
IAS Series
Band / Volume 52
ISBN 978-3-95806-684-7

IAS Series
Band / Volume 52
ISBN 978-3-95806-684-7

JSC Guest Student Programme Proceedings 2021
Ivo Kabadshow (Ed.)

Schriften des Forschungszentrums Jülich
IAS Series	 Band / Volume 52

Forschungszentrum Jülich GmbH
Institute for Advanced Simulation (IAS)
Jülich Supercomputing Centre (JSC)

JSC Guest Student Programme
Proceedings 2021

Ivo Kabadshow (Ed.)

Schriften des Forschungszentrums Jülich
IAS Series	 Band / Volume 52

ISSN 1868-8489		 ISBN 978-3-95806-684-7

Bibliografische Information der Deutschen Nationalbibliothek.
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte Bibliografische Daten
sind im Internet über http://dnb.d-nb.de abrufbar.

Herausgeber	 Forschungszentrum Jülich GmbH
und Vertrieb:	 Zentralbibliothek, Verlag
	 52425 Jülich
	 Tel.: 	+49 2461 61-5368
	 Fax: 	+49 2461 61-6103
	 zb-publikation@fz-juelich.de
	 www.fz-juelich.de/zb
	
Umschlaggestaltung:	 Grafische Medien, Forschungszentrum Jülich GmbH

Titelbild:	 Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH

Druck:	 Grafische Medien, Forschungszentrum Jülich GmbH

Copyright:	 Forschungszentrum Jülich 2023

Schriften des Forschungszentrums Jülich
IAS Series, Band / Volume 52

ISSN 1868-8489
ISBN 978-3-95806-684-7

Vollständig frei verfügbar über das Publikationsportal des Forschungszentrums Jülich (JuSER)
unter www.fz-juelich.de/zb/openaccess.

	 This is an Open Access publication distributed under the terms of the Creative Commons Attribution License 4.0,
	 which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://creativecommons.org/licenses/by/4.0/

ju
ra
ss
ic

gpu

graph

sc
at
te
r

cu
da

ga
m
e

ti
m
e

codeta
sk

pr
og
ra
m

pe
rf
or
m
an
ce

graphs

ke
rn
el

function

va
lu
e

sy
st
em
s

pa
ck

ko
kk
os

im
pl
em
en
ta
ti
on

model

cpu

tensor

games

si
ng
le

kkrnano

data

library

al
go
ri
th
m
s

nodes
walberla

node

lb
m

computational

tree

tfqmrgpu

st
ru
ct
ur
e

pr
oj
ec
t

st
ep

lattice

ex
ec
ut
io
n

ca
rb
on

st
re
am

rays

functions

cr
ea
te
d

be
nc
hm

ar
k

si
ze

sc
at
te
ri
ng

ke
rn
el
s

com

co
lli
si
on

ru
n

qu
eu
e

nvidia

method

pa
ra
m
et
er
s

m
ov
e

m
in
im
ax

jube

gr
ap
he
ne

re
su
lt

quantum

co
m
pu
te
r

board

test

sp
ee
du
p

se
ct
io
n

do
i

check

ap
pl
ic
at
io
n

xo

research

fo
rw
ar
d

communication

based

ar
ra
y

al
go
ri
th
m

st
ru
ct
ur
es

pr
op
er
ti
es

particles

m
pi

main

files

computation

at
om

s

ac
ce
ss
ed

materials

gi
th
ub

co
nt
ra
ct
io
n

co
m
pl
ex
it
y

values

tcl

sy
st
em

nanotubes

m
et
ho
ds

m
em
or
y

in
fo
rm
at
io
n

ex
am
pl
e

ap
pl
ic
at
io
ns

si
m
ul
at
io
n

op
er
at
io
ns

li
st
in
g

gpus

co
m
pu
ti
ng

cl
ou
d

calls

w
or
kf
lo
w

version

uniformgridgpu

st
re
am
s

sh
ow
n

python

pr
oj
ec
ts

player

ou
te
r

or
g

implemented

hence

fo
llo
w
in
g

ef
fi
ci
en
t

ch
il
d

ce
lls

st
ep
s

solving

seen

primary

ph
ys
ic
s

m
ps

max

le
ft

jsc

co
de
s

bo
lt
zm
an
n

bl
oc
k

at
m
os
ph
er
e

ap
pr
oa
ch

w
al
be
rl
as

timestep

so
ur
ce

similar

running

phase ox
x

or
ig
in
al

october

m
od
el
s

level

in
ne
r

im
pl
em
en
ta
ti
on
s

do
m
ai
n

density

ze
ro

w
al
l

void

total

ra
y

radiative

po
w
er

parallel

li
ne
ar

in
tr
od
uc
ti
on

in
pu
t

initial

hand

future

finally

file

dimensions

di
ff
er
en
ce

development

centre

calculations

benchmarks

bcs

ai

unpack

tn

theory

te
m
pe
ra
tu
re

streaming

si
m
ul
at
io
ns

sc
ie
nc
e

nsight
hu
bb
ar
d

execute
eq
ua
ti
on

en
er
gy

electron

differences

dft

cu

cr
ea
te

co
nt
ro
l

comparison

according

transfer

tools

sp
ac
e

so
lv
e

software

pr
un
in
g

provides

programming

pl
ay

openmp

mode

means

jli
ch

in
te
lli
ge
nc
e

ha
m
il
to
ni
an

electronic

draw

di
m
en
si
on
al

cudastreamsynchronize

common

clone

ca
lle
d

ca
ll

bond

type

toe

ti
c

ta
c

solid

si
te

si
m
pl
e

prepare

players

pe
rf
or
m

operator

ns
l

ne
tw
or
ks

m
ul
ti
pl
e

moves

memcpyparams

memcpy

matrix

m
at
he
m
at
ic
al

juwels

infrared

improvements

he
ur
is
ti
c

he
ad
er

dr

developer

depth

de
pe
nd
en
ci
es

cell

api

ad
va
nt
ag
e

added

world

wave

ve
rs
io
ns

up
da
te

term

table

scamult

return

report

real

ra
ng
e

pu
rp
os
e

programs

nv
tx

Editorial

The Jülich Supercomputing Centre (JSC) provides HPC infrastructure of the highest class

and promotes the education of young scientists willing to enter the HPC domain. Our

ten-week guest student program offers interested students the opportunity to work within

one of the world’s most powerful HPC environments. Within this programme, students

with a major in natural sciences, engineering, computer science or mathematics get

the opportunity to familiarize themselves with different aspects of scientific computing.

Together with local scientists, the participants work on a large range of different topics

in research and development. A special emphasis in the training and project selection is

placed on the use of modern supercomputers. Depending on previous knowledge and

on the participant’s interest, the assignment can be chosen out of different areas. These

fields include mathematics, physics, chemistry, neuroscience, software development

tools, artificial intelligence and distributed computing.

The JSC Guest Student Programme has already been successfully running for 22

years. Since the first programme in 2000, a total of 233 students have seized the

opportunity to join research teams from JSC on the Forschungszentrum Jülich campus

each summer. Working on challenging scientific projects, they gained experience with

modern hardware and software as well as HPC-related methods and algorithms. For

many students, the programme has been the foundation for a career in HPC and the

basis for fruitful continuing cooperations.

The JSC Guest Student Programme 2021 took place from August 2nd to October 8th.

Once again it was run with support from CECAM (Centre Européen de Calcul Atomique

et Moléculaire). It targeted students who have already completed their first degree but

have not yet finished their master’s course.

Since an on-premise hosting due to COVID was not possible, 6 students were accepted

to work remotely for a project in Jülich. This publication summarized the findings of

these research projects.

Ivo Kabadshow

Jülich, December 2022

i

Contents

� Rahul Mananvalan

� High Performance Tensor Contraction Algorithms in Tensor Networks. . . . 1

� Cem Oran

� Accelerating KKRnano . 15

� Anastasia Papadaki

� NSL(Nanosystem Simulation Library) . 24

� Stjepan Požgaj

� JURASSIC-scatter-GPU . 34

� Mert Saner

� Game Tree Implementations Using Python 48

� Milena Veneva

� GPU-Based Optimizations for waLBerla . 59

ii

High Performance Tensor
Contraction Algorithms in Tensor

Networks.
An Investigation.

Abstract Tensor Networks have been used to study strongly

interacting quantum materials. Understanding the physics

of quantum materials is becoming increasingly important

to engineer such materials. However, there are unanswered

questions regarding strongly interacting quantum systems such

as high temperature superconductivity. As a result, there is an

impending need for faster algorithms that allow us to simulate

more materials in greater detail. This Investigation is one that

tries to adopt a high performance tensor contraction library

to Tensor Network applications, with the aim of investigating

the speedup that one obtains with and without the use of

this library. Preliminary investigations would suggest that

it is of advantage to port TN implementations to said high

performance library.

Rahul Mananvalan
Computational Science and

Engineering.
Technical University of

Munich.
Germany

rahul.manavalan@tum.de

1. Introduction
An increase in the computational resources and progress in modern physics has always

been hand in hand. By making use of mathematical models and computer simulations,

hypotheses have been tested and corrected at an accelerated pace. Until early 2005, clock

speed of processors increased almost with every new release. This meant that scientists

could simply wait for the next generation of processors for their codes to become faster

and inturn refine the parameters of their computer simulations. However with the end

of Dennard scaling, this is no longer true. Modern scientific software must make use of

not only the inherent parallelism that the present day microarchitectures offer, but also

be amenable to execution on accelerators such as GPUs and by extension on distributed

architectures. In this article, we investigate the viability of high performance tensor

contraction algorithms to Tensor Network applications.

1.1. Tensor Networks
Understanding quantum many-body systems is probably the most challenging problem

in condensed matter physics.[6] One explanation for this difficulty is the exponential size

of the quantum wave function even for moderately sized systems. This follows that the

wavefunction |𝜓⟩ cannot be efficiently represented on a computer. As a result, alternative
compressed and parametrized representations of the wavefunction is necessary. Tensor

Networks (henceforth TN) is one of the many Ansaetze, which extends the range of

models that can be simulated with a classical computer in new and unprecedented

1

directions.[6]

We shall attempt build on some of the building blocks for doing quantum mechanics

with TN. Let us start of with representing something as fundamental as the quantum

wave function 𝜓 and then explore how one might represent a Hamiltonian.

1.1.1. Wave function

The quantum wave function is an integral part of performing quantum mechanical

calculations for any system. Pragmatically,one should regard this as a mathematical

entity, although there have been attempts to interpret it.[2]

If we would like to represent a n body 1/2 system.

|𝜓⟩𝜖ℂN where N = 2n

|𝜓⟩ is mathematically a n-way tensor, whose graphical representation is found on the left
of Figure 1.1. In order to make this representation tractable on a computer, we could

prescribe to the following trick.(Figure 1.1)

1. Isolate index 1 and combine the rest of

the indices. This results in a matrix M.

2. Perform singular value decomposition on

the matrix M = U𝛴V ′.
3. Assign A = U𝛴
4. Repeat 1 for all remaining indices on V.

One can compress the representation of |𝜓⟩ by choosing the first k singular values in the
decomposition.

1.1.2. Hamiltonian

A similar obstacle for QM calculations is the size of the Hamiltonian H. If we stick to

our 1/2 system with n bodies.

H𝜖ℂNxN where N = 2n.

Solving the eigenproblem to such a matrix H is computationally intensive and in

some cases impractical. As a result, we require a more efficient representation of the

Hamiltonian. One method that is prevalent in TN algorithms is to encode the Hamiltonian

locally using a Finite State Automata approach.[3] Figure 1.2 denotes graphically how

the global Hamiltonian could be represented using a train of Local Hamiltonians.

With the aid of these two representations, we are in a position to understand most of

what would follow.

1.2. Tensor Contraction
Now we enter the computational part of our discussion. As one would realize,a recurring

theme of TNs is Tensor Contraction. Formally, Tensor Contraction (henceforth TC) is

a generalization of the trace of a Matrix. However this operation is often recast in the

form of a Matrix Multiplication, preferably using some highly optimized BLAS routines

2

𝜓 A(1) A(2) A(3) A(4)

Figure 1.1.: |𝜓⟩ and corresponding MPS state

H B(1) B(2) B(3) B(4)

Figure 1.2.: H and corresponding MPO

such as dgemm or zgemm. There are multitudes of methods for performing tensor

contraction. The range of algorithms include those that make use of BLAS, those that

are BLAS independent, those that contract two tensors at a time, those that contract

multiple tensors at a time etc. It goes without saying that all of these implementations

have optimized versions as well for accelerators and distributed memory architectures.

Some common algorithms for TC are

1. LoG := Loop of GEMMs

2. TTGT := Transpose Tranpose GEMM Transpose

3. GETT := GEMM like Tensor Contraction

.

We abstain from discussing the details of these methods, however one may find [8]

interesting.

2. Previous Work
Tensor contraction is a complex operation often involving several sub-computations

like Transposition,GEMM etc. Owing to its complexity,development of an efficient

implementation of such a kernel is laborious. Fortunately,there are several prior im-

plementations to choose from[7]. For the sake of our investigation, we adopt high

performance tensor transposition compiler library HPTT[10] and high performance
tensor contraction library TCL[9] owing to its proven benchmarks. TCL makes use of
HPTT, to realize increased performance. During this investigation we make use of the

C++ and Python interfaces that TCL has at its disposal. It is a given that, for the rest of

the discussion all TCs are performed using either direct calls to TCL or the corresponding

interfaces.

3

3. Problem Description
We are interested to determine whether the aforementioned compiler library-TCL pro-

vides sufficient speedup over the existing implementations, such that a reimplementation

of TN algorithms using TCL is warranted.

4. Approach and Results
Tensor Networks have a diverse portfolio. Therefore for the sake of this investigation,

we focus on MPS algorithms. Ideally, one would reimplement the entire MPS suite of

algorithms using TCL for performance measurements. An alternative approach would be

to identify recurring kernels and measure their performance instead. Further investiga-

tion reveals two groups of algorithms are responsible for large portions of computations.

4.1. DMRG kernels
Determining the ground state of a quantum system is a recurring problem in condensed

matter physics. The MPS algorithm for determining the ground state is called the DMRG

(Density Matrix Renormalization Group) algorithm. DMRG is a variational algorithm.

It optimizes the MPS train such that the energy associated with the state becomes a

minimum. Figure x illustrates in TN notation,the algorithm for DMRG. Evidently, one

observes three sub-kernels in the DMRG algorithm that repeat in the entire train of

computation.

� UpdateL

� UpdateR

� Update HEff

4.1.1. UpdateL

Mathematically this kernel comprises of contraction among three 3-way tensors and one

4-way tensor. It is interesting to note that the order in which the tensors are contracted

determines the complexity of the computation. Therefore, we distinguish between 6

different contraction sequences namely:

1. 0123

2. 0132

3. 0213

4. 0231

5. 0312

6. 0321

4

Figure 4.1.: UpdateL n:=bond dims, d:=Size of the local H, s:=DOF

To clarify what these permutations mean. ”0123” refers to contraction of Block(0) and

Iso(1); followed by contraction with MPO(2); finally contracting this result with Iso1(3).

An implementation of all these permutations of this kernel using numpy is realized.
Later, they are re-implemented using tcl.

4.1.2. UpdateL - Results

We perform test using the following parameters:

� s = 2

� d = 5

� n = [50,100,150,200,500]

There are two aspects from Figure 4.2 that are significant. Firstly,in Figure 4.2 a), we

validate that different permutations take different times for computation. Secondly,in

Figure 4.2 b) we see that the TCL implementation brings down the runtime significantly.

More interesting is the fact that the TCL implementation has different coefficients

when one regards complexity. It is certainly worth exploring why a discrepancy in the

coefficients are seen.

In Figure 4.3, we see the overall gains that are as a consequence of using the high

performant implementation. In a) one sees in the same scale how the runtimes vary for

different permutations of this kernel. In b) the actual speedup is observable. In summary

we were able to observe a speedup of approximately 15x in the best case scenario.

4.1.3. UpdateR

Perhaps the first observation that one may make from Figure 4.4 is that it is a reflection

of UpdateL. However one should note that the memory access patterns for the two

computations are significantly different. It is due to this, that we devote an entire section

for this computation. While the approach to measuring the performance of the two

types is the same, we do not expect similar results.

5

(a) numpy (b) tcl

Figure 4.2.: UpdateL with s = 2 d = 5

(a) Comparison@n = 200 (b) Speedup with bond dims - n

Figure 4.3.: Speedup

4.1.4. UpdateR - Results

We perform test using the following parameters:

� s = 2

� d = 5

� n = [50,100,150,200,500]

The results to UpdateR has a similar layout to that of UpdateL. As one would observe

the runtime even for the same permutations are different with respect to UpdateL. Aside

from this fact, the speedups that one observes is quite similar and is approximately 15x

for the best case complexity.

4.1.5. HEff

HEff is a made up abbreviation for updating the effective Hamiltonian on the lattice sites.

As Figure x, would suggest the central part of the DMRG kernel comprises of contracting

6

Figure 4.4.: UpdateR n:=bond dims, d:=Size of the local H, s:=DOF

(a) numpy (b) tcl

Figure 4.5.: UpdateR with s = 2 d = 5

two combined blocks with a MPS,MPO pair. We take a similar approach for measuring

the speedup.

4.1.6. HEff - Results

We perform test using the following parameters:

� s = 2

� d = 5

� n = [50,100]

We had to restrict ourselves to smaller bond dimensions due to memory insufficiency

that arises when one tries to contract blocks of higher dimensions. For instance, assume

n = 150 then one such contraction pattern would result in an intermediate tensor of

dimensions 150x150x2x2x150x150,which makes it a clear exclusion. However for a

7

(a) Comparison@n = 200 (b) Speedup with bond dims - n

Figure 4.6.: Speedup

Figure 4.7.: Update H Effective n:=bond dims, d:=Size of the local H, s:=DOF

(a) numpy (b) tcl

Figure 4.8.: HEff with s = 2 d = 5

lack of time, we are unable to prune out permutations of that nature. Hence the smaller

sample size for the computation.

8

(a) Comparison at n = 100

Figure 4.9.: Comparison

For preserving the homogeneity of the scale of the measurements, one of the permu-

tations has been thrown out. This is justified, as this makes no real difference to the

measurement of the speed up that we are interested in. It is of interest to the PIs, that

higher bond dimensions are explored to ensure that one achieves scaling with respect to

the bond dimension.

4.2. Isometrization kernels
We begin with the definition of an Isometry.

Let U𝜖ℂmxn

If U*U’=I

Then U is called an isometry.

Isometrization is important in the MPS context as it facilitates the conversion of Ai to an

isometry. This inturn has advantages both in terms of reduction of computational effort

and improving the stability of certain class of problems that can be solved with MPS. One

should take note that a Matrix can be right isometric and left isometric depending on

the order of contraction. In this section we explore the computational time that it takes

for isometrization on a single site. If one can prove an improvement in the performance

for once site, this naturally translates to the rest of the MPS train.

4.2.1. Left Gauge Transform

Left of Figure 4.10 shows the input to the routine. This routine converts the local MPS

tensor Ai to a left isometry as follows:

1) The input R (Ri−1) is contracted with Ai i.e. K = Ri−1 ∗ Ai

2) Perform QR decomposition on K. i.e. K = Ui ∗ Ri (Right of Figure x)

3) Return R

This way one can recursively orthonormalize the entire MPS train.

