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Abstract

Abstract

Renewable energy sources are a crucial cornerstone in the future energy sector
to decelerate global warming and to reach the international reduction targets
for CO2 emissions. However, the rising share of renewable energy sources
challenges the planning and operating of energy systems in multiple regards:
On the one hand, these sources are often intermittent and in order to provide
a safe energy supply, energy storage technologies gain importance. On the
other hand, different energy sectors are progressively coupled because the
supply security can profit from the option to exchange energy among different
sectors.

In order to appropriately foresee these developments and derive realistic de-
signs of cost-efficient future energy systems, spatiotemporally resolved energy
system models have emerged as a powerful tool. Yet, just as the real energy
systems, the models are becoming increasingly complex and the consideration
of intermittent renewable energy sources require high temporal resolutions
within these models. Accordingly, energy system models are either limited in
the size of the regarded energy system, limited in the accuracy or computation-
ally simply intractable. Therefore, methods were developed that strive to reduce
the mathematical complexity of energy system models without sacrificing too
much of the model’s accuracy. One of these methods is temporal aggregation,
i.e. the reduction of the number of time steps considered by an energy system
model in order to capture transient changes of its operation schedule.

This thesis contributes to the research field of temporal aggregation techniques
for energy system modeling by systematically comparing four fundamentally
different energy system models to each other, using a two-fold temporal aggre-
gation for efficiently decreasing the computational burden of the regarded en-
ergy system models. Furthermore, it introduces novel algorithms to increase
the accuracy of temporally aggregated energy system models significantly. In
contrast to prior works in the literature, this thesis does not only assess the
developed methods analytically, but also stochastically with a wide variety of
different temporal aggregation configurations in order to take the differences of
the models into account. The results reveal that the optimal temporal aggrega-
tion depends on two factors: The existence of temporally coupling constraints
in the model, e.g. as introduced by storage technologies, and the types of time
series used as input to the models. Moreover, the methods found in literature
are outperformed consistently and significantly by the methods proposed within
this thesis.

All methods were generically implemented in the Framework for Integrated En-
ergy System Assessment (FINE) and resulted in a fundamental restructuring
and extension of the time series aggregation module (tsam). The latter module
is a python-based out-of-the-box solution for temporal aggregation techniques
and is currently used by multiple different energy system modeling frameworks.
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Kurzfassung

Kurzfassung

Aufgrund der internationalen Klimaziele, den CO2-Ausstol3 zu verringern und
dadurch das Fortschreiten des Klimawandels zu verlangsamen, ibernehmen
erneuerbare Energiequellen eine zentrale Rolle im kunftigen Energiesektor.
Demgegeniber stellt ein steigender Anteil erneuerbarer Energien grol3e Her-
ausforderungen an die Planung und den sicheren Betrieb von Energiesyste-
men: Einerseits unterliegen erneuerbare Energien oftmals einer schwankenden
Verfugbarkeit, wodurch Technologien zur Energiespeicherung im gleichen
Male an Bedeutung gewinnen, um auch in Zukunft eine Versorgungssicherheit
gewahrleisten zu kdnnen. Andererseits werden verschiedene Energiesektoren
zunehmend miteinander gekoppelt, da die Versorgungssicherheit auch von der
Maoglichkeit profitiert, Energie bei Bedarf zwischen verschiedenen Energiesek-
toren zu transferieren.

Um diese Entwicklungen angemessen voraussagen und realistische Auslegun-
gen fur kosteneffiziente kiinftige Energiesysteme ableiten zu kénnen, etablier-
ten sich raumlich und zeitlich aufgeloste Energiesystemmodelle als geeignete
Werkzeuge. Allerdings steigt mit der Komplexitat der Energiesysteme auch die
ihrer Modelle und die Beriicksichtigung erneuerbarer Energien mit schwanken-
der Verfugbarkeit erfordert hohe zeitliche Auflésungen innerhalb jener Modelle.
Dementsprechend sind die Modelle entweder hinsichtlich der GréRe des mo-
dellierten Energiesystems begrenzt, in ihrer Genauigkeit eingeschrankt oder
ihre mathematische Komplexitat derart groR3, dass sie fir bestehende Compu-
terressourcen schlicht unlésbar werden. Aus diesem Grund entwickelten sich
in der Vergangenheit Methoden, um die mathematische Komplexitat von Ener-
giesystemmodellen mit kleinstmdéglicher Beeintrachtigung der Modellgenauig-
keit zu reduzieren. Eine dieser Methoden ist die sogenannte Zeitreihenaggre-
gation, d.h. die Reduktion der Anzahl an durch das Energiesystemmodell be-
ricksichtigten Zeitschritten, um zeitliche Veranderungen im Betrieb des Ener-
giesystems abzubilden.

Die vorliegende Arbeit tragt zum Forschungsfeld der Zeitreihenaggregations-
methoden fur die Energiesystemmodellierung bei, indem sie vier fundamental
unterschiedliche Energiesysteme miteinander vergleicht und eine zweistufige
Zeitreihenaggregation verwendet, um die GréRe der betrachteten Energiesys-
temmodelle sowie ihre mathematische Komplexitat effizient zu verringern. Dar-
Uber hinaus werden im Rahmen der Arbeit neue Algorithmen entwickelt, um die
Genauigkeit der aggregierten Energiesystemmodelle deutlich zu erhéhen. Auf-
grund der Verschiedenheit der betrachteten Modelle analysiert die vorliegende
Arbeit im Gegensatz zu anderen Arbeiten in diesem Forschungsfeld die entwi-
ckelten Methoden nicht nur analytisch, sondern auch stochastisch mittels einer
groRen Zahl von verschiedenen Aggregationskonfigurationen. Die Ergebnisse
zeigen, dass die optimale Zeitreihenaggregation in erster Linie von zwei Fak-
toren abhéngt: Der Existenz von zeitschrittkoppelnden Nebenbedingungen, wie
sie beispielsweise durch die Beriicksichtigung von Speichertechnologien im
Modell Anwendung finden, sowie der Art der fiir das Energiesystemmodell be-
ricksichtigten Zeitreihen. Zudem offenbaren die Ergebnisse die konsequente
Uberlegenheit der in dieser Arbeit entwickelten Aggregationsmethoden gegen-
Uber jenen, die in der Literatur breite Anwendung finden.

AbschlieBend wurden alle im Rahmen dieser Arbeit entwickelte Methoden ge-
nerisch im Framework for Integrated Energy System Assessment (FINE) imple-
mentiert und bedingten eine fundamentale Neugestaltung und Erweiterung des
time series aggregation modules (tsam). Letzteres stellt eine python-basierte
Out-of-the-Box Ldsung fur Zeitreihenaggregationsmethoden dar und wird be-
reits von verschiedenen Energiesystemmodellierungsframeworks verwendet.
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Introductory Remark

Introductory Remark

This work is partly based on journal articles published by the author of this
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e Hoffmann, M., J. Priesmann, L. Nolting, A. Praktiknjo, L. Kotzur, and D.
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printed with permission. [2]
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1. Motivation

1. Motivation

1.1. Drivers of Model Complexity

“Due to the climate change caused by anthropogenic CO2 emis-
sions resulting from the burning of fossil fuels, a major turnaround
in the fields of energy supply and consumption is an increasing
necessity. Key aspects of addressing this challenge are the inte-
gration of renewable energy sources into existing energy systems,
and a closer coupling of energy forms and sectors [7].

The evolution of the energy sector has been accompanied by a
consistent effort to model, predict, and plan its development. Early
attempts to forecast future energy demands can be traced back to
the 1950s and constituted simple, assumption-based scenarios [8].
Another theoretical foundation for modern energy system models
is the principle of peak-load-pricing first described by Boiteux in
1949 [9] (English translation in 1960 [10]) and Steiner in 1957 [11].
This approach distinguishes between capacity and operation costs
of facilities producing non-storable goods. Thus, it applies to many
simple energy systems with a single good (commodity), e.g., elec-
tricity, which has led to the development of approaches to solve
simple capacity expansion planning problems with the annual load
duration curve as shown by Sherali et al. [12]. Three factors are of
particular significance as key drivers for the early progress of en-
ergy system modelling:

e The need for security of supply to be provided for the grow-
ing demand by governmental quasi-monopolistic institutions
through the 1970s, as well as the building of a reliable con-
nection between a more competitive energy sector and later
public interest [13, 14].

e The progress of computational resources that enabled more
complex models [15].

e The integration of non-dispatchable technologies, such as
most of the renewable energy sources and their impact on
energy pricing; an effect that has constantly gained im-
portance and which was first described in 1982 [16].

Ever since the first energy system models were developed during
the 1970s and 1980s [15, 17], which were based on optimizations
rather than just simulations, two major options arose for their de-
velopers, namely whether to focus on economic mechanisms,
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1.1. Drivers of Model Complexity

sometimes described as a top-down approach, or on the technical
dimension, usually known as a bottom-up one [18, 19]. Amongst
the bottom-up frameworks this thesis focuses on, a vast number of
approaches exist for modeling the different dimensions of energy
systems, including methodologies such as optimizations and sim-
ulations [15, 18, 19]. With respect to the scope of energy system
models, two fundamental dimensions can be delineated: A spatio-
temporal and a techno-economic one. The spatiotemporal dimen-
sion comprises the setting of input data that a model is intended to
incorporate. The spatial sub-dimension is focused on the number
of regions and their connections to each other, as energy systems
on a national or even larger scale usually face the challenge of
taking energy transmission between different regions into account.
The temporal sub-dimension is divided into two aspects, namely
temporal resolution, often referred to as time steps, and the overall
time horizon [15], which also concerns questions of storage mod-
eling [20-26] as well as the linking of dynamic processes [27-29]
and investment dynamics [30, 31]. In contrast, the techno-eco-
nomic dimension deals with the question as to how the compo-
nents are represented in the model and whether their design
and/or operation are optimized or if their operational behavior is
simply simulated, how they are mathematically represented and if
the impact of supply and demand on energy prices is dynamically
modeled or not [19]. Each of the dimensions listed above drives
the overall complexity of energy system models, while the spatio-
temporal resolution also affects the techno-economical one di-
rectly, e.g., the temporal resolution also limits the (technical) oper-
ational exactness of components in the energy system.

Figure 1.1 illustrates the classification into top-down and bottom-
up models [19, 27, 32-34], top-down model types [35, 36] and bot-
tom-up model dimensions [19].




1. Motivation

Top-Down

General System

Input-Output Econometric Equilibrium Dynamic

Economic and
Ecological Objectives

Spatio- Techno-
Temporal Economic

Time Steps Unit Charac- Cost
and Horizon teristics Functions

Regions

Bottom-Up

Figure 1.1. Classification of energy system models, the sub-dimensions of
bottom-up models and the scope of the thesis (taken from Hoffmann et al. [1])
1.2. Motivation and Scope of the Thesis
Although Moore’s law held true for approximately 40 years [37, 38]
and there have been significant speed-ups of the branch-and-
bound algorithms used for solving big mixed integer linear pro-
grams (MILPs) such as those used in energy system optimization
models [39], a decelerating increase of transistor density could be
observed in recent years [40]. On the other hand, liberalization,
decentralization and an increasing volatility in energy generation
[41] are leading to more complex applications for energy system
models. Therefore, the recent number of publications dealing with
aggregation methods in energy system models illustrates the fact
that many application cases are too complex to be overcome solely
by computational power and mathematically equivalent transfor-
mations.

The temporal sub-dimension in energy system models is crucial for
the implementation of storages and the description of system dy-
namics, which is especially important for energy system models
considering a high share of intermittent renewable energy sources
[42-47]. This applies for both single-node and multi-node energy
system models, and the group of aggregation methods employed
to tackle this issue is broad and diverse. Hence, this work ad-
dresses the issue of systematically categorizing the methods and
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1.2. Motivation and Scope of the Thesis

their assumptions, as well as recent trends and the general short-
comings in the development of temporal aggregation methods.
Based on this overview, this new computationally efficient temporal
aggregation approaches are developed by combining, modifying
and extending existing methods to tackle the presented shortcom-
ings. [...]

As the input time series for constrained bottom-up energy system
models are often not only auto-correlated, i.e. to some extent pe-
riodic, but also cross-correlated, an aggregation based on time se-
ries can be applied in multiple ways. This work is exclusively fo-
cusing on the aggregation of time series based on their auto-cor-
relation, i.e. the reduction of the number of time steps, e.g., by
representing a whole year of data by a small number of typical
days.” (Hoffmann et al. [1]) This is represented by the gray arrow
in Figure 1.2 and will be defined as time series aggregation in the
narrow sense. As shown, bottom-up energy system models can be
interpreted as network graphs with a time-discrete operation
schedule. Accordingly, each time step can be interpreted as a layer
of the respective graph. Therefore, a reduction of the number of
time steps reduces the number of graph layers and ultimately the
number of constraints and variables considered in these graphs.

Bottom-Up Energy System Models

Regions and Technologies

Time Series Aggregation

)
=0 t=t, =T ITI=ITI
Time Steps

Figure 1.2. Time series aggregation defined as the reduction of the number of
time steps considered in bottom-up energy system models
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1.3. Structure of the Thesis

In order to systematically assess the potential of temporal aggre-
gation methods and contribute to their accuracy and reliability, this
work aims at developing new aggregation techniques and compar-
ing them to existing ones by applying them on substantially differ-
ent energy system models.

The remainder of this work is structured as depicted in Figure 1.3.
In Chapter 2, the current state of temporal aggregation methods
for energy system modeling is reviewed and promising trends are
identified.

In Chapter 3, the most promising temporal aggregation techniques
are isolated and systematically extended based on well-known
shortcomings of the existing methods. Further, the methods were
implemented in a freely combinable way, which theoretically allows
for creating several dozens of user-specified methods.

Chapter 4 consists of four main subchapters. Section 4.1 intro-
duces the models used for validating the superiority of the methods
developed in Chapter 3. In order to minimize the impact of specific
model structures on the evaluation of the applied aggregation tech-
niques, the models are intentionally very different with respect to
modeling scope and application case.

In Section 4.2, the methods developed in Chapter 3 are cross-com-
bined and applied to the models introduced in Section 4.1 resulting
in a total number of 1836 different model runs.

Section 4.3 and Section 4.4 focus on additional research questions
and options offered by temporal aggregation techniques that are
not completely covered by the sensitivity analysis in Section 4.2.
Therefore, Section 4.3 addresses the question of the impact of the
period length chosen for aggregation depending on certain model
features. Additionally, Section 4.4 assesses the potential of tem-
poral aggregation techniques for determining upper and lower
bounds to the fully resolved energy system model in order to quan-
tify the error made by temporal aggregation if the reference model
is not solvable due to its size.

The results of Chapter 4 are critically discussed in Section 4.5 and
the work as well as its main conclusions are summarized in Chap-
ter 5.
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1.3. Structure of the Thesis

All developments are moreover implemented in the python-based
time series aggregation module (tsam) [48] and can be directly
applied in the Framework for Integrated Energy System Assess-
ment (FINE).

2. State of the Art 4. Validation and Results
Comparison of 130 4.1. Model Overview
methodical publications to

N N h Island Building European Dispatch
time series aggregation

3. Methodology

Segments Typical Days
N\

3 Models
X

153 Aggregation
Configurations

Normed Objective [-]

. Typical Periods and 4 Representation
Segmentation Methods

. Representation
Methods

. Error and Complexity
Indicators :

. Error Bounding ¥ < aREEN !!!“llnl

- nn R

Figure 1.3. Structure of the thesis




2. State of the Art

2. State of the Art

2.1. Methodology and Structure of Chapter 2

The following chapter focuses on the review of “temporal aggrega-
tion methods in bottom-up energy system optimization models that
include capacity expansion planning, as well as unit commitment
and have constantly emerged and evolved since the late 1970s
and 1980s [15, 17]. Among the early energy system models, one
group focuses on long-term system planning and has usually only
one time step per year such as LEAP [49], EFOM [50] and BESOM
[51], which are not subject to aggregation techniques and thus ne-
glected in the following. The temporal dimension of the other major
group of early bottom-up energy system models such as TIMES
[52-55], its predecessor MARKAL [56] MESSAGE [18, 57],
IKARUS [15] and PERSEUS [58] is based on time slice formula-
tions (in the case of PERSEUS called “time slots”), which are ex-
plained in more detail in Section 2.2.2.1. Although the long-term
planning models with only one time step per year were consecu-
tively combined with models with a higher temporal resolution as it
is the case for TIMES [52-55] as a combination of MARKAL [56]
and EFOM [50], the time slice approach, which is based on the
modeler’s experience only, remained unchanged for decades. With
the first approaches to classify and group demand curves using
unsupervised learning techniques which could be traced back to
1999 [59], new techniques for defining the temporal dimension of
energy system models arose. To the best of the author’s
knowledge, this was first done manually in 2008 [60] and by using
a standard clustering algorithm in 2011 [61]. In order to investigate
the rapid and manifold development of complex temporal aggrega-
tion methods based on feature-based grouping in detail, the start
year for the literature review was set to 1999 and the literature re-
search was stopped in July 2019. To avoid a bias towards the new
methods based on unsupervised learning techniques, publications
within the relevant time interval, which are based on long-existing
and constantly evolving frameworks such as TIMES, are also con-
sidered.

2.1.1. Methodology of the Literature Research

With respect to a systematic and keyword-based search for tem-
poral aggregation methods, the major challenge was the incon-
sistent naming of the applied methods. Furthermore, the majority
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2.1. Methodology and Structure of Chapter 2

of publications did not explicitly address the comparison of the dif-
ferent aggregation methods. Instead, the temporal aggregation
methods were often simply applied. Therefore, terms such as time
series aggregation, typical days, complexity reduction or cluster-
ing, which are crucial for identifying temporal aggregation meth-
ods, only appear in a minority of publications as keywords. More-
over, a number of terms was found to be inconsistently or redun-
dantly used by different research communities. Examples for this
are the terms “representative days” and “typical days”. Therefore,
a heuristic approach was used as starting point that focused on a
search for methods based on citations of earlier works.

Simultaneously, terms that appeared in multiple publications were
considered to be keywords and, to overcome the problem of co-
citation clusters [62] with own terms, these newly defined keywords
were used for an additional search on the internet. The keywords
used for the literature research that arose from this analysis are
listed in Appendix A along with their definitions and terms that are
synonymously used in the literature.

Building upon the analyzed literature and the basic features of a
time series aggregation process introduced by Nahmmacher et al.
[63],Kotzur et al. [48] and Schitz et al. [64], the table of methods
in Appendix B was derived for categorizing and comparing the dif-
ferent methods. Moreover, the methods were also investigated
based on their capacity to link all time steps across the original
time horizon, which enables seasonal storage, and their premise
to approximate the duration curve or the unsorted time series. This
ultimately leads to the structure of the following chapters.

2.1.2. Structure of the Review

From the categorization in Figure 2.1, the methods presented in
Section 2.2 are derived as the basic aggregation methods, as well
as Miscellaneous Methods that cannot be clearly categorized. As
aggregation methods commonly suffer from certain drawbacks, a
number of methods exist to preserve additional information of the
original input time series, which are presented in Section 2.3.
Along with both, Section 2.2 and 2.3, the individual trends and pos-
sible reasons for them are discussed in the Sections 2.2.5 and
2.3.3. The major results of the review are concluded in Section 2.4.
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Figure 2.1 illustrates the structure of the following sections by high-
lighting comparable ideas with the same colors and steps to be
taken or decisions to be made for applying an aggregation method
with blue arrows. The grey backgrounds distinguish the basic ag-
gregation process presented in Section 2.2 from the preservation
of additional information of the original time series presented in
Section 2.3.

Time Series Aggregation

\segmenhtion
\ Downsampling l M""f;,'}'if,:—'ms
i Resolution o
. Variation
— Random
Samplingand

\ ellaneous

Time Series - Time-Based
Aggregation \\ Merging
Typical s l

Periods

\ Rescaling I Coupling Typical

S —— = Feature-Based
Merging ]
\ilustering) _
Algorithm Modified
Metrics and Feature-Based
\ Representation \\Merging
S—— — B

Qﬂalizaﬁun

Preserving Additional Information -

Figure 2.1. Mind map of the methods presented in the review, their methodo-
logical connection (marked by same colors) and decisions to be made or
steps to be taken when applying time series aggregation (taken from Hoff-
mann et al. [1])

Along with the introduction of a new aggregation method, the im-
pact of this method on potential input data is visualized. For this, a
time series for photovoltaic capacity factors is used, which consists
of 8760 hourly time steps for one year, and is illustrated in Figure
2.2.” (Hoffmann et al. [1]) Furthermore, the aggregation-induced
deviation from the original time series is quantified using the root-
mean-square error (RMSE), which is explained in detail in Section

3.3.1.
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Figure 2.2. One year of hourly resolved photovoltaic capacity factors simu-
lated with PV-Lib [65] (RMSE=0) (taken from Hoffmann et al. [1])
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2.2. Time Series Aggregation

2.2. Time Series Aggregation

“The following section deals with the general concept of time series
aggregation. For the mathematical examinations of the following
section, the nomenclature as defined in the List of Symbols is
used.

The input data D usually consists of one time series for each at-
tribute, i.e., D = A x S. The set of attributes A describes all types of
parameters that are known beforehand for the energy system,
such as the capacity factors of certain technologies at certain lo-
cations or demands for heat and electricity to be satisfied, which is
exemplary depicted in Figure 2.3.

Cost Time Series A
System Boundaries

— " Gas — Heat — Hydrogen

N Lonc Import —Gas LOHC
G Tank AN — Electricity —Heat (>300°C)
: =@ _
Heat

Boller [
Storage - -
(Delty IE \‘ A\ WT] Demand Time Series
genation N Dt::::u:l
. ».@.
rsoc Electric Heat
V\Ier pump
= Demand Time Series
"“’E"" Electricity
Demand
Pressure B:lltery
Vessels '«
|/ - ik

Photovoltaic Wind I Electricity

Import :
Capacity Factor Time Series Cost Time Series

Figure 2.3. Set of time series entering the energy system boundaries and de-
fining constraints that the energy system model must satisfy

The set of time steps describes the shape of the time series itself,
i.e., sets of discrete values that represent finite time intervals, e.g.,
8760 time steps of hourly data to describe a year. For all methods
presented in the following, it is crucial that the time series of all
attributes have identical lengths and temporal resolution. The pos-
sible shape of this highly resolved input data is shown Figure 2.4.

Raw Input Data
>

Period

Figure 2.4. Exemplary set of time series (adapted from Hoffmann et al. [1])
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One approach for aggregating the input time series is to merge
multiple time series of attributes with a similar pattern. However,
this can only be performed for attributes describing similar units
(e.q., the capacity factors of similar wind turbines) or similar cus-
tomer profiles (i.e., the electricity demand profiles of residential
buildings). As this approach is often chosen to merge spatially dis-
tributed but similar technologies, it is not considered as time series
aggregation in the narrow sense, but as spatial or technological
aggregation, as the number of time steps is not reduced in these
cases. This is illustrated in the right field in Figure 2.5 and some
examples from the literature are given in Appendix C.

]AMAMMMAMN\ANWU\AAAAMMAMAAMMM t A‘”Me

T t Customer and
Period Unit Partitioning

Raw Input Data
>

Figure 2.5. Reduction of the number of time series using customer and unit
partitioning (adapted from Hoffmann et al. [1])
Time series aggregation, as it is understood in this work, is the
aggregation of redundant information within each time series, i.e.,
in the case of discrete time steps, the reduction of the overall num-
ber of time steps. This can be done in several ways. One way of
reducing the number of time steps, as is shown in the lower field
of Figure 2.6, is the merging of adjacent time steps. This can either
be done in a regular manner, e.g., every two time steps are repre-
sented by one larger time step (downsampling) or in an irregular
manner according to, e.g., the gradients of the time series (seg-
mentation). A third possible approach is to individually variate the
temporal resolution for each attribute, i.e., using multiple time
grids, which could also be done in an irregular manner, as pointed
out by Renaldi et al. [66]. These three methods directly decrease
the temporal resolution and they will be presented in Section 2.2.1.

12
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Figure 2.6. Reduction of the number of time steps using resolution variation
(adapted from Hoffmann et al. [1])

Another approach for time series aggregation is based on the find-
ing that many time series exhibit a periodic pattern, i.e., time series
for solar irradiance have a strong daily pattern. In the case of per-
fect periodicity, a time series could thus be represented by one
period and its cardinality without the loss of any information. Based
on this idea, time series are often divided into periods as shown in
the middle of Figure 2.7. As the periods are usually not constant
throughout a year (e.g., the solar irradiance is higher in the sum-
mer than in the winter), the periods can either be merged based on
their position in the calendar (time slices and averaging) or based
on their similarity (clustering), as shown at the bottom of Figure
2.7. These methods will be described in Section 2.2.2. Moreover,
information about the order in which the periods appear in the orig-
inal time series must be preserved to be able to model temporal
linkages such as the states of charge of storage technologies,
which will be referred to as “intertemporal constraints” in the fol-
lowing. This is discussed in Section 2.2.2.3.
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Figure 2.7. Reduction of the number of time steps using typical periods
(adapted from Hoffmann et al. [1])

The temporal resolution can also be reduced within the periods.
This leads to Table 2.1, which illustrates the possible combinations
of the methods presented above. Here, each method from column
one could be combined with each method from column two. The
methods in the table dealing with Resolution Variation are de-
scribed in Sections 2.2.1.1 and 2.2.1.2. The method of using Mul-
tiple Time Grids explained in Section 2.2.1.3 is neglected in the
table due to its seldom usage in energy system models. The meth-
ods concerning Typical Periods are described in the Sections
2.2.2.1 and 2.2.2.2. Moreover, a small number of methods based
on Random Sampling and Miscellaneous Methods exist, which
cannot be properly categorized in Table 2.1. However, they will be
described in Sections 2.2.3 and 2.2.4. In this way, Table 2.1 mir-
rors the structure of the Section 2.2.

Table 2.1. Overview over frequently used methods and their possible combi-
nations (taken from Hoffmann et al. [1])

_ Resolution Variation Typical Periods
Downsampling Time Slices and Averaging
Feature-Based Segmentation Clustering




2.2. Time Series Aggregation

In the following, methods that merge time steps or periods in a
regular manner, i.e., based on their position in the time series only,
will be referred to as time-based methods; whereas aggregation
based on the time steps’ and periods’ values will be called feature-
based. In this context, features refer not only to statistical features
as defined by Nanopoulos et al. [67], but in a broader sense to
information inherent to the time series, regardless of whether the
values or the extreme values of the time series themselves or their
statistical moments are used [68].

2.2.1. Resolution Variation
The simplest and most intui-
tive method for reducing the
data volume of time series
for energy system models is
the variation of the temporal
resolution. Here, three differ-
ent procedures can be dis-
tinguished.

Resolution Variation

N\

v

2.2.1.1. Downsampling

Downsampling is a straightforward method for reducing the tem-
poral resolution by representing a number of consecutive discrete
time steps by only one (longer) time step, e.g., a time series for
one year of hourly data is sampled down to a time series consisting
of 6 h time steps. Thus, the number of time steps that must be
considered in the optimization is reduced to one sixth, as demon-
strated by Pfenninger et al. [43]. As the averaging of consecutive
time steps leads to an underestimation time series’ variance, ca-
pacities for renewable energy sources tend to be underestimated
because their intermittency is especially weakly represented [43].
Figure 2.8 shows the impact of downsampling the PV profile from
hourly resolution to 6 h time steps, resulting in one sixth of the
number of time steps. In comparison to the original time series, the
underestimation of extreme values is remarkable. This phenome-
non also holds true for sub-hourly time steps [44, 69, 70] and, for
instance, in the case of an energy system model containing a PV
cell and a battery for a residential building, this not only has an
impact on the built capacities, but also on the self-consumption
rate [44, 70]. For wind time series, the impact is comparable [69].
As highlighted by Table 2.1, downsampling can also be applied to
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typical periods. To the best of the author’'s knowledge, this was
initially evaluated by Yokoyama et al. [71] with the result that it
could be a crucial step to resolve highly complex problems at least
close to optimality. The general tendency of downsampling to un-
derestimate the objective function was shown in a subsequent
work by Yokoyama et al. [72] and the fact that this is not neces-
sarily the case when combined with other methods in a third pub-
lication [73]. Other works that deal with combined approaches will
be discussed in Section 2.2.2.1.3.
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Figure 2.8. The time series of photovoltaic capacity factors downsampled to
1460 6h time steps (RMSE=0.1295) (taken from Hoffmann et al. [1])

Hour

2.2.1.2. Segmentation

In contrast to downsampling, segmentation is a feature-based
method of decreasing the temporal resolution of time series with
arbitrary time step lengths. To the best of our knowledge, Mavrotas
et al. [60] were the first to present an algorithm for segmenting time
series to coarser time steps based on ordering the gradients be-
tween time steps and merging the smallest ones. Fazlollahi et al.
[74] then introduced a segmentation algorithm based on k-means
clustering in which extreme time steps were added in a second
step. In both works, the segmentation methods were applied to
typical periods, which will be explained in the following sections.
Bungener et al. [75] used evolutionary algorithms to iteratively
merge the heat profiles of different units in an industrial cluster and
evaluated the different solutions obtained by the algorithm with the
preserved variance of the time series and the sum of zero-flow rate
time steps, which indicated that a unit was not active. Deml et al.
[76] used a similar, but not feature-based approach as Mavrotas et
al. and Fazlollahi et al. [60, 74] for the optimization of a dispatch
model. In this approach, the temporal resolution of the economic
dispatch model was more reduced the further time steps lay in the
future, following a discretized exponential function. Moreover, they
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compared the results of this approach to those of a perfect fore-
sight approach for the fully resolved time horizon and a model-pre-
dictive control and proved the superiority of the approach, as it
preserved the chronology of time steps. This was also pointed out
in comparison to a typical periods approach by Pineda et al. [77],
who used the centroid-based hierarchical Ward’s algorithm [78]
with the side constraint to only merge adjacent time steps. Bahl et
al. [79], meanwhile, introduced a similar algorithm as Fazlollahi et
al. [74] inspired by Lloyd’s algorithm and the partitioning around
medoids algorithm [80, 81] with multiple initializations. This ap-
proach was also utilized in succeeding publications [82, 83]. In
contrast to the approach of Bahl et al. [79], Stein et al. [84] did not
use a hierarchical approach, but formulated a mixed-integer linear
program, in which not only extreme periods could be excluded be-
forehand, but also the grouping of too many adjacent time steps
with a relatively small but monotone gradient could be avoided.
The objective function relied on the minimization of the gradient
error, similar to the method of Mavrotas et al. [60]. Recently, Sav-
vidis et al. [85] investigated the effect of increasing the temporal
resolution at times of the zero-crossing effect, i.e., at times when
the energy system switches from the filling of storage components
to withdrawing and vice versa. This was compared to the opposite
approach, which increased resolution at times without zero cross-
ing. They also arrived at the conclusion that the use of irregular
time steps is effective for decreasing the computational load with-
out losing substantial information. Figure 2.9 shows advantages of
the hierarchical method proposed by Pineda et al. [77] compared
to the simple downsampling in Figure 2.8. The inter-daily variations
of the PV profile are much more accurately preserved choosing
1460 irregular time steps compared to simple downsampling with
the same number of time steps shown in Figure 2.8, which is also
mirrored by the smaller root-mean-square error.
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Figure 2.9. The time series of photovoltaic capacity factors segmented to
1460 time intervals using hierarchical merging of adjacent time steps based
on centroids as proposed by Pineda et al. [77] (RMSE=0.0388) (taken from

Hoffmann et al. [1])

2.2.1.3. Multiple Time Grids

The idea of using multiple time grids takes into account that differ-
ent components that link different time steps to each other, such
as storage systems, have different time scales on which they op-
erate [20, 21, 86]. For instance, batteries often exhibit daily storage
behavior, whereas hydrogen technologies [20, 21] or some thermal
storage units [86, 87] have seasonal behavior, unless electrolyzers
are used to take up or shed loads. In this case, the underlying stor-
age cycle will remain seasonal, whereas the electrolyzer behaviour
may be extremely dynamic. Still, seasonal storage is expected to
be accurately modeled with a smaller number of coarser time
steps. Renaldi et al. [66] applied this principle to a solar district
heating model consisting of a solar thermal collector, a backup
heat boiler and a long- and a short-term thermal storage system.
They achieved the optimal tradeoff between the computational
load and accuracy for modeling the long-term thermal storage with
6 h time steps and the remaining components with hourly time
steps. It is important to highlight that the linking of the different time
grids was achieved by applying the operational state of the long-
term storage to each time step of the other components if they lay
within the larger time steps of the long-term storage. However, in-
creasing the step size even further led to an increase in calculation
time, as the operational flexibility of the long-term storage became
too stiff and the benefit from reducing the number of variables of
the long-term storage decreased. Thus, this method requires
knowledge about the characteristics of each technology before-
hand.
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2.2.2. Typical Periods

The aggregation of time se-
ries to typical periods is
based on the idea that en-
ergy systems behave simi-
larly under similar external
conditions, e.g., similar en- >
ergy demands and capacity

factors of renewable energy sources [88]. Typical periods can con-
sist of single time steps, which are called “system states” [25, 88-
91] “snapshots” [68, 92] or “external operation conditions” [93] in
the literature or periods containing more than one time step, e.g.,
“typical days” or “representative days” that were used by the ma-
jority of authors. In the context of control engineering, the term
“system states” is especially misleading, as the state of a system
not only depends on external parameters such as capacity factors
and demands to be fulfilled, but also on storage levels and other
endogenous state variables. Therefore, the term “system state” in
discrete energy system models is only equivalent to time steps if
the system is not temporally coupled, i.e., neither state variables,
nor intertemporal constraints linking them with each other exist.
The following will refer to “typical time steps” if the typical period
consists of only one time step. If not stated differently in the follow-
ing, the authors used typical days. However, longer periods such
as typical (also called representative) weeks ([48, 94-96] (“typical
weeks”), [97-100] (“representative weeks”)) also exist. This work
only makes further use of the word “representative” in the context
of clustering, as the representative of each cluster [101] is then
interpreted as the new typical period. Analogously to the previous
section, a number of time-based and feature-based methods exist
that will be explained in the following.

Typical Periods

2.2.2.1. Time-Based Merging

Time-based approaches of selecting typical periods rely on the
modeler’s knowledge of the model. This means that those charac-
teristics are included that are expected to have an impact on the
overall design and operation of the energy system model. As will
be shown in the following, this was most frequently done for typical
days, although similar approaches for typical weeks [94] or typical
hours (i.e., typical time steps) [102] exist. As pointed out by Schiitz
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et al. [64], the time-based selection of typical periods can be di-
vided into month-based and season-based methods, i.e., selecting
a number of typical periods from either each month or from each
season. However, we divide the time-based methods in consecu-
tive typical periods (averaging) and non-consecutive typical peri-
ods with a regular pattern (time slices).

