/ denotes the
incident energy or the energy transfer.

hw # 0 implies k£’ # k. As a consequence, () now does not anymore result from the isosceles
construction drafted in black in Fig. 12.1 but from scattering triangles as those in blue and
red. Application of the cosine theorem leads to the following expression for () in the inelastic
situation:

Q = /K + k= 2k cos(26) (12.2)

872 2mw Am [4m? 2mw
— )\_24_7—7 )\—2+ 7 cos(26) . (12.3)

Note that there is a fundamental difference to the simpler expression for elastic scattering,

Qo = 4% sinf, (12.4)
used in the preceding lectures. () now also depends on the energy transfer hw implying that
(2 is not anymore constant for a single scattering angle. Fig. 12.2 shows the magnitude of
this effect for typical parameters of a neutron scattering experiment. It can be seen that it
is by no means negligible for typical thermal energies of the sample even at temperatures as
low as 100 K.

The other fundamental difference to elastic scattering to be considered is that the total scat-
tering cross section is not identical anymore to the bound scattering cross section read from
tables. In the extreme case of a free nucleus the scattering cross section is reduced to [2]

4m?
L — (12.5)
(1+m/M)
where M is the mass of the scattering nucleus. It can be seen that in the worst case (scatter-
ing from a gas of atomic hydrogen) this is a reduction by 1/4.

12.2.2 Scattering from vibrating atoms

The most important case of inelastic neutron scattering from vibrating atoms is that of scatter-
ing from phonons in crystals. In this field, inelastic neutron scattering is the most important
tool of research. At first, a short recapitulation of the phonon picture will be presented [9,10].

As a simplified model for the crystal one can consider a chain of N atoms with mass M
regularly spaced by a distance a and connected by springs with the spring constant K. For
this system the equations of motion can readily be written down:

dQUJ' K

a2 = M(Uj.,_l — 2’LLj + ’LLj_l) . (1 26)




12.4 R. Zorn
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Fig. 12.2: Scattering vectors (Q accessed by a neutron scattering experiment with the detector at
scattering angles 20 = 10...170° vs. the energy trans er hw (incident wavelength A = 5.1 A).
For comparison the thermal energy kgT corresponding to 100 K is indicated by an arrow.

In addition, it has to be specified what the equations of motions are for the first and the last
atom (boundary condition). This is usually done by identifying the left neighbour of the first
atom with the last and vice versa, uy = uy and uy.; = uy, as in a closed necklace rather
than an open chain. This is the most natural choice for large N and called the Born-von-
Karman boundary condition. The equation system (12.6) can be solved by the ansatz

uj(t) = ;Uk(t) exp<i%j> (12.7)

with integer k£ (k € Z). Here, U are the normal coordinates and each of them fulfils the
equation of motion of a single harmonic oscillator:

d*U, 2K 2rk
a2 _ﬁ<COST—1) Uk (128)

By introducing these normal coordinates, the system of differential equations (12.6) can be
decoupled into a set of differential equations which can be solved separately. The solutions
are

Uk(t) = Akexp(ith) with (129)

2K 2k K
Qk = \/M(l—COST>—2\/J\—4

The second equation gives a relation between the index of the oscillator £ and the frequency.
On the other hand, the index determines via equation (12.7) the wavelength of the vibration.

Tk
in —| . 12.10
sin - ( )
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q

N
>

—nt/a +7/a

Fig. 12.3: Dispersion relation in a linear chain with N = 40 atoms ( Born-von- Karman bound-
ary condition).

One wavelength covers N/k lattice positions, corresponding to Ay, = Na/k in actual length.
The corresponding wave ‘vector is ¢ = 2m/\y, = 2mk/Na'. This implies that there is a
relation between the wave vector and the frequency called the dispersion relation (Fig. 12.3):

K
O(q) :2\/M‘sin (12—‘1‘ . 12.11)

This relation does not contain the number of atoms anymore. For large N the points con-
stituting the curve in Fig. 12.3 will get closer and closer, finally leading to the continuous
function (12.11). The individual positions of these points depend on the boundary condition.
But because they are getting infinitely dense for N — oo the exact boundary conditions do
not matter for a large system.

It can be seen that the dispersion relation (12.11) is periodic in g. On the other hand, there
are only N normal coordinates necessary to solve the N original equations of motion. This
is exactly the number of wave vectors found in a ¢ interval of length 27/a. The usual choice
is —m/a...m/a as a representative zone for the dispersion relation.

There are two modifications necessary when considering a real three-dimensional crystal in-
stead of this simplified model: (1) The crystal is periodic in three dimensions. (2) The vibra-
tions are governed by quantum mechanics. The first requirement leads to the consequence
that instead of a scalar, one has to use a real wave vector, ¢ — q = (qa, gy, ¢») in reciprocal
space. The interval defined in Fig. 12.3 changes into a polyhedron called the first Brillouin
zone (Fig. 12.4) [9,10]. It is constructed in the same way as the Wigner-Seitz cell in real
space: The Brillouin zone contains all points which are closer to the origin than to any other
lattice point. Its surfaces are the bisecting planes between the origin and its neighbours (in
reciprocal space).

! As will be seen later, there is a close connection between this lower case q and the scattering vector upper case
Q. Nevertheless, they are not the same and care has to be taken not to mix up both g-s.
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Fig. 12.4: Brillouin zones pr cubic lattices: (a) simple cubic, (b) face-centred cubic, (c) body-
centred cubic. From [10].

For every amplitude Aj equation (12.9) gives a valid solution of the equations of motion.
This means that in the classical picture the vibrations can have any energy. The quantum
mechanical treatment (which is too complex to be treated here in detail) leads to the result
that only certain energies with a distance of h{2, are allowed. This quantisation implies that
the vibrations can be treated as quasiparticles with the energy h{2; called phonons. The
increase of the vibrational amplitude corresponding to an energy change of +hf(); is then
seen as a creation, the inverse process as an annihilation of a phonon. Then it makes sense
to define hq as the momentum of the phonon. In this way the dispersion relation (q) is
similar to the relations shown in Fig. 4.2 of lecture 4 for real particles.

The introduction of the quasiparticle (phonon) concept leads to the simple interpretation of
inelastic neutron scattering by vibrating lattices: The scattering process can be viewed as a
collision between phonons and neutrons. In this process the energy as well as the momentum
has to be conserved:

E'—E=hw = +hQ(q), (12.12)
K-k=Q = +q+7. (12.13)

The second equation shows that the analogy with a two-particle collision is not complete.
A wave vector, changed by a lattice vector 7 in reciprocal space, corresponds to the same
phonon. In the one-dimensional case, this can be seen from equation (12.7): If one adds
an integer multiple of N to k (corresponding to a multiple of 27/a in ¢) all values of the
complex exponential remain the same. Analogously, in the three dimensional case adding a
lattice vector

T=hn+kn+ir (h,k,l€Z> (12.14)

does not change anything and momentum has only to be conserved up to an arbitrary recip-
rocal lattice vector. The condition (12.13) can also be visualised by the Ewald construction
as done in lecture 4 for elastic scattering.
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v[THZz]

Reduced wave vector coordinate {g)

Fig. 12.5: Lef: Phonon dispersion o fNiO measured by inelastic neutron scattering. Frequen-
cies are expressed as v = w/2m and the wave vector is expressed in units 0f( = m/a. The
lattice is simple cubic, thus the symbols below the abscissa correspond to those in Fig. 12.4(a).
Right: Phonon density o f states (see section 12.2.3) o fNiO plotted to the same scale in fe-
quency. From [11].

From the conservation laws (12.12) and (12.13) one expects that the scattering intensity has
sharp peaks at the positions where both conditions are fulfilled and is zero everywhere else.
This is indeed so for coherent scattering, unless effects as multi-phonon scattering and an-
harmonicity are strong (usually at higher temperatures). Therefore, inelastic scattering allows
the straightforward determination of the phonon dispersion relation as shown in Fig. 12.5.

In this figure, it can be seen that some of the phonon ‘branches’ start at the origin (acoustic
phonons), as in the simple calculation of the one-dimensional chain. Others are ‘floating’
around high frequencies (optical phonons). The latter occur in materials with atoms of dif-
ferent weight or bond potential. (The one-dimensional chain would also produce these solu-
tions if the masses were chosen differently for even and odd j.) In this case, a mode where
all atoms of a unit cell move roughly in phase has the usual behaviour expected from the
monatomic chain. In particular the dispersion relation at low q is a proportionality:

Qq) = vq. (12.15)

This relation is typical for sound waves. v is the sound velocity, longitudinal or transverse
according to the type of phonons considered. In the polyatomic crystal or chain, there are ad-
ditional modes where the atoms move in anti-phase. This implies a much higher deformation
of the bonds. These vibrations constitute the optical phonon branches.

There is another difference between the one-dimensional chain and the three-dimensional
crystal visible. The atomic displacements are not simply scalars u; but vectors u; which
have a direction. This direction can be either parallel or perpendicular to to the wave vector
q. Depending on this, one speaks of longitudinal and transverse phonons. The usual no-
tation is LA, TA, LO, TO, where the first letter indicates the phonon polarisation and the
second whether it is acoustic or optical. An additional index as T; A is used for q directions
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where the symmetry allows a distinction between the perpendicular orientations of u;. The
full mathematical expression for the phonon scattering [2] includes an intensity factor pro-
portional to |Q - u,|>. This factor obviously vanishes if Q and u; are perpendicular, implying
that purely transverse modes are unobservable in the first Brillouin zone where Q = q.

It has to be noted, that the above arguments only hold for coherent neutron scattering (see
equation (12.22) below) from crystalline materials. If the material is amorphous the coherent
scattering will be diffuse (as it is for incoherent scattering always). The readily understand-
able reason for this is that the definition of the phonon wave vector q requires a lattice.

Finally, an indirect effect of vibrations on the elastic scattering should be mentioned. The
elastic scattering (also for x-ray scattering) is reduced by the Debye-Waller jfactor. This
reduction can be understood from a ‘hand-waving’ argument: Due to the thermal vibrations,
atoms are displaced by u; from their nominal lattice position. Although on the average (u)
is zero, there will be a finite mean-square displacement (u®). The Debye-Waller factor can
be shown [2,9] to be

exp(—((Q - u))) = exp(—Q*(u?)/3) (12.16)

where the second expression is only valid for isotropic conditions. It can be seen that the
attenuation of diffraction peaks increases with increasing () and increasing mean-square dis-
placement, that is at higher temperature. Note, that this does not mean that elastic scattering
can observe dynamics, because a permanent static displacement of the atoms would have the
same effect.

The treatment of inelastic scattering by spin waves is very similar to that of deformation
waves above. In analogy to the phonon the quasiparticle “magnon” is introduced. Thereby,
the displacement u; is replaced by the orientation of the spin. The construction of normal
modes (Bloch waves) and the quantisation proceeds in the same way as for phonons. As
explained in lecture 7 neutrons interact with the nuclei as well as with the magnetic moments
of nuclei and electrons. Therefore, inelastic neutron scattering is also a tool for the detection
of magnons and this has been one of its first applications [12].

12.2.3 Scattering from diffusive processes

For the inelastic scattering from vibrational motions it was practical to consider the scattering
as a process between (quasi)particles, neutrons and phonons/magnons. But there are many
types of molecular motions, mostly irregular and only statistically defined, which cannot be
treated in this concept, e.g. thermally activated jumps or Brownian motion. For these motions
it is more adequate to use a concept of correlation finctions to calculate the scattering.

Because these ‘diffusive’ processes are usually much slower than phonon frequencies it is in
most cases not necessary to treat them quantum-mechanically. Therefore, in this section, a
picture of the scattering material will be used where the positions of all scatterers are given
as functions of time r(¢) (trajectories)®. In this picture the double di ferential cross-section,
defined as the probability density that a neutron is scattered into a solid angle element df2

2 This treatment also ignores that in the scattering process the trajectories of the scattering particles are modified,
i.e. recoil effects. The consequences of this approximation are outlined by the end of this section.
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with an energy transfer hw. .. Ai(w + dw), is

dO' _ 1_k_, * e—iwtdt i b*bk <eiQ‘(rk(t)_rj(O))> (12 17)
j ' .
AQdw 27k J o ~

In order to derive a quantity similar to the structure factor S(Q) in lectures 4 and 5, one
assumes again a system of N chemically identical particles. Because the neutron scatter-
ing length is a nuclear property, there may still be a variance of scattering lengths. And
even in monisotopic systems, there may be such a variance due to disorder of the nuclear
spin orientations, since the scattering length also depends on the combined spin state of
the scattered neutron and the scattering nucleus®. Therefore, it is assumed that scatter-
ing lengths are randomly distributed with the average b = (1/N)Y ;i and the variance

]2 — ’aQ =|b- a2 = (1/N)>;|b; - a% As will be seen later, this gives rise to the in-
coherent scattering contribution which is usually found in neutron scattering (in contrast to
x-ray scattering). The sum in expression (12.17) can be decomposed into one over different
indices and one over identical indices:

N N N
Z b;bkeiQ'(rk(t)_rj(O)) — Z b’;bkeiQ'(rk(t)_rj(o)) + Z]bj\QeiQ'(rj(t)_rj(o)). (12.18)
i=1

Jk=1 JFEk=1

They have to be averaged in different ways with respect to the distribution of scattering
lengths. In the first term 0% and by can be averaged separately because the different particle

scattering lengths are uncorrelated: b* b = b'b= |b|2. In the second term one has to average
afer taking the absolute square:

= 37 R Y R, 121

JEk=1 j=1

In order to avoid the sum over distinct particles, the first sum is complemented by the j = k
terms, | b|2e!Q(ri()=7i(0) and to compensate, these terms are subtracted in the second sum:

= Z 7] 261 et +Z(]b\ 52) @00 (12.20)

Jk=1
With this result it is possible to express the double differential cross section as

o N (11 Sl @)+ (TP~ [17) e Q. ) (12.21)

with

Seon(Q, w) = o / ‘lmdtZ(elQ ri(0)=r5(0))) (12.22)

Jk=1

and

Sine Q W) = 5— / —MtdtZ(elQ ri=rs 0y (12.23)

3 In this section only nuclear non-magnetic scattering will be considered. For a full treatment of magnetic scattering
see lecture 7 or vol. 2 of ref. 2.
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The quantities defined by (12.22) and (12.23) are called coherent and incoherent scattering
fanction or dynamic structure factors. It is a peculiarity of neutron scattering that there is
also the incoherent term, which solely depends on the single particle dynamics due to the
variance of the scattering lengths.

The prefactors of the scattering functions in expression (12.21) are often replaced by the
scattering cross sections

Geon =47 |8, oine = am (17 - [1]°) . (12.24)

They give the scattering into all directions, i.e. the solid angle 47 (for the incoherent part in
general and for the coherent in the limit () — 00).

As demonstrated in ref. 2, it is also possible to use the concept of correlation functions
for phonons. In this way it is possible to calculate the scattering from phonons in terms
of Seon(Q, w) and Sine(Q, w). The result for the coherent scattering gives non-vanishing
contributions only for (Q, w) combinations which fulfil the conservation laws (12.12) and
(12.13). This was already shown in section 12.2.2 but the explicit calculation gives also
the intensity of the phonon peaks, e.g. the mentioned result that transverse phonon peaks
vanish in the first Brillouin zone. But with this mathematical approach it is also possible to
calculate the incoherent scattering which is not bound to the momentum conservation (12.13).
The result is for inelastic incoherent neutron scattering from cubic crystals in the one-phonon
approximation [2]:

_ hQ? wion U« 1
i imit 2L
SR Xp(—QW(Q))Q—2 ];T g—(J:;}') . (12.26)

(Here, exp(—2W(Q)) is a shorthand for the Debye-Waller factor (12.16).) From this expres-
sion it can be seen that the incoherent scattering is determined by the phonon density o fstates
g(w) alone and does not depend on the full details of the phonon dispersion. The density
of states g(w) is the projection of the phonon dispersion curves onto the frequency axis, as
demonstrated in Fig. 12.5. Besides nuclear inelastic scattering, which requires MoBbauer-
active nuclei, inelastic incoherent neutron scattering is the most important method to deter-
mine g(w).

In some cases it is interesting to consider the part of expression (12.22) before the time-
frequency Fourier transform, called intermediate coherent scattering function:

Ieon Q, Z<61Q ri(t > . (12.27)

Its value for t = 0 expresses the correlation between atoms at equal times. A theorem on
Fourier transforms tells that this is identical to the integral of the scattering function over all
energy transfers:

Leon(Q, 0) = Z< Q) — 5(Q /_OO Seon(Q, w)dw. (12.28)
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(S(Q) is the structure factor as derived in lectures 4 and 5 for the static situation.) This
integral relation has a concrete relevance in diffraction experiments. There, the energy of
the neutrons is not discriminated: The diffraction experiment implicitly integrates over all
hw % Equation (12.28) shows that this integral corresponds to the instantaneous correlation
of the atoms. The diffraction experiment performs a ‘snapshot’ of the structure. All dynamic
information is lost in the integration process and therefore it is invisible in a diffraction
experiment.

Similarly the incoherent intermediate scattering finction is

N
1 O e ()
Ine(Q, t) = NZ<61Q-(1'](¢) J(O))> (12.29)
j=1
with
1 & o
Iin(Q, 0) = Nz<eiq.<rﬂj>>:1: / Sine(Q, w)dw. (12.30)
=1 —o0

Note that this result is independent of the actual structure of the sample. Integration of the
double-differential cross section (12.21) over w shows that also the static scattering contains
an incoherent contribution. But because of (12.30), this term is constant in (). It contributes
as a flat background in addition to the S((Q)-dependent scattering. In some cases (e.g. small-
angle scattering) it may be necessary to correct for this, in other cases (e.g. diffraction with
polarisation analysis) it may even be helpful to normalise the coherent scattering.

In the paragraphs before it was shown, that the value of the intermediate scattering functions
at ¢ = 0 corresponds to the integral of the scattering function over an infinite interval. This
is a consequence of a general property of the Fourier transform. There is also the inverse
relation that the value of S(Q,w) at w = 0 is related to the integral of I(Q, ) over all
times. The most important case is here when /(Q, t) does not decay to zero for infinite
time, but to a finite value f(Q). In that case the integral is infinite, implying that S(Q, w)
has a delta function contribution at w = 0. This means that the scattering contains a strictly
elastic component. Its strength can be calculated by decomposing the intermediate scattering
function into a completely decaying part and a constant for the coherent and the incoherent
scattering:

Tconfinel(Q: 1) = Iishinc(Q ) + fieon/ine)(Q) - (12.31)

Because the Fourier transform of constant one is the delta function this corresponds to

S[coh|inC](Q7 w) = S[i(l;l:}llhnC](Q? w) + S[ecloh\inc}(Q)(s(w) ) (1 232)

where Sfl (Q) = ficon|inc)(Q), the elastic coherent/incoherent structure factor (EISF), can

coh|inc]

4 Strictly speaking, this is only an approximation. There are several reasons why the integration in the diffraction
experiment is not the ‘mathematical’ one of (12.28): (1) On the instrument the integral is taken along a curve of
constant 26 in Fig. 12.2 while constant () would correspond to a horizontal line. (2) The double differential cross-
section (12.21) contains a factor k’/k which depends on w via (12.2). (3) The detector may have an efficiency
depending on wavelength which will introduce another w-dependent weight in the experimental integration. All
these effects have been taken into account in the so-called Placzek corrections [8,13,14].
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be written as

N

Sean(Q) = %Z<e@‘“k<°"“ﬂ‘°”>7 12.33)
jk—l

Sl Q) = —Z<e‘Q HTmOD) (12.34)

Here, ¢ = oo indicates a time which is sufficiently long that the correlation with the position
at ¢ = 0 is lost. For the EISF this lack of correlation implies that the terms with initial and
final positions can be averaged separately:

S@ = &3 ()
j=1
1 & - 2
= NZ\eﬂQ'W\ (12.35)
v 2
= dgrexp (iIQ-r) pi(r)| - (12.36)

Here, p;(r) denotes the ‘density of particle j°, i.e. the probability density of the individ-
ual particle j being at r. From (12.35) one can see that the normalisation of the EISF
is Sgl.(0) = 1 (in contrast to that of the structure factor, limg o, S(Q) = 1). One can
say that the EISF is the form factor of the volume confining the motion of the parti-
cles. E.g. for particles performing any kind of motion within a sphere, the EISF would
be S¢.(Q) = 9(sin(QR) — QR cos(QR))* /QOR® as derived in lecture 5.

As in the static situation, the scattering law can be traced back to distance distribution func-
tions. These are now (in the treatment of inelastic scattering) time-dependent. They are
called van Hove correlation finctions:

Gr,1) — %< S o — relt) + rj(o>>> | (12.37)

Gy(r, 1) = <Zar—rj +rj(0))>. (12.38)

Insertion into
Ticobjine] = / Gig(r, t) exp(iQ - r)d’r (12.39)
Va
directly proves that the spatial Fourier transforms of the van Hove correlation function are
the intermediate scattering functions.
The two particle version can be reduced to the microscopic density,

N

pr,t) =) d(r—ry1)). (12.40)

J=1



Inelastic Neutron Scattering 12.13

Its autocorrelation function in space and time is

(p(0,0)p(r, 1)) . (12.41)

The 0 is showing that translational symmetry is assumed. So the correlation function can be
replaced by its average over all starting points r; in the sample volume:

(H0.00x, ) = 37 [ ralptra. O)ptrs +1.0). (12.42)

Insertion of (12.40) gives

1 N
(p(0,0)p(r, 1)) = ‘7< Z / d®ri6(r) — 1i(t))0(ry + 1 — rj(t))> (12.43)
ik=17V
1 «
= ‘7< Z O(ri(t) +r— rj(t))> : (12.44)
k=1
Together with (12.37) this implies
1
G(r,t) = p—0<0(07 0)p(r, ). (12.45)

Again setting ¢ = 0 results in the static scattering situation:

(p(0,0)p(r,0))
Po

G(r,0) = = 0(r) + poy(r) (12.46)

with ¢(r) as defined in lecture 5.

As in the case of static scattering there is an alternative way to derive the scattering function
by Fourier-transforming the density

N
pq(t) = /d37’eiQ'rp(r, t) = Z ) (12.47)
j=1
and then multiplying its conjugated value at ¢ = 0 with that at

(@ 1) = 1 {na(0)pa(1) (12.48)

and
1 o
Scoh(Qaw):%—N / e (pQ(0)pq(t)) dt. (12.49)

(This is a consequence of the cross-correlation theorem of Fourier transform which is the
generalisation of the Wiener-Khintchine theorem for two different correlated quantities.)

Note that a reduction of the self correlation function G(r, t) to the density is not possible
in the same way. The multiplication p(0, 0)p(r, t) in equation (12.45) inevitably includes all
combinations of particles j, k and not only the terms for identical particles j, j. Therefore,
the incoherent scattering cannot be derived from the density alone but requires the knowledge
of the motion of the individual particles.
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From the definitions (12.37) and (12.38) it is immediately clear that the van Hove correlation
functions (as defined here) are symmetric in time

Gig(r, —t) = Gig(r, t). (12.50)

if the system is dynamically symmetric to an inversion of space. From (12.50) and general
properties of the Fourier transform it follows that I(Q, t) is real and that it is also symmetric
in time:

[(Q,—t) = 1(Q,1). (12.51)

In turn this implies that the scattering functions are real and symmetric in energy transfer
hw:

S(Q. —w) = S(Q w). (12.52)

It can be seen that this identity violates the principle of detailed balance. Up- and downscat-
tering should rather be related by

hw

S(Q, —w) = exp< kB—T> 5(Q,w). (12.53)

The reason for this is that (as mentioned in footnote 2) the influence of the neutron’s im-
pact on the motion of the system particles is neglected. This would be included in a full
quantum-mechanical treatment as carried out in ref. 2 or ref. 8 where the detailed balance re-
lation (12.53) emerges in a natural way. Note that equation (12.53) implies that both /(Q, t)
and Gq(r, t) are complex functions. (This is not ‘unphysical’ because they are no directly
measurable quantities in contrast to S(Q, w) which is proportional to do/dQ2dw. Even neu-
tron spin-echo measures only the real part of /(Q), t), see equation (12.70).)

Because the detailed balance relation (12.53) is also valid in classical thermodynamics (and
also recoil can be understood in the framework of classical mechanics) there should be a way
to derive a correct result from a classical treatment of the system too. This task is important
because only rather simple systems can be treated quantum-mechanically. Especially, results
from molecular dynamics computer simulations are classical results. The result for S(Q, w)
derived here is obviously only a crude approximation. Better approximations can be obtained
by applying correction factors restoring (12.53) [16-18]. The exact classical calculation is
rather complicated [19] and requires knowledge of the system beyond just the trajectories of
the particles.