9

Figure 4.10.: Left Gauge Transform kernel

Figure 4.11.: Speedup Left orthonormalize

4.2.2. Results - Left Gauge Transform

We test the kernel for the following parameters

� s = 2

� d = 5

� n = [50,100,150,200,250,500]

As it has been for the previous kernels, we perform measurements in numpy and then

the tcl version of the kernel. Figure 4.11 depicts that for higher bond dimensions we

observe a speedup of approx 7x.

4.2.3. Right Gauge Transform

Under right gauge transformation one realized the isometrization using a similar algo-

rithm. The fundamental difference arises in the fact that one starts at the right of the

MPS train. In addition one is interested in performing the RQ decomposition as opposed

to the QR decomposition in Left Gauge transform.

4.2.4. Results - Right Gauge Transform

We test the kernel for the following parameters

10

Figure 4.12.: Right Gauge Transform kernel

(a) Speedup Right orthonormalize

Figure 4.13.: Speedup Left orthonormalize

� s = 2

� d = 5

� n = [50,100,150,200,250,500]

A striking feature about this kernel is that we perform RQ decomposition. This involves

transposing the tensor prior to decomposing it. It of special disadvantage to make use

of numpy ecosystems’ default transpose function. This slows down the computation

significantly. On the otherhand tcl and its highly optimized version of the HPTT code

performs better. If we port the implementation to numpy’s einsum function, then results

similar to that of the Isometrize L is obtained.

5. Additional Work
On the account of the positive results, the next step would be to develop MPS suite of

algorithms - HPTN that makes use of contraction realized using TCL. In that vein, we

started the construction of the initial building blocks necessary for HPTN. The outline

for the same can be found in Figure 5.1.

11

Figure 5.1.: Outline of current HPTN code

5.1. Computation layer
Including the Primitive layer and Algorithmic Exploration layer (Fig.5.1), this forms the

core of the computation. There are a vast array of tensor contraction and tensor trans-

position algorithms that are designed for different architectures. By abstracting out the

software stack into a computation layer that implements these algorithms, performance

of tensor network computations on a wide spectrum of devices could be realized. Of

special interest to the PIs, include implementation in GPUs and distributed devices. This

is a course that we lay now for future work.

5.2. Application layer
While Figure 5.1 alludes to mere MPS and MPO implementations, there are more TN

algorithms appropriate for several applications that can be implemented. This includes

algorithms for 2D problems such as PEPS[6],MERA[1]. These are also under considera-

tion for future implementations.

5.3. Problem layer
Finally, it is worth reminding that TN approximations are especially useful for solving

problems of strongly correlated quantum systems. In that respect, it would be interest

to solve a complete problem and test the relative performance with respect to other TN

libraries. Questions on the choice of problem and the appropriate libraries to make the

comparisons are still unresolved.

6. Conclusion
We summarize the following from the results of the experiments.

� DMRG kernels scale well with increasing bond dimensions, suggesting a clear

advantage.

� MPS Orthonormalization does not result in as significant an improvement with

respect to DMRG routines.

12

It is safe to infer that a TCL implementation allows us to explore higher bond dimen-

sions on a single node machine. So an obvious recommendation is to reimplement TN

algorithms using TCL. One obvious advantage such an endeavour would have, is the the

significant speedup that it might have over TN libraries that are developed in python and

make use of the numpy ecosystem. Some examples of these libraries include PyTeNet[5]

and TenPy[4].

However it remains to be proven, if other optimized TN implementations such as

ITensors and the like are better. This question can only be resolved with more testing and

benchmarking,which we plan to pursue after the end of the guest student programme.

7. Acknowledgments
I would like to thank my advisors Dr.Edoardo Di Napoli and Dr.Matteo Rizzi for ded-

icating their time in advising and reviewing my work over the course of the summer.

In addition, I would also like to thank Dr.Ivo Kabadshow for his lectures and guidance

with the reports and presentations.

References
[1] J. Biamonte and V. Bergholm. Tensor networks in a nutshell, 2017. arXiv:

1708.00006.

[2] C. Blood. A primer on quantum mechanics and its interpretations, 2010.
arXiv:1001.3080.

[3] J. Hauschild and F. Pollmann. Efficient numerical simulations with tensor
networks: Tensor network python (tenpy). SciPost Physics Lecture Notes, Oct
2018. � http://dx.doi.org/10.21468/SciPostPhysLectNotes.5, � doi:

10.21468/scipostphyslectnotes.5.

[4] J. Hauschild and F. Pollmann. Efficient numerical simulations with Ten-
sor Networks: Tensor Network Python (TeNPy). SciPost Phys. Lect.

Notes, page 5, 2018. Code available from https://github.com/tenpy/tenpy.

� https://scipost.org/10.21468/SciPostPhysLectNotes.5, arXiv:1805.

00055, � doi:10.21468/SciPostPhysLectNotes.5.

[5] C. B. Mendl. Pytenet: A concise python implementation of quantum tensor
network algorithms. Journal of Open Source Software, 3(30):948, 2018. � doi:

10.21105/joss.00948.

[6] R. Orús. A practical introduction to tensor networks: Matrix product states
and projected entangled pair states. Annals of Physics, 349:117–158, Oct
2014. � http://dx.doi.org/10.1016/j.aop.2014.06.013,� doi:10.1016/

j.aop.2014.06.013.

[7] C. Psarras, L. Karlsson, J. Li, and P. Bientinesi. The landscape of software for
tensor computations, 2021. arXiv:2103.13756.

[8] S.-J. Ran, E. Tirrito, C. Peng, X. Chen, L. Tagliacozzo, G. Su, and M. Lewenstein.

Tensor network contractions. Lecture Notes in Physics, 2020.� http://dx.doi.

org/10.1007/978-3-030-34489-4, � doi:10.1007/978-3-030-34489-4.

13

[9] P. Springer and P. Bientinesi. Design of a high-performance gemm-like tensor-
tensor multiplication. ACM Transactions on Mathematical Software (TOMS),
44(3):28:1–28:29, January 2018. � https://arxiv.org/pdf/1607.00145.pdf.

[10] P. Springer, T. Su, and P. Bientinesi. Hptt: A high-performance tensor trans-
position C++ library. In Proceedings of the 4th ACM SIGPLAN International
Workshop on Libraries, Languages, and Compilers for Array Programming, AR-

RAY. ACM, June 2017. � https://arxiv.org/pdf/1704.04374.pdf.

14

Accelerating KKRnano
A Green Function Based Electronic Structure Code

Abstract Even though quantum mechanics gives a compre-

hensive mathematical description of the atomic world, in

practice most of the existing precise electronic-structure codes

based on density functional theory (DFT) are applicable for

systems containing at most several hundred atoms as a re-

sult of enormous computational costs. Therefore, developing

both accurate and computationally cheap methods is a hot

topic in today’s materials science. KKRnano is an electronic

structure code which provides enormously parallel density-

functional calculations for large systems with thousands of

atoms. With the power of GPU-accelerated parallelism, KKR-

nano provides solutions for systems with complex defects or

large nanostructures which are beyond the limit that classical

DFT methods can reach. This study is dedicated to implement

a GPU library, tfQMRgpu, into the KKRnano code in order

to accelerate the Dyson equation solver. In this report, a

brief overview about quantum mechanical calculations, the

KKRnano code and the tfQMRgpu library is given. Results

of preliminary performance tests of KKRnano for CPU and

GPU parallelism are presented.

Cem Oran
Computational Science and

Engineering
Istanbul Technical

University
Turkey

cemoran.01@gmail.com

1. Introduction/Motivation

Discovering new materials with desired properties is one of the most prominent research

fields in material science. In this manner, large databases collecting information about

properties of various materials are the main resource to guide scientists in their research.

The traditional way of obtaining such data is doing experiments in laboratories and for a

long time, the data required for research have been obtained mostly from experimental

studies. However, improvements during the last 15− 20 years in both, the application

of theoretical framework to algorithms and cheaper high performance computation

resources, made calculations of huge amounts of material properties in computer envi-

ronment feasible [5]. Especially, the development of practical and scalable DFT (Density

Functional Theory) algorithms allowed accurately predicting the electronic properties

of crystal structures from first principles. These developments deduced a paradigm shift

in the materials science towards computation based data-driven approach. Today, large

online materials databases which are established on the top of decades long dedicated

experimental and computational works represent the backbone of this new paradigm.

Quantum mechanics gives comprehensive mathematical description of the atomic

world. Even though the theory is capable of providing explanation of the behavior of

electrons, it is not possible to obtain the exact solution of chemical systems bigger than

the hydrogen atom. As the chemical system grows, the system of mathematical equations

gets forbiddingly more complex. Therefore, it can be said that the approximate solutions

15

have a very crucial role in computational quantum mechanics.

There are various methods widely used in quantum mechanical calculations, and each

of them has pros and cons. On the other hand, those quantum mechanical methods, in

general, are far too expensive to be used for the systems containing several hundred

atoms. Therefore, developing both accurate and computationally efficient (linear scaling)

methods is an active research field today. In this manner, the linear-scaling all-electron

DFT implementation KKRnano is an efficient tool in order to deal with such large systems.

Moreover, the computational performance of the KKRnano code can be increased even

more by empowering it with GPU parallelism. This study is dedicated to improve the

computational performance of KKRnano by implementing the GPU library tfQMRgpu. In

the following sections, a brief introduction is given about some of the popular methods

for quantum mechanical calculations. Then, KKRnano with implementation of the

GPU library tfQMRgpu is presented. Finally, the effect of this implementation on the

performance is showed for crystal systems with various sizes.

2. ab-Initio Aspect and DFT

The term ’ab-initio’ corresponds to ’from the beginning’ in Latin. This term means

that a computation is directly based on theoretical principles without contribution

of experimental findings. Because, in terms of quantum mechanics, exact theoretical

solutions are not possible for systems larger than a hydrogen atom, ab-initio calculations

mainly deal with obtaining an approximate solution of the time-independent Schrödinger

Equation (H ⋅ 𝛹 = E ⋅ 𝛹) for the system of interest. However, pure ab-initio methods
in general, are sufficiently accurate but expensive. For example, the Hartree-Fock

(HF) method is a fundamental ab-initio method in which Coulombic electron-electron

repulsion is taken as an average integrated effect (each electron is affected by the

presence of the other electrons indirectly through the mean field created by them).

As a method, it lacks the electron correlation in its description of electron-electron

interactions, and it scales as the forth power of the number of basis functions (N4b)

[2]. Some more elaborated methods including electron correlation corrections scale

considerably harsher than this. Therefore, these methods are only considered as suitable

for relatively small sized atomic systems.

On the other hand, DFT is a very popular and strong alternative to pure ab-initio

methods. In a typical DFT code, calculations regarding eigenvalue problem scales as

the third power of the number of basis functions (N3b) and it provides a similar level

of accuracy compared to some of the correlation corrected ab-initio methods [2]. The

theoretical foundation of DFT was established by Hohenberg and Kohn while the first

practical application was advanced by Kohn and Sham. The idea behind DFT is that

electron density (𝜌) can be used as primary feature to predict any observable property
of a chemical system, contrary to ab-initio methods doing this via a wave function.

The Hamiltonian depends on positions and atomic numbers of the nuclei and the total

number of electrons, Ne. Nuclei are assumed as point charges [2]. Ne can be obtained

by integrating 𝜌 over all space as,

Ne = ∫ 𝜌(r)dr (2.1)

Using the total electron density is advantageous because the many-body wave function

16

is difficult to deal with and interpret. The total energy is determined by using 𝜌, so if
we have 𝜌, we can get around the wave function. But in practice, most of the DFT codes
are effective for systems with less than 100 atoms. Beyond this limit, most of the time

DFT codes are found expensive because their computational cost grows with N3atom.

3. KKRnano

KKRnano is an electronic structure code which is based on the Korringa-Kohn-Rostoker

(KKR) Green’s function method. It provides enormously parallel density-functional

calculations for large systems which are beyond the limit of classical DFT methods.

KKRnano can deal with systems having thousands of atoms, so its main focus is nano-

structures, disordered solids, defects, interfaces, etc. and their electronic and magnetic

properties [4]. In this method, 𝜌 can be obtained from the Green’s function of the
Kohn-Sham equation via the Kramers-Kronig relation. With this way, the problem is

reduced to solving large sets of sparse linear equations. The Kohn-Sham equation for

the electronic Green’s function is similar to a Schrödinger-type equation,

[−∇⃗2 + V(⃗r) − E]G(E; ⃗r, ⃗r ′) = 𝛿(⃗r − ⃗r ′)

The main task demanding computational cost is the solving of large sets of sparse linear

equations iteratively. The cost of this task is decreased for large system by implementing

Kohn’s nearsightedness principle of electronic matter [3]. According to this principal,

Green’s function elements describing long-range interactions can be neglected in order

to save large amounts of computing time and storage requirements. With this way,

when an atom A is considered for calculation, only a limited amount of neighboring

atoms which are interacting with atom A are taken into account as shown in Figure 3.1.

The number of interacting atoms, so the number of zero Green’s function elements, is

determined by a truncation radius (Rtrunc) as

Linear scaling if G(E; ⃗r, ⃗r ′) = 0 for | ⃗r − ⃗r ′| > Rtrunc

Figure 3.1.: Negligible interaction of far remote atoms implemented by neglecting Green-function

elements describing long-range interactions. Picture credit: Alexander Thiess.

Therefore, in KKRnano the computation cost increases only linearly with the number

of atoms (it is proportional to R3truncNatoms). This feature of KKRnano allows a highly

parallelizable method for the quantum-mechanical treatment for thousands of atoms.

17

4. Implementation of GPU Library tfQMRgpu

tfQMRgpu is a CUDA implementation for GPUs of the transpose-free Quasi-Minimal

Residual (tfQMR) method developed for the iterative solution of linear systems of

equations. Here the linear systems of equations correspond to the Dyson equation.

tfQMRgpu, a tfQMR method which is ported to GPUs, takes advantage of solving for

several right hand sides (RHSs) at a time using vectorization over CUDA threads [1].

The main task of tfQMRgpu is solving AX = B for the operators A, X and B, as

illustrated in Figure 4.1. The operators used here are block sparse matrices stored in

a Block-Compressed Sparse Row (BSR) format. In our problem, A, X and B represent

H − E, G and 𝛿 (here it equals to unity) in a Schrödinger-type equation for the electronic
Green’s function, respectively. Operator B consists of the right hand site vectors in its

columns. As a result of calculation, operator X contains the solution vectors as columns.

Operator A is very sparse since only nearest neighbor cells are taken into account as a

result of the tight-binding KKR formalism. The block-sparsity of X is due to truncation

of the Green’s function for the purpose of obtaining linear scaling of KKRnano [1].

Figure 4.1.: The main task of tfQMRgpu is solving AX = B for the block-sparse operators A, X

and B

An example for AX = B with 2 block columns in X and B is shown in Figure 4.2. In

this case, if the non-zero entries of the 2 block columns of X have maximum overlap,

the number of shared elements of A is maximized, so saving of bandwidth is achieved.

In this project we implemented the tfQMRgpu library to KKRnano. The original

KKRnano code has two different solver modes labelled with integers; Mode 3 represents

the iterative solver, while mode 4 corresponds to the direct solver which is based on

matrix inversion (scales as N3). In this project we implemented two new solver options:

mode 5 and 35. According to this denotation, mode 5 represents the GPU based iterative

solver. This means that the algorithm can only be ran with mode 5 on a partition

including GPU units, otherwise the program results in failure. In order to bypass the

failure and to provide some flexibility to the user, we defined mode 35 which is able to

switch between mode 3 and 5 according to resources. If KKRnano has been compiled

with tfQMRgpu, it turns into mode 5, otherwise it turns into mode 3. By this way,

KKRnano code can run according to resources in the machine.

tfQMRgpu is a complicated library by itself. It consists of a core written in CUDA C++

18

Figure 4.2.: solving AX = B with 2 block columns in X and B (B is not shown).

which is compiled to a shared object with C-interfaces, C wrappers and a Fortran 90

module around it (see Figure 4.3). Therefore, linking and compiling all those codes with

KKRnano was where most of our efforts have gone. During this study, the complicated

linking and compiling procedure is reduced to simple commands. In the final version

of the codes, in order to run KKRnano with tfQMRgpu library, these steps should be

followed:

� Clone and build tfQMRgpu:

1 # clone the tfQMRgpu repos i t o ry

2 $ g i t clone h t tp s : // github . com/ real−space /tfQMRgpu . g i t

3

4 # crea te a bui ld d i r

5 $ mkdir bui ld

6

7 # conf igure the p ro j e c t

8 $ cmake . . −DCMAKE_INSTALL_PREFIX=~/tfQMRgpu

9 −DCMAKE_PREFIX_PATH=~/tfQMRgpu

10

11 # compile the tfQMRgpu

12 $ make

� Clone and build KKRnano:

1 # clone the JuKKR repos i t o ry

2 $ g i t clone h t tp s : // i f f g i t . fz−jue l i c h . de/kkr/ jukkr . g i t

3

4 # switch to the branch that has the l a t e s t vers ion of KKRnano

19

Fortran code

C wrapper

C++ drivers

Cuda C++ kernels

Figure 4.3.: Flowchart of tfQMRgpu

5 $ g i t checkout kkrnano−chebyshev−tfQMRgpu

6

7 # go in to the source d i r

8 $ cd jukkr /source/KKRnano/source

9

10 # crea te a bui ld d i r

11 $ mkdir bui ld

12

13 # Build the tfQMRgpu Fortran90 module

14 $ make tfQMRgpu tfQMRgpu=yes

15

16 # compile the KKRnano

17 $ make tfQMRgpu=yes

5. Preliminary Results

After the implementation step, we tested the KKRnano code on the GPU partition of

the HPC System ”JUSUF” installed at Jülich Supercomputing Centre containing NVIDIA

V100 GPUs. As a first test, we checked whether the newly implemented tfQMRgpu code

can regenerate the same results with the original (CPU-based) KKRnano code. For this

purpose, we ran both versions of the code for crystal structures of Cu4, GaN, and Fe8Co8
compounds. The sum of band energies and total energy results are shown in Table 5.1

and 5.2, respectively.

As it is seen, tfQMRgpu implemented version can successfully regenerate the results

with high accuracy. Then, as a second test, we checked the effect of the tfQMRgpu

library implementation on performance in terms of wall clock time for different size of

structures. In order to compare the performance, we ran the CPU and GPU versions

of the code on bulk Cu crystal structures containing 4, 32, 108 and 256 atoms. All

structures have face centered cubic symmetry which means that they have lattice points

20

on the faces and the corners of their cubic unit cells. As a result that this symmetry

pattern repeats along the three-dimensional space, each lattice point in the faces is

shared by 2 neighbouring cells (gives 1/2 contribution), while ones in the corners are
shared by 8 neighboring cells (gives 1/8 contribution). Figure 5.1 represents the Cu4
and Cu32 crystal structures.

Those structures were created by using a supercell generator code which is written

in python. This code is responsible for repeating the lattice parameters in the desired

directions, adding enough atoms to keep the symmetry of the structure and creating

new potential and shapefun files, the input files required by KKRnano.

Table 5.1.: Sum of band energies comparison between CPU and GPU versions of KKRnano.