2.2.2.1.1. Averaging
The method that is referred to as averaging in the following, as per

Kotzur et al. [48], focuses on aggregating consecutive periods into
one period. To the best of our knowledge, this idea was first intro-
duced by Marton et al. [103], who also introduced a clustering al-
gorithm that indicated whether a period of consecutive typical pe-
riods of Ontario’s electricity demand had ended or not. In this way,
the method was capable of preserving information about the order
of typical days. However, it was not applied to a specific energy
system model. In contrast to that method, one typical day for each
month at hourly resolution, was used by Mavrotas et al. [60], Lo-
zano et al. [104], Schitz et al. [105] and Harb et al. [106] resulting
in 288 time steps. Although thermal storage systems have been
considered in the literature [104-106], they were constrained to the
same state of charge at the beginning and end of each day. The
same holds true in the work of Kotzur et al. [48]. Here, thermal
storage, batteries and hydrogen storage were considered and the
evaluation was repeated for different numbers of averaged days.
Buoro et al. [94] used one typical week per month to simulate op-
eration cycles on a longer time scale. Kools et al. [107], in turn,
clustered eight consecutive weeks in each season to one typical
day with 10 minute resolution, which was then further reduced to
1h time steps. The same was done by Harb et al. [106], who com-
pared twelve typical days of hourly resolution to time series with
10 min. time steps and time series reduced to 1h time steps. This
illustrates that both, downsampling and averaging, can be com-
bined. Voll et al. [108] aggregated the energy profiles even further
with only one time step per month. To account for the significant
underestimation of peak loads, the winter and summer peak loads
were included as additional time steps. Figure 2.10 illustrates the
impact of representing the original series by twelve monthly aver-
aged consecutive typical days, i.e. 288 time steps instead of 8760
and the corresponding root-mean-square error.
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Figure 2.10. The time series of photovoltaic capacity factors represented by

twelve monthly averaged periods as used in other studies [60, 104, 105] and

reproduced by Kotzur et al. [48] using the python package tsam [48] (i.e., 288
different time steps) (RMSE=0.1126) (taken from Hoffmann et al. [1])

2.2.2.1.2. Time Slices

To the best of our knowledge, the idea of time slices was first in-
troduced by the MESSAGE model [15, 57] and the expression was
reused for other models, such as THEA [109], LEAP [110],
0SeMOSYS [111], Syn-E-Sys [112] and TIMES [54, 55]. The basic
idea is comparable to that of averaging, but not based on aggre-
gating consecutive periods. Instead, time slices can be interpreted
as the general case of time-based grouping of periods. Given the
fact that electricity demand in particular not only depends on the
season, but also on the weekday, numerous publications have
used the time slice method for differentiating between seasons and
amongst days. In the following, this approach is referred to as time
slicing, although not all of the cited publications explicitly refer to
the method thus. Instead, the method is sometimes simply called
“representative day”, “typical days”, “typical daily profiles”, “typical
segment”, “time slot” or “time band”. However, the term “time slice”
is used by the majority of authors. The most frequent distinction is
made between the four seasons or between summer, winter and
mid-season, but also other distinctions such as monthly, bi-
monthly, bi-weekly or others can be found. Within this macro dis-
tinction, a subordinate distinction between weekdays and weekend
days, weekdays, Saturdays and Sundays or Wednesdays, Satur-
days and Sundays can be found.” (Hoffmann et al. [1]) Table 2.2
depicts the configurations of time slices that can be found in the
literature.
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Table 2.2. Configurations of time slices used in the literature

Publication Referred to as Weekly

[109] ® %
[110]
[113]
[114] ® ®
[111]

[115] Time slices
[116]
[42]
[117]
[112]
[45]
(571
[72]
[118]
[119]
[118]
[120]
[71]
[121] ® x®
[122]
[123] ® ®
[60]
[124] x

[125] x x
[126] ® x®

[127] Typical days ®

[128] ®

[129] ®
[130] ®

[131] *®

Eg} Typical daily profiles *

[132] Segments ®
[58] Time slots x ®
[133] Time bands ®

Monthly, Bi-Monthly,
Weekly or Other
days and Sundays

Mid-Season
None/ Other

Weekend days
Weekdays, Satur-
days and Sundays
Wednesdays, Satur-

Four Seasons
Summer, Winter,
Weekdays and

x %
x
x

XX RXRXXXX
X %

x

Representative days

X XXX XXX
X XX XXX

x
x

%
x %

X %X X X

X %X X X

E 4

“In contrast to the normal averaging, each time slice does not fol-
low the previous one, but is repeated in a certain order a certain
number of times (e.g., five spring workdays are followed 13 times
by two weekend spring days before the summer periods follow).
This is especially important when seasonal storages are modeled
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[22, 23, 111], which will be explained in greater depth in Section
2.2.2.3. As a visual inspection of Figure 2.10 and Figure 2.11
shows, the time slice method relying on the distinction between
weekdays and seasons is not always superior to a monthly distinc-
tion. The reason for this is that some input data such as the PV
profile from the example have no weekly pattern and spacing the
typical periods equidistantly is the better choice in this case if no
other input time series (such as, e.g., electricity profiles) must be
taken into account. Thus, the choice of the aggregation method
should refer to the pattern of the time series considered especially
important for the energy system model. For instance, the differ-
ences between week- and weekend days is likely more important
to an electricity system based on fossil fuels and without storage
technologies, whereas an energy system based on a high share of
renewable energy sources is more affected by seasonality. Against
this background, the widespread application of time slices in tradi-
tional modeling frameworks such as TIMES can be explained by
the fact that they mainly focused on demand time series with a
strong weekly pattern and a small share of renewable energy
sources as well as the fact that the integration of time slices does
not require additional data processing.
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Figure 2.11. The time series of photovoltaic capacity factors represented by

twelve time slices (average Wednesday, Saturday and Sunday for each sea-

son) as used by Nicolosi et al. and Haydt et al. [109, 110] (i.e., 288 different
time steps) (RMSE=0.1509) (taken from Hoffmann et al. [1])

2.2.2.1.3. Combination of Period and Resolution Reduction
Like the simple averaging of consecutive time periods that can be

further sampled down, e.g., as done by Harb et al. [106], the typical
periods in the time slice method can also be further sampled down.
This can be done, for instance, by downsampling to 2h time slices
[126, 128, 132], 4h time slices [46] or a number of different time
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step sizes to investigate the downsampling impact [71-73]. More-
over, day and night cycles (two diurnal time slices) [42, 109, 115-
117], optionally including the peak hour of the day [42, 116, 117]
or other time slices of irregular length [45, 60, 111, 112, 122, 133,
134], were also used. Mavrotas et al. [60] also implemented an
algorithm for segmenting the chosen typical days to coarser time
slices based on ordering of the gradients between time steps and
merging the smallest ones.

The extreme case of both the downsampling method and averag-
ing/time slice method is the representation of the total time series
by its mean, which was performed by Merrick et al. [46]. As this
approach is unable to consider any dynamic effects, it only served
as a benchmark.

2.2.2.2. Feature-Based Merging

In contrast to representing time series with typical periods based
on a time-based method, typical periods can also be chosen based
on features. For instance, time steps or periods can be aggregated
based on the mutual similarity of their values. In this section, the
clustering procedure is explained both conceptually and mathe-
matically.

To the best of the author’s knowledge, one of the first and most
frequently cited works by Dominguez-Mufioz et al. [61] used this
approach to determine typical demand days for a CHP optimiza-
tion, i.e., an energy system optimization model with discrete time
steps, even though it was not applied to a concrete model in this
work. For this purpose, all time series are first normalized to en-
counter the problem of diverse attribute scales. Then, all time se-
ries are split into periods P, which are compared to each other by
transforming them for each value x of each attribute a at each time
step t within the period to a hyper-dimensional data point. Those
data points with low distances to each other are grouped into clus-
ters and represented by a (synthesized or existing) point consid-
ered a “typical” “representative” period. Additionally, a number of
clustering algorithms are not centroid-based, i.e., they do not pre-
serve the average value of the time series [64] which could, e.g.,
lead to a wrong assumption of the overall energy amount provided
by an energy system across a year. To overcome this problem,
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time series are commonly rescaled in an additional step. The meth-
ods for this are presented in Section 2.2.2.2.3. This means that
time series clustering includes five fundamental aspects:

¢ A normalization (and sometimes a dimensionality reduction)

e A distance metric

e A clustering algorithm

e A method to choose representatives [135]

e Arescaling step in the case of non-centroid based clustering
algorithms and subsequent backscaling

As the clustered data is usually relatively sparse, while the number
of dimensions increases with the number of attributes, the curse of
dimensionality may lead to unintuitive results incorporating dis-
tance metrics [136], such as the Euclidean distance [135, 137-
139]. Therefore, a dimensionality reduction might be used in ad-
vance [140-142], but is not further investigated in this work for the
sake of brevity. In the following, each of the bullet points named
above will be explained with respect to their application in time se-
ries aggregation for energy system models. Besides, the distance
metric, clustering method and the choice of representatives will be
shortly presented in Section 2.2.2.2.2, because the number of clus-
tering methods used for energy system models is small. Figure
2.12 shows the mandatory steps for time series clustering used for
energy system models, which are presented in the following. The
grey boxes contain optional methods for maintaining additional in-
formation that is important for the system design and which are
presented in Section 2.3. Figure 2.13 shows the time series of pho-
tovoltaic capacity factors represented by 12 typical days (typical
days) using k-means clustering and the python package tsam [48].
If not centroid or if

extreme feature
added

Preprocessing Clustering Extreme features Backscaling

+ Normalization « Partitional + Adding extreme « Fit mean of input

« Eventually + Agglomerative periods time series
Dimensionality « As optimization * Including extreme « Fit mean of each
Reduction problem features cluster

. Mandatory Information about
Optional the period order

Figure 2.12. Steps for clustering time series for energy system models
(adapted from Hoffmann et al. [1])
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Figure 2.13. The time series of photovoltaic capacity factors represented by
twelve typical days (typical days) using k-means clustering and the python
package tsam [48] (i.e., 288 different time steps) (RMSE=0.0552) (taken from
Hoffmann et al. [1])

2.2.2.2.1. Preprocessing and Normalization
Clustering normally starts with preprocessing the time series,

which includes a normalization step, an optional dimensionality re-
duction and an alignment step. Because of the diversity of scales
and units amongst different attributes, they must be normalized
before applying clustering algorithms to them. Otherwise, distance
measures used in the clustering algorithm would focus on large-
scaled attributes and other attributes would not be properly repre-
sented by the cluster centers. For example, capacity factors are
defined as having values of between zero and one, whereas elec-
tricity demands can easily reach multiple gigawatts. Although a
vast number of clustering algorithms exist, the min-max normaliza-
tion is used in the majority of publications [4, 20, 24, 45, 48, 64,
74, 97, 98, 140, 143-145]. For the time series of an attribute a €
A={1,..,N,} consisting of s € S = {1, ..., N} time steps, the normal-
ization of a value of a at time step s is calculated as follows:

Xas — Min(x, .
Xas = max(x}) — m(in()xg) @1
In cases in which the natural lower limit is zero, such as time series
for electricity demands, this is sometimes [43, 63, 91, 93, 99, 146-
148] reduced to:

Xos (2.2)

~ max(x})

Xa,S

Another normalization that can be found in literature [47, 102, 149-
151] is the z-normalization that directly accounts for the standard
deviation, rather than for the maximum and minimum outliers,
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which implies a normal distribution with different spreads amongst
different attributes:

X =% (2.3)
T o)

In the Appendix D, normalization approaches are exemplarily illus-
trated for a hypothetical short time series.

A time series can further be divided into a set of periods P and a
set of time steps within each period T, i.e., S =P x T. The periods
are clustered into non-overlapping subsets Pc, which are then rep-
resented by a representative period, respectively. A representative
period consists of at least one discrete time step and, depending
on the number and duration of time steps, it is often referred to as
a typical hour, snapshot or system state, typical or representative
day or typical week. The data D = A X P X T can thus be rearranged
so that each period is represented by a row vector in which all inter-
period time steps of all attributes are concatenated, i.e.:

X111 7 XL1N, X1,.z,1 Xl,N.a,Nt aeA={1..,N,} 24
Darr = : - H : " : with p eEP= {1, ey Np}( . )

X W X X . X
Np,1,1 Np LNy  XNp21 Np.Na,Nt teT={1,..,Ng

The row vectors of D, are now grouped with respect to their sim-
ilarity. Finally yet importantly, it must be highlighted that the inner-
period time step values can also be sorted in descending order,
which means that in this case the duration curves of the periods
are clustered as done in other studies [4, 24, 152, 153]. This can
reduce the averaging effect of clustering time series without peri-
odic patterns such as wind time series.

2.2.2.2.2. Algorithms, Distance Metrics, Representation
Although a vast number of different clustering algorithms exist

[101, 154] and have been used for time series clustering in general
[135], only a relatively small number of regular clustering algo-
rithms has been used for clustering input data for energy system
optimization problems, which will be presented in the following.
Apart from that, a number of modified clustering methods have
been implemented in order to account for certain properties of the
time series, which is presented in Appendix F. The goal of all clus-
tering methods is to meaningfully group data based on their simi-
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larity, which means minimizing the intra-cluster difference (homo-
geneity) or maximizing the inter-cluster difference (separability) or
a combination of the two [155]. However, this depends on the
question of how the differences are defined.” (Hoffmann et al. [1])
The clustering algorithms used for temporal aggregation can be
separated into partitional, deterministic hierarchical algorithms and
time-shift tolerant clustering algorithms. The latter are sparsely ap-
plied and capable of comparing values of time series that are tem-
porally shifted against each other. Table 2.3 lists the number of
publications that have applied the respective algorithm. A detailed
description of the algorithms is given in Appendix D.

Table 2.3. Clustering algorithms applied in the literature

Algorithm Number of Publications

K-Means 36

K-Medoids Partitional 20

K-Medians

K-Centers 2

Hierarchical Agglomerative 14 2 Centroids
12 Medoids

K-Shape Time-Shift 2

Dynamic Time Warping Tolerant 3

2.2.2.2.3. Rescaling
“Due to the fact that not all of the methods rely on the representa-

tion of each cluster by its centroid (i.e., the mean in each dimen-
sion), these typical periods do not meet the overall average value
when weighted by their number of appearances and must be re-
scaled. This also holds true for the consideration of extreme peri-
ods, which will be explained in the following sections. Accordingly,
the following section will be referred to if rescaling is considered in
the implementation of extreme periods. To the best of our
knowledge, the first work that used clustering not based on cen-
troids was that of Dominguez-Mufioz et al. [61], in which the exact
k-medoids approach was chosen as per Vinod et al. [156]. Here,
each attribute (time series) of each typical day was rescaled to the
respective cluster’'s mean, i.e.:

N
ZpECk Zt=t1 Xp,a,t

k,a,t N.
|Cil iy Ciar

(2.5)

* p—
Crat = C vV kat
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Furthermore, Dominguez-Mufioz et al. [61] discarded the extreme
values that were manually added from the rescaling procedure. A
similar procedure, which was applied for each time series, but not
for each typical day, was introduced by Nahmmacher et al. [63],
who used hierarchical clustering based on Ward’s algorithm [78]
and chose medoids as representatives, which was later used in a
number of other studies [4, 20, 24, 47, 48, 157]. Here, all repre-
sentative days were rescaled to fit the overall yearly average when
multiplied by their cardinality and summed up, but not the average
of their respective clusters, i.e.:

5% Tt X
e, (1CRI 2, i)
Schitz et al. [64, 144], Bahl et al. [79] and Marquant et al. [152,
153] refer to the method of Dominguez-Mufioz et al. [61], but some
used it time series-wise and not cluster- and time series-wise.
Schiitz et al. [64, 144] were the first to highlight that both ap-
proaches are possible. It also needs to be highlighted that these
methods are not the only methods, as Zatti et al. [145], for in-
stance, presented a method to choose medoids within the optimi-
zation problem without violating a predefined maximum deviation
from the original data, but for the sake of simplicity, it focused on
the most frequently used post-processing approaches. Addition-
ally, other early publications, such as per Schiefelbein et al. [158],
did not use rescaling at all. Finally, yet importantly, the rescaling
combined with the min-max normalization could lead to values over
one. Accordingly, these values were reset to one to not overesti-
mate the maximum values and the rescaling process was re-run in
several studies [4, 20, 24, 48, 63]. In contrast, Teichgraber et al.
[47, 157] used the z-normalization with rescaling in accordance
with Nahmmacher et al. [63], but did not assure that the original
extreme values were not overestimated by rescaling.” (Hoffmann
et al. [1])

(2.6)

Crat = Ckat vV kat

In a last step, the time series are scaled back to their original
scales using the invers function of the respective normalization
function presented in Section 2.2.2.2.1.

Apart from the methods presented in this section, a number of pub-
lications can be found in the literature, which focus on statistical
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features or use grouping methods other than clustering. These
methods are presented in detail in Appendix F and are skipped at
this point for the sake of brevity.

2.2.2.3. Linking of Typical Periods

“As mentioned above, the modeling of some system dynamics,
such as the state of charge of storage components, require the
linking of consecutive time steps by means of intertemporal con-
straints. The representation of time series by a few typical days or
weeks does not generally take their order across the entire time
horizon into account. This means that the modeling of filling levels
is normally only possible within these typical periods with a peri-
odic boundary condition for the state of charge. In this case, the
order of typical periods no longer plays a role. On the other hand,
seasonal storage cannot be sufficiently modeled by this method.
Yet, this is especially important for energy systems based on a
high share of renewable energy sources. For a long period of time,
the only approach to model seasonal storage was to drastically
reduce the temporal resolution, as by Tveit et al. [159], making it
impossible to model short-term storage. To overcome this issue,
different methods have been developed that take the linking of typ-
ical days into account. Here, the approaches differ depending on
the formation of typical periods, i.e. whether they are formed time-
based in a certain pattern or feature-based using clustering.

2.2.2.3.1. Linking Periods with a Regular Pattern
To the best of the author’s knowledge, the TIMES framework was

the first framework capable of linking time slices not only consec-
utively, but also between periods to model storages that work on a
larger time scale ([52-55]). However, since the inter-period stor-
ages are meant to work between different years, e.g., as waste
disposal sites [52], they are not linked to the intra-period storages,
which only link consecutive time slices (segments) within one typ-
ical period, such as weekdays in spring.

Welsch et al. [111] and Samsatli et al. [22] independently devel-
oped a non-uniform hierarchical time discretization that is based
on the selection of time slices. In two publications [22, 23], Sam-
satli et al. chose two typical days with hourly data for both the week
and weekend which was done for each season consisting of 13
weeks. This resulted in 192 time steps. For the modeling of the
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seasonal storage, the energy surplus across each time scale was
determined and added up. As the chosen days appeared in a reg-
ular order within each season, the capacity constraints were not
postulated for each time step. Instead, they were only defined for
the first and last instance of each day type, the first and last week
of each season and the first and last season of each year, if a
multiple year approach was chosen.

Welsch et al. [111] chose a similar approach that consisted of three
time slices for a workday and a weekend day in each season. How-
ever, the case study was only run with one typical day with an
hourly resolution. Both approaches did not consider state changes
depending on the states themselves, i.e., self-discharge rates. The
approach of Welsch et al. [111] was later developed by Timmer-
man et al. [112] to handle self-discharge and re-used by van der
Heijde et al. [100].” (Hoffmann et al. [1]) The approach and critical
points at which the state of charge must be checked is depicted in
Figure 2.14 for one typical weekday and weekend day per season
consisting of three daily time slices each, as per Timmerman et al.
[112]. The red and blue dots mark the critical time steps at which
the state of charge must be checked in the first and final week of
each season. “As each week consists of only two day types, of
which the first is repeated five times and the second is repeated
twice, the intermediate weekdays representing Tuesday, Wednes-
day and Thursday cannot include critical states of charge. This
holds true for both, a rising state of charge across the weekdays
(the critical day would be Friday) and for a decreasing one (the
critical day would be Monday). The same applies to the intermedi-
ate weeks in each season. As they are repeated 13 times, either
the first or last week of each season is critical with respect to the
state of charge of seasonal storage and their capacity.
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Figure 2.14. Storage formulation based on regular order of time slices ac-
cording to Welsch et al. [111] and the seasonal checkpoint for two day types
and three time slices each according to Timmerman et al. [112]
Similarly, but again independently, Spiecker et al. [126] developed
a comparable approach that linked workdays and weekend days
for every second month in an inter-daily manner for pumped stor-
age plants and an inter-month manner for large-scale storage sys-
tems in the E2ZM2s model. Moreover, the typical days were based
on a recombining decision tree of 2 h segments and were thus ca-

pable of modeling the storage size stochastically.

2.2.2.3.2. Linking Periods with an Irregular Pattern
Gabrielli et al. [21] developed a method to couple typical days us-

ing a function o that assigns each day of the original time series to
the typical day it is represented by. This function was used to cou-
ple the state of charge of consecutive (typical) days in an additional
equation, which means that the operation of the components is
modeled for a number of typical days, while the state of charge of
the storages is modeled for the entire time horizon represented by
a sequence of typical days. The approach was tested for a different
number of typical days, as well as in a later publication [21, 160].

Wogrin et al. [90] earlier proposed the same approach as Gabrielli
et al. [21] for typical time steps and took the information of the
clustering indices, i.e., which original time step was represented
by which typical time step, to link typical time steps in order to con-
sider start-up and shut-down costs. This was later re-used by
Tejada-Arango et al. [25] for the calculation of storage levels using
typical periods (days and weeks). However, in contrast to Gabrielli
et al. [21], the storage levels were not constrained for each time
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step by Tejada-Arango et al. [25], but only at intervals of one week.
Additionally, a similar method was applied to avoid unnecessary
unit transitions at the border between two consecutive typical days.

Like the idea of Gabrielli et al. [21], Kotzur et al. [20] introduced a
similar method of linking typical days in a chronologically correct
order. Instead of directly linking each state of charge to the pre-
ceding one, the superposition principle was used to distinguish in-
tra-period and inter-period states of charge. The sum of both val-
ues, i.e., the intraday state of charge for a given number of typical
days, along with the inter-day state of charge, which was deter-
mined by a surplus of energy of each typical day in the correspond-
ing sequence, was then used to determine the necessary storage
levels. This approach was also used in later publications dealing
with seasonal storage [4, 24]” (Hoffmann et al. [1]) and is depicted
in Figure 2.15. The upper part of the figure shows an exemplary
profile of an intra-day storage level for a hypothetical typical day.
Although the relative changes of the state of charge within all days
of the same typical day type are the same, the absolute storage
levels differ, as the superposition principle, according to Kotzur et
al. [20], allows a difference in the state of charge across each typ-
ical day expressed by ASOC.-4. To determine the state of charge
at the beginning of each day, these inter-day differences are
summed up over the entire time horizon according to the sequence
of different typical days, as shown in the lower part of Figure 2.15.
The state of charge at each time step is then given by the sum of
the inter-day state of charge at the beginning of each day and the
relative changes of the state of charge throughout the correspond-
ing typical day given by the intra-day state of charge.
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Figure 2.15. The cluster-based superposition approach to modeling seasonal
storages proposed by Kotzur et al. [20]

“Another slight deviation of this method was applied by van der
Heijde et al. [26], who also used the superposition principle dis-
cussed by Kotzur et al. [20] to couple typical days. However, they
did not use clustering algorithms to group similar days and repre-
sented these by one typical day for each cluster, but instead
searched for a linear combination of days that minimized the devi-
ation from the yearly duration curve; a procedure introduced by
Poncelet et al. [147]. In contrast to clustering algorithms, this pro-
cedure did not directly lead to an assignment of original days to
groups represented by single typical days. This meant that this had
to be performed in a separate step. For this, an mixed-integer
quadratic program (MIQP) was formulated that sought to minimize
the sum of squared errors of each day of the original time series to
the typical days. The outcome of this was a sequence of typical
days that represented the original time series, which was crucial
for linking the typical days in accordance with the aforementioned
approach of Kotzur et al. [20]. Recently, Baumgartner et al. [82]
included the storage formulation of Kotzur et al. [20] in their rigor-
ous synthesis of energy systems using aggregation approaches to
define upper and lower bounds for the objective function with full
time resolution, which will be explained in detail in Section 2.3.2.
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The fact that a number of methods for linking typical periods were
independently developed [20-22, 90, 111]” (Hoffmann et al. [1])
emphasize the relevance of the topic but also the heterogeneity of
the community, which is firstly brought together in this review.

2.2.3.Random Sampling

“Another minor group of publications uses time series aggregation
based on random sampling. This means that the time steps or pe-
riods are randomly chosen from the original time series and con-
sidered representative for the entire time series instead of being
determined based on clustering.

Most of the methods in the following deal with single time steps
instead of periods, which is an acceptable simplification when the
impact of storage capacity or other intertemporal constraints on the
system design can be neglected [161]. In contrast to the methods
presented above, the time steps or periods are thus neither time-
nor feature-based grouped or merged. Methods that are only run
once based on random or user-specified selection will be defined
as “Unsupervised". However, the majority of random sampling
methods presented in the literature are repeated several times in
order to determine a set of random samples that best captures the
original time series’ features. In the following, these methods are
termed “Supervised”.” (Hoffmann et al. [1]) Here, the terms “Su-
pervised” and “Unsupervised” are adopted from the corresponding
concepts in the research field of machine learning [162, 163].

The difference between feature-based merging and random sam-
pling is depicted in Figure 2.16. While clustering guarantees that
the samples used as representatives of the full dataset are distrib-
uted over the whole dataset, this cannot be guaranteed by random
sampling methods, which explains the development of supervised
sampling methods as an alternative to clustering.
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Figure 2.16. The difference between random sampling and clustering

2.2.3.1. Unsupervised

“As with supervised random sampling methods, unsupervised ran-
dom sampling methods can be applied to typical periods or single
time steps. However, they appeared earlier than the supervised
methods (2011 and 2012).

Ortiga et al. [164] introduced a graphical method for which a num-
ber of days from the dataset had to be defined. In a second step,
the algorithm minimized the deviation between the duration curve
of the original dataset and a duration curve of the chosen periods
multiplied by a set of variable factors for the number of appear-
ances of each typical day.

With respect to the random sampling of time steps, Van der Weijde
et al. [165] sampled 500 out of 8760 hours to capture major corre-
lations of the input data for seven regions.

However, in the years since 2012, these methods were substituted
by supervised random sampling methods.

2.2.3.2. Supervised

Munoz et al. [166] applied supervised random sampling for 1 up to
300 daily samples out of a dataset of seven years, which were then
benchmarked against the k-means clustering of typical hours. A
similar method was used by Frew et al. [167], who took two ex-
treme days and eight random days from their dataset and weighted
each day so that the sum of squared errors to the original wind,
solar and load distribution was minimized. This procedure was then
repeated for ten different sets of different days, with the average
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of each optimization outcome calculated at the end. With respect
to time steps, Hartel et al. [91] either systematically determined
samples taking every nin element from the time series or randomly
chose 10,000 random samples from the original dataset and se-
lected the one that minimized the deviation to the original dataset
with respect to moments (e.g., correlation, mean and standard var-
iation). Another algorithm for representing seasonal or monthly
wind time series was proposed by Neniskis et al. [57] and tested
in the MESSAGE model. This approach took into account both the
output distribution (duration curve) for a typical day and the inter-
daily variance, not to be exceeded by more than a predefined tol-
erance, while using a random sampling process. However, only the
typical days for wind were calculated in this way, whereas the other
time series (electricity and heat) were chosen using time slices.
Recently, Hilbers et al. [161] used the sampling method twice with
different numbers of random initial samples drawn from 36 years.
From a first run, the 60 most expensive random samples were
taken and included in a second run with the same number of sam-
ples.

These methods are comparable to the method of clustering typical
time steps. However, the initial selection of samples is based on
random choice.

2.2.4. Miscellaneous Methods

Apart from the random sampling methods that cannot be system-
atically categorized with the scheme in Table 2.1, an even smaller
number of publications cannot be categorized with respect to their
temporal aggregation methods. For the sake of completeness,
however, they are presented in the following.

Lee et al. [168] used an improved particle swarm optimization to
optimize the unit commitment of a power system with respect to
fuel and outage costs. This method was based on an evolutionary
algorithm that iteratively determined the “fittest” solutions and thus
was quite comparable to supervised random sampling methods.
However, the use of an own class of optimization algorithm is a
unique feature. A similar approach to solve the unit commitment
problem of a grid-connected building with renewable energy
sources and a battery was presented by Quang et al. [169]. In their
work, a genetic algorithm and a particle swarm algorithm were
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used for different charge and discharge rates of the battery based
on half-hourly time steps. It is worth mentioning that apart from
these publications, a number of other works exist which use,
among other methods, genetic algorithms or particle swarm algo-
rithms to optimize unit commitment models. A comprehensive re-
view on the methods to address the unit commitment problem was
given by Saravanan et al. [170]. However, these approaches are
based on a survival of the fittest principle instead of a classic opti-
mization problem to find feasible and cost-efficient operation
schedules so that an aggregation can only be applied by downsam-
pling the time steps used for simulation. Moreover, these ap-
proaches are not directly applicable to combined unit commitment
and capacity expansion planning models. Therefore, these meth-
ods are not analyzed further within the scope of this thesis.

Xiao et al. [171] optimized the capacity of a battery and a diesel
generator for an island system by searching for the optimal cut-off
frequency at which running a diesel generator was more conven-
ient without causing overly high fuel costs, whereas the battery ca-
pacity would be too large if it was run on a low frequency band. For
this, an analysis based on Discrete Fourier Transform (DFT) was
used highlighting the different specific cost-dependent time scales
on which different technologies operate.

More recently, Pdstges et al. [172] introduced an analytical ap-
proach to aggregate the time steps of a demand duration curve for
a simple energy system model without storage units and with only
one energy type. Interestingly, this method led to a simplified prob-
lem formulation based on a minimum number of time steps without
causing an error in the objective function. In this case, the supply
technology costs are based on capacity- and operation-specific
costs and the approach was inspired by an earlier work of Sherali
et al. [12]. Sherali et al. proved in 1982 that the cost optimal oper-
ation of these simple systems can be interpreted as an optimiza-
tion problem which is closely related to the peak load pricing theory
introduced by Boiteux in 1949 [9] (English translation in 1960 [10])
and Steiner in 1957 [11].

To summarize, special methods that cannot be categorized in any
way appear in an irregular manner, but can have special implica-
tions for the improvement of preexisting methods.
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2.2.5. Trends in Time Series Aggregation

Because the methods from Table 2.1 can be combined with each
other and are based either on the careful selection of the modeler
or on feature-based algorithms, it is an open question whether a
clear trend can be observed with respect to the application of the
methods.

For this purpose, Figure 2.17 shows the number of investigated
publications containing at least one of the basic aggregation meth-
ods presented above. The Random Sampling and the Miscellane-
ous Methods were disregarded due to the small number of publi-
cations with no statistical significance. Moreover, the modified fea-
ture-based period merging methods were considered to belong to
the same group of feature-based merging as the normal clustering
methods for typical periods. Moreover, it should be highlighted that
the search for literature was ended in July 2019 and that the trends
are methodology-driven and not keyword-driven for the reasons
given in Section 2.1.1.
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Figure 2.17. Trends in basic temporal aggregation methods for energy sys-
tem models based on the major approaches presented in Section 2.2 (taken
from Hoffmann et al. [1])

At first sight, a comparison between the straightforward downsam-
pling and feature-based segmentation reveals no trend. However,
publications dealing with downsampling mainly address the ques-
tion what temporal resolution is sufficient for a given problem, ra-
ther than improving the calculation time of a problem with a given
temporal resolution without deteriorating the results. Furthermore,
downsampling sometimes serves as a benchmark [43] only, which
is outperformed by the other existing methods. In contrast to that,
the development of slightly variated segmentation methods is on-
going. Segmentation could even offer the option to increase the
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temporal resolution iteratively at crucial time steps instead of
coarsening only.

With regard to typical periods, the feature-based methods mainly
represented by clustering have a rising trend, in contrast to the
time-based definition of time slices and “averaging”. Interestingly,
the number of publications based on time slices kept increasing for
some time after the development of the clustering approach in
2011. The reasons for this are twofold: First, the approach was
only proposed by Dominguez-Mufoz et al. [61], but its superiority
was not proven in an energy system model. Secondly, models such
as the TIMES framework [52-55] have constantly been used ([110,
113, 115, 116]) since their publication. Accordingly, the method
expires no sooner than the framework by which it is used unless
the framework itself is updated. This explains the inertia of new
methods and the need for proper validation and benchmarking ra-
ther than the simple proposal of a method alone. Additionally, the
share of renewable energy sources is slowly increasing in energy
systems and, accordingly, the requirements for models and their
temporal resolution are changing as well [42-47].

Finally, yet importantly, the small number of publications that deal
with a decrease in the temporal resolution, in contrast to the high
number of typical period approaches, is notable. This is due to the
relatively low potential of decreasing the number of time steps in
energy system optimizations if the periodicity of day and night cy-
cles is not exploited. However, the impact of larger time steps can
be increased by magnitudes if it is combined with a typical period
approach.

Overall, Figure 2.17 shows that the future aggregation methods
will most likely be feature-based, i.e., either consist of clustering
only or rely on both clustering and segmentation.” (Hoffmann et al.
[1]) This is also supported by Table 2.4, which lists the root-mean-
square error of the introduced methods applied to the exemplary
solar profile depending on the number of remaining time steps.
Here, it can be observed that Segmentation and Clustering lead to
the smallest root-mean-square error values among the respective
concepts of resolution variation and typical periods for a given
number of remaining time steps.
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Table 2.4. Root-mean-square error of the introduced methods applied the to
exemplary solar profile introduced in Figure 2.2 depending on the number of
remaining time steps

Method Time Steps RMSE

Reference 8760
Resolution Downsampling 1460 0.1295
Variation Segmentation 1460 0.0388
) Averaging 288 0.1126
Typical : -
. Time Slices 288 0.1509
Periods B
Clustering 288 0.0552

“Table 2.5 sums up the key aspects the observed trend towards
feature-based merging.

Table 2.5. Pros and cons of the presented major aggregation methods (taken
from Hoffmann et al. [1])

 TResolution Variation | Typical Periods

Time- e Downsampling e Time Slices and Averaging

based e Does not exploit repeating
time series patterns

e Does not differentiate be-
tween more and less variant
sections of the time series

Feature-
based

e Segmentation

e Does not exploit repeating
time series patterns

o Differentiates between more
and less variant sections of
the time series

e Exploits repeating time se-
ries patterns

e Based on the modeler’s ex-
perience

e Does not merge similar adja-
cent time steps

e Clustering

e Exploits repeating time se-
ries patterns

e Automatic identification of
similar patterns

e Does not merge similar adja-
cent time steps

The combination of clustering and segmentation in order to com-
pensate their remaining shortcomings named in Table 2.5 was first
applied by Mavrotas et al. [60], later by Fazlollahi et al. [74] and a
similar approach was recently used by Bahl et al. [79] and
Baumgartner et al. [82, 83]. However, a detailed examination if
there is an optimal trade-off between intra-period resolution and
the number of periods is a subject for current research and there-
fore addressed in Section 3.3.4.