Inelastic scattering is often also called neutron (scattering) spectroscopy. That there is indeed
a relation to better-known spectroscopic methods as light spectroscopy, can be seen from the
dependence of the scattering function on a frequency w. It can be said that inelastic neutron
scattering, for every Q, produces a spectrum, understood as the frequency dependence of a
quantity, here the scattering cross section. The optical methods Raman- and Brillouin spec-
troscopy are completely analogous in this respect, yielding the same S(Q, w) but different
measured double-differential cross-sections because photons interact with matter differently.
Other methods, as absorption spectroscopy, impedance spectroscopy or rheology do not yield
a QQ dependence and are thus insensitive to the molecular structure. They provide only in-
formation about the overall dynamics. The deeper reason for this analogy is that scattering
experiments as well as ‘ordinary’ spectroscopy can be explained by linear response theory
(appendix B of ref. 2 or ref. 15).
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Example: diffusion

For simple diffusion the density develops in time following Fick’s second law,

dp

—zDApED(——I———l-— (12.54)
T

ot

The underlying mechanism is Brownian motion, ie. random collisions with solvent
molecules. Therefore, it can be concluded from the central limit theorem of statistics that
the density of particles initially assembled at the origin is a Gaussian in all coordinates:

(o) v o) e (a)

= —exp| —=— | —exp| —=— | —exp| —=—

P V2ro P\ 202 V2ro P\ 7202 V2ro P\ 7202
1 r?

The index 1 should remind that the prefactor is chosen such that the total particle number
[ p1 d@*r is normalised to one. The width of the distribution, o has the dimension length. The
only way to construct a length out of D (dimension length?/time) and time is o = ¢v/ Dt
where c is a dimensionless constant. Inserting this into (12.55) yields:

1 r?
= - ——. 12.56

P (2w Dt)3/? exp( QCQDt) ( )
The derivatives of this expression with respect to ¢ and x, y, 2 can be calculated and inserted

into (12.54):
V2(r? — 3c¢2Dt) p(— r? ) _ V2(r?—3¢*Dt) p( r? )

873/2¢5 D521z X 12 Dz P\ To2py

12.57
2¢2Dt ( )

One can see that the right- and left-hand side are identical if ¢ = v/2. This proves that the
‘guess’ (12.55) is indeed a solution of Fick’s second law and also determines the unknown
c. With the value of c substituted, the ‘single particle density’ is

1 r?
- = exp( =) 12.58
P~ (8rDt)3? eXp( 4Dt) (12.58)

Diffusion-like processes are often characterised by the mean-square displacement (r?) 3. Be-
cause of the statistical isotropy, the average displacement (r) is always zero. Therefore, the
characterisation of the mobility of a diffusional process has to be done using the second
moment, which is the average of the square of the displacement. For the simple Fickian
diffusion this can be calculated from (12.58):

(r?) = / pir4nr?d®r = 6Dt. (12.59)

5 Here, the definition is “displacement from the position at ¢ = 0” rather than “displacement from a potential
minimum” on page 8. This is an obvious choice because the diffusing particle is not subjected to a potential as
the atom in a crystal. Therefore, there is nothing like an ‘equilibrium position’. This difference is indicated by the
usage of (r?) instead of (u?). Because in the case of motion in a potential the displacement between time zero and
time ¢ can be understood as the difference of the displacements at time zero from the equilibrium position and that
at time t, it follows that (r2) = 2(u?)
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For incoherent scattering the starting position r(0) is irrelevant. Therefore, expression (12.58)
is also G(r, t). Because the Fourier transform of a Gaussian function is a Gaussian itself,
the corresponding incoherent intermediate scattering function is

Ln(Q, ) = exp (- DQ?t) , (12.60)

and because the Fourier transform of an exponential decay is a Lorentzian the incoherent
scattering function is

1 DQ*

™w? 4+ (DQ?)*
This function is centred around w = 0, and for that reason the scattering is called quasielas-
tic. This is typical for diffusionlike processes in contrast to vibrational processes which yield
(phonon) peaks at finite energy transfers. For this reason, many textbook authors distinguish
between inelastic and quasielastic neutron scattering instead of subsuming the latter under
the former as done here®.

Sinc(@Q, w) = (12.61)

From expression (12.60) one can see that [;,.(Q, t) decays faster with time for larger () and
from (12.61) that Sj,.(Q, w) is getting broader. This is understandable because () defines the
spatial resolution of a neutron scattering experiment in a reciprocal way. So a larger () means
observation on shorter distances which can be travelled faster by the diffusing particle.

Finally, one can see that

6

Because this expression is derived independently of the specific form of o(¢) in (12.55) it is
generally valid if the distribution of displacements G(r, t) is a Gaussian. Even if this is not
the case, equation (12.62) is often a good low-() approximation called the Gaussian approx-
imation’ and is the dynamical analogue of to the Guinier approximation of static scattering.

el Q, 1) = exp(— Q2<T2>) . (12.62)

In general, the incoherent intermediate scattering function cannot be derived from the mean-
square displacement alone. Because equation (12.62) is the first term of the cumulant expan-
sion exp(a@Q?+bQ*+...) of I1,.(Q, t) [20] the mean-square displacement can be calculated
as

() = _gg})%lnfim(@t) or (12.63)
2 _ dln[inc(Qa t)
(r7) = AP ol (12.64)

By replacing [;,.(Q,t) by its value at infinite time, the EISF S¢ (@), the limiting mean-

square displacement of a confined motion can be obtained. This is the principle of the elastic
scan technique often used on neutron backscattering spectrometers [21 ].

® There are two reasons for the choice made here: (1) The correlation function approach is also applicable to
phonons. So, if this method is used, there is no conceptual difference between the treatment of vibrations and
diffusion. (2) There are models as the damped harmonic oscillator which yield a continuous transition between
inelastic scattering in the underdamped case and quasielastic scattering in the overdamped case.

7 In the literature, denominators 1, 2, and 3 are also found in this expression. Most of these formulae are never-
theless correct. Some authors use (72) as mean-square displacement from an average position (what is called (u?)
here). Then, 3 is the correct denominator because of (72) = 2(u?) (footnote 5). If the displacement is considered
only in one coordinate ({z?2)), then 2 is the right denominator.
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Fig. 12.6: Schematic setup o fa triple-axis spectrometer.
12.3 Instrumentation

12.3.1 Triple axis spectrometer

The basic objective of inelastic neutron scattering is to measure the momentum transfer
q = k' — k and the energy transfer hw = E’ — E. This task in general requires a monochro-
mator for the incoming neutron beam and an analyzer for the scattered neutrons. In the
most straightforward setup, the triple-axis spectrometer (3AX), one uses the Bragg planes of
crystals similar to the diffracting grids in an optical spectrometer (figure 12.6).

Axis 1 turns the monochromator crystal. By doing this the neutron wavelength fulfilling the
Bragg condition can be changed. In this way the wave vector k& = 27 /) of the neutrons
impinging on the sample is determined. Axis 2 turns the arm carrying the analyser crystal
around the sample position. This defines the scattering angle 26. Finally, axis 3 turns the
analyser crystal around its own axis such that only the desired k&’ is admitted to the detector.

For a given setting of axis 1 all points in the kinematically allowed ((), w) area (see Fig. 12.2)
can be addressed by suitable settings of axis 2 and 3. E.g., for the study of phonons usually
a ‘constant-() scan’ is performed where Q = k’ — k is held constant and only hw = E' — FE
is varied. For this purpose a coordinated change of the angles of axis 2 and 3 is required
which is accomplished by computer control.

Historically, the triple-axis spectrometer is the first inelastic neutron scattering instrument.
The first prototype was constructed in 1955 by Bertram N. Brockhouse. In 1994, Brockhouse
received the Nobel prize for this accomplishment (together with Clifford G. Shull for the
development of neutron diffraction).

The 3AX spectrometer is still widely in use for purposes where a high () resolution is nec-
essary and only a small region in the (@, w) plane has to be examined. This is mostly the
study of phonons and magnons in crystals. In other fields, e.g. for ‘soft matter’ systems,
it has been replaced by instruments showing better performance. The most important ones
will be discussed here: time-of-flight (TOF) spectrometer, backscattering (BS) spectrometer,
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Fig. 12.7: Schematic setup o fa time-o f fight spectrometer with crystal monochromator.

inverse TOF spectrometer, and neutron spin echo (NSE) spectrometer.

12.3.2 Time-of-flight spectrometer

The main disadvantage of the 3AX spectrometer is that it can only observe one (@), w) point
at a time. While for samples where the scattering is concentrated into Bragg peaks this may
be acceptable, for systems with diffuse scattering a simultaneous observation of a range of ()
vectors and energy transfers iw is desired. This is accomplished by surrounding the sample
position with an array of detectors (figure 12.7). In addition the energy of the scattered
neutrons £’ is here measured by their time of flight: A chopper in the incident beam defines
the start time of the neutrons. The electronic pulse from their registration in the detector
gives the end of their flight through the spectrometer. From the time difference the velocity
of the neutrons can be calculated and from this in turn the energy transfer. The relation
between time-of-flight and energy transfer is given by

X )

hw = -1, E. (12.65)

(lo — \/QE/mntﬁight> /

As in all inelastic neutron scattering experiments, the lower limit of the energy transfer is
— E. (The neutrons cannot lose more than their incident energy.) Because scattered neutrons
with arbitrary high energies arrive at the detector in a finite time there is no principal upper
limit. Nevertheless, at high energy transfers the time-of-flight scale gets so compressed that
energy resolution worsens. This sets a practical upper limit at 5...10 E.

The monochromatization of the incoming neutron beam can either be done by Bragg reflec-
tion from a crystal or by a sequence of choppers which are phased in order to transmit a
single wavelength only. The former principle usually yields higher intensities while the latter
is more flexible for the selection of the incident energy £ and attains better energy resolution.
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Fig. 12.8: Top: raw data fom TOF spectrometer: neutron counts in a time channel o f10 us
during one hour registration time. The sample is a mesoscopically con fned glass- prming lig-
uid. The foating non-linear axis indicates the energy trans fers calculated by equation (12.65).
Because o fthe strength o fthe elastic scattering that part o fthe spectrum has been reduced by a
jactor 0 f200. Bottom: the same TOF data converted to S(Q, w), elastic line reduced by factor
1000. The characteristic vibrational modes o fthe material at hw ~ 1.7meV (14 cm™!) become
only visible a fer the trans prmation.

Instrument Type  Ai[A]l  Qmax [A7!'] Ahw [meV]
PANTHER (ILL) TX 0.86-3.3 3.5-14 0.4-6
IN5 (ILL) CC 2-15 0.8-5.7 0.01-6
SHARP (ILL) CX 41-59 1.8-2.6 0.05-0.17
TOFTOF (MLZ) CC 1.5-5 2.0-6.5 0.1-3

Table 12.1: Basic speci frations o fre presentative neutron time-o f fight spectrometers. Instru-
ment types: TX-thermal, crystal; CX—cold, crystal; CC—cold, chopper. The maximal () and
the energy resolution Ahw de pend on the incident wavelength, the upper limits o ftheir ranges
correspond to the lower limit o fthe incident wavelength \; and vice versa. Institutions: ILL—
Institut Laue- Langevin, MLZ—Maier- Leibnitz Zentrum.

Table 12.1 shows some representative TOF instruments with their basic specifications. De-
pending on the desired incident wavelength the instruments are constructed either using neu-
trons directly from the reactor moderator (thermal neutrons, A,y ~ 1.8 A) or a cold source,
where an additional moderation, e.g. by liquid hydrogen, takes place (Amax ~ 4 A). Thermal
neutrons make a larger () range accessible while cold neutrons yield better energy resolution.
Therefore, the choice of the instrument depends on the system to be observed but in general
‘cold neutron’ instruments are preferred for inelastic neutron scattering in soft matter systems
while ‘thermal neutron’ instruments are used for studies of phonons and magnetism.

12.3.3 Backscattering spectrometer

A recurring problem of inelastic neutron scattering investigations is that processes are too
slow to be observed. Without resorting to extreme setups which lead to a loss of intensity,
the energy resolution of TOF spectrometers is limited to about 10 eV, which corresponds to
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Fig. 12.9: Schematic setup o fa backscattering spectrometer.

a maximal timescale of 200 ps. This is often not sufficient for e.g. the large scale motions in
polymers, biological systems, or glass-forming materials. Therefore, instruments with highest
energy resolution are often needed, the backscattering (BS) and neutron spin echo (NSE)
spectrometer.

The energy resolution of a TOF spectrometer is limited by the selectivity of the monochro-
mator crystal®. If perfect crystals are used the spread of the selected wavelengths A)/\ is
determined by the angular divergence A« of the reflected neutrons. Differentiating the Bragg
condition A = 2sinf/d one obtains

AN/X = cotf- Af. (12.66)

This expression becomes zero for 260 = 180°. In practice this means that the wavelength
spread becomes minimal if the neutron beam is reflected by 180°, i.e. in backscattering con-
dition.

Figure 12.9 shows schematically the instrument based on this principle. The first crystal in
the beam is only a deflector with low wavelength selectivity. The actual monochromatiza-
tion takes place upon the second reflection by the crystal in backscattering position. The
monochromatized neutrons are then scattered by the sample which is surrounded by analyzer
crystals placed on a spherical surface. There they are again scattered under backscattering
condition. The reflected neutrons pass once more through the sample and finally reach the
detector.

It can be seen that the backscattering condition leads to technical problems in several places:
(1) The deflector must not accept all neutrons otherwise the monochromatized beam would
be scattered back into the source. This can be solved by reducing its size deliberately below

8 For chopper spectrometers the limit is given by the pulse length which could in principle be arbitrary small. But
since the counted intensity decreases quadratically with pulse length the resolution limit of an efficient experiment
is in the same range.
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Instrument Type  A[A]  Qumax [A7'] Ahw [peV]  hwmax [eV]
SPHERES (JCNS) CD 6.27 1.8 0.7 30
HFBS (NIST) CD 6.27 1.7 0.9 30
IN16B (ILL) CD 3.23-627 1.8-3.5 0.3-2.0 31-59
IN13 (ILL) TH 2.23 5.5 8 300

Table 12.2: Basic specifrations o frepresentative neutron time-o f fight spectrometers. In-
strument types: CD—cold, Do ppler monochromator; TH—thermal, heated monochromator. The
maximal () and the energy resolution Ahw de pend on the incident wavelength; the upper limits
o ftheir ranges correspond to the lower limit o fthe incident wavelength \; and vice versa. In-
stitutions: JCNS—Jiilich Centre jor Neutron Science, NIST-National Institute o fStandards and
Technology, ILL—Institut Laue-Langevin

the neutron beam area or putting it on a rotating disk which removes it at the moment when
the neutrons come back from the monochromator. Of course all these measures are taken
at the expense of intensity. (2) The second passage of the scattered neutrons through the
sample causes additional multiple scattering and absorption. Both problems can be avoided
by leaving exact backscattering condition but with the consequence that the energy resolution
degrades.

So far it seems that the backscattering instrument can only observe elastic scattering (£’ =
E) if the same crystals are used for monochromator and analyzer. In order to do inelas-
tic scattering one has to change either £ or E’. It turns out that this is much easier for
the incident energy by either using a moving monochromator (Doppler effect) or a heated
monochromator (thermal expansion modifying the lattice plane distance d). The latter tech-
nique usually allows larger energy transfers. For very large energy transfers, different crys-
tals are used for monochromator and analyzer, yielding an offset of the whole Aw range.
Table 12.2 comprises specifications of representative BS spectrometers.

12.3.4 Inverse TOF spectrometer

The inverse TOF spectrometer is a kind of of hybrid between the TOF spectrometer and the
backscattering spectrometer. Usually, such instruments are built at spallation sources which
produce short pulses of neutrons. If the neutrons are produced in pulses one can use their
creation time to start the TOF clock and in principle there is no need for a chopper. In this
way, on a pulsed source, all neutrons can be used in contrast to conventional TOF spec-
trometers which use only a few percent. The principle can also be realised by chopping a
continuous beam into pulses on reactors with a loss of intensity comparable to that of an or-
dinary TOF instrument (e.g. BATS in Table 12.3). Because the energy resolution depends on
the length of the pulses this ‘pulse shaping’ may also be necessary on a long-pulse spallation
source.

For inverse TOF instruments, the incident energy £ is variable and measured by the time-of-
flight and the final energy E’ is kept constant by a fixed set of analyser crystals. This is often
called “inverse geometry” or “inverse time-of-flight”. By putting the analyser crystals into
near backscattering position it is possible to obtain a very good energy resolution already



12.22 R. Zorn

Detector Bank

Neutron
v N
Mr Crystals
Fig. 12.10: Schematic setup o fa inverse time-o f fight spectrometer.
Instrument Source  \ [A] Q) max [A~1] Ahw [ 1weV]  hwmax [meV]
IRIS (RAL) S 6.7-20 0.6-1.9 1-18 0.4
BATS (ILL) R 3.3-6.3 1.8-3.5 1.2-59 0.34-1.1
DNA (J-PARC) S 3.3-6.3 2.0-3.4 1.4-19 0.08-1.5

Table 12.3: Basic speci frcations o fre presentative inverse time-o f fight spectrometers. The
maximal () and the energy resolution Ahw de pend on the incident wavelength; the upper limits
o ftheir ranges correspond to the lower limit o fthe incident wavelength \; and vice versa. R—
reactor source, S—pulsed spallation source. Institutions: RAL-Ruther jord- Appleton Laboratory,
ILL—Institut Laue-Langevin, J- PARC—Japan Proton Accelerator Research Complex.

close to true backscattering spectrometers and combine it with the large energy range of
a TOF instrument. Because of the analyser positioning these instruments are sometimes
also called “backscattering” although the way the energy transfer is measured is complete
different from that of the instruments described in section 12.3.3.

12.3.5 Neutron spin echo spectrometer

In order to access even slower processes a very high resolution technique is needed allowing
to reach more than 100 nanoseconds corresponding to energy transfers in the neV range.
Such a technique is provided by neutron spin echo (NSE) spectrometers [22] which are able
to measure directly energy changes of the neutron due to scattering.

This distinguishes NSE from conventional inelastic neutron scattering techniques which pro-
ceed in two steps: (1) monochromatization of the incident beam to E, (2) analysis of the
scattered beam (E’). The energy transfer is then determined by taking the difference ' — F.
In order to achieve high energy resolutions with these conventional techniques a very narrow
energy interval must be selected from the relatively low-intensity neutron spectrum of the



Inelastic Neutron Scattering 12.23

y Detector
Velocity Selector

Polarizer

X

n Flipper

B Coil

Sample

n/2 Flipper n/2 Flipper

Fig. 12.11: Schematic setup o fa neutron spin echo spectrometer.

source. Conventional high-resolution techniques therefore inevitably run into the problem of
low count rates at the detector.

Unlike these methods, NSE measures the individual velocities of the incident and scattered
neutrons using the Larmor precession of the neutron spin in a magnetic field. The neutron
spin vector acts as the hand of an internal clock, which is linked to each neutron and connects
the result of the velocity measurement to the neutron itself. Thereby the velocities before and
after scattering on one and the same neutron can be compared and a direct measurement of
the velocity difference becomes possible. The energy resolution is thus decoupled from the
monochromatization of the incident beam. Relative energy resolutions in the order of 10~°
can be achieved with an incident neutron spectrum of 20% bandwidth.

The motion of the neutron polarization P(#)—which is the quantum mechanical expectancy
value of the neutron spin—is described by the Bloch equation

dP qp
—=-—"—(Px B 12.67
where 7y is the gyromagnetic ratio (7 = —3.82) of the neutron, ; the nuclear magneton and B

the magnetic field. Equation (12.67) is the basis for manipulation of the neutron polarization
by external fields. In particular, if a neutron of wavelength ) is exposed to a magnetic field
B over a length [ of its flight path, its spin is rotated by

21| pAm

The basic setup of an NSE spectrometer is shown in figure 12.11. A velocity selector in the
primary neutron beam selects a wavelength interval of 10-20% width. In the primary and
secondary flight path of the instrument precession fields B and B’ parallel to the respective
path are generated by cylindrical coils. Before entering the first flight path the neutron beam
is polarized in forward direction’. Firstly, a /2 flipper rotates the polarization to the x
direction perpendicular to the direction of propagation (z). This is done by exposing the
neutrons to a well defined field for a time defined by their speed and the thickness of a

% This is done by a a “polarizing supermirror”” which only reflects neutrons of that spin—similar to the Nicol prism
in optics.
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flat coil (Mezei coil). Beginning with this well-defined initial condition the neutrons start
their precession in the field B. After being scattered by the sample the neutrons pass a 7
flipper and then pass the second precession field B’. Finally, the neutrons pass another 7 /2
coil which, under certain conditions, restores their initial polarization parallel to their flight
direction. In order to understand what that condition is, one has to trace the changes of the
spin vector (z always denoting the direction parallel to neutron propagation):

(Mg, Ny, 12) neutronic device
(0,0,1)
7/2 flipper
(1,0,0)
field B
(cos ¢, sin ¢, 0)
7 flipper
(cos ¢, —sing, 0) =
(COS(_QS)’ Sin<_¢)7 0)
_ field B’
(cos(¢" — @), sin(¢" — ), 0) .
7/2 flipper

(0, sin(¢ — ¢'), cos(¢ — ¢'))
In total, the spin is rotated by ¢ — ¢’ around the z axis when a neutron passes through
the spectrometer. This means that the final polarization is identical to the incident if
¢ = ¢' (+2mn), especially if \; = \; (elastic scattering) and fol Bdz = fol/ B'dz (for ho-
mogeneous fields: Bl = B’l’) as follows from (12.68). This condition is called “spin echo”
and is independent of the individual velocities of the neutrons because their difference alone
determines ¢ — ¢'.

Leaving spin echo condition the probability of a single neutron to reach the detector is re-
duced due to the polarization analyzer by cos(¢’ — ¢). If we keep the symmetry of the
instrument, Bl = B’l’, but consider inelastic scattering the precession angle mismatch can be
approximated by

o b = (27r\7|/~cm

1 > Bi(Ar — \)
|y pmn2 A3 Bl
B

—_——
=tnse(B)

(12.69)

for small energy transfers where A\ ~ hw % can be used. Because the energy transfer

for inelastic scattering is not fixed but distributed as determined by the scattering function
S(Q,w) we have to average the factor cos(¢’ — ¢) weighted by S(Q, w) to get the reduction
of count rate at the detector, the effective polarization

* 5(Q, tnse)d
P(Q, txse) = S f(g C;)(;Oic;dzw) - (12.70)

Expression (12.70) reverses the temporal Fourier transform of equation (12.22) and therefore
the result of the NSE experiment

(Q, tnsu(B))

P(Q, txse(B)) = ! 100.0) (12.71)
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is the normalised intermediate scattering function. This function is often more understandable
and easier to interpret than the frequency dependent scattering function.

In order to estimate typical Fourier times ¢nsg which can be accessed by NSE we consider
maximum fields of B = B’ = 500 Gauss in precession coils of [ = [’ = 2 m length operating
at A = 8 A. Then (12.69) results in a time of about 10 ns which can be reached.

From this equation it also becomes clear that the most efficient way to enlarge this time
is to use longer wavelengths because A enters in the third power. This in turn reduces the
accessible () range which constitutes a drawback for studies on low molecular materials but
not for the large scale properties of polymers which have to be observed at low () anyway.

Because NSE works in time domain, there is no well-defined way to relate the maximum
Fourier time t,,, of an NSE spectrometer to the resolution Ahw of one of the instru-
ments mentioned before. A rule of thumb would be that 1 ns corresponds to 1 eV, thus
Ahw/peV = ns/tn.x. Because of the inverse relation between time and frequency, the cor-
responding limit to hwp., on backscattering and inverse TOF, on an NSE spectrometer is
the smallest time accessible, #,,;,. This time depends strongly on the technical set-up of the
spectrometer. In most cases it is about three orders of magnitude below ;.

There are two restrictions of the application of NSE which may impede its use even if the
dynamical range is adequate for the system to be studied:

* If the sample changes the polarisation of the beam the information encoded in the
neutron spins gets ‘scrambled’. This is the case for magnetic samples but also for
systems with spin-incoherent scattering. Because 'H hydrogen is a spin-incoherent
scatterer this often makes chemical deuteration necessary. Nowadays, NSE experiments
are often still feasible because there may be a stochastic relation between the numbers
of neutrons scattered. This would be 1/3 ‘up’ and 2/3 ‘down’ in the case of pure spin-
incoherent scattering. Nevertheless, there are combinations of nuclei which bring the
probabilities close to 1/2 or uncontrollable situations as in ferromagnets where NSE
measurements are impossible.

* Because the value of A in equation (12.69) varies by 10...20% from neutron to neutron
the relation between the phase difference and the energy transfer is somewhat ‘blurred’.
For processes like diffusion which have a broad distribution of w (see (12.61)) this is
usually not important. But for mechanisms which produce well-defined energy trans-
fers hw this is problematic and neutron backscattering is preferable.

Typical NSE spectrometers with their specifications are listed in table 12.4. NSE spectrom-
eters are very flexible instruments often used with different setups of which only “typical”
ones have been included. As special features have to be mentioned that INI1 and WASP
have one-dimensional detector arrays which span 60° and 130° degrees respectively, allow-
ing the simultaneous observation of a range of () values. The instruments IN15 and J-NSE
have two-dimensional detector arrays which can be used for studying anisotropies but cover
a smaller angular range. IN15 uses a focusing mirror in order to increase neutron flux which
would be otherwise very low due to its long precession coils.
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Instrument MA]  Qumax [A™']  tumax [nS]
INIT (ILL)  45-12 0924 245
IN15 (ILL) 825 0.13-0.4 30-1000

WASP (ILL) 3-12 1.0-3.9 0.6-18
J-NSE (JCNS) 4.5-16 0.4-1.5 10-350

Table 12.4: Basic speci fcations o frepresentative neutron spin echo spectrometers. The maxi-

mal () and the maximal Fourier time t.,,, depend on the incident wavelength; the upper limit o f
the () range and the lower limit o ft . correspond to the lower limit o fthe incident wavelength

A and vice versa. Institutions: ILL-Institut Laue-Langevin, JCNS—Jiilich Centre jor Neutron

Science.
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Exercises

Note: Exercises are labelled by stars (* through ***) indicating the level of difficulty. Try to
solve the easier ones first.