Compound CPU GPU Difference

Cu4 7.9826650492 7.9826650507 1.5 ⋅ 10−9 Ry

GaN 5.4259190350 5.4259190350 0 Ry

Fe3Co8 42.5224924129 42.5224924151 2.2 ⋅ 10−9 Ry

Table 5.2.: Total energy comparison between CPU and GPU versions of KKRnano.

Compound CPU GPU Difference

Cu4 -179851.75480643 -179851.75480640 3.001 ⋅ 10−8 eV

GaN -53346.71045016 -53346.71045016 0 eV

Fe8Co8 -579058.23717074 -579058.23717072 2.002 ⋅ 10−8 eV

Figure 5.1.: Face-centered cubic symmetry of bulk Cu crystals. Left: Cu4, Right: Cu32

We used the systems with the same element (Cu atom) but different sizes in order to

clearly see the performance versus structure size. Figure 5.2 shows the performance

21

change with the number of atoms for the CPU and GPU versions of KKRnano for the

energy loop calculation in one SCF cycle, i.e. measuring only the GPU-accelerated part.

Figure 5.2.: Comparison between CPU and GPU versions of KKRnano for solving Dyson equation.

As it is seen, the implementation of tfQMRgpu has a positive effect on the performance.

We do not see a linear trend in the performance with increasing number of atoms, since

we are dealing with relatively small size systems. Since the number of atoms is small, the

number of neglected long range interactions is also small and, so the effect of truncated

Green’s function elements is not seen here. No Green’s function elements are dropped in

these setups. In addition, it seems that the performance gain is changing with the size

of the crystal structures. This may be resulted that there are only a few structures for

which we test the performance. With adding larger systems, it is expected to see a clear

linear trend with different cost prefactors.

6. Remarks and Future Work

In this study we have successfully implemented the tfQMRgpu library into the linear-

scaling all-electron density functional theory application KKRnano and validated that

the results are compatible with the original CPU version of the main code for relatively

simple systems. In addition, we showed that tfQMRgpu provides a performance gain

even for these kind of simple systems. On the other hand, because of the limited time,

more complex systems, such as compounds having magnetic properties and spin-orbit

coupling, which requiring more attention to deal with properly have not been tested.

As a future work the GPU accelerated KKRnano can be applied to such complex systems

for additional verification of the correctness of the results.

In addition, our performance test results cover systems having up to 256 atoms.

Performance tests can be extended to larger systems with thousands of atoms in order

to see whether the computational cost grows linearly or not for the GPU accelerated

22

case. In summary, it can be said that the tfQMRgpu version of KKRnano has successfully

passed preliminary correctness and performance tests. With this work, a first and strong

step for future studies is constituted.

7. Acknowledgments

First of all, I would like to present my special thanks to my advisors Paul Baumeister

and Philipp Rüßmann. Their guidance and contributions helped me a lot through this

project. I also want to thank Ivo Kabadshow for all his precious support. Finally, I

would like to thank everyone who contributed to the realization of the Guest Student

Programme. This program was a great opportunity to improve myself in many ways.

References
[1] P. F. Baumeister. tfQMRgpu. https://github.com/real-space/tfQMRgpu.

[2] C. J. Cramer. Essentials of computational chemistry: theories and models. Wiley,

2 edition, 2004.

[3] W. Kohn. Density functional and density matrix method scaling linearly with
the number of atoms. Phys. Rev. Lett., 76:3168–3171, Apr 1996. � https://link.

aps.org/doi/10.1103/PhysRevLett.76.3168, � doi:10.1103/PhysRevLett.

76.3168.

[4] A. Thiess, R. Zeller, M. Bolten, P. H. Dederichs, and S. Blügel. Massively parallel
density functional calculations for thousands of atoms: Kkrnano. Phys. Rev. B,
85:235103, Jun 2012. � https://link.aps.org/doi/10.1103/PhysRevB.85.

235103, � doi:10.1103/PhysRevB.85.235103.

[5] D. Young. Computational chemistry: a practical guide for applying techniques to

real world problems. Wiley New York, 1 edition, 2001.

23

NSL(Nanosystem Simulation
Library)

Abstract The Nanosystem Simulation Library (NSL) is a

library that implements statistical simulations for nanoscale

systems.

The two software programs CNS and isle are combined in one

library. More features are added to provide a self-contained

modeling library for nanostructures like graphene and carbon

nanotubes. We used Kokkos C++ in our project to approach

the project and to suggest the benchmark problem [5].

Anastasia Papadaki
Computational Engineering

Friedrich–Alexander
University

Erlangen–Nürnberg
Germany

anni1302@gmail.com

1. Introduction/Motivation
Nowadays, a simulation technique that can link on the nanoscale is essential for accurate

design and modeling of nano-enabled systems. For accurately and efficiently modeling

a material, a variety of simulation methodologies and tools are available. Also there are

several approaches for linking and coupling multiple hierarchical scales. The present

consortium’s major purpose is to create a modeling environment for nanomaterials and

system design. The tools will be built primarily by enhancing existing open-source and

commercial simulation tools with sophisticated libraries. The simulation environment

will also act as a basis for harmonizing and speeding up the development of new simula-

tion modules by providing interface libraries to sophisticated pre- and postprocessing

tools as well as computational modules which can be easily integrated and reused in

new applications. Through a proof-of-concept design of innovative simulation tools, the

efficiency of the newly created simulation environment will be proven, especially for

reducing the development process and time to find novel nano-enabled products. Beyond

this research, we plan to investigate how Kokkos optimizes code for the architectures

utilized in these trials, as well as the layered parallelisation option used in NSL.

2. The Hubbard Model
The Hubbard model is an approximate model used in solid state physics to describe

the transition between conductive and insulating systems. The Hubbard model, named

after John Hubbard, is a simple model of particles in a lattice, with only two terms

in the Hamiltonian a kinetic term allowing the tunneling of particles between sites of

the latice and a potential term consisting of on-site interaction. Particles can be either

fermions, as in Hubbard’s original work, or bosons, in which case model is called the

“Bose-Hubbard model”. The Hubbard model is a useful approximation for a periodic

potential at sufficiently low temperatures. All particles can be assumed to be in the

lowest Bloch state, and interactions to distance between particles can be ignored. If the

interactions between particles at different lattice sites are included, the model is often

referred to as ”Extended Hubbard”. The physics of the Hubbard model is determined

by competition between the strength of the hopping integral, which characterizes the

system’s kinetic energy, and the strength of the interaction term. As we mentioned

earlier, the Hubbard model was proposed in the 1960s to describe electrons in 3d

24

transition metals. In these elements, the radial wave function of the 3d-electrons has a

very small spatial extent. Therefore, when the 3d shell is occupied by several electrons,

these are forced to be close to one another on the average so that the electrostatic energy

is large. In (statistical) physics, a model is specified by its Hamiltonian. More specific

first, we would like to account that there is a regular array of nuclear position that in

good approximation is fixed. This implies that we start with a lattice of ions (sites) on

that the fermions move. Of course, a single real atom is already a really complicated

structure, with many various energy levels (orbitals). The HH approximates the atoms in

a solid with one level (orbital). Given this approximation (of one orbital) and applying

the Pauli principle yields 4 possible electron states per site: empty, a single spin up

fermion, a single spin down fermion, or double occupation by a pair of spin up and spin

down fermions. In a solid where electrons can move around, the electrons interact via

a screened Coulomb interaction. The biggest interaction will be for two electrons on

the same site. Moreover, interactions are modeled by a term which is zero if the site

is empty or has only a single fermion. Then, it takes the value U if the site is doubly

occupied (necessarily, by the Pauli principle, by fermions of opposite spin) [2]. The

expression Uninj captures this property. In the simplest HH, there is no interaction Vnlnj

between fermions on different sites l and j, although such terms are included in the

”extended” HH. With all that the Hubbard Hamiltonian Model can be written with two

terms, a hopping H0 and an interaction term HI: H = H0 + HI. So, it takes the form:

H = − ∑
ij

∑
𝜎
tijc

†
i𝜎cj𝜎 + U ∑

i

ni↑ni↓ (2.1)

where c†
i𝜎ci𝜎 is the spin-density operator for spin 𝜎 on the i− thsite and the total density

operator is ni↑ni↓. Also, typically t is taken to be positive, and U may be either positive or
negative in general, but is assumed to be positive when considering electronic systems as

we are here. We refer to the situation where there is one fermion per site as ”half-filling”

since the lattice contains half as many fermions as the maximum number (two per site).

Studies of the HH often focus on the half-filled case because, as we shall see, it exhibits

a lot of interesting phenomena (Mott insulating behavior, anti-ferromagnetic order, etc.)

3. Graphene-Carbon Nanotubes
3.1. Graphene
The discovery of graphene and new research comes from the Institute of Electronic

Structure and Laser. The discovery of graphene (Nobel Prize in Physics in 2010), the first

two-dimensional material (about the thickness of a carbon atom), revolutionised science

and technology. due to its exceptional physical properties. Two-dimensional materials

offer significant advantages over silicon-based materials, so they are expected to be used

in future devices very soon [4]. Especially when two two-dimensional materials are

placed on top of each other, the new material that is created presents new exceptional

properties that do not exist in the individual two-dimensional materials that the product

produces. For example, when two single-layer graphene sheets are placed one on top of

the other at the angle of the molecule, the new material created exhibits superconducting

properties. This angle is called the ”magic-angle” [3].

25

P11

P12

P13

P14

P21

P22

P23

P24

P31

P32

P33

P34

Figure 3.1.: Graphene

3.1.1. Properties

Graphene is the most slender material known to man at one particle thick, additionally

fantastically solid - around 200 times more grounded than steel. On beat of that,

graphene is a great conductor of warm and power and has curiously light assimilation

capacities. It is genuinely a fabric that seem alter the world, with boundless potential

for integration in nearly any industry.

3.1.2. Potential applications

Graphene is a greatly differing material , and can be combined with other components

(counting gasses and metals) to create distinctive materials with different predominant

properties. Analysts all over the world proceed to continually explore and obvious

graphene to investigate its different properties and conceivable applications, which

include: batteries transistors computer chips energy generation supercapacitors DNA

sequencing water filters antennas touchscreens (for LCD or OLED displays) solar cells.

3.1.3. Producing graphene

Graphene is in fact exceptionally “strong”, but creating tall quality materials is still

a challenge. Handfuls of companies around the world are creating distinctive sorts

and grades of graphene materials - extending from tall quality single-layer graphene

synthesized employing a CVD-based handle to graphene drops delivered from graphite in

huge volumes. High-end graphene sheets are for the most part utilized in R&D exercises

or in extraordinary applications such as sensors, but graphene chips, delivered in huge

volumes and at lower costs, are embraced in numerous applications such as sports gear,

buyer hardware, car and more [10].

3.2. Carbon Nanotubes
Carbon nanotubes (CNTs) are tubes made of carbon with distances across regularly

measured in nanometers. Single-wall carbon nanotubes are one of the allotropes of

carbon, halfway between fullerene cages and level graphene. Although not made

this way, single-wall carbon nanotubes can be idealized as set patterns from a two-

dimensional hexagonal grid of carbon molecules rolled up along one of the Bravais grid

vectors of the hexagonal grid to create a empty barrel. In this development, intermittent

26

Figure 3.2.: Carbon Nanotube

boundary conditions are forced over the length of this roll-up vector to abdicate a

helical cross section of consistently reinforced carbon particles on the barrel surface.

Carbon nanotubes too frequently allude to multi-wall carbon nanotubes (MWCNTs)

comprising of settled single-wall carbon nanotubes pitifully bound together by van der

Waals intuitive in a tree ring-like structure. In the event that not indistinguishable, these

tubes are exceptionally comparable to Oberlin, Endo, and Koyama’s long straight and

parallel carbon layers circularly orchestrated around an empty tube. Multi-wall carbon

nanotubes are moreover in some cases utilized to allude to twofold- and triple-wall

carbon nanotubes. Such tubes were found in 1952 by Radushkevich and Lukyanovich.The

length of a carbon nanotube created by common generation strategies is frequently

not detailed, but is regularly much bigger than its distance across. In this way, for

numerous purposes, conclusion impacts are ignored and the length of carbon nanotubes

is expected infinite. Carbon nanotubes can show surprising electrical conductivity,

whereas others are semiconductors. They moreover have uncommon pliable quality

and warm conductivity due to their nanostructure and quality of the bonds between

carbon molecules. In expansion, they can be chemically adjusted. These properties are

anticipated to be important in numerous zones of innovation, such as gadgets, optics,

composite materials (supplanting or complementing carbon filaments), nanotechnology,

and other applications of materials science. In addition, most are chiral, meaning the

tube and its reflect picture cannot be superimposed. This development too permits

single-wall carbon nanotubes to be labeled by a match of integers. A extraordinary

bunch of achiral single-wall carbon nanotubes are metallic, but all the rest are either

little or direct band crevice semiconductors. These electrical properties, be that as it

may, don’t depend on whether the hexagonal cross section is rolled from its back to

front or from its front to back and thus are the same for the tube and its reflect image.

Most are chiral, meaning the tube and its reflect picture cannot be superimposed. This

development too permits single-wall carbon nanotubes to be labeled by a match of

integers. An extraordinary bunch of single-wall carbon nanotubes are metallic, but all

the rest are either little or direct band semiconductors [9].

4. Nanosystem Simulation Library
First of all, NSL can be used for different kind od models. In the current work, we want

to code a NSL for the Hubbard model. As we mentioned in the introduction, we use two

27

Input: Initial Marcov chain element 𝛷1

for n ∈ [1,N]

Solve Hamiltons Equations:

∂HMD

∂𝛷 = − ∂𝜋
∂tMD

, ∂HMD

∂𝜋 = ∂𝛷
∂tMD

→ 𝛷∗

Draw u from uni-

form dist. over [0,1)

if u <
min (1, eHMD[𝛷n,𝜋]−HMD[𝛷∗,𝜋])Accepted: 𝛷n+1 = 𝛷∗ Rejected: 𝛷n+1 = 𝛷n

Output: Markov chain {𝛷n}n∈[1,N]

n++ n++

n = N − 1 n = N − 1

Figure 4.1.: Blueprint of a Hybrid (Hamilton) Monte Carlo (HMC) algorithm

materials, graphene and carbon nanotubes and our aim is to simulate their properties

through NSL. To achieve that we have to apply Markov Chain Monte Carlo.

The general idea of this implementation is the following:

� Create a configuration. However, this configuration is nothing more than a snap-

shot of a quantum mechanical state of the system.

� Compute observable, for instance magnetization, on each configuration.

� Average those results to get estimate (+ error) of this observable.

This kind of algorithms required plenty of high-dimensional linear algebra opera-

tions. The GPU provides high parallelism execution model that is well suited for this.

Consequently, we try to ofload as many operations as possible.

5. Kokkos Library
Kokkos is a C++ programming paradigm for creating high-performance portable programs

that can run on many different architectures. It accomplishes this by providing interfaces

for both parallel code execution and data management. OpenMP, Pthreads, and CUDA

are now supported as backend programming paradigms [7].

5.1. Kokkos Tools
Kokkos Tools provide you access to Kokkos’ built-in instrumentation for profiling and

debugging. They make it much simpler to comprehend what’s going on in a big Kokkos

application, which aids in the detection of mistakes and performance concerns. For a

quick search of syntax, here is the place to go. Developers familiar with other shared

28

memory models such as OpenMP, CUDA, or OpenCL may be able to check up how

specific features are employed in Kokkos [6].

5.2. Kokkos-Kernels
Graph kernels or dense and sparse BLAS capabilities are used in many, if not all, high-

performance computing applications. Kokkos-Kernels is a Kokkos View-based interface

that provides efficient kernels and interfaces to vendor libraries. There’s no need to find

out what your data structures’ dimensions, strides, and memory spaces are since Kokkos

Views already know.

5.3. Kokkos GPU
As we mentioned above, Kokkos may be a templated C++ library that gives deliberations

to permit a single usage of an application bit (e.g. a collision fashion) to run productively

on diverse sorts of equipment, such as GPUs, Intel Xeon Phis, or many-core CPUs.

Kokkos maps the C++ bit onto diverse backend dialects such as CUDA, OpenMP, or

Pthreads. The Kokkos library also gives information deliberations to alter (at compile

time) the memory format of information structures like 2d and 3d clusters to optimize

execution on distinctive equipment. For more data on Kokkos, see Github. Kokkos

is portion of Trilinos. The Kokkos library was composed fundamentally by Carter

Edwards, Christian Trott, and Dan Sunderland (all Sandia). For half neighbor records

and OpenMP, the KOKKOS bundle employments information duplication (i.e. thread-

private clusters) by default to dodge thread-level type in clashes within the constrain

clusters (and other information structures as essential). Information duplication is

regularly speediest for little numbers of strings (i.e. 8 or less) but does increase memory

impression and isn’t versatile to huge numbers of strings. An elective to information

duplication is to utilize thread-level nuclear operations which don’t require information

duplication. The utilize of nuclear operations can be upheld by compiling LAMMPS with

the "-DLMP_KOKKOS_USE_ATOMICS" pre-processor hail. Most but not all Kokkos-enabled

pair_styles back information duplication. On the other hand, full neighbor records

maintain a strategic distance from the require for duplication or nuclear operations

but require more compute operations per molecule. When utilizing the Kokkos Serial

back conclusion or the OpenMP back conclusion with a single string, no duplication or

nuclear operations are utilized. The KOKKOS package currently provides support for 3

modes of execution (per MPI task). These are Serial (MPI-only for CPUs and Intel Phi),

OpenMP (threading for many-core CPUs and Intel Phi), and CUDA (for NVIDIA GPUs).

You choose the mode at build time to produce an executable compatible with specific

hardware. When using a GPU, you will achieve the best performance if your input script

does not use fix or compute styles which are not yet Kokkos-enabled. This allows data

to stay on the GPU for multiple timesteps, without being copied back to the host CPU.

Invoking a non-Kokkos fix or compute, or performing I/O for thermo or dump output

will cause data to be copied back to the CPU incurring a performance penalty [6].

6. Benchmark
In computing, a benchmark is the act of running a computer program, a set of programs,

or other operations, in arrange to survey the relative execution of time, regularly by

running a number of standard tests and trials against it. The term benchmark is addi-

29

tionally commonly utilized for the purposes of extravagantly planned benchmarking

programs themselves. Benchmarking is more often than not related with evaluating

execution characteristics of computer equipment, for illustration, the coasting point op-

eration execution of a CPU, but there are circumstances when the strategy is additionally

pertinent to computer program. As computer engineering progressed, it got to be more

troublesome to compare the execution of different computer frameworks essentially by

looking at their details. In this manner, tests were created that permitted comparison of

distinctive structures. For illustration, Pentium 4 processors by and large worked at the

next clock recurrence than Athlon XP or PowerPC processors, which did not essentially

decipher to more computational control; a processor with a slower clock recurrence

might perform as well as or indeed superior than a processor working at the next re-

currence. See BogoMips and the megahertz myth. Benchmarks are outlined to imitate

a specific sort of workload on a component or framework. Manufactured benchmarks

do this by uncommonly made programs that force the workload on the component.

Application benchmarks run real-world programs on the framework. Benchmarks are

especially vital in CPU plan, giving processor designers the capacity to degree and make

tradeoffs in microarchitectural choices. For illustration, in case a benchmark extricates

the key algorithms of an application, it’ll contain the performance-sensitive perspectives

of that application. Running this much littler piece on a cycle-accurate test system can

donate clues on how to move forward execution. Computer producers are known to

arrange their frameworks to grant unreasonably tall execution on benchmark tests that

are not duplicated in genuine utilization. For occasion, amid the 1980s a few compilers

might identify a particular numerical operation utilized in a well-known floating-point

benchmark and supplant the operation with a speedier numerically identical operation.