41



2. State of the Art

2.3. Preserving Additional Information

As highlighted in Section 2.2, temporal aggregation methods are
based on the representation of discrete time series by less time
steps. These approaches are usually approximation methods, i.e.
not analytically equivalent transformations, which often also in-
clude averaging procedures. From this, two major drawbacks
arise:

e Values of the original time series, which could be especially
important for the energy system model, are usually not pre-
served.

e A reliable estimation of the deviation of the optimization re-
sult based on aggregated time series from the one based on
full time series can usually not be given.

In order to address the first problem, Section 2.3.1 presents ap-
proaches found in literature to keep additional information of the
original time series considered important for the energy system
model during the aggregation process. Section 2.3.2 introduces
methods to re-evaluate the quality of the aggregation after solving
the aggregated energy system model optimization to address the
second issue.

2.3.1. A Priori Methods

Apart from the methods presented for time series aggregation, the
integration of periods or time steps considered “extreme” is a com-
mon procedure not only used in heuristic time-based, but also in
feature-based approaches such as segmentation and clustering.
Most of the methods are based on the assumption that extreme
values in the input data lead to a design that is robust for all re-
maining time steps so that integrating these extreme periods en-
sures a feasible system design, despite the time series aggrega-
tion.” (Hoffmann et al. [1]) Figure 2.18 visualizes how outliers of
the dataset being potentially design relevant are neglected in ag-
gregated data. On the left, a clustered sample dataset is repre-
sented by a subset of eight medoids represented by red rings.
However, they do not cover the outliers of the dataset, which are
given by the green rings in the right graph. These value tuples form
a convex hull of the data set and represent time steps or periods
that are potentially design relevant.
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Figure 2.18. A drawback of time series aggregation: Outliers of the dataset
being potentially design relevant are neglected
“In this section, approaches based on the input data only are pre-
sented, i.e., a priori methods. The integration of time series fea-
tures considered extreme can happen in three different ways:

e By adding extreme periods to the set of typical periods

e By theinclusion of extreme periods or time steps into typical
periods using replacement

e By directly modifying the corresponding feature-based
merging algorithm used for time series aggregation in such
a way that it automatically accounts for atypical periods

2.3.1.1. Adding Extreme Periods

A straightforward approach to consider extreme values is to add
them to the aggregated time series directly. Of course, this de-
pends on the way in which the time series are aggregated. In the
case of typical time steps, i.e., single time steps that were derived
from the original input data, extreme values can simply be taken
from the original input data. For example, Munoz et al. [166] forced
the top ten peak demand hours to be individual clusters for the
IEEE Reliability Test System [173]. The same holds true for energy
system models based on time slices. As Devogelaer et al. [114]
pointed out, the TIMES framework generally uses three daily levels
as time slices: day, night and a short peak slice (for electricity de-
mand), which was also cited in other publications [42, 116, 117].
Additionally, Mallapragada et al. [45] used time slices without a
peak time slice, but highlighted that the original set-up in the
ReEDS model [174], by which the method was inspired, used an

43



2. State of the Art

additional time slice that captured all the peak loads throughout a
year. Similarly, Voll et al. [108] added two more time steps for win-
ter and summer peak loads to their monthly-averaged demand pro-
files.” (Hoffmann et al. [1])

In the simple 2D example in Figure 2.18, it can already be ob-
served that a significant number of samples are potential outliers
to the dataset. However, not all outliers are necessarily design rel-
evant. For example, if the system considered one demand and one
supply time series, only those time steps with high demand and
low supply might be considered extreme, i.e. only a subset of sam-
ples forming the convex hull in Figure 2.18.

Therefore, “extreme periods are usually defined as periods con-
taining an extreme value of at least one attribute. For instance,
Dominguez-Mufioz et al. [61] and Ortiga et al. [164] included the
days containing the peak heating and peak cooling demands of
their building models. The same was done for typical weeks by de
Sisternes et al. [97, 98] by either adding the week or a separate
day containing the peak net-load hour. It was also pointed out that
the integration of an additional day affected the approximation of
the duration curve less than forcing the algorithm in selecting an
entire week. Stadler et al. [123] included one peak demand day per
month in their DER-CAM model. Wakui et al. [118-120], in turn,
included one peak day for winter and one for summer regarding
the energy demand of a residential building. Marquant et al. [152,
153] included a peak heating and peak electricity demand day for
a district energy supply system, while neglecting the extreme val-
ues of possible PV feed-in in the latter publication [153]. Frew et
al. [167] not only included maximum days, but also minimum days
for each attribute into their POWER model [175]. For this, an ex-
treme day was defined as a day that included the peak or minimum
value of one of the three attributes of wind, solar or e-demand av-
eraged across all eligible regions. Merrick et al. [46] took one peak
electricity demand day per month into account while neglecting the
days with minimum capacity factors for wind and solar energy
sources. Patteeuw et al. [99] added the coldest week, which coin-
cided with the highest e-demand, into a system model for a resi-
dential building, but again neglected the possible impact of solar
thermal units and the PV panel. Heuberger et al. [176] integrated
the day containing the peak electricity demand, neglecting the
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days of minimum potential wind and PV feed-in into a national hy-
brid capacity expansion planning and unit commitment model as
well. Pfenninger et al. [43] tested various combinations of extreme
days and weeks defined by the maximum or minimum wind and
solar availability across the UK or the maximum or minimum differ-
ence between wind feed-in and electricity-demand.

For typical periods, Kotzur et al. [48] presented two different meth-
ods for adding extreme periods to aggregated time series following
the clustering process based on time series aggregation to typical
periods. The first method simply appends the extreme periods, i.e.,
a period with a maximum or minimum (average daily or single time
step) value is excluded from the cluster it was first assigned to,
and is separately integrated as a typical day appearing only once.
The second approach is to reassign all the days within the cluster,
which are closer to the extreme day than to the cluster center, i.e.,
the extreme period becomes the representative of a new cluster.

Furthermore, the clustering tool tsam introduced by Kotzur et al.
[48] can include typical periods with a maximum or minimum aver-
age across the period for a chosen attribute, i.e. extreme values
with respect to the first momentum. This approach was also em-
ployed by Pfenninger et al. [43] for wind and solar time series. Sim-
ilarly, Poncelet et al. [147] included the days containing the highest
and lowest value for electricity demand and those with the highest
and lowest average of wind and solar capacity factors for a capac-
ity expansion planning model to benchmark their own feature-
based approach. However, a comprehensive study on whether
time series for energy system optimizations can efficiently be clus-
tered by means of their statistical momentums (average, standard
variation, etc.) is still an open research question addressed in Sec-
tion 3.2.5.

Recently, Podstges et al. [172] showed that for extremely simple
energy systems with supply units with capacity-specific and oper-
ation time-specific linear cost functions, as well as only one con-
sidered energy commodity, the optimal operation time and neces-
sary capacities can be derived analytically using the segments in
the demand duration curve, in which each technology is the most
profitable one.
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A major drawback from which all of the methods presented above
suffer is the fact that the number of extreme constellations grows
exponentially with the number of time series taken into account.
Figure 2.19 illustrates this for a hypothetical demand (D), wind ca-
pacity factor (W) and solar capacity factor (S) time series.
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Figure 2.19. Impact of adding “shoulder values” as proposed by Frew et al.
[167] as extreme values for a rising number of attributes (taken from Hoff-
mann et al. [1])

As illustrated, the consideration of the minimum and maximum

electricity demand D and D leads to two additional typical periods.
Taking the extreme periods of an additional attribute into account
leads to four potential extreme constellations, while the integration
of three attributes potentially leads to eight extreme constellations,
as in the publication of Frew et al. [167]. It is obvious that for a
certain number of locations and technologies, more extreme days
(minimums and maximums) are needed than there exist days in a
year (assuming that no period is extreme for more than one attrib-
ute). In the case of typical days including “shoulder values”, i.e. the
corners of the hypercube, this number is reached for only nine dif-
ferent attributes (2° = 512 > 365). If the extreme periods are con-
sidered for each attribute alone without deriving potential shoulder
values, the number of extreme periods grows linearly with the num-
ber of time series, which refers to the number of corners for the 1D
figure, the number of sides of the square and the number of sur-
faces for the cube. In the case of typical days, including the ex-
treme period or value for just one attribute each, this number is
reached for (183 - 2 extreme values = 366 > 365) different attributes.
This is the reason why some authors such as Pfenninger et al. [43]
only considered the extreme values averaged across all regions.
Other approaches aimed at automatically including certain ex-
treme features in the once chosen typical periods [60, 177] or
searching for atypical days within the dataset with some additional
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constraints [145] which will be described in detail in the following
two sub-sections.

2.3.1.2. Inclusion of Extreme Values or Additional Features

Given the fact that averaging across different periods or time steps,
as is the case in many temporal aggregation approaches, leads to
an underestimation of the inner-period variance, while manually
adding periods considered to be extreme increases the computa-
tional load, different algorithms have been implemented on the ba-
sis of the inclusion of extreme values or additional features. Mavro-
tas et al. [60] synthesized seasonal 24h profiles of heat demand
using monthly averages. Of all the monthly averaged samples
used for determining the seasonal profile, the overall maximum
value was included in it. The adjacent time steps around the max-
imum were calculated with weighted averages in order to
smoothen the profile, i.e., the day including the maximum value
was weighted with 100% at the peak time step, with 75% in the
neighboring time steps and 50% in the second adjacent time steps.
As the cumulative sum of that profile no longer fitted the average
cumulative sums of the used monthly profiles, the remaining 19
time steps per day were rescaled.

Green et al. [177] presented an approach for including dominant
or common ramps into the profiles obtained by k-means clustering.
For the dominant ramp method, the gradients of the centroid pro-
files were determined and, according to these, the mean gradients
of those cluster members with the same gradient direction as the
centroid profile were used to construct the ramps of the repre-
sentative profile. The common ramp approach was based on the
same idea of using the mean of gradients of pointing in the same
direction; however, the choice which subset of gradients is used
was made by the median of all gradients in each time step and not
according to the gradient of the mean profile. A drawback of this
method was that it could lead to significant offsets between the first
and last time step of each period.

Regarding the integration of extreme periods, Kotzur et al. [48] also
proposed the method to use the extreme period within a cluster as
the cluster’s representative, which should usually lead to a fairly
conservative assumption, as this approach overestimates the fre-
quency of extreme periods appearing in the time series.
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Apart from that, some publications have aimed at increasing the
robustness of their energy system models by artificially adding bias
to the (aggregated) input data or favored stochastic optimization.

Spiecker et al. [126] used the stochastic E2M2s model imple-
mented in GAMS to minimize the total annual costs of an energy
system by establishing a recombining tree structure to the model
consisting of two possible hydro power plant states and three pos-
sible wind feed-in states that changed in 2h intervals. Furthermore,
the storage levels across an entire year were also stochastically
modeled. Wouters et al. [127] included variability of the season-
based PV infeed into a neighborhood microgrid by splitting up the
daily infeed into input-level histograms for each season. Then, the
potential output profiles were determined by averaging all feed-in
profiles within one season and the same cumulative feed-in level.
Finally, the outputs of the PV panels for each season were deter-
mined using the seasonal average weighted by the days of occur-
rence at each feed-in level appearing in that season. Kools et al.
[107] used synthesized PV profiles with minutely, quarter-hourly
and hourly resolution and artificially added fluctuations using a nor-
mal distribution and gamma distribution with a stochastic decom-
position algorithm for a distributed generation system. Further-
more, the designs obtained for different temporal granularities
were cross-compared with respect to the energy losses when op-
erating the systems on a finer time scale.

Brodrick et al. [102] isolated three critical hours within six repre-
sentative days for an integrated solar combined cycle through ex-
cessive testing and used this strongly reduced model for a multi-
objective optimization based on an iteratively tightened CO2 con-
straint which resembled an exhaustive approach. Although this
method is not necessarily computationally less expensive, it differs
from all the others because the aggregated amount of input data
was not increased by this method.

2.3.1.3. Additional Constraints in Feature-Based Merging

Apart from assuring that the representation retains certain charac-
teristics, methods that are even more complex are capable of ex-
cluding extreme periods in the clustering process itself. For seg-
mentation processes, Stein et al. [84] illustrated this, introducing a
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mixed-integer program (MIP) that minimized the inter-time step dif-
ferences for a given number of merging steps. Here, time steps not
to be merged such as extreme values could be excluded with an
additional side constraint. Moreover, it was assured that a maxi-
mum number of adjacent merges was not exceeded with an addi-
tional constraint. A similar approach was previously introduced in
a publication by Fazlollahi et al. [74], in which the segmentation
algorithm was based on iterative k-means clustering and maximum
values were automatically excluded. Furthermore, the segmenta-
tion was applied to typical periods that were determined using a
clustering process to which extreme periods could be manually
added. It is important to highlight that only maximum values were
expected to be extreme. With respect to supply data such as the
capacity factors of renewable energy sources, it is trivial that peri-
ods with minimum values are likely critical as well.

With respect to an automatic inclusion of extreme days within a
clustering algorithm, Zatti et al. [145] introduced the so-called k-
MILP clustering, which is a modified version of the exact k-medoids
algorithm and automatically excludes atypical periods. For this, the
side constraint that each day from the original time series must be
assigned to a representative day was relaxed so that the atypical
days increasing the sum of distances the most could be excluded.
However, the number of atypical days that were allowed to be ex-
cluded had to be set by an additional constraint. Moreover, addi-
tional constraints were added in order to assure that the sum over
the repetition of representative days did not differ from that of the
original data beyond a predefined share. Additionally, it was im-
posed that for some selected attributes, the extreme periods had
to contain at least one day that was also close to the absolute ex-
treme value of the respective attribute.

Apart from that, Gabrielli et al. [21] constrained the clustering pro-
cedure for typical days to maintain the maximum and minimum val-
ues of the heat and electricity demand profile used for a multi-en-
ergy district system, although this also included a solar input time
series.

Concerning algorithms used for the integration of extreme events
into typical time steps, i.e., typical periods lasting for only one time
step, a method based on a moving average has been proposed by
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Hartel et al. [91]. Here, the determined hourly typical time steps
derived from clustering were compared to their moving average
within a 6 h window of the full time series. If more than 95% of
these values were above or below the values in the cluster, the
highest or lowest candidate within the system state cluster was
chosen as representative.

The presented methods illustrate that considerable efforts have
been made to integrate extreme periods into the clustering pro-
cesses. However, as pointed out by Scott et al. [178], the extreme
periods cannot be known in advance for most synthesis problems
because the built capacities of each technology are an endoge-
nous outcome from the optimizations, e.g., the peak capacity fac-
tors of wind turbines are not relevant if wind turbines are not cho-
sen to be built in a greenfield energy system optimization. This im-
poses the need to gain information about possible designs of the
energy system with preliminary optimizations, which ultimately led
to the development of multi-level approaches.

2.3.2. A Posteriori Methods

The implementation of extreme periods normally increases the ro-
bustness of the aggregated energy system optimizations, but does
not necessarily lead to feasible solutions for the full time series, for
instance, because the component, for which an extreme value is
integrated, is not chosen in the optimization. Storage units that
smooth out the impact of extreme periods can be another reason
why extreme values in the input time series are not necessarily the
critical time steps in the energy system. Therefore, a number of
publications focus on multi-level approaches in order to increase
the robustness or operational exactness of aggregated energy sys-
tem optimizations. The presented approaches can be divided into
non-iterative and iterative methods. Figure 2.20 illustrates the in-
terdependences of temporally aggregated energy system optimi-
zations that motivate the inclusion of multi-stage approaches.
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Figure 2.20. Mutual dependencies in aggregated energy system optimizations

that necessitate feedback loops (taken from Hoffmann et al. [1])
The main driver in the use of multi-stage approaches is based on
the problems related to the inclusion of extreme periods. As the
absolute importance of a single component with a given time series
is unknown in advance, the impact of outliers within this time series
is unknown as well. Therefore, different approaches aim at isolat-
ing certain information about potential energy system designs with
preliminary optimizations in order to improve the aggregation pro-
cess of the input data without increasing the size of the optimiza-
tion problem. A second driver for multi-stage approaches is binary
variables for design and operation, which significantly increase the
complexity of large-scale energy system models. However, the op-
erational decisions depend on the design decisions and vice versa.
Simply put, a component that is not chosen to be built is not oper-
ated. This can be exploited by deriving simpler aggregated design
problems and separated optimization problems that can signifi-
cantly reduce the complexity. Thirdly, not only aggregated energy
system models but also the real energy systems face uncertain
input data. Temporal aggregation methods can thus be used to
simplify models, which are then re-calculated for slight variations
in the input data. The resulting designs can then be compared to
each other by checking the operational feasibility when being ex-
posed to the time series of the other scenarios.

In the following, however, the approaches are divided into non-it-
erative approaches and iterative approaches, as iterative ap-
proaches focus on outperforming state-of-the-art solvers, while
non-iterative approaches focus on the generation of fast and ro-
bust but suboptimal, or fast and optimal but only relatively robust,
solutions.
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2.3.2.1. Non-Iterative

Due to the fact that the main complexity of mixed-integer linear
programs is caused by binary variables, Gabrielli et al. [21] intro-
duced a method for reducing the number of binary operational var-
iables, i.e., the on/off status of components. For this, the binary
variables were modeled based on a typical day formulation ob-
tained using k-means and linked to the fully resolved continuous
variables by means of an assignment function. This approach did
not necessarily lead to feasible solutions for less than six typical
days, as the reconversion of hydrogen from the hydrogen storage
involved was not able to match the thermal demand for a too lim-
ited number of operational modes.

A similar approach that focused on the reduction of binary varia-
bles was employed by KannengielRer et al. [4], who used the hier-
archical clustering of sorted time series in a first step and deter-
mined the binary design variables of two energy system models.
In a second step, the binary variables from the first step were taken
as input parameters for a second iteration in which the capacities
and (linearized) operation of the components were optimized for
the full time series. This method was capable of identifying a fea-
sible but not necessarily optimal system design with an overall
computation time for the aggregated mixed-integer linear program
and fully resolved linear program that was smaller than the fully
resolved mixed-integer linear program.

Apart from that, two recent publications dealt with the improvement
of existing aggregation approaches for the input data. Sun et al.
[140] introduced a cost-oriented two-level approach for solving an
electricity investment model. Here, the model was independently
solved for each input day and the cost factors for each unit were
determined. These were dimensionally reduced with Laplacian
Eigenmaps and then clustered for determining the cost-related typ-
ical days by choosing the medoid of each cluster in the dimension-
ally reduced cost space, which was proven effective, compared to
clustering solely based on input data.

Hilbers et al. [161] presented an approach based on random time
steps. In a first run, a defined number of random samples was
taken from 36 years of data and the energy system optimization (in
the test case a power system model run with Calliope) was run
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once. From this, the 60 time steps with the highest variable costs
were taken and introduced into a second set of random time steps
that added up to the same total number of time steps. In order to
avoid an overly conservative system design, the 60 extreme time
steps were expected to appear only once in 36 years, which was
considered with a corresponding small weight.

2.3.2.2. Iterative

Lin et al. [179] presented a two-stage approach for solving a semi-
coarse model of a fully resolved mixed-integer linear program for
cogeneration in energy-efficient buildings. For this, typical days
were determined using k-means and the real days were chosen
that were closest to the calculated centroids. The semi-coarse
model was defined as a mixed-integer linear program with aggre-
gated variables but a full number of constraints, while the coarse
model was defined as a mixed-integer linear program with aggre-
gated variables and constraints. Thus, the semi-coarse model was
solved by solving the coarse model and iteratively adding violated
constraints from the full model. The resulting semi-coarse model
was an upper bound of the original problem with guaranteed fea-
sibility, which was not the case for the coarse model.

A similar approach was introduced by Bahl et al. [180], who chose
k-means clustering for determining typical time steps for a distrib-
uted energy supply system without storage technologies. The sys-
tem, optimized for the aggregated typical time steps, was then op-
erationally optimized for the full time series. If the system design
was not feasible, additional feasibility time steps were defined for
the aggregated optimization problem. When an operationally fea-
sible design was obtained for both the aggregated and full time
series, the difference between them was calculated and, if it was
below a pre-defined threshold, the iteration was terminated. Oth-
erwise, the number of typical time steps was increased. It is note-
worthy that a feasible operational optimization with the full time
series for a system design based on an aggregated optimization is
in general an upper bound for the original problem of a combined
design and operational energy system optimization. Based on this
initial approach, four consecutive publications [79, 82, 83, 181] in-
troduced an advanced iterative approach for simultaneously over-
and underestimating the objective function of the original mixed-
integer linear program by using time series aggregation.
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With respect to creating a robust system design, Gabrielli et al.
[160] recently introduced an approach for creating artificial vari-
ance within given input data, deriving optimal energy systems from
all the synthesized input scenarios and operationally testing these
system designs for all other scenarios. The results revealed that
energy systems designed for a minimum emission of CO:2 also
tended to be the most robust ones with respect to satisfying heat
demand with a connection to the electricity grid only.

In another line of publications [71-73] by Yokoyama et al., semi-
heuristic decomposition methods for energy systems without stor-
age units or other intertemporal constraints were introduced, but
with binary variables for both, the design and operation of compo-
nents. Here, the fact that operational binary variables generally de-
pend on the design decision, i.e., if a unit is not built, the opera-
tional binary variables must be zero at any point in time, was ex-
ploited.

In the first publication [71], the original mixed-integer linear pro-
gram was sub-optimally, but feasibly solved and simplex variables
were derived from the result. Then, sub-problems, each containing
only one binary variable, were created and depending on this var-
iable’s impact on the optimal solution of the subproblem, it either
was set to zero, one or remained a variable. Then, the original
mixed-integer linear program was solved again with partly fixed bi-
nary variables and, if a better solution was found, the process was
repeated. Otherwise, it was terminated with a suboptimal solution.
In the second publication [72], the operational binary variables in
the design problem were relaxed and the design binary variables
were investigated using the branch and bound method with a par-
allelization optimization of sub-problems on the operational level.
This method was again not applicable to any system that included
storage technologies. In the most recent publication [73], this
method was used in combination with a downsampling approach
and further improved by defining bounds at the upper design and
lower operational optimization level. This should help to discard
solutions that would not be able to improve the objective function
without calculating all the possible master and sub-problems. Ad-
ditionally, an ordering strategy was also applied to increase the
chance of discarding sub-optimal solutions more rapidly.
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In summary, multi-level approaches based on time series aggre-
gation in energy system optimizations try to exploit five different
features that are not given in simple aggregation approaches:

e Separating complicating binary variables from the vast ma-
jority of continuous variables

e Separating the design problem from the operational problem

e Obtaining feasible but suboptimal solutions instead of opti-
mal but infeasible solutions for the fully resolved input data

e Deriving implications for a meaningful time series aggrega-
tion from the system itself instead of the input data only

e Determining a more robust energy system by exposing the
once optimized energy systems to different input data sce-
narios

With respect to iterative approaches, however, it must be called
into question as to whether these approaches are more efficient
than well-known iterative decomposition approaches such as
Benders- or Dantzig-Wolfe decomposition [182] (e.g., as used by
Lara et al. [30] and Schwele et al. [183]).

2.3.3. Trends in the Integration of Additional Information

With respect to the methods to increase or even ensure the robust-
ness of models optimized with aggregated time series, Figure 2.21
shows the number of publications that deal with at least one of the
approaches presented above. Here, the Inclusion of Extreme Val-
ues or Additional Features and the Additional Constraints in Fea-
ture-Based Merging are summed up in one group, as both ap-
proaches do not increase the number of periods to be considered
and thus do not suffer from the combinatorial problem presented
in Section 2.3.1.1. Again, the trends are not keyword-driven, but
methodology-driven for the reasons given in Section 2.1.1.
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Figure 2.21. Trends in methods to preserve additional information in temporal
aggregation methods for energy system models based on the major ap-
proaches presented in Section 2.3 (taken from Hoffmann et al. [1])

In contrast to the clear trends in aggregation methods, the devel-
opment of methods in the area of robustness is rather vague. The
manual adding of extreme periods had a growing trend until 2016,
but then drastically decreased again. As mentioned above, an ex-
treme event in the input time series of a single attribute does not
necessarily mean that it is also an extreme situation in the energy
system. This is even more the case if storage capacities are con-
sidered. Moreover, the number of extreme periods is growing with
the number of input time series, which makes this approach intrac-
table for a large number of regions if all cases of potentially ex-
treme periods are considered. This might explain why this method
is slowly becoming unfavorable in times of growing energy system
models. In contrast, the inclusion of extreme values or algorithmic
considerations of extreme features within a given number of typical
periods or the definition of atypical days as extreme days are not
subject to a combinatorial problem and therefore appear occasion-
ally in the literature with a slightly rising trend. However, these

methods neither guarantee robustness.

In contrast, the multi-stage approaches appear to have a clear up-
ward trend, as they can be capable of guaranteeing robust but
suboptimal solutions with respect to the non-aggregated time se-
ries. However, the convergence against the optimal solution can,
to this end, only be guaranteed by increasing the number of typical
periods and using a sophisticated iterative approach [82, 83],
which results in a resemblance to well-established and commer-
cially available solving algorithms. This leads to the question if con-
vergence to the real optimum is the main target of aggregation
methods, or if their focus will remain the creation of fast but satis-
factorily accurate approximations that can be achieved by only two
stages of design and operational optimization [4].
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Overall, the question of robustness is highly dependent on the size
of the model, the considered attributes and the temporal intercon-
nectedness. A field of future research thus remains the derivation
of mathematical theorems, as introduced by Lin et al. [179] and
Teichgréber et al. [47]. For example, the conditions under which
an extreme input event leads to an extreme system situation or
clear statements of under- and overestimation of the identified re-
sults for temporally-strongly coupled systems are of great interest”
(Hoffmann et al. [1]), to which this work contributes with theoretical
considerations in Appendix H and |I.

2.4. Review Summary

“This review of temporal aggregation methods for energy system
models has revealed manifold key findings. Firstly, it is possible to
categorize the methods based on their underlying idea, the ad-
dressed problem and their compatibility. Secondly, the advances
in temporal aggregation methods are clearly driven by shortcom-
ings in both computational tractability and existing methods in
models with changing requirements. Thirdly, it was shown that
there are rival methods, of which the feature-based ones are out-
performing the time-based ones, as well as complementary meth-
ods. Moreover, compatible approaches can be applied stepwise
and contain further sub-steps, such as clustering.

However, a systematic overview was lacking to this end, which
Chapter 2 has tried to rectify. One reason for this is also a major
limitation of this literature review: As many publications focus more
on the solvability of energy system models than on the applied ag-
gregation methods itself, a keyword- or title-driven meta-analysis
is not leading to a meaningful overview of existing methods and
possible trends. This issue was addressed by defining a clear in-
terval of publication dates and giving an as holistic categorization
of the methods found in literature as possible.

Apart from that, open research gquestions are derived which are
also addressed in the following:

e The question of the most important statistical features of the
time series to be kept addressed in Section 3.2.
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e Developing an approach that is capable of identifying good
combinations of aggregation techniques and temporal reso-
lutions of the input time series in an empirical manner ad-
dressed in Section 3.3.

e A way to measure the accuracy of different aggregation
methods a priori by defining bounds that are also valid for
the computationally intractable problem addressed in Sec-
tion 3.4.

e Expanding mathematical theorems regarding upper and
lower bounds as introduced by Yokoyama et al. [72], Lin et
al. [179] and Teichgraber et al. [47] to more general ones
applicable to strongly temporally-interconnected energy
system models addressed in Appendix H and I.

However, it should be highlighted that temporal aggregation meth-
ods are always based on the complexity reduction of not perfectly
redundant input data. Therefore, they introduce deviations from
fully resolved models. Accordingly, they should only be used for
the sake of computational tractability. Apart from that, the cluster-
ing procedures can also be time-intensive, which can lead to trade-
offs between the computational load of clustering and the saving
of computational resources using the aggregated models.

Moreover, the trends in time series aggregation also imply that the
frequently used k-means, k-medoids and hierarchical clustering
approaches to determine typical days are still state-of-the-art,”
(Hoffmann et al. [1]) which is why hierarchical clustering is used in
the remainder of this thesis due to its preferable deterministic be-
havior allowing for result reproducibility.
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3. Methodology

In this chapter, the most promising aggregation techniques from
Chapter 2 are systematically extended and explained in detail. A
shortened version of the methodologies introduced in Sections 3.1,
3.2 and 3.3 can also be found in two preceding publications by the
author [2, 3].

A novelty of this thesis is the separation of the clustering process
from the representation of the once determined clusters as de-
picted in Figure 3.1. Accordingly, the representation methods,
which also comprise procedures to consider additional features of
the original time series without increasing the computational com-
plexity, are analyzed separately in Section 3.1 and 3.2.
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Figure 3.1. Clustering and representation as separate steps of clustering
(taken from Hoffmann et al. [3])
Section 3.3 introduces error indicators for both, the aggregation
and its impact on the energy system optimization. The chapter
closes with an assessment of methods for bounding the aggrega-
tion-induced error in Section 3.4.
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3.1. The Process of Time Series Aggregation

As described in the preceding chapter, temporal aggregation can
be divided fundamentally into the merging of adjacent time steps
(downsampling and segmentation) and the merging of periods
(time slices and period clustering). As a clear trend towards the
feature-based merging techniques, i.e. period clustering and seg-
mentation can be observed in literature, which bears advantages
with respect to aggregation-induced deviations from the original
time series data, the following focuses exclusively on period clus-
tering and segmentation.

3.1.1. Period Clustering

Figure 3.2 summarizes the process of period clustering for a set of
(already normed) time series. First, the N, time series are rear-
ranged so that each candidate period comprises all time steps that
fall within that period of all attributes as row vector. This leads to
N, X N¢-dimensional samples, whose dimensionality rise with the
number of time series N, and the number of time steps per period
N;. As the product of the number of time steps N, and the number
of candidate periods N, has to equal the total number of time steps
Ns, the number of the N, samples decreases with the length of
each period, whereas the dimensionality of the samples rises. This
means, while one year results in 365 candidate days, it only results
in approximately 52 candidate weeks with a seven times higher
dimensionality.

After the rearrangement shown in the center of Figure 3.2, each
row vector representing a period can be interpreted as sample with
a certain distance to other samples. As each candidate period can
generally be assigned to a cluster with any other period freely, an
arbitrary clustering algorithm, which assures that each period is
assigned to a cluster, can be chosen.
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Figure 3.2. The procedure of period clustering using an arbitrary clustering
algorithm (adapted from Hoffmann et al. [3])

3.1.2. Segmentation

In contrast to period clustering, segmentation focuses on the re-
duction of the temporal resolution by representing a number of ad-
jacent time steps by a single one. As this process does not happen
in a regular manner like in the case of downsampling, but based
on the mutual similarity of adjacent time steps, this process leads
to a coarser temporal resolution, but depending on the local vari-
ance of the original time series, irregular time step lengths.

As the decision, whether two adjacent time steps are grouped to a
larger time step based on their similarity, the process can generally
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by understood as a clustering problem. However, the premise that
the time steps have to be adjacent, i.e. that the samples cannot be
assigned to clusters freely, is a major difference to period cluster-
ing. Further, most clustering algorithms are not capable to group
samples while complying with side constraints. One of the few ex-
ceptions is Ward’s hierarchical algorithm, because the hierarchical
structure allows for a stepwise consideration of only those samples
that are considered as potential candidates for merging.

Figure 3.3 illustrates the process of segmentation based on Ward’s
hierarchical algorithm under the constraint of the adjacency of time
steps. In contrast to the clustering of periods, each sample com-
prises only a single time step. Accordingly, the values of all time
series N, at the respective time step are transformed to an N,-di-
mensional row vector, as shown in the upper part of Figure 3.3.
Generally, segmentation can either directly be applied to the fully
resolved original time series resulting in N, X N samples. How-
ever, if the segmentation is applied to Ny typical periods in order
to further temporally aggregate the energy system model, the pro-
cess results in Ny independent segmentation problems with N
samples each.

Ward’s hierarchical algorithm starts by calculating the distances
between each sample as shown in the lower left part of Figure 3.3.
Then, those time steps are merged, which increase the inner-clus-
ter variance the least. In this step, the algorithm can be constrained
to consider only adjacent time steps, for which a connectivity ma-
trix can be defined. The connectivity matrix in case of segmenta-
tion is shown in the lower right part of Figure 3.3 with entries of
ones on the first upper and lower diagonal stating that Xgmpie, Can
only be merged with Xsampiet+1 @Nd Xgampier—1- Accordingly, the
clustering algorithm chooses only a subset of samples for potential
merging. Here, the distance between the newly created larger time
step and the remaining other time steps can be calculated using a
recursive formula and the distance matrix as well as the connec-
tivity matrix can be shortened by one row and one column as two
samples have been merged. Thus, Ward’s hierarchical clustering
algorithm is capable of respecting the adjacency constraint at
every iteration until the desired number of time steps is achieved.
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Figure 3.3. The procedure of segmentation using constrained hierarchical
clustering (adapted from Hoffmann et al. [3])
Although the presented clustering algorithms iterate over alternat-
ing assignment and representations steps and thus try to minimize
a certain objective function, an arbitrary method can be chosen to
represent the clusters, once the clustering algorithm has con-
verged. This is an especially important option because a major out-
come of the literature review is the abundance of methods to pre-
serve additional information in the aggregation process, which is
expected to be important for the energy system optimization, e.g.
extreme values of the original time series. In addition to that, the
adaption of a cluster’s representative is more convenient than the
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addition of extreme periods because of the number of potential ex-
treme values that grows exponentially with the number of consid-
ered time series.

3.1.3. Combination of Period Clustering and Segmentation

As mentioned in Chapter 2, clustering and segmentation can be
freely combined. The advantage of combining both methods is
shown in Figure 3.4. Here, an exemplary hourly resolved electricity
time series for one year was stepwise reduced to eight typical days
containing eight segments each, which results in 64 instead of
8760 time steps. Despite the aggregation to less than 1% of the
original number of time steps, the green curve in the lower right
subgraph still resembles the original one in the upper left graph.
Further, a combination of methods does not significantly increase
the root-mean-square error compared to single aggregation ap-
proaches either focusing on typical periods or segmentation.
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Figure 3.4. Time step reduction based on a combination of period clustering
and segmentation (taken from Hoffmann et al. [3])
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3.2. Representation Methods

Section 3.2 focuses on the representation step of the determined
cluster groups. As mentioned before, certain clustering algorithms
use specific representation methods. For example, in each itera-
tion of the k-means algorithm, the determined clusters are repre-
sented by centroids. Analogously, an iterative medoid representa-
tion is applied by the k-medoids algorithm and k-maxoids uses
maxoids for the representation steps. However, after an algorithm
has converged and the final clusters are determined, they can be
represented by an arbitrary point inside or even outside of the re-
spective cluster.

The maximum and minimum representation techniques as well as
the distribution preserving representation, which is a novelty within
the scope of this thesis, can be interpreted as methods that focus
on the consideration of additional information and are thus replac-
ing the manual addition of extreme periods. Further, the maximum
and minimum representation have a special function for error
bounding methods that will be presented in Section 3.4.1.