E12.1 Scattering triangle”

For the feasibility of an inelastic neutron scattering experiment it is essential that the desired
(), hw combination (in the scattering function S((), w) can be reached at a certain combina-
tion of incident neutron wavelength \ and angle 26.

1. A =51 A, 20 = 90° and fiw = 5 meV, which value has (2? Which value would @)
have calculated from the formula for elastic scattering?

2. A=51A,Q=1A" whatis the largest energy gain and largest absolute energy loss
one can reach? What do you have to do if you need larger values of |hiw|?

Hints: & = 1.0546x 10~3* Js, neutron mass: m = 1.6749x 10727 kg, 1 eV = 1.6022x 1071 J.

E12.2 () dependence of characteristic time***

In many cases, the incoherent intermediate scattering function can be written in the form
Line(@Q, t) = exp(—(¢/7(Q))?) with 7(Q) x Q=" E.g. in the lecture diffusion (z = 2,
8 =1) and the ideal gas (z = 1, § = 2) were presented. In a later lecture you will learn that
for polymers in the melt x = 4, 5 = 1/2 holds. For polymers in solution the Zimm model
predicts z = 3, 5 = 2/3. In all cases x - § = 2. What is the reason for this nearly universal
relation?

E12.3 Choice of instruments**

The most important aspect of planning an inelastic neutron scattering experiment is the
choice of the right instrument matching the time scale of the process to be observed.

1. What is the range of energy transfers corresponding to the right-hand side of Fig. 12.5
in meV? Which instrument would you chose?

2. The diffusion coefficient of benzene at room temperature is about 2 x 1075 cm?/s.
Which instrument would you use to study this diffusion on the length scale of 0.5 nm?
(Hints: As you may know from the lectures of diffraction and SANS, the lengths are
related roughly roughly by Q = 27/l. From that value calculate the width of the
quasielastic scattering in (12.61) and convert it to meV.)

3. The diffusion coefficient of the protein alcohol dehydrogenase in water is 23.5um?/s.
Which instrument would you use to study this diffusion on the length scale of 3 nm?
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4. When molecules containing methyl groups are cooled down to near absolute zero, their
rotation does not completely stop because quantum tunnelling between the energy min-
ima is possible. This leads to a splitting of the ground state, which can be very different
in chemically similar molecules: methane (CHy): 142 peV, methyl fluoride (CH3F):
23.1 peV, methyl iodide (CH3I): 2.44 peV. Which instrument may be used for which
compound?
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13.1 Introduction

Materials with strong electronic correlations are materials, in which the movement of one elec-
tron depends on the positions and movements of all other electrons due to the long-range
Coulomb interaction. With this definition, one would naively think that all materials show
strong electronic correlations. However, in purely ionic systems, the electrons are confined
to the immediate neighborhood of the respective atomic nucleus. On the other hand, in ideal
metallic systems, the other conduction electrons screen the long-range Coulomb interaction.
Therefore, while electronic correlations are also present in these systems and lead for example
to magnetism, the main properties of the systems can be explained in simple models, where
electronic correlations are either entirely neglected (e.g. the free electron Fermi gas) or taken
into account only in low order approximations (Fermi liquid, exchange interactions in mag-
netism etc.). In highly correlated electron systems, simple approximations break down and
entirely new phenomena and functionalities can appear. These so-called emergent phenomena
cannot be anticipated from the local interactions among the electrons and between the electrons
and the lattice [1]. This is a typical example of complexity: the laws that describe the behavior
of a complex system are qualitatively different from those that govern its units [2]. This is what
makes highly correlated electron systems a research field at the very forefront of condensed
matter research. The current challenge in condensed matter physics is that we cannot reliably
predict the properties of these materials. There is no theory, which can handle this huge num-
ber of interacting degrees of freedom. While the underlying fundamental principles of quantum
mechanics (Schrédinger equation or relativistic Dirac equation) and statistical mechanics (max-
imization of entropy) are well known, there is no way at present to solve the many-body problem
for some 10?% particles. Some of the exotic properties of strongly correlated electron systems
and examples of emergent phenomena and novel functionalities are:

* High temperature superconductivity, while this phenomenon was discovered in 1986 by
Bednorz and Miiller [3], who received the Nobel Prize for this discovery, and since then
has continually attracted the attention of a large number of researchers, there is still no
commonly accepted mechanism for the coupling of electrons into Cooper pairs, let alone
a theory which can predict high temperature superconductivity or its transition tempera-
tures. High temperature superconductivity has already some applications such as highly
sensitive magnetic field sensors, high field magnets, and power lines, and more are likely
in the future.

* Colossal magnetoresistance effect CMR, which was discovered in transition metal oxide
manganites and describes a large change of the electrical resistance in an applied magnetic
field [4]. This effect can be used in magnetic field sensors and could eventually replace
the giant magnetoresistance [5, 6] field sensors, which are employed for example in the
read heads of magnetic hard discs.

* The magnetocaloric effect [7], a temperature change of a material upon applying a mag-
netic field, can be used for magnetic refrigeration without moving parts or cooling fluids.

* Metal-insulator-transitions as observed e.g. in magnetite (Verwey transition [8]) or cer-
tain vanadites are due to strong electronic correlations and could be employed as elec-
tronic switches.
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* Multi rroicity [9], the simultaneous occurring of various ferroic orders, e.g. ferromag-
netism and ferroelectricity, in one material. If the respective degrees of freedom are
strongly coupled, one can switch one of the orders by applying the conjugate field of the
other order. Interesting for potential applications in information technology is particularly
the switching of magnetization by an electric field, which has been proposed to be used
for easier switching of magnetic non-volatile memories [10]. Future applications of mul-
tiferroic materials in computer storage elements are apparent. One could either imagine
elements, which store several bits in form of a magnetic- and electric polarization, or one
could apply the multiferroic properties for an easier switching of the memory element.

* Negative thermal expansion[11] is just another example of the novel and exotic properties
that these materials exhibit.

It is likely that many more such emergent phenomena will be discovered in the near future.
This huge potential is what makes research on highly correlated electron systems so interesting
and challenging: this area of research is located right at the intersection between fundamen-
tal science investigations, striving for basic understanding of the electronic correlations, and
technological applications, connected to the new functionalities [12].

13.2 Electronic structure of solids

pot. energy

i

free electrons:
potential well

T\/\/\ /\/\/\A

.ﬂ
=
L 4

Fig. 13.1: Potential energy o fan electron in a solid.

In order to be able to discuss the effects of strong electronic correlations, let us first recapitulate
the textbook knowledge of the electronic structure of solids [13,14]. The description of the
electron system of solids usually starts with the adiabatic or Born-Oppenheimer approximation:
The argument is made that the lighter electrons are moving so quickly compared to the nuclei
that the electrons can instantaneously follow the movement of the much heavier nuclei and thus
see the instantaneous nuclear potential. This approximation serves to separate the lattice- and
electronic degrees of freedom. Often one makes the further approximation to consider the nuclei
to be at rest in their equilibrium positions. The potential energy seen by a single electron in the
averaged field of all other electrons and the atomic core potential is depicted schematically for
a one dimensional system in Fig. 13.1.

The following simple models are used to describe the electrons in a crystalline solid:
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* Free electron Fermi gas: here a single electron moves in a 3D potential well with in-
finitely high walls corresponding to the crystal surfaces. All electrons move completely
independent, i.e. the interaction between the electrons is considered only indirectly by the
Pauli exclusion principle.

» Fermi liquid: here the electron-electron interaction is accounted for in a first approxima-
tion by introducing quasiparticles, so-called dressed electrons, which have a charge e,
and a spin 15 like the free electron, but an effective mass m*, which can differ from the
free electron mass m. Other than this renormalization, interactions are still neglected.

* Band structure model: this model takes into account the periodic potential of the atomic
cores at rest, i.e. the electron moves in the average potential from the atomic cores and
from the other electrons.

Considering the strength of the long-range Coulomb interaction, it is surprising that the sim-
ple models of Fermi gas — or better Fermi liquid — already are very successful in describing
some basic properties of simple metals. The band structure model is particularly successful in
describing semiconductors. But all three models have in common that the electron is described
with a single particle wave function and electronic correlations are only taken into account in-
directly, to describe phenomena like magnetism due to the exchange interaction between the
electrons or BCS superconductivity [15], where an interaction between electrons is mediated
through lattice vibrations and leads to Cooper pairs, which undergo a Bose-Einstein condensa-
tion.

What we have sketched so far is the textbook knowledge of introductory solid state physics
courses. Of course there exist more advanced theoretical descriptions, which try to take into
account the electronic correlations. The strong Coulomb interaction between the electrons is
taken into account in density functional theory in the so-called “LDA+U” approximation or
in the so-called dynamical mean field theory DMFT or a combination of the two in various
degrees of sophistication [16]. Still, all these extremely powerful and complex theories often
fail to predict even the simplest physical properties, such as whether a material is a conductor
or an insulator.

delocalization
AEnergy levels

1/(interatomic distance)
EEEE——

L Bands, each with
N values of k

N-fold
degenerate
levels

Fig. 13.2: Left: Atomic potential o fan electron interacting with the atomic core and the cor-
responding level scheme o fsharp energy levels. Right: Broadening o fthese levels into bands
upon increase o fthe overlap o fthe wave finctions o fneighboring atoms. Afer [13]
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Let us come back to the band structure of solids. In the so-called tight-binding model one
starts from isolated atoms, where the energy levels of the electrons in the Coulomb potential
of the corresponding nucleus can be calculated. If N such atoms are brought together, the
wave functions of the electrons from different sites start to overlap so that electrons can hop
between neighboring atoms. This leads to a broadening of the atomic energy levels, which
eventually will give rise to the electronic bands in solids, each of which is a quasi-continuum of
2N electronic states (/V possible values of k, spin ¢ =1 or |). The closer the atoms are brought
together, the more the wave functions overlap, the more the electrons will be delocalized, and
the broader in energy are the corresponding bands (Fig. 13.2).

Even number of electrons / atom QOdd number of electrons / atom
E F 3 3 E r s »
Bandn + 2 Fermi
ener
conduction band gy
Fermi s
energy “'EXEE:tivalion
_—— energy
Bandn +1 alence band
Band n core states
InSUIGTOP (normally) meTQI (always!)

Fig. 13.3: Band structure o finsulators and metals.

If electronic correlations are not too strong, the electronic properties can be described by a band
structure, which allows one to predict whether a material is a an insulator or a metal. This is
shown in Fig. 13.3. At 7T = 0 all electronic states are being filled up to the Fermi energy,
taking into account the Pauli principle. If there is an even number of electrons per atom (or
more generally per primitive unit cell), say 2m, these will fill up exactly the first m bands, and
the higher energy bands are empty. Unless there is band-overlap between the highest occupied
(valence) band and the lowest unoccupied (conduction) band (which may accidentally happen
in 3D) any electron transport would require the bump of an electron from the valence to the
conduction band, and consequently the material is an insulator (at non-zero 1" some electrons
may be thermally excited to the conduction band if the band gap is small, one calls the material
then a semi-conductor rather than an insulator). If there is an odd number of electrons per
primitive unit cell, say 2m + 1, the first 2m bands will be completely full, but the band 2m + 1
will be half-filled. In a partially filled band electrons easily move in response to a voltage, hence
the material is a metal — within the model described so far always. However, as mentioned
above this band structure model describes the electrons with single particle wave functions.
Where are the electronic correlations?
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13.3 Strong electronic correlations: the Mott transition

cobalt(II) oxide

Fig. 13.4: Rock-salt (NaCl)-type structure o fCoO.

It turns out that electronic correlations are particularly important in materials, which have some
very narrow bands. This occurs for example in transition metal oxides or transition metal
chalcogenides as well as in some light rare earth intermetallics (heavy fermion systems). Con-
sider CoO as a typical and simple example of a transition metal oxide. CoO has the rock-salt
structure shown in Fig. 13.4, with a face-centered cubic (fcc) unit cell containing four for-
mula units. The primitive unit cell of the fcc lattice, however, is spanned by the basis vectors
a’ = sa(e, +ey), b’ = La(e, + e.), and ¢’ = La(e. + e,), where a is the lattice constant,
and e,, e,, and e., are the unit basis vectors of the original fcc unit cell. The primitive unit cell
contains only one cobalt and one oxygen atom. The electronic configurations of these atoms
are: Co: [Ar]3d74s?; O: [He]2s%2p®. In the solid, the atomic cores of Co and O have the elec-
tronic configuration of Ar and He, respectively. These electrons are very strongly bound to the
nucleus and we need not consider them on the usual energy scales for excitations in the solid
state. We are left with nine outer electrons for the Co and six outer electrons for the O atom in
the solid, so that the total number of electrons per primitive unit cell is 9 + 6 = 15, i.e. an odd
number. According to our considerations in the last section, we must have at least one partially

filled band and CoO should be a metal.

What does the experiment tell us? Well, in fact, CoO is a very good insulator with a room-
temperature resistivity p(300 K) ~ 10® Qcm (For comparison, the good conductor iron has
p(300K) ~ 107" Qcm. The resistivity of CoO is exponentially decreasing with increasing
temperature 7', and the 7T'-dependence corresponds to activation energies of about 0.6 eV or a
temperature equivalent of 7000 K, which means there is a huge band gap making CoO a very
good insulator. To summarize these considerations: the band theory breaks down already for a
very simple oxide consisting of only one transition metal and one oxygen atom!

In order to understand the reason for this dramatic breakdown of band theory, let us con-
sider an even simpler example: the alkali metal sodium (Na) with the electronic configuration
[Ne]3st=1s22s22pf3st. Following our argumentation for CoO, sodium obviously has a half-
filled 3s band and is therefore a metal. This time our prediction was correct: p(300K) ~
5 x 107% Qcm. However, what happens if, hypothetically, we pull the atoms further apart and
increase the lattice constant continuously? Band theory predicts that for all distances sodium
remains a metal, since the 3s band will always be half-filled. This contradicts our intuition: at a
certain critical separation of the sodium atoms, there must be a transition from a metal to an in-
sulator. This metal-to-insulator transition was predicted by Sir Nevill Mott (physics Nobel price
1977); it is therefore called the Mott transition [17]. The physical principle is illustrated in Fig.
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Fig. 13.5: lllustration o f(electron) hopping between two neutral Na atoms - involving charge
fuctuations.

13.5: On the left, two neutral Na atoms are depicted. The atomic energy levels of the outer elec-
trons correspond to an energy 3. The wave functions of the 3s electrons will overlap giving
rise to a finite probability that an electron can hop from one sodium atom to the other one. Such
a delocalization of the electrons arising from their possibility to hop is favored because it lowers
their kinetic energy. This can be seen for example by generalizing the “particle in a box” prob-
lem: By, o< p* = h?/)\? (de Broglie) and A ~box size, and it is consistent with the uncertainty
principle Ap- Ax > g Fig. 13.5 on the right shows the situation after the electron transfer.
Instead of neutral atoms, we have one Na®™ and one Na~ ion. However, we have to pay a price
for the double occupation of the 3s states on the Na™ ion, namely the intra-atomic Coulomb re-
pulsion between the two electrons denoted as Us,. While this is a very simplistic picture, where
we assume that the electron is either located on one or the other Na atom, this model describes
the two main energy terms by just two parameters: the hopping matrix element ¢, connected
to the kinetic energy, and the intra-atomic Coulomb repulsion U, connected with the potential
energy due to the Coulomb interaction between the two electrons on one site. In this simple
model, we have replaced the long range Coulomb potential proportional to 1 /7 with its leading
term, an on-site Coulomb repulsion U. More realistic models would have to take higher order
terms into account but already such a simple consideration leads to very rich physics. We can
see from Fig. 13.5 that electronic conductivity is connected with charge fluctuations and that
such charge transfer costs energy, where U is typically of the order of 1 or 10eV. Only if the
gain in kinetic energy due to the hopping ¢ is larger than the penalty in potential energy U can
we expect metallic behavior. If the sodium atoms are now being separated more and more, the
intra-atomic Coulomb repulsion U will maintain its value while the hopping matrix element ¢,
which depends on the overlap of the wave functions, will diminish. At a certain critical value
of the lattice parameter a, potential energy will win over kinetic energy and conductivity will
be suppressed. This is the physical principle behind the Mott transition.

More formally, this model can be cast into a model Hamiltonian, the so-called Hubbard model
[18]. In second quantization of quantum-field theory, the corresponding Hamiltonian is

Ho=—tY (el +eleie) + U hyphy, (13.1)

Jlo J

where the operator &EU creates an electron in the atomic orbital ®(r — R ;)| o). The first term is

nothing but the tight-binding model of band structure (in second quantization), where ¢ is the
hopping amplitude depending on the overlap of the wavefunctions from nearest-neighbor atoms
at R; and R:

2
e
t= O(r — — _®P(r— dr. 13.2
/ (r Rl)47r50|r—R2| (r— Ry) dr (13.2)
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It describes the kinetic energy gain due to electron hopping.

The second term is the potential energy due to doubly-occupied orbitals. Here, 71, = 6;06]@, is
the occupation operator of the orbital ®(r — R;)|o) and U is the Coulomb repulsion between
two electrons in this orbital,

2| _ NE [} — I
U:/6| (ri — Ry)|"|®(r2 — Ry)| dry drs, (13.3)

471'50 |I‘1 — I'2|

The Hubbard model is a so-called lattice frmion model, since only discrete lattice sites are be-
ing considered. Itis the simplest way to incorporate correlations due to the Coulomb interaction
since it takes into account only the strongest contribution, the on-site Coulomb interaction. Still
there is very rich physics contained in this simple Hamiltonian like the physics of ferromagnetic-
or antiferromagnetic metals and insulators, charge- and spin density waves and so on [18]. A
realistic Hamiltonian should contain many more inter-site terms due to the long-range Coulomb
interaction likely to contain additional new physics.

E4
1. Hopping processes with @ @ - O . : I /
transition between
Hubbard-bands neutr_al._- neutral
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(— change of Coulomb
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neutral neutral!

_
2. Hopping process without @ @ ! - UHB

i upper Hubbard band
transiion . ?eutral neutral

(same Coulomb-energy): £
@ Q - O @ LHB
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3. Forbidden hopping processes: @ @ @ @

Fig. 13.6: Illustration o fhopping processes between neighboring atoms together with their
corresponding energy scales.

The most direct consequence of the on-site Coulomb interaction is that additional so-called
Hubbard bands are created due to possible hopping processes, illustrated in Fig. 13.6: The first
row shows hopping processes involving a change of the total Coulomb energy. The second
row shows hopping processes without energy change. The last row shows hopping processes
forbidden due to the Pauli principle (here, the spin enters the model, giving rise to magnetic
order). From Fig. 13.6 we can identify two different energy states. Configurations for which
the on-site Coulomb repulsion comes into play have an energy which is higher by the on-site
Coulomb repulsion U as compared to such configurations where the electrons are not on the
same atom. In a solid these two energy levels will broaden into bands (due to the delocalization
of the electrons on many atoms driven by the hopping matrix element ), which are called
the lower Hubbard band and the upper Hubbard band. If these bands are well separated, i.e.
the Coulomb repulsion U dominates over the hopping term ¢, we will have in insulating state
(only the lower Hubbard band is occupied). If the bands overlap, we will have a metallic state.
Note that lower and upper Hubbard band are totally different from the usual band structure
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of solids as they do not arise due to the interaction of the electrons with the atomic cores but
due to electronic correlations. As a result the existence of the Hubbard bands depends on the
electronic occupation: the energy terms for simple hopping processes depend on the occupation
of neighboring sites. The apparently simple single electron operator gets complex many body
aspects.

Cubic Cell a, orthorhombic setting
(. g. CaTiO,) axb~.2 agc~2a,

Distorted Perovskites

Fig. 13.7: Perovskite structures. The A-site atoms are shown as spheres, octahedra have Mn (or
Ti) at their center and O at their corners. Le f: Ideal (cubic) structure. Middle: cubic structure
in orhorhombic setting. Right: distorted structure with rotated and tilted oxygen octahedra.

13.4 Complex ordering phenomena: perovskite manganites
as example

The correlation-induced localization leads to atomic-like electronic degrees o f feedom that can
(because the possible hopping of electrons between sites means that different sites interact with
one another) order in complex ways. The electronic degrees of freedom include charge (or ion
valence), orbital (which atomic orbitals are occupied, what is the shape of the electron cloud),
and magnetic moment. In the following we will discuss these ordering processes, taking as
an example, because of their particularly simple basic structure, perovskite manganites (see
e.g. [19]). Their stoichiometric formula is A, _, B,MnQOj3, where A is a trivalent cation (e.g. A =
La, Gd, Tb, Er, Y, Bi) and B is a divalent cation (B =Sr, Ca, Ba, Pb). The doping with divalent
cations leads to a mixed valence on the manganese sites. In a purely ionic model (neglecting
covalency) charge neutrality requires that manganese exists in two valence states: Mn*" (elec-
tronic configuration [ Ar]3d*, note that the 4s electrons are lost first upon positive ionization in
a solid; the reason is that the 4s orbitals have electron density extending much further from the
nucleus, which leads to a Coulomb penalty given nearby negative ions) and Mn*" ([Ar]3d?)
according to the respective doping levels: A;_,B,MnO; — [ A7" BZ"|[Mn{* Mn,"| O3 .
The structure of these mixed valence manganites is related to the perovskite structure (Fig.
13.7). Perovskite CaTiOg3 is a mineral, which has a cubic crystal structure, where the smaller
Ca®" metal cation is surrounded by six oxygen atoms forming an octahedron; these corner shar-
ing octahedra are centered on the corners of a simple cubic unit cell and the larger Ti** metal
cation is filling the interstice in the center of the cube. This ideal cubic perovskite structure is
extremely rare. It only occurs when the sizes of the metal ions match to fill the spaces be-tween
the oxygen atoms ideally. Usually there is a misfit of the mean ionic radii of the A and B ions,
which leads to sizeable tilts of the oxygen octahedra, described in larger cells (see Fig. 13.7).
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These tilt distortions are, however, not important for the following general considerations of the
electronic degrees of freedom.

Mn3* ion: [Ar]3d4

free ion cubic Jahn-Teller
environment  distortion

Fig. 13.8: Energy level diagram fr a Mn®* ion in an oxygen octahedron. For the fee ion, the
fwe 3d electron levels are degenerate. They split in a cubic environment into ty, and e, levels.
If Hunds’ rule coupling is stronger than crystal feld splitting, a high-spin state results. The
degeneracy o fthe e level is li fed by a Jahn-Teller distortion resulting in an elongation o fthe
oxygen octahedra. On the right o fthe figure, the a basis set o f5 real 3d orbitals are depicted.

For an isolated manganese, or other transition metal, ion, the electrons are filled into the five
d orbitals according to Hund's rules. The first, and dominant, Hund rule implies that electrons
tend to maximize their total spin S = ) ;84> avoiding in particular double occupation of any
d orbital. In other words, the electrons occupy the orbitals in such a way that the spins of all
electrons are parallel as far as the Pauli principle permits. This is a consequence of the intra-
atomic Coulomb repulsion between electrons, in particular the exchange contribution to the
Coulomb repulsion. The energy gained by fulfilling the first Hund rule is called the Hund’s rule
energy Jy. The second Hund rule, originating from direct intra-atomic Coulomb repulstion,
states that the total angular momentum L is maximized, as far as consistent with the first Hund
rule, i.e. orbitals are filled from high to low angular momentum. Finally, the third Hund rule, due
to spin-orbit coupling, states that total spin and orbital momentum are (anti-)parallel for more
(less) than half-filled shells. For the manganites the octahedral surrounding of the Mn ions leads
to so-called crystal feld e fects. To explain these we stay in the ionic model and describe the
oxygen atoms as O~ ions. The outer electrons of the Mn ions, the 3d electrons, experience the
electric field created by the surrounding O%~ ions of the octahedral environment. This so-called
crystal field leads to a splitting of the electronic levels by the crystal field as depicted in Fig.
13.8: The 3d orbitals with lobes of the electron density pointing towards the negatively charged
oxygen ions (322 — r? and ? — y*; so-called e, orbitals) will have higher energies compared to
the orbitals with the lobes pointing in-between the oxygen atoms (zx, yz, and zy; so-called 25,
orbitals). For the manganites this crystal-field splitting is typically ~ 2 eV. If we now consider a
Mn?* ion, how the electrons will occupy these crystal field levels depends on the ratio between
the crystal-field splitting and the intra-atomic exchange Jy: If the crystal field splitting is much
larger than Hunds’ coupling, a low-spin state results, where all electrons are in the lower 25,
level and two of these t,, orbitals are singly occupied and one is doubly occupied. Due to the
Pauli principle the spins in the doubly occupied orbital have to be antiparallel, giving rise to
a total spin S = 1 for this low-spin state. Usually, however, in the manganites Hunds’ rule
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coupling amounts to ~ 4 eV, stronger than the crystal field splitting. In this case the high spin
state shown in Fig. 13.8 is realized, where four electrons with parallel spin occupy the three 25,
orbitals plus one of the two e, orbitals. The high spin state has a total spin of S = 2 and the
orbital angular momentum is quenched, i.e. L = 0. This state has an orbital degree of freedom:
the e, electron can either occupy the 32% — 72 or the 22 — y? orbital. The overall energy can
(and thus will) be lowered by a geometrical distortion of the oxygen octahedra that shifts the
eq levels, lifting their degeneracy. This so-called Jahn-Teller e flect (Fig. 13.8) further splits the
d-electron levels. For the case shown, the c-axis of the octahedron has been elongated, thus
lowering the energy of the 322 — 72 orbital with respect to the energy level of the 22 — y? orbital.
The Jahn-Teller splitting in the manganites has a magnitude of typically ~ 0.6 eV.
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Fig. 13.9: Left: Orbital order in LaMnOs. Below the Jahn-Teller transition temperature of
780 K, a distinct long range ordered pattern o fJahn-Teller distortions o fthe oxygen octahedra
occurs leading to orbital order o fthe e, orbitals o fthe Mn** ions as shown. Also shown is the
anti erromagnetic spin order which sets in below the Néel temperature T ~ 145 K. Oxygen
atoms are represented by filed circles, La is not shown. Center: Distinct spin order o fCaMnQOs.
Right: Charge-, orbital- and spin-order in hal fdo ped manganite Laj s Srot MnytMn2tOs.