Be that as it may, such a change was seldom valuable exterior the benchmark until

the mid-1990s, when RISC and VLIW models emphasized the significance of compiler

innovation because it related to execution. Benchmarks are presently frequently utilized

by compiler companies to move forward not as it were their possess benchmark scores,

but genuine application performance. CPUs that have numerous execution units — such

as a superscalar CPU, a VLIW CPU, or a reconfigurable computing CPU — regularly have

slower clock rates than a successive CPU with one or two execution units when built

from transistors that are fair as quick. By the by, CPUs with numerous execution units

regularly total real-world and benchmark assignments in less time than the as far as

anyone knows quicker high-clock-rate CPU. Given the expansive number of benchmarks

accessible, a producer can as a rule discover at slightest one benchmark that appears its

framework will outflank another framework; the other frameworks can be appeared to

exceed expectations with a diverse benchmark. Manufacturers commonly report as it

were those benchmarks (or viewpoints of benchmarks) that appear their items within

the best light. They too have been known to mis-represent the noteworthiness of bench-

marks, once more to show their items within the best conceivable light. Taken together,

these hones are called bench-marketing.Ideally benchmarks should only substitute for

real applications if the application is unavailable, or too difficult or costly to port to a

specific processor or computer system. If performance is critical, the only benchmark

that matters is the target environment’s application suite [8].

30

Figure 7.1.: Example of our code

7. Results
First of, a Tensor class with a slice method was created. Then a condition was created

that specifies that if the number of dimensions is greater than the number of ranks,

then the program will display an error. After that we have the main program where as

the following picture shows that Kokkos only implements up to 7 ranks. Also, this can

be used as the subview must take at least rank+1 arguments. However, Kokkos::ALL

arguments are ignored by the subview function. Finally, the returned Kokkos::Dy-

namicRankView<Type, LayoutStrided> is then converted into NSL::Tensor<Type,

LayoutStrided> at return.

As we excepted , by our assumptions the total execution time is constant, because

throughput (how much time our system needs to do the process (slicing) per MB) is

linear rising. Finally, the error-bar themselves are smaller than the average ns as we

expected.

31

Figure 7.2.: Benchmark Results

8. Current Work
First of all, we tried to comprehensive how Kokkos C++ works exactly. So, we started

by implemented some constructors and destructors.

After that, we created a class Tensor and we inserted the Kokkos::DynRankView.
DynRankView is a potentially reference counted multi dimensional array with compile
time layouts and memory space. Its semantics are similar to that of std::shared_ptr.

The DynRankView differs from the View in that its rank is not provided with the DataType

template parameter; it is determined dynamically based on the number of extent argu-

ments passed to the constructor. The rank has an upper bound of 7 dimensions.

From that point forward and adding some more contructors and destructors, we ended

up creating the method of slicing. In the first place, we created a class Tensor using
LayoutType. LayoutType determines the mapping of indices into the underlying 1D
memory storage. Custom Layouts can be implemented, but Kokkos comes with some

built-in ones: LayoutStride where strides can be arbitrary for each dimension.At this

point we have to say that in Kokkos, a subview is a slice of a View. A slice of a multidi-

mensional array behaves as an array, and is a view of a structured subset of the original

array. ”Behaves as an array” means that the slice has the same syntax as an array does;

one can access its entries using array indexing notation. ”View” means that the slice

and the original array point to the same data, i.e, the slice sees changes to the original

array and vice versa. ”Structured subset” means a cross product of indices along each

dimension, as for example a plane or face of a cube. If the original array has dimensions

(N0,N1, ...,Nk−1), then a slice views all entries whose indices are (a0, a1, ..., ak−1), where
aj is an ordered subset of N0,N1, ...,Nj−1.

32

Array slices are handy for encapsulation. A slice looks and acts like an array, so you

can pass it into functions that expect an array. For example, you can write a function

for processing boundaries (as slices) of a structured grid without needing to tell that

function properties of the entire grid. To take a subview of a View, you can use the

Kokkos::subview function. This function is overloaded for all different kinds of

Views and index ranges. Moreover, as we mentioned above Kokkos only implements

up to rank 7. This can be used as the subview must take at least rank+1 arguments.

Additional Kokkos::ALL arguments are ignored by the subview function [1].

So, we ended up that the returned Kokkos::DynamicRankView<Type,LayoutStrided>

is then converted into NSL::Tensor<Type, LayoutStrided> at return.

References
[1] D. Arndt. Kokkos_DynRankView.hpp, 2018. Last accessed 25 February
2021. � https://github.com/kokkos/kokkos/blob/master/containers/

src/Kokkos_DynRankView.hpp.

[2] V. Celebonovic. The two dimensional hubbard model: a theoretical tool for
molecular electronics. Journal of Physics: Conference Series, 253:1–10, 2010.

[3] E. Gibney. How magic angle graphene is stirring up physics. page 1, 2019.

[4] H. Hill. Magic-angle bilayer graphene enters a new phase. Physics Today, 18:1,
2019.

[5] M. Rodekamp. Nsl, 2021. Last accessed 27 March 2021. � https://github.

com/Marcel-Rodekamp/NSL.

[6] C. Trott. Kokkos: The C++ performance portability programming model,
2018. Last accessed 4 July 2018. � https://github.com/kokkos/kokkos/

wiki/OverlappingHostAndDeviceWork.

[7] C. Trott. Overlapping host and device work, 2021. Last ac-

cessed 27 March 2021. � https://github.com/kokkos/kokkos/wiki/

OverlappingHostAndDeviceWork.

[8] Wikipedia. Benchmark (computing), 2021. Last accessed 17 August 2021.
� https://en.wikipedia.org/wiki/Benchmark_(computing).

[9] Wikipedia. Carbon nanotube, 2021. Last accessed 20 September 2021. � https:

//en.wikipedia.org/wiki/Carbon_nanotube.

[10] Wikipedia. Graphene, 2021. Last accessed 27 September 2021. � https:

//en.wikipedia.org/wiki/Graphene.

33

JURASSIC-scatter-GPU
Accelerating Multiple Scattering for Radiation Transport

Abstract JURASSIC is a fast radiative transfer model for the

analysis of atmospheric remote sensing measurements in the

mid-infrared spectral region. An important research field is to

incorporate particles (ice and water clouds, volcanic aerosols,

dust particles, etc.) into the model. For this, scattering of

the infrared radiation on the liquid or solid particles was

accounted for in JURASSIC-scatter. In this paper we present

JURASSIC-scatter-GPU, an upgrade of JURASSIC-scatter

which now also benefits from GPU tuning and acceleration of

JURASSIC and because of that achieves better performance.

Stjepan Požgaj
Faculty of Science,

Department of Mathematics
University of Zagreb

Croatia
stjepan.pozgaj1@gmail.com

1. Introduction
Infrared measurements from polar orbiting satellite instruments are an important pillar

of Earth observation systems. In order to derive the state of the atmosphere (temperature,

pressure, trace gas concentrations, aerosol and cloud properties) from the measured

spectra, we need to model the radiative transfer through the atmosphere along a ray

path given by the position and orientation of the satellite instrument. The atmosphere

variables can be varied until the calculated spectra match with the measured spectra.

This process is called retrieval and relies on a fast execution of the radiative transport

computation.

The Juelich Rapid Spectral Simulation Code (JURASSIC) [6, 7, 8] is a fast radiative

transfer model for the analysis of atmospheric remote sensing measurements in the

mid-infrared spectral region. It performs the radiative transport forward calculation and

provides the retrieval algorithm around it. It was originally developed by Hoffman [7].

Successful analyses with this JURASSIC have been performed on MIPAS, CRISTA-NF

and AIRS data [5]. JURASSIC was originally written in C and has been ported to GPUs

using the CUDA programming language by Baumeister et al. [2, 1].

An important research field is to incorporate particles (ice and water clouds, volcanic

aerosol, dust particles, etc.) into the model. For this, scattering of the infrared radiation

on the liquid or solid particles needs to be accounted for so JURASSIC was cloned and

modified to become JURASSIC-scatter by Grießbach [5, 4].

JURASSIC without scattering is available as vectorized CPU and GPU version and as

reference implementation, however, JURASSIC-scatter so far did not benefit from tuning

and acceleration. As it can be seen in Figure 1.1, our goal in this paper is to connect

JURASSIC-scatter and JURASSIC-GPU into a new JURASSIC-scatter-GPU project, which

will perform the same task as JURASSIC-scatter, but will use JURASSIC-GPU in some of

its parts to get better performance.

The remainder of this paper is structured as follows. The JURASSIC and the JURASSIC-

scatter forward models are explained in more detail in Section 2. Files organization of the

new project and source code differences between given projects are described in Section

3. In Section 4 we show how JURASSIC-scatter is modified in order to incorporate the

GPU-enabled JURASSIC functions and in Section 5 we compare performance results of

34

JURASSIC JURASSIC-scatter

JURASSIC-GPU JURASSIC-scatter-GPU

Figure 1.1.: Projects based on JURASSIC. The design question was whether a new repository

needed to be created for a GPU-accelerated version of JURASSIC-scatter.

our program and the reference implementation. Finally, Section 6 summarizes the paper

and gives an outlook.

2. Forward models
As we mentioned above, JURASSIC is a coupled forward and retrieval model which

allows analyses of different remote sensing measurements. In this paper we will not go

into the details of the retrieval, but the JURASSIC and JURASSIC-scatter forward models

are analysed to identify their differences and more easily determine how to combine

these two projects.

2.1. JURASSIC forward model
The JURASSIC forward model is shown in solid rectangles of Figure 2.2. In the input

block, the pre-calculated emissivity tables, the atmospheric data containing pressure,

temperature, volume mixing ratios of atmospheric gases, and the control file are given.

At the beginning of a radiative transfer calculation the path of a single ray through the

atmosphere, which is referred to as pencil beam, has to be calculated. In the case of a limb

geometry the pencil beam is not just a straight line tangentially through the atmosphere

but a curve refracted towards the Earth’s surface. The degree of curvature depends on

the change of the refractive index of the atmosphere with altitude and refractive index

depends on atmospheric conditions. The step length chosen for determining segments in

raytracing has to fulfil two constraints: on the one hand fewer steps are advantageous

when considering the computation time and on the other hand the step length must

be short enough so that the atmosphere properties along one step can be assumed as

constant. You can see an example of a limb path through an atmosphere in Figure 2.1a.

After raytracing, the evaluation of the radiative transfer is done by calculating spec-

trally averaged radiances, emissivities and Planck’s functions applying pre-calculated

emissivity tables according to the instrument’s characteristics [5]. In Figure 2.2 we refer

to those three calculations as ”computing radiative transport”.

2.2. JURASSIC-scatter forward model
The implementation of scattering into JURASSIC is schematically shown in Figure 2.2,

but in this case the dotted rectangles and the diamond from it also have to be included.

Compared to the JURASSIC model without scattering JURASSIC-scatter contains some

new input parameters: scattering order, number of scattering modules, and log-normal

parameters of the particle size distribution (particle number concentration, median

radius and standard deviation). The scattering order scamult defines how many scattering

levels the forward model has and it will be discussed in the Section 4. The other three

35

(a) Limb path through an atmosphere. (b) Limb path through a cloudy atmosphere.

Figure 2.1.: The clear air case can be treated using JURASSIC or JURASSIC-GPU. In the cloudy

case incoming radiance from all directions is scattered towards the detector by cloud particles

so it is treated by JURASSIC-scatter.

raytracing

cloudy?

compute radiative

transport

compute Mie

parameter or look

up in database

calculate

incident radiance

spectrum

line of sight

noyes

𝛽e,𝛽s,P

𝛽e,𝛽s,S

scamult

atmosphere

p,T,vmr
ni,𝜇i,𝜎i

input parameter

nref

dsv,dsh

scamult

pre-calculated tables

E(p, T, u)

Figure 2.2.: Forward models. Dotted arrows and underlined variables indicate the difference of

JURASSIC-scatter over JURASSIC.

36

new input parameters are not part of the JURASSIC forward model without scattering

because those are aerosol and cloud properties.

In the JURASSIC-scatter forward model, the raytracing of the line of sight is again

calculated first. But in this case segments located in the cloud are determined and

for each of these segments the extinction and scattering coefficients as well as the

phase function are determined and new ray paths ending at that segment are set up to

determine the incoming radiance from all directions [5]. The incoming ray paths also

pass through the cloud and undergo scattering processes. Based on this approach single

or multiple scattering, depending on scattering order, can be computed. An example of

a limb path through a cloud atmosphere is shown in Figure 2.1b.

We see that JURASSIC-scatter is equivalent to JURASSIC without scattering in cases

where the segment is not part of the cloud or when it is at the recursion base case, i.e.

at the last level of scattering and this is precisely the main motivation for merging the

two models.

3. Connecting projects
In this section we will discus how we managed to connect the JURASSIC-scatter and

JURASSIC-GPU codes. Each of these codes is in its own GitHub repository and our task

was to merge them. Wanted that, we had to figure out how to send data from one project

to another because we want to have uninterrupted communication between them. Also,

we want to determine if we have to create a new project or it is best to somehow combine

these two projects to not further complicate code structures and maintainability.

3.1. files organization
In Figure 3.1 you can see the files organization. There are actually more files than

it is shown, but the most important ones are there. We decided not to create a new

GitHub repository but to use the git clone --branch commands (see appendix) to

put JURASSIC-scatter and JURASSIC-GPU in the same place. More precisely, to use

JURASSIC-scatter-GPU one first has to clone the dev branch of JURASSIC-scatter and
then clone the scatter branch of JURASSIC-GPU into it.
Compiling is also a challenging step when merging two projects. To compile JURASSIC-

scatter-GPU one has to run a script which can also be seen in the appendix. This script

first compiles JURASSIC-GPU and wraps it into a static C library which is then linked to

JURASSIC-scatter.

JURASSIC-scatter and JURASSIC-GPU both have their own header files which contain

macros, constants and declarations of important structures. One way to merge them

would be to leave these header files separated and convert one type to another when

needed, but since we would like to have a unified code in the future we decided on a

common header file that both projects must include.

Since the projects have a number of files and functions with the same name, when

merging, we decided to put declarations of all its functions that JURASSIC-scatter

directly uses in the header file inter-folder/interface.h on the scatter branch of
the JURASSIC-GPU project. For some functions this interface trick was not enough so

we solved the name collision problem by adding the prefix ”jur_” to the names of such

functions of the JURASSIC-GPU project.

37

jurassic-scatter

jurassic-gpu

example

src

jurassic-structs.h

jurassic-functions.h

jurassic.h

CPUdrivers.c, GPUdrivers.cu,...

formod.c

Makefile

interface.c

inter-folder

interface.h

common-header

jr-scatter-gpu.h

example

src

jurassic.h

atmosphere.h, control.h,...

atmosphere.c, control.c,...

formod.c

Makefile

Figure 3.1.: Merged repositories. To connect both codes the git repository of the GPU-accelerated

project ”jurassic-gpu” is cloned in a subfolder inside ”jurassic-scatter”.

3.2. Source code differences
Since the JURASSIC-scatter and JURASSIC-GPU projects are not developed at the same

time nor by the same person an important part of merging them was to determine all

differences between them. At the moment, we have not resolved all the differences in

the best possible way, but we have managed to connect the codes and determine how to

resolve these differences more elegantly in the future. The first difference we noticed

were the different names of the constants for dimensions, e.g. in JURASSIC-scatter

constant which describes the number of rays is called NRMAX, while the same constant in

JURASSIC-GPU is called NR. To solve this problem without changing the codes much we

decided to have both versions in the common header file, and we used macro definitions

to make sure these two constants have the same value.

The main difference between these two projects were the different data structures

they use, so that is why we will explain their data structures one by one, the differences

between them and the way we solved those differences:

� ctl_t – forward model control parameters: Minor differences, so it wasn’t hard

to have only one ctl_t structure in the common header file.

� los_t – line-of-sight data: In JURASSIC-scatter struct of arrays (SoA) is used to

represent the segments of the line of sight, while in JURASSIC-GPU that is done by

array of structs (AoS). The best solution would be only to have arrays of structs,

but at the moment we use both of them and convert one type to another when it

is necessary.

� obs_t – observation geometry and radiance data: Structures from the two projects

are almost equal, but the difference is that the indices of the 2d-array rad do not

38

have the same order. In one case it is declared as rad[NR][ND] and in another as

rad[ND][NR], where NR is number of rays and ND number of detectors or radiance

channels. In JURASSIC-scatter-GPU we want to have only one obs_t structure

and we opted for rad[NR][ND] case.

� tbl_t – emissivity look-up tables: Here we had similar problem as with obs_t,

but here we decided to have two different types of emissivity tables in the common

header file, because otherwise we would have to adapt too many lines of code.

One more difference about JURASSIC-scatter and JURASSIC-GPU emissivity tables

is that their data is not read from the disk in the same way. One is optimized to

read in binary, and another in ASCII format, so an important future step should be

to have unified emissivity tables.

� atm_t – atmospheric data: This is the only structure which was completely the

same in both projects.

� aero_t – aerosol and cloud properties: It is not part of JURASSIC-GPU and that is

why it was simple to introduce it to JURASSIC-GPU.

� ret_t – retrieval control parameters: Again, only part of JURASSIC-scatter.

4. JURASSIC-scatter-GPU realization
The most important part of porting JURASSIC-scatter to GPUs is to identify what this

project has in common with JURASSIC without scattering and what are the main

differences between them. We have already said that the number of scattering levels

scamult is one of the input parameters of JURASSIC-scatter forward model which is not

present in the JURASSIC forward model. This parameter can also be seen as the depth

of recursion. If scamult = 0, then JURASSIC-scatter calculates only primary rays which

are treated without scattering, so this case is equivalent to JURASSIC without scattering.

If scamult = 1, then there are primary rays treated with scattering and secondary rays

treated without scattering. This case is the most common in practice. In Figure 4.1

a scattering scenario for scamult = 2 is presented. Note that each ray at the lowest

level of recursion will exactly perform the operations provided by the forward model in

JURASSIC-GPU. This allows to limit the efforts of porting the scattering module to a

restructuring of the high-level routines. To do this we have divided the work done by

the JURASSIC-scatter-GPU into 3 phases:

1. CPU-Prepare

2. GPU-Execute

3. CPU-Collect

In the following subsections we will explain these 3 phases in more detail.

39

4.1. CPU-Prepare
The main idea is that raytracing and recursively calculating the radiance of rays with

scattering stays on the CPU and only in the case without scattering it is executed on the

GPU, leveraging JURASSIC-GPU CUDA kernels. That is why the CPU-Prepare phase,

until coming to the lowest level of recursion does the same thing as JURASSIC-scatter

and at the lowest level saves these rays in memory and sends them to the JURASSIC-GPU

project. The lowest level rays could be saved in memory with various data structures.

Our first idea was to use an array, but we realized that for scamult > 1 it might be

difficult to determine the size of array and ray indices if we want to allocate memory

for it statically. That is why we decided to use a queue structure which we will call

work-queue because the information about the rays from the lowest level of recursion

will be written into it. If we use a call-tree to represent this recursive function calls, as

shown in Figure 4.1, by representing each ray by one node we can say that information

about leaf nodes is written into the work-queue. First In, First Out (FIFO) is the most

important property of the queue structure. It means that leaf nodes of the tree have to

be visited in the same order in the CPU-Prepare and CPU-Collect phases, and for this

reason we cannot parallelize these phases without further modification.