In the following, each of the men- 10 . W
tioned representation methods will = o o2 ‘;'.'.
[ ]
be analyzed for two exemplary E - . ®
. =}
data sets. The first dataset repre- 2 g6 o o° S".:,'.
. . . = ® ™
sents two one-dimensional attrib- < ‘e oY 2 '-.':{: o
utes normalized to values be- § %" g% ;g.?.?, , &%
= [ ]
tween 0 and 1 (minmax-normali- EM W Tat, YT
zation) resulting in a 2-dimen- 2 * . .P:..:
sional data cloud, which is used to 00 . . — -
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illustrate the respective method in Normalized Attribute 1 [-]

a representable way. The dataset  rigyre 3.5. An exemplary data
is depicted in Figure 3.5 and is cloud used fqrvisualizing the clus-
based on randomized data. The tering process

second dataset is the hourly resolved ENTSO-e profile for Ger-
many in 2010, which was used and normalized to 1 MW peak de-
mand. The respective duration curve as well as the profile during
a week in February are shown in Figure 3.6. In the following, this
dataset comprising a single attribute is clustered to typical days,
i.e. it is clustered in a 24-dimensional space as described in the
preceding section. This dataset has a higher practical relevance
because e.g. the impact of clustering on the duration curve can be
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examined. However, the illustration of the data space itself is not
possible due to its high dimensionality. Furthermore, both datasets
were grouped into eight clusters using Ward’s (deterministic) hier-
archical algorithm in order to guarantee an identical set of clusters
throughout all sections, which facilitates the a comparison among
the representation methods and isolates their impact.
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Figure 3.6. The yearly duration curve of an exemplary electricity profile and
its profile during a week in February

3.2.1. Centroids

The simplest and most frequently used method to represent a clus-
ter is to take its centroid as representative. The centroid of a cluster
is given by the arithmetic mean position of all points belonging to
the respective cluster in each dimension, i.e.:

1
Tkat |C_k| Z Xp,a,t (31)
peCk
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tion space, which is defined by the
minimum and maximum positions
of the data cloud in each direction.
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Figure 3.7. A clustered data cloud
including the cluster’s centroids

The reason for this is that all of the representatives lie within the
middle of their respective clusters. With respect to temporal aggre-
gation based on clustering, this leads to an underestimation of the
time series’ maximum values and an overestimation of its minimum
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values as predicted by the aggregated time series, which is exem-
plary shown in the left and right graph of Figure 3.8. As extreme
values in time series represent extreme situations an energy sys-
tem needs to handle, a centroid-based representation is likely to
lead to component designs that are not operationally feasible for
the extreme events in the original time series.
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Figure 3.8. The yearly duration curve of an exemplary electricity profile, its
profile during a week in February and the corresponding aggregated time se-
ries as predicted by eight typical days using hierarchical clustering and cen-

troids as representatives (taken from Hoffmann et al. [3])

According to Lemma 1 in Appendix G, the representation by cen-
troids minimizes the sum of squared distances between predicted
and aggregated time steps. Hence, this representation method
also minimizes the root-mean-square error despite of the underes-
timation of extreme values. As the root-mean-square error is often
used for evaluating the quality of an aggregation, but the extreme
values of the original time series are likely important for the system
design, this emphasizes that small input-based error metrics such
as the root-mean-square error do not necessarily indicate that the
design relevant characteristics of the time series are captured.

In summary, the representation by centroids is the method with the
minimum root-mean-square error, but simultaneously the method,
which suffers the most from a loss of design-relevant variance in
the aggregated time series.

3.2.2. Medoids

Another method to represent clusters is the selection of medoids.
A medoid is defined as the sample point within a cluster that mini-
mizes the sum of distances to the remaining points in the cluster.
In contrast to the centroid, a cluster’s medoid thus stems from the
original data set. The medoid is generally defined by that sample
point within a cluster that minimizes the sum of squared Euclidean
distances to all the other sample points assigned to that cluster
[48, 156], i.e.:
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picts the same clusters as Figure
3.7, but with medoids as repre-
sentatives that are illustrated as
rings with the color of their cluster. They now always encircle a
sample point, which emphasizes that they always coincide with a
point stemming from the original data set. Analogously to cen-
troids, they neither lie on the edges of the normalized clustering
space, which leads to an underestimation of extreme values if the
data set is represented by its medoids. This can also be observed
for the duration curve and the weekly profile of the exemplary elec-
tricity demand time series shown in Figure 3.10.

Normalized Attribute 1 [-]
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Figure 3.10. The yearly duration curve of an exemplary electricity profile, its
profile during a week in February and the corresponding aggregated time se-
ries as predicted by eight typical days using hierarchical clustering and me-
doids as representatives
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In comparison to the centroid-based duration curve, almost no de-
terioration of the match between the medoid-based duration curve
and the duration curve of the original data can be observed. How-
ever, a small deterioration with respect to the root-mean-square
error is always present due to the constraint that a medoid has to
stem from the original data set. This is also highlighted by the
weekly profile in the right graph of Figure 3.10, because the profile
based on aggregated data on February 16, 2016 is completely
matching the profile of the non-aggregated time series on that day,
which means that this day was chosen as a medoid.

In conclusion, the representation by medoids differs only slightly
from the representation by centroids, but the use of existing sam-
ple points or typical periods generally leads to a slightly higher in-
ner-daily variance. This could (but not necessarily) lead to more
robust system designs at a given temporal resolution at the cost of
deviating mean values, e.g. the average energy supply of a whole
year.

3.2.3. Maxoids

In contrast to the medoid, the maxoid is defined by Sifa et al. [184]
as the point that maximizes the sum of squared Euclidean dis-
tances to all the other points within a dataset, i.e.:

Np Na Nt
Xmaxoid = arg]gerrr}ax Z Z Z(Xp'a't - XLM)2 (3.4)
p=1a=1t=1
With
Na Nt
dist(Xpap Xpar) = Z Z(Xp'a't - lea,t)z (3.5)

a=1t=1

Furthermore, Sifa et al. [184] have shown that the maxoid of a
(general) dataset is thus the point which is furthest away from that
specific dataset’s centroid, which is also proven by Lemma 2. This
is a convenient feature of maxoids because the underestimation of
extreme values emerged as a potential drawback from the analysis
of the aforementioned representation techniques. Because every
cluster has to be represented by an own maxoid but it is preferable
to represent the clusters of a data set by the points that are farthest
away from all the other sample points of the whole data set, we
define a cluster’s maxoid as follows:
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Figure 3.11. A clustered data cloud

representatives of all clusters are  ‘inciuding the cluster’s maxoids
constrained to be points of the original data set, which is analogous
to the medoids representation. Moreover, all representatives strive
to maximize their distance to the data set’s centroid, which also
means that the representatives of the outer clusters form an ap-
proximation of a convex hull of the data cloud. In combination with
the k-maxoids algorithm, the inner clusters also tend to move to
the outer regions of the data cloud. However, this cannot be ob-
served here because the clusters were determined with Ward’s hi-
erarchical algorithm in order to guarantee comparability with the
other representation methods. Moreover, it can be seen that the
maxoid representation does not necessarily identify those cluster
points containing a minimum or maximum attribute value, because
it maximizes the circular (Euclidean) distance to the data set’s cen-
troid. However, it is noteworthy that the proposed representation
method succeeds in finding three out of four data points containing
an extreme value for one of the two attributes. Moreover, if we
consider both attributes as additive energy demands, it is obvious
that e.g. the determined representative of the yellow cluster might
be a more critical operation point than those of the brown and the
light red cluster in Figure 3.11.
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Figure 3.12. The yearly duration curve of an exemplary electricity profile, its

profile during a week in February and the corresponding aggregated time se-

ries as predicted by eight typical days using hierarchical clustering and max-

oids as representatives

With respect to the aggregation of the exemplary energy demand
to eight typical days using maxoids as representation it can be
seen that the duration curve of the aggregated time series deviates
stronger from the duration curve of the original time series com-
pared to the centroid and medoid representation. This, however, is
intended because each maxoid is the point of a cluster with the
maximum distance to all other points of the data cloud. On the
other hand, the extreme values of the maxoid-based aggregated
time series are significantly closer to the original time series’ ex-
treme values compared to the previously analyzed representation
methods. Nevertheless, it can also be observed that the maxoids
neither succeed to capture the overall maximum (and minimum) of
the duration curve. The reason for this is the high dimensionality
of typical periods in the clustering space: As a typical day for one
attribute of hourly data already consists of 24 dimensions in the
solution space, the outmost data point is unlikely to be an extreme
point in each of its dimensions. This finding is supported by the
previously investigated two-dimensional data cloud for which the
three maxoids coincided with three out of four data points contain-
ing an extreme value of one of the attributes. Finally yet im-
portantly, the weekly profile to be seen in the right part of Figure
3.12 reveals that the maxoids are analogously to medoids part of
the original data set because the profile of the aggregated time
series for February 10, 2010 matches with the original data on that
day.

To sum up, the representation by maxoids is a promising aggrega-
tion approach if a time series’ extreme values are of specific inter-
est. This is e.g. given for capacity expansion models that need to
lead to feasible system designs.
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3.2.4. Maximum- and Minimum Representation

The fourth option to represent clusters implemented within the
scope of this thesis is the representation by time step- and cluster-
wise minimums or maximums of the respected attribute. This ap-
proach is an essential part of the systematic definition of upper and
lower bounds of an aggregated energy system model’s optimal ob-
jective presented in Section 3.4. For this purpose, a set M is de-
fined, which contains those attributes, whose time steps should be
represented by the minimum values within each cluster. The time
steps of those attributes that are not contained in the dictionary are
represented by their maximum within each cluster. Mathematically,
this procedure can by described as follows with b, a vector of bi-
naries defining whether the time steps of an attribute should be
represented by its cluster’s minimum or maximum values.

Tiar = E‘é‘c‘l Xpat * bag + TaX Xpat (1=by) ¥V a€ALET (3.7)
With
lifae Mminimize
bat - {O ifag Mminimize veeT (38)
The approach to represent time 10 0
[}
steps by their minimum values — .:" <
i . o 08 2 Fog
within the cluster was first pro- o ‘e o o
posed by Bahl et al. [181] for the 2 ,,| o gt
time series of a heating and cool- & | “« 9?’, *e %%
. . o L)
ing demand. However, the attrib-  § 0434 :r{\.’ﬁ#. o %
ute-specific option to under- or g ° Tats ~;’- .
= e
overestimate attributes is a nov- 2 21 e o 0".'
elty presented in this thesis. Fig- 4, *

ure 3.13 emphasizes the impact of
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the proposed method on the two-
dimensional exemplary data set
for two attributes. Here, the mini- values for the other attribute as
mum value of each time step was time representatives
chosen as representation of Attribute 1 and the maximum value for
Attribute 2. Thus, the representatives lie in the upper left corner of
an imaginary rectangle around the respective cluster. Moreover, it

Figure 3.13. A clustered data cloud
including the cluster’s minimum val-
ues for one attribute and maximum
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can be seen that the representatives are not samples from the orig-
inal data set. Instead, each value of the representative’s time step
is taken from another sample within the cluster. It is noteworthy
that the representation of each cluster by a predefined extreme
value of the attribute leads to a systematic bias with respect to the
aggregated time series’ mean values.
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Figure 3.14. The yearly duration curve of an exemplary electricity profile, its
profile during a week in February and the corresponding aggregated time se-
ries as predicted by eight typical days using hierarchical clustering and the
minimum values per time step and cluster
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Figure 3.15. The yearly duration curve of an exemplary electricity profile, its
profile during a week in February and the corresponding aggregated time se-
ries as predicted by eight typical days using hierarchical clustering and the
maximum values per time step and cluster
Figure 3.14 and Figure 3.15 illustrate the two proposed represen-
tation options for the hourly resolved yearly electricity demand. As
the left picture in Figure 3.14 illustrates, the representation of each
time step within a typical period by the cluster’s minimum value at
that time step leads to a strict underestimation of the original time
series’ distribution of values. The same can be observed for the
weekly profile in the right graph of Figure 3.14: As indicated by the
weekly profile, the time series predicted by aggregated data using
the minimum representation defines a lower bound for all time

steps of the original time series.

The opposite can be observed for the representation by maximum
values as shown in Figure 3.15. Here, the duration curve based on
aggregated data strictly overestimates the original time series’
one. Moreover, the same holds true for the unsorted profiles of the
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original time series and the one based on aggregated data as
shown in the right half of Figure 3.15. Thus, the representation by
time step- and cluster-wise maximum values defines an upper
bound of the original time series. Analogously to the representation
by maxoids, these proposed aggregated methods obviously do not
strive to maintain the mean value of a time series. However, the
deviation between the predicted lower and upper bound is de-
creased by increasing the number of typical periods.

Finally yet importantly, it needs to be highlighted that the over- or
underestimation depending on the attribute is the only method that
requires additional knowledge of the modeler on the energy system
model. E.qg. for a robust system design, energy demand time series
need to be overestimated, while the capacity factors of renewable
energy sources need to be underestimated within the same model
run.

3.2.5. Distribution Preserving Representation

The last representation approach and simultaneously the most
complex one is a completely novel approach developed within the
scope of this thesis that strives to preserve two important statistical
features of the original time series: The mean and the sorted value
distribution (and therefore also the variance) of an attribute’s time
series. In particular, this means that not only the original time se-
ries, but also their sorted value distributions, which is commonly
referred to as duration curves in the energy sector, are approxi-
mated as close as possible. As mentioned in the introduction, ag-
gregation techniques can be found in literature that focus on ap-
proximating a time series’ duration curve instead of the time series
itself [24, 98, 185], but to the best of the author's knowledge, no
approach exists so far that focuses on approximating both simul-
taneously as close as possible.

Given a set of periods p for an attribute a with and inner-period

time steps t being assigned to a cluster k, i.e. X, = {Xp’a‘t}pec et
k

with the size |T| x |Cx|, we can sort the values of the set X, in
descending order, such that we yield the following sequence:

Kok = (xi € Xa|Xise < X5) (3.9)

Accordingly, each cluster has an own sorted value distribution for
each attribute consisting of |T| x |Cx| values. Note: The union of all
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clusters’ sorted value distributions thus yields the original sorted
value distributions (duration curve) of the attribute, i.e.:

K. = (% € UxXax |Xist < %)

(3.10)

iEN
Hence, the duration curve of the attribute’s original time series is
well approximated if the sorted value distributions of the respective
clusters are properly represented. For that, we now average every
|Cx| values of the duration curve of each cluster so that it results in
a sequence consisting of |T| elements:

_ 1 G(+1)X|Ckl-1F
Yok = (Yi = |C_k|zi=i><|ck|k Xa,k(l)

Y $y) (3.11)
The sequence ?a‘k is containing the |T| values that are meant to
form the representative’s values for the |T| inner-period time steps
of a specific attribute in a specific cluster. However, their order to
represent the original periods assigned to the specific cluster opti-
mally are still unknown. For this, we define a mixed-integer linear
program that orders the values within the set Y, in such way that
the sum of squared distances to all |Cx| = K values at a specific
time step in X, are minimized. For y; € Y, and Xjp € Xax With ,j €
T and p € Cy, the optimization problem thus yields:

IT| ITI

: 2
mmz Z Z llys = x5l x 235

i=1 j=1 peCg
IT|

st my=1Y] (3.12)

i=1
IT|

Zzi_jZIVi

j=1
z;; €{0,1} V1]
Here, the first equation is the objective, i.e. to minimize the sum of
squared distances of the |T| values y; to the |T| x [Cy| values x; .
zij is a |T| X |T| matrix that defines which value y; is mapped to
which inner-period time step in |T| so that the sum of squared dis-
tances to all |Cx| = K values at that specific time step in X,y are
minimized. The side constraints define that only exactly one value
y; is assigned to one time step in |T|.
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As Lemma 3 shows, the optimal assignment of the y; can also be
obtained by solving the mixed-integer linear program

Tl Tl
. 2
mmz Z”Yi — " x 2
i=1 j=1
Il
s.t.Zzi_j =1Vj (3.13)
Il
:E: zjj=1Vi
j=1
z;j € {0,1}
With
1
ST Z Xjp (3.14)

peCk

As Lemma 4 proves that the relaxation of this mixed-integer linear
program is a linear program and hence convex. Therefore, each
mathematical operation that improves the objective is an iteration
towards the optimal solution. As Lemma 5 illustrates, swapping
two columns within z;; does not violate the mixed-integer linear
program’s constraints. Furthermore, it is shown for a single swap
that the optimal solution is obtained by assigning the iy, biggest
yi € Yax to the jy, biggest Kj € M, . Accordingly, the optimization
problem can be avoided with a simple sorting algorithm.

To summarize the mathematical findings, Figure 3.16 and Figure
3.17 illustrate the steps that are needed to determine distribution
and mean-preserving representatives as flowchart and the corre-
sponding graphical interpretation.
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Figure 3.16. The flow chart for the distribution preserving representation

method

“For a specific attribute a, sort all values of those periods
that are assigned to a specific cluster k and yield the clus-
ter's duration curve X, . This is illustrated by the green du-
ration curve in Figure 3.17.

. Average every |Cy| values of the cluster’s duration curve X,
in order to obtain the duration curve of the cluster’s repre-
sentative Y,y, which is represented by the brown line in Fig-
ure 3.17.

Simultaneously, calculate the mean (i.e. centroid) profile
M, x for the specific attribute a using all periods assigned to
cluster k for each time step represented by the dark blue line
in Figure 3.17.

Determine the mean profile’s duration curve I\7Ia,k by sorting
its values and extract the order of time steps t in which they
appear in the sorted curve M, . The sorted mean profile is
represented by the yellow line in Figure 3.17.

. Assign the index order from M, to the sorted values of Y,
and sort them such that the attached indices of Y, are in
ascending order. The result is the representative profile Y,
and is depicted as red line in Figure 3.17.” (Hoffmann et al.

[3])
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Figure 3.17. The graphical interpretation of the operations in Figure 3.16
(taken from Hoffmann et al. [3])

It is worth mentioning that the stepwise averaged duration curve
Y., which is represented by the brown line in Figure 3.17, is also
slightly underestimating the variance of the cluster’s original dura-
tion curve X, given by the green line because of the averaging
itself which, as shown by Lemma 1, is always minimizing the vari-
ance of the values being averaged. Therefore, the proposed
method is only approximating the original time series’ variance.
Furthermore, this effect is increasing for a larger number of values,
i.e. larger |Cy|. This goes along with an underestimation of the max-
imum and overestimation of the minimum values. However, when
comparing the stepwise averaged duration curve ?a,k to the dura-
tion curve of the mean profile 1\7Ia,k given by the yellow line in Figure
3.17, it is obvious that the cluster’s original variance is much closer
approximated by Y, than by M, .
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The difference between Y, and 10 TS
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finding is supported by Figure 00 02 o4 s  os 1o
3.18, which shows the result of the Normalized Attribute 1 [-]
proposed approach for the exem- Figure 3.18. A clustered data cloud
plary data st that was already ol e custers sooror
used in the prior sections. As it resentatives

can be seen, the clusters’ representatives coincide with the clus-
ters’ centroids, because the attributes of this data set consist of a

single time step only.

In contrast to that, the hourly resolved electricity profile was aggre-
gated to typical days, i.e. |T| = 1. Accordingly, the advantage of
the proposed representation method with respect to the approxi-
mation of the original time series’ duration curve is clearly shown
in Figure 3.19.
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Figure 3.19. The yearly duration curve of an exemplary electricity profile, its
profile during a week in February and the corresponding aggregated time se-
ries as predicted by eight typical days using hierarchical clustering and the
approximately distribution preserving representation method (taken from Hoff-
mann et al. [3])

As the left graph of Figure 3.19 illustrates, the method proposed in
this section clearly outperforms all previously introduced methods
with respect to their capability of preserving the original time se-
ries’ value distribution. However, the weekly electricity profile in
the right half of Figure 3.19 reveals that the inner-daily variance is
slightly overestimated because the proposed method is designed
to preserve the variance of the clusters, not the one of candidate

days individually. As different days might have a low inner-daily
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variance, but differ from each other with respect to their 24h-mean,
they might imply a strong common variance when they are as-
signed to the same cluster. Furthermore, it needs to be highlighted
that the root-mean-square error between the unsorted original and
predicted time series based on this representation method is big-
ger than that of the centroid-based representation due to Lemma
2. Finally yet importantly, the order for distributing the values in ?a,k
differs for each attribute. Therefore, a correlation between certain
attributes might deviate from the one of the original time series to
a certain degree.

In conclusion, the method succeeds in approximating the extreme
values of the time series without creating a systematic bias to ei-
ther side and neither increases the number of necessary typical
periods, nor requires specific information on the attribute type.
Moreover, it is an original contribution of this thesis and its effec-
tiveness will excessively be validated for the test systems intro-
duced in Section 4.1.

3.2.6. Summary of Representation Methods

In conclusion, the five introduced representation methods focus on
different purposes with respect to time series aggregation for en-
ergy system models: The first two, i.e. the centroid- and medoid-
based representations, are well-known methods that are ade-
quately explored in literature and focus on the conservation of
mean values only. However, the approach to separate the final
representation step from those within the aggregation process a
novelty of this thesis.

The maxoid representation is a diametrically opposed approach,
which aims at approximating a convex hull of the clustered data
cloud with a subset of representatives. Although the k-maxoids al-
gorithm was introduced in 2015 by Sifa et al. [184], it has not been
applied in the field of energy system models before.

To the best of the author's knowledge, the systematic underesti-
mation of time series using aggregation and a representation by
minimum values was first introduced by Bahl et al. [181]. Yet, the
free option of attribute-wise under- or overestimation depending on
the attribute’s meaning for the energy system model and whether
an upper or lower bound for the model is desired is an extension
to the preexisting concepts.
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Lastly, the approximately distribution-preserving representation
method is a fundamental novelty, which will be benchmarked
against the aforementioned methods in order to estimate its effec-
tiveness.

Finally, none of the proposed methods needs additional extreme
periods, which would increase the computational load. Accord-
ingly, the combinatorial problem of adding extreme periods for a
large number of time series as described in Chapter 2 is avoided.
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3.3. Error and Complexity Indicators

As highlighted before, clustering is generally striving to minimize
the deviation between an aggregated dataset and the original da-
taset. This feature makes it superior to other temporal aggregation
techniques, but it also drove the development of error metrics,
which strive to quantify the error that occurs when a data set is
reduced. Moreover, an intrinsic motivation for time series aggrega-
tion in general is to derive approximate solutions of energy system
models, which would be computationally intractable in the fully re-
solved case. As the fully resolved case is unknown, the deviation
of the aggregated solution from the optimal solution of the fully re-
solved energy system is often unknown. This paradox further mo-
tivated the application of clustering indicators in place of a not
quantifiable deviation between the optimal solution of the aggre-
gated optimization problem and the fully resolved optimization
problem. However, to this end, the validity of clustering indicators
for quantifying the aggregation-induced deviation of the energy
system’s optimal solution from the reference case has never been
assessed in the literature. The following section addresses this
question by introducing an approach for assessing the suitability
of a clustering indicator for implying a suitable temporal aggrega-
tion of the optimization problem if the fully resolved system is small
enough to be solved.

As stated above, the actual error that is made due to using aggre-
gated time series can only be determined after the energy system
optimization has been executed for both, the aggregated and the
fully resolved case. We therefore refer to these error metrics as a
posteriori error indicator. In contrast to that, clustering indicators
exclusively estimate the error between the aggregated time series
and the fully resolved time series. Accordingly, these errors can be
determined without an optimization of the energy system model.
For that reason, we refer to them as a priori error indicators in the
following.

Figure 3.20 illustrates the definitions of a priori indicators and a
posteriori indicators. Further, it depicts the tools used for perform-
ing the aggregation tsam and the tool for performing the energy
system optimization FINE.
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Figure 3.20. The different definitions of a priori indicators comparing evaluat-
ing aggregated input data to the model and a posteriori indicators accessing
output data of the model (taken from Hoffmann et al. [2])

As temporal aggregation is al-
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itself. For that reason, error in-
' dicators are complemented by
s S e scsSicde:  complexity indicators. In_that
strictly dominates the first one way, aggregation techniques
can be evaluated independently from the individual level of aggre-
gation, e.g. by using the criterion of Pareto-optimality. This is ex-
emplary illustrated by Figure 3.21, in which aggregation method 2
strictly dominates aggregation technique 1 with respect to its trade-
off between complexity reduction and accuracy preservation. This
means that an aggregation technique that consistently leads to
smaller deviations from the fully resolved reference case for a
given runtime or other complexity indicators of interest than an-
other aggregation technique is a superior one.

Remaining Complexity
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3.3.1. A Priori Indicators

A priori indicators are exclusively focus on input data and compare
the original time series to those predicted by the aggregation pro-
cess. However, they cannot capture the importance of the individ-
ual time series for the optimized energy system, which is an out-
come of the energy system model. Due to the penny switching ef-
fect, a smaller or bigger aggregation-induced error of one time se-
ries, which is connected to a specific technology, might moreover
lead to the preference of another technology. Therefore, an itera-
tive approach of weighting different time series based on their eco-
nomic impact on a preliminarily solved aggregated problem does
not converge. For this reason, it is generally assumed in literature
that all aggregated time series contribute equally to deviations of
the aggregated energy system optimization from the fully resolved
case. In the following, some a priori indicators are introduced that
are frequently used in clustering or time series analysis. Among
them, the root-mean-square error (RMSE) between the original
time series and the aggregated time series [48, 63] or average in-
ter-cluster-distance [74, 143] and the root-mean-square error of
the respective duration curves [26, 42, 61, 63, 97, 98, 100, 147,
178, 185] have gained a great popularity. Further, the Mean Abso-
lute Error (MAE) is traditionally used as an alternative to the root-
mean-square error and is therefore considered as well.

3.3.1.1. Root-Mean-Square Error (RMSE)

The root-mean-square error is both, directly addressed by the ob-
jective function of many clustering algorithms such as the k-means
and k-medoids algorithm and is moreover common for estimating
the prediction error of time series. Therefore, it is frequently used
in in the context of temporal aggregation for energy system optimi-
zation as well.

“In the following, we define the root-mean-square error of an ag-
gregated time series as follows:

RMSE = \/mz Z Z(xp,t — %)’ (3.15)

ICl peCy ITI

with |P| the number of periods, |T| the number of time steps per
periods and |C| the number of representative periods (typical days
or typical time steps). x,,; is the value of the original time series at
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a specific time step, e.g. for typical days, x;¢ is the value of a time
series on January 3" at 6 a.m. and %, is the value of the k™ clus-
ter, which represents the respective value x,; in the aggregated
time series. For multiple time series (attributes) a, we form the root-
mean-square error as follows:

RMSEqp, = szz DD Crape = Far)” = jﬁ;RMSEé (3.16)

IA]IC] peCy ITI

Figure 3.22 depicts the calculation of the root-mean-square error
for a single attribute. Here, two days of exemplary data consisting
of 24 hourly time steps each are represented by a single typical
day. The squared difference between each time step and its re-
spective aggregated time step is used for calculating the root-
mean-square error.” (Hoffmann et al. [2])
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Figure 3.22. lllustration of squared summands used for calculating the root-

mean-square error (taken from Hoffmann et al. [2])

3.3.1.2. Root-Mean-Square Error of the Duration Curve (RMSEpc)
Duration curves are traditionally used in energy system optimiza-
tion, e.g. because load duration curves have a big impact on the
optimal full load operation time of different supply technologies.
Therefore, many publications [26, 42, 61, 63, 97, 98, 100, 147,
178, 185] evaluate the effectiveness of an aggregation procedure
by comparing the duration curve of the fully resolved time series
against the aggregated one.

“To calculate the root-mean-square error of the aggregated time
series’ duration curves (RMSEpbc), the values of the clusters’ rep-
resentatives are repeated according to the respective cluster size
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[Cxl, i.e. the number of days a typical day represents or the number
of time steps a typical time step represents. If the values of the
original and predicted time series are sorted, we receive the dura-
tion curves xpcs and Xpcs. Accordingly, the root-mean-square error
of a duration curve is calculated as follows:

1
RMSEpc = \]ﬁ;(xnc,s - iDc,s)z (3.17)
With |S| the number of total time steps. For multiple time series,
the root-mean-square error of the duration curves is calculated
analogously:

1 - 2 1
RMSEpc tor = Jm; ;(XDC,&S —Rpcas) = JW; RMSEfc.  (3.18)

Figure 3.23 illustrates the calculation of the root-mean-square er-
ror based on the duration curve for a single attribute based on the
same exemplary time series as in Figure 3.22. In contrast to the
calculation of the root-mean-square error, the root-mean-square
error of the duration curve is calculated based on the sorted time
series. Accordingly, the root-mean-square error of the duration
curve is smaller than the root-mean-square error, which becomes
evident by comparing the length of the blue arrows in both figures.”
(Hoffmann et al. [2])
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Figure 3.23. lllustration of squared summands between duration curves used
for calculating the root-mean-square error of the duration curve (taken from
Hoffmann et al. [2])
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3.3.1.3. Mean-Absolute Error (MAE)
The MAE is the last error indicator, which uses the average error
instead of the squared error, i.e.:

1 .
MAE :WZ Z lep,t_xk,tl (3.19)
ICl peCy ITI
And
1 o1
MAE, = mz Z Z lea,p,t — o] = WMAEa (3.20)

|AlIC| peCy IT|

Figure 3.24 depicts the calculation of the MAE for the same exem-
plary time series. In contrast to the root-mean-square error, the
absolute simple differences between the original and aggregated
time steps are taken as summands for the calculation of the root-
mean-square error.

Note: Because of
2 — —2
S|RMSE? = ZlAXS| - Z(IAxsl +18x,| — TAx3])
S S

_ _ - 2
= DT+ 27851 ) (1ax] ~ TAxT) + ) (18] - TAx]) (3.21)

_ _ 2 _
= |SI]Ax,]? +Z(|AXSI —18x]) = ISI[Ax,[* = |SIMAE?
S

< RMSE > MAE
the MAE is always smaller than the root-mean-square error.
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Figure 3.24. lllustration of absolute summands between duration curves used
for calculating the MAE

As discussed earlier, temporal aggregation in the narrow sense
fully relies on the reduction of the number of time steps considered
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by the energy system model. Accordingly, the only meaningful
complexity indicator for aggregated time series is the number of
total time steps in the aggregated time series in relation to the orig-

inal time series, i.e.:

CIPIx 1]
Icomplexity,pre - T

(3.22)

As all aggregations are performed on one year of hourly data, the
total number of time steps always equals |S| = 8760. Accordingly,
the number of total time steps in the aggregated time series |P| X
[T| can be directly compared between different methods.

3.3.2. A Posteriori Indicators

A posteriori indicators serve to analyze the result of an energy sys-
tem optimization based on aggregated data compared to the fully
resolved reference case. Because an optimal objective is defined
by a set of optimized variables, all variables as well as the objec-
tive value in the optimal point of the aggregated solution system
could be used for estimating the deviation from the reference case.
From a political and engineering perspective, the build capacities
of the system’s components and the total annualized costs are of
special interest. However, as it was shown earlier, energy systems
are likely to suffer from the so-called penny switching effect, which
means that the optimal size of components is highly sensitive to
slight deviations in the input data, if the system comprises different
component types with comparable functions and prices as shown
by Example 6 in Appendix 1.2.2.1. From a mathematical point of
view, it is therefore not necessarily meaningful to use optimized
variables such as built capacities as an indicator for the quality of
an aggregation, if many system configurations exist, which are
close to cost optimality. Therefore, the total annualized costs re-
main as dominant option for error quantification for a diversity of
models.

Of course, a major purpose of energy system models is to provide
information about cost-efficient system configurations and can ac-
cordingly not be neglected. Moreover, the energy systems used for
validation of the presented methods are also analyzed with respect
to built capacities, because a strong variability of system designs
despite of a small deviation of the total annualized costs indicate
the penny switching effect and that many system designs might be
cost-efficient.

88



3.3. Error and Complexity Indicators

With respect to a posteriori complexity indicators, temporal aggre-
gation is capable of reducing the model’'s complexity in many re-
gards: Due to the reduction of considered time steps, the number
of operational variables and constraints are likewise reduced. In
the solving process, this affects multiple aspects such as solving
time, data storage consumption and ultimately energy consump-
tion as well. In times of large computer clusters with large random
access memories, the most restrictive limitation to large energy
system models are non-converging or incrementally slow converg-
ing optimizations, i.e. commercial solvers such as Gurobi fail to
handle the model size properly. Accordingly, the most crucial com-
plexity indicator for solving the model is the runtime because it
cannot be addressed by using a computer with larger memory. Yet,
if models should be solved on desktop PCs, storage consumption
can also become an interesting aspect to be addressed by tem-
poral aggregation.

Table 3.1 summarizes the indicators and indicator types discussed
in the previous two sections depending on whether they focus on
input data or output data of the optimization model. Further, it dis-
tinguished whether they indicate an aggregation-induced error or
the complexity of the data or the model itself.

Table 3.1. Overview of the discussed indicators and indicator types

Model Stage

e RMSE ¢ Relative Cost Deviation
= e RMSEpc e Relative Capacity Devia-
e o MAE tion
% o Number of Total Time e Runtime
o Steps e Data Storage Consump-
c e Typical Periods tion
e Segments

3.3.3. Quantifying the Quality of A Priori Indicators

In order to assess the validity of using an a priori indicator for as-
sessing the quality of an aggregation for energy system models,
mathematical connections between an a priori error and the intro-
duced a posteriori indicator must be determined. The connection
between both indicators is obviously not strict as not only the input
time series, but also component specific prices drive the optimal
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solution of an arbitrary energy system. As an example, we can con-
sider one of the prior minimal examples with two rival technologies
(wind and solar). Even though a big deviation between the aggre-
gated and the original solar irradiance time series might occur,
which would be indicated by bad a priori indicators, this would not
necessarily lead to a big deviation of the optimal objective, e.qg. if
solar electricity is too expensive and solar panels are thus not part
of an optimal solution.