The Jahn-Teller effect demonstrates nicely how in these transition metal oxides electronic and
lattice degrees of freedom are coupled. Only the Mn®* with a single electron in the e, orbitals
exhibits the Jahn-Teller effect, whereas the Mn** ion does not. A transfer of charge between
neighboring manganese ions is accompanied with a change of the local distortion of the oxygen
octahedron: a so-called lattice polaron. Due to the Jahn-Teller effect, charge fluctuations and
lattice distortions become coupled in these mixed-valence oxides.

Having explained the Jahn-Teller effect, we can now introduce an important type of electronic
order occurring in these materials: orbital order. Consider the structure of LaMnOs: All man-
ganese are trivalent and are expected to undergo a Jahn-Teller distortion. In order to minimize
the elastic energy of the lattice, the Jahn-Teller distortions on neighboring sites are correlated.
Below a certain temperature 71 ~ 780 K, a cooperative Jahn-Teller transition takes place, with
a distinct pattern of distortions of the oxygen octahedra throughout the crystal lattice as shown
in Fig. 13.9 left. This corresponds to a long-range orbital order of the e, electrons, not to be
confused with magnetic order of an orbital magnetic moment. In fact, the orbital magnetic mo-
ment is quenched, i.e. totally suppressed, by the crystal field surrounding the Mn3* ions (this
is always the case for non-degenerate states with real wave functions because such functions
have pure-imaginary expectation values for an angular momentum operator). Orbital ordering
instead denotes a long-range ordering of an anisotropic charge distribution around the nuclei.
As the temperature is further lowered, magnetic order sets in at Ty ~ 145 K. In LaMnOj3 the
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spin degree of freedom of the Mn>* ion orders antiferromagnetically in so-called A-type order:
spins within the a-b plane are parallel, while spins along c are coupled antiferromagnetically.
The depicted antiferromagnetic ordering results from a complex interplay between structural-,
orbital- and spin degrees of freedom and the relative strengths of the different coupling mecha-
nisms in LaMnQs, as can be seen by comparing with the different magnetic order of CaMnQOs,
which does not have an orbital degree of freedom (Fig. 13.9 center).

Zero Field
B

Magnetoresistance
. 100

Laj_»SryMnO3

Resistivity (107 Qcm)

Resistivity (Qcm)

0o 200 200
Temperature (K)

0 700 200 800 400 500
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Fig. 13.10: Resistivity in the La,_,Sr,MnQOj3 series [20]. Left: resistivity in zero feld pr
various compositions fom x = 0 to x = 0.5. Right: resistivity or x = 0.15 in diferent
magnetic felds H, and magnetoresistance, de fned as the change in resistivity relative to its
value or H = 0. Reprinted with permission from [20]. © 1995 by the American Physical
Society.

Doped manganites are even more complex, because the charge on the Mn site becomes an
additional degree of freedom due to the two possible manganese valances Mn?* and Mn**.
In order to minimize the Coulomb interaction between neighboring manganese sites, so-called
charge order (or ion valence order) can develop. This is shown for the example of half-doped
manganites in Fig. 13.9 on the right: These half-doped manganites show antiferromagnetic spin
order, a checkerboard-type charge order with alternating Mn?* and Mn?" sites and a zig-zag
orbital order of the additional e, electron present on the Mn®* sites. This is only one example
of the complex ordering phenomena that can occur in doped mixed valence manganites. These
ordering phenomena result from a subtle interplay between lattice-, charge-, orbital-, and spin
degrees of freedom and can have as a consequence novel phenomena and functionalities such
as colossal magnetoresistance.

How are these ordering phenomena related with the macroscopic properties of the system? To
answer this question, let us look at the resistivity of doped Lanthanum-Strontium-Manganites
( Fig. 13.10): The zero field resistance changes dramatically with composition. The z = 0
compound shows insulating behavior: the resistivity p increases with decreasing temperature 7.
The higher doped compounds, e.g. = = 0.4, are metallic with p(7") decreasing. Note, however,
that the resistivity of these compounds is still about three orders of magnitude higher than for
typical good metals. At an intermediate composition z = (.15, the samples are insulators at
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higher 7" down to about 250 K, then a dramatic drop of the resistivity indicating an insulator-
to-metal transition and again an upturn below about 210 K with typical insulating behavior.
The metal-insulator transition occurs at the temperature where ferromagnetic long-range order
sets in. Around this temperature we also observe a very strong dependence of resistivity on
external magnetic field. This is the so-called colossal magnetoresistance effect. In order to
appreciate the large shift in the maximum of the resistivity curve with field (Fig. 13.10 right)
one should remember that the energy scales connected with the Zeeman interaction of the spin
;— electron in an applied magnetic field are very small: the energy equivalent of 1 Tesla for a
spin ;— system corresponds to 0.12 meV, which in turn corresponds to a temperature equivalent
of 1.3K. The strong dependence of the resistance on an external field is partly due to the
so-called double exchange mechanism: the electron hopping from Mn3* to Mn** (associated
with metallicity) can occur only if the ¢, spins are parallel, which is automatically fulfilled
(only) in the ferromagnetic state. This phase competition and consequent tunability by external
parameters, such as temperature and field, is typical for correlated-electron systems.

It is clear that our entire discussion starting from ionic states is only a crude approximation
to the real system. Therefore we now have to pose the question how can we determine the
true valence state? Or more general, which experimental methods exist to study the complex
ordering and excitations of the charge-, orbital-, spin- and lattice- degrees of freedom in these
complex transition metal oxides?

13.5 Probing correlated electrons by scattering methods

[hho] [r..u.]

[001] [r.).u.] [001] [r.l.u.]

Fig. 13.11: Polarized single crystal neutron diffraction on LuFe;0,. The (%%f} line of spin
and charge order superstructure re fections is shown. Le f: magnetic re fections in the spin- fip
channel (top) and charge order re fections in the non-s pin- fi p channel (bottom) at 220 K. Right:
di ffise scattering in the spin- fi p channel at two temperatures above Ty, revealing short-range
magnetic correlations [21 ].

How can these various ordering phenomena be studied experimentally? Obviously we need
probes with atomic resolution, which interact with the spins as well as with the charges in the
system. Therefore neutron and x-ray scattering are the ideal microscopic probes to study the
complex ordering phenomena and their excitation spectra. The lattice and spin structure can be
studied with neutron diffraction from a polycrystalline or single crystalline sample as detailed
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Table 13.1: R, values o fcation-oxygen bonds [22] in manganese perovskites needed pr the
bond valence calculation (13.4).

in chapter 8 of this course, “Structural analysis”. Fig. 13.11 shows as an example of more recent
research on a material with more complex (rhombohedral) crystal structure polarized neutron
diffraction on a single crystal of LuFe,O,4, a once-proposed charge-order-based multiferroic.
Periodic arrangements of spins and/or Fe valence states in this material can be described by
an enlarged cell, which corresponds to a smaller cell in reciprocal space and therefore leads
to the emergence of superstructure re fections between the main nuclear reflections. Magnetic
reflections in the spin-flip channel yield the spin structure, while the charge-order reflections
show up in the non-spin-flip channel (c.f. chapter 7). For charge order and small structural
distortions complementary synchrotron x-ray diffraction data is often useful because of the
higher achievable g-resolution. It is beyond the scope of this lecture to discuss the experimental
and methodological details of such a structure analysis or to present detailed results on specific
model compounds. For this we refer to the literature, e.g. [21]. For the above example, we
just want to mention that the refinement of spin and charge order showed strong spin-charge
coupling, but the absence of a polar charge order, negating the proposed multiferroicity. At first
sight it might be surprising that neutron diffraction is able to give us information about charge
order. We have learnt in the introductory chapters that neutrons interact mainly through the
strong interaction with the nuclei and through the magnetic dipole interaction with the magnetic
induction in the sample. So how can neutrons give information about charge order? Obviously
charge order is not determined directly with neutrons. However, the length of the transition
metal-oxygen bond will depend on the charge (valence state) of the transition metal ion. The
higher the positive charge of the transition metal, the shorter will be the bond to the neighbor-
ing oxygen, just due to Coulomb attraction. This qualitative argument can be quantified in the
so-called bond-valence sum. There is an empirical correlation between the valence V; of an ion
and the bond lengths 1?;; to its neighbors:

Ro—R;j

Vi=) sy=Vi=> e 7 . (13.4)
i ¥

Here, the R;; are the experimentally determined bond lengths, B = 0.37 is a constant, and R
are tabulated values for the cation-oxygen bonds, see, e.g., [22]. Table 13.1 reproduces some of
these values. The sum over the partial “bond-valences” s;; gives the valence state of the ion.

Even though this method to determine the valence state is purely empirical, it is rather precise
compared to other techniques. The values of the valences found with this method differ signif-
icantly from a purely ionic model. Instead of integer differences between charges on different
transition metal ions, one finds more likely differences of a few tenth of a charge of an electron,
though rare exceptions, where near-integer valence differences were observed, exist [23].
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Fig. 13.12: Anisotropic anomalous x-ray scattering jor a hypothetical diatomic 2D compound.
Left: Reconstruction o fthe charge distribution fom a laboratory x-ray source, sensitive mainly
to the spherical charge distribution and corresponding unit cell (white lines). Middle: Prin-
ciples o fresonance x-ray scattering in an energy level diagram (see text). Right: Charge dis-
tribution deduced from such an anomalous x-ray scattering experiment. An orbital ordering
pattern is apparent, which could not be detected with non-resonant x-ray scattering. The evi-
dently larger unit cell gives rise to superstructure re fections (at resonance).

Just like charge order, orbital order is not directly accessible to neutron diffraction since orbital
order represents an anisotropic charge distribution and neutrons do not directly interact with the
charge of the electron. However, we have seen in the discussion of the Jahn-Teller effect (Figs.
13.8 and 13.9) that an orbital order is linked to a distortion of the local environment visible
in different bond lengths within the anion complex surrounding the cation. Thus, by a precise
determination of the structural parameters from diffraction, one can determine in favorable cases
the ordering patterns of all four degrees of freedom: lattice, spin, charge and orbitals.

Is there a more direct way to determine charge- and orbital order? The scattering cross section
of x-rays contains the atomic form factors, which are Fourier transforms of the charge den-
sity around an atom. Therefore, one might think that charge and orbital order can be easily
determined with x-ray scattering. However, as discussed in the last paragraph, usually only a
fraction of an elementary charge contributes to charge- or orbital ordering. Consider the Mn
atom: the atomic core has the Ar electron configuration, i.e. 18 electrons are in closed shells
with spherical charge distributions. For the Mn** ion, three further electrons are in ¢y, levels.
Since in scattering, we measure intensities, not amplitudes, these 21 electrons contribute 2127"3
to the scattered intensity (the classical electron radius 7y is the natural unit of x-ray scattering).
If the difference in charge between neighboring Mn ions is 0.2 e, this will give an additional
contribution to the scattered intensity of 0.22r2. The relative effect of charge order in x-ray
scattering is therefore only a tiny fraction %%2 ~ 1074, even ignoring that scattering from all
other atoms makes the situation worse. There is, however, a way to enhance the scattering from
non-spherical charge distributions, the so-called anisotropic anomalous x-ray scattering, first
applied for orbital order in manganites by Murakami et al. [24]. The principle of this technique
is depicted in Fig. 13.12, showing scattering from a hypothetical diatomic 2D compound. Non
resonant x-ray scattering is sensitive mainly to the spherical charge distribution. A reconstruc-
tion of the charge distribution done from such an experiment might look schematically as shown
on the left. The corresponding crystal structure can be described with a primitive unit cell (white
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lines). To enhance the scattering from the non-spherical part of the charge distribution, an ex-
periment can be done at a synchrotron source, with the energy of the x-rays tuned to the energy
of an absorption edge (middle). Now, second order perturbation processes can occur, where
a photon induces virtual transitions of an electron from a core level to empty states above the
Fermi energy and back with re-emission of a photon of the same energy. As second-order per-
turbation processes have a resonant denominator, this scattering will be strongly enhanced near
an absorption edge. If the intermediate states in this resonant scattering process are somehow
connected to orbital ordering, scattering from orbital ordering will be enhanced. Thus in the
resonant scattering experiment, orbital order can become visible as indicated on the right. With
the shown arrangement of orbitals, the true primitive unit cell of this hypothetical compound is
obviously larger than the unit cell that was deduced from the non resonant scattering experiment
(left), which was not sensitive enough to determine the fine details of the structure. An increase
of the unit cell dimensions in real space is connected with a decrease of the distance of the
reciprocal lattice points, leading to additional su perstructure re fections. The intensity of these
reflections has the strong energy dependence expected for a second-order perturbation process.
This type of experiment is called anisotro pic anomalous x-ray scattering, because it is sensitive
to the anisotropic charge distribution around an atom.

So far we have discussed some powerful experimental techniques to determine the various
ordering phenomena in complex transition metal oxides. Scattering can give much more in-
formation than just on the time averaged structure. Quasi-elastic diffuse scattering gives us in-
formation on fluctuations and short range correlations persisting above the transitions, e.g. short
range correlations of polarons, magnetic correlations in the paramagnetic state (Fig. 13.11), lo-
cal dynamic Jahn-Teller distortions etc. Studying these correlations and fluctuations helps to
understand what drives the respective phase transitions into long-range order. The relevant
interactions, which give rise to these ordering phenomena, can be determined from inelastic
scattering experiments as learnt in the chapter “Inelastic neutron scattering”. For example, in a
new class of iron-based high-temperature superconductors, the involvement in Cooper pairing
of lattice vibrations or alternatively magnetic fluctuations is controversial, and both of these can
be probed in-depth by inelastic neutron scattering (see, e.g., [25]). Since there is a huge amount
of scattering experiments on highly correlated transition metal oxides and chalcogenides, a re-
view of these experiments definitely goes far beyond the scope of this introductory lecture.
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13.6 Summary
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freedom

High | | sensitivity

Novel functionalities
Colos. Magnetores.CMR,
High Tc Supercond. HTSC
negative thermal expans.
Multiferroicity, ...

2

oq U= mI

Fig. 13.13: Illlustration o fcomplexity in correlated electron systems. H, E: magnetic and elec-
tric feld, respectively; ji: chemical potential (doping); T': temperature; P: pressure; o: strain
(epitaxial growth); d: dimensionality (e.g. bulk versus thin fim systems); CO: charge order;
0O0: orbital order; SO: spin order; JT: Jahn-Teller transition.

This chapter gave a first introduction into the exciting physics of highly correlated electron
systems, exemplified by transition metal oxides and chalcogenides. The main message is sum-
marized in Fig. 13.13. The complexity in these correlated electron systems arises from the
competing degrees of feedom: charge, lattice, orbit and spin. The ground state is a result
of a detailed balance between these different degrees of freedom. This balance can be easily
disturbed by external fields or other thermodynamical parameters, giving rise to new ground
states or complex collective behavior. Examples are the various ordering phenomena discussed,
Cooper pairing in superconductors, so-called spin-Peierls transitions in 1D systems etc. This
high sensitivity to external parameters as well as the novel ground states of the systems gives
rise to novel functionalities, such as the colossal magnetoresistance effect, high temperature
superconductivity, multiferroicity, and many more. A theoretical description of these com-
plex systems starting from first principles, like Schrodinger equation in quantum mechanics or
the maximization of entropy in statistical physics, is bound to fail due to the large number of
strongly interacting particles. Entirely new approaches have to be found to describe the emer-
gent behavior of these complex systems. Therefore highly correlated electron systems are a
truly outstanding challenge in modern condensed matter physics. We have shown in this lecture
that neutron and x-ray scattering are indispensable tools to disentangle this complexity experi-
mentally. They are able to determine the various ordering phenomena as well as the fluctuations
and excitations corresponding to the relevant degrees of freedom. No other experimental probe
can give so much detailed information on a microscopic level as scattering experiments.
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Exercises

Note: « indicates an increased difficulty. Solve the easier problems first.

E13.1 Electronic structure and Mott transition

a) In modeling the electronic structure of crystalline solids, what is the typical starting assump-
tion to separate the electronic structure from the lattice dynamics, and why does it work?

b) In which of the three simplest models of electrons in a solid are the electronic correlations
taken into account at least approximately?

¢) Neglecting electronic correlations, would you predict NaCl to be an insulator or a metal?
Why?

d) The competition of which two contributions to the total energy of the electrons is crucial
for the Mott-transition? Which further contributions to the total energy are neglected in the
simplest model?

e) Assume that a particular material is a Mott-insulator, but just barely so (i.e. the relevant
energy contributions are almost equal). What would you predict to happen when sufficiently
high pressure is applied, and why?

E13.2 Electronic ordering in correlated-electron materials
a) List and very briefly explain three “electronic degrees of freedom”, which can become or-
dered.

b) To order of which of the electronic degrees of freedom is neutron scattering directly sensitive,
and to which not?

c¢) For those electronic degrees of freedom, to which neutron is not directly sensitive, neutron
scattering can still be used to deduce an ordered arrangement: How and why? Is there a more
direct scattering method than neutron scattering?

d) » What, if any, connection is there between orbital order and orbital magnetic momentum?

e) = Discuss why electronic correlations favor ordering processes of electronic degrees of free-
dom.

E13.3 Crystal field

Fe has atomic number 26 and in oxides typically has valence states 2+ or 3+.

a) Determine the electronic configuration of free Fe> and Fe®* ions (hint: as for Mn the outer-
most s-electrons are lost first upon ionization).

b) From Hund’s rules determine the values of the spin S, orbital angular momentum L, and total
angular momentum J of Fe?* and Fe3* ions.
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(Hund's rules:

1. S max.
2. L max consistent with 1.

3. J =|L— S| pralessthan halffiled shell,
J =|L+ S| por a more than half filed shell).

¢) x The effective moment p.¢ of a magnetic ion can be determined experimentally by the
Curie-Weiss law, and is given by ieq = gj+/J(J + 1) pup, where the Landé factor is

_?_>+S(S+1)—L(L+1)
=35 27(J +1)

13.5)

Calculate the expected effective moment in units of up of Fe?* and Fe®' ions, i) assuming S,
L, and J as determined in b) and ii) setting L. = 0 (‘quenched orbital momentum’). Compare
with the experimental values of ~ 5.88 up for Fe3* and ~ 5.25 — 5.53 up for Fe?*.

d) = The negatively charged oxygen ions surrounding the Fe ions in an oxide solid influence
the energy of the different orbitals. Plot the expected energy level diagram for the case of an
octahedral environment of nearest-neighbor O?~ (corresponding to the example in the lecture).
How does the total spin moment of Fe?* change between weak and strong crystal field splittings
(relative to intra-atomic “Hund’s” exchange)?

e) (optional) « In a tetrahedral environment the energy levels of the orbitals are reversed com-
pared to an octahedral environment. Determine the spin moment of Fe? in a tetrahedral en-
vironment with strong crystal field splitting. Is an orbital angular momentum possible in this
case?

E13.4 Orbital and Magnetic order in LaMnQO; (Optional!)

The orbital and magnetic order in LaMnQOy is sketched in Fig. 13.9 (page 11 of the chapter) on
the left. One crystallographic unit cell a X b x c is shown.

a) Why is there no charge order in LaMnQO3?

b) What are the smallest unit cells (sketch in relation to the crystallographic cell) that can de-
scribe 1) magnetic order, ii) % orbital order (Hint: consider also centered cells, where the cen-
tering symmetry is broken by the orbital order), iii) both magnetic and orbital order.

¢) Make a plot of reciprocal space in the a*-c*-plane indicating the positions, where you expect
nuclear, orbital, and magnetic Bragg peaks to occur.

d) = As c), but for the a*-b*-plane.
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14.1 Introduction

Polymers are one of the most important products of chemical industry. Following Statista [1],
production of plastic increased from 1950 to 2020 by a factor more than 200. Production in
2020 decreased by roughly 0.3 percent compared with the previous year due to COVID-19’s
impacts on the industry. The 2018 sales of chemicals in Europe is given in Fig. 14.1 Among
these products polymers are on the third rank. Thus, polymers are indeed a very important
commodity.

This chapter aims to identify general principles of polymer chain structure and motion on
a molecular scale which sustain macroscopic properties. In particular, recent concepts and
experimental results on these structural peculiarities and mobility mechanisms will be pre-
sented. The general models of structure and dynamics of polymer chain will be derived.

14.2 Macroscopic properties of polymers

In this section the main macroscopic properties of polymers are described. Connection be-
tween the hierarchy of the microscopic structure and dynamics and the viscoelasticity are
demonstrated.

14.2.1 Viscoelasticity

Dynamic processes in polymers occur over a wide range of length and time scales. Fig. 14.2
relates the dynamic modulus, as it may be observed on a polymer melt, with the length and
time scales of molecular motion underlying the rheological behaviour. Our example deals
with an amorphous polymer excluding any crystallization processes. It is clear, that we can
distinguish several different regimes. At low temperatures the material is in a glassy state
and only small amplitude motions like vibrations, short range rotations or secondary relax-
ations take place. At the glass transition temperature 7, the primary relaxation («-relaxation)
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Fig. 14.2: Schematic presentation o fthe Young's modulus ofa polymer melt as a finction of
temperature. The sketches below symbolise the types o fmotions that give rise to the macro-
scopic behaviour.

becomes active allowing the system to flow. The time range over which this relaxation takes
place easily covers more than ten orders of magnitudes in time. The following rubbery
plateau in the modulus relates to large scale motions within a polymer chain. Two aspects
stand out. The first is the entropy driven relaxation of out of equilibrium fluctuations, sec-
ondly these relaxations are limited by confinement effects caused by the mutually interpene-
trating chains. As we shall see later, this confinement is modelled most successfully in terms
of the reptation model that was developed by de Gennes. Finally, when the chain has lost
the memory of its confined state, liquid flow sets in. That is characterised by the centre of
mass diffusion of the chain. Depending on the molecular weight, the characteristic length
scales from the motion of a single bond to the overall chain diffusion may cover about three
orders of magnitude, while the associated time scales may stretch over more than ten or-
ders. Fig. 14.3 quantifies this behaviour on the example of the real and imaginary part of
the dynamic modulus which is plotted as a function of frequency covering about ten orders
of magnitude. The parameter for the different curves is the molecular weight: the larger the
molecular weight, the broader the spectrum of the modulus. Looking on the real part G we
realise a plateau in frequency that enlarges with increasing molecular weight. In this regime
the polymer liquid responses elastically like a rubber. Only at low frequencies we see the
transition to liquid like flow. Likewise the imaginary part G, that describes the dissipative
behaviour of the melt, exhibits a maximum where the liquid flows sets in. At this point a
transition from elastic to liquid like behaviour occurs. The dynamic modulus displays the
viscoelastic properties of polymer melts. In a certain frequency range the elastic behaviour
prevails while in others we deal with typical liquid like behaviour.

14.2.2 Viscosity and diffusion

Polymer melts are characterised by universal power laws in the molecular weight dependence
of viscosity and diffusion. Fig. 14.4 presents the molecular weight or chain length depen-
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dence of the melt viscosity for a number of different polymers in a double logarithmic plot.
In all cases the viscosity shows two different power law regimes. At low molecular weight
the viscosity increases proportional to molecular weight, while above a critical molecular
weight M., the viscosity increases dramatically with M following a power law with an ex-
ponent of about 3.4. Thus, with increasing chain length a polymer melt becomes very tough
and viscous. Likewise, the molecular weight dependence of the translational diffusion coef-
ficient of a polymer in a melt is characterized by two different power law regimes Fig. 14.4.