4.2. GPU-Execute
In the GPU-Execute phase the radiation for each ray from the work-queue is calculated

using functions from the JURASSIC-GPU project. Rays from the work-queue are divided

into smaller packages which are given to JURASSIC-GPU kernel functions in parallel using

OpenMP parallelism. More precisely, at the beginning we calculate how many packages

can be processed at the same time on one GPU and allocate enough GPU memory for

these packages. Then the same number of OpenMP threads is used to calculate the

radiances for the rays in the given packages in parallel. With this mechanism GPU

memory balancing is ensured.

4.3. CPU-Collect
The CPU-Collect phase is very similar to the CPU-Prepare phase. The difference is

that in this case instead of pushing information about leaf nodes of the call-tree to the

work-queue, its radiances calculated in the GPU-execute phase have to be read and

passed to the parent node. For levels that are not the lowest level, the calculation is

again exactly the same as in the original JURASSIC-scatter.

In the CPU-Prepare subsection we said that because of the FIFO property we had to

do additional adjustments to parallelize the CPU-Prepare and CPU-Collect phases. To do

that we introduced multiple work-queues. Each primary ray has its own work-queue, so

inside a subtree of a primary ray node the calculation has to be performed in serial, but

we can OpenMP parallelize over primary rays. Figure 4.2 visualizes this idea.

40

JURASSIC-scatter

primary rays

secondary rays

ternary rays

JURASSIC-gpu input JURASSIC-gpu output

Figure 4.1.: JURASSIC-scatter-GPU. Leaf nodes of the tree submit work packages to a work-queue

which then is processed on the GPU.

Figure 4.2.: Multiple queues. Separate queues are necessary to exploit thread parallelism during

the prepare and collect phase.

41

5. Performance results
All performance results reported here were obtained on the Jülich Wizzard for European

Leadership Science (JUWELS) supercomputing system at the Jülich Supercomputing

Centre which consists of two partitions: Cluster and Booster [10]. The JUWELS Booster

nodes comprise a Dual AMD EPYC Rome 7402 CPU with 2 × 24 cores and four NVIDIA
A100 GPUs. The JUWELS Cluster nodes comprise Dual Intel Xeon Platinum 8168 CPU

with 2 × 24 cores. JURASSIC-scatter-GPU was benchmarked on a JUWELS Booster and
JURASSIC-scatter on a JUWELS Cluster nodes. Since a JUWELS Booster node contains 4

GPUs, we decided to have 4 MPI ranks per node in both cases to use their full capacity.

Because of that, for JURASSIC-scatter-GPU each MPI rank has its own GPU and for both

JURASSIC-scatter-GPU and JURASSIC-scatter there are 12 OpenMP threads per MPI

rank. The CUDA runtime and compiler version are 11.3 while GCC version 9.3.0 was

employed to compile the CPU code. Also, to run the programs successfully the GSL/2.6

module has to be loaded.

About test cases:

� data observed by the CRISTA-NF airborne instrument which measures the thermal

emissions of the atmosphere in the mid-infrared region from 4 to 15 µm in an

altitude range from flight altitude (up to 20 km) down to approximately 5 km [9]

� ∼2000 test cases

� test cases depend on:

1. profile of 13 trace gases, temperature and pressure

2. cloud vertical thickness

3. cloud layer bottom altitude

4. particle size distribution (log-normal)

� 32 spectral radiance channels

� 84 primary rays per test case

� scamult = 1: only primary and secondary rays

Figure 5.1 shows a comparison of execution times of our JURASSIC-scatter-GPU and

the reference JURASSIC-scatter program for ten different cloud scenarios. In each

scenario the number of primary rays equals 84, but the number of secondary rays

depends on the thickness of the cloud because in a thicker cloud more secondary rays

are generated per primary ray so both programs need a longer execution time. It can be

seen that the achieved speedup is around 9×.
In Figure 5.2 JURASSIC-scatter-GPU and JURASSIC-scatter are again compared, but

here for the same cloud scenario, but different numbers of primary rays. In each of

these test cases there are around 2300 secondary rays per primary ray. That is why the

execution time of JURASSIC-scatter-GPU increases linearly with the number of primary

rays. For the test case with 80 rays the achieved speedup is again around 9×, and for
smaller numbers of rays this number is even better. For example, the speedup for the

test case with 10 rays is around 17×.

42

1 2 3 4 5 6 7 8 9 10
0

500

1,000

1,500

2,000
E
x
e
cu
ti
o
n
ti
m
e
(s
)

JURASSIC-scatter JURASSIC-scatter-GPU

Figure 5.1.: Execution times for different scenarios. JURASSIC-scatter-GPU was benchmarked on

NVIDIA A100 GPUs and JURASSIC-scatter on Intel Xeon Platinum 8168 CPUs.

1 10 20 30 40 50 60 70 80
0

500

1,000

1,500

2,000

E
x
e
cu
ti
o
n
ti
m
e
(s
)

JURASSIC-scatter JURASSIC-scatter-GPU

Figure 5.2.: Execution times for different number of primary rays. The achieved speedup is at

least 9×.

43

6. Summary & Outlook
We managed to connect the JURASSIC-scatter and JURASSIC-GPU projects by restruc-

turing both codes and introducing a common header file. We identified differences

between the JURASSIC and JURASSIC-scatter forward model and used the fact that

each ray at the lowest level of recursion in JURASSIC-scatter model performs exactly

the same operations as in the JURASSIC model. Because of this we introduced 3 phases

in JURASSIC-scatter-GPU: CPU-Prepare, GPU-Execute and CPU-Collect. Performance

results show that our JURASSIC-scatter-GPU has a better execution time than JURASSIC-

scatter and the speedup factor depends on the test cases, but is at least 9×.
An additional reason for optimism is given by the fact that in the current implemen-

tation raytracing is performed on the CPU, and that after porting of that part to the

GPU we could expect even better results. Furthermore, after our work on the JURASSIC-

scatter-GPU project, we are much closer to a unified JURASSIC code that would combine

all the functions of JURASSIC, JURASSIC-scatter and JURASSIC-GPU codes, which is an

even more important result than the speedup factors that we have achieved.

7. Acknowledgments
This report was done during the Guest Student Programme 2021 at Jülich Supercomput-

ing Centre.

I sincerely thank my supervisors Dr. Sabine Grießbach, Dr. Paul F. Baumeister and

Dr. Lars Hoffman for their valuable advices and their guidance during this research

program.

Also, I truly appreciate Dr. Ivo Kabadshow for his great organisation, for always being

there for all the guest students, and especially for his help with the presentation.

Furthermore, I am grateful to Prof. Dr. Sc. Zlatko Drmač for helping me to be invited

to the program by writing a referral letter.

Last but not least, I want to thank my family and my girlfriend Ana for enormous

support during the program.

References
[1] P. F. Baumeister and L. Hoffmann. GitHub Source Repository of JURASSIC-GPU.
2021. � https://github.com/slcs-jsc/jurassic-gpu.

[2] P. F. Baumeister, B. Rombach, T. Hater, S. Griessbach, L. Hoffmann, M. Bühler,

and D. Pleiter. Strategies for forward modelling of infrared radiative transfer
on GPUs. Parallel Computing is Everywhere, 32:369–380, 2017. � doi:https:

//doi.org/10.3233/978-1-61499-843-3-369.

[3] S. Griessbach and L. Hoffmann. JURASSIC-scatter v1.3 documentation.
2019. � https://github.com/slcs-jsc/jurassic-scatter/blob/v1.3/

docu/jurassic.pdf.

[4] S. Griessbach and L. Hoffmann. GitHub Source Repository of JURASSIC-scatter.
2021. � https://github.com/slcs-jsc/jurassic-scatter.

[5] S. Griessbach, L. Hoffmann, M. Höpfner, M. Riese, and R. Spang. Scat-
tering in infrared radiative transfer: A comparison between the

44

spectrally averaging model JURASSIC and the line-by-line model
KOPRA. Journal of Quantitative Spectroscopy and Radiative Transfer,

127:102–118, 2013. � https://www.sciencedirect.com/science/article/

pii/S0022407313001969, � doi:https://doi.org/10.1016/j.jqsrt.2013.

05.004.

[6] L. Hoffmann and M. Alexander. Retrieval of stratospheric temperatures from At-
mospheric Infrared Sounder radiance measurements for gravity wave studies.
J. Geophys., 114, 2009.

[7] L. Hoffmann, M. Kaufmann, R. Spang, R. Müller, J. Remedios, D. Moore, C. Volk,

T. von Clarmann, and M. Riese. Envisat MIPAS measurements of CFC-11:
retrieval, validation, and climatology. Atmos. Chem. Phys., 8:3671–3688,
2008.

[8] L. Hoffmann. GitHub Source Repository of JURASSIC. 2021. � https://

github.com/slcs-jsc/jurassic.

[9] C. Kalicinsky, S. Griessbach, and R. Spang. Radiative transfer simulations and
observations of infrared spectra in the presence of polar stratospheric clouds:
Detection and discrimination of cloud types. 07 2020. � doi:10.5194/

amt-2020-144.

[10] S. Support. JUWELS: Modular Tier-0/1 Supercomputer at Jülich Supercom-
puting Centre. Journal of large-scale research facilities JLSRF, 5, 02 2019.
� doi:10.17815/jlsrf-5-171.

A. Appendix
A.1. How to build and run the program
In this appendix, we explain how to connect the JURASSIC-scatter and JURASSIC-GPU

projects with git clone & branch and how to run the program. Also, we introduce new

input parameters that are not part of the JURASSIC-scatter v1.3 documentation [3].

Getting Started

As we explained in Section 3, for creating JURASSIC-scatter-GPU no new repository is

created, but to run it you have to clone the dev branch of the JURASSIC-scatter project
and then clone the scatter branch of the JURASSIC-GPU project into it.
JURASSIC-GPU has to be compiled first, wrapped into C static library which is than

linked to JURASSIC-scatter. Test cases and scripts we used during development are given

in the dev branch of the JURASSIC-scatter project. There are two sets of tests: small
and large. We will here show how to run the program on the small testset, but in the

second case the procedure is the same. You have to make sure that all modules we need

are loaded and then get into the small_testset folder. This folder contains 10 test

cases, their common control file cloud-785-798.ctl, and a few scripts: submit.sh,

jurun-ice-785.sh and diff.py, which are used to compile, run and benchmark the

JURASSIC-scatter-GPU program and check the correctness of the resulting radiances. To

do all that you only need to run the submit.sh script. Listing 1 presents how to do it.

45

Listing 1: Clone, load modules and submit

git clone --branch dev https://github.com/stjepanp/jurassic-scatter.git

cd jurassic-scatter

git clone --branch scatter https://github.com/stjepanp/jurassic-gpu.git

cd testing

source module_load.sh

cd small_testset

./submit.sh

New input parameters

Compared to the JURASSIC-scatter v1.3 documentation [3], in JURASSIC-scatter-GPU

we have two new control parameters, which are in our case written in the cloud-785-

798.ctl control file. You can see more information about the new parameters in Table

A.1.

Depending on the values of these two new parameters different modules are activated:

� if MAX_QUEUE=0: the work-queue is not used, so this module is very similar to the
original JURASSIC-scatter v1.3

� if MAX_QUEUE<0: the memory for ∣MAX_QUEUE∣ rays is statically allocated for the
work-queue, but in this scenario the Execute phase is done on CPUs, as part of the

JURASSIC-scatter implementation

� if MAX_QUEUE>0 and USEGPU=0: the Execute phase is again performed on CPUs,
but as part of the JURASSIC-GPU implementation

� if MAX_QUEUE>0 and USEGPU=1: the Execute phase is performed on GPUs, if
JURASSIC-GPU is not compiled with CUDA, the program will abort with an error

� if MAX_QUEUE>0 and USEGPU= −1: the Execute phase is tried to be performed on
GPUs, if JURASSIC-GPU is not compiled with CUDA then the CPU-Execute phase

from JURASSIC-GPU implementation will be used

These different modules are also shown in Figure A.1.

Table A.1.: New control flags for JURASSIC-scatter-GPU

flag name purpose default options

Accelerating parameters

MAX_QUEUE upper bound of number of 0 0: do not use work-queue

rays in the work-queue >0: call JURASSIC-GPU functions
<0: do not call JURASSIC-GPU functions,
in that case size of the work-queue

is ∣MAX_QUEUE∣
USEGPU Use GPU-accelerated formod 0 0: never

implementation 1: always

−1: if possible

46

input jurassic-scatter jurassic-scatter core
MAX_QUEUE=0

workqueue

∣MAX_QUEUE∣>0
jurassic-gpu

MAX_QUEUE>0
GPU

∣USEGPU∣>0

WQ + jurassic-scatter core

MAX_QUEUE<0
CPU

USEGPU=0

result

Figure A.1.: JURASSIC-scatter-GPU dataflow. Using a work-queue structure, JURASSIC-scatter

can call JURASSIC-GPU as solver.

47

Game Tree Implementations Using
Python

Analysis of m,n,k games

Abstract In this project, we try to solve m, n, k games. Our

investigation of m, n, k games was carried out with a Python

implementation of the minimax algorithm, which was ex-

tended with alpha-beta pruning and heuristic algorithms that

check for shortcuts in the move finding process. We will

try to get closer to board sizes where the value of m, n, k
games is still unknown. In particular, we are interested in

where the transition from a drawn game to a win for the

first player occurs. Furthermore, we verified game values

for m < 5, n < 5, k < 5 game and achieved considerable

speedup compared to the naive minimax implementation.

Mert Saner
Scientific Computing

Technical University of
Berlin

Germany
saner@campus.tu-berlin.de

1. Introduction
Games have been one of the entertainment activities of humankind for thousands of years.

Historians believe that the origin of the first games goes back to 6000 BC. Throughout

the years games have evolved and different types of games have appeared. However,

until the last century games have been played by humans only and people have required

another person to play the game. Starting in the 1960s, the development of computer

systems showed that machines could be opponents of the humans in the games. Computer

opponents in the games were one of the first examples of artificial intelligence (AI) in

the history of humankind. The birth of AI was declared around the same years in the

Dartmouth workshop of 1956. The proposal for the conference included the assertion

that ”every aspect of learning or any other feature of intelligence can be so precisely

described that a machine can be made to simulate it”[7].

1.1. Games & Artificial Intelligence
One of the important reasons that make games a research area for AI is real-world

applications can be modelled as games. Every game logic constitutes game theory in it.

Although game theory covers a broader range of application areas than games, logic in

the games could be applied to areas that use game theory in it. This includes a wide

range of areas including but not limited to operations research, economics, finance,

regulation, military, politics, and energy[4, 1]. In the early days, the starting point of

the AI plays a board game was in the sense that human intelligence is copied by the

computer. Initially, computers tried to emulate the human approach. However, later

on, it is found out that human-like strategies are not necessarily the best computational

strategies[5].

In the 1960s when computers have in their very early development scheme, we did

not see perfect computer players. Starting from late the 1990s, AI in computers are even

more developed thanks to improvements in information technologies and algorithms.

IBM Deep Blue computer was one of the first examples of this phenomenon. Nowadays,

48

good chess software in mobile phones can beat Garry Kasparov. Nevertheless, not every

game structure is like chess and hence not every game has a superhuman AI player. The

reason for this is some games are so hard that we are not able to explore all relevant

parts of the state space. One of those games is m, n, k games for large m × n board.

With this project, we aim to move one step closer to unknown game values and see the

possibilities we have.

It is important to classify the games before analyzing them from a scientific standpoint.

Games can be classified according to many different characteristics[9]. We will classify

the games according to whether:

� Game is concurrent or round-based

� Players involved are cooperative or against each other

� State space is perfect information or imperfect information

� Observations and actions are deterministic or stochastic

� Zero-sum game or non-zero-sum game

In this paper, we will focus on a two-player deterministic zero-sum game with perfect

information that always results in win, loss or draw. Despite their simple rules, there

are still unanswered questions about the game values of some of the m, n, k games.
The objective is to find a draw/win transition for large game boards with big k values.

We will discuss the methodology and implementation steps used throughout the guest

student program 2021.

2. m,n,k Game
2.1. Definition and Fundamentals
In the m, n, k-game board game, two players take turns in placing their marks on an
m ⋅ n board. The winner is the first to get k of their mark in a row, in a horizontal,
vertical or diagonal manner. Tic-tac-toe is the 3,3,3 game and freestyle Gomoku is the
15,15,5 game. An m, n, k-game is also called a k-in-a-row game on an m × n board. The

purpose of analyzing m, n, k games is to find their game-theoretic values. Game value is
the result of the game with perfect play. Finding the game value of the game is known

as solving the game. In this project, we try to solve the m, n, k games using the Python
programming language. Despite the simple rules, there are still unanswered questions

about the values of m, n, k games.

2.2. Tree Structure
To solve m, n, k games we used game trees as a tool for our research. In graph theory, a
tree is an undirected graph in which any two vertices are connected by exactly one path,

or equivalently a connected acyclic undirected graph. Figure 2.1a shows how the tree

structure is represented. The root node is starting node of the tree. Figure 2.1b show

tree structure with the parent and child nodes are implemented. Every node that is a

step above its child node is called a parent node.

Every single step in the game is demonstrated by nodes in the game tree structure.

After each step, there are one or more possibilities that the player can play and these

49

Root

(a) Tree Structure

Parent

Child Child

Parent

Child

(b) Tree with Node Descriptions

Figure 2.1.: Trees

8 rmblkans
7 opZpopop
6 0Z0Z0Z0Z
5 Z0o0Z0Z0
4 0Z0ZPZ0Z
3 Z0ZPZ0Z0
2 POPZ0OPO
1 SNAQJBMR

a b c d e f g h

(a) Sample Chess Game

Root

e4

... c5

d3 ...

...

...

(b) Chess Game Tree

Figure 2.2.: Chess Game

50

o o o
o o

x
o

x
o

x
o x o

o
x o

o
x o

o
x o

x o
x o

x o
x o

o x o
x o

x o
x o o

x o
x o
o

x o
x o
o

x o
x o

o

o
x o x

o
x o
x

o
x o
x

o
x o

x

x o o x o
o

x o
o

x o
o

o x o
x

o
x

o
x

o
o o o

Figure 2.3.: Tic-Tac-Toe Game Tree Structure

are represented by connected child nodes to the parent node. Figure 2.2b shows how

the third step of the white player could be represented as a game tree. Similarly, we can

also analyze the m, n, k games using a tree structure. Figure 2.3 shows the tree structure
of Tic-Tac-Toe game. The first player is O who can play nine different places in total and

the opponent X could play the remaining eight places. When one of the players reaches

three consecutive marks they win the game. One of the winning cases for the O player

is red coloured and can be seen in the figure. Since the game value of Tic-Tac-Toe is

zero if both players play optimally the result is a draw. Hence, to enter a winning case

like in Figure 2.3, one player must make a wrong move in some part of the game [3].

3. Implementation
3.1. Approach
The problem with the big game tree implementations is the complexity. In the Tic-tac-toe

game, there are 9 possible first moves, 8 for the second moves, and in total approximately

9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 9! = 362880 different combinations. Although this number

shows worst-case scenarios and games can end up earlier, there is huge complexity in

m, n, k games.