Accordingly, the only meaningful approach for evaluating the qual-
ity of an a priori indicator is a statistical one. For this, e.g. its cor-
relation to the a posteriori indicator can be estimated. For this, a
large set of model configurations needs to be optimized with differ-
ently aggregated input data, e.qg. for different numbers of typical
days and different numbers of segments. In this way, the a priori
and a posteriori indicators can be seen as random variables that
are connected by an unknown process (the aggregation itself).
One way of measuring the correlation between the a priori and a
posteriori error indicators is to use the Pearson correlation coeffi-
cient, which can be calculated by:

COV(Ipre, Ipost) _ E ((Ipre - qure) (Ip05t - quost))

p(lpreJ lpos'c) =

O-Ipreo-lpost O-Ipreo-lpost
Nsample
_ 1 Zi=1 (Ipre,i - ulpre) (Ipost,i - UIpost) (323)
Nsample 0-Ipreo-lpost
Nsample

__1 S B
- pre,i post,i
Nsample

i=1

With
Ipre = f(#TD, #Seg) Tpost = f(#TD, #Seg)
1 Nsample 1 Nsample
e =5 . Tpres g =—— . lposts
P Nsample = pred post Nsample = postt
Olpre Nsample
| 2 (3.24)
Nsample O_Ipost = (Ipost,i - ulpost)
1 2 Nsample =
= N Z (Ipre,i - ulpre)
sample i=1 Iz _ Ipost,i - Hlpost
Iz _ Ipre,i - l»llpre post! Glpost
pre;i — Ulpre

Here, Ngample describes the sample size of model configurations
used for statistically evaluating a relationship between a priori and
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a posteriori indicators. It is e.g. given by the total number of aggre-
gated system configurations based on aggregated time series
given by different numbers of typical days and segments, i.e.
Ngample = #TD - #Seg. The correlation coefficient offers a compact
option to quantify the validity of an a priori indicator forecasting the
a posteriori indicator with a value range of [—1,1] with 1 indicating
perfect correlation, —1 indicating perfect anti-correlation and 0 in-
dicating a meaninglessness of the chosen a priori indicator.

The Pearson correlation coefficient and the proposed visual anal-
ysis only account for linear dependencies between two statistical
variables, but it is to this state unknown whether this assumption
is justified. A more general approach is to use Spearman’s rank
correlation, which measures a monotonic correlation between to
statistical variables only instead of a linear one. Spearman’s cor-
relation coefficient is equivalent to the Pearson correlation coeffi-
cient between the rank variables of two statistical measures, i.e.:

cov (rglpre, rglpost)

O, O,
rgIpre rglpost

0 (Fiprer TB1pose) = (3.25)
Accordingly, Spearman’s correlation coefficient does not compare
absolute values of two stochastic variables with each other. In-
stead, it evaluates whether they appear in the same order when
being ordered by size. Therefore, every monotonic correlation be-
tween two stochastic variables can be efficiently investigated using
Spearman’s rank correlation.

The proposed methods allow for a visual and a statistical analysis
of the quality of a priori indicators for energy system models that
are generally applicable, if the reference case is solvable. In this
way, it is possible to derive the most meaningful a priori indicators
for small systems and to use them for models that are more com-
plex if it is assumed that their techno-economic structure is similar.

3.3.4. Optimal Aggregation Based on A Priori Indicators

As a two-fold clustering to fewer typical days containing fewer time
steps each leads to numerous possible aggregation configurations
with a comparable number of typical time steps, it is important to
find a good trade-off between the number of typical days and the
number of segments within each typical day. For that reason, an
algorithm was developed within the scope of this thesis, which
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searches for a good combination of typical days and inner-daily
segments based on an arbitrary error indicator. The algorithm is
based on three assumptions:

1. The runtime of the energy system model increases strictly mo-
notonously with the number of total time steps, i.e.:

H#TD, - #Seg, < #TD, - #Seg,

& runtime(#TD; - #Seg,) < runtime(#TD, - #Seg,) (3.26)

2. The chosen aggregation-induced deviation of the optimized so-
lution from the fully resolved case is a strictly monotonous func-
tion of the error indicator, i.e.:

Ipre1 < lprez © lpost1 < Ipost2 (3.27)

3. The chosen error indicator decreases monotonously with either
both, the number of typical periods and the number of segments
per typical period, i.e.:

#TD; < #TD, A #Seg; < #Segy = Ipre = Ipre2 (3.28)

Concisely, this means that a larger number of typical periods and
segments increases the runtime due to assumption 1, and de-
creases both, the score of the chosen error indicator due to as-
sumption 3 and therefore the deviation of the optimized solution
due to assumption 2. In Section 4.2, these assumptions are quan-
titatively assessed for three different models using Spearman’s
correlation coefficient.

However, the total number of time steps can be increased by either
increasing the number of typical periods or the number of seg-
ments per typical period. We therefore adapt the method of steep-
est descent studied by Haskell [186] and adapt it to the N2-space
of the number of typical days and segments.

Let p,3,t denote the number of aggregated periods, segments and
total time steps. Then, the method of steepest descent of a chosen
error indicator I, for an incremental increase of the total number
of time steps is given by:

En+1 = fn - SVIpre(fn) (329)

92



3.3. Error and Complexity Indicators

with 6 > 0 as an incremental increase of the total number of time
steps and V:= % =% the partial differential of the total number of

time steps. As this equation is one-dimensional, it also equals the
total differential df. Because of:

w)

o1 d 9 d 14 1 9
t—p-S@E—E d_[3+% %—g%‘i‘g% (330)
We can rewrite:
X . 1 0lpe(t)) 1 Blye(ty)
tnﬂ_tn—a(g- 55 TP a8 (3.31)

As the number of typical days and the number of segments per day
are discrete, the method of steepest descent has only two possible
directions to move towards the minimum error indicator, namely
dp > 0 and ds > 0 due to the monotony assumption 3. As the steep-
est descent is chosen, the equation changes for the discrete case
to:

£ -1 + 8- min (Ipre(ﬁn+1-§n) - lpre(f’n: §n) Ipre(ﬁn- §n+1) - Ipre(ﬁnr §n)>
n+l — 'n :

§n : (ﬁn+1 - ﬁn) ’ ﬁn : (§n+1 - §n)
=1 +6&-min <Ipre(ﬁn+1v§n) - lpre(ﬁn'gn) Ipre(ﬁnv§n+1) - Ipre(f)nvgn)> (3 32)
" f(I/jn+1v §n) - f(f’n' §n) ’ f(f’nv §n+1) - f(I/jnl §n) '
Al Al
:'En+8~min< Pe — )
At pn+1 At Sn+1

This means that the number of total time steps is always increased
into the direction with the most negative gradient of the a priori
indicator over the number of total time steps. The directions are
either an increase of typical days or an increase of segments per
typical day. The increment § is always taken into the direction with
the most negative gradient, i.e. it is either an increase of the num-
ber of typical days or an increase of the number of segments. A
general problem of gradient-driven minimization algorithms is the
optimal step width of §. As the position of the minimum error indi-
cator is known a priori, i.e. 365 days and 24 segments for the non-
aggregated case and the convergence of I,..(p,, 3,) resembles a
two-dimensional hyperbolic function for the error indicators chosen
in this thesis, a step width ratio increasing by a factor of v/2 in each
direction proved effective in our case studies.
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Figure 3.25 maps three subsequent steps of the algorithm as de-
scribed above to find the fastest decrease of an a priori error indi-
cator over an increase of the total number of time steps given by
the product of the number of segments and the number of typical
days.
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Figure 3.25. Three subsequent steps of the proposed algorithm to find the
optimum number of segment and typical days (taken from Hoffmann et al. [3])
As the maximum number of segments or typical days are given by
the length and the inner-daily resolution of the original time series,
the optimal pathway is bounded in either direction. Therefore, once
the maximum number of typical days or segments was reached,
the algorithm is limited to increase the temporal resolution into the
remaining direction. As soon as the original temporal resolution
was reached, the algorithm is terminated. The respective flow chart
of the algorithm is depicted in Figure 3.26.
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Figure 3.26. The optimal pathway algorithm from minimum to maximum reso-

lution (taken from Hoffmann et al. [3])
It is worth mentioning that the maximum temporal resolution of a
model is defined either by the respective model size or according
to the modeler’s preferences with respect to a reasonable solving
time. Therefore, the optimal pathway algorithm can optionally be
terminated as soon as it reaches an aggregation configuration
whose total number of time steps surpasses a user-defined thresh-
old if higher resolved configurations are not of interest of compu-
tationally infeasible.

In order to visualize the proposed procedure, Figure 3.27 shows
the algorithm for the root-mean-square error of two single time se-
ries, a global horizontal irradiance and a wind speed time series.
As clustering method, Ward’s hierarchical algorithm was chosen
and the found clusters were represented by their centroids. As it
can be seen, the step width with which the number of typical days
and segments is increased roughly corresponds to the proposed
ratio of ¥2. The red path highlights the steps that the algorithm
takes in order to decrease the root-mean-square error of the clus-
tered time series as fast as possible. The white numbers within the
red fields represent the number of total considered time steps. Ac-
cordingly, the algorithm starts at one typical day considering only
one segment, i.e. one time step and gradually increases up to 8760
time steps, which means that the time series is not clustered at all.
Accordingly, the root-mean-square error is zero for the fully re-
solved case.
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Figure 3.27. The proposed algorithm for the root-mean-square error (RMSE)
of an exemplary global horizontal irradiance and a wind speed profile (taken
from Hoffmann et al. [3])

As it can be seen, the optimal nhumber of segments and typical
days with respect to the chosen error indicator differs significantly
for a given number of total time steps: For a solar time series, the
algorithm first increases the number of segments in order to reduce
the root-mean-square error rapidly and then stagnates at 12 seg-
ments per typical days. Then, the number of typical days is in-
creased to reduce the root-mean-square error further. As ex-
pected, the algorithm ends at the total minimum of the root-mean-
square error, i.e. at the fully resolved configuration. This pathway
is chosen by the algorithm because solar profiles have a strong
inner-daily variance on the one hand and a strong daily pattern due
to the day-night-cycle on the other hand. Accordingly, an increase
of the number of inner-daily time steps reduces the aggregation-
induced error faster than an increase of typical days. However, this
behavior changes at 12 segments per typical day. As solar profiles
are approximately zero during nighttime, the two-fold clustering al-
gorithm can choose very few time steps for the nighttime, which
refers to about 50% of a day’s total number of time steps. Accord-
ingly, increasing the number of typical days in order to reduce the

aggregation-induced error further becomes more advantageous.

For the wind time series, the algorithm chooses a fundamentally
different pathway to decrease the root-mean-square error as fast
as possible. Here, the number of typical periods is first increased
while the number of inner-daily segments remains very low with no
more than three segments for up to 192 typical days. After that, the
number of segments is gradually increased. This can be explained
by the comparably smooth but aperiodic wind profile. As wind does
not have a daily pattern, local extreme values of the time series
can appear at any daytime. Therefore, a high number of typical
days is needed in order to approximate the set of possible inter-
96




3.3. Error and Complexity Indicators

daily wind profiles accurately. On the other hand, a relatively small
number of inner-daily time steps is sufficient due to the relatively
smooth profile. Moreover, the right plot in Figure 3.27 reveals that
the number of segments has almost no impact on the aggregation-
induced error, if an insufficient number of typical days is chosen.
The reason for this is that the inner-daily profiles become even
smoother if too many daily wind profiles are assigned to the same
typical day cluster. This means, that a large number of typical days
needs to be chosen before the number of segments has an impact
on the aggregation accuracy.

As mentioned before, all time series of an energy system model
are aggregated to the same number of typical days and segments
per typical day. Accordingly, the optimal pathway is determined
based on the total root-mean-square error that represents the error
of all time series. Therefore, the algorithm chooses a trade-off be-
tween both extreme cases presented in Figure 3.27 if capacity fac-
tor profiles for both, photovoltaic panels and wind turbines are con-
sidered simultaneously. However, it is emphasized that different
technologies need different temporal resolutions in order to be
properly modeled.

97



3. Methodology

3.4. Methods for Systematic Over- and Underestimations

As temporal aggregation techniques are only capable of providing
approximations of the original problem, it is usually not possible to
quantify the exactness of the applied method if the fully resolved
reference model is not solvable due to its size. Therefore, aggre-
gation techniques have emerged in the literature, which can guar-
antee that the optimal objective of the reference model is either
over- or underestimated. The concept of these estimators, which
is also referred to as upper and lower bounds, is depicted in Figure
3.28.

Objective
(Total Annual Costs)
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° @® Lower Bound
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Figure 3.28. The concept of upper and lower bounds to the estimate the max-
imum deviation from the optimal objective function value of the fully resolved
reference case
By solving the energy system twice using aggregation techniques
that provide an upper and a lower bound to the original problem, it
is guaranteed that the objective function value of the fully resolved
system lies in between both bounds. Accordingly, the maximum
deviation of it from both bounds is given by the difference between
both bounds represented by ¢ in Figure 3.28. In that way, the max-
imum error made by temporal aggregation can be quantified de-
spite of the fact that the optimal solution of the fully resolved model
is unknown. This so-called optimality gap is generally defined as
percentage of either the upper or the lower bound in the literature.
Section 4.4 will use the definition given in Equation (3.33) with zLB

and z*LB representing the optimal objective function values of the
upper and lower bound, respectively.
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gap = 2UB L8 (3.33)

P
71

As optimality for convex minimization problems implies that there
exists no feasible solution with a smaller objective function value,
the lower bound always yields a solution, which is infeasible for the
original problem. In case of energy system models, this would e.g.
mean that unit capacities obtained by a lower bound aggregation
are undersized. On the other hand, upper bounds of minimization
problems can be feasible, but suboptimal solutions, if large sets of
constraints and variables are carefully replaced by fewer but more
restrictive ones.

As shown in Appendix H, energy system models created using the
FINE modelling framework can result in either linear programs,
mixed-integer linear programs or quadratic programs. Likewise,
the reasons for the complexity may differ. As the energy system
models introduced in Section 4.1 comprise linear programs and
mixed-integer linear programs, the following Sections 3.4.1 and
3.4.2 focus on determining upper and lower bounds for linear pro-
grams (LPs) and mixed-integer linear programs (MILPs) using tem-
poral aggregation. For the sake of brevity, they only summarize
theoretical findings that are deduced in Appendix |, which also pro-
vides numerous examples and a generally applicable workflow for
determining upper and lower bounds for a specific energy system
model.

3.4.1. Upper and Lower Bounds for LPs and MILPs
The first option to obtain upper and lower bounds using aggregated
data is based on modifying aggregated time series in such a man-
ner that the desired bound is directly obtained by using aggregated
time series. Therefore, this method is equally applicable to both,
linear programs and mixed-integer linear programs.

In order to obtain upper bounds to the original problem based on
aggregated data, the time series used for the respective system
can be divided into cost-driving and cost-decreasing time series,
which is discussed in detail in Appendix 1.2.2. For example, cost
and energy demand time series increase the costs of the energy
system model if their values are overestimated. In contrast to that,
capacity factor time series increase the system costs if they are
underestimated because the corresponding net capacities need to
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be increased in order to provide the same amount of energy as
before. For an individual over- and underestimation of time series
in the aggregation process, the maximum and minimum represen-
tation introduced in Section 3.2.4 can be used. Table 3.2 lists all
time series types that can be used as input for the energy system
modelling framework FINE and whether they need to be over- or
underestimated in order to obtain an upper bound to the original
problem.

Table 3.2. Time series to be over- or underestimated in order to receive an
upper bound of the fully resolved reference system

teCy teCy,

Capacity factors x
Conversion factors x
Demands x
Supplies ®
Costs ®x
Revenues x

In order to obtain an upper bound to the fully resolved model using
aggregated data, the described over- and underestimations of the
individual time series can be inverted as shown in Table 3.3.

Table 3.3. Time series to be over- or underestimated in order to receive a
lower bound of the fully resolved reference system

teCy, teCy,

Capacity factors ®
Conversion factors ®
Demands x
Supplies ®
Costs x
Revenues ®

It is noteworthy that a tighter lower bound to the original optimiza-
tion problem can also be obtained if aggregated time series are
represented by centroids. For that, however, the energy system
model must not consider time dependent coefficients in the cost
vector, but only within the set of constraints. This means, that a
representation by centroids only leads to a lower bound of the orig-
inal problem if the energy system does not consider revenue or
cost time series.
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A more detailed discussion and subsequent examples are pre-
sented in Appendix 1.2.3.2. However, an informal explanation for
this behavior is the fact that extreme values within time series
shape the sizing of the model components in case of capacity ex-
pansion models. As observed in 3.2.1, these extreme values are
smoothed out in case of centroid-based aggregation techniques
and accordingly, sizing of components and the related total annu-
alized costs are underestimated.

Lastly, if linked time steps such as in case of storage technologies
are considered, additional restrictions such as the adjacency of
clustered time steps must be respected in order to obtain a math-
ematically correct bound. This aspect is discussed in Appendix
[.2.2.2 and 1.2.3.3 but is omitted at this point.

3.4.2. Upper and Lower Bounds for MILPs

As shown in Appendix H.2, the solving of mixed-integer linear pro-
grams using algorithms like the branch-and-bound algorithm relies
on an iterative solving of linear programs that are obtained by ei-
ther relaxing or fixing binary or integer variables. Therefore, mixed-
integer linear programs are more limited in size and obtaining a
solution might be limited due to both, the number of integer varia-
bles and the size of the corresponding relaxed linear programs.
Furthermore, the modelling framework FINE only considers binary
design variables in order to model cost-curves as affine linear func-
tions. In order to accelerate these mixed-integer linear programs
and obtain upper and lower bounds to the original problem in a
reasonable amount of time, an extended version of the approach
by KannengielRRer et al. [4] with multiple steps based on aggregated
time series was developed in the scope of this thesis. The proce-
dure is depicted in Figure 3.29.
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Level U2

Level U1

Problem

Level L1

Figure 3.29. A multi-level approach to determine upper and lower bounds of
the original mathematically complex mixed-integer linear program (MILP) us-
ing aggregated time series, tightening and relaxation
As mentioned in Appendix H.2, the lower bound of the mixed-in-
teger linear program can be determined by relaxing the binary var-

iables and solving a linear program of the form:

min cTx min cTx

s.ttAx=Db s.t.tAx=Db
Cx<d = Cx<d (3.34)
Xi EZ V i€ Mijntvars Xxi€ER V i

xj € RViég Mintvars

An upper bound of the original problem can be determined using a
two-level procedure as presented by KannengielRer et al. [4]. First,
a reduced mixed-integer linear program is solved based on aggre-
gated data. Regardless of the exact aggregation method, the solu-
tion of the reduced problem includes solutions for the discrete var-
iables of the original problem. By fixing the discrete variables
based on the solution of the aggregated mixed-integer linear pro-
gram, the solution space of the original mixed-integer linear pro-
gram is turned into a linear program.

The original mixed-integer linear program is a relaxation of this lin-
ear program, or, vice versa, this linear program is a restriction of
the original mixed-integer linear program because the discrete var-
iables’ solution of the aggregated mixed-integer linear program is
a subset of the set of integer numbers, i.e. xgmp; € Z.
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min cTx min cTx

s.ttAx=Db s.t.tAx=Db
cx<d = cx<d (3.35)
Xi €Z V 1€ Mjptvars Xj = X;ZITP,iVi € Minwvars
X ER V 1€ Miprvars X; ER V 1€ Mipwars

As will be shown in Section 4.4.2, this approach can provide tight
upper and lower bounds, if the aggregation technique is deliber-
ately chosen, which will be proven for binary cost variables.

Excursus 1: A Definition of Restriction
A comprehensible definition of a restriction for (general) minimi-
zation programs was provided by Geoffrion and Nauss [187]:
“A problem (Q) is said to be a restriction of problem (P) if the
feasible region of (Q) is entirely contained within that of (P),
and if the objective function value of (Q) is at least as great as
that of (P) everywhere on the feasible region of (Q).”

With respect to the computational tractability, this multi-level ap-
proach is superior to the original mixed-integer linear program, be-
cause a small gap between upper and lower bound can be ob-
tained by solving two linear programs of the same size as the orig-
inal mixed-integer linear program and one strongly aggregated
mixed-integer linear program. Compared to standardized mixed-
integer linear program algorithms, which strive to converge to the
real optimum of the original problem, but might not converge at all
within a reasonable amount of time, the proposed method is a good
alternative.

From a mathematical point of view, this approach is furthermore
highly relevant for the purpose of energy system optimization be-
cause the upper bound might be suboptimal, but is always a feasi-
ble solution to the original problem. This means, that even though
the total annualized costs (TAC) might be higher than the real cost
minimum, the resulting energy system is operable at any time step.
Furthermore, the maximum deviation from the optimal objective of
the reference can be quantified with the optimality gap defined in
Equation (3.33). Against the background of uncertain input data
and the fact that energy systems can only be optimized based on
past or expected future data, the accuracy of this method can be
sufficient.
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4. Validation and Results

In order to validate the theoretical findings of Chapter 3, the impact
of the discussed aggregation techniques on the accuracy of a se-
lected set of energy system models is analyzed in the following
chapter, whose structure is depicted in Figure 4.1.
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Figure 4.1. Structure of Chapter 4
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First, the models that serve as case studies are introduced in Sec-
tion 4.1 followed by a large-scale sensitivity analysis for capacity
expansion models in Section 4.2. For that, each system is solved
for 17 different numbers of typical days, 9 different numbers of
segments per typical day and at least 4 different representation
methods resulting in 612 model runs for each of the three consid-
ered models. This analysis delivers a detailed evaluation of the
methods developed in Chapter 3, among which the combination of
the value distribution preserving representation algorithm devel-
oped in Section 3.2.5 and the pathway algorithm for finding bal-
anced combinations of typical days and segments developed in
Section 3.3.4 are most effective.

However, as this analysis does not answer the question whether
the chosen period length of one day is meaningful itself, the pre-
requisites for this are discussed in Section 4.3, in which one of the
capacity expansion models comprising storage technologies is
compared to a storage-less dispatch model. Finally, the options
offered by temporal aggregation for obtaining feasible system de-
signs with bounded errors are investigated in Section 4.4 for two
models with a small number of time series that roughly resemble
those models to which error-bounding methods were applied in the
literature.

As the runtime of individual models depends on the chosen hard-
ware, the computational resources used for Chapter 4 are listed in
Table 4.1. For Section 4.2 and 4.4, the institute’s internal computer
cluster Caesar was used, whereas the Jiulich Research Center’s
supercomputer JURECA-DC was used for the calculations in Sec-
tion 4.3. As shown in Table 4.1, both clusters have a comparable
frequency and as each model run was performed on a single
thread in order to avoid unpredictable delays due to process allo-
cation and communication, computing speeds of both computer in-
stances are roughly comparable. However, in the following, only
those runtimes are compared to each other that were achieved on
identical computational resources in order to exclude their impact
on the runtime comparisons completely.

Table 4.1. Computational resources used for Chapter 4
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[ | caesar(4.2+4.4) JURECA-DC (4.3)

CPU Model Intel(R) Xeon(R) Gold Intel(R) Xeon(R) CPU

6144 CPU E5-2697 v3
Number of Cores per
Computing Node e 23
Threads per Core 2 2
CPU Max Frequency
[MHZ] 3.5 3.6
Shared Memory [GB] 1,024 1,024

“Throughout the whole chapter, Ward’s hierarchical clustering al-
gorithm was used because of its good runtime scaling behavior
with respect to both, sample number and sample dimensionality.
For the considered multi-regional model, it was the only computa-
tionally tractable clustering algorithm and for the single-regional
models, it was found that the results are less sensitive to the clus-
tering technique than to the representation method. Furthermore,
the reproducibility of the results is given due to its deterministic
algorithm.” (Hoffmann et al. [3])

A rescaling to fit the time series’ mean values as presented in Sec-
tion 2.2.2.2.3 was deactivated in order to isolate the impact of dif-
ferent representation methods, i.e. mean values are not preserved
in the case of medoids and maxoids.
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4.1. Model Overview and Data Resources

“The following section introduces the models used for the valida-
tion of the developed temporal aggregation techniques and intro-
duces key features and functionalities of the models. Detailed data
resources, which were required to parametrize the models, are
provided in Appendix J.

In addition to that, the scientific purpose of each model’s consider-
ation with respect of an accurate temporal representation is dis-
cussed.” (Hoffmann et al. [2])

4.1.1. The Island System

The island system is a simplified single-node capacity expansion
model with 2030 as target year that was developed to illustrate the
interaction of short-term electricity storage and long-term hydrogen
storage to satisfy an alternating electricity demand with highly in-
termittent renewable energy sources. The system was first intro-
duced by Kotzur et al. [20, 48] and later re-used by KannengielRer
et al. [4] as case study.

The model contains a wind farm, a photovoltaic plant and a backup
plant as potentially rival electricity supply units as well as a single
electricity demand to be satisfied at any time step. The backup
plant is the only freely dispatchable electricity source of the energy
system and considered to rely on fossil fuels. In order to limit the
potential CO2 emissions of the system, its cumulative electricity
supply is capped at 10% of the total electricity demand in the con-
sidered time span of one year.

In order to satisfy the electricity demand at any point in time, the
system additionally contains a battery and hydrogen pressure ves-
sels as energy storage. Here, the hydrogen pressure vessels are
connected to the electric subsystem by two conversion units,
namely an electrolyzer and a fuel cell. The system layout is de-
picted in Figure 4.2.
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Figure 4.2. Technology portfolio of the island system

4.1.2. The Self-Sufficient Building Model

In contrast to the aforementioned model, the capacity expansion
“model of the self-sufficient building is an island system that exclu-
sively relies on a renewable energy source, namely photovoltaic.
Moreover, it not only needs to fit an electricity demand, but also a
heat demand. This leads to a significantly more complex setup and
requires higher storage capacities because the system lacks a
freely dispatchable energy source. Therefore, a wider set of poten-
tial technologies is considered in this model featuring different
electric, thermal, gaseous hydrogen and liquid organic hydrogen
carrier (LOHC) subsystems. A simplified scheme of the model
based on a layout by Kotzur et al. [188], which was transferred into
the energy system modelling framework FINE, is depicted in Figure
4.3.” (Hoffmann et al. [2])
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Figure 4.3. A simplified scheme of the self-sufficient building model taken
from Hoffmann et al. [2])
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Here, it is assumed that the archetype building was built in 1979
but is converted to energetic self-sufficiency in 2030. This means
that all cost assumptions for the implemented technologies are ex-
trapolated for the year 2030.

In order to represent the single-family house’s capacities for pho-
tovoltaic electricity feed-in, three different positions are consid-
ered: Two rooftop orientations facing northwest and southeast and
an option for ground-mounted photovoltaic systems. The DC sub-
system connects the photovoltaic panels to a battery used to bal-
ance the daily intermittent electricity supply, a reversible solid ox-
ide fuel cell (rSOC), an electric boiler and an inverter. The inverter
is the connection to the AC subsystem that needs to satisfy the
domestic electricity demand. Further, a heat pump is connected to
the AC subsystem as an alternative to the electric boiler both of
which are connected to the domestic hot water cycle.

The hot water subsystem has to satisfy the domestic heat demand.
In order to fulfill this task during the night as well, a thermal storage
is connected. Moreover, the rSOC is indirectly connected to the
hot water cycle to use the excess heat at those times when the
rSOC is working as a fuel cell and producing electricity from oxi-
dizing hydrogen to water. Because the excess heat of this process
has a temperature of approximately 750°C, two auxiliary heat ex-
changers are further considered that reduce the temperature in two
steps to 300°C and 45°C.

In case the rSOC is run as an electrolyzer to produce hydrogen for
storing energy, it is assumed that this endothermal process con-
sumes heat at a temperature level of 300°C. To store the hydro-
gen, pressure vessels and an LOHC tank are considered as two
alternative technologies. As the hydrogen is produced under at-
mospheric pressure, it needs to be compressed. In a first step, the
hydrogen is compressed to 20 bar. At this pressure level, the
LOHC (dibenzyltoluene) can be hydrogenated to store hydrogen in
an exothermal process releasing heat at a level of assumingly
300°C to store the bound hydrogen in the LOHC tank. In contrast
to that, the dehydrogenation is an endothermal process considered
to consume heat at a temperature level of 750°C and to release
hydrogen at atmospheric pressure. This temperature level is over-
estimated for the sake of simplicity in order to fit to the operating
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temperature of the rSOC at 750°C. The overestimation of both, the
endothermal and the exothermal temperature level are considered
to balance each other with respect to a realistic energy balance.
Although this process usually takes place at lower temperatures,
more specifically, about 200°C for the hydrogenation and 350°C
for the dehydrogenation, this assumption was made in order to
avoid the consideration of too many different heat levels between
the rSOC, the (de-)hydrogenation and the space heating cycle. To
store the hydrogen in pressure vessels, the hydrogen has to be
compressed a second time to a pressure level of 160 bar.

With respect to the auxiliary components, the compressors are
connected to the DC subsystem. Further, two expanders are con-
sidered to expand the hydrogen to the respective lower pressure
levels. The heat at 750°C released by the rSOC during the oxidiz-
ing process exceeds the heat demand at 750°C of the dehydro-
genation and the heat demand of the electrolysis at 300°C is
smaller than the waste heat of the hydrogenation process. How-
ever, the heat demand of the electrolysis must also be met in case
that the pressure vessels are filled. Therefore, an additional elec-
tric heater using DC to provide heat at 750°C is considered to en-
sure an operation of the electrolyzer when a surplus of electricity
is available. Further, the electric heater also offers the opportunity
to shift hydrogen between the pressure vessels and the LOHC.

As shown above, “the self-sufficient building model provides nu-
merous options to meet the building’s heat and electricity demand.
Furthermore, it is obvious that the energy storage components will
most likely work on different time scales depending on the energy
form they store.” (Hoffmann et al [2])

Combined with the fact that this model describes a small, but po-
tentially realistic application case for energy modelling, the model
is an interesting application for evaluating the impact of different
temporal aggregation methods.

4.1.3. The European Model

The European model developed by Caglayan et al. [189, 190] is
the most complex case study considered in the scope of this thesis
as it comprises numerous complexity-driving features, among
them 96 regions, storage technologies and capacity expansion
planning. As the fully resolved case of the model is already on the
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edge of computational feasibility, it does not consider binary in-
vestment decisions in favor of a non-aggregated solution against
whom the proposed aggregation methods can be benchmarked.

Figure 4.4 depicts the technology portfolio that is available in every
region of the model, which are interconnected by three transmis-
sion technologies, namely a hydrogen grid, an AC and a DC elec-
tricity grid. The European model considers capacity expansion un-
til 2050, but is not a greenfield study, i.e. it accounts for both, ex-
isting capacities and the option to expand certain technologies.
Further, the expansion of each technology is limited by its individ-
ual maximum potential in each region, e.g. photovoltaic and wind
technologies are limited by a maximum land eligibility in a region
that depends on multiple factors such as the distance to built-up
area [191].

Apart from capacity expansion, two major differences to the other
multi-regional energy system model considered in this thesis, the
dispatch model, are the CO:2 neutrality and the consideration of
sector coupling [7, 192] within the European model, as it exclu-
sively contains renewable energy sources and needs to meet both,
an electricity and a hydrogen demand. Here, 2050 is taken as tar-
get year of the analysis and “the hydrogen demand is assumed to
originate exclusively from fuel cell electric vehicles with a market
penetration of 75% [193]. As described by Caglayan et al. [189,
190], the electricity demand is obtained from the E-Highway study
[194] for a 100% renewable energies scenario. This demand is
considered to account for electrified heating in the residential and
industrial sector as well as the operation of battery electric and
plug-in hybrid vehicles.” (Hoffmann et al. [3])

Although this scenario neglects the multiple applications of hydro-
gen in industry, i.e. as reactants for chemical processes as well as
an energy supply for process heat, the consideration of hydrogen
in this model allows for an investigation of hydrogen-based sea-
sonal energy storage.

Electricity can directly be provided to the system via offshore and
onshore wind plants, as well as rooftop photovoltaic and open-field
PV with and without single-axis tracking. Further, a fix capacity of
run-of-river power plants can supply hydroelectricity to the system
constrained by spatiotemporally resolved capacity factors.
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Apart from that, three more technologies contribute indirectly to the
electricity supply: As water is not only directly used for producing
electricity, but can also be stored by reservoirs or pumped hydro-
electricity storage, these technologies are also taken into account.
Similar to the run-of-river power plants, it is assumed that the po-
tential for a further capacity expansion of these technologies is not
given in Europe and that only already existing capacities are freely
dispatchable. While reservoirs are exclusively fed by inflowing wa-
ter, which can be withdrawn at a later point in time for electricity
production, the upper basins of pumped hydroelectricity plants can
be refilled either by inflowing water or actively by pumping water
from the lower into the upper basin. In that way, both technologies
comprise a storage component and at least one energy conversion
component, which is shown in Figure 4.4. The last potential energy
source for the system is given by biomass fuel, which can be freely
purchased and converted to electricity using biomass-specific
combined heat and power (CHP) plants.
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Figure 4.4. The layout of the European model (taken from Hoffmann et al. [3])

Due to the COz2 neutrality of the scenario, hydrogen can exclusively
be produced by Polymer electrolyte membrane electrolyzers and
not e.g. by reformation processes. On the other hand, several tech-
nologies exist to convert the chemical energy of hydrogen back
into electricity. Concisely, the portfolio not only comprises conven-
tional technologies such as open and combined cycle gas turbines
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(OCGTs and CCGTs) as well as gas engines, but also the hydro-
gen-specific technologies of polymer electrolyte membrane fuel
cells (PEMFCs) and solid oxide fuel cells (SOFCs).

The close coupling of the electricity and the hydrogen subsystem
allows for a dynamic operation of the whole system. Especially with
respect to energy storage, this offers new technological options.
For that reason, both subsystems consider their own set of storage
components: While electricity can directly be stored in lithium-ion
batteries, hydrogen can be stored either in pressure vessels of in
salt caverns. Together with the water reservoirs and pumped hy-
droelectricity plants, this leads to both, interesting insights into the
potential of future large-scale energy storage systems and a com-
plex case study for temporal aggregation techniques.

A detailed review on the assumed technology-specific parameter
assumptions is presented by Caglayan [190].

4.1.4. The Electricity Dispatch Model

In contrast to the preceding models, “the electricity dispatch model
does not consider capacity expansion, i.e. the size of all compo-
nents is predefined and only their operation is optimized. The multi-
regional model is based on the NUTS1 regions of Germany, which
corresponds to Germany’s federal states. Accordingly, transmis-
sions are part of the model and power flows between the different
regions, as well as neighboring countries, are considered.

The electricity dispatch model is a simplified FINE implementation
of the JERICHO dispatch model developed and published by Pries-
mann et al. [41].” (Hoffmann et al. [2])

An important feature of this energy system model is that it consid-
ers the same set of technologies at each of Germany’s 16 NUTS1
regions, but with varying installed capacities.
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Figure 4.5. The layout of the dispatch model (taken from Hoffmann et al. [2])

In contrast to the preceding models, the dispatch model refers to
the current state of the German electricity system. Furthermore, it
“incorporates 25 different electricity-generating technologies, of
which 15 are based on fossil fuels, eight on renewable energy
sources and two are storage technologies. For the analyses con-
ducted in Section 4.3, the storage dispatch was fixed prior to the
optimization based on historical values. The technologies relying
on fossil fuels, as well as biomass, i.e., the freely dispatchable
technologies, were modeled as conversion units that consume a
certain amount of lignite, hard coal (anthracite), uranium, methane,
or biomass to produce an amount of electricity and CO2 emissions.
The non-dispatchable technologies, comprising wind and solar en-
ergy and run-of-the-river hydroelectricity, are modeled as sources
of fixed capacity but with constraining capacity factors at an hourly
resolution.

The objective of this optimization model is to minimize the costs of
covering the inelastic electricity demand at each hour. The costs
are the sum of the marginal costs for operating the conversion
technologies and based on the time-dependent prices for fuels and
EU allowances (EUAs) within the EU Emissions Trading Scheme
and the technology-specific operation costs.