This is shown in Fig. 14.4, where the inverse diffusion coefficient is displayed as a function
of molecular weight in a double logarithmic form. Again, at low molecular weight Mw
we realize a linear dependence while at higher molecular weight the diffusion coefficient
is inversely proportional to the square of the molecular weight. These earlier results by
Persson et al [4] were later modified by more precise experiments revealing a power law
M, *? instead of M, ? for the molecular weight dependence of the diffusion coefficient [5].
In the following we will now ask for a molecular understanding of this peculiar behavior of
polymer melts. We will go through a hierarchy of models that will let us understand, why
long chain molecules exhibit the shown dynamical features.

14.3 Models of polymer dynamics

In this chapter the structure and dynamics of polymer chain is discussed. We focus on the
conformation of linear polymer chain and discuss the importance of different topologies. The
standard models of polymer dynamics will be presented by the Rouse model for non inter-
acting chains and reptation model for the long chains with intermolecular interactions (entan-
glements). Neutron scattering study allows to study the microscopic structure and dynamics
of polymer chains based on the existing theories.

14.3.1 Conformation of polymer chain

A polymer is a chain of several polyatomic units called monomers covalently bonded to-
gether. Since virtual all kinds of molecules can act as a monomeric unit, thereby only dif-
fering in the ways in which they can be bound together, a wealth of synthetic and naturally
occurring polymers with enormous diversity in properties is nowadays known. We mention
e.g. proteins, DNA, glass, thermoplasts and rubber. They all belong to the class of poly-
mers. Given their importance, an adequate description of model polymers has become a
prerequisite. This brief summary serves to introduce the reader to some of the basic models
with respect to scattering. The simplest descriptions of single-molecule models can then be
expanded to cyclic, branched or another topology of polymers with some minor changes.

Polymers can often be imagined as spaghetti-like or coiled molecules. Their stiffness varies
from very flexible to rigid in the case of rods. Their configuration i.e their spatial distribution
of monomer units (segments) changes all the time as the result of brownian dynamics which
therefore leads to an enormous amount of possible configurations itself. The motion and
dynamics of polymers will be discussed at full length in the session on polymer dynamics
below. Here, we will stick to the determination and static investigation of their time-averaged
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Fig. 14.5: A feely jpined chain and de funitions: end-to-end distance R.., gyration radii R,
segment vector 7 and S—; is a vector between the segment and centre-o fmass (c.o.m.).

structures. The simplest model to deal with is the freely jointed chain (FJC). An example
for such a configuration is shown in Fig. 14.5 and illustrates the idea that polymer chains
consisted of equivalent segments are performing random walks. With this, the ensemble of
systems can be characterized by average quantities. One is the so-called end-to-end vector

—
Ree=>»_ T (14.1)
=1
and its square
N
R => 7T (14.2)

i,7=1

which is the scalar quantity. /V is a number of segments in polymer chain. The bond vector
length (or step) | 77|, connecting 2 atoms is [ .

A further important parameter which has its counterpart in classical mechanics is the radius
of gyration R,:

1
R2=——) 3° (14.3)

where the vectors & are the distance vectors with respect to the center of mass, ﬁmm. with

N
ﬁc.o.m. = %Zﬁ (1 44)

1=0

Averaging over all conformations in formulas (14.1)-(14.4) leads for the case of a fully FJC
to a mean square end-to-end distance of

N N
(R%) =D _(775) = NP+ 2) (77)) (14.5)

i,j=1 i<j
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whereas the average end-to-end distance (R..) = 0 due to the ensemble average. With the
help of Lagrange theorem the average radius of gyration (14.3)-(14.4) can be rewritten

(Rg) = mzj}(? - 7)) = Q(JVflT)Q;W?j) (14.6)

2

=72 = (ri;) is a square distance between two segments.

where (77 — 75
Now the calculation of the end-to-end distance which characterizes the size of a chain and
constitutes the diameter of a hypothetical sphere including the full chain, can be performed
for different chain models. The FJC model assumes an equal probability in all directions of
all bond vectors, random bond rotation angles while keeping the bond length constant. The
orientation of each segment or bond appears in the (14.5) as an angle between two segments:

(7“%) = cos0;; 14.7)
In the FJC model the orientation of each segment is therefore independent of all others and
as a consequence the second term which is the scalar product in (14.5) averages out to zero.
The mean radius of gyration can then be obtained from evaluating the double sum in (14.5)
and using Tfj = (j— 1)l - a result of random walk statistics - becomes

1

(R2) = ZNI* (14.8)
From both end-to-end distance and radius of gyration an important statement which applies
to polymer chain is already observed: the size depends on the square root of the number
of basic steps (number of segments), v/ N. This is a result which has its equivalent in the
random walk statistics where now the position of the segment is replaced by the trajectory of
a randomly-diffusing particle and so the variable becomes the time, v/¢. Further we identify
[ with the size of basic step or segment length in corresponding model.

Compared to ideal chain, real polymer chains are not connected in this freely jointed way.
Instead, bond angles 0,; (14.7) assume well-defined values and correlations between bonds
within the chain as well as from the environment will affect the size. Intuitively it can be
understood that these correlations will vanish with increasing separation distance |i — j|, i. e.
limy;— jj—o(cosf;j) = 0. Also, the flexibility of polymer chains is restricted by the fact that
rotations with the so-called bond rotation angle are enabled within a certain range only due
to steric reasons.

If we take the end-to-end distance determined by FJC model as the reference (14.2) then the
difference to real polymers will be quantified in terms of a parameter which is denoted C'..
This is defined by following equation

(RZ,) = CouNUI? (14.9)

In the case of FJIC (U per definition. Next step to the real chain conformations is the
Freely Rotating Chain (FRC) model in which now valence angles are restricted additionally
but still torsional angles are left free to rotate. A further extension is the chain model with
hindered rotation (HRC) which is better known as the rotational isomeric state model by
Flory (RIS) [6].
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Fig. 14.6: SANS scattering intensity obtained jr a poly(alkylene oxide) polymer and described
by the Debye finction (lines) [12]. On the lef, the Debye curve fts ideally and the high Q-
dependence shows Q2. On the right, the Kratky region ( plateau) is highlighted.

It is worth to mention that the general feature of the above mentioned polymer chain models
is the assumption of constant segment length. In reality the segment length is the fluctuating
value with the statistics governed by a distribution function. This distribution function can be
calculated based on quantum chemistry methods. The distribution of the end-to-end vector is
treated in many text books on statistical physics and will therefore not be repeated here. It
shows that the distribution function p( R) of any intramolecular distance corresponding to N
segments in a single polymer chain follows a Gaussian distribution with

3 3R?
N)= ——exp( - 14.1
HEN) = 5o eXp( 2Nl2> (1410

The size of polymer chain can be measured by various scattering experiments (light scatering,
SAXS, SANS). A scattering volume contains many polymer chains, each with N scatterers
i.e. monomeric units or segments here and with a coherent scattering length b. Their density
is not constant and shows random fluctuations around an average value. This density n;(r) =
1 if the monomer of type i sits at ;. We define average density as (n(r)) = (n) = NVj
where V is a sample volume. The density fluctuation is then An(r) = n;(r) — (n). The
static structure factor S(q) is defined as the density-density correlation function in reciprocal
space (n(—Q)n(+Q)). Thus, for in the system of n, chains, which all have N monomers
with a scattering length b, the coherent scattering intensity can be calculated using:

Q) =237 S (e (18 (k- 7)) = L-5(@) (1411)

v
% a,p=1k,j=1 s

The coherent scattering intensity (14.11) is proportional to the macroscopic differential cross
section per unit volume, 2(Q) = 5—33—6(@). It has dimension [e¢m™!] and is proportional to

the scattering length density (SLD) that will be discussed below.

In the double summations the indices k£ and j are the monomer numbers and symbols « and
B the different chains. 7, is thus the position of the k-th monomer on chain . This can
be rewritten into 2 parts: i.e. the intra-chain scattering is due to the contribution from 2
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monomers on the same chain and an inter-chain part arises in the case that both monomers
are situated on 2 different chains. Since the chains are sufficiently well separated in space
and the phase factor from each chain will be completely uncorrelated, the contribution of
the inter-chain term cancels out on average. This allows us to determine the single chain
structure factor S, (Q):

S1(Q) = 1ﬁ > <exp(i5 (7% — ﬁ-))) (14.12)

k,j=1

Let us now calculate the structure factor for the Gaussian chain, i.e. where all distances
along the chain obey Gaussian statstics (14.10). Then the phase factor in (14.12) can be
transformed to

(exp (T (72 = 7)) = exo (= (@ = 1)) ) = exp( ~ @ (= r)?) - 413)

For the isotropic Gaussian chain

((on = 2% = — %) = (5= 2)%) = (=) = P16 = j° (1414

The form factor P(Q) of single polymer chain is defined as S;(Q)/N and in discrete form
is

N
P(Q) = ]% > exp<—16Q212|k— j\) (14.15)

k,j=1

For the long chains (N — o0) P(Q) is called the Debye function gp(x) with
2
gp(x) = ﬁ(exp(—a:) —1+2x) (14.16)

and the argument z = (QR,)?>. A SANS experiment with fit to the Debye function is pre-
sented in Fig. 14.16 in a linear scale and in the form of a second moment Kratky represen-
tation achieved when gp(z) is multiplied by Q2. The Kratky representation emphasises the
high Q-regime. For Gaussian chains with an asymptotic Q=2 behaviour the high ) regime
then assumes a plateau. As shown the data are in perfect agreement with the Gaussian chain
results derived above.

14.3.2 Rouse model

If we want to describe the motion of a polymer, we could start with the atoms of a polymer
chain and solve Newton’s equations. This asks us to deal with very many variables - already
the simplest polymer chain polyethylene built from CH, units, at a reasonable length of
about a thousand units features already 3 000 atoms. A melt of such chains gets difficult to
treat already for advanced molecular dynamics simulations. We may make a step further and
coarse grain in a way, that we describe the atoms along one bond, in this case the CH, unit
by one entity leading to the unified atom model. In this case, we still have thousand atoms in
one chain. Again we need severe MD simulation in order to solve the problem and we still
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Fig. 14.7: Schematic representation ofthe coarse graining process that leads to the Rouse
model: (a) Polyethylene chain (b) Uni fed atom chain (c) Chain represented by bead and
Springs.

don’t have a model. In order to go further, we have to coarse grain significantly more and
still keep the essentials of the problem (Fig. 10). This is achieved with the Rouse model [7].
Here the polymer chain is described by a sequence of beads and springs where the beads
undergo friction with a heat bath. The springs originate from the chain entropy that prefers a
Gaussian chain conformation. Any deviations from such conformations undergo a restoring
force of harmonic character.

With that we can write down a Langevin equation for the chain segmental motion:

dr, kgT
G = ’;3—2(%+1 — 2 4 Tpt) + [ (1) (14.17)
dr,, 9%r,,
g =tg Tt fn (1) (14.18)

Here (y is the friction of the beat with the heat bath (kpT)/I*> = k is the entropic spring
constant, [ is the segment length and f, (¢) describes the thermal random force acting on
bead “n”. Assuming white noise this equation can be solved exactly (see e.g. [7]). Eq.
(14.18) is the continuous version of (14.17), where the difference term is replaced by the

13 2

second derivative with respect to the now continuous monomer index “n”.

In a formal way the solution of (14.18) is presented in terms of eigenmodes of the chain
that exhibit a wavelength A\, = [N/p along the chain. These eigenmodes are obtained by
a Fourier transformation of the Langevin equation (14.17)-(14.18) with the proper boundary
conditions of force free ends 0r,,/On(n = 0, N) = 0. They turn out as

1
dp(n) = Ncos( pﬁwn) (14.19)

These eigenmodes relax with the characteristic times 7, = Tr/p* where

N212¢,
= = 7yN? 14.20
v (14.20)

. . . . 2 .
is the longest relaxation time also called the Rouse time. 75 = ?% = W17T2 is the segmental

relaxation time where W is the Rouse rate which is related to monomer (bead) friction (.




14.11

Now the motion of the polymer chain can be presented by the relaxation of it’s subsection
(mode “'p”) as the whole chain with the relaxation time 7, = 79(N/p)® At the time 7, the
chain subsection with NV/p monomers moves over its own distance. Thus,

2y QE: 2f Tp :
((rp(p) — rn(0))7) =1 ) l( ) (14.21)

To

Since this (14.21) holds for all p, the chain segments at times shorter than 7 move in a
subdiffusive way. The mean square displacement only increases with the square root of time.
This is a basic prediction of the Rouse model. Performing the full calculation starting from
(14.17)-(14.18) , the final result for the time dependent mean square displacement is:

(2(1)) = \/ 1205 T, (1422)

(o

The segment self correlation function that is measured with quasielastic incoherent neutron
scattering directly accesses this quantity. In Gaussian approximation we have:

Sserf (@) 1) = exp(— %2<r2(t)>) = exp(—DrQ%) exp<— %(QR(QW)
_ ket

Qr(Q) = 126, Q*

(14.23)

The second part of this equation is obtained by inserting of Eq.(14.22). Qg(Q) is the char-
acteristic relaxation rate, that increases with the momentum transfer as Q*.

Even though a clear cut prediction, experimentally the observation of the self correlation
function of a Rouse chain is an important challenge. The necessary resolution at the low
momentum transfers requires, neutron spin echo spectroscopy [8,9]. Here, incoherent ex-
periments are difficult, since incoherent scattering depolarises the neutron beam to a large
extend (2/3 spin flip scattering). Therefore, using a trick the first successful experiments
were carried out. The chemists produced deuterated PDMS where randomly short protonated
sections were copolymerised. These protonated sections in a generally deuterated environ-
ment gave rise to coherent scattering, however, since the scattering from different labels was
uncorrelated the self correlation function was measured.

Fig. 14.9 displays the obtained self correlation function for PDMS [10] in a presentation

where the logarithm of the scattering function is plotted versus (Q2z(Q)t)2, the scaling vari-
able of Eq.(14.23). In this way all the data collapse on one single master curve that according
to Eq.(14.23) should be a straight line. The experimental results beautifully verify the major
prediction of the Rouse model and show that the simple approximation of the bead - spring
model properly accounts for the segmental dynamics of the PDMS chain on the space time
frame investigated.

For the single chain dynamic structure factor, where we look on a labelled e.g. protonated
chain in a deuterated environment, we have to deal with the interference of scattered waves
originating from the different atoms or monomers of the chain. The detailed calculations
are given in reference [11]. The result may be expressed in terms of the Rouse modes Eq.
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(14.19) and the corresponding relaxation times 7, = 7/ p* .

Schain(Q’ t) - ;veXp(CfDRt) Z exp(—%|i - J| Q2l2>

Y]

e — 2RQ° Z ! cos i cos mpj 1—e _tp2
P 3 w2 . & N N P Tp

for small Q (QR.. < 1) the second and third terms are negligible and S pqin(Q, t) describes
the centre-of-mass self diffusion of the chain.

1
Ssetf(@, 1) = 5y Senain( @ 1) = exp (Q°Drgt) (14.25)

(14.24)

For QR.. > 1 and t < 7x the internal relaxation processes dominate. For ¢ = 0 we
have Schain(@Q, 1) = Scnain(Q); i.e. the structure factor corresponds to a snapshot of the
chain structure (14.15)-(14.16). By using a mixture of protonated and deuterated chains,



14.13

Fig. 14.10: Artist’s rendering o fthe virtual tube constituted by the polymer chains surrounding
another.

neutron spin echo (NSE) directly measures the coherent single chain dynamic structure fac-
tor Senain(@, t) that is the spatial Fourier transform of the monomer-monomer dynamic pair
correlation function. As an example, the NSE data for the bulk PDMS melt are shown in
Fig. 14.9.

14.3.3 Reptation theory

Macroscopically the dynamics of long chain polymer melts is characterised by a plateau
regime in the dynamic modulus Fig. 14.3. Thus, there is a frequency or time regime where
a polymer melt responses elastically like a rubber. There, the elastic properties are derived
from the entropy elasticity of the chains between permanent cross links. The modulus of
a rubber is inversely proportional to the mesh size and proportional to the temperature. In
analogy it is suggestive to assume that in a polymer melt entanglements or topological inter-
actions between chains take the role of the rubber cross links. They are supposed to form
a temporary network, which displays the rubber elastic properties. However, other than in
a rubber, for long times the chains may disentangle and the melt flows. Therefore, the dy-
namic modulus decays for long times or low frequencies. Using the analogy to the modulus
of a rubber, we may estimate the distance between entanglement points from the value of
the modulus associated to the plateau, the plateau modulus G%,. For different polymers these
distances come out to be between about 30 and 100 A. On that basis a number of theories
for viscoelasticity have been developed. The most famous of them is the reptation model by
de Gennes [11] and Doi and Edwards [14]. In this model the dominating chain motion is
the reptile like creep along the chain profile. The lateral restrictions by the interpenetrating
chains are modelled by a tube of size d parallel to the coarse grained chain profile. According
to theory d relates to the plateau modulus of the melt.

5 M GY

(14.26)

It has to be noted that this virtual tube is not “tight-fitting” but restricts the motion of a
polymer chain on an intermediate length scale d ~ 5 nm larger than the dimension of a
monomer. Therefore, at short times the restriction is not active and the motion is Rouse-like.
The onset of the tube interaction defines a new intermediate time scale, the entanglement
time 7.. In this simple intuitive model the experimental results for viscosity and diffusion
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Fig. 14.11: Computer simulation o fa bead-and-spring model o fa polymer. Shown are only two
(le f and right picture) o fthe 100 chains o flength 400. 40 con ormations at di ferent times are
superimposed to give an impression o fthe fluctuation o fthe polymer shape [15].

can be immediately understood. The viscosity of a polymer melt is determined by the longest
relaxation time 7, in this model the time which is necessary for a polymer to leave its initial
tube and constitute a new one. Within the tube the chain performs a Rouse diffusion with
Dgr o< N1 The chain has completely left its initial configuration when it has moved by
the contour length L = N/. (Note that here the restriction by the tube enters: It is not the
end-to-end distance v/ N ¢ that counts but the larger arc length.) Thus one expects

770(7,70(L2/DR0<N3 (14.27)

a cubic increase of viscosity with molecular weight. The actual exponent is more like 3.4 in
the experiment (Fig. 14.4(a)) but there are indications that for very large chain lengths the
limit of 3 is attained. In real space the contour of the chain follows a Gaussian random walk,
i.e. during the time 7, it moves by diffusion over a distance comparable to its end-to-end
distance R, o< v/ N. From this one obtains the self-diffusion constant of the whole chain

Do R2/7,oc N72. (14.28)

This result agrees with the example shown in Fig. 14.4(b), but systematic studies show that
the experimental exponent is in general somewhat higher.

Although the explanation of the experimental results by the reptation model is quite satis-
factory, for a real confirmation of the model it is necessary to verify directly the molecular
behaviour. One way to do this is computer simulation. Figure 14.11 shows results from a
bead-and-spring model. Indeed, one can clearly see that the motion of the displayed polymer
molecule is restricted to a tube except for its ends. Nevertheless, this is no true experimental
test because the underlying mathematical model is a gross simplification of the complexity of
a real macromolecule which can only be justified by the universality of large scale dynamics.

A test on real polymers is again possible by the NSE technique. Fig. 14.12 shows results of
polyethylenepropylene (PEP) using a similar mixture of hydrogenated and deuterated poly-
mer as before in Fig. 14.9. It can be seen that the normalised intermediate scattering function
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Fig. 14.12: NSE spectra fom polyethylene propylene at 492 K plotted semilogarithmically and
scaled by the Rouse variable as in Fig. 14.9 [17]. The solid curves are fts with the Ronca
model [16].

Sseif(Q, 1)/ Sserr(Q,0) does not scale with the Rouse variable (14.23). Instead of decreasing
exponentially for long times its value tends to go to a plateau. Fig. 14.13 visualises the con-
cept, that we will now go through as a function of time: (i) At short times ¢ < 7, the chain
will perform unrestricted Rouse motion and the dynamic structure factor for Rouse motion
presented by (14.26) should well describe the dynamics. At short times the tube constrains
are not yet effective. In this way the chain explores the lateral constraints set by the tube.
Density fluctuations of the chain are laterally equilibrated across the tube profile. (ii) Once,
this is achieved further density fluctuations of the labelled chain will only be possible via
Rouse relaxation along the tube. Under such circumstances the structure factor to a first ap-
proximation mirrors the form factor of the tube. The correlations will stay and the scattering
experiments will reveal the size of the topological constraints. (iii)In the creep regime ¢ > 75
the memory of the tube confinement will be gradually lost and the dynamic structure factor
should reveal the fraction of the still confined polymer segments. (iv) Finally in the diffusive
regime the chain reptation diffusion coefficient will be measured.

The reptation model predicts four regimes with different dependences of the mean-square
displacement (MSD) listed in Table 14.1. As long as the MSD is smaller than the tube
diameter, the chain will not ‘feel’ the confinement and its motion will be Rousian, (Ar?) o
/2, For longer times, the chain will continue the Rouse motion but along the contour of the
tube. Because the latter is a random walk the exponent reduces by another 1/2, (Ar?) oc /4,
For t > 7R, the Rouse motion crosses over to diffusion, but still along the tube. So one of the
1/2-s remains, (Ar?) o t'/2. Finally, when this motion reaches the length scale of the chain
size (R.), the motion becomes truly diffusion-like, <Ar2> o t. De Gennes [11] and Doi and
Edwards [14] have formulated tractable analytic expressions for the dynamic structure factor.
Thereby, they neglected the initial Rouse regime i.e. the derived expression is valid only for
t > 7, once confinement effects become important. The dynamic structure factor is composed
from two contributions 5;,. and S.,. reflecting local reptation and escape processes from the
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Fig. 14.13: Schematic presentation o fthe various stages in the time development o fthe single
chain dynamic structure factor. At short times unrestricted Rouse Dynamics time takes place
beyond 7, fuctuations fil the tube; For times larger than T the chain cree ps out o fthe tube.

= const.

time range length scale range mean-square displacement description

e Te co.d (Ar?) oc t1/2 Rouse regime
Te...TR d.../dR. (Ar?) oc t1/4 local reptation
TR... Ty VdR.. .. Re (Ar?) oc t1/? reptation
Ty - Re... (Ar?) oc t diffusion

Table 14.1: Four regimes o fmean-square displacement predicted by re ptation theory. T.: en-
tanglement time, d: tube diameter, Tr: Rouse time, T,: disentanglement time, R.: end-to-end
distance o f polymer chain. Note that this is only an order-o fmagnitude estimate, the actual
time and length limits will additionally contain small dimensionless factors.
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Fig. 14.14: NSE spectra from poly(ethylene oxide) melt (M, = 190 kg/mol) measured at 413K.
[18]

tube.

SChain(Q, t) . Q2d2 Q2d2
m—{l—exp(— 36 )}Szoc+exp<— 36 )Sesc (14.29)

The local reptation part was calculated as

Sm;uxp<%>ak(¢£) (14.30)

With 79 = 36/(W1*Q%) is related to the Rouse rate WW. A general expression for Ses.(Q, t)
due to pure reptation was given by Doi and Edwards [14]. For short times S¢pqin(Q, t) decays
mainly due to local reptation (first term) while for longer times (and low () the second term
resulting from the creep motion is important. The ratio of the two relevant time scales 7
and 7, is proportional to N3. Therefore, for long chains at intermediate times a pronounced
plateau in Spqi,(Q, t) is predicted. Such a plateau is a generic signature for confined motion.

Fig. 14.14 shows the results of NSE experiments on poly(ethylene oxide) chains [18]. It can
be seen directly from the data that the pronounced reptation plateau develops. Description
with the reptation theory results in the value for tube diameter d equal to 46.9 nm.

In order to cure the short comings a number of additional relaxation processes were intro-
duced, that are consistent with reptation. The most prominent among them are contour length
fluctuations (CLF) and constraint release (CR). The CLF effect evolves from the participation
of the chain ends in the local reptation process and is an inherent property of the confined
chain itself. On the other hand constraint release (CR) stems from the movement of the
other chains building the tube that of course undergo the same dynamical processes as the
confined chains. This is an intrinsic many body phenomena and much more difficult to treat
than CLE In order to clarify CLF and CR further and separate these different dynamic pro-
cesses, a number of pioner experiments were designed and performed (see e.g. [19]- [20]).
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14.4 Ring polymers

Ring polymers are very interesting macromolecules in that they differ structurally and dy-
namically from the typical linear polymers due to the total absence of chain ends that are
dominating for the dynamics in the melt. In melts of linear chains, the mutual interaction
is screened and the chains perform an undisturbed Gaussian random walk. Even though
in melts of ring polymers the excluded volume interaction is screened as well, topological
constraints that arise from the ring topology remain. For ring polymers interpenetration is
costly entropically and compact structures that evolve for high molecular weight are induced
- the ring conformations are assumed to become mass fractals confining rings into territories.
Nature exploits this phenomenon e.g. in packing chromatin rings in nucleosomes providing
thereby easy access to genetic information. Likewise, the ring dynamics is fundamentally
different to linear polymers, where chain relaxation takes place via the chain ends leading
to reptation, contour length fluctuation (CLF) and constraint release (CR). The rings have
become of renewed interest in the last years due to the synthetic efforts in producing lin-
ear contaminant-free ring structures while minimizing concatenation reactions. As Fig. 14.15
shows, there are 2 different ways to define the intra-chain correlation between two segments
1 and j. Both ways are equally probable and the occurrence is taken into account by multi-
plying the probabilities of selecting each different path. The form factor for a polymer ring
can be calculated using a multivariate Gaussian distribution approach [21]. For a Gaussian
polymer ring, the form factor P(q) can be calculated using (14.13)-(14.14). For the mean
square distance between 2 segments and the corresponding form factor P(()) we obtain then
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in analogy with the linear chain and including the closure relation:

L |7 — ]
<r§j>=l2|z—y|<1—T> 14.31)

leading to
N 2121 - L
P(Q)Z%Nzexp<—w<l—%>> (14.32)

The single chain structure factor differs in a sensitive way from the pure linear curve as can
be seen in Fig. 14.15. It leads to a peaked structure in the Kratky representation. This ex-
presses the similarity of a ring polymer with a star or branched polymer [21 ]. The monomers
of a ring are on average located at closer distance to the center of mass than in a linear chain,
so an enhancement of the compacticity of the structure can be expected. The peak arises due
to the increased correlation through the closed cycle and is therefore related to R, of the
ring. Latter can be calculated to be smaller than the linear by v/2.