3.2. Minimax
Minimax is a decision rule that is widely used in computer science and artificial in-

telligence. The maximizing player always tries to maximize game value while the

minimizing player tries to minimize the game value. Moreover, zero game value define

draw between the players. Figure 3.1 and Figure 3.2 show how minimax functions work.

Since we are analyzing the Tic-Tac-Toe game there are there different possible outcomes

which are win, draw and loss. Leaf of the value of 1 in the graph defines win, zero

defines draw, -1 define loss in the game. According to the outcome of each step, players

can take play various moves and it can lead to different leaf values. To find game value,

we need to look at the case in which both players play optimally. According to where

51

o
o x x
x o

o o
o x x
x o

o o x
o x x
x o

o o
o x x
x x o

o o o
o x x
x x o

o o
o x x
x o

o x o
o x x
x o

o x o
o x x
x o o

o o
o x x
x x o

o o o
o x x
x x o

o
o x x
x o o

o x
o x x
x o o

o x o
o x x
x o o

o x
o x x
x o o

Figure 3.1.: Tic-Tac-Toe Tree Structure

0

-1

1

1

-1

0

0

0

0

0

-1

0

0

-1

Figure 3.2.: Leaf Values and Game Value

the player moved you can see the values vary between -1, 0 and 1. In Figure 3.2, O is

the maximizing and X is the minimizing player. The root value of the tree is zero, which

means that the given situation is a draw if both players play optimally. The value of the

root node defines the game value and it is the value we are looking for. The logic of

finding the game value is valid not only for 3,3,3 games but also for bigger games like
5,5,5.

3.3. Game Tree Complexity
Tree Complexity is defined as the number of leaves in the tree structure. General rule of

thumb for the m, n, k is;
(m ⋅ n)!

For instance; the 4,4,4 game requires 16! and Gomoku requires at most 225! different
game combination. Hence, the implementations require high computing power and

parallelization.

3.4. Naive Minimax Algorithm
First of all, we started to implement the Tic-Tac-Toe game in Python. The reason for this

is, although Tic-Tac-Toe is a fairly simple game and its state space smaller than more

advanced games, it is a 3,3,3 game and the purpose was to create a solid source code
base that we could extend the initial application to the bigger boards. In the first step,

we created a Python program in which two AI players compete against each other. The

program worked and we verified the game value 0 in three seconds. The next step was

52

100 101 102
100

101

102

Elements

O
p
e
ra
ti
o
n
s

x! factorial time

2x exponential time

x2 polynomial time

x linear time

ln(x) logarithmic time

Figure 3.3.: Factorial Time Complexity Increase

Algorithm 1 Minimax Algorithm[6]

procedure minimax(()node, depth, maxPlayer) is
if depth = 0 or leaf node then

return the value of node
if maxPlayer then
value := −∞
for each child of node do

value ∶= max(value,MINIMAX(child, depth − 1, false))
return value

else (min player)
value := ∞
for each child of node do

value ∶= min(value,MINIMAX(child, depth − 1, true))
return value

53

Algorithm 2 Alpha–Beta Pruning Algorithm[8]

procedure alphabeta(()node, depth, 𝛼, 𝛽, maxPlayer) is
if depth = 0 or leaf node then

return the value of node
if maxPlayer then
value := −∞
for each child of node do
value := max(value, ALPHABETA(child, depth − 1, 𝛼, 𝛽, false))
if value ≥ 𝛽 then

break (* 𝛽 cutoff *)
𝛼 := max(𝛼, value)

return value
else
value := ∞
for each child of node do
value := min(value, ALPHABETA(child, depth − 1, 𝛼, 𝛽, true))
if value ≤ 𝛼 then

break (* 𝛼 cutoff *)
𝛽 := min(𝛽, value)

return value

to make the board size larger. We tried 4,4,3 games and ran our program. However,
the program struggled to make the first move and even after 10 minutes and it did not

make the first move. The reason for this is that we used the naive minimax function to

find the values. We quickly realized that is not useful for any application bigger than

3,3,3.
In all of our implementations, we define X is as a starting player. To test whether our

new 4,4,3 program working, we set the 4 × 4 table with four moves initialized earlier.
So the program ran on the table which is initialized with four moves played. Even with

the initial move setup, it took 126 seconds to run 4,4,3 game. The program showed
that X is the winner. Since X is the winner as a result, we know that the game value of

that game is 1 and if it is draw then the game value is 0.

After our first implementation, we realized that we need to improve the minimax

function and need to add heuristic algorithms and so that the program will enter minimax

only if there is no other option in that particular case. Hence, we integrated the Alpha-

Beta Pruning algorithm into our initial implementation to improve the initial minimax

function.

3.5. Alpha-Beta Pruning Algorithm
Alpha-Beta pruning is a search algorithm whose purpose is to decrease the number of

iterations made by minimax. It is a tree search algorithm. Since the m, n,k game is an

adversarial game, it was well suited for our implementation. The advantage of using

alpha-beta pruning instead of the initial version was the reduced complexity of the state

space. The idea behind the alpha-beta pruning was to prune off the parts of the tree

which are not needed. For instance, if there is a move that is known to be better, then it

54

would cut the unnecessary branches of the tree.

On the other hand, minimax was looking at every single configuration available in

the game and so that it was so slow. After alpha-Beta pruning was implemented, we saw

drastic improvements in our program. Moreover, alpha-beta pruning is more efficient if

good moves are explored early stage of the game. The effects of the alpha-beta pruning

algorithm are shown in the results section.

3.6. Heuristic Algorithms
3.6.1. Move Generation Functions

Move generation functions can be divided into two types, which are the matein function

and saving move function. We also created three matein functions for the program.

These are mate in one, mate in two and mate in three functions. As the name suggests

the functions check in every iteration of the loop program whether is mate in one, two

or three. If there is such a case then the program does not enter to minimax function

instead it enters the heuristic algorithm. Thanks to this implementation we have seen

dramatic speed improvements over the initial implementation for special cases.

3.6.2. Boardmaker Function

After evaluating bigger tables with a k = 4, we realized that most of the computing time

and power was spent in the first steps of the board. Hence, we developed the board

maker function, which initializes the board according to the heuristic structure. To make

this heuristic structure we analyzed many different games. After analyzing different

gameplays and researching in literature we decided that placing the mark to the centre

is the most advantageous for the first player[2]. Hence, we created a heuristic function

to place the first of moves of the game to the centre of the board.

One of the second observations we made was it is better to play near the cluster of

other marks to reach the goal. It also does not make sense to play near corners and

far from the main cluster of the marks since that makes finishing harder for the player

and give the positional advantage to the opponent. We created a board maker function

in a way that it initiates the board by playing one random move in the centre of the

board and then the opponent plays one move in the centre for 3 × 4 board. These given
first two moves make the program evaluate upcoming moves more efficient than earlier

implementation thanks to decreasing complexity. In the bigger board like 4 × 4, it plays
three moves to the centre square. That reduces minimax function steps and the program

enters matein functions more quickly especially for k = 3.

3.7. Tools
We implemented all algorithms in the Python programming language. The easy syntax of

Python enables us to focus on programming itself instead of the syntax of the language.

I used Pycharm as an integrated development environment (IDE). Pycharm is fully

compatible with the Git version control system. Hence, without requiring a command

line, I was able to post the latest version of the program to GitHub. Hence, my supervisor

was able to see every single change I did in the program. Sometimes, especially while

testing different board sizes, the program was requiring more than 10 minutes of running

time. Since that cause my local machine to heat up and that makes machine unable to

run any other Python program, I took advantage of one of the nodes in supercomputers

JURECA, JUWELS in Jülich Supercomputing Centre (JSC) and a Ubuntu server in Amazon

55

Web Services (AWS). They help me to run the same program in different board sizes

and get results simultaneously.

4. Results
After implementing alpha-beta pruning and heuristic functions we reached more efficient

program. We verified solutions for m<5, n<5 and k<5, and found their game values by
using different game tree implementations and the aforementioned algorithms.

4.1. Speed
The biggest impact of all improved algorithms was speed improvements. After incorpo-

rating the techniques dramatic speed improvements was obvious in the run time of the

program. Tic-Tac-Toe full artificial intelligence program runs ∼ 0.3 seconds compared
∼ 3 seconds initial on implementation. We have reached more than 10 times faster

working code thanks to these improvements. After implementing heuristic algorithms

we have reached efficient working Python code that can solve 4,4,4 game and find its
game value. In our machine MacBook Air M1, we can solve 4,4,4 game for around six
minutes. When we run the program every game steps and at the end, its game value of

zero can be seen in the console output. Zero game value of 4,4,4 demonstrates that it is
a draw game.

4.2. Large State Space
Efficient and faster working code also allowed us to implement our program on larger

m × n boards. We tried to confirm results for 9,4,4 and tried to solve even larger games
like 8,9,5;8,10,5;8,11,5 and explore the draw/win transition for k = 5,6,7. The
complexity of the game tree directly correlated with the size of the board. Hence, larger

boards were hard to tackle at the beginning for us. However, in the later steps, we were

able to solve large board games including 5 × 5 and 6 × 6 game in a matter of seconds
for the k = 3. The real challenge appeared when we increased the k value. With k = 4

the biggest board we were able to solve in a reasonable time was 4 × 4.

4.3. Parallelization
One of the other important results we reached was to tackle unknown game values,

immense computing power was required. Although we used supercomputers in our

project, their main purpose was to work as an additional server to run the program.

Hence, we only used one of their nodes to run the program. To compare the speed of the

machines we utilize, an example could be useful. In the very early stage of our project,

we run the same 3,4,3 AI versus AI implementation on three different machines namely,
MacBook Air M1, JURECA Supercomputer and Ubuntu Server in AWS. In JURECA, it is

completed in 853.008 seconds. In MacBook, it took 921.854 seconds. So there was only

~1 minute difference between one node of the supercomputer and MacBook. On the

other hand, the Amazon AWS instance added additional two minutes and finished it in

1042.004 seconds. This was the early implementation of our program and now the same

program run in MacBook in 1.237 seconds, and in JURECA 1.334 seconds, in AWS 1.443

seconds. The important point we would like to make is there was not a big difference

between running times of machines despite their very different hardware specifications.

Hence, to explore the game tree faster, much more computing power is needed. JURECA

56

has that much power but we did not utilize this power. Therefore, the result was to take

advantage of the immense power of the supercomputer, parallelization of the nodes is

needed. This will unleash the full power of the supercomputer and it will make it the

perfect tool to improve the program. My supervisor and I believe to find unknown game

values for m, n, k games, parallelization of the supercomputer are required.

5. Conclusion & Summary
We verified game values for m<5, n<5, k<5 games and achieved considerable speedup
compared to the naive minimax implementation. It is observed that it is possible to

increase game tree search speed by a considerable margin by using efficient algorithms.

More advanced algorithms and computing power are required for the larger m × n board

since the games become more sophisticated in every more advanced step. Although we

improved base minimax function a lot and reached impressive results. To find game

values of unknown games like 15,5,5 there is a long way to go. One of the reasons for
this is complexity increases in the factorial time (upper bound). Therefore, although with

proper implementation of heuristic algorithms complexity can be decreased enormously.

Considering native minimax evaluating every single move, it is complexity was so high

in our initial implementation. The problem with factorial time complexity is that after

increasing complexity this much, most of the algorithms become obsolete. This was

particularly valid for very efficient working algorithms which work in comparatively

small state space.

We believe adding more heuristics will bring this implementation to an even better

stage. Nevertheless, adding heuristics to the program is not straightforward. It requires

lots of time and critical analysis. We believe this research project created a solid ground

base for the scientists who would like to move one step further by using our findings.

In the following section, we list some of our projections that can be useful for the

researchers who would like to build on our research.

6. Possible Future Implementations
More improvements could be added to the program. These improvements will make

the program faster. One of the improvements that could be done is making use of

symmetries. There are two different symmetry axes in non-quadratic (rectangular)

boards, and they have in total four symmetries. In the quadratic board, there are four

different symmetry axes and eight in total. If there are functions implemented that

take advantage of these symmetries then the program can understand that most of the

starting phases are equivalent to each other. Therefore, state-space could decrease to

one-fourth of the initial version and decrease the complexity by a factor of 4. Secondly,

there can be a live database implemented to the program. The advantage of this running

database is that it can prevent multiple evaluations. It will help to cut more unnecessary

leaves which will result in a more efficient working program. Thirdly, we thought that

a function called double threat check can be added. The function could be improved

mate in two functions. It would check if there is a double threat and then the program

plays it and does not enter the minimax algorithm[10].

57

7. Acknowledgments
I would like to thank my family and friends, who supported me throughout this process.

I am very thankful to the program director Dr. Ivo Kabadshow who gave me the

opportunity to join this program. His constant support made this program a very

enjoyable experience. At the same time, I would like to express my deepest thanks to

my supervisor Julian Clausnitzer who guide me in each step of our project. He helped

me to understand advanced topics and always answered my questions and concerns

throughout the program.

References
[1] B. A. Bhuiyan. An overview of game theory and some applications.
59:121–122, 2016.� https://www.banglajol.info/index.php/PP/article/

view/36683/24721.

[2] V. Charatsidis. Solving four-in-a-row on 9×4 and 10×4 boards, Bachelor
Thesis,. 2017.

[3] J. Clausnitzer. A stochastic approach to game solving, Master Thesis. 2020.

[4] S. I. Gass. What is game theory and what are some of its appli-
cations? 2003. � https://www.scientificamerican.com/article/

what-is-game-theory-and-w/.

[5] Y. B. Jonathan Schaeffer, Neil Burch. Checkers is solved. Sciencexpress,
10.1126:1, 2007. � http://dit.unitn.it/~montreso/asd/docs/checkers.

pdf.

[6] Minimax. � https://en.wikipedia.org/wiki/Minimax.

[7] J. McCarthy, M. Minsky, N. Rochester, and C. Shannon. A proposal for the
dartmouth summer research project on artificial intelligence. page 1, 1955.
� http://raysolomonoff.com/dartmouth/boxa/dart564props.pdf.

[8] S. J. Russell and P. Norvig. Artificial intelligence modern ap-
proach. pages 144–158, 2003. � https://www.cin.ufpe.br/~tfl2/

artificial-intelligence-modern-approach.9780131038059.25368.pdf.

[9] U. Schmid and D. Wolter. Introduction to artificial intelligence. 2019.
� https://cogsys.uni-bamberg.de/teaching/ss21/eki/slides/lecture_

4_games.pdf.

[10] J. W. Uiterwijk. Solving strong and weak 4-in-a-row. IEEE, pages 3–5, 2019.
� https://ieee-cog.org/2019/papers/paper_115.pdf.

58

GPU-Based Optimizations for
waLBerla

Porting waLBerla to CUDA task graphs.

Abstract waLBerla’s workflow for 2 different timestep

strategies was moved to CUDA task graphs. Different ap-

proaches for constructing the communication graphs were

tested. A more effective fan-out of kernel execution was

achieved for the pack and unpack kernels. CUDA task graphs

allowed the code to be restructured and simplified by remov-

ing the manually created forking streams for each kernel, as

well as the additionally introduced CUDA API calls by the

stream manager. All this led to performance improvement.

NVTX was added for more comprehensive Nsight Systems

reports. The bottlenecks for merging the 4 graphs into one

were investigated and listed. Some remedies were suggested.

Milena Veneva
student trainee at R-CCS

RIKEN
Bulgaria

milena.p.veneva@gmail.com

1. Introduction
waLBerla (acronym for widely applicable Lattice Boltzmann from Erlangen) [3, 27, 26]

is a massively parallel framework for general-purpose multiphysics simulations whose

first prototype was released in 2007. It consists of three main modules: computational

fluid dynamics simulations with the lattice Boltzmann method (LBM) (this is the module

of interest in this report); rigid particle dynamics simulations of particulate systems with

the discrete element method or hard-contact models; and phase-field simulations.

waLBerla consists of more than 2800 source files, as well as it maintains auto-

generation of target-specific LBM kernel codes. Besides that, its code also has many

levels of abstraction, and uses different parallel programming techniques such as CUDA,

MPI, and OpenMP.

1.1. Problem description and research aim
The open questions that we wanted to answer in this project were:

� is it possible to move waLBerla’s workflow (which runs on concurrent CUDA

streams) to CUDA task graph(s)?

� If affirmative, does this bring performance benefits? How much?

� Could CUDA task graphs help for better parallelization of the application?

� Any other optimizations and recommendations are welcomed.

The case study application is lbm_pull_srt_d3q27, that is, a 3-dimensional lattice
Boltzmann method with 27 probability distribution functions (PDFs) per cell, pulling

updating scheme (that is, in the time loop the streaming comes before the collision),

and single-relaxation time (SRT) approximation model for the collision operator.

59

TW

TSW

TNW

T

TS

TN

TSE

TE

TNE

W

SW

NW

S

N

E

SE

NE

BW

BSW

BNW

B

BS

BN

BSE

BE

BNE

Figure 1.1.: Lattice cell for the D3Q27 LMB model.

The layout of the report is as follows: in the next section 2, the outline of the

lattice Boltzmann method is given. Afterwards, in Section 3 the CUDA task graphs are

introduced and discussed. Section 4 contains code snippets for porting a single kernel to

CUDA task graph. In Section 5 the experimental setup is presented, and the obtained

results from the computational experiments are analyzed. Section 6 shows results from

using JUBE. Last, in Section 7 are listed future work recommendations, and in Section 8

the summary is given.

2. Lattice Boltzmann Method
2.1. Introduction to LBM
Lattice Boltzmann method (LBM) [16, 7, 2, 5, 1] is a mathematical technique for

simulating fluid flow based on mesoscopic description (i. e. relying on particles’ clusters

probability distribution functions). The computational domain is discretized by using a

stencil of lattice cells DdQq, that is, d-dimensional domain in which every cell contains

q probability distribution functions (PDFs) fi(⃗x, t), i = 1, q. This means that the system
has q degrees of freedom. Each PDF determines the probability of the fluid particles’

cluster i to move from position ⃗x to ⃗x + ⃗vidt after a period of time dt. Frequently used
LBM lattice cells models are e. g. D2Q9, D3Q15, D3Q19, and D3Q27 (for a schematic

visualization of a lattice cell for the D3Q27 model see Figure 1.1). In particular, D3Q27

associates 26 PDFs with the particles’ clusters that move to the neighboring lattice cells,

and one PDF to the resting particles.

The method consists of two main steps – collision, and streaming (propagation).

During the former, all particles which are in one and the same cell interact with each

other (collide), but do not execute any movement to different cells. At the beginning

of the collision step each cell linkage has a pre-collision incoming PDF value f ini which

after being updated, is converted to a post-collision outgoing PDF value f outi at the end

of the collision. The simulation does not move in time during this step. On the next step,

i. e. the streaming, the particles move to the neighbor cells according to their motion

direction (lattice link) and this leads to a simulation timestep. All the post-collision

60

outgoing PDFs from the collision step are transferred to the neighboring lattice cells

according to the direction of their velocities, and become incoming pre-collision PDFs

in their new cells. The values of the PDFs do not change during this step.

There are two main strategies for updating the PDFs – pull (that is, the streaming

comes before the collision in the time loop), and push (the collision takes place before

the streaming in the time loop).