The operation of all units is modeled strictly linearly, i.e., unit com-
mitment constraints such as minimum up- and down-time or startup
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and shutdown costs that necessitate binary variables are not con-
sidered. This leads to the generation of a large, but comparably
easily solvable energy system model.

As already noted, the dispatch model considers neither capacity
expansion, nor depreciation costs, which is the most significant dif-
ference to the prior models. On the other hand, it comprises multi-
ple regions and the largest number of time series. In order to pro-
vide an overview of the model’s technological structure, Figure 4.6
depicts the share of each electricity supply technology at each of
the 16 NUTS1 regions in Germany, as well as the inner German
transmission lines and those to neighboring countries, offering the
option to export electricity to Germany. Furthermore, the cumula-
tive yearly electricity consumption in each region is highlighted by
a corresponding background color.” (Hoffmann et al. [2])
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Figure 4.6. Input data of the dispatch model: Aggregated transmission lines,
installed capacities, and yearly energy demand (taken from Hoffmann et al.

(2
A more detailed overview of data resources used for the model is
provided in Appendix J.3. However, the preceding section reveals
that the dispatch model significantly differs from the other models
and is therefore suitable to investigate the general applicability and
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efficiency of developed temporal aggregation techniques for a va-
riety of different models.

4.1.5. Model Summary

As already mentioned, the model choice focuses on the consider-
ation of preferably diverse model types and features in order to
allow for a holistic evaluation of the developed aggregation tech-
niques. With respect to the different common model features con-
sidered in the following validation, the configurations can be
summed up as depicted in Figure 4.7.

The island system model and
the  self-sufficient  building
model represent models with a
high share of renewable ener-
gies, which requires an ade-
quate representation of storage
components, and discrete com-
ponent decisions resulting in
mixed-integer linear program-
ming. The mathematically most
demanding model, the Euro-
pean model, considers multiple  Figure 4.7. Common model features
regions as well as tempora| covered by the case studies
linking in order to consider

large-scale electricity and hydrogen storage as well as optimal
component sizing. However, due to mathematical limitations, the
component decisions are not discrete and therefore result in a
large-scale linear program as the dispatch model. On the other
hand, the electricity dispatch model represents the group of oper-
ation optimization models for traditional large-scale multi-regional
energy networks and omits storage technologies leading to a tem-
porally decoupled model.

Other features of the considered models, which are not shown in
Figure 4.7 due to illustrative limitations, are summarized in Table
4.2. Among these are the type of the optimization problems, which
are capacity expansion models in the case of the isolated systems
and the European model and a unit commitment model in the case
of the dispatch model, as well as the number of considered com-
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modities. Due to the fact that sector coupling is an inevitable fea-
ture of current and even more so of future energy systems [7, 192],
all models at hand consider multiple commodities. Furthermore,
the big range of considered time series depending on the number
of regions challenges the algorithms developed in the scope of this
thesis because they need to be accurate, but computationally effi-
ciently implemented in order to be equally applicable to both, small
and large datasets.

Table 4.2. Techno-economic key features of the considered models

Island SIS European Dispatch
System Sufficient Model Model
Building

Target Year 2030 2030 2050 2018
Purpose Capacity Ex- Capacity Ex- Capacity Ex- Dispatch/ Unit
pansion pansion pansion Commitment
Number of Re- 1 1 96 16 (+9 Import
gions Regions)
Number of Time 3 5 960 6325
Series
Binary Varia- Yes Yes No No
bles
Storage Yes Yes Yes No
Commodities Electricity Electricity Biomass Biomass
Hydrogen Heat Electricity Electricity
Hydrogen Hydrogen Hard Coal
LOHC Water Lignite
Methane
Mineral Oil
Uranium

Finally yet importantly, it needs to be highlighted that the consid-
ered energy system models are not only relevant for investigating
the impact of temporal aggregation on the cost-optimal solutions
and layouts of the models, but also form the archetypes of two fun-
damental developments in energy system modelling. On the one
hand, the spatial resolution and diversity of input data stemming
from all kinds of renewable energy sources is constantly increasing
for large-scale market models and capacity expansion models on
a national or international scale, while on the other hand, a growing
relevance of decentralized small-scale solutions is inevitable as
well. Reliable aggregation techniques need to provide good results
for all types of energy system models in order to guarantee a gen-
eral applicability and to be capable of reducing energy system
models appropriately that comprise a high spatial resolution, a big
technological diversity and a strong temporal interconnectedness
due to a high amount of installed storage capacities.
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4.2. The Optimal Aggregation: A Sensitivity Analysis

The following section aims at finding the best possible aggregation
method out of the combinations of typical days, segments and rep-
resentation methods for models considering seasonal and intraday
storage, which applies for the island system model, the self-suffi-
cient building model and the European model. The analyses in
Sections 4.2.2 and 4.2.3 were also published precedingly in a
shortened version by the author of this work [3].

The sensitivity analysis comprises 17 different typical day num-
bers, 9 different segment numbers and 4 different representation
methods resulting in 612 different temporal aggregation configura-
tions per model. Figure 4.8 shows all considered typical day and
segment configurations resulting in a number of total time steps
represented by the white numbers in the fields. As the number of
typical days and segments increases by a factor of approximately
V2, the number of total time steps approximately increases by a
factor of 2 along the diagonal from the upper left to the lower right
and is approximately constant along the diagonal from the lower
left to the upper right. The fully resolved case is given for 365 typ-
ical days and 24 segments resulting in 8760 time steps. Each of
the shown configurations is performed for the representation by
centroids, medoids, maxoids and using the distribution-preserving
algorithm.
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Figure 4.8. Number of total time steps depending on typical day and segment
configurations that were considered in the sensitivity analysis for four different
representation methods (taken from Hoffmann et al. [3])

First, all possible configurations are optimized and the representa-
tion methods are compared to each other with respect to the main
a posteriori indicators, the runtime and the objective’s deviation
from the fully resolved case. In a second step, the best represen-
tation method is determined with respect to both, a good tradeoff
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between calculation time and aggregation-induced error as well as
a predictable and consistent convergence behavior, which means
that an increase in temporal resolution monotonously decreases
the deviation from the fully resolved reference case. In a third step,
the proposed algorithm for finding the optimal ratio between typical
days and segments per typical day is evaluated with respect to its
capability to further reduce the aggregation-induced error of the
energy system models’ optimal objective. For this, the statistical
methods proposed in Section 3.3 are applied to the database in
order to assess the method’s reliability. As a side effect, the most
reliable a priori error metric is determined and mathematical rela-
tionships between aggregation-induced input- and output errors
are derived.

4.2.1. Analyses of the Island System Model

First, the large-scale parameter variation is applied to the island
system model, as it is the smallest one and yet considers time se-
ries for wind and solar capacity factors as well as two different
storage technologies. In addition to that, it is likely that the limited
amount of imported energy makes it sensitive to peak- and mean
value deviations in the aggregated time series. Figure 4.9 depicts
the island system as well as the optimal objectives normed by the
one of the fully resolved case over runtime for all temporal aggre-
gation configurations.

200

— Electricity
\./ \ Hydrogen 1.75
A~ = 150
2
Wind Energy b3 125
7]
& 100+
’ J‘ l g":,',:gi" ( Electricity 2
(7}
Demand £ 075 ., Maxoid
N ‘c“;.' L () Soso S L et
= 025/ “e®e Centroid
Backup st i .‘ e Distribution
Plant 0.00
10° 10" 10°
Runtime [s]

Figure 4.9. The island system and the corresponding normed optimal objec-
tives over computation times for all considered configurations
Evidently, the deviation of the objective function from the fully re-
solved case decreases with a higher runtime, which corresponds
to those model configurations with a higher temporal resolution,
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i.e. more typical days and more segments per typical day. With
respect to different representation methods, is can be seen that
except for the medoid representation, all methods underestimate
the system costs in case of strongly aggregated time series.

The representation by medoids leads to a completely arbitrary
over- or underestimation of the optimal objective for the fully re-
solved case at low temporal resolutions and then stabilizes at op-
timal objectives that are above the one of the reference case.

Likewise, the representation by maxoids leads to an overestima-
tion of the optimal objective for higher temporal resolutions. Inter-
estingly, the representation by maxoids, i.e. the day of each clus-
ter, which is farthest away from the whole dataset’s centroid, is not
automatically leading to the most conservative, i.e. highest system
cost estimation. The reasons for this are manifold. First, the clus-
tering space is high dimensional and therefore many clusters are
needed in order to form a convex hull of the data set by the clus-
ters’ maxoids. Second, maxoids aim at covering both, minimum
and maximum values. Therefore, not only the most critical points
for the system (capacity factor minimums and electricity demand
maximums), but also the least critical points for the system (capac-
ity factor maximums and electricity demand minimums) are cho-
sen. Only when the total number of typical periods is sufficiently
high, the convex hull of the dataset of typical days is sufficiently
approximated by the maxoids. In that case, the aggregation by
maxoids overestimates the total system costs, which is slowly de-
creasing again for a higher number of typical days as the clusters
become smaller but more numerous until each cluster only con-
tains a single candidate day, i.e. the original temporal resolution is
met.

The second group of representation methods comprising the rep-
resentations by centroids and the distribution-preserving algorithm
reveal a much more predictable behavior than medoids and max-
oids. In these cases, the great majority of aggregation configura-
tions considering one of these two representation methods lead to
an underestimation of the real system cost. While this is always
the case for the representation by centroids, some of the configu-
rations of segments and typical days lead to a minimal overestima-
tion in case of the distribution-preserving algorithm.
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With respect to a direct comparison between the representation by
centroids and by the distribution-preserving algorithm, it can be
seen that the distribution-preserving algorithm further shows a
slightly faster convergence behavior due to the smaller deviations
from the duration curve’s extreme values in the latter case. Apart
from that, Figure 4.9 highlights that the representation by centroids
or by using the distribution-preserving algorithm not only leads to
a more consistent aggregation-induced error, but also to a smaller
absolute deviation from the optimal objective of the fully resolved
model at comparable runtimes. For example, for a runtime of 100
seconds, which refers to a speed-up factor of approximately 60
relative to the fully resolved problem, the spread of maximum de-
viations lies roughly between 0% and -10% for the centroid- and
distribution preserving representation, 0% and +25% for the me-
doid representation and -25% and +30% for the maxoid represen-
tation.

In order to evaluate the impact of the considered numbers of typi-
cal days and segments as well as the chosen representation
method on the deviation from the optimal objective of the reference
case, Figure 4.10 depicts the deviations from the optimal objective
of all 612 model runs that were already shown in Figure 4.9 de-
pending on their aggregation configuration.
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Figure 4.10. The deviation from the optimal objective of the fully resolved
case depending on the configuration of the number of typical days and seg-
ments as well as the representation method
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From Figure 4.10 it becomes evident that aggregation configura-
tions with either a very low number of typical days or a very low
number of segments per typical day lead to the strongest devia-
tions. As these model configurations are also those with the short-
est runtime, the divergent shape of the data points towards low
runtimes in Figure 4.9 can be explained. For the maxoid and me-
doid representation, it can moreover be observed that both meth-
ods tend to over- or underestimate the optimal objective depending
on the configuration in an unpredictable manner. Moreover, the
absolute error diminishes later than for the representations by cen-
troids or the distribution-preserving algorithm. In case of the rep-
resentations by centroids or the distribution-preserving algorithm,
either a lower number of typical days or a lower nhumber of seg-
ments decrease the optimal objective consistently, which makes
them more predictable. Furthermore, the aggregation-induced de-
viation of the optimal objective diminishes earlier than for the rep-
resentation by medoids or maxoids.

As the lower two graphs in Figure 4.10 show, the deviation from
the optimal objective is almost negligible for 17 typical days and 3
segments in case of a representation by centroids and 12 typical
days and 3 segments in case of 12 typical days and 3 segments.
This means that only 51 and 36 time steps out of 8760 original time
steps, i.e. 0.58% and 0.41% of the original number of time steps,
are sufficient to approximate the optimal objective of the fully re-
solved case accurately. Remarkably, the proposed distribution-
preserving algorithm shows the best performance out of all consid-
ered representation methods.

As mentioned in Section 3.3.4, different types of time series are
differently affected by temporal aggregation: While e.g. solar pro-
files need to be represented at a high inner-daily resolution, wind
profiles need a larger number of typical days for a sufficient aggre-
gation. Moreover, because of the penny switching effect, the cost-
optimal composition of technologies of a system can react almost
arbitrarily sensitive to slight changes in the input data.

However, a good representation method should not only lead to
system designs that have a similar objective function value, but
should avoid a systematical bias of certain technologies. There-
fore, the cost contributions of selected components depending on
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the aggregation configuration are likewise worth investigating. In
case of the island system, the total annualized cost contributions
of the wind plant and the photovoltaic panels normed by those of
the fully resolved case are the most reasonable technologies for
this investigation because they directly refer to the aforementioned
strengths and weaknesses of different aggregation configurations
with respect to wind and solar time series.

Figure 4.11 shows the total annualized costs (TAC) for the photo-
voltaic panels (left column) and the wind turbines (right column)
normed by the respective total annualized costs for the fully re-
solved case for each representation method and combination of
considered typical day and segment number. Interestingly, the
chosen representation method does not only affect the overall cost
of the considered components, but also the effect that different
typical day and segment numbers have on the individual compo-
nents. As the first row of Figure 4.11 shows, a low number of typi-
cal days and segments leads to a consistent underestimation of
the total annualized costs of both, the photovoltaic panels and the
wind turbines. This can be explained by the fact that the represen-
tation by maxoids underestimates the objective function of the
whole system as well as shown earlier. In contrast to that, it is re-
markable that the most common aggregation methods used in lit-
erature, the representation by medoids and by centroids, lead to a
high sensitivity to the chosen number of typical days and seg-
ments. While a low number of typical days leads to an overestima-
tion of photovoltaic capacities and an underestimation of wind ca-
pacities in the case of medoids, the opposite can be observed for
the representation by centroids.

Moreover, a low number of segments leads to an overestimation
of wind capacities in the case of a representation by medoids and
an underestimation of wind capacities in the case of a representa-
tion by centroids. For centroids, this observation can be explained
by prior findings: While a low number of segments has a major
impact on the solar profiles, a low number of typical days predom-
inantly affects the wind profiles. Accordingly, a low number of typ-
ical days smoothens the wind time series more than the solar time
series, which underestimates the wind profile’s intermittency and
thus makes it more dispatchable and a more economic energy
source. For low numbers of segments, the photovoltaic profile is
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stronger smoothened and accordingly becomes a more economi-
cal supply option. The fact that the opposite observation holds true
for a representation by medoids is much harder to explain. How-
ever, possible reasons for this can be the fact that a representation
by medoids does generally not meet the average yearly energy
supplies and that existing days are chosen as representatives in-
stead of synthesized ones. Accordingly, it is not given that the time
series profiles are indeed smoothened by the aggregation.

Yet, it is evident that state-of-the-art representation methods intro-
duce a systematical bias to certain technologies and that the ne-
glect of statistical features such as the time series mean values
and variance in the case of a representation by medoids and the
variance only in case of the aggregation by centroids might be a
reason for it. This is supported by the finding that the distribution-
preserving algorithm shown in the last row of Figure 4.11 signifi-
cantly outperforms the other aggregation methods with respect to
both, the deviation of the total annualized costs from those of the
reference case at a small temporal resolution, and the absence of
a systematical bias that favors one technology over the other. Ac-
cordingly, the outperformance of the proposed representation al-
gorithm is evident for both, the overall cost deviation and a fair
technology selection.
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Figure 4.11. The total annualized costs of the photovoltaic panels and the
wind turbines normed by their total annualized costs in the fully resolved case
As configurations with a very high number of typical days but with
a very low number of intra-daily segments or vice versa might not
lead to optimal aggregation results, a method for finding the opti-
mal ratio of typical days and segments for a given number of total
time steps was introduced in Section 3.3.4. The proposed method
is now applied to the island system model in order to evaluate its
effectiveness. The algorithm was based on three mathematical as-
sumptions stated in the equations (3.26), (3.27) and (3.28).

Figure 4.12 shows the correlations between a priori and a posteri-
ori indicators for the representation by centroids in order to evalu-
ate the validity of the three assumptions stated above. The coeffi-
cients p, and ps in the upper right legends of the four subfigures
represent the values of the respective Pearson and Spearman cor-
relation coefficients. As the three assumptions above presuppose
monotony only, ps directly assesses the validity: The closer ps is to
+1 or -1, the more the assumption of monotony is fulfilled. Moreo-
ver, the Pearson correlation coefficient p, indicates whether the
correlation is linear or not. The closer p, is to +1 or -1, the more
the assumption of a linear correlation is justified. Although this co-
efficient cannot be used to assess the validity of the assumptions
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stated above directly, it reveals interesting connections between
the considered error indicators.
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Figure 4.12. The correlation between a priori and a posteriori indicators for
the representation by centroids
The validity of assumption 1 that the runtime increases monoto-
nously with the total number of time steps is assessed by the upper
right subfigure in Figure 4.8. Here, it can clearly be seen that the
runtime increases on average with a higher number of total time
steps. With a score of +0.958, the Spearman correlation coefficient
is close to +1 which means that the assumption is justified. More-
over, the Pearson correlation coefficient has a score of +0.945,
which means that the runtime increases approximately linearly with
the total number of time steps. Concisely, this means that apart
from a constant time consumption component used for setting up
the model and mapping the solution of the solver back into FINE,
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the runtime of the model can be modeled as a function of the total
number of time steps as follows:

Runtime = m X n(time steps) + b(other processes) (4.2)

Assumption 2 that the deviation from the optimal objective de-
creases monotonously with a decreasing root-mean-square error
is justified by the lower left graph in Figure 4.12 with a Spearman
correlation coefficient pg of +0.955 being close to +1. In contrast,
the Pearson correlation coefficient p, with 0.86 is considerably dif-
ferent from +1, i.e. the functional relationship between the root-
mean-square error and the objective deviation is nonlinear, which
can also be seen in the corresponding subgraph. Interestingly, this
implies that all temporal aggregation configurations with an root-
mean-square error of 0.15 or lower lead to a satisfying optimization
result. A further increase of segments or typical days may therefore
decrease the root-mean-square error, but with very little impact on
the exactness of the energy system’s optimal objective. A compar-
ison with the upper left graph in Figure 4.12 reveals that this further
decrease of the root-mean-square error can only be obtained by
increasing the number of total time steps disproportionally, which
makes this approach mathematically demanding but with only a
small improvement of the aggregation-induced error.

The upper left graph in Figure 4.12 also verifies assumption 3, i.e.
that an increase of total time steps and therefore an increase of
the number of either typical days or segments leads to a decrease
of the chosen a priori indicator. Here, the Spearman correlation
coefficient p; has an absolute value of 0.927 and is accordingly
worse than the correlation coefficients of assumption 1 and 2.
However, the correlation coefficient was calculated based on the
total number of time steps, which means that it does not directly
refer to assumption 3 as it is based on the product of the number
of typical days and segments instead of typical days and segments
separately as assumption 3 states. Due to the hierarchical struc-
ture of Ward’s clustering algorithm, the root-mean-square error de-
creases linearly with a larger number of either typical days or seg-
ments. Accordingly, the true Spearman correlation coefficients for
any typical day number increase at a fixed segment number or vice
versa would be exactly one. This can also be observed in Figure
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4.13, in which the root-mean-square error depending on the num-
ber of typical days and segments in the case of a representation
by centroids is shown. Here, it can be observed that the root-mean-
square error decreases monotonously in the direction of both, an
increasing number of typical days and an increasing number of
segments.
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Figure 4.13. The root-mean-square error (RMSE) depending on the number
of typical days and segments in the case of a representation by centroids

o
~

o o
() w
Average RMSE [%]

e
—

Number of Segments [-]
()]

o
(=}

365

Further, it needs to be highlighted that the correlation is negative
as maintained by assumption 3. Accordingly, the root-mean-
square error decreases with an increase of total time steps. Apart
from that, the Pearson correlation coefficient p, considerably dif-
fers from a linear correlation between the total number of time
steps and the root-mean-square error. This is also the reason for
the fact that an incremental improvement of the aggregation-in-
duced error can only be realized by a disproportional increase of
total time steps below an root-mean-square error of 0.15.

Finally, the lower right graph in Figure 4.12 depicts the correlation
of a posteriori indicators, i.e. the absolute deviation from the opti-
mal objective over the model runtime. Here, the negative correla-
tion coefficients indicate that gains in result accuracy are mostly at
the price of an increased solving time.

As it was shown before, the representation by medoids or maxoids
is less predictable than the representation by centroids or the dis-
tribution-preserving algorithm, which might also affect the effec-
tiveness of the proposed algorithm for finding the optimal trade -off
between the number of typical days and segments. Accordingly,
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the validity of the assumptions must be checked for each repre-
sentation method individually. For the sake of brevity, the following
analysis only considers the representation by medoids instead of
all three remaining representation methods, because the results
for maxoids have proven to be comparable to those for medoids
and the results for the distribution-preserving algorithm were com-
parable to those obtained for a representation by centroids.

Figure 4.14 depicts the corresponding correlations of Figure 4.12
for the case of a representation by medoids. Obviously, assump-
tion 1 and 3 are also justified as implied by the corresponding
Spearman correlation in the upper right and upper left graph of
Figure 4.14. In contrast to that, the assumption that the deviation
from the optimal objective of the fully resolved case decreases mo-
notonously with the a priori error (in this case the root-mean-
square error), is not given for a representation by medoids as the
lower left graph of Figure 4.14 shows. This behavior is mirrored by
a rather low Spearman correlation coefficient ps of 0.659. Moreo-
ver, the missing correlation directly affects the correlation between
the model runtime and the objective deviation shown in the lower
right graph, which is also relatively arbitrary. Therefore, an algo-
rithm striving at minimizing the root-mean-square error for a mini-
mal increase of total time steps is not universally applicable for the
case of medoids. However, as shown before, the representation
by medoids or maxoids is outperformed by the representation by
centroids and the distribution-preserving algorithm anyways. For
that reason, a worse performance of the proposed algorithm for a
non-preferable representation method can be tolerated.

Finally yet importantly, the Pearson correlation coefficient p, in the
upper right graph of Figure 4.14 with a value of 0.639 indicates a
nonlinear correlation between the total number of time steps and
the runtime. However, the Pearson correlation coefficient is very
sensitive to outliers and because the data samples diverge at high
runtimes and total numbers of time steps, it is falsified in this case.
The sensitivity to outliers at the upper end of the temporal resolu-
tion can be reduced by comparing the logarithms of both, the
runtime and the total number of time steps. In that case, the Pear-
son correlation coefficient for a representation by medoids is
Pplog(Runtime, #TD - #Seg) is 0,932 while it is 0,934 for the repre-
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sentation by centroids. Accordingly, an approximately linear corre-
lation between the total number of time steps and the optimization
problem’s runtime can be presumed.
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Figure 4.14. The correlation between a priori and a posteriori indicators for
the representation by medoids
Finally, the effectiveness of the proposed algorithm is evaluated
with respect to its capability to outperform other typical day and
segment configurations. For that, the optimal pathway depending
on the chosen representation method is first evaluated in Figure
4.15. As it can be seen, the assumption of a decreasing root-mean-
square error for a higher number of typical days or a higher number
of segments is always approximately justified. Among the different
representations, this assumption is violated the most for the repre-
sentation by maxoids, slightly violated for the distribution preserv-
ing representation method for 3 segments and a small number of
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typical days and not violated at all for the representation by cen-
troids or medoids. As medoids are those days from the original set
of candidate days that are closest to the clusters’ centroids, it is
understandable that the algorithm identifies an almost identical
pathway for medoids and centroids. In contrast to the optimal path-
ways for a representation by centroids and medoids, the represen-
tation by the distribution-preserving algorithm favors an increase
of the number of typical days first in order to reduce the root-mean-
square error. However, for more than six typical days, the pathway
resembles those of the medoid and centroid representation. The
optimal pathway of a representation by maxoids differs the most
from the other ones, as the root-mean-square error is approxi-
mately twice as high as for the other representation methods. Apart
from that, a significantly higher number of segments is preferred
before the algorithm choses to increase the number of typical days
at a number of 12 segments per day. A possible reason for this is
that the root-mean-square error is rather indifferent between 4 and
8 typical days in that case. This emphasizes the importance of a
monotonic relationship between the number of typical days or seg-
ments and the chosen a priori indicator.
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Figure 4.15. The pathway found by the proposed algorithm for an optimal ra-
tio between the number of typical days and segments depending on the repre-
sentation method
In order to evaluate the effectiveness of the proposed algorithm

with respect to its capability to faster converge towards the optimal
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objective value of the reference case, i.e. at a smaller runtime, Fig-
ure 4.16 compares the convergence behavior of those configura-
tions, which have an optimal ratio of typical days and segments
according to the proposed algorithm. Furthermore, this is illus-
trated for each representation method separately and compared to
those aggregation configurations with an hourly intra-daily tem-
poral resolution, which was the status quo in the modeling frame-
work FINE before this thesis.

The upper left graph in Figure 4.16 shows that neither those ag-
gregation configurations proposed by the algorithm nor the config-
urations with an hourly resolution lead to a consistent convergence
behavior in the case of maxoids as assumption 2 is violated just as
in the case of medoids as observed in Figure 4.14. Accordingly,
there is no monotonic relationship between the root-mean-square
error and the deviation from the optimal objective.

Analogously, the algorithm neither outperforms other aggregation
configurations in the case of medoids due to the violation of as-
sumption 2, which was shown in the upper right graph of Figure
4.14.

However, the fact that the optimal objective is underestimated for
low temporal resolutions and overestimated for higher temporal
resolutions in the case of medoids is an interesting finding, which
illustrates two opposite effects of temporal aggregation, which are
also mathematically analyzed in Appendix 1.2.1. On the one hand,
the temporal aggregation and subsequent representation by
means of medoids leads to an underestimation of extreme periods
as only those candidate days are chosen which are closest to the
respective cluster’s centroid. This generally leads to an underesti-
mation of the system cost, if only time series in the constraint ma-
trix and constraint vector are considered (e.g. time series for ca-
pacity factors and energy demands, but not commodity cost time
series) and the system is temporally decoupled. On the other hand,
the merging of time steps is based on the assumption that a system
operates identically if the outer conditions of the system given by
time series are identical. This is generally not the case for tempo-
rally coupled systems, which e.g. consider storage technologies,
because a system is likely to operate differently if a lot of energy
is stored in the system compared to a system with empty storage
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components, even if the outer conditions are identical. Accord-
ingly, the assumption of identical operation for time steps, which
are aggregated based on their similarity, constrain the system,
which leads to an overestimation of the optimal objective. There-
fore, a small deviation from the optimal objective does not neces-
sarily equal a good temporal aggregation. Instead, it can also imply
that two systematical errors were made that neutralize each other.

With respect to the centroid representation and the representation
according to the distribution-preserving algorithm, the proposed
method for finding and optimal tradeoff between the number of typ-
ical days and the number of segments clearly outperforms all other
aggregation configurations as all assumptions for the validity of the
proposed algorithm are fulfilled. The algorithm consistently identi-
fies most of the points that are closest to the objective function of
the reference case leading to a comparably exact solution that can
be found within a small fraction of the original runtime.

It is worth mentioning that the distribution-preserving algorithm
moreover significantly outperforms the convergence behavior of
the centroid representation for both, typical days at hourly resolu-
tion only and those configurations with an optimal trade-off be-
tween the number of typical days and segments. Accordingly, the
distribution-preserving algorithm with an optimal ratio of typical
days and segments according to the optimal pathway algorithm
has proved to be the most effective temporal aggregation algorithm
with respect to three major criteria: Smallest objective deviation at
small runtime, monotonous convergence behavior and low sensi-
tivity with respect to an optimal component capacity choice.
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Figure 4.16. Convergence behavior of the different representation methods if

an optimal ratio between the number of typical days and the number of seg-

ments is chosen based on the root-mean-square error compared to the con-

vergence behavior of different typical day numbers at an hourly resolution
Finally, the findings of this section are used to compare the identi-
fied optimal aggregation approach based on the optimal pathway
algorithm and the distribution-preserving representation algorithm
to the whole set of tested temporal aggregation configurations,
which is shown in the left graph of Figure 4.17. Further, the pro-
posed method is also compared to the most common state-of-the-
art aggregation approaches, i.e. the cluster representation by me-
doids and centroids based on typical days with hourly resolution
(i.e. without a further segmentation). This is evaluated in the right
graph of Figure 4.17. It is evident that the proposed configuration
of an optimal ratio between the number of typical days and seg-
ments as well as the distribution-preserving representation algo-
rithm is remarkably effective, as it converges very fast to the opti-
mal objective of the reference case. Further, it outperforms the
well-known aggregation approaches significantly, which rely on
typical days at an hourly resolution with a centroid- or medoid-
based cluster representation. The proposed method reveals a
runtime speed-up for comparably exact results of almost a magni-
tude compared to the state of the art methods.
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Figure 4.17. The identified optimal aggregation method among all tested ag-
gregation approaches (left) and a direct comparison to state-of-the-art aggre-
gation methods as used in FINE (right)

4.2.2. Analyses of the Self-Sufficient Building

In the following, the self-sufficient building model is analyzed anal-
ogously to the island system. However, as both models are tem-
porally coupled multi-commodity single-node models, the analysis
is shortened for the sake of brevity. Yet, the self-sufficient building
is an interesting case study as it only considers time series with a
strong daily pattern, i.e. photovoltaic profiles, electricity and heat
demand. Therefore, this case study can be used in order to evalu-
ate the effectiveness of segmentation even if the time series de-
mand a high intra-daily resolution for an accurate temporal aggre-
gation. Figure 4.18 illustrates the objective function deviations of
the aggregated configurations from that of the fully resolved case
depending on the runtime of the optimization.
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Figure 4.18. The self-sufficient building model and the corresponding normed
optimal objectives over computation times for all considered configurations
(adapted from Hoffmann et al. [3])
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Compared to the corresponding graph for the island system shown
in Figure 4.9, it can be stated that most of the major features of all
considered clustering configurations are also given in case of the
self-sufficient building model. Concisely, higher runtimes indicate
more considered time steps resulting from a higher number of typ-
ical days and segments per typical day and accordingly, the devi-
ation from the optimal objective is generally decreased. Moreover,
the general underestimation of the total system costs with a mo-
notonous convergence behavior in the case of a representation by
centroids or the distribution-preserving algorithm for higher tem-
poral resolutions is also analogous to the findings of the prior sec-
tion. Furthermore, the distribution-preserving algorithm consist-
ently deviates from the optimal objective of the reference case the
least, which underlines its benefits in this application case as well.

In contrast to the aforementioned two representation methods, the
representations by medoids and maxoids lead again to a more ar-
bitrary deviation from the optimal objective of the fully resolved
case. However, two differences can be identified: In this case, the
majority of aggregation configurations with a representation by me-
doids underestimate the optimal objective, while almost all of the
maxoid configurations overestimate the optimal objective.

In case of the representation by medoids, the trend of an overesti-
mation for small temporal resolutions and the underestimation for
higher temporal resolutions can be explained by the two opposite
effects of choosing those candidate days, which are close to the
clusters’ centroids and accordingly relatively smooth on the one
hand and lower operational flexibility on the other hand. In contrast
to the island system model, the representation by maxoids fulfills
its original purpose to create comparably robust system designs,
i.e. designs that are more expensive than those of the fully re-
solved case. A possible reason for this is the fact that all time se-
ries have a strong daily pattern in this case, which means that the
data cloud in the hyperdimensional N, x 24 space is relatively
dense. Therefore, fewer outliers are needed to form a convex hull
of the data cloud and to capture all possible extreme cases chal-
lenging the energy system model. Accordingly, it can be stated that
the representation by maxoids can be a good approach for robust
system design under the premise that only few time series with a
strong periodic pattern are considered. Otherwise, the number of
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potential extreme situations increases drastically with the number
of considered time series.

Figure 4.19 quantifies the optimal objective’s deviation of all ag-
gregation configurations from the fully resolved reference case de-
pending on the number of typical days, segments and the repre-
sentation method.
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Figure 4.19. The deviation from the optimal objective of the fully resolved
case depending on the configuration of the number of typical days and seg-
ments as well as the representation method (adapted from Hoffmann et al.

[3D
In case of a representation by maxoids and medoids, a varying
number of typical days and segments has an unpredictable impact
on the objective deviation, which could also be observed for the
island system model. In case of a representation by centroids or
using the distribution-preserving algorithm, the aggregation-in-
duced error decreases monotonously with an increase of the num-
ber of typical days and segments. Again, a small superiority of the
distribution-preserving algorithm can be observed for small num-
bers of typical days and segments.

Analogously to the analyses for the island system in Section 4.2.1,
the optimal pathway algorithm for finding a good tradeoff between
the number of typical days and segments is investigated for the
self-sufficient building model in the following.
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Figure 4.20 shows the correlations between the aforementioned
four error indicators as well as the corresponding correlation coef-
ficients for the representation by centroids and medoids. Here,
Spearman’s correlation coefficient pg in the upper right graph of
each color assesses the validity of assumption 1 stated in Equation
(3.26), the lower left picture the validity of assumption 2 stated in
Equation (3.27) and the upper left figure the validity of assumption
3 stated in Equation (3.28).
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Figure 4.20. The correlation between a priori and a posteriori indicators for
the representation by centroids (top) and by medoids (bottom)
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As can be seen in Figure 4.20, the assumptions are sufficiently
justified by Spearman’s correlation coefficients in case of a repre-
sentation by centroids, as they are close to 1 or -1, respectively. In
contrast to that, the assumption of a monotonous correlation be-
tween the root-mean-square error and the objective function devi-
ation (assumption 2) is not given in the case of a representation by
medoids, as the relatively low correlation coefficient pg of 0.767 in
the lower left graph for medoids in Figure 4.20 reveals. Because
the correlation results of the distribution-preserving algorithm are
quite comparable to those of the representation by centroids, while
those for maxoids are comparable to those of the representation
by medoids, the validity of the proposed algorithm for finding the
optimal number of typical days and segments is given for the rep-
resentation by centroids and the distribution-preserving algorithm.
In contrast to that, it is doubtful for a representation by medoids or
maxoids.

Figure 4.21 depicts the pathway of optimal typical day and seg-
ment number for an increasing number of total time steps as pre-
dicted by the proposed algorithm depending on the representation
method.
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Figure 4.21. The pathway found by the proposed algorithm for an optimal ra-
tio between the number of typical days and segments depending on the repre-
sentation method (adapted from Hoffmann et al. [3])

Despite of the fact that the found pathway based on the root-mean-

square error might not be meaningful due to the low correlation of
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the root-mean-square error and the deviation from the optimal ob-
jective of the fully resolved model in case of a representation by
maxoids and medoids, all pathways bear a certain resemblance to
each other. When comparing the pathways for the self-sufficient
building model shown in Figure 4.21 to those of the island system
model shown in Figure 4.15, however, it becomes clear that the
optimal pathways for the self-sufficient building model favor higher
numbers of segments and fewer typical days at low temporal res-
olutions, while the opposite holds true for the island system model.
This difference can be explained by the absence of a wind time
series in the case of the self-sufficient building, which generally
needs to be represented by a large number of typical days in order
to capture its aperiodic pattern appropriately. This emphasizes that
the optimal pathway algorithm is indeed capable to adapt to differ-
ent model types.