Ring polymers in the melt are significantly more compact than the Gaussian prediction. The
form factor may be quantitatively described in terms of Gaussian linear chain and includ-
ing the closure relation. The structural properties of the polymer ring scale with the size
(N). In particular, the obtained scaling exponent v consistently describes not only the chain
statistics but also the N dependence of the radius of gyration R , ~~ N*' as well as the
N-dependence of the peaking in the Kratky plot. The exponent v = 0.43 is different from the
linear Gaussian chain (v = 0.5). For the larger rings the evolution towards a conformation in

the direction of a mass fractal is observed [22].

As it has been demonstrated above the ring polymers exhibit unique topology. Interpenetra-
tion of ring polymers is entropically hindered and therefore rings are predicted to prefer the
conformations of a crumbled globule or that of a lattice animal. The lack of ends changes the
dynamics qualitatively. All reptation related processes become impossible and qualitatively
different motional mechanisms are expected. This explains the intense scientific interest in
the dynamics of ring polymers.

Since the synthesis of well-defined and pure large ring polymers is highly demanding, re-
cently there has been a focus on simulations of their structure and dynamics. MD studies on
bead and spring rings concluded a rather compact structure and an asymptotic conformation
of a crumbled globule for large rings. The studies unraveled a subdiffusive center of mass
(c.o.m.) behavior (r2 (#)) ~ 1 at early times, before the transition to normal translational
diffusion takes place at about (r2,) = 2.5R.. At higher molecular weights D ~ N~* was
found. Regarding the segmental relaxation, simulations observe a significant slowing down
towards (72,,(t)) ~ ¥ with v = 0.25 — 0.35. Such a power law is also characteristic for the
local reptation regime where the Rouse modes relax within the stiff confining tube yielding

(12.4(1)) ~ t1. The reason for the occurrence of such a time regime for rings is unclear.

Analysis of internal dynamics of ring polymers obtained by NSE was first done based on
Rouse dynamic structure factor modified for rings [23]:

1 22 N —Ji— ™
i, J
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with

_ NP2 1 ( mpli— j

Bi,j(t) = T Z ECOS N

peven

) (1 —exp(—1T,)) (14.34)

where v;; delineates the conformational crossover from Gaussian statistics at short distances
|i — j| < N, to compressed behaviour at larger distances. I', is the characteristic relaxation
rate (see [26] for the details).

The sum in (14.33) over the indices ¢, j runs over all monomer coordinates of the ring,
the sum over p in the exponent addresses all Rouse modes (14.19) — for a ring only even
modes p contributes. It turned out that not all Rouse modes are contributing to the internal
relaxation. In order to assess to what extend Rouse relaxation takes place, the data were
analyzed in terms of a reduced number of Rouse modes. It is remarkable that for different
ring sizes (10 kg/mol - 100 kg/mol) the number of reduced Rouse modes p,,;, refers to a
ring section of 45 monomers that can relax without topological hindrance [24]. Later the
centre-of-mass diffusion of the rings was taken into account demonstrating additional effects
of correlation hole and transition to the Fickian diffusion [25]. These experiments allowed
the first access to the dynamics of ring systems on a molecular scale. In particular, three
dynamic regimes for center of mass diffusion starting (i) with a strong subdiffusive domain
(r2 (1)) ~ t* (0.4 < «a < 0.65) (ii) a second subdiffusive region that (iii) finally, crosses
over to (12, (t)) ~ t%7, that finally crosses overs to Fickian diffusion. At larger scales
the dynamics is self-similar and follows very well the predictions of scaling models with a
preference for the fractal loopy globule model.



14.21

References

[1]
[2]

[3]

[4]

[6]
[7]
[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]
[16]
[17]

[18]

[19]

https: //www.statista.com/

John D. Ferry, Viscoelastic properties of polymers (John Wiley & Sons, New York,
1980).

R. Zorn: “Fourier Transforms” in T. Briickel, G. Heger, D. Richter, R. Zorn (eds.),
Neutron Scattering (Forschungszentrum Jiilich, Jiilich, 2008).

D. S. Pearson and G. VerStrate and G. van Merwall and E C. Schilling Macromolecules
20, 1133-1141 (1987).

T.P. Lodge Phys. Rev. Lett. 16, 3218-3221 (1999).
Paul J. Flory Statistical Mechanics o fChain Molecules (Interscience, New York, 1969).
P. E. Rouse, J.Chem.Phys. 21, 1272 (1953).

E Mezei, C. Pappas, and T. Gutberlet, editors Neutron Spin Echo Spectroscopy (Springer
Berlin Heidelberg, Berlin,Heidelberg, 2003).

D. Richter, M. Monkenbusch, A. Arbe, and J. Colmenero Neutron Spin Echo in Polymer
Systems (Springer Berlin Heidelberg, Berlin,Heidelberg, 2005).

D. Richter, B. Ewen, B. Farago, and T. Wagner Phys. Rev. Lett. 62, 2140 (1989).
P. G. de Gennes J. Chem. Phys. 55, 572 (1971).

C. Gerstl, G. J. Schneider, W. Pyckhout-Hintzen, J. Allgaier, S. Willbold, D. Hofmann,
U. Disko, H. Frielinghaus, and D. Richter Macromolecules 44, 6077 (2011).

M. Krutyeva, A. Wischnewski, M. Monkenbusch, L. Willner, J. Maiz, C. Mijangos, A.
Arbe, J. Colmenero, A. Radulescu, O. Holderer, M. Ohl, and D. Richter Phys. Rev. Lett.
110, 108303 (2013).

M. Doi and S.EEdwards The Theory o f Polymer Dynamics (Clarendon press Oxford,
Oxford, 1986).

K. Kremer J. Chem. Phys. 92, 5057 (1990).
P. E Ronca J. Chem. Phys. 79, 1031 (1983).

D. Richter and B. Farago and L. J. Fetters and J. S. Huang and B. Ewen and C. Lartigue
Phys. Rev. Lett. 64, 1389 (1990).

B. J. Gold, W. Pyckhout-Hintzen, A. Wischnewski, A.Radulescu, M. Monkenbusch, J.
Allgaier, I. Hoffmann, D. Parisi, D. and Vlassopoulos, D. Richter Phys. Rev. Lett. 8,
088001 (2019).

A. Wischnewski, M. Monkenbusch, L. Willner, D. Richter, A. E. Likhtman, T. C. B.
McLeish, and B. Farago Phys. Rev. Lett. 88, 058301 (2002).



14.22 M. Kruteva, R.Zorn

[20] M. Zamponi, A. Wischnewski, M. Monkenbusch, L. Willner, D. Richter, A. E. Likht-
man, G. Kali, and B. Farago, Phys. Rev. Lett. 96, 238302 (2006).

[21] B. Hammouda The Theory of Polymer Dynamics (NIST Cent. Neutron Res., NIST,
2010).

[22] M. Kruteva, J. Allgaier, M. Monkenbusch, L. Porcar, D. Richter, ACS Macro Lett. 9,
507 (2020).

[23] G. Tsolou, N. Stratikis, C. Baig, P. S. Stephanou, and V. G. Mavrantzas, Macro-
molecules 43, 10692 (2010).

[24] D. Richter, S. GooBlen, and A. Wischnewski, So f Matter 11, 8535 (2015).

[25] M. Kruteva, M. Monkenbusch, J. Allgaier, O. Holderer, S. Pasini, . Hoffmann, D.
Richter Phys. Rev. Lett. 125, 238004 (2020).

[26] M. Kruteva, J. Allgaier, M. Monkenbusch, 1. Hoffmann, D. Richter, J. Rheol 65, 713
(2021).



14.23

Exercises

Note: Exercises are labelled by stars (* through ***) indicating the level of difficulty.
Try to solve the easier ones first.

E14.1 Scaling arguments

(a **) You may have noticed that no firm definition of the average segment length [ has
been given. Related to this, there is no fixed relation between the number of segments
N and well-defined quantities as the degree of polymerisation or the molecular weight.
On the first thought, this casts some doubts on macroscopic result on viscosity and
diffusion:

2pN

n = C3§ x N (14.35)
T

D = ]ZB—NO(N_I (14.36)

But on a closer look it turns out that the limiting results of the Rouse model are in-
dependent of the choice of [. When [ is replaced by ¢ = «l, one can replace N, (,
and p in such a way that all macroscopic results remain unchanged. Show this for the
end-to-end distance R..’ = NI? and equations (14.35), (14.36), and (14.22).

(b *) In the pre-CGI days of King Kong and Godzilla filmmakers sometimes used
scaled-down mechanised models of the monsters for the scenes where these deal out
destruction, e.g. by tearing down houses. These scenes were often taken in slow motion
to make them look more realistic. Why? What slow-motion factor would be (theoreti-
cally) appropriate if the monster is scaled down 1 : 25.

E14.2 Length and time scales of reptation

(a **) Table 14.1 shows the power laws in time of the mean-square displacement. Go
a step further and calculate the proportionality factors Cy 34 in the relations (Ar?) =
Cjt™. For this purpose, use the fact that (Ar?)(¢) is a continuous function and C; =
\/ 12kpT (2 /7¢. Prove that the length scale separating regimes 2 and 3 is indeed v/dR..
Show that 7,, and D (= () have the molecular weight dependences of equations (14.27)
and (14.28).

(b *) For polyethylene, the tube diameter is d = 4.8 nm at 7" = 509 K 7, = 7 ns.
For the molecular weight of 190000 g/mol the end-to-end length is R, = 42 nm. From
these values calculate all the numbers in Table 14.1. Do you think there is any chance
to observe regions 3 and 4 experimentally?
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15.1 Introduction
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Fig. 15.1: Length- and time scales covered by research with neutrons giving

examples pr applications and neutron techniques [1 ].

Research with neutrons covers an extraordinary range of length- and time scales as de-
picted in figure 15.1. The very extremes of length scales - below 1072 m - are the do-
main of nuclear and particle physics, where e. g. measurements of the charge or electric
dipole moment of the neutron provide stringent tests of the standard model of particle
physics without the need of huge and costly accelerators. On the other extreme, neu-
trons also provide information on length- and time scales relevant for astronomical di-
mensions, e. g. the decay series of radioactive isotopes produced by neutron bombard-
ment give information on the creation of elements in the early universe. In this course,
however, we are only concerned with neutrons as a probe for condensed matter research
and therefore restrict ourselves to a discussion of neutron scattering. Still, the various
neutron scattering and imaging techniques cover an area in phase space from picometers
pm up to meters and femtoseconds fs up to hours, a range, which probably no other
probe can cover to such an extent.

Different specialized neutron scattering techniques are required to obtain structural in-
formation on different length scales:

o With wide angle neutron di ffactometry, magnetization densities can be deter-
mined within single atoms on a length scale of about 10 pm!. The position of at-

! In this sense, neutrons are not only nanometer nm probes, but even picometer pm probes!
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oms can be determined on a similar length scale, while distances between atoms
lie in the 0.1 nm range?.

e The sizes of large macromolecules, magnetic domains or biological cells lie in
the range of nm to um or even mm. For such studies of large scale structures,
one applies re fectometry or small angle scattering techniques.

e Most materials relevant for engineering or geo-science occur neither in form of
single crystals, nor in form of fine powders. Instead they have a grainy structure,
often with preferred orientation of the grains. This so-called texture determines
the macroscopic strength of the material along different directions. Texture di f
Jactometry as a specialized technique allows one to determine this grainy struc-
ture on length scales of up to mm.

e Finally, for even larger structures, one uses imaging techniques, such as neutron
radiography or tomography, which give a two-dimensional projection and full
3-dimensional view, repectively, into the interior of a sample due to the attenua-
tion of the neutron beam, the phase shift or other contrast mechanisms.

In a similar way, different specialized neutron scattering techniques are required to ob-
tain information on the system’s dynamics on different time scales:

e Neutron Compton scattering, where a high energy neutron in the eV energy
range makes a deep inelastic collision with a nucleus in so-called impulse ap-
proximation, gives us the momentum distribution of the atoms within the solid.
Interaction times are in the femtosecond fs time range.

e In magnetic metals, there exist single particle magnetic excitations, so-called
Stoner excitations, which can be observed with inelastic scattering of high ener-
gy neutrons using the so-called time-o f fight spectroscopy or the triple axis
s pectrosco py technique. Typically, these processes range from fs to several hun-
dred fs.

e Lattice vibrations (phonons) or spin waves in magnetic systems (magnons) have
frequencies corresponding to periods in the picosecond ps time range. Again,
these excitations can be observed with time-o f fight or tri ple axis s pectrosco py.

e Slower processes in condensed matter are the tunneling of atoms, for example in
molecular crystals or the slow dynamics of macromolecules. Characteristic time
scales for these processes lie in the nanosecond ns time range. They can be ob-
served with specialized techniques such as backscattering s pectrosco py or spin-
echo spectrosco py.

e Even slower processes occur in condensed matter on an ever-increasing range of
lengths scales. One example is the growth of domains in magnetic systems,
where domain walls are pinned by impurities. These processes may occur with
typical time constants of microseconds ps. Periodic processes on such time
scales can be observed with strobosco pic neutron scattering techniques.

e Finally, kinematic neutron scattering or imaging techniques, where data is taken
in consecutive time slots, allow one to observe processes from the millisecond
ms to the hour h range.

2 In what follows, we use as “natural atomic unit” the Angstrom, with1 A=0.1 nm.
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In this chapter, we will overview the various techniques used in neutron scattering and
provide some examples for their application. We will start by repeating the properties of
the different correlation functions, in order to be able to judge what kind of information
we can obtain from a certain neutron scattering experiment. We will introduce neutron
scattering techniques used to obtain information on “where the atoms are” (diffractome-
try) and “what the atoms do” (spectroscopy). We will finish by reviewing the range of
applicability of various neutron scattering methods and compare them to other experi-
mental techniques.

15.2 Scattering and correlation functions

This somewhat advanced section can be skipped during first reading, but is given here
for completeness.

The neutron scattering cross section for nuclear scattering can be expressed in the fol-
lowing form (for simplicity, we restrict ourselves to a mono-atomic system):

af)zga) - k? N [(’bTH BIZ)S,-,,C(Q, o)+ b S,,(Q, a))ﬂ (15.1)

The cross section is proportional to the number N of atoms. It contains a kinematical
factor k' /k, 1. e. the magnitude of the final wave vector versus the magnitude of the inci-
dent wave vector, which results from phase-space density consideration. The scattering
cross section contains two summands: one is the incoherent scattering cross section,

which depends on the variance of the scattering length (|b_|2—| b|? ), and the other one is

the coherent scattering cross section, which depends on the magnitude square of the
average scattering length density | 5|2. The cross section (15.1) has a very convenient

form: it separates the interaction strength between probe (here: the neutrons) and sample
from the properties of the system studied. The latter is given by the so-called scattering
functions S,.(0,0) and S, (0, ), which are completely independent of the probe and

solely a property of the system under investigation [2]. The coherent scattering finction
S_,(0, ) (also called dynamical structure fictor or scattering law) is a Fourier trans-

form in space and time of the pair correlation function:
1 :
S.(Q,0) = —J'G(r, 1)e" " d rdt (15.2)
2rch

Here the pair correlation finction G(r,t) depends on the time dependent positions of
the atoms in the sample:

G(r,t)= INZJ‘@‘(F' —r(0)-6(r'+r —rj(t))>a’3r'
g (15.3)

= 1N"‘<p(r',0)-p(r'+ r,t)>d3r'
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r.(0) denotes the position of atom i at time 0, while r(t) denotes the position of atom j

at time ¢. The angle brackets denote the thermodynamic ensemble average, the integral
extends over the entire sample volume and the sum runs over all atom pairs in the sam-
ple. Instead of correlating the positions of two point-like scatterers at different times,
one can rewrite the pair correlation function in terms of the particle density as given in
the second line of (15.3). Coherent scattering arises from the superposition of the ampli-
tudes of waves scattered from one particle at time 0 and a second particle at time 7, av-
eraged over the entire sample volume and the thermodynamic state of the sample. In
contrast, incoherent scattering arises from the superposition of waves scattered from the

same particle at different times. Therefore, the incoherent scattering finction S, (0, )
is given in the following form:

S (@, @) = 271z_h J G,(r,t)e" " d’rdt (15.4)

which is the Fourier transform in space and time of the sel fcorrelation finction
Gy(r,1):

G (r,t) = %Zj(a(r'—rj(o»- S(r+r—r () )d’r' (15.5)

We next define the intermediate scattering finction S(Q,t) as the purely spatial Fourier

transform of the correlation function (here we have dropped the index “coh” and “inc”,
respectively, as the intermediate scattering function can be defined for coherent as well
as for incoherent scattering similarly):

S(Q,1):= JG(}’, e d’r
=5(Q,0)+S5'(Q.1)

For reasons, which will become apparent below, we have separated in the second line
the intermediate scattering function for infinite time

S(Q, ) =limS(Q,7) (15.7)

from the time development at intermediate times. Given this form of the intermediate
scattering function S(Q,t), we can now calculate the scattering function as the tem-

(15.6)

poral Fourier transform of the intermediate scattering function:

s@o=s [s@nea = [[s@n+s@np

1 - ) (15.8)
=%5(a))s(g, oo)+% _J; S'(Q,t)e ™ dt

elastic scattering

inelastic scattering

In this way, the scattering function has been separated into one term for frequency 0, i.
e. vanishing energy transfer AE = hw =0 and one term for non-vanishing energy trans-
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fer. The first term is the purely elastic scattering, which is given by the correlation func-
tion at infinite times. Correlation at infinite times is obtained for particles at rest. A
prominent example is the Bragg scattering from a crystalline material, which is purely
elastic, while the scattering from liquids is purely quasi-elastic?® since the atoms in lig-
uids are moving around freely and thus the correlation function vanishes in the limit of
infinite time differences.

Often times the energy of the scattered neutron is not discriminated in the detector. In
such experiments, where the detector is set at a given scattering angle, but does not re-
solve the energies of the scattered neutrons, we measure an integral cross section for a

fixed direction ];' ofk"

(d_a\ _[Ze
Q') Q0w

coh,int

dw (15.9)

k'=const

Momentum and energy conservation are expressed by the following kinematic equa-
tions of scattering;
. hz 2 '2
Q=k“-k; ho=E-E'=—(k -k (15.10)
2m

Due to these kinematic conditions, the scattering vector Q will vary with the energy of
the scattered neutrons E or the energy transfer hA@ as the integral in (15.9) is per-
formed. The so-called quasi-static approximation neglects this variation and uses the
scattering vector Qy for elastic scattering (7 =0) in (15.9). This approximation is val-
id only if the energy transfer is small compared to the initial energy. This means that the
movements of the atoms are negligible during the propagation of the radiation wave
front from one atom to the other. In this case, the above integral can be approximated as
follows:

(d_a\ _KF N ( I G(r,t)e"<Q°"‘“"”d3rdz)da>

dQ "k 27k
)cah,QSA 4 (15.11)

e j G(r, e s()d rar == j G(r,0)e'%"d’r
k 2rmh k 27h

which shows that the integral scattering in quasi-static approximation depends on the
instantaneous spatial correlation finction only, i.e. it measures a snapshot of the ar-
rangement of atoms within the sample. This technique is e.g. very important for the de-
termination of short-range order in liquids, where no elastic scattering occurs (see
above).

Our discussion on correlation functions can be summarized in a schematic diagrammat-
ic form, see figure 15.2.

3 Inelastic scattering usually denotes scattering from an excitation with well-defined energy transfer,
while quasi-elastic scattering denotes scattering which is not elastic, but has a broad energy distribution,
centered around an energy transfer of zero.
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Fig. 15.2: Schematic diagrams depicting the various scattering processes: a)
coherent scattering is connected with the pair correlation finction in
space-and time; b) incoherent scattering is connected with the sel f
correlation finction; c) magnetic scattering is connected with the spin
pair correlation finction; d) elastic and inelastic scattering fom a
crystal measures average positions and movements of the atoms,
respectively, e) inelastic scattering in quasi-static approximation sees a
snapshot o fthe sam ple.

Figure 15.2 shows that coherent scattering is related to the pair correlation between at-
oms at different times (15.2a), while (quasi-elastic) incoherent scattering relates to the
one particle self-correlation function at (different) times (e.g. diffusion of atoms)
(15.2b). In analogy to nuclear scattering, magnetic scattering depends on the correlation
function between magnetic moments of the atoms. If the magnetic moment is due to
spin only, it measures the spin pair correlation finction. Since the magnetic moment is
a vector quantity, this correlation function strongly depends on the neutron polarization.
For this reason, in magnetic scattering we often perform a polarization analysis as dis-
cussed in the corresponding chapter. Figure 15.2d depicts elastic and inelastic scattering
from atoms on a regular lattice. Elastic scattering depends on the infinite time correla-
tion and thus gives us information on the time averaged structure. Excursions of the
atoms from their time averaged positions due to the thermal movement will give rise to
inelastic or quasi-elastic scattering, which allows one e.g. to determine the spectrum of
lattice vibrations, see chapter on “inelastic neutron scattering”. Finally, an experiment
without energy analysis in quasi-static approximation will give us the instantaneous
correlations between the atoms, see figure 15.2e. This schematic picture shows a snap-
shot of the atoms on a regular lattice. Their positions differ from the time averaged posi-
tions due to thermal movement.
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15.3 The generic scattering experiment

Scattering

y 4 é@ sample
a— \deﬁnition of

tt 1
collimation sc.a BHng angie

Fig. 15.3: Schematic diagram of a generic scattering experiment; the primary
spectrometer in font o fthe sample serves to select an incident wave
vector distribution by means o fcollimation and monochromatization, the
secondary spectrometer a fer the sample selects a fnal wave vector; the
number o fneutrons pr a given distribution o fincident wave vector k and
Jfnal wave vector k' is counted in the detector.

A generic scattering experiment is depicted schematically in figure 15.3. The incident
beam is prepared by collimators, which define the direction of the beam and mono-
chromators, which define the energy of the incident neutrons. Together these optical
elements select an incident wave vector k. In reality, since these neutron-optical ele-
ments are never perfect, a certain distribution of incident wave vectors around an aver-
age wave vector is selected in the primary spectrometer. In an analogous manner, a final
wave vector kK’ - or better a distribution of final wave vectors - is being selected from all
scattered waves after the sample by the secondary spectrometer. Finally, the scattered
neutrons are being counted in the detector. Since our neutron-optical elements are never
perfect, the measured intensity in the detector is not simply proportional to the scatter-
ing function §(Q, w) (or more precisely, the cross section), but it is proportional to the

convolution of the scattering function (or cross section) with the experimental resolu-
tion finction R:

1Q,, @) = [[ S(Q, ) RQ, 0, ®,~)d*Qde (15.12)

Here, the resolution function R appears due to the limited ability of any experimental
setup to define an incident or final wave vector k or k’, respectively. R therefore de-
pends purely on the instrumental parameters and not on the scattering system under in-
vestigation. The art of any neutron scattering experiment is to adjust the instrument -
and with it the resolution function - to the problem under investigation. If the resolution
of the instrument is too tight, the intensity in the detector becomes too small and count-
ing statistics will limit the precision of the measurement. If, however, the resolution is
too relaxed, the intensity will be smeared out and will not allow one to determine the
scattering function properly.

The simplest way to collimate an incident beam is to put two slits with given openings
in a certain distance in the beam path and thus define the angular spread of the incident
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beam. For monochromatization of a neutron beam, usually one of two different methods
is applied:

One can use the wave property of the neutron and diffract the neutron beam
from a single crystal. According to Braggs' law 2dsin@ = A, a certain wave
length 1 is being selected for a given lattice d-spacing under a scattering angle
20,

One can use the particle property of the neutron and use the neutron time-of-
flight to determine its velocity and thus its kinetic energy. How this is being
done technically is discussed in the corresponding section of this course.