Many different boundary conditions could be applied to LBM. A list of all the BCs that

waLBerla maintains work with can be seen in [25]. Below, we are going to use UBB

(velocity bounce-back), and no-slip (bounce-back solid walls). The first adds velocity to

the molecules which bounce to the boundary, while the second means that the molecules

switch direction and remain at the same place (see Figure 2.2).

2.2. LBM features
The features of LBM that make it a preferable method in comparison with other compu-

tational fluid dynamics methods are as follow:

� the method is explicit in time;

� the two stages LBM consists of (namely, collision, and streaming) are local pro-

cesses. This together with the explicity make LBM an embarrassingly parallelizable.

In particular, by applying domain decomposition the computational domain is

partitioned into several sub-domains that are processed by different processors.

The data communication is done through halo cells exchange once per timestep.

Communication is of importance for the boundary and near boundary cells, while

the inner part of the computational domain does not rely on the exchanged data.

� extensibility: by changing the local equilibrium formula for the PDFs (it must

satisfy conservation of mass and momentum), and the relaxation scheme for

approximation of the collision operator (e. g. single-relaxation time (SRT), two-

relaxation time (TRT), and multi-relaxation-time (MRT)), many different complex

physical phenomena can be simulated;

� stability: allows for larger timesteps than with other computational methods (the

stability of LBM is conditional, because the scheme is explicit in time, but it is

much better that the stability of FDM for instance);

� computational efficiency;

� simplicity of the arithmetic calculations;

� ease of BCs implementation.

2.3. LBM theory
The main LBM equations [5, 1] are given below.

� Boltzmann transport equation describes the rate of change of the molecular density

(i. e.molecules per volume per velocity) in a cell taking into account that the

molecules interact with each other:

61

∂f
∂t + ∂f

∂ ⃗x
⃗v = 𝛺 − F, (2.1)

where F is the force term, 𝛺 is the collision operator.

� The collision operator can be modelled by different models. For instance, a

single-relaxation time (SRT) Bhatnagar-Gross-Krook collision operator is defined

as follows:

𝛺 = − f − f (eq)

𝜏 = −𝜔(f − f (eq)), (2.2)

where f (eq) is the Maxwell-Boltzmann distribution, 𝜏 is the relaxation time which controls
the rate of approaching equilibrium;

� The Maxwell-Boltzmann distribution function has the following form:

f (eq) = 𝜌 (m

2𝜋KT)
D
2
e

−m(⃗v− ⃗u)2
2KT , (2.3)

where: 𝜌 – macroscopic density, u – macroscopic velocity, T – macroscopic temperature,
K – Boltzmann constant, m – mass of the gas molecule, and D – # of spatial dimensions.

� Taking Equations (2.1) and (2.2); discretizing the velocities and the time we obtain

the lattice Boltzmann equation:

̄f (n+1)
i⏟
streaming

= ̄f (n)
i − 1

𝜏 [̄f (n)
i − f

(eq)(n)
i] − [1− 1

2𝜏] F(n)
i 𝛿t,

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
collision

(2.4)

where n is the timestep, the bar over f denotes that this is a modified function. Equa-

tion (2.4) is usually divided into two parts – collision, and streaming.

2.4. Applications of LBM
LBM is used for modelling and simulation of many different problems and application [5,

1]. For instance,

� oil-water displacement in porous media,

� fingering phenomenon,

� blood flow,

� flow in lungs to treat asthma and cancer,

� flow in filtration processes,

� traffic management,

� atmospheric turbulence,

� washing machines,

� fixed/sweeping air-conditioning in a room, and

� falling water column.

62

Figure 2.1.: Lattice cell for the D1Q3 LBM model.

wall

bounces

wall

Figure 2.2.: Bounce-back BCs.

2.5. Simple example
A toy problem task was taken from [16] (example 5.5.2).

The problem: a slab is initially at temperature equal to zero, T = 0.0. For time
t ≥ 0, the left surface of the slab is subjected to a high temperature and equal to unity,

T = 1.0. The slab length is 100 units. Calculate the temperature distribution in the slab
for t = 200. Use thermal diffusion coefficient 𝛼 = 0.25.
Two different simulations were implemented for solving the heat diffusion equation in

C++. The first one is based on a simple one-dimensional D1Q3 LBM model (a schematic

visualization of a lattice cell in the case of the D1Q3 model can be seen on Figure 2.1).

The second one uses a second-order finite difference method (FDM). Figure 2.4 compares

the predicted results of the LBM and FDM. As one can see, the results fully coincide.

Note that for the stability condition the timestep for the FDM is 0.5, while it is 1.0 for

the LBM. Therefore the FDM has to do 400 timesteps. Hence, LBM is much faster and

efficient than the FDM. The algorithmic steps for solving the problem numerically with

the help of LBM are shown on Figure 2.3. We are applying push updating scheme, and

no-slip BCs (see Figure 2.2).

2.6. Algorithmic steps of waLBerla’s LBM
As it was previously mentioned, waLBerla is a massively parallel application, so its

implementation of LBM uses copy-compute overlap. The computational domain is split

into blocks of cells, and each block is processed by a different process. Additionally,

for the sake of the copy-compute overlap, the domain is divided into inner and outer

parts. In each timestep communication and inner domain computation are happening

concurrently. After these steps are done, the outer part of the domain is computed. As

shown on Figure 2.5, the communication step consists of data preparation (by filling up

sending buffers), data sending and receiving, and data extraction (from the receiving

buffers). During the computational parts the BCs are applied, and the LBM takes place.

The order of collision and streaming depends on the configuration that was chosen.

63

grid initialization

temperature initialization for each lattice cell

PDFs initialization

timestep

collision: update the equilibrium PDFs

collision: update the post-collision PDFs

streaming: move fi to f
∗
i in the proper direction

apply no-slip bounce-back BCs

update the temperature using the post-collision PDFs

Figure 2.3.: Algorithmic steps of LBM.

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

x

T
e
m
p
e
ra
tu
re

1D LBM simulation

1D FDM simulation

Figure 2.4.: A comparison of the results predicted by the LBM and FDM for a slab subjected to a

constant temperature at the boundary.

64

timestep

prepare data for the halo
exchange

start halo exchange

end halo exchange

extract the data from the halo

outer domain computations

apply BCs

collision↔ streaming

inner domain computations

apply BCs

collision↔ streaming

Figure 2.5.: Algorithmic steps of waLBerla’s LBM.

3. CUDA task graphs
CUDA task graphs [23, 19, 11, 6, 8, 9] allow a mechanism for designing the program’s

workflow consisting of multiple GPU operations as a graph of tasks, and launching them

as a single GPU operation. Any CUDA stream workflow can be moved to CUDA task

graph(s). This approach reduces the overhead for separately launched GPU operations,

because we pay it once, but then we can reuse the graph many times, and hence amortize

the launch cost. CUDA task graph is especially applicable in the case of short kernels

whose execution time is dominated by the time for their launch as it might reduce

the gaps between the kernel launches. There are two ways to create a CUDA graph –

explicit/manual (by using the CUDA Graph API), and implicit (by capturing streams’

workflow). The manual approach gives more control than the implicit one. After the

creation is done, the graph is instantiated, and launched. Since the instantiating is

the overhead when working with task graphs, the aim is to minimize the number of

instantiations. If in the course of work, we need to change something in the task graph,

we can follow one of two paths. If the graph’s topology needs to be updated, the already

created graph needs a re-instantiation. Otherwise, if only the kernel nodes’ parameters

should be changed, we can update them without re-instantiating. Our application’s

workflow does not change with time, therefore we do not need to re-instantiate, but

only update the graph’s parameters.

Figure 3.1 shows a subset of all the possible nodes we can add to a task graph, namely

we can call a kernel or a CPU function within the graph. Memcpy and memset operations

can be done inside the task graph. Finally, a node can be yet another graph – child

65

kernel launch

CPU function call

CUDA memcpy/memset

child graph

Figure 3.1.: Some of the graph operations.

Graph exists?

no

define graph

add nodes

add dependencies

instantiate the graph

launch the graph

yes

update parameters

Figure 3.2.: Explicit construction of graph, using CUDA Graph API calls.

graph.

The workflow in the case of explicit creation of the task graph is described on Figure 3.2.

As it can be seen, if the graph does not exist, we need to define it, add nodes and describe

the dependencies between the nodes. Then, the graph is instantiated (that is, converted

into an executable graph), and launched (executed). If the executable graph is existing,

we can update the parameters (if needed), and launch it.

Figure 3.3 depicts how an example stream workflow running on three CUDA streams

can be moved to a task graph. On both the pictures the upper case letters denote kernel

calls. For example, to the left, we can see that kernel D depends on kernel B, but as they

are run on two different streams, a waiting point is needed to ensure that kernel D is

not going to start before kernel B has completed. Such waiting points are of no need in

task graphs since an edge between two nodes defines a dependency, and hence, kernel

D will wait for kernel B to finish its work.

66

A

B

C

wait

E

wait

wait

D

wait

X

Y

(a) CUDA workflow in streams.

A

B

C

E

D

E

X

Y

end

(b) CUDA workflow in a graph.

Figure 3.3.: Porting stream workflow to CUDA task graph.

4. Porting waLBerla to CUDA task graphs
4.1. Code snippets
What follows is the procedure for moving a single kernel to a task graph. Similar steps

(sometimes with more complicated logic, e. g. because BCs may or may not be applied

and therefore dependencies must or should not be added to the compute kernels’ nodes)

were followed for all other kernels (62 * 2 = 124 overall). I am showing here the

simplest case.

The initial code is given in Listing 2. As one can see, this is a single kernel call with

particular launch configuration and kernel arguments.

Listing 2: UniformGridGPU_PackInfoOdd/Even.cu

1 internal_pack_BSW::pack_BSW<<<_grid, _block, 0, stream>>>(_data_buffer, _data_pdfs,\
2 _size_pdfs_0, _size_pdfs_1, _size_pdfs_2,\
3 _stride_pdfs_0, _stride_pdfs_1, _stride_pdfs_2, _stride_pdfs_3);

As my aim was to prove a concept, and therefore did not want to restructure the

waLBerla’s code, a header file graph_params.h (part of which is shown in Listing 3)
was introduced for keeping the definitions of all the new variables I needed. All of them

were defined as global.

Listing 3: graph_params.h

1 inline cudaGraph_t graph_pack;
2 inline bool graph_created_pack = false;
3 inline cudaGraphExec_t graph_exec_pack;
4 inline cudaGraphNode_t emptyNode_pack;
5 inline std::vector<cudaGraphNode_t> nodeDependencies_pack(1);
6 inline cudaGraphNode_t kernelNode_pack[26];

Listing 4 shows what augmentations should be made to the .cu file in order to add
the kernel to a CUDA task graph. One needs to define the cudaKernelNodeParams

67

structure, and fill it in with a pointer to the kernel, pointers to the kernel’s arguments,

and the launch configuration (grid and block sizes, and amount of dynamic shared

memory) that will be used. After that, if the executable graph has not been created

yet, a kernel node with proper dependencies is added to the task graph. Otherwise, the

kernel node’s parameters are only updated.

Listing 4: Augmented .cu file

1 cudaKernelNodeParams kernelNodeParams = {0};
2

3 void *kernel_args[9] = {(void *)&_data_buffer, (void *)&_data_pdfs, (void *)&_size_pdfs_0,\
4 (void *)&_size_pdfs_1, (void *)&_size_pdfs_2, (void *)&_stride_pdfs_0,\
5 (void *)&_stride_pdfs_1, (void *)&_stride_pdfs_2, (void *)&_stride_pdfs_3};
6

7 kernelNodeParams.func = (void *)internal_pack_BSW::pack_BSW;
8 kernelNodeParams.gridDim = _grid;
9 kernelNodeParams.blockDim = _block;
10 kernelNodeParams.sharedMemBytes = 0;
11 kernelNodeParams.kernelParams = (void **)kernel_args;
12 kernelNodeParams.extra = NULL;
13

14 if(!graph_created_pack){
15 WALBERLA_CUDA_CHECK(cudaGraphAddKernelNode(&kernelNode_pack[0],\
16 graph_pack, nodeDependencies_pack.data(), nodeDependencies_pack.size(),\
17 &kernelNodeParams));
18 }
19 else{
20 WALBERLA_CUDA_CHECK(cudaGraphExecKernelNodeSetParams(graph_exec_pack,\
21 kernelNode_pack[0], &kernelNodeParams));
22 }

Finally, in the main C++ function we need to create a stream on which the task graph is

going to be run, and to create the task graph itself. Then, after the function (colored in

pink) which eventually calls the kernel of interest completes, the task graph is instantiated

(if not instantiated yet), and launched. To ensure usage of correct data, the stream needs

to be synchronized after the launch. The green part of Listing 5 is used only in a debug

mode (because it adds overhead), that is, we can use the CUDA Graph API to print the

number of nodes we have created, as well as the task graph itself, and thus to check if

we have applied all the dependencies correctly. Finally, the used resources need to be

freed. Note that if the stream is not destroyed, it leads to a segmentation fault.

Listing 5: Augmented main function

1 cudaStream_t graph_stream;
2 WALBERLA_CUDA_CHECK(cudaStreamCreate(&graph_stream));
3 WALBERLA_CUDA_CHECK(cudaGraphCreate(&graph_pack, 0));
4 WALBERLA_CUDA_CHECK(cudaGraphAddEmptyNode(&emptyNode_pack, graph_pack, NULL, 0));
5 nodeDependencies_pack[0] = emptyNode_pack;
6 comm.startCommunication(defaultStream);
7 if(!graph_created_pack){
8 WALBERLA_CUDA_CHECK(cudaGraphAddEmptyNode(&emptyNode_pack, graph_pack,\
9 nodeDependencies_from_pack.data(), nodeDependencies_from_pack.size()));
10 WALBERLA_CUDA_CHECK(cudaGraphInstantiate(&graph_exec_pack, graph_pack, NULL, NULL, 0));
11 graph_created_pack = true;
12 }
13 WALBERLA_CUDA_CHECK(cudaGraphLaunch(graph_exec_pack, graph_stream));
14 WALBERLA_CUDA_CHECK(cudaStreamSynchronize(graph_stream));
15 cudaGraphNode_t *nodes = NULL;
16 size_t numNodes = 0;
17 WALBERLA_CUDA_CHECK(cudaGraphGetNodes(graph_pack, nodes, &numNodes));
18 printf(”\nNum of nodes created manually = %zu\n”, numNodes);
19 WALBERLA_CUDA_CHECK(cudaGraphDebugDotPrint(graph_pack, ”dot_file_pack.dot”, {0}));
20 ...

68

21 WALBERLA_CUDA_CHECK(cudaStreamDestroy(graph_stream));
22 WALBERLA_CUDA_CHECK(cudaGraphDestroy(graph_pack));
23 WALBERLA_CUDA_CHECK(cudaGraphExecDestroy(graph_exec_pack));

4.2. Workflow for the kernelOnly timestep strategy
As a first step the kernelOnly timestep strategy was moved to a task graph with a single

LBM kernel node. There was no hope that such an attempt would lead to a performance

boost, it was made for the sake of proof of concept only.

4.3. Workflow for the simpleOverlapTimeStep strategy
As a next step the simpleOverlapTimeStep strategy was ported to four CUDA task graphs

as depicted on Figure 4.1, as follows:

1. communication step: packing (26 pack kernel nodes);

2. [inner BCs and] inner domain computation ([2 BCs kernel nodes] + 1 LBM kernel

node);

3. communication step: unpacking (26 unpack kernel nodes);

4. [outer BCs and] outer domain computation ([2 BCs kernel nodes] + 6 LBM kernel

nodes (one for each face of the cube)).

N. B. The square brackets above denote that these nodes may or may not be part of

the graph depending on the problem’s configuration. The procedure above was done

twice, because waLBerla differentiates between odd and even timesteps by introducing

different kernel calls.

Note that on Figure 4.1 it becomes clear that we have external dependencies on MPI in

our workflow. This fact enforces calling cudaStreamSynchronize after the pack graph

is launched. So as to be sure that the correct data (that is, to prevent race conditions) is

going to be manipulated in the CPU function which eventually calls the outer kernels,

yet another synchronization point is needed after the unpack graph. Finally, at the end

of each timestep, the stream is synchronized so as the next iteration to use the updated

data. Figure 4.2 shows the GPU operations needed in the case of these four graphs being

executed on two concurrent streams (the MPI part is hidden). As the inner computation

does not depend on the rest of the graphs, it can or not be executed on a separate stream.

4.4. Changed waLBerla’s files
In order to achieve the porting from stream workflow to CUDA task graphs, we needed

to augment all the pink files shown on Figure 4.3a. These were originally auto-generated

target-specific LBM kernel code files. For our purposes we stopped re-generating them,

and started building on them. This is the reason why the CMake files needed some

changes.

The pink-colored files on Figure 4.3b show which source files needed changes. These

are the files that were building the stream-based execution of waLBerla. Originally, a

stream manager was constructing concurrent streams for each kernel call, and so was

making CUDA API calls so as to ensure synchronization. Since CUDA task graph creates

the needed streams on its own, all this became redundant.

69

b
eg
in

p
a
ck

1
p
a
ck

2
⋯

p
a
ck

2
6

i_
N
o
S
li
p

i_
U
B
B

u
n
p
a
ck

1
u
n
p
a
ck

2
⋯

u
n
p
a
ck

2
6

o
_N

o
S
li
p

o
_U

B
B

o
u
te
r_
T

o
u
te
r_
B

o
u
te
r_
N

o
u
te
r_
S

o
u
te
r_
E

o
u
te
r_
W

in
n
er

en
d

M
P
I_
Ir
e
cv

M
P
I_
Is
e
n
d

M
P
I_
W
a
it
a
ll

P
a
ck
g
ra
p
h

U
n
p
a
ck
g
ra
p
h

In
n
e
r
g
ra
p
h

O
u
te
r
g
ra
p
h

Figure 4.1.: Dependencies and task graphs splitting.

70

stream_2stream_1

timestep

graph_pack

cudaStreamSynchronize

graph_unpack

cudaStreamSynchronize

graph_outer

cudaStreamSynchronize

graph_inner

cudaStreamSynchronize

Figure 4.2.: Timeloop of 4 graphs on 2 streams.

71

Build

apps

benchmarks

CMakeLists.txt

UniformGridTaskGraph

CMakeLists.txt

UniformGridGPU_LbKernel.cu

UniformGridGPU_NoSlip.cu

UniformGridGPU_UBB.cu

UniformGridGPU_PackInfoEven.cu

UniformGridGPU_PackInfoOdd.cu

UniformGridTaskGraph.cpp

graph_params.h

nvtx_macros.h

(a) Changed waLBerla’s auto-generated code files.

walberla

src

cuda

ParallelStreams.cpp

CudaRAII.h

communication

UniformGPUScheme.impl.h

(b) Changed waLBerla’s src files.

Figure 4.3.: Changed waLBerla’s files.

72

5. Results
5.1. Experimental setup
Computation were held on the basis of the supercomputer JUWELS Booster (ranked 8th

in the TOP500 list (https://www.top500.org) as of June 2021) [4] on a single GPU

NVIDIA Tesla A100 (see Figure 5.1).

Four different scenarios with different number of timesteps were tested (for more

details see Figure 5.2).

5.2. Computational results
Figure 5.3 shows the results (in mega lattice updates per second (MLUPS)) from the runs

of the different versions of the application, as follows: the original code; the code ported

to four CUDA task graphs with the pack and unpack graphs being wide, depth 1; the

third and fourth columns correspond to the cases when the communication task graphs

start/end with an empty node; the fifth column explores both starting and ending empty

nodes, while the last two columns investigate the same kind of pack/unpack graphs as

in column 5, but running the inner graph on a separate stream or separate low-priority

CUDA stream.