Figure 4.22 compares the deviations from the optimal objective of
the reference case depending on the runtime for each representa-
tion method separately. Here, the light green dots mark those con-
figurations that are considered to be optimal with respect to their
typical day and segment ratio according to the pathway algorithm,
while the purple dots mark those configurations of typical days with
an hourly inter-daily resolution.
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Figure 4.22. Convergence behavior of the different representation methods if
an optimal ratio between the number of typical days and the number of seg-
ments is chosen based on the root-mean-square error compared to the con-
vergence behavior of different typical day numbers at an hourly resolution
(adapted from Hoffmann et al. [3])
As predicted by the statistical investigation in Figure 4.21, the al-
gorithm for finding an optimal trade-off between the number of typ-
ical days and the number of segments performs poorly for the rep-
resentation by maxoids and medoids. This is revealed by the upper
two graphs in Figure 4.22. Here, it can be seen that the aggrega-
tion configurations proposed by the algorithm do not consistently
outperform other aggregation configurations as e.g. those with typ-
ical days at an hourly resolution. However, compared to the con-
figurations using representations by centroids or the distribution-
preserving algorithm, the aggregations do not show a consistent
convergence behavior for an increase of the temporal resolution
anyways. In contrast to that, the lower two graphs of Figure 4.22
illustrate that the algorithm for finding an optimal ration between
the number of typical days and the number of segments clearly
outperforms other aggregation configurations in case of the repre-
sentation by centroids or the distribution-preserving algorithm.
Here, the light green data points are always those points that are
closest to the optimal objective of the reference case for a given
runtime. Further, these configurations of typical days and seg-
ments lead to aggregation configurations, which are, given a cer-
tain runtime, significantly closer to the optimal objective than the
configurations that do not use the additional segmentation. Accord-
ingly, the advantages of decreasing both, the number of typical
days and the number of segments simultaneously, is evident.
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Accordingly, the configurations that rely on the distribution-pre-
serving representation and the optimal pathway algorithm are the
most efficient ones for the self-sufficient building, which is in line
with the findings made for the island system. The left graph in Fig-
ure 4.23 highlights those clustering configurations, which are rely-
ing on these two algorithms proposed in this thesis. Obviously,
they cover those points among all 612 considered clustering con-
figurations, which are optimal with respect to both, the runtime and
the deviation from the optimal objective of the fully resolved refer-
ence case. Moreover, the left graph in Figure 4.23 illustrates the
optimal aggregation configurations based on the two proposed al-
gorithms to the status quo of the temporal aggregation techniques
used in FINE prior to the contributions of this work, i.e. typical days
without a further segmentation represented by medoids or cen-
troids. The combination of the proposed algorithms outperforms
the current methods of temporal aggregation by a speed-up factor
of one magnitude for a comparable accuracy.
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Figure 4.23. The identified optimal aggregation method among all tested ag-
gregation approaches (left) and a direct comparison to state-of-the-art aggre-
gation methods as used in FINE (right) (adapted from Hoffmann et al. [3])

4.2.3. Analyses of the European Model

The last model that is part of the sensitivity analysis to find an op-
timal combination of representation method, the number of typical
days and the number of segments, is the European model. In con-
trast to the aforementioned models, the European model is a lin-
ear, but multi-regional energy system model with several hundreds
of time series comprising low-correlated time series such as wind
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profiles, but also time series with a clear daily pattern such as elec-
tricity demand and solar profiles.

Analogously to the preceding sections, the right graph of Figure
4.24 depicts the deviations from the optimal objective of the fully
resolved reference case depending on the runtime necessary to
solve the respective aggregated model configuration. In contrast
to the prior models, none of the considered representation meth-
ods overestimates the total system cost dramatically. Yet, the rep-
resentation by the distribution-preserving algorithm leads in gen-
eral to a higher total system cost than a representation by centroids
and the representation by medoids leads to higher system costs
than a representation by the distribution-preserving algorithm,
which is in line with prior energy system models. Interestingly, the
representation by maxoids leads to the strongest underestimation
of total system costs. A reason for this might be hypothesis that
due to the number of different time series, the dimensionality of the
clustering space increases so much that the number of possible
extreme situations simply exceeds the number of typical days to
be chosen by far. This would result in a representation of the orig-
inal time series by a few days that might be extreme, but not design
relevant. For example, days with maximum capacity factors and
minimum electricity demand could be derived, which would not
challenge the energy supply system. Accordingly, it can be stated
that the representation by maxoids is likely only applicable for en-
ergy systems with few time series in which a limited number of
candidate days belongs to the outer spheres of the data cloud in
the clustering space.

A big contrast to the prior models, however, is the observation that
the representation by medoids leads to the smallest deviations
from the optimal objective function of the reference case at a given
runtime. However, as will be shown in the following, an aggrega-
tion by medoids is not necessarily superior with respect to the op-
timal design capacities and a prognosis, what number of typical
days and segments is necessary for a sufficient aggregation.
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Figure 4.24. The European model and the corresponding normed optimal ob-
jectives over computation times for all considered configurations (adapted
from Hoffmann et al. [3])

Figure 4.25 depicts the deviations from the optimal objectives of
the reference case depending on the chosen representation
method and the configuration of the number of typical days and
segments used for temporal aggregation. Here, the general ten-
dency of the maxoid representation to underestimate the optimal
objective of the reference case severely is illustrated in the upper
left graph. Furthermore, the representation by centroids or using
the distribution-preserving algorithm lead to aggregation-induced
objective deviations, which decrease monotonously with an in-
creasing number of typical days or segments as the lower two
graphs in Figure 4.25 reveal. Here, the temporal aggregation using
the distribution-preserving representation algorithm, 136 typical
days and 6 segments is an outlier due to a suboptimal optimization
termination. Moreover, the distribution-preserving algorithm leads
to a smaller objective deviation at a given number of typical days
and segments than the representation by centroids. Finally, the
representation by medoids leads to the smallest deviation from the
optimal objective of the fully resolved case for the European model.
However, as the upper right graph in Figure 4.25 reveals, the de-
viation is either an over- or underestimation of the optimal objective
and no clear relationship between the typical day- and segment

configuration and the deviation of the objective can be observed.
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Figure 4.25. The deviation from the optimal objective of the fully resolved
case depending on the configuration of the number of typical days and seg-
ments as well as the representation method (adapted from Hoffmann et al.

(3D
It is worth mentioning that the white fields are clustering configu-
rations that were not solvable within a predefined time (approxi-
mately 79 hours). Interestingly, the white fields imply that a higher
number of typical days can be considered if less segments are
used, e.g. while the maximum number of typical days with an
hourly resolution it 48, up to 136 typical days can be considered, if
the number of segments is reduced to six. This underlines the ad-
ditional flexibility options achieved in the context with this work.
Moreover, the configurations listed in Table 4.3 were terminated
with a suboptimal solution, which makes them numerical outliers:

Table 4.3. Numerical outliers of the European model

Representation Number of Typical Number of Segments
IDEVE

Maxoid 1 6
Maxoid 96 17
Maxoid 136 6
Medoid 96 17
Medoid 136 6
Medoid 272 2
Distribution 136 6
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In order to evaluate, which representation method is robust with
respect to a consistent technology selection, the cumulative cost
share of the considered photovoltaic technologies (with and with-
out tracking as well as open field) and of the wind technologies
(onshore and offshore) are shown in Figure 4.26. This means that
the total annualized cost for each technology at each location be-
longing to either photovoltaics or wind is summed up and its share
of the total system costs of the respective aggregation configura-
tions is calculated. Obviously, the general underestimation of the
total annualized costs in case of a representation by maxoids is
partly caused by the low total annualized costs of the photovoltaic
and wind technologies, as the first row of Figure 4.26 reveals. As
mentioned earlier, the solar profiles are more strongly affected by
a low number of segments, while the wind profiles are more
strongly affected by a low number of typical days. Accordingly, the
solar profiles are disproportionally more smoothened by a low
number of segments, which makes them economically more viable
in case of very few segments per day. In contrast to that, the wind
technologies profit from a low number of typical days due to a
stronger smoothening of their profiles for few typical days.

Interestingly, the representation by medoids leads to relatively
small deviations with respect to a certain technology. Yet, the de-
viations are rather arbitrary and not a direct function of the chosen
number of typical days and segments. Furthermore, the accuracy
of configurations that capture the features of the reference system
with respect to the size of built capacities is not necessarily im-
proved if the number of typical days or segments in increased.

Similar to the representation by maxoids, the representation by
centroids and the distribution-preserving algorithm reveal a prefer-
ence for photovoltaic technologies when a small number of seg-
ments is chosen whereas wind technologies are overrepresented
for small number of typical days. The reason for this is again the
fact that photovoltaic profiles are stronger smoothened by a low
number of intra-daily time steps, while wind profiles are dispropor-
tionally affected by a small number of typical days due to their ape-
riodic pattern. Furthermore, the representation using the distribu-
tion-preserving algorithm outperforms the representation by cen-
troids for at least 34 typical days as the third and fourth row in
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Figure 4.26 reveal. In the case of a representation using the vari-
ance-reserving algorithm, almost no deviation from the highly re-
solved configurations can be observed for photovoltaic technolo-
gies for at least three daily segments. For the cost contribution of
wind technologies, a configuration of at least 34 typical days and
3 segments seems to be sufficient for the total share of wind costs
for higher temporal resolutions. In contrast to that, the representa-
tion by centroids continuously overestimates the share of wind
technologies at high temporal resolutions such as 96 typical days.

Yet, it can be stated that combined with the fact that the overall
system costs deviate very little from reference case, the represen-
tation by medoids seems to work best for multi-regional energy
system models with a large number of low-correlated time series
such as wind profiles throughout Europe. Furthermore, it is remark-
able that the number of segments has very little impact on accu-
racy of the aggregated solutions as three segments per typical day
instead of 24 hourly time steps seem to capture the main features
of the fully resolved energy system optimization independently of
the used representation method.
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Figure 4.26. The total annualized costs of the photovoltaic technologies and
the wind plants normed by their total annualized costs in the fully resolved
case
In order to emphasize the impact of varying temporal aggregation
configurations on the chosen technologies, Figure 4.27 depicts the
energy supply and storage capacities depending on a varying num-
ber of typical days and segments using a representation by cen-
troids. Here, a representation by centroids has been chosen be-
cause of a comparably predictable impact of the chosen aggrega-
tion configuration on individual technologies. Further, 96 typical
days with 12 segments shown in the first row of Figure 4.27 have
been chosen as an example for an aggregation with a relatively
high number of typical days and segments. In order to evaluate the
impact of a lower number of typical days or, in contrast to that, a
low number of segments, the second and the third line of Figure
4.27 evaluate the impact of 96 typical days and 2 segments and 6
typical days and 12 segments on the technology mix, respectively.
As Figure 4.25 and Figure 4.26 illustrate, the representation by
centroids is not preferable with respect to its capability to aggre-
gate the European model adequately. Therefore, the comparison
in Figure 4.27 only refers to the relative impact on the technology
mix due to a reduction of the number of typical days or the number

of segments.
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As the left map in the first row of Figure 4.27 illustrate, the wind
and photovoltaic energy supply systems take over a major share
in the overall energy supply in case of the model configuration with
many typical days and many segments per typical day. However,
the technologies are heterogeneously distributed: While large ca-
pacities of photovoltaics without tracking are built in the south of
Europe, wind plants are preferred in the north of Europe. This is
an intuitively plausible result because of the high solar irradiance
in the south and the high wind potentials near the North Sea. Fur-
ther, some of the regions with a coastline also have considerable
capacities of offshore wind turbines, e.g. in Northern Germany or
Northern Poland. The capacities of Run-of-River hydroelectricity
plants are limited to regions near the Alps, e.g. Northern Italy. The
right map in the first row shows that considerable amounts of salt
caverns are needed in this highly resolved energy system config-
uration throughout Germany, Poland, Great Britain, the Benelux
states and the eastern part of France. Moreover, hydro reservoirs
in Scandinavia take over another major part for energy storage.
Here, it needs to be highlighted, that the storage capacities of salt
caverns are given as TWh of hydrogen and those of the hydro res-
ervoirs as TWh of electricity. Therefore, the capacities are only
comparable if usage and electrolyzer and fuel cell efficiencies are
considered. Yet, the high temporal resolution leads to a consider-
able need for seasonal energy storage due to the intermittency of
solar and wind energy feed-in. Here, it needs to be highlighted that
battery storage does not contribute to the overall storage capaci-
ties in a considerable amount, as it is mainly operated on a daily
basis. The reason for this are the high capacity-specific costs of
batteries compared to those of e.g. salt caverns. Yet, batteries play
an important role for compensating short-term residual load fluctu-
ations. Further, despite their small contribution to the overall stor-
age capacities, their cost contribution is not negligible due to their
high capacity specific costs.

The second row of graphs in Figure 4.27 illustrate the optimal en-
ergy supply and storage capacities, if the European model is ag-
gregated to 96 typical days and 2 segments with a centroid-based
representation. In case of this very low inner-daily temporal reso-
lution, the solar capacities are significantly overestimated com-
pared to a resolution of 12 segments per typical day. In contrast to
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that, the wind plant capacities are underestimated. The reason for
this is that solar profiles are affected stronger by a low inner-daily
temporal resolution because of their daily periodicity and their high
inner-daily variance. If a typical day is represented by only two
segments, that means that the solar profiles are averaged so ex-
tremely, that both time steps are spanning over both, day and night
time. Accordingly, such an aggregation leads to a mathematical
model, in which solar feed-in is also given during nighttime. Fur-
ther, the profiles are smoothed extremely which moreover leads to
an underestimation of the solar profiles’ intermittency. As the right
subgraph in the second row of Figure 4.27 reveals, the significantly
lower number of segments per typical day has only little impact on
both, the overall built storage capacities and their spatial distribu-
tion. Comparably to the case with 96 typical days and 12 seg-
ments, the optimal solution of this aggregation configuration
chooses to build major amounts of hydro reservoirs in Scandinavia
and salt caverns in central Europe as well as Eastern France and
Great Britain. Here, it needs to be highlighted that the lower
amount of segments per typical days has a stronger impact on the
inner-daily storage systems, but due to their small overall capaci-
ties, the impact cannot be identified in this illustration.

The last aggregation configuration with 12 segments but the small
number of only six typical days shown in the third row of Figure
4.27 reveals a drastic overestimation of wind capacities, while the
solar capacities are underestimated. In this case, wind capacities
are not only built close to the North Sea, but also in Southern
France, Austria, Czech Republic and Poland. In contrast to that,
the distribution of solar capacities varies less than the distribution
of the wind turbines. Yet, the solar capacities in each region are
consistently small in almost each of the regions compared to an
aggregation to 96 typical days. The reason for the much higher
amount of wind plant capacities is the circumstance that wind pro-
files are stronger averaged in case of a low number of typical days
due to their aperiodic and daytime independent pattern. Therefore,
the intermittency of wind energy is underestimated in case of a low
number of typical days, which makes this technology considerably
more profitable. In contrast to that, solar profiles are also aver-
aged, but not to the same extent. For that reason, smaller amounts
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of solar capacities are needed, because they become less profita-
ble in relation to wind turbines and because smaller amounts are
needed due to the averaging effect itself. For the storage technol-
ogies, the right map in the last row of Figure 4.27 reveals that alt-
hough almost the same amount of hydro reservoirs is built in Scan-
dinavia, the overall capacity of salt caverns is drastically reduced
for a small number of typical days. The reason for the constant
amount of hydro reservoirs compared to the two prior configura-
tions is that they are implemented as fixed and already existing
capacities within the setup of the European model because it is
assumed that their overall potential in Europe is already fully used.
However, in case of the salt caverns, the low number of typical
days leads to a drastic underestimation of the storage capacities.
As mentioned before, salt caverns mainly serve as seasonal stor-
age of hydrogen due to their low capacity specific costs. In case of
only six typical days, the intermittency of wind is drastically under-
estimated which leads to the erroneous assumptions that electric-
ity can always be supplied by wind turbines. Accordingly, much
smaller storage capacities are necessary in order to balance inter-
mittent residual loads. Again, the impact of a small number of typ-
ical days on the overall battery capacities does not emerge from
the map due to the low overall capacities of this technology. How-
ever, it can be stated that seasonal phenomena such as electricity
feed-in have generally a big impact on seasonal storage technolo-
gies such as salt caverns while the same holds true for daily phe-
nomena such as solar electricity feed-in from photovoltaics and
battery capacities. Further, the more the intermittency of the re-
spective renewable energy source is underestimated due to tem-
poral aggregation, the smaller the corresponding storage compo-
nent becomes.In summary, Figure 4.27 reveals that a strong inter-
dependency between the number of typical days and segments
and the optimal technology capacities exists. Although the optimal
system layout heavily depends on the chosen representation
method as well, Figure 4.27 underlines the observation that a low
number of typical days mainly affects wind turbine and salt cavern
capacities, i.e. technologies with a seasonal operation pattern,
while the number of segments affects technologies with a daily op-
eration pattern such as photovoltaic plants. Against this backdrop,
it becomes evident that especially large-scale energy system mod-
els, which generally rely on strongly reduced temporal resolutions,
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need a careful evaluation, whether the chosen temporal resolution
is meaningful or results in an unjustified preference for certain
technologies. Even if the energy system is not solvable for an
hourly or even higher temporal resolution, a sensitivity analysis in
the direct neighborhood of the chosen temporal resolution seems
to be mandatory. Moreover, it is advisable to consider always both
dimensions of temporal aggregation, the number of typical periods
and the inner-daily temporal resolution.
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Figure 4.27. Energy supply and storage capacities depending on a varying
number of typical days and segments using a representation by centroids
(taken from Hoffmann et al. [3])

Analogously to the prior models, it is investigated in the following
paragraph whether the algorithm proposed to find an optimal ratio
of the number of typical days and the number of segments based
on an a priori indicator outperforms the status quo of aggregation
techniques, i.e. an aggregation to typical days with an hourly res-

olution only.

The validity of the three assumptions stated in the equations
(3.26), (3.27) and (3.28), on which the optimal pathway algorithm
is based, are again evaluated using Spearman’s correlation coef-
ficient p;, and Pearson’s correlation coefficient p,. Figure 4.28 de-
picts the different correlations between the a priori indicators root-
mean-square error and the total number of time steps and the a
posteriori indicators optimization runtime and deviation of the opti-
mal objective of the fully resolved case for the representation by
centroids and the representation by medoids. In case of the repre-
sentation by centroids, the assumptions of a monotonous correla-
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tion between the total number of time steps and the runtime, be-
tween the a priori indicator root-mean-square error and the aggre-
gation-induced objective function deviation and the a priori indica-
tor and the total number of time steps are sufficiently justified. This
is indicated by Spearman’s correlation coefficient, which are close
to 1 and -1, respectively, in the upper right (for assumption 1),
lower left (for assumption 2) and upper left (for assumption 3)
graph for centroids. In contrast to that, assumption 2 is violated in
the case of a representation by medoids, as the low correlation
coefficient pg of 0.682 in the lower left figure for medoids indicates,
i.e. the assumption that a lower root-mean-square error of the clus-
tered time series indicates a lower deviation from the optimal ob-
jective, is not justified in this case.
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Figure 4.28. The correlation between a priori and a posteriori indicators for
the representation by centroids (top) and by medoids (bottom)

Apart from that, it is remarkable that the Pearson correlation coef-
ficient between the number of total time steps and the runtime of
the optimization problem is significantly lower than for the island
system model and the self-sufficient building model. This means
that a reduction of the total number of time steps leads to a dispro-
portional speed-up in case of the European model. However, Fi-
gure 4.29 highlights the correlation of the runtime and the total
number of time steps in a double logarithmic plot for a representa-
tion by centroids and by medoids. As shown, the correlation is ap-
proximately linear in this plot, which is also mirrored by the high
Pearson correlation coefficient p,;,, between the logarithms of
both variables. This means that the correlation can be described
as:

- i Lyrs)™ (4.2)
log(#TS) = m - log(Runtime) + log(b) & Runtime = (E #TS) :

In this case, the function for both, the representation by centroids
and the representation by medoids is approximately given by:

Runtime = 2 - #TS'® (4.3)

Accordingly, it can be stated that for large energy system models,
a reduction of the total number of time steps leads to a stronger
speed-up of the optimization runtime compared to small energy
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system models, for which the correlation between the number of
total time steps and runtime is approximately linear. Taking into
account that the deviation from the optimal objective of the refer-
ence case have a very small sensitivity to a decrease of the num-
ber of segments, reducing the total number of time steps by using
both, typical days and segments, reveals big advantages.
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Figure 4.29. The correlation between the logarithm of runtime and the loga-
rithm of the total number of time steps
Figure 4.30 depicts the pathway of optimal typical day and seg-
ment numbers for an increasing number of total time steps as pro-
posed by the optimal pathway algorithm depending on the repre-
sentation method. Evidently, the algorithm never chooses more
than eight segments per typical day unless the original number of
days, i.e. 365 days, is used. This emphasizes that low auto- and
cross-correlation of the wind profiles in each of the considered 96
European regions lead to a set of very heterogeneous candidate
days. Accordingly, the idea of clustering typical days based on their
mutual similarity always leads to a strong averaging effect of time
series in some of the considered regions. Instead, a reduced num-
ber of inner-daily time steps and an increased number of typical
days seems to be more advantageous. Interestingly, the optimal
pathways of the representation by centroids and the representation
using the distribution-preserving algorithm differ the most: While
the representation by centroids favors eight segments for the most
typical day configurations, the distribution-preserving algorithm fa-
vors three or four segments per typical day. As shown in Section
3.2.5, the distribution-preserving algorithm increases or decreases
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the extreme values slightly in time series that were under- or over-
estimated due to the averaging effect in order to produce aggre-
gated time series with the same variance as the original ones. In
that process, however, the root-mean-square error is slightly in-
creased compared to a representation by centroids. This penalty
is obviously decreased by increasing the number of typical days
first, as this mitigates the averaging effect due to clustering and
therefore also the root-mean-square error increase introduced by
the variance-synthesis in case of the distribution-preserving algo-
rithm.

Interestingly, the optimal pathways for an aggregation by maxoids
or medoids lie in the middle of the both aforementioned pathways.
Together with the fact that the representation by medoids does not
lead to an overestimation of the reference case’s optimal objective,
it may lead to more meaningful results for these representation
types than it was the case for the single-regional models.
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Figure 4.30. The pathway found by the proposed algorithm for an optimal ra-
tio between the number of typical days and segments depending on the repre-
sentation method (adapted from Hoffmann et al. [3])

In order to evaluate whether the proposed algorithm for finding an
optimal tradeoff between the number of typical days and the num-
ber of segments succeeds at closer approximating the optimal ob-
jective value of the fully resolved reference case at a smaller tem-
poral resolution, Figure 4.31 depicts all temporal aggregation con-
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figurations of each representation method separately. Further-
more, those clustering configurations that were proposed by the
optimal pathway algorithm are highlighted in light green, whereas
those configurations considering typical days at an hourly resolu-
tion, i.e. without an additional segmentation, are highlighted in pur-
ple. The latter represent the status quo in the FINE framework be-
fore the option for segmentation was implemented within the scope
of this thesis.

Evidently, the algorithm determines clustering configurations of
typical days and segments that are consistently closer to the opti-
mal objective of the reference case for a given runtime than those
configurations that consider a number of typical days with hourly
resolution only. In contrast to the single-regional energy system
models, this also holds true for the representation by maxoids and
medoids despite of the fact that only a low correlation between the
root-mean-square error and the objective function deviation could
be observed for these configurations in Figure 4.28. However, as
shown in Figure 4.30, the optimal pathways laid in-between those
for the representation by centroids and the distribution-preserving
clustering algorithm, so that the found clustering configurations
seem to be still meaningful. A possible reason for this could be the
fact that in contrast to the single-regional energy system models,
the representation by means and medoids does not significantly
overestimate the total system costs in case of the European model.
In case of the single-regional energy system models, this overes-
timation of the total system costs was caused by the fact that fewer
time steps led to fewer operation options in the optimization and
therefore stiffened the storage operation. Furthermore, maxoids
and medoids do not preserve the original time series’ mean values,
which likely led to further unpredictable deviations. In contrast to
that, these effects are of minor importance to the European model
and the major error in this case is the underestimation of extreme
values. For that reason, a smaller underestimation of the original
time series’ extreme values leads to a smaller underestimation of
the optimal objective in case of the European model. This hypoth-
esis is supported by the fact that although the clustering configu-
rations proposed by the optimal pathway algorithm consistently
lead to higher objective function values compared to the aggrega-
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tion to typical days with an hourly solution, they almost never over-
shoot the optimal objective value of the reference case. Here, it
needs to be highlighted that the green data point in the upper right
graph of Figure 4.31 belongs to one of the outliers mentioned in
Table 4.3, for which the optimization problem did not converge
properly. Accordingly, this outlier can be neglected.
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Figure 4.31. Convergence behavior of the different representation methods if
an optimal ratio between the number of typical days and the number of seg-
ments is chosen based on the root-mean-square error compared to the con-
vergence behavior of different typical day numbers at an hour (adapted from
Hoffmann et al. [3])
The optimal aggregation configurations identified for the European
model are depicted in the left graph of Figure 4.32, whereas they
are compared to the status quo consisting of typical days with
hourly resolution found using centroid or medoid representation in
the right graph. As it can be seen in the left subfigure, the repre-
sentation by medoids using typical day and segment numbers as
proposed by the optimal pathway algorithm leads to aggregated
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model configurations which are consistently among those cluster-
ing configurations that are closest to the optimal objective of the
fully resolved case. Moreover, the right subfigure emphasizes that
especially the aggregation by means of centroids with an hourly
resolution shows an extremely slow convergence behavior with an
increase of the temporal resolution. Compared to an aggregation
to typical days using a medoid representation, the aggregation
configurations using medoids as well as an optimal tradeoff be-
tween the number of segments and typical days is also consistently
closer to the optimal objective, but with a smaller spread between
different optimal objectives at a given runtime. Moreover, the opti-
mal objective of the reference case is not overestimated, if a good
ratio between the number of typical days and the number of seg-
ments is chosen. Here, the outlier due to a suboptimal termination
of the optimization algorithm can be neglected.
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Figure 4.32. The identified optimal aggregation method among all tested ag-
gregation approaches (left) and a direct comparison to state-of-the-art aggre-
gation methods as used in FINE (right)

Finally yet importantly, the reason, why the representation by me-
doids slightly outperforms the representation using the distribution-
preserving algorithm in case of the European model, whereas it
significantly underperforms in case of the single-regional models,
remains an open question. As the preceding results imply, espe-
cially the onshore and offshore wind turbine capacities are sensi-
tive to a varying number of typical days in case of the distribution-
preserving representation method. Furthermore, it was shown in
Section 3.3.4 that the root-mean-square error of wind time series
mainly decreases with an increase of the number of typical days
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as wind time series do not have a daily pattern. As the distribution
preserving representation method strives at preserving the value
distribution of those days assigned to the same typical day sepa-
rately, the daily mean of the respective typical day equals the
mean value of all days that are assigned to the respective cluster
of candidate days. Therefore, the preservation of the original time
series variance is achieved by an overestimation of the inner-daily
variance within typical days of the aggregated time series, which
can easily be seen in Figure 3.19. At the same time, the variance
across the mean value of different typical days is underestimated,
which is supported by Figure 4.33. Here, two sample days where
aggregated to one typical day using either centroids (C) or the dis-
tribution-preserving algorithm (DP). While the distribution-preserv-
ing algorithm captures the total variance of the original time series
by overestimating the variance within the typical days, the daily
mean of both aggregated time series coincide, as the orange
dashed line completely covers the red dashed line. In the original
time series, however, also the daily mean value varies over time
as represented by the dashed blue line.
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Figure 4.33. Impact of the centroid (C) and distribution-preserving (DP) repre-
sentation on both, the inner-daily and inter-daily variance
In order to analyze this impact on the European model, one can
define the variance of daily mean values of an attribute a, i.e. a
technologies time series at a certain location, as follows:

1 ;: |2|: Xapt ~ %Zﬂ: Xa,p,t) (4 4)

— 1 3 3 2 1

Equation (4.4) defines the variance of daily mean values as vari-
ance between the total mean of an attribute a containing |P| x |T|
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values and the daily mean comprising |T| values each. As shown
in Figure 4.26, especially wind capacities were less accurate rep-
resented using the variance-preserving algorithm compared to the
medoid representation. For that reason, Figure 4.34 compares the
variance of daily means of the regionally resolved onshore wind
capacity factors of the European model for different numbers of
typical days represented by either medoids or using the distribu-
tion-preserving algorithm. As the effects described in the following
do not significantly differ in case of offshore wind capacities and
the data is only defined for the subset of regions with a coastline,
the corresponding analysis for offshore wind time series is omitted
for the sake of brevity.

Medoid Representation Distribution Representation

365 Typical Days & 24 Segments

e 0.12

|

Wh
Wh,

Variance of Daily Mean of
Onshore Capacity Factor [

]

Wwh
Wh,

Variance of Daily Mean of
Onshore Capacity Factor [

162



4.2. The Optimal Aggregation: A Sensitivity Analysis

Medoid Representation Distribution Representation

12 Typical Days & 24 Segments

J

Wh
wh,

Variance of Daily Mean of
Onshore Capacity Factor [

Figure 4.34. Variance of daily means of onshore capacity factors for varying
numbers of typical days depending on the representation method
As shown in Figure 4.34, the spatially resolved variance of the daily
mean of onshore capacity factors is identical for both representa-
tion method in case of 365 typical days, because the aggregated
time series equal the original ones. If the number of typical days is
decreased, however, the medoid representation chooses a subset
of days from the original dataset in order to represent the full time
series. Accordingly, the daily means equal those of a subset of real
days and are not affected by subsequent calculations. This results
in a variance of daily means, which is similar in scale, but not nec-
essarily with respect to spatial distribution. While the spatial distri-
bution in case of 68 typical days represented by medoids is com-
parable to the reference case, the most variable areas within Eu-
rope shift from Norway to Great Britain and Ireland if only twelve
typical days are used for representation. In that case, the variance
of the daily mean of onshore wind capacity factors is also consid-
erably underestimated on the Iberian Peninsula. This implies that
a medoid representation is suitable for models in which the cumu-
lative capacities of a technology throughout all regions is of inter-
est, but the exact spatial distribution of capacities can suffer from
a considerable misallocation. In contrast to that, the variance of
the daily means decreases monotonously with a smaller number
of typical days in case of a representation based on the distribu-
tion-preserving algorithm. As shown before in Figure 4.33, the daily
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mean of a typical day represented by the variance-preserving al-
gorithm coincides with the daily mean if a centroid representation
is used. For that reason, the daily mean suffers from the same av-
eraging effect as centroid representations with respect to the inter-
daily variance, whereas the intra-daily variance is overestimated.
As shown before, wind time series do not have a daily pattern ra-
ther than an irregular pattern, which varies between different days.
For that reason, the intermittency of wind capacity factors is pre-
dominantly underestimated by this effect. Accordingly, electricity
feed-in from wind turbines is economically more viable and conse-
quently, the wind capacities are systematically overestimated if a
small number of typical days are represented by the distribution-
preserving algorithm. Yet, in contrast to the medoid representation,
those regions with the highest and lowest variance of daily means,
i.e. northern Norway and northern Italy, remain the same for fewer
typical days. Accordingly, the regional allocation of capacities is
less affected.

Another aspect that affects the accuracy of temporal aggregation
in case of the European model is the large number of low-corre-
lated time series, which form a much less redundant dataset than
those of the prior models because the number of potential extreme
situations grows exponentially with the number of time series con-
sidered in a model as shown in Section 2.3.1.1. To illustrate this
effect, Figure 4.35 illustrates the convergence behavior of the
three different aggregated energy systems’ optimal objective value
to the reference value, if centroid-based typical days with an hourly
resolution (no segmentation) are used. Here, the number of total
time steps divided by 24 equals the number of typical days that
were used for this analysis. Further, the centroid-based represen-
tation was chosen because it has the most predictable conver-
gence behavior as shown in prior analyses. Accordingly, the max-
imum number of total time steps refers to the reference case and
comprises 8760 time steps or 365 typical days. It is worth mention-
ing that some typical day configurations in the case of the Euro-
pean model did not converge within a set time-out of three days.
Accordingly, the calculations were interrupted and some data
points are missing in this case. Yet, it can be clearly seen that the
aggregation-induced error converges asymptotically to the optimal
objective value of the reference case for both the single-regional
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models with a small number of different time series. Moreover, in
case of the island system model, a knee point can be observed at
well below 1000 total time steps, i.e. approximately 40 typical days.
Accordingly, the whole set of days can be accurately represented
by only 10% of days that are obtained by averaging all days that
are assigned to a common cluster. In case of the self-sufficient
building, the knee point is not as distinct as for the island system
model; however, it is clearly visible that despite the logarithmic
scale of the x-axis, the optimal objective converges. In contrast to
that, correlation between the aggregation-induced deviation from
the optimal objective and the logarithm of the total number of time
steps used in the aggregated energy system model is almost linear
in the case of the European model. This can clearly be seen in the
right subgraph of Figure 4.35. This finding is supported by the fol-
lowing Pearson correlation coefficient:

pp(log(#TS), Objective (#TS)) =0.985 (4.5)

European

Accordingly, the relationship between the number of considered
time steps and the optimal objective can be approximated by the
following function:

Objective(#TS) = m - log(#TS) + b (4.6)

As the logarithm is an unbounded function, however, this would
imply that the objective function value would further increase as
long as the number of total time steps is increased. In other words,
this would imply that the total costs of the energy system model
would further logarithmically increase, the more days are consid-
ered. This also implies that 365 days as database is insufficient for
a reliable design of a multi-regional model with a large number of
low-correlated time series. Apart from that, it means that days
stemming from a heterogeneous set of multi-regional input data
can hardly be aggregated to fewer days, e.g. the error and the
clustering-induced averaging effect will always be significant.
Against this backdrop, the choice of real days from the original da-
taset, as it is the case for a representation using medoids, seems
to be a more advantageous approach than synthesizing typical
days by averaging a set of very heterogeneous days. This can be
understood as a good example for the curse of dimensionality. Fur-
ther, the existence of a knee point as observed for the island sys-
tem model and the self-sufficient building model using clustered

165



4. Validation and Results

time series can be used as a tool to investigate whether the ground
truth, i.e. the fully resolved time series, is sufficient.
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Figure 4.35. The convergence behavior of the three different aggregated en-
ergy systems’ optimal objective value to the reference value, if centroid-based
typical days with an hourly resolution (no segmentation) are used (adapted
from Hoffmann et al. [3])

4.2.4. Adaption of the Distribution-Preserving Algorithm

As shown in the prior section, the distribution-preserving represen-
tation increases the inner-daily variance while the variance of the
daily mean, i.e. the variance on a longer time scale, is decreased,
which especially affects the predicted wind turbine capacities. In
order to address this issue, the representation algorithm is adapted
as shown in Figure 4.36. In contrast to the first approach, the
adapted representation method now strives at preserving the value
distribution of the whole attribute’s time series only rather than to
preserve the value distribution of each typical day cluster sepa-
rately. The corresponding algorithm is defined as follows:

For a given attribute, the centroids of each cluster are calculated
(1) and the time steps of all clusters are sorted together according
to their size (2). Then, the original time series of the attribute is
likewise sorted to a duration curve (3) and every |Cy| values of the
original duration curve are averaged and assigned to the respec-
tive value of the sorted centroid value list starting from the biggest
to the smallest value (4). Lastly, the newly calculated values re-
place the values of the cluster centroids using the inverse bijection
function that stored the order of centroid values (5).
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Figure 4.36. The graphical interpretation of the adapted distribution-preserv-
ing algorithm

The impact of the modified approach on the variance of the daily
mean of onshore capacity factor time series is depicted in Figure
4.37. As the representation by medoids performed best for the Eu-
ropean model among the previously introduced representation al-
gorithms, the subsequent evaluations of the adapted distribution-
preserving algorithm use the medoid representation as a bench-
mark.
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Medoid Representation Adapted Distribution Repr.