Following our discussion of the correlation functions, we will now distinguish two prin-
cipally different types of neutron scattering instruments:

Diffractometers: these are scattering instruments, which either perform no ener-
gy analysis at all, or which measure only the truly elastic scattering. As dis-
cussed in chapter 15.2, the truly elastic scattering allows one to determine the
time averaged structure. The prominent example is Bragg scattering from single
crystals. If, however, no energy analysis is performed, one usually makes sure
that one works in quasi-static approximation to facilitate the interpretation of the
scattered intensity distribution. Quasi-static approximation corresponds to a
snapshot of the scatterers in the sample and is important for example to deter-
mine short-range order in a liquid. Be it elastic scattering or integral scattering in
quasi-static approximation, a diffraction experiment allows one to determine the
position of the scatterers only. The movement of the scatterers is not (directly)
accessible with such a diffraction experiment. Similarly, in a diffraction experi-
ment for magnetic scattering, the arrangement of magnetic moments within the
sample, i.e. its magnetic structure, can be determined, while the spin dynamics is
not accessible in a diffraction experiment®,

Spectrometers: a neutron spectrometer is dedicated to measure inelastic scatter-
272

ing, i.e. to determine the change of the neutrons’ kinetic energy E = dur-

2m

ing the scattering process. Such an experiment requires the analysis of the ener-
gy of the scattered neutrons, in contrast to a conventional diffractometer. Now
the intensity measured in the detector depends on momentum- and energy- trans-
fer and is proportional to the convolution of the double differential scattering
cross section (15.1) with the resolution function of the instrument (15.12).
Therefore, a neutron spectrometer gives us information on the scattering func-
tions (coherent or incoherent) and thus on the truly time dependent pair- or self-
correlation functions. This is why spectrometers are used to determine the dy-
namics of a system after its structure has been determined in a previous diffrac-
tion experiment’.

* In fact, there is a way to access also spin- or lattice- dynamics in a diffraction experiment: lattice vibra-
tions will give rise to diffuse scattering around Bragg peaks, so-called thermal diffuse scattering, which
can be modelled and thus the spectrum of excitations can be determined in an indirect, but not model-free
direct way.

5 Of course, spectrometers could also be used to determine the structure, but usually their resolution is not
at all adapted to this purpose.
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15.4 Diffractometers

15.4.1 Wide angle diffraction versus small angle scattering

According to (15.10) and de Broglie, the momentum transfer during a scattering exper-
iment is given by hQ = hk'- k. Remembering that f = 277[, the magnitude Q of the

scattering vector Q can be expressed in terms of wavelength 4 and scattering angle 26
as:

0 =477Tsin9 (15.13)

As we have seen in chapter 15.2, the scattering cross section is related to the Fourier
transform of the spatial correlation function and therefore a reciprocal relation exists
between characteristic real space distances d and the magnitude of the scattering vector
0, for which intensity maxima appear:

AQ ~%” (15.14)

Bragg scattering from crystals provides an example for this equation (compare corre-
sponding introductory chapter): the distance between maxima of the Laue function is
determined by AQ-d =27z, where d is the corresponding real space periodicity. Reflec-

tometry provides another example (see below): the O-distance between Kiessig fringes
is given by the relation AQ-d ~ 27 (compare (15.19)), where d is the layer thickness.

(15.14) is central for the choice of an instrument or experimental set-up, since it tells us
which Q-range we have to cover in order to get information on a certain length range in
real space. (15.13) tells us at which angles we will observe the corresponding intensity
maxima for a given wavelength. This angle has to be large enough in order to separate
the scattering event clearly from the primary beam. This is why we need different in-
struments to study materials on different length scales. Table 15.1 gives two examples.
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20 20
E 1 A i
xample d Q 0=14) | 0=104) Technique
Distance between 2A 3.14 A 29° "cut-off" | wide angle diffraction
atoms in crystals
Precipitates in 400 A | 0.016A" 0.14° 1.46° small angle scattering
metals (e.g. Co in
Cu)

Tab. 15.1: Examples pr scattering fom structures on diffrent characteristic real
space length scales d. AQ is the corresponding characteristic scattering vec-
tor according to (15.14 ), 20 the scattering angle according to (15.13), calcu-
lated pr two di ferent wavelengths J.

1. The study of structures on atomic length scales is typically done with a wave-
length of around 1 A (comparable to the distance between the atoms) and the
scattered intensity is observed at rather large angles between 5° and 175°. There-
fore one speaks of wide angle di ffaction, which is employed for the study of
atomic structures.

2. For the study of large-scale structures (precipitates, magnetic domains, macro-
molecules in solution or melt) on length scales of 10 up to 10,000 A (1 up to
1000 nm), the magnitude of the relevant scattering vectors as well as the corre-
sponding scattering angles are small. Therefore one chooses a longer wavelength
in order to expand the diffractogram. The suitable technique is small angle scat-
tering, which is employed to study large scale structures.

In what follows we will first focus on the study of large-scale structures. In the corre-
sponding conceptually very simple instruments, some typical considerations for the de-
sign of an instrument can be exemplified. We will distinguish between small angle neu-
tron scattering instruments and reflectometers, discuss the basic instrument concepts
and list some possible applications. After having discussed how large-scale structures
can be studied with neutron diffraction, we will then introduce instruments for wide
angle scattering and their possible applications.

15.4.2 Small Angle Neutron Scattering (SANS)

As mentioned in chapter 15.4.1, small angle scattering is employed whenever structures
on length scales between typically 10 A and 10,000 A (1 nm and 1,000 nm) are of inter-
est. This range of real space lengths corresponds to a scattering vector of magnitude
between about 10" A and 10 A (1 nm™ and 10 nm™). In order to observe the scat-
tering events under reasonable scattering angles, one chooses a rather long wavelength.
However, due to the moderator spectrum (see chapter on neutron sources), there is very
little neutron flux at wavelengths above 20 A. Therefore typically neutrons of wave-
length between 5 and 15 A are employed for small angle neutron scattering.
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Two different principles of small angle neutron scattering will be distinguished in this
chapter: the pinhole SANS and the focusing SANS depicted in figures 15.4 and 15.5,
respectively. Other types of instruments, e.g. with multi-pinhole grid collimation, are
variants of these techniques and will not be discussed here.

Selector Apertures Sample Detector

/

W
W,

T'_Lc=1-20m P LD=1-20m_“|

Fig. 15.4: Schematics o fa pinhole SANS, where the incident wave vector is de fned
through distant a pertures (KW S-1 or KWS-2 o fJCNS [3])
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Fig. 15.5: Schematics o fa pcusing SANS, where an image o fthe entrance aperture
is produced on the detector by a pcusing mirror (KW S-3 o fJCNS [3]).

For both instrument concepts, the wavelength band is usually defined by a so-called
velocity selector. Figure 15.6 shows a photo of a velocity selector drum build in Jiilich
for the instrument KWS-3.
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Fig. 15.6: Photo o fthe velocity selector drum o fthe JCNS instrument KW S-3 show-
ing the screw-like twisted channels separated by absorbing walls, which only
neutrons o fa certain wavelength band can pass when the drum is turning.

In the pinhole SANS, the direction of the incident wave vector k is defined by two dis-
tant apertures of comparable size. The longer the distance between the diaphragms, the
higher is the collimation for a given cross section of the beam. The sample is placed
right next to the second aperture and the scattered neutrons are being recorded in a de-
tector, which is at a large distance from the sample; typically, the sample-detector dis-
tance is comparable to the collimation distance. The overall length of such an instru-
ment can amount to 40 m, up to 80 m.

In contrast to the pinhole SANS, the focusing SANS uses a divergent incident beam and
a focusing optical element produces an image of the entrance aperture on the detector.
The sample is positioned directly behind the focusing element. Small angle scattering
from the sample appears on the position-sensitive area detector around the primary
beam spot. Such a set-up with a focusing element would be the natural solution in light
optics, where focusing lenses are readily available. Due to the weak interaction of neu-
trons with matter, the index of refraction for neutrons is very close to one, and it is diffi-
cult to produce efficient focusing elements. In case of the focusing SANS realized by
Forschungszentrum Jiilich [4], a toroidal® mirror is employed as focusing element. Lo-
cally, the toroidal shape is a good approximation to an ellipsoid with its well-known
focusing properties. The challenge in realizing such a device lies in the fact that small
angle scattering from the focusing element has to be avoided i.e. the mirror has to be

6 A torus is a surface of revolution generated by revolving a circle about an axis coplanar with the circle,
which does not touch the circle (examples: doughnuts, inner tubes).
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flat on an atomic scale (root-mean square roughness of about 3 A!), which became pos-
sible due to the developments of optical industry for x-ray satellites.”

As an example of the considerations leading to the design of a neutron scattering in-
strument, we will now discuss the resolution of a pinhole SANS machine. In general
terms, the resolution of an instrument denotes the smearing of the signal due to the in-
struments’ finite performance (15.12). As neutron scattering is a flux limited technique,
there is need for optimization: the better the resolution of the instrument, i.e. the better
the angular collimation 46 and the smaller the wavelength spread 44, the smaller is the
intensity recorded on the detector. Therefore, resolution has to be relaxed to such an
extent that the features of interest are still measurable and not smeared out entirely by
the resolution of the instrument, while at the same time the intensity is maximized. In
order to determine the resolution of a SANS instrument, we start from (15.13):

0= %sin@. The influence of angular- and wavelength spread can be determined by

differentiation of this equation, where the different contributions have to be added quad-
ratically according to Gauss:

0’ oY , (60Y ) 7)) cos » (4zsin@Y
o0 {51 a0+ 39 -3 covotsor o322 o
;7 (5.15)
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AQ? is the variance of the scattering vector due to the finite collimation and monochro-
matization. dr and ds are the diameters of the entrance and sample aperture, respective-
ly. dp denotes the detector pixel size. Lc and Lp are collimation length and sample-
detector distance, respectively. An optimization can be achieved, if all terms in (15.15)

contribute the same amount, which leads to the condition
L,=L., d,=d,=2d, (15.16)

(15.16) shows that a pinhole SANS has to be designed such that sample-to-detector dis-
tance Lp is equal to the collimation length Lc. Typical values are Lp = Lc = 10 m with
openings of de=3 cm for the entrance- and ds = 1.5 cm for the sample aperture. Note
that one can chose the opening of the entrance aperture to be twice as large as the open-
ing of the sample aperture - or sample size - without sacrificing markedly in resolution,
while gaining in neutron count rate! The detector needs a minimum pixel resolution
dp=d; a detector with a radius of about Rp =~ 30 cm is necessary to cover the required
Q-range up to 0.05 A at Lp =10 m and for A =8 A. Having defined the incident col-
limation, we can now determine the appropriate wavelength spread with the same ar-
gument as above: the last term in the sum in (15.15), corresponding to the wavelength
spread, should contribute the same amount to the variance of the scattering vector as the
corresponding terms for the collimation, i. e.:

2% B % 2 10y, (15.17)

7 It should be mentioned that nowadays focusing lenses for neutron scattering have also been realised.
These have a very long focal distance, but can be employed to improve intensity or resolution in pinhole
SANS.
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(15.17) demonstrates that in general for small angle scattering we don't need a very high
degree of monochromatization. A 10 % wavelength band is acceptable, since for small
angles the smearing due to the wavelength spread is quite comparable to the smearing
due to the incident divergence. This is the reason why usually a velocity selector is em-
ployed as monochromatizing element for small angle scattering, as it lets a wavelength
band of typically 10 % pass.
Let us give a short introduction into the analysis of small angle scattering experiments.
As in any scattering experiment, the detected intensity is proportional to the scattering
cross section, which in the SANS case is usually normalized to the sample volume and
therefore has the unit[cm™]:
d> 1 do
aQ Vv dQ

sample

(15.18)

Here we discuss the so-called “two phase model” only, where homogeneous particles
are dispersed in a matrix (e. g precipitates in metals or nanoparticles in solution etc.).
The cross section will then be proportional to the contrast between particles and solution

8="b (PP ) (15.19)
J

where jlabels atom species jof scattering length b, with number density p;r in the parti-
cle and p;u in the matrix, respectively. The differential cross section per particle is giv-

en by the interference term (note: we use a continuum description for the small Q limit):
2

ax -
— (@) =||Ab-%"d’
=@ j Oy
14
2
. or (15.20)
=AbTV —'[e d’r
VV

70
Here fQ)denotes the particle prm fictor for a homogeneous particle of volume V:
1 ¢ .
f0) :VIe’Q"d3r (15.21)

(15.20) is the differential cross section for a single particle. For very dilute solutions of
identical particles, the cross section will be given by (15.20) times the number N of par-
ticles (“single particle approximation”). However, in more concentrated solutions, there
will be additional interference effects between the particles, which are described by the
so-called structure fictor S and we obtain the modified cross section for dense solu-
tions:

do ey 2
- Nty | Q)] - S(Q) (15.22)

where S(Q ) is related to the Fourier transform of the pair correlation function g(R) be-
tween the single particles at distance R:
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SO0)=1+ !

- j g(R)e? " d’r (15.23)
sam ple v

sample

(Note: for vanishing pair correlations g(R)=0, i.e. random distributed particles, the
structure factor has to be unity: S(Q )=1).

The isotropic form factor of a homogeneous sphere of radius R can be calculated by
Fourier transform and is introduced elsewhere in this course:

_3 sinQR—-QRcos QR
e (OR)’

For forward scattering fO=0)=1 per definition. For small values of the scattering vec-
tor, this expression can be approximated by:

(15.24)

“Guinier Law” for QR<2:

_(OR) 2 p2
| AQ) =e zl—QSRG (15.25)

Here the quantity Rg is the so-called radius o fgyration of the particle. For a spherical
particle R’ = % R?, but R; can defined in a more general way also for non-spherical

particles.

For QR=3 the form factor squared has dropped to about 10 %. In the larger Q region -
neglecting the sharp minima of the form factor (15.24), which are often not visible due
to particle size distribution and instrumental resolution - the form factor follows the
behavior:

“Porod Law” for QR>4.5:
A
| fO)] = 2750 * (15.26)

where A=47R’ is the surface, and V = 4?72 R’the volume of the sphere of radius R. In

small angle scattering, often times one does not deal with simple geometrically smooth
particles in a second phase. In stochastical growth processes or soft matter system, ir-
regular factal structures can appear, which show self-similarity on multiple length
scales. For such structures, power laws with other exponents are observed:

d—o-(mass factal)~Q™"=07..07
a0 (15.27)

do D=6 _ "3 4
d—g(surﬁce factal) ~Q =0"..0

where D denotes the so-called factal dimension for porous objects. D is in general
smaller than 3 and non-integer. If the particles have a dense core, but a rough self-
similar surface, they are called sur fice factals with a surface area of 4 ~ R”. From the
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above discussion we see that characteristic regions can be distinguished in a small angle
scattering experiment:

I.

3.

Close to forward direction in the very small Q limit and for dilute solutions, we
observe constant scattering proportional to the number of particles N, the square
of the particle volume 72 and contrast (15.19). For known contrast, we can de-
duce the product N-V7, if the scattering is measured in absolute units by compar-
ing to a known scatterer e. g. water. For dense solutions, the structure factor
from correlations between particles becomes apparent.

In the region up to QR=<2, the Guinier Law (15.25) holds for compact particles.

. d . . .
From a Guinier-Plot In £Z versus Q? one can determine the radius of gyration

j 2 AB(F)dr
=r_ (15.28)
j AB(F)dr
V
In the Porod-region QR>4.5
do 2 -4
—=Ab"27NA 15.29
10 0 ( )

we can, independent of particle shape, determine the total surface area N-A4 of all

particles with sharp surfaces from a Porod Plot Z—g- 0* versus Q.

Finally, if QO approaches the value //a where a corresponds to typical atomic dis-
tances, we approach the region of Bragg scattering from atomic structures (wide
angle scattering).

Let us now turn to applications of small angle scattering. One example is given in figure
15.7, which is concerned with the self-organization of crystalline amorphous diblock-
copolymers [4]. Combining three different instruments, small angle scattering has been
observed over ten orders of magnitude in cross section and nearly four orders of magni-
tude in momentum transfer. In different regions, different power laws apply, corre-
sponding to different structures: the O~ power law corresponds to 2d structures on the
shortest length scale, the O/ power law corresponds to the organization of rods in bun-
dles, while the O~ power law corresponds to a network of bundles with a mass fractal
aspect and finally, correlations become visible in the very low Q-range.
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Fig. 15.7: SANS investigation o fthe sel forganization o fa crystalline-amor phous
diblock-co polymer measured with three di ferent instruments o fdi ferent
resolution: double crystal diffactometer, pcussing SANS and pinhole
SANS pr the low, medium and larger Q range, respectively. Plotted is
the cross section in absolute units versus the magnitude o fthe scattering
vector. For details see [4].

We will end this short introduction into the principles of small angle scattering by list-
ing some examples for applications of small angle scattering in different fields of sci-
ence:
e sof matter: polymers and colloids, e. g micelles, dendrimers, liquid crystals,
gels, reaction kinetics of mixed systems, ...
e materials science: phase separation in alloys and glasses, morphologies of sup-
eralloys, micro-porosity in ceramics, interfaces and surfaces of catalysts
e biological macromolecules: size and shape of proteins, nucleic acids and of
macromolecular complexes, bio-membranes, drug vectors
o magnetism: ferromagnetic correlations and domains, flux line lattices in super-
conductors, ...

15.4.3 Large scale structures: Reflectometry

As elaborated in chapter 15.4.2, neutron small angle scattering is applied to determine
large-scale structures, e. g. scattering length density fluctuations on length scales of
some 100 A in bulk material. There is another type of instrument, which is dedicated to
the study of large-scale structures in thin film systems, on surfaces and in multilayers.
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Such an instrument is called a neutron re fectometer. This conceptually simple instru-
ment is depicted schematically in figure 15.8.

_—

o \?M r
/ ~ / pear

beam

reflected beam . o .
Q> primary collimation slits from

: source
thin ﬁln_1 sample monitor
on goniometer monochromator

PSD: position
sensitive detector

Fig. 15.8: Schematics o fa neutron re fectometer. Monochromatization can be done
in many diferent ways: by a velocity selector, by a crystal
monochromator, or by a chopper in a time-of fight instrument.
Collimation slits de fne the direction o fthe incident beam. The monitor is
a low e ficient detector o fhigh transmission, which measures the incident
fux on the sample. The refected neutrons are either detected in a
position sensitive detector, or a secondary collimation in font of a
point detector selects the direction o fthe re fected beam. For magnetic
samples, a polarizer, a polarization analyzer and guide felds can be
inserted pr polarization analysis experiments.

Similar to a pinhole SANS instrument, the incident beam is collimated through a set of
two well separated slits. However, since in reflectometry, one is mainly interested in the
momentum transfer perpendicular to the planar sample surface, the collimation of a re-
flectometer is tight only in this direction. Along the sample surface the beam can be
wide and have a larger divergence in order to gain intensity. This collimated beam im-
pinges on the sample under a grazing angle (typically fractions of a degree up to a few
degrees) and is reflected into a single point detector or a position sensitive detector. To
define the angle of exit for a point detector, a secondary collimation is needed between
sample and detector. The incident beam is monochromatized using different techniques,
depending on the resolution requirements: velocity selector, time-of-flight chopper or
crystal monochromator.

With such an instrument, the layer structure of a sample can be determined, such as lay-
er composition, layer thickness and surface- or interfacial roughness. This information
is obtained in so-called specular reflection, for which the incident angle is equal to the
final angle like in a reflection from a perfect optical mirror. In this case, the momentum
transfer of the neutrons is perpendicular to the surface of the sample and thus only later-
ally averaged information can be obtained. In order to determine lateral correlations
within the layers, for example magnetic domain sizes, a momentum transfer within the
layer has to occur, which implies that angle of incidence and final angle have to be dif-
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ferent. Short range correlation within the layers will then give rise to so-called off spec-
ular diffuse scattering as well known in optics from a bad optical mirror.

The scattering geometry is shown in figure 15.9.

specular

aizaf
Q
off-specular =

aiZ0f

Magnetic domain

Structural roughness Magnetic roughness

Fig. 15.9: Scattering geometry pr grazing incidence neutron scattering. Specular
re fections are obtained, i fthe angle o fincidence equals the fnal angle
a; = ay O ffspecular scattering is observed at o; # ay

In fact, the theoretical description of neutron reflectometry follows exactly along the
lines of conventional optics, except that for neutrons in most cases the index of refrac-
tion is smaller than one and thus external total reflection occurs for neutrons coming
from vacuum towards matter®. The index of refraction n of neutrons of wavelength A
from a layer composed of elements with scattering length b; and number density p; and
linear absorption coefficient u, is given by:

A’ A .
n—l—gzj:b,pj—z@ﬂn =1-6-if (15.30)
Refraction and total reflection are described by the well-known Snell's Law of optics:

D =Ty 15.31
cosa, k (15.31)

Snell’s law:

8 This is exactly what happens in neutron guides, evacuated tubes of usually rectangular cross section,
where neutrons are totally reflected from the smooth glass side walls, often coated, e.g. with 3¥Ni, to en-
hance the angle of total reflection. Since for total reflection conditions, reflectivity is close to 100%, neu-
trons are transported over large distances (some 10 to above 100 m) nearly without loss from the source
to the instruments by bouncing back- and forth from the guide side walls.
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angle of total reflection: cosé, =n (15.32)

The intensities of reflected and transmitted beam can be determined from the optical
Fresnel equation (Ay, A1, Bo: amplitudes of incident, transmitted and reflected waves,
respectively; k., k= component of wavevector k and k., respectively, perpendicular to
average surface):

Fresnel equation:

2 2

Reflectivity R=|22| =|fe=he| _|%=ma (15.33)
k. +k, a,+n-a,
ok [ | 2a, T
Transmissivity 7 = 4 = | = d (15.34)
k.+k, . a,+n-a,

Figure 15.10 shows as an example the reflectivity and transmissivity of a Ni layer.
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e p=048(1-005) A Q = 4n/i’sin(®) (A7)

---- p=9487(1-010) A~

Fig. 15.10:  Refectivity and transmissivity o fneutrons fom a Ni sur fice.

Here we just want to demonstrate with very simple arguments how interference effects
from layered structures arise and how the intensity modulation in Q-space are related to
real space length scales. Figure 15.11 shows how interference can occur from a beam
being reflected at the surface and at the internal interface of a double layer stack.
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Fig. 15.11:  Schematics o fthe re fection o fa neutron beam fom a single layer on a
substrate. There exists an optical path length di ference A between the
rays drawn with a solid line and those drawn with a dotted line.

For simplicity we consider only the case of a specular reflection, i.e. the incident angle
a; is equal to the angle of exit ay o, =« ,=a. Interference occurs between beams re-

flected from the surface (dotted line in figure 15.11) and those first transmitted into the
layer, reflected from the interface between layer 1 and substrate and then leaving the
layer into vacuum (solid line). To a good approximation, refraction at the top surface
can be neglected for incident angles larger than about twice the critical angle of total
reflection. In this case ¢, =a, =a , = holds. Since the index of refraction for neutrons

is very close to one, this approximation is valid even for rather small angles of inci-
dence. Then the optical path length difference for the two beams is:
A=2dsina (15.35)

Here d is the thickness of layer 1. We can now determine the distance between interfer-
ence maxima from the condition that the path length difference has to differ by one

wavelength: 4 =2d- A(sina) = 2d- Aar. With Q = %sina ~ 477[05 we finally obtain:

2
AO~ (15.36)
d

Again, we can see that the interference phenomena in Q-space are connected with real
space length scales in a reciprocal way. (15.36) tells us that there will be a number of

. . . . 2 .
interference maxima at distances in Q of E These interference phenomena are called

“Kiessig finges” and are well known to us in conventional optics for example as the
beautiful colors observed in soap bubbles. Figure 15.12 shows as an example the reflec-
tivity of neutrons from a thin nickel layer on a glass substrate, which is nothing else but
a section of a neutron guide employed to transport the neutrons from the source to the
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instrument over long distances by multiple total reflections. The Kiessig fringes are
nicely visible in this example and the thickness of the nickel layer can be determined
from the distance between adjacent intensity maxima.

Log(R) _p L

“Iiassi * Paints measured on HADAS .
g T fit:  d=8375A;0=145A;3Q=208"A
i fringes” - simulation : d=837,5A;0=145A:80=0

i 27| ---- simulation: d=837,5A;6=0 :5Q=0

I ——- simulation : substrate only

Fig. 15.12:

0.02 0.04 0.06 0.08
Q = 4whssind (A7)

Re fectivity o f neutrons fom a nickel layer on glass substrate on a

logarithmic scale. Data points were measured on the HADAS

re fectometer o fthe late FRJ-2 reactor. The solid line shows a ft, where

the layer thickness was determined to be 837.5 A with a root mean

square roughness o f14.5 A and where the resolution o fthe instrument o f
50 =2.08-107 A has been taken into account; the dotted line shows a

simulation pr the same structural parameters, but pr an ideal

instrument without resolution broadening; the short dashed line shows

the simulation pr the same layer thickness but without roughness, the

long dashed line shows the simulation pr the glass substrate only.