As one can see, CUDA task graphs give better performance results than the original

code. Additionally, the starting empty node gives some more performance benefits

(because it helps the scheduler to handle the graphs better). Since the results in columns

3 and 5 have negligible differences (due to the cluster noise), we chose to continue with

the version of the graphs from column 5. Two variant of parallel streams were tested.

None of them gave better performance since the inner graph is computationally greedy,

and the hardware utilization cannot be improved further than that.

5.3. Fan-out of kernels
Screenshots from Nsight Systems [18, 20] reports are shown on Figure 5.4. Comparing

Figure 5.4a which depicts part of the timeline of the original code with Figure 5.4b

which shows the fan-out of the ported to the CUDA task graphs code, one can see that

with CUDA task graphs the fan-out of the communication kernels is increased (25 vs. 8).

That is, we have more kernels running in parallel. This means that the application’s

parallelization was indeed improved by the CUDA task graphs.

5.4. CUDA API calls
As it was discussed earlier, the stream manager which is part of the waLBerla’s initial

code introduces a lot of CUDA API calls as it can be observed on Figure 5.5. There,

the screenshot of the Nsight Systems report shows in green all the CUDA API calls for

a single timestep. The following list gives some of the CUDA API calls that became

redundant, and therefore were removed:

� cudaEventCreate

� cudaEventRecord

� cudaStreamCreate

� cudaStreamCreateWithPriority

73

NVIDIA GPU Tesla A100

Cores 6912

SMs 108

Memory 40 GB HBM2

FP32 [TFLOPS] 19.5

FP64 [TFLOPS] 9.7

Capability 8.0

FREQ [MHz] 1410

Mem bandwidth [GB/s] 1555

Figure 5.1.: NVIDIA Tesla A100 specifications.

No cellsPerBlock gpuBlockSize timesteps

1 (64, 64, 64) (32, 1, 1) 1600

2 (128, 128, 128) (32, 1, 1) 200

3 (256, 256, 256) (32, 1, 1) 25

4 (320, 320, 320) (32, 1, 1) 12

Figure 5.2.: Tested scenarios.

No no graphs 4 graphs

…

4 graphs

…

4 graphs

…

4 graphs

…

4 graphs,
2 streams

4 graphs,
2 priority
streams

1 255.45 561.78 572.79 556.76 569.71 567.26 568.61

2 1314.27 1554.90 1622.94 1553.71 1628.66 1629.04 1621.82

3 2173.65 2287.76 2309.56 2275.3 2305.53 2303.36 2306.93

4 2315.17 2442.24 2453.90 2441.54 2453.30 2454.94 2454.89

MLUPS

Figure 5.3.: Results from different runs.

74

(a) Communication kernels fan-out – before. (b) Communication kernels fan-out – after.

Figure 5.4.: Fan-out of the communication kernels – before and after task graphs.

Figure 5.5.: Removed events – before.

� cudaStreamWaitEvent

� cudaStreamSynchronize

� cudaEventDestroy

This increased the performance boost.

5.5. NVTX for annotated reports
On Figure 5.6a one can see a section of the timeline of the Nsight Systems profiler, applied

to the original waLBerla’s code, including some kernel launches. More precisely, both

to the left and to the right there are uniformgridgpu_lbkernel_even calls, but for

a reader who is not aware with the implementation details of waLBerla, it will not

be clear what these calls denote, namely the left one corresponds to the inner kernel,

and to the right we see three of the outer computational kernels. Therefore, NVIDIA

Extension Tools (NVTX) library [22] was used so as to make the Nsight Systems profiles

more readable. The results can be seen on Figure 5.6b where it is now obvious what

corresponds to what.

5.6. In the case of a single GPU
In the case when we run waLBerla on a single GPU card, the communication effectively

disappears (converting to send-to-self instead). Therefore, the pack and unpack task

75

(a) Nsight Systems report – before.

(b) Nsight Systems report – after.

Figure 5.6.: Nsight Systems report – before and after NVTX annotation.

graphs can be merged into a single communication task graph (see Figure 5.7). Addi-

tionally, if we have only a single block of cells, the for loops which are iterated over the

blocks disappear. Hence, the computational task graphs that are otherwise launched on

every loop iteration can be added to the communication task graph, and thus merged

into a single task graph (see Figure 5.8).

It is impossible to use less than 4 graphs on more than one GPU, as CUDA-aware

MPI [14] is not stream and CUDA task graph aware. NVSHMEM [21] might be a remedy,

because it is CUDA stream-aware.

76

stream_2stream_1

timestep

graph_pack_unpack

cudaStreamSynchronize

graph_outer

cudaStreamSynchronize

graph_inner

cudaStreamSynchronize

Figure 5.7.: Timeloop of 3 graphs on 2 streams.

timestep

graph_all_tasks

cudaStreamSynchronize

Figure 5.8.: Timeloop of 1 graph.

77

6. JUBE
JUBE (Juelich Benchmark Environment) [13, 12, 10, 15] is a script-based framework

which facilitates the creation of benchmarks sets, their running on different computer

systems, and evaluation of the results. Beside automated benchmarking JUBE can be

used also for building, testing, profiling of software, parameters sweeps and production

automatization.

A JUBE benchmark script for the application of interest was created. It incorporates

the following steps: compilation, execution, results analysis, and summary. Listing 6

shows the result of running the benchmark, while Listing 7 gives the generated result

table after the application results have been analyzed.

Listing 6: Running JUBE.

1 $ jube run UniformGridGPU.xml

2 ##

3 # benchmark: UniformGridGPU

4 # id: 59

5 #

6 #

7 ##

8

9 Running workpackages (#=done, 0=wait, E=error):

10 ## (3/ 3)

11

12 | stepname | all | open | wait | error | done |

13 |------------|-----|------|------|-------|------|

14 | compile | 1 | 0 | 0 | 0 | 1 |

15 | build_copy | 1 | 0 | 0 | 0 | 1 |

16 | execute | 1 | 0 | 0 | 0 | 1 |

17

18 >>>> Benchmark information and further useful commands:

19 >>>> id: 59

20 >>>> handle: UniformGridGPU_jube_benchmark

21 >>>> dir: UniformGridGPU_jube_benchmark/000059

22 >>>> analyse: jube analyse UniformGridGPU_jube_benchmark --id 59

23 >>>> result: jube result UniformGridGPU_jube_benchmark --id 59

24 >>>> info: jube info UniformGridGPU_jube_benchmark --id 59

25 >>>> log: jube log UniformGridGPU_jube_benchmark --id 59

26 ##

Listing 7: JUBE results.

1 $ jube result UniformGridGPU_jube_benchmark --id 59

2 ##

3 result_table:

4 | number_of_GPUs | mlups_per_GPU_avg |

5 |----------------|-------------------|

6 | 1 | 567.72 |

7 ##

7. Future work recommendations
The following recommendations are made for the future work:

1. In case CUDA-aware MPI implementation is not available or when offloading to

multiple GPUs, memcpy calls H2D and D2H are needed during the communication

step. It is recommended that they are added to the task graph using memcpy

nodes (see Listing 8). It might be beneficial to set single dependency between the

pack/unpack and memcpy nodes, that is, the memcpy that is needed after kernel

pack1 is executed depends only on it, not on all the 26 pack kernels. Likewise for

the unpack kernels and the memcpy that preceeds them (see Figure 7.1).

78

2. Instead of launching the computational task graphs on each for loop iteration, it is

worth trying cloning the 3-node graphs instead.

3. Important note is that synchronization points (MPI and CUDA) are not task-graph-

friendly. It is recommended that they are avoided.

4. NVIDIA collective communication library (NCCL) [17] might be a good replacement

of MPI for the communication.

Listing 8: Memcpy node

1 uint_t sizeBytes = sizeof(double) * numCells * elementsPerCell;
2 uint_t size = numCells * elementsPerCell;
3

4 cudaGraphNode_t memcpyNode;
5 cudaMemcpy3DParms memcpyParams = {0};
6

7 memcpyParams.srcArray = NULL;
8 memcpyParams.srcPos = make_cudaPos(0, 0, 0);
9 memcpyParams.srcPtr = make_cudaPitchedPtr((void *)cpuDataPtr, sizeBytes, size, 1);
10

11 memcpyParams.dstArray = NULL;
12 memcpyParams.dstPos = make_cudaPos(0, 0, 0);
13 memcpyParams.dstPtr = make_cudaPitchedPtr(gpuDataPtr, sizeBytes, size, 1);
14

15 memcpyParams.extent = make_cudaExtent(sizeBytes, 1, 1);
16 memcpyParams.kind = cudaMemcpyHostToDevice;
17

18 WALBERLA_CUDA_CHECK(cudaGraphAddMemcpyNode(&memcpyNode, graph, NULL, 0, &memcpyParams));

In the Listing 8 the cudaMemcpy3DParms structure is filled in with the CUDA pitched

memory pointers (with the respective sizes and offsets) for both the source and the desti-

nation arrays, extent (that is, number of elements to be transferred), and type of memory

transfer to be conducted. In this example code no dependencies are passed in. Finally,

the memcpy operation can also be done by using the cudaGraphAddMemcpyNode1D in

the case of contiguous data.

79

MPI_Irend

pack1

memcpy1

MPI_Isend

MPI_Waitall

memcpy1

unpack1

Figure 7.1.: Memcpy nodes and its dependencies.

8. Conclusion
8.1. Difficulties
The main difficulties while working on the project where related to the huge and complex

code of waLBerla. Additionally, many programming and data dependencies should

be taken into account in the working process. The code has many levels of abstraction,

e. g. finding a particular functions’ call chain might be a time-consuming and difficult

process. It is important to realize that neither can a developer fix everything at once,

nor is it always possible to foresee what might go wrong when introducing new features.

Tackling such an mount of code was very challenging, e. g. one single change in the

code led to a bug we could not have recovered from for a week. On the other hand, it is

important to know that synchronizing CUDA streams and CUDA-aware MPI is an art,

and should be done with a great care so as to prevent from race conditions. Finally,

the structure of the code did not allow for stream capture approach to be used for the

graphs’ creation, because of the many synchronization points that are used.

8.2. Summary
waLBerla’s workflow for 2 different timestep strategies was moved to CUDA task

graphs. Different approaches for constructing the communication graphs were tested. A

more effective fan-out of kernel execution was achieved for the pack and unpack kernels.

CUDA task graphs allowed the code to be restructured and simplified by removing the

manually created forking streams for each kernel, as well as the additionally introduced

CUDA API calls by the stream manager. All this led to performance improvement. NVTX

was added for more comprehensive Nsight Systems reports. The bottlenecks for merging

the 4 graphs into one were investigated and listed. Some remedies were suggested.

80

All figures were generated with the help of the TikZ [24] package.

9. Acknowledgments
The author would like to express their deep gratitude to (ordered alphabetically): Andreas

Herten (JSC), Ivo Kabadshow (JSC), Jayesh Badwaik (JSC), Jiri Kraus (NVIDIA), Markus

Holzer (Cerfacs), Markus Hrywniak (NVIDIA), Thorsten Hater (JSC) for their invaluable

help.

References
[1] A. Alzaabi, C. Hoydic, and S. Joon. Pennsylvania State University. Mathematical

Modeling in Energy andMineral Engineering EGEE 520 lecture: Mathematical
Modeling. Lattice-Boltzmann Method. Lecture, 2019.

[2] P. ASINARI. Chapter 5: Lattice Boltzmann Method. In Multi-Scale Analysis of
Heat and Mass Transfer in Mini/Micro-Structures. Doctoral thesis, 2005.

[3] M. Bauer, S. Eibl, C. Godenschwager, N. Kohl, M. Kuron, C. Rettinger, F. Schorn-

baum, C. Schwarzmeier, D. Thönnes, H. Köstler, and U. Rüde. Walberla: A
block-structured high-performance framework for multiphysics simulations.
Computers & Mathematics with Applications, 2020. � doi:10.1016/j.camwa.

2020.01.007.

[4] J. S. Centre. JUWELS: Modular Tier-0/1 Supercomputer at the Jülich Super-
computing. Journal of large-scale research facilities, 5(A171), 2019. � doi:

10.17815/jlsrf-5-171.

[5] K. Doyle, L. Li, C. Wang, and C. Elsworth. Pennsylvania State University.
Mathematical Modeling in Energy and Mineral Engineering EME 521 lecture:
Lattice Boltzmann Method. Lecture, 2014.

[6] R. V. der Wijngaart. GTC Digital Talk: Effortless CUDA Graphs. Talk, April
2021.

[7] A. B. Elton. Doctoral thesis, 1990. � doi:10.2172/6480937.

[8] A. Gray. NVIDIA Developer Blog. Getting Started with CUDA Graphs,
2019. (Accessed: 8 October 2021). � https://developer.nvidia.com/blog/

cuda-graphs/.

[9] G. Gutmann. CUDA Graph Usage: CUDA Feature Testing, 2020. (Ac-
cessed: 8 October 2021). � https://codingbyexample.com/2020/09/25/

cuda-graph-usage/.

[10] M.-A. Hermanns. North Rhine-Westphalia competence network for high per-
formance computing (HPC_NRW) talk: JUBE by Example. Talk, August 2021.

[11] S. Jones, S. Gurfinkel, A. Gray, J. Larkin, and E. Weinberg. TC2020 Talk: Connect
with the Experts. CUDA Graphs (CWE21914). Talk, April 2020.

81

[12] JUBE’s documentation. (Accessed: 8 October 2021). � https://apps.

fz-juelich.de/jsc/jube/jube2/docu/.

[13] JUBE’s website. (Accessed: 8 October 2021). � https://www.fz-juelich.de/

ias/jsc/EN/Expertise/Support/Software/JUBE/_node.html.

[14] J. Kraus. NVIDIA Developer Blog. An Introduction to CUDA-Aware MPI,
2013. (Accessed: 8 October 2021). � https://developer.nvidia.com/blog/

introduction-cuda-aware-mpi/.

[15] S. Lührs. PC Knowledge Meeting’20 (HPCKP’20) talk: Automated Benchmark-
ing with JUBE. Talk, June 2020.

[16] A. A. Mohamad. Lattice Boltzmann Method. Fundamentals and Engineering

Applications with Computer Codes. Springer-Verlag London, 2nd edition, 2019.

� doi:10.1007/978-1-4471-7423-3.

[17] NVIDIA NCCL Library. (Accessed: 8 October 2021). � https://developer.

nvidia.com/nccl.

[18] NVIDIA Nsight Systems. (Accessed: 8 October 2021). � https://developer.

nvidia.com/nsight-systems.

[19] NVIDIA. CUDA C++ Programming Guide. Design Guide, 2021.

[20] NVIDIA. Nsight Systems USER GUIDE. User Manual, 2021.

[21] NVIDIA NVSHMEM Library. (Accessed: 8 October 2021).� https://developer.

nvidia.com/nvshmem.

[22] NVIDIA NVTX Library. (Accessed: 8 October 2021). � https:

//docs.nvidia.com/gameworks/content/gameworkslibrary/nvtx/nvidia_

tools_extension_library_nvtx.htm.

[23] P. Ramarao. NVIDIA Developer Blog. CUDA 10 Features Revealed: Turing,
CUDA Graphs, and More, 2018. (Accessed: 8 October 2021). � https://

developer.nvidia.com/blog/cuda-10-features-revealed/.

[24] T. Tantau. The TikZ and PGF Packages. Manual for version 3.1.9. Documentation,

2021.

[25] Tutorial – LBM 6: Boundary Conditions. (Accessed: 8 October 2021). � https:

//www.walberla.net/doxygen/tutorial_lbm06.html.

[26] waLBerla’s official repo. (Accessed: 8 October 2021). � https://i10git.cs.

fau.de/walberla/walberla.

[27] waLBerla’s website. (Accessed: 8 October 2021). � https://walberla.net.

82

Schriften des Forschungszentrums Jülich
IAS Series

Band / Volume 40
Extreme Data Workshop 2018
Forschungszentrum Jülich, 18-19 September 2018
Proceedings
M. Schultz, D. Pleiter, P. Bauer (Eds.) (2019), 64 pp
ISBN: 978-3-95806-392-1
URN: urn:nbn:de:0001-2019032102

Band / Volume 41
A lattice QCD study of nucleon structure with physical quark masses
N. Hasan (2020), xiii, 157 pp
ISBN: 978-3-95806-456-0
URN: urn:nbn:de:0001-2020012307

Band / Volume 42
Mikroskopische Fundamentaldiagramme der Fußgängerdynamik –
Empirische Untersuchung von Experimenten eindimensionaler Bewegung
sowie quantitative Beschreibung von Stau-Charakteristika
V. Ziemer (2020), XVIII, 155 pp
ISBN: 978-3-95806-470-6
URN: urn:nbn:de:0001-2020051000

Band / Volume 43
Algorithms for massively parallel generic hp-adaptive finite element methods
M. Fehling (2020), vii, 78 pp
ISBN: 978-3-95806-486-7
URN: urn:nbn:de:0001-2020071402

Band / Volume 44
The method of fundamental solutions for computing interior transmission
eigenvalues
L. Pieronek (2020), 115 pp
ISBN: 978-3-95806-504-8

Band / Volume 45
Supercomputer simulations of transmon quantum computers
D. Willsch (2020), IX, 237 pp
ISBN: 978-3-95806-505-5

Band / Volume 46
The Influence of Individual Characteristics on Crowd Dynamics
P. Geoerg (2021), xiv, 212 pp
ISBN: 978-3-95806-561-1

Schriften des Forschungszentrums Jülich
IAS Series

Band / Volume 47
Structural plasticity as a connectivity generation
and optimization algorithm in neural networks
S. Diaz Pier (2021), 167 pp
ISBN: 978-3-95806-577-2

Band / Volume 48
Porting applications to a Modular Supercomputer
Experiences from the DEEP-EST project
A. Kreuzer, E. Suarez, N. Eicker, Th. Lippert (Eds.) (2021), 209 pp
ISBN: 978-3-95806-590-1

Band / Volume 49
Operational Navigation of Agents and Self-organization Phenomena
in Velocity-based Models for Pedestrian Dynamics
Q. Xu (2022), xii, 112 pp
ISBN: 978-3-95806-620-5

Band / Volume 50
Utilizing Inertial Sensors as an Extension of a Camera Tracking
System for Gathering Movement Data in Dense Crowds
J. Schumann (2022), xii, 155 pp
ISBN: 978-3-95806-624-3

Band / Volume 51
Final report of the DeepRain project
Abschlußbericht des DeepRain Projektes
(2022), ca. 70 pp
ISBN: 978-3-95806-675-5

Band / Volume 52
JSC Guest Student Programme Proceedings 2021
I. Kabadshow (Ed.) (2023), ii, 82 pp
ISBN: 978-3-95806-684-7

Weitere Schriften des Verlags im Forschungszentrum Jülich unter
http://wwwzb1.fz-juelich.de/verlagextern1/index.asp

IAS Series
Band / Volume 52
ISBN 978-3-95806-684-7

IAS Series
Band / Volume 52
ISBN 978-3-95806-684-7

JSC Guest Student Programme Proceedings 2021
Ivo Kabadshow (Ed.)

	Leere Seite
	Leere Seite