Neutron reflectometry has many applications in different fields of science of which we
can only list a few:
e so f matter science: thin films e. g. polymer films; self-organization of diblock
copolymers; surfactants; liquid-liquid-interfaces, ...
e [i f science: structure of bio-membranes
e materials science: surface of catalysts; kinetic studies of interface evolution;
structure of buried interfaces
o magnetism: thin film magnetism e. g. exchange bias, laterally structured systems
for magnetic data storage, multilayers of highly correlated electron systems, ...
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15.4.4 Atomic structures: Single crystal and powder neutron
diffraction

As explained in chapter 15.4.1, wide angle scattering with neutrons of wavelength typi-
cally 1 A is applied for the determination of atomic structures. Due to the periodicity of
the lattice, Bragg peaks appear under diffraction angles given by the Bragg equation
(compare reflectometry: (15.35) and (15.36)!):

2dsinf =1 (15.37)

The intensity of the Bragg peaks is governed by the arrangement of the atoms within the
unit cell (structure factor) and the scattering from the single atom (form factor). By col-
lecting a large set of scattered intensities for many Bragg peaks, modeling the atomic
structure and refining the parameters in order to get an optimum agreement between
calculated and observed intensities, the arrangement of atoms within the unit cell as
well as the arrangements of spins for magnetic samples can be determined. Figure 15.13
shows the schematics of a single crystal diffractometer.

Monitor Fulerian| ~ Beam stop
aradle

Monochromator ~ IFilters Collimator (6464 )

Fig. 15.13:  Schematics ofa single crystal diffactometer. The drawing shows the
layout o fthe di fFactometer D9 at the Institute Laue-Langevin and has
been taken fom http //www.ill.eu/.

In contrast to small angle scattering, where a broad wavelength band is employed to
. . . . A
enhance the scattered intensity, a better monochromatization of typically 7/1 ~1% has

to be achieved for wide angle scattering to avoid the broadening of the Bragg reflections
due to the wavelength spread according to (15.37). This monochromatization is typical-
ly done by Bragg diffraction from a single crystal. The direction of the incident beam is
determined by a set of slits. As Bragg reflections only occur when the corresponding
lattice planes have a definite orientation with respect to the incident beam, the single
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crystal sample is usually mounted on a so-called Eulerian cradle, which allows one to
orient the sample using the three Eulerian angles w, y and ¢. Finally, the scattered beam
is detected in a point- or small area detector. Care must be taken to collect the entire
integrated intensity for a scan through the Bragg reflection.

A conceptually simpler experiment for the determination of atomic structures is the neu-
tron powder diffractometer. In this case, since the powder grains in the sample usually
have random orientations with respect to the incident beam, there is no need for orient-
ing the sample with respect to the beam. Scattering will always occur for some of the
grains, which fulfill the Bragg condition by chance. As scattering occurs for all allowed
Bragg reflections simultaneously, it would be very inefficient to detect scattered intensi-
ties by a single point detector, which would have to be positioned recursively for the
correct 26 values. Therefore, in powder diffraction one usually uses a large linear - or
even better area - position sensitive detector, which is arranged on a circular arch
around the sample position.

While neutron powder diffraction is conceptually simple, it poses the problem that
Bragg reflections will overlap for larger unit cells, e.g. due to finite peak width. Among
other factors, the peak width is determined by the resolution of the instrument. One can
show that the resolution function for a neutron powder diffractometer on a beam being
monochromized by a Bragg reflection from a monochromator crystal® is given by:

(A260)' =U tan® 0 +V tan@+W (15.38)

For overlapping reflections, one cannot determine the intensities of the various Bragg
reflections separately. The solution to the problem is the so-called Rietveldt- or profile
refinement, where structural parameters (unit cell metric a,b,c,a, Sy, atom positions and
site occupations, the Debye-Waller-factors, etc.) are refined together with the instru-
mental parameters (zero point of the scattering angle 26, parameters of the resolution
function U, V, W, etc). Assuming a certain peak shape function, this allows one to mod-
el the entire powder diffractogram and determine the corresponding parameters from a
refinement, which aims at minimizing the weighted sum of the quadratic deviations of
calculated and observed intensities for all data points. Figure 15.14 shows an example
of such a Rietveldt analysis for data taken from a colossal magnetoresistance manganite.

® Alternatively, one can chop the incoming white beam, so that the different wavelengths arrive at differ-
ent times at the sample; from the arrival time of elastically scattered neutrons at the detector, one can
deduce the wavelengths of the scattered neutrons. Using large area detectors, which cover most of the
solid angle 4m, this time-of-flight technique, typically applied at pulsed sources, can be very efficient.
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Fig. 15.14:  Powder neutron diffaction fom a colossal magnetoresistance
manganite. Points represent the measured intensities, the solid line the
calculated pro fle finction. The green bars below the diffactogram
indicate the positions of the Bragg refections and the line beneath
shows the di ference between observed and calculated intensities [5 ],

As one can see, there is a very strong overlap of Bragg reflections, especially at larger
scattering angles. Still, by using the above-mentioned profile refinement technique, the
atomic structure of the compound could be determined to a high precision.

Applications of wide angle diffractions are manifold:

e [if-sciences. structure of biological macromolecules, e. g. Hydrogen (crystal
water! ) in protein structures

e chemistry. structure determination of new compounds, position of light atoms;
time resolved reaction kinetics

o materials science: stress-strain determination; texture of materials

e geo-science. phase and texture analysis

e solid state physics: structure - function relations e. g. in high Tc superconduc-
tors; magnetic structures and spin densities, e. g. in molecular magnets
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15.5 Spectroscopy

So far, we have only explored the purely elastic - or the quasi-static correlation func-
tions, which give us structural information on various length scales only. We will now
turn to the general case of correlation functions in space and time, which allow us to
determine in addition the microscopic dynamics of the sample under investigation.
Again, different instrument types exist for different applications. First of all, if we con-
sider the neutron as a particle, we can determine the time-of-flight it needs to travel
from the sample to the detector and thus its velocity or energy after the scattering pro-
cess. With the knowledge of the incident energy, the energy transfer during the scatter-
ing process can be determined. This kind of neutron spectrometer is called a time-o f
fight or TOF spectrometer. A special case of the TOF spectrometer is the so-called
neutron spin-echo spectrometer, where the time-of-flight of the neutrons is being de-
termined through the Larmor precession of the nuclear spin of neutrons in an external
magnetic field. Neutron spin-echo spectroscopy has the highest energy resolution and
measures the intermediate scattering function directly. Therefore, it is well suited to
study slow relaxation processes. An alternative approach to spectroscopy is to deter-
mine the energy of scattered neutrons by means of Bragg reflection from an analyzer
crystal. Such an instrument is called a crystal spectrometer and if the selection of the
incident wavelength is done by a crystal monochromator, it is called a tri ple axis spec-
trometer. A variant of a crystal spectrometer is the high-resolution backscattering s pec-
trometer. Of course, there are various combinations of these techniques, which exist in
particular at spallation sources. A discussion of all of the various instrument concepts
goes well beyond the scope of this introductory course.

15.5.1 Time-of-Flight or TOF spectroscopy

Figure 15.15 depicts schematically a generic time-of-flight spectrometer. Neutrons are
being monochromatized either by reflection from a monochromator crystal or by time-
of-flight techniques (X-TOF or TOF-TOF instruments, respectively). Monochromatic
neutron pulses are produced by a chopper, which can be a fast rotating (up to e.g. 600
Hz) disc or drum made from neutron absorbing material, which has a slit that lets neu-
tron pass only during a short time interval of typically some microseconds. This pulsed
neutron beam impinges on the sample and is scattered under all possible scattering an-
gles. Neutrons are recorded on a two dimensional position sensitive detector (nowadays,
this is often an array of linear position sensitive *He detector tubes) surrounding the
sample typically on the surface of a cylinder. From the arrival time of the neutrons in
the detector with respect to the starting time given by the opening of the chopper, an
intensity spectrum can be recorded for each scattering angle separately as a function of
the arrival time of the neutrons in the detector. Using simple kinematic equations for the
neutron as a particle and a calibration obtained by measuring a reference sample, this
time-of-flight spectrum can be converted into the scattering function S(Q,w ). Figure
15.16 illustrates the scattering process in a flight-path-versus-time diagram.
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Fig. 15.15:  Generic TOF spectrometer. The neutron beam is monochromatized,
either by a crystal monochromator (X-TOF) or by time-o f fight (TOF-
TOF) with choppers and / or the pulse fom a spallation source. A
chopper creates monochromatic neutron beam pulses incident on the
sample. The scattered neutrons are collected in an array o fdetectors
surrounding the sample. For each detector pixel, the neutrons are
counted into a histogram as a finction o f their arrival time. These
intensity — time histograms can be converted into the scattering finction
S(Q,w) by using a re prence sample pr absolute calibration and simple
kinematic relations between scattering angle and fight time on one hand
and scattering vector and energy on the other hand.
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Fig. 15.16:  Flight- path-versus-time-diagram pr a generic time-o f fight instrument
(see text ). (Courtesyo fDr. M. Monkenbusch ).



Applications neutron scattering 15.29

In such a diagram, a monochromatic neutron beam has a certain slope, which can be de-
rived from the de Broglie equation p= 7 —mev=m-2:
t

t:%.s.ﬂ (15.39)

Typical velocities for thermal neutrons lie in the range of meter per millisecond. In fig-
ure 15.16 the neutrons coming from a monochromator enter the chopper with a certain
slope in the path-vs.-time diagram corresponding to the velocity of the monochromatic

neutrons. With a repetition rate of % given by the chopper frequency, pulses of mono-

chromatic neutrons leave the chopper. A second chopper can be applied to suppress
higher order reflections. The neutron scattered from the sample can either gain energy,
resulting in a steeper slope in the path-vs.-time diagram or lose energy resulting in a
shallower slope. The number of neutrons entering the detector in a certain time interval
is counted into a histogram with the elastic line usually being strongest and inelastic
events being visible in neutron energy gain or -loss.

A nice example for a powder neutron time-of-flight spectrum is given by the excitation
spectrum of a molecular magnet, namely Mnj» acetat, see figure 15.17 [6]. Here the
time-of-flight axis has been converted into an energy scale. Clearly visible are nicely
separated excitations, which result in the energy level diagram depicted on the middle
of figure 15.17. Transitions between these levels correspond to transitions between dif-
ferent values of the magnetic quantum number of the total spin of the molecule. Model-
ing this energy level spectrum allows one to determine the magnetic interaction parame-
ters, here mainly the magnetic anisotropy.
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Fig. 15.17:  Lef: Time-o f fight spectrum o fthe molecular magnet Mn;> acetat con-
verted into an energy scale; middle: the corresponding energy level dia-
gram, right: the magnetic molecule consisting o fan outer ring o f§ Mn
atoms (orange ) with parallel coupled spins and an inner ring o f4 Mn at-
oms (blue ) with o pposite spin orientation. Taken fom [6].

Typical applications of time-of-flight spectroscopy can be found in various fields of
science:



15.30 Th. Briickel

o so f matter and biology. dynamics of gels, proteins and biological membranes;
diffusion of liquids, polymers; dynamics in confinement

e chemistry. vibrational states in solids and adsorbed molecules on surfaces; rota-
tional tunneling in molecular crystals

e materials science: molecular excitations in materials of technological interest (e.
g. zeolithes) and especially in diluted systems (matrix isolation); local and long
range diffusion in superionic glasses, hydrogen-metal systems, ionic conductors

o solid state physics: quantum liquids; crystal field splitting in magnetic systems;
spin dynamics in high Tc¢ superconductors; phase transitions and quantum criti-
cal phenomena; phonon density of states.

15.5.2 Triple axis spectroscopy

An alternative approach for the study of dynamics of condensed matter systems is the
so-called tri ple axis spectroscopy. The schematic of a triple axis spectrometer is depict-
ed in figure 15.18.

in real space...

. and in reciprocal space

Q=k'-k=G,,+q
inelastic scattering !

detector

Fig. 15.18:  right: schematics o fa triple axis spectrometer showing the three axes;
lef:  scattering  diagram in  reciprocal  space.  (Courtesy
Dr. H. Conrad).

In this case the energies of the incident and scattered neutrons are selected by means of
a single crystal monochromator and - analyzer, respectively. Also, the sample is usually
in single crystalline form. These crystals (monochromator, sample, analyser) are on ro-
tation tables, which form axis 1, axis 2 and axis 3 of the triple axis spectrometer. If we
compare this instrument with the time-of-flight spectrometer shown in figure 15.15, one
difference becomes immediately clear: while the time-of-flight spectrometer with its



Applications neutron scattering 15.31

large detector bank allows one to obtain an overview over the excitation spectrum in
reciprocal space, the triple axis spectrometer is the instrument of choice, if a certain
narrow region in Q and o is of interest. This is the case, if sharp excitations like lattice
vibrations (phonons) or spin waves (magnons) are being investigated. A propagation
vector of such an excitation together with a certain energy transfer can be selected by
setting monochromator, sample and analyzer to the corresponding values as depicted in
the scattering diagram of figure 15.18, left. Here the energy transfer is given by

2
AE = 2h—(k “_k*), while the momentum  transfer is  given  as
m

1Q =hk'—hk =G, +hy.

As an example, Figure 15.19 shows spin wave dispersion relations determined for the
garnet Fe>CasGes0;: by triple axis spectroscopy.
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Fig. 15.19:  Spin wave dispersion relations pr the garnet Fe:Ca3GesO;2 along main
symmetry directions in reciprocal space. The data points are obtained
Jom scans keeping the momentum transer hQconstant. The fgure on
the right shows examples o fsuch *“ constant Q scans”. The solid lines are
model calculations, fom which the interaction (exchange) parameters
between the spins in the unit cells can be determined; fgure taken fom

71

Typical examples of triple axis spectroscopy lie mainly in solid state physics:

e phonon dispersions in crystalline material, from which the interatomic forces
can be determined

e spin wave dispersions, which allow one to determine exchange and anisotropy
parameters

e dynamics of biological model membranes

e lattice and spin excitations in quantum magnets, superconductors, ...

e phase transitions: critical behavior.
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15.5.3 High resolution spectroscopy

Both, time-of-flight and triple axis spectroscopy, have typical energy resolutions of a
few percent of the incident neutron energy. While such energy resolutions are sufficient
in many cases, there is need for higher energy resolutions, for example to investigate the
rather slow movements of large macromolecules, the slow spin dynamics of frustrated
spin systems, diffusion of atoms or tunneling processes in molecular crystals. In order to
improve the energy resolution, one could just narrow the energy band width of the neu-
trons incident on the sample. However, such an improvement of resolution goes hand-
in-hand with the decrease of the signal in the detector and is therefore not practicable
beyond certain limits. There are, however, alternative approaches to increase the energy
resolution: neutron spin echo spectrosco py and backscattering s pectrosco py.

Neutron spin echo spectroscopy can be understood as a further development of the time-
of-flight spectroscopy, where the flight times of individual neutrons are encoded and
thus a broad wavelength band of incident neutron energies can be used. Encoding of the
flight-time is done by the Larmor precession of the nuclear spin of the neutrons in an
external magnetic field. Loosely speaking "each neutron carries its own clock” to meas-
ure its individual time-of-flight. Figure 15.20 demonstrates the principle of neutron spin
echo spectroscopy: the incident neutron beam with a broad wavelength band of typical-
ly 10 % is being polarized with the polarization along the neutron flight direction. A so-

called %-ﬂipper turns the neutron polarization into the vertical direction, just before the

neutrons enter a strong magnetic field, which is designed in such a way that the field
integral I B(s)ds is identical for all neutron flight paths (an absolute non-trivial re-

quirement!!). In the external filed, the nuclear magnetic moment of the neutron starts to
precess in this field with a Larmor precession frequency determined by:

%z;/st (15.40)
Due to the different neutron velocities and thus different flight times in the magnetic
field area, the neutron beam reaching the sample is entirely depolarized. Typical field
integrals are in the range of 0.5 T"m giving rise to some 10,000 precessions of the neu-
tron spin. At the sample, the polarization of each neutron is inverted by a so-called -
flipper. In the second arm of the neutron spin echo spectrometer, the scattered neutrons
travel through an identical solenoid as on the incident side. If the neutrons are scattered
elastically and the field integrals in the two coils are precisely identical, then the full
polarization of the neutron beam will be restored and a full intensity will be recorded in

the detector after a further % flip and a polarization analyzer. This maximum intensity

is called the spin echo. This spin echo is due to the fact that in the second coil, each neu-
tron performs as many revolutions as in the first coil and thus has to end up with the
initial spin direction. If an inelastic scattering event happens at the sample, the spin echo
will be destroyed, i.e. the intensity in the detector will be lowered. The echo signal can
be measured by scanning the field of the second coil with respect to the field of the first
coil. Since the echo signal depends directly on the time-of-flight which neutrons need to
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travel through the magnetic field region, the spin echo technique directly measures the
intermediate scattering function /(Q,¢) instead of S(Q,w ). This type of spectroscopy is
therefore well suited to measure slow relaxation processes like the magnetization dy-
namics in spin glasses or the dynamics of large macromolecules.

neutron spin spin rotation
2 » - :2 i
N © g -

e precession 1
flipper _
PP precession 2 W2  detector

analyzer

Fig. 15.20:  Schematics o fthe neutron spin echo spectrometer o fJCNS at the Heinz
Maier-Leibnitz Zentrum MLZ in Munich [3 ] The incident neutron beam has a

wavelength — or energy band o f A% =10%.

Another instrument for high resolution spectroscopy, based on a crystal analyzer and
thus related to the triple axis spectrometer, is the so-called neutron backscattering in-
strument. Starting from the Bragg equation 1 =2dsin@ one can derive the wavelength
spread of a Bragg reflection from a monochromator or analyzer crystal by simple deri-
vation:

2 2 2 2
M:(@D (Ad)%(%p (A0) = (M\ :(&D +cot’6-(A0)"  (15.41)
od’) 06" A d'’)

(15.41) shows that the wavelength spread results from two factors: an uncertainty in the
lattice d-spacing, which can be minimized for perfect crystals such as silicon or germa-
nium and a term resulting from the divergence of the beam. For backscattering, i.e.
20 =180° or 9 =90° this latter contribution vanishes due to the cot(6) dependence.
Thus, in backscattering one can work with a very divergent beam and still achieve a
very good wavelength- or energy- resolution — of course at the prize of a poor angular
resolution. This principle is applied for backscattering instruments. An example of such
a spectrometer from a neutron spallation source is shown in figure 15.21.
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Fig. 15.21:  Schematics o f the neutron backscattering spectrometer BASIS at the
Spallation Neutron Source SNS in Oak Ridge, USA, taken fom [8].

Neutron pulses are produced in the supercritical hydrogen moderator. These pulses have

a width of about 45 us for 1=6.267 A wavelength neutrons (this wavelength corre-
sponds with silicon (711 ) backscattering analyzers). Bandwidth choppers are used to
select a certain wavelength band from the pulsed white neutron beam. A long incident
flight path of 84 m between moderator and sample allows one to define with great preci-
sion the wavelength of the incident neutrons arriving at the sample at a certain time after
the initial neutron pulse. Neutrons are scattered from the sample onto Si (/71 ) analyzers,
reflected from these analyzers into detectors in a close-to-backscattering geometry. In
this way the final neutron wavelength is fixed to 6.267 A, while the incident neutron
wavelength varies with time after the pulse and thus the energy transfer can be deter-
mined like in a time-of-flight instrument'®. An energy resolution of about 2.2 ueV can
be achieved with the dynamic range of + 250 wel. Typical applications of such a
backscattering spectrometer lie in the investigation of tunneling in molecular crystals,
spin diffusion or slow spin relaxation in frustrated spin systems, or atomic diffusion
processes.

15.6 Summary and conclusions

In this chapter we have given a rough overview over the different neutron scattering
techniques and their applications. Many details will be discussed in the practical part of
this course. In addition to the instrument concepts presented, there are many variants,
which could not be discussed within the scope of this introduction. Besides neutron
scattering there are of course many other techniques, which cover similar lengths- and

19 The BASIS spectrometer is an example of a so-called inverse TOF spectrometer, where the final veloc-
ity of neutrons is fixed and the incident velocity varies. This is in contrast to a direct TOF s pectrometer,
where the incident velocity is fixed and the final velocity varies.
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time- scales for research in condensed matter. All these techniques are complementary
since all of them can only access a certain phase space region and since the contrast
mechanisms are quite different for the different techniques. Figures 15.22 and 15.23
depict the relevant lengths- and time- scales accessible with various neutron- and non-
neutron techniques.
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| L | s T ™
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Neutron imaging SANS

Mlcr‘oscopy — e Electron Dif fraction

e Scanning techniques s

SNOM AFM STM
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Fig. 15.22:  Experimental techniques with spatial resolution: neutron di ffaction
com pared to other experimental techniques, taken fom [9].
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Fig. 15.23:  Experimental techniques with time and energy resolution, respectively:
neutron spectrosco py compared to other experimental techniques, taken

fom [9].
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As these figures clearly demonstrate, neutron techniques cover a very large range of
lengths- and time- scales relevant for research on condensed matter systems. Together
with the typical assets of neutrons - sensitivity to magnetism, gentle non-destructive
probe, sensitivity to light elements, contrast for neighboring elements etc. - it is clear
why neutrons are such an important probe in many research fields. Figure 15.24 shows
how research with neutrons is relevant in many areas of fundamental research and how
this in turn is highly relevant for many developments of modern technologies, which are
the basis to solve current challenges of mankind.

Fig. 15.24:  Signi fcance o f research with neutrons in findamental research and
modern technologies, which fnally shape our environment and help
solve pressing problems of modern societies, like energy supply,
transport or communication, taken fom [9].
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Exercises

Multiple choice

1. Thermal neutrons have typical energies of

0.2meV [ ]
20meV []
2000 meV  []

20000 meV ]

2. In1 sec, thermal neutrons cover a distance of

1I0m []
100m []
1000m [ ]
100000 m  []
3. Neutron choppers rotate with frequencies up to
SHz (]
600 Hz ]
60000 Hz ]

4. Phonon- and Magnon-dispersions are usually measured at
[ ] small angle scattering instruments
[] triple axis spectrometers
[] backscattering spectrometers
[] neutron spin echo spectrometers

5. Interface structure in thin film systems is usually studied at
[ ] powder diffractometers
[] time-of-flight spectrometers
[] reflectometers

6. Polymer reptation has been extensively studied at
[ thermal time-of-flight spectrometers
[] triple axis spectrometers
[ ] spin-echo spectrometers

7. Incoherent scattering (e.g. of hydrogen) is very useful to
[ ] reduce the background
[] study magnetic properties
[] study diffusive motions
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8. With integral scattering we see
[] the time averaged structure
[] asnapshot of the sample
[] the dynamics of the atoms

9. The scattering vector Q is directly related to
[] the momentum transfer of neutrons to the sample
[] the coherence of the neutron beam
[] the phase shift during scattering

10. The resolution function of an instrument is directly related to
[ ] the Fourier transform of the pair correlation function of the atoms in the sample
[] the coherence volume of the neutron beam
[] the collimation and monochromatization of the beam

E15.1 Collimation

Assume you have to define the direction of a neutron beam by collimation. The incident beam
has a flat angular distribution over an angular range much wider than needed. Employ the

following three methods, plot the intensity distribution after your collimating device, compar-
ing shape, width and transmission:

1. two slits with opening S in distance L

P Ll L]
—_—> S¢A }S
— ., O L O

2. a“Soller Collimator” consisting of N neutron absorbing plane-parallel plates of thick-
ness ¢, channel width d and length /:

1
«—1 >
/ I$d
I :
T
3. aneutron guide of length L>> width w coated with **Ni (b =14.4 fn; fcc-structure;
ap= 3.520 A)
< L >
T
58Ni

What is the principle difference between method 3 and methods 1 and 2?
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E15.2 Monochromatization

You have now the task to monochromatize your ideally collimated neutron beam (neglect any
angular divergence). Again, three methods are offered:

a) A velocity selector, see figure 15.6. Take as parameters the thickness of the drums of
10 c¢m, an inner radius of the lamella of 6 ¢m, a distance between the lamella of 7 cm
and an inclination angle of /0°. How fast does this selector have to turn to monochro-
matize neutrons of wavelength /0 4? Estimate the wavelength spread in percent.

b) A crystal monochromator made from pyrolytic graphite PG(002 ) reflection with a lat-
tice d-spacing of 3.343 A PG is not an ideal crystal, but a mosaic crystal consisting of
many small crystalline blocks slightly canted against each other within an angular
width of say 40’. Calculate the Bragg angle for a wavelength of 2.4 Aand 10 A4, re-
spectively, and estimate the wavelength spread in percent.

c) A sequence of two disk choppers with radius R and opening d in a distance L. Take
L=3m, R= 20 cm, d= 1 cm. Which wavelength is selected, if the choppers rotate at
200 Hz with a phase shift of 100°?

E15.3 TOF-Spectroscopy (optional!)

In a time-of-flight spectrometer, the energy change of the neutrons during scattering is being
determined by the neutron time-of-flight:

- B

monochromatic . sample . 26
neutron beam i

Chopper
| a NA
- Tt
1 |_detector

a) Calculate the time-of-flight between chopper and detector for a flight path length
s+5"=3m for neutrons of wavelength / A4 for an elastic scattering process.

to
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b) Determine the relation between the delayed arrival time of neutrons at the detector and
the energy loss during inelastic scattering at the sample.

c) Determine the relation between energy transfer 7iw = E — E' and the magnitude of the
momentum transfer |hQ| =h |k‘— k| for a detector with fixed scattering angle 26.

Which factors determine the energy resolution of a TOF spectrometer? How does this affect
the design of such an instrument?
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