365 Typical Days & 24 Segments
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Figure 4.37. Variance of daily means of onshore capacity factors for varying
numbers of typical days depending on the representation method
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Here, it can be observed that compared to the original version of
the distribution-preserving representation, the modified algorithm
does not underestimate the variance of daily means of the onshore
wind time series for a decreasing number of total time steps in the
aggregated time series. In contrast to the representation by me-
doids, it can also be observed that the spatial distribution of more
and less variant areas remain almost constant, i.e. the most variant
areas remain in Northern Norway and Northern Ireland, whereas
the least variant areas are to be found on the Iberian Peninsula,
Northern Italy and the Balkan. In case of a representation by 12
medoid days, however, the variance in Northern Scandinavia and
central Italy is underestimated, while it is overestimated on the Brit-
ish Isles.

In order to validate the assumption that the preservation of the var-
iance of daily means plays an important role for the appropriate
sizing of those technology that usually do not work on a daily scale
rather than on a seasonal one, the European model was optimized
for the adapted distribution-preserving algorithm as well. Subse-
quently, the results are compared to those of the original distribu-
tion-preserving algorithm and the medoid representation.

Figure 4.38 depicts the optimal pathway of clustering configura-
tions for a rising number of total time steps as proposed in Section
3.3.4. Here, it can be observed that the optimal pathways for the
medoid representation and the adapted distribution-preserving al-
gorithm both favor six segments per typical day for more than 24
typical days.
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Figure 4.38. The pathway found by the proposed algorithm for an optimal ra-
tio between the number of typical days and segments depending on the repre-
sentation method (adapted from Hoffmann et al. [3])

Figure 4.39 depicts the normed optimal objective for all considered

representation methods over the corresponding runtime (left) and
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the normed objectives along the optimal pathway for the distribu-
tion-preserving algorithm, the medoid representation and the mod-
ified distribution preserving algorithm (right). As it can be seen, the
adapted distribution-preserving algorithm clearly outperforms the
prior version with respect to its deviation from the optimal objective
for comparable running time. Further, it neither leads to significant
overestimations of the optimal objective as the representation by
medoids. Further, if only clustering configurations along the opti-
mal pathway are considered, the adapted distribution-preserving
algorithm is the first one, which stabilizes at a solution close to the
original objective function at well below 104 seconds. In contrast to
that, the other representation methods proceed to oscillate around
the optimal objective for up to 10° seconds.
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Figure 4.39. The normed optimal objective for all considered representation
methods over the corresponding runtime (left) and the normed objectives
along the optimal pathway for the distribution preserving algorithm, the me-
doid representation and the modified distribution preserving algorithm (right)
(adapted from Hoffmann et al. [3])

Another aspect of interest is the deviation of the optimal objective
value from the one of the fully resolved reference case as well as
the cost share of certain technologies on the overall costs depend-
ing on the chosen aggregation configuration. For that, the wind tur-
bine and photovoltaic related costs depicted in Figure 4.40 are an-

alyzed in accordance to Section 4.2.3.

In contrast to the representation by medoids, the adapted distribu-
tion preserving algorithm leads of a consistently negligible total
cost deviation from the reference case if at least 34 typical days
and 3 segments are chosen, which equals a reduction from 8760
total time steps to 102, i.e. a reduction factor of 98,84%. The same
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phenomenon can be observed for the cost share of wind and solar
technologies, which likewise stabilize at the mentioned aggrega-
tion configuration. Furthermore, a comparison with Figure 4.26 re-
veals that the adapted distribution-preserving algorithm especially
improves the sizing of wind technologies, but at the cost of a
slightly deteriorated sizing of photovoltaic units.
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Figure 4.40. The deviation from the optimal objective value of the reference
case and the total cost shares of photovoltaic and wind capacities for the me-
doid and adapted distribution-preserving representation
As temporal aggregation heavily affects the sizing of storage ca-
pacities and total costs as well, Figure 4.41 shows the individual
cost shares of lithium-ion batteries and salt caverns having the
highest cost share among all storage technologies. In general, a
too low inner-daily time resolution leads to an underestimation of
battery storage, whereas a too low number of typical days leads to
an underestimation of salt cavern storage due to the inaccurate
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representation of seasonality. Despite the fact that batteries pre-
dominantly balance inner-daily energy fluctuations due to their
higher capacity-specific costs, 3 segments per typical day deem
sufficient to approximate their total cost share closely to the bench-
mark in case of the adapted distribution-preserving algorithm. In
summary, the proposed representation method provides a close
estimate of the total cost share for both technologies if at least 34
typical days and 3 segments are chosen. In contrast to that, the
cost shares of storage using the medoid representation have not
stabilized at this high aggregation level.
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Figure 4.41. The total cost shares of battery and salt cavern capacities for
the medoid and adapted distribution-preserving representation
Lastly, we investigate the impact of temporal aggregation on the
spatial distribution of source capacities, because not only the cu-
mulative capacity costs, but also their correct allocation are of in-
terest. As the optimal pathway for both, the medoid and the
adapted distribution-preserving representation contain the aggre-
gation configurations of 34 and 48 typical days with six segments
each, we consider these two configuration in order to investigate
whether the allocation of capacities significantly deviates for this
gradual increase of temporal resolution. Figure 4.42 depicts the
energy supply capacities depending on a varying number of typical
days and segments using the medoid and the adapted distribution-
preserving representation. Here, it can be seen that the optimal
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energy supply capacities as well as the allocation vary between 34
and 48 typical days in case of a representation by medoids. For
example, the installed photovoltaic capacities in Northern Italy are
considerably smaller in case of 48 typical days, whereas the on-
shore wind turbine capacities in Middle and Southeast England as
well as Ireland are larger compared to the corresponding optimal
solution based on 34 typical days. In contrast to that, the size and
allocation of supply technologies varies significantly less in case
of the adapted distribution-preserving algorithm which mirrors the
observation made in Figure 4.37 that the regional distribution of
variance is much stronger affected if medoid days are chosen.
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Medoid Representation Adapted Distribution Repr.
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Figure 4.42. Energy supply capacities depending on a varying number of typi-
cal days and segments using the medoid and the adapted distribution-pre-
serving representation
In order to evaluate whether the adapted distribution-preserving
algorithm is also more accurate with respect to the technology al-
location compared to the reference case, Figure 4.43 depicts the
technology allocation for 365 typical days and 24 segments per
typical day using the distribution-preserving algorithm solving
within about 10 days. As this configuration equals the fully resolved
case, the time series equal the original ones and the configuration
is independent from the chosen representation method. Compared
to the capacity allocation using 48 typical days, 6 segments and
the proposed algorithm, only small deviations can be observed.
Among those are a substitution of offshore wind capacities by on-
shore ones in Middle England and larger onshore wind capacities
in Eastern Poland. However, the deviations from the reference
case are larger in case of the representation by medoids, e.g. in
case of 48 typical days and 6 segments, the solution obtained us-
ing a representation by medoids does not at all consider onshore
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wind turbine capacities in Southern Italy or Northwestern Ger-
many.
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Figure 4.43. The energy supply capacities for 365 typical days, 24 segments

and the adapted distribution-preserving representation
In summary, it can be stated that the proposed adapted distribu-
tion-preserving algorithm succeeds in outperforming all other rep-
resentation methods with respect to both, technology sizing and
technology allocation. Further, the allocation of technologies
seems to be more sensitive with respect to small changes in the
input data compared to the absolute technology-specific costs,
which implies that there exist many possible layouts of technology
allocation, which lead to close-optimal total annual costs for the
entire system.

4.2.5. Summary

Section 4.2 has revealed numerous important features of time se-
ries that are either neglected or only implicitly considered in tradi-
tional aggregation methods.

First, the good performance of variance preserving algorithms im-
plies that the preservation of statistical features of the original time
series apart from extreme or mean values is indeed important for
an appropriate temporal aggregation.
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Second, an appropriate aggregation must not focus on solely de-
creasing either the number of typical periods or the temporal res-
olution, because both methods affect different technologies une-
qually. Instead, a good trade-off using heuristics based on input
data analysis such as the optimal pathway algorithms were proven
to provide better approximations of the fully resolved reference
case if the assumptions of monotonous relationships between a
priori and a posteriori accuracy indicators are sufficiently satisfied.

Third, the differences between the original version of the variance
preserving-algorithm and the adapted version as well as the rela-
tively good performance of the medoid representation for the Eu-
ropean model imply two more findings. First, not only the variance
and the value distribution (duration curve) of a time series, but also
the variance on different time scales, e.g. across multiple days, is
important for systems considering aperiodic time series and sea-
sonal storage in case that the overall number of time series and
the error related to clustering are relatively large. Second, the co-
variance between multiple regions may be important in systems
that consider energy transmission. This explains why simply taking
sample days (medoids) from the original time series underperforms
synthesizing aggregated data focusing on certain statistical fea-
tures less significantly if the underlying dataset is relatively short
(i.e., one weather year), but high-dimensional due to the number
of considered time series.

After all, however, the combination of the distribution preserving
algorithm in Section 3.2.5 and the optimal pathway algorithm in
Section 3.3.4 allow for remarkably smaller aggregation-induced er-
rors for a given number of total time steps and for significantly
faster runtimes at a given error tolerance on all three capacity ex-
pansion models. In particular, speed-ups by the order of two mag-
nitudes could be achieved with an optimal objective value deviation
well below 5%. These findings are condensed in Figure 4.17, Fi-
gure 4.23 and Figure 4.39 for each model. Compared to state-of-
the-art methods for temporal aggregation, this is at least an addi-
tional speed-up by the order of one magnitude given the same er-
ror tolerance.

176



4.3. Typical Days or Typical Time Steps

4.3. Typical Days or Typical Time Steps

The core idea of this section, which is based on a prior publication
of the author [2], is the cross-comparison of two different period
lengths, i.e. the use of typical days and typical time steps, by ap-
plying them to two fundamentally different models and benchmark-
ing them to the respective fully resolved cases. As case studies,
the self-sufficient building model and the dispatch model are cho-
sen, as they differ from each other with respect to three important
model aspects, as shown in Table 4.4.

Table 4.4. Differences of the self-sufficient building model and the dispatch
model with a mathematical relevance

Feature Self-Sufficient Dispatch Model
Building Model

Number of Regions Single-Node Multi-Node
Model Type MILP LP
Temporal Coupling Yes (Storage) No

The framework used to compare typical periods against typical
time steps for energy system models is shown in Figure 4.44.
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Figure 4.44. Method applied to compare typical periods and typical time steps
for different types of energy system models (adapted from Hoffmann et al. [2])
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“In order to enable a fair comparison to be made between the
tested models and applied aggregation methods, we maintain ag-
gregation intervals and computing power constant for all models
and model runs. All model runs were performed using the JURECA
HPC Cluster [195] with the technical resources given in Table 4.1
at the beginning of Chapter 4.” (Hoffmann et al. [2])

“For all aggregation procedures, Ward’s hierarchical clustering al-
gorithm was chosen and each cluster of time steps was repre-
sented by its centroid. The total number of considered time steps
has a major impact on the computational complexity. To facilitate
a comparison between typical time steps and typical days, only
integer-multiples of 24 time steps were chosen for both typical
days and typical time steps, which leads to the configuration of
model runs and time steps per run shown in Table 4.5.” (Hoffmann
et al. [2])

Table 4.5. The model run configuration with respect to the total number of
time steps considered (adapted from Hoffmann et al. [2])

Fully Resolved Typical Days Typical time steps

24x1
48 x 1
96 x 1
5x 24 120x 1
10 x 24 240 x 1
20 x 24 480 x 1
40 x 24 960 x 1
80 x 24 1920 x 1
160 x 24 3840 x 1
8760 365 x 24 8760 x 1

“This means that for typical days, 365 sample points comprising 24
dimensions of consecutive time steps per time series of the re-
spective model were clustered, whereas for the typical time steps,
8760 data points with one dimension for each time series were ag-
gregated.” (Hoffmann et al. [2])

“The following sections first investigate the impact of aggregated
configurations with respect to the accuracy of the data aggregation
using a set of clustering indicators. Subsequently, the deviation of
the aggregated models’ optimal objective to the fully resolved ref-
erence cases are compared, with consideration to the individual
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computational speedup. Then, the aggregation-induced deviations
of both models are analyzed in detail by investigating the cost con-
tributions of the systems’ components. Finally, the time consump-
tion of the individual processes, as well as the memory consump-
tion of each model, is evaluated over time.” (Hoffmann et al. [2])

4.3.1. Input-Data Driven Analysis

From an input-data point of view, the major difference between
typical periods and typical time steps is the fact that typical periods
are groups of conjoined time steps while typical time steps are in-
dependent time steps. Both can either directly be chosen from the
original time series of by synthesizing them, i.e. by representing
clusters of time steps or periods by their centroids, in case the typ-
ical time steps or typical days are determined using clustering. In
that case, also the dimensionality of the space in which the data is
clustered, fundamentally differs. While for typical time steps each
attribute of the input time series becomes one dimension in the
clustering space, each time step of each attribute within the peri-
ods becomes an own dimension in the case of period clustering.
As stated in Equation (2.4), the multi-dimensional row vectors used
for time series aggregation are defined as follows:

X111 7 XpaNg X121 - XN N aeA={1,..,N}
Darr _ : : :

with peP={1,..,N,}(4.7)
teT={1,..,NgJ

XNp1,1 = XNpANe XNp21 o XNpNgN¢

With A the set of attributes (time series), P the set of candidate
periods, T the set of time steps per period and |S| = |P| X |T| the
number of original time steps. For typical time steps comprising
only one time step per period, i.e., N, = |P| = |S| = Ng, this leads

to:
X111 7 X1Ny1 Xcand,1
b= () () @)
XNg, 1,1+ XNgNy1 Xcand,Ng
In contrast to that, for typical periods, the candidates are given by:
X111 7 XN X121 " X1NaNg Xcand,1
Drp = ; : ; ; =< : > (4.9)
XNp1,1 " XNpLNe XNp21 7 XNpNaNe Xcand,Np

Accordingly, in the case of typical time steps, N candidates with a
dimensionality of N, are clustered, whereas in the case of typical
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periods, N, % candidates with a dimensionality of N, x N, are
t

clustered. This means that in the case of typical time steps N, times
more data points are clustered in an N, times lower dimensional
space compared to typical periods.

Apart from that, the total number of considered time steps is a ma-
jor driver for computational complexity. As typical periods consist
of multiple consecutive time steps, more typical time steps than
typical periods can be chosen for the same computational cost.
This in turn leads to the phenomenon that for an equivalent number
of total time steps, the aggregated time series based on typical
time steps bear more resemblance to the original time series than
the aggregated time series based on typical periods.

“Figure 4.45 shows the a priori accuracy indicators introduced in
Section 3.3.1 for the normed time series (with values between 0
and 1) of the self-sufficient building (top) and dispatch model (bot-
tom) for both typical periods and typical time steps.
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Figure 4.45. Error indicators for the self-sufficient building (top) and the dis-
patch model (bottom) for both, typical days and typical time steps (adapted

from Hoffmann et al. [2])

For the typical periods, 365 sample points consisting of 24 dimen-
sions of consecutive time steps were clustered, while for the typical
time steps, 8760 1-dimensional data points were aggregated. The
x-axis shows the number of equivalent typical time steps, i.e., the
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number of time steps to which the time series has been aggre-
gated. In the case of typical days, this equals the number of typical
days multiplied by 24 time steps per day. Here, it can be seen that,
from an input data perspective, the aggregation of the time series
to single time steps outperforms the aggregation to conjoined pe-
riods for any clustering indicator and both models. The reason for
this is that in the case of typical time steps, each time step is a
single candidate for clustering and can be freely grouped with any
other time step, which is similar enough. When typical days are
clustered, however, time steps are only compared to other time
steps in the same daytime. Furthermore, the clustering of typical
days is performed in a 24-times higher dimensional space with 24-
times fewer candidates. Therefore, the ‘curse of dimensionality’
leads to higher aggregation-induced deviations from the original
time series.

4.3.2. Output-Data Driven Analysis

The main purpose of the aggregation techniques for energy system
models is to reduce computational complexity while keeping the
impact on the optimized solution as small as possible. As dis-
cussed in Section 3.3, the main determinants for the quality of a
good aggregation are the calculation time and a small deviation
from the original, optimal objective value, i.e. the total annual
costs.

Figure 4.46 shows the absolute deviation from the optimized ob-
jective function value from the reference case over the calculation
time for the self-sufficient building (top) and dispatch model (bot-
tom).
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Figure 4.46. Absolute deviation from the optimized objective function value of
the fully resolved case over calculation time for the self-sufficient building
(top) and the dispatch-model (down) (adapted from Hoffmann et al. [2])

In the case of the self-sufficient building model, the deviation from
the optimal objective is consistently much greater than in the case
of the dispatch model. Accordingly, it is much more sensitive to
temporal aggregation due to the strong temporal coupling of the
fully resolved model, as induced by the numerous storage technol-
ogies. Although typical time steps consistently outperform the ag-
gregation to typical days with respect to the clustering indicators,
and therefore the deviation between the aggregated and original
time series, it is evident from Figure 4.46 that the typical time steps
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represent the superior aggregation option for the dispatch model,
as they lead to smaller deviations with low calculation times. In
contrast, they also lead to significantly larger deviations from the
optimal objective value of the fully resolved self-sufficient building
model. Here, typical days are the better aggregation option, which
is also supported by the dashed lines in Figure 4.46 representing
the respective Pareto fronts. Furthermore, it can be observed that
the optimal objectives converge to the one of the fully resolved
case if the number of typical time steps or typical days is increased,
which can be expected, but which supports the mathematical va-
lidity of the aggregation. Moreover, it can be observed that, espe-
cially in the case of the self-sufficient building, the modeling ap-
proach for seasonal storage with a reduced number of capacity
constraints introduced by Kotzur et al. [20] leads to a computa-
tional overhead in the case of aggregation configurations with a
large number of typical days or typical time steps. Similar obser-
vations were made by Wogrin et al. [88] with respect to temporally-
linked typical time steps to model storage components, in spite of
the aggregation.

In order to analyze the aggregation-induced errors further, the in-
dividual cost contributions for the self-sufficient model (top) and
dispatch model (bottom) for all aggregation configurations are de-
picted in Figure 4.47.

As the Figure 4.47 shows, the centroid-based aggregation to typi-
cal time steps or typical days generally leads, in three out of four
cases, to a consistent underestimation of the reference optimal ob-
jective values. In the case of typical time steps for the self-suffi-
cient building, however, the aggregation leads to a significant over-
estimation of the optimal objective value. Interestingly, this obser-
vation approves the inconsistent results in the literature, e.g., Zatti
et al. [145] observed that, depending on the model, the centroid-
based aggregation of the k-means algorithm could lead to over- or
underestimation. This indicates that the impact of the aggregation
method is highly dependent on the model to which it is applied.
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(top) and the dispatch model (bottom) for all aggregation configurations
(adapted from Hoffmann et al. [2])
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In general, the underestimation of the majority of the aggregated
models can be attributed to the fact that the time series are af-
fected by the averaging effect of the centroid-based cluster repre-
sentation, i.e., the minimum values of a time series are overesti-
mated by the aggregation, whereas the maximum values are un-
derestimated. As is mathematically shown by Teichgraber et al.
[47], the centroid-based representation of the time series that form
coefficients in the constraint vector lead to a relaxation of tempo-
rally-decoupled models. This applies, for instance, to demand time
series. However, in the case of the dispatch model, the cost time
series, which yield coefficients in the cost vector of the optimization
problem, are clustered as well. As Teichgréaber et al. [47] have
shown, the aggregation of the cost vector and the reduction in the
corresponding variables reduce the optimization model’s feasible
solution space. However, this counteracting effect is of minor im-
portance for the dispatch model, as the objective function based
on typical days or typical time steps is consistently smaller than
the one of the reference case. However, the impact of the latter
effect can be observed between 48 and 96 typical time steps in the
case of the dispatch model shown in Figure 4.47. Here, the total
annual costs decrease for a higher temporal resolution, despite the
use of hierarchical clustering, which should gradually decrease the
aggregation-induced error. This implies the existence of at least
two opposing effects on the optimal objective value due to aggre-
gation: One that increases the optimal objective due to fewer vari-
ables in the aggregated model and one that decreases it due to
fewer constraints.

Storage components, as in the case of the self-sufficient building,
lead to a much less predictable impact of centroid-based clustering
compared to the dispatch model, as shown in the upper half of
Figure 4.47. Compared to typical time steps, the aggregation using
typical days has a relatively small impact on the component’s cost
contributions. Yet, it can be observed that a smaller number of typ-
ical days most prominently decreases the optimum battery capac-
ity, as the aggregation-induced smoothing of the aggregated time
series profiles intensifies, and therefore smaller battery capacities
are needed to balance intra-daily demand and supply fluctuations.
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In contrast to that, an increase in the number of typical time steps
decreases the capacity-induced cost contribution of the northwest-
ern-oriented PV panels and the reversible solid oxide cell (rSOC).
Simultaneously, the size of the battery slowly increases with a
higher number of typical time steps.

The battery has relatively large capacity-specific investment costs
(€/kWhstorage) and a relatively high self-discharge rate, whereas the
hydrogen storage has higher power-specific investment costs
(€/kW dis)charge) due to the expensive rSOC. This predetermines
batteries for short daily storage cycles and small capacities,
whereas hydrogen storage is preferable for large capacities and
long storage cycles at low charge or discharge rates.

In the case of typical time steps, all storage components function
identically at time steps that are assigned to the same cluster
based on their similarities. The fact that the electricity demand pro-
file and solar profiles resemble themselves during the morning and
evening hours, leads to an eventual assignment of these hours to
the same cluster. This in turn forces the battery to operate in the
same way during morning and evening hours and inhibits a daily
operation cycle. Accordingly, in an aggregated model, it is less
economically viable based on typical time steps. Instead, the op-
erational feasibility of the model is maintained by oversizing the
solar panels and hydrogen subsystem used for storing energy over
longer time scales.

In summary, the existence of storage technologies is one of the
most determinant factors for an accurate temporal aggregation,
even if the time series have a strong daily pattern (which is also
the case for the dispatch model).

4.3.3.In-depth Analysis of Computational Resources

Apart from the manifold impacts that temporal aggregation has on
a model’s optimal solution, the main purpose of temporal aggrega-
tion remains computational speedup. Therefore, the contributions
of the different processes to the overall runtime, as well as individ-
ual memory consumption, are analyzed in the following. Figure
4.48 illustrates the runtime contributions of each process for the
self-sufficient building model (top) and dispatch model (bottom) for
all aggregation configurations.
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Figure 4.48. Calculation times of the self-sufficient building (top) and the dis-
patch-model (bottom) depending on the aggregation configuration (adapted
from Hoffmann et al. [2])

As it can be seen for the self-sufficient building, almost all of the
overall runtime is needed for solving the optimization problem. The
time consumption for loading the data, adding components, clus-
tering the input data, setting up the mathematical problem struc-
ture using Pyomo and mapping the solution from Gurobi back to
the model’s individual variables, is negligible. This can be ex-
plained by the mathematical connectivity [196] of the variables and
constraints caused by a complex component structure and time
step linking storage equations while on the other hand only one

region and five time series are considered.
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In contrast to that, the overall runtime of the dispatch model is
mainly determined by three operations: The time for setting up the
problem structure, the time for solving the problem and the time for
mapping the solution back to the set-up problem structure. The
reason for this is the large amount of input data given by 6325 time
series as well as the large number of regions (16 national and 9
international), while the problem structure is relatively simple due
to the absence of storage components and a flat system structure
because all components are connected to a single electricity grid.
Moreover, the time for clustering becomes a significant share of
the overall calculation time in case of aggregating typical time
steps which can be explained by the fact that the computational
complexity of ward’s hierarchical clustering algorithm scales with
0(n?) and that typical time steps have 24 times more starting can-
didates than typical days. Moreover, the process itself is much
slower than for the self-sufficient building because of the much
larger number of time series. Apart from that, the aggregation
tends to take longer for stronger aggregated model configuration
as more iterations for merging clusters are carried out, which
makes the aggregation time an even more significant runtime con-
tribution for strongly aggregated models. On the other hand, this
motivates the use of simple clustering approaches instead of new
but computationally expensive aggregation techniques that erode
the original purpose of temporal aggregation, i.e. the computa-
tional speedup.

Figure 4.49 shows the memory consumption of the self-sufficient
building (top) and the dispatch model (bottom) depending on the
aggregation configuration. The vertically aligned values over the
boxplots refer to the median memory consumption during the opti-
mization.
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Figure 4.49. Memory consumption of the self-sufficient building (top) and the
dispatch-model (bottom) depending on the aggregation configuration (adapted
from Hoffmann et al. [2])

Another interesting difference between both models is shown in
Figure 4.49: As expected, the memory consumption of both models
increases with a higher number of typical days or typical time
steps. However, the total amount of memory consumption of the
dispatch model is more than an order of magnitude larger than that
of the corresponding aggregation configuration of the self-suffi-
cient building. It is notable that the solving time for both models is
comparable, as is shown in Figure 4.48. This emphasizes the im-
pact of strong mathematical interconnectedness, as in the self-suf-
ficient building model, on the overall solving time, whereas large-
scale but easy-to-decompose energy system models such as the
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dispatch model are relatively quickly solvable compared to their
overall size, but consume a large amount of memory.

In addition, a comparison between the aggregation using typical
days and typical time steps reveals that the memory consumption
for a certain number of total time steps is, in the case of the dis-
patch model, almost identical for both the typical time steps and
typical days. For instance, the boxplots for 40 typical days and 960
typical time steps in the lower part of Figure 4.49 are almost iden-
tical. This highlights that the assumption that the complexity of the
model scales with the total number of time steps is valid if no stor-
age components are taken into account. In the case of the self-
sufficient building, however, an overhead due to more complex
coupling storage conditions can be observed in the case of typical
time steps compared to the application of typical days. Combined
with the high deviations induced by an aggregation to typical time
steps and a long solving time, this approach appears to be highly
inconvenient for models with storage components. Moreover, the
storage conditions for coupling aggregated typical time steps lead
to a constant offset to the complexity of an energy system model.

In summary, the findings imply that the overall memory consump-
tion of an energy system model during the solving process is com-
posed of three summands. The first one scales with the number of
considered time steps, the second one depends on the model’s
intrinsic number of coupling constraints, e.g., for modeling states
of charge of storage components over the entire time horizon and
the third one is an additional offset introduced by other processes.

4.3.4. Summary

The results outlined in the preceding section reveal that the clus-
tering of time series to typical time steps consistently leads to bet-
ter clustering indicators in a priori input data analyses of the clus-
tered time series compared to clustered typical days. However, the
analysis of the results reveal that typical time steps are not neces-
sarily the superior aggregation method.

Specifically, this means that an optimal choice of time-series ag-
gregation technique cannot be made a priori based on its capacity
to represent the original time series. Although typical time steps
outperformed typical days in the a priori input data analysis for both
investigated models, they did not lead to more accurate results for
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the building model. However, smaller clustering indicators for a
predefined model and period length can be used to indicate smaller
deviations in the optimization results.

Furthermore, the results indicate that certain aggregation tech-
niques are predetermined for certain types of energy system mod-
els and underlying research questions.

With respect to the scope of Section 4.3, aggregation techniques
based on typical time steps outperform typical days on the tempo-
rally decoupled dispatch model, whereas the application of typical
days is the Pareto optimal method for the self-sufficient building
model, which takes a variety of different storage systems into ac-
count. This is even more remarkable as both typical time steps and
typical days are modeled in such a way that storage capacities can
be considered [20].

These findings are summarized in Figure 4.50, i.e., the choice of
whether to use typical time steps or typical periods depends on the
role of storage components or other temporally-coupled con-
straints and clustering indicators should only be used for compar-
ing different clustering configurations if the model and period
lengths are fixed.

In conclusion, the findings of this section place common assump-
tions regarding temporal aggregation for energy system models
into a new context. First, the autocorrelation of time series, e.g., a
daily pattern of solar and electricity profiles, is not of major im-
portance for the question to what length time periods should be
aggregated for an energy system model. The more important indi-
cator is the existence of storage components and the duration of
their cycles. Secondly, it was clearly shown that no relationship
exists between clustering indicators and the quality of the aggre-
gated energy system’s optimal solution, if it is compared for differ-
ent period lengths.” (Hoffmann et al. [2])

Unfortunately, the storage cycle duration of considered storage
components may differ for the individual components and the en-
ergy system model is generally unknown in advance, because it is
a result of a model’s operational optimization. Future research
could therefore strive at finding the optimal period lengths based
on a model’s specific mathematical features.
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Figure 4.50. Summary of the findings of Section 4.3 (adapted from Hoffmann
et al. [2])
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4.4. Error Bounding Methods

The last research question that arose from the rising trend of iter-
ative solving approaches based on error bounding using temporal
aggregation techniques is whether these methods are useful for
the models regarded in this thesis.

4.4.1. Bounds Based on Over- and Underestimation

The first approach refers to the representation methods proposed
in Section 3.2.4 and relies on a systematic over- and underestima-
tion of the original time series using temporal aggregation. As dis-
cussed in Section 3.4, an energy system optimization can either
be relaxed or further restricted if values of the original time series
are substituted by their respective maximum or minimum value. In
order to obtain an upper or lower bound to the original problem,
each time series has to be considered individually to decide
whether an overestimation or underestimation leads to the desired
bound. For the sake of comprehensibility, the island system and
the self-sufficient building model are analyzed in the following due
to their small number of different time series.

4.4.1.1. Bounds of the Island System Model

The island system comprises two capacity factor time series for
electricity generation from wind and solar energy and one time se-
ries for electricity demand. As the total annual costs are driven by
the constraint to fulfill the energy demand at any point in time, an
increase of the energy demand or a decrease of the capacity fac-
tors will both increase the system costs. Accordingly, for an upper
bound of the original problem, the aggregated time series need to
overestimate the energy demand and underestimate the capacity
factors. The exact opposite holds true in order to obtain a lower
bound to the original problem, which is summarized in Table 4.6.

Table 4.6. Estimations of time series to obtain upper or lower bounds of the
island system model

For Upper Bound For Lower Bound

Electricity Demand Overestimate Underestimate
Wind Capacity Factor Underestimate Overestimate
Solar Capacity Factor Underestimate Overestimate
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As the systematic over- and underestimation can be equally ap-
plied to the aggregation process to typical days and the aggrega-
tion to fewer segments within each day, the same aggregation con-
figurations are used as in Section 4.2, i.e. 153 different upper and
lower bounds were calculated depending on the respective clus-
tering configuration. The results of the deviation from the optimal
objective of the fully resolved case depending on the chosen num-
ber of typical days and segments per typical day are depicted in
Figure 4.51.
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Figure 4.51. Upper and lower bounds of the island system model depending
on the aggregation configuration
As it can be seen, the method proposed in literature indeed deliv-
ers upper and lower bounds to the original problem, as both
bounds form surfaces that approach each other monotonously for
a rising number of both, typical days and segments. In case of 365
typical days and 24 segments per typical days, the gap between
both bounds becomes zero, as the temporal resolution equals the
one of the reference case. With respect to the absolute deviation
from the optimal objective of the reference case, however, the
found solutions are remarkably worse than the representation
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methods discussed before. Consequently, the deviations yielded
by the systematic over- and underestimation require relatively
highly resolved aggregation configurations in order to be tolerable.
The impact of this observation is shown in Figure 4.52 depending
on the runtime.

Here, it can be observed that e

the fastest aggregation configu- e Overestimation
rations provided lead to the big- | o » ¢ Underestimation
gest deviations from the optimal § 1 .'t':-.;} .
objective, as they are simulta- ;i . ’

neously those considering the % 10 Y Ll
fewest total time steps. Further- £ L

more, the fastest-solving con- =10 ¥

figurations in case of the upper ,

bounds are taking longer than 00 10' 102
the fastest solving configura- Runtime [s]

tions of the lower bounds, which  gigyre 4.52. Upper and lower bounds
can be explained by the fact of the island system model depending
. on the runtime

that the system is allowed to ob-

tain up to 10% of the original electricity demand from the grid. In
case of heavily underestimated total electricity demand, this
amount of energy is enough to cover the demand. In those cases,
no additional capacities are build and the optimal solution is trivial.
In case of upper bounds, these technologies are needed in any
case and accordingly, a minimum number of iterations is needed
to solve the optimization problem.

4.4.1.2. Bounds of the Self-Sufficient Building Model

In contrast to the island system model, the self-sufficient building
model considers additional heat demand, does not consider wind
feed-in and has no option to obtain electricity from the grid. In total,
it considers five time series, namely, an electricity and heat de-
mand as well as solar capacity factor time series of PV panels with
northeastern (NE) and southwestern (SW) orientation as well as
ground-mounted ones (G). Analogously to the island system
model, demand time series need to be overestimated and capacity
factor time series need to be underestimated in order to obtain an
upper bound of the original problem whereas the opposite holds
true for lower bounds, which is summarized in Table 4.7.
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Table 4.7. Estimations of time series to obtain upper or lower bounds of the
self-sufficient building model

For Upper Bound | For Lower Bound

Electricity Demand Overestimate Underestimate
Heat Demand Overestimate Underestimate
Solar Cap.-Factor (NE) Underestimate Overestimate
Solar Cap.-Factor (SW) Underestimate Overestimate
Solar Cap.-Factor (G) Underestimate Overestimate

The obtained upper and lower bounds for the different aggregation
configurations are highlighted in Figure 4.53.
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Figure 4.53. Upper and lower bounds of the self-sufficient building model de-
pending on the aggregation configuration:

The observations that can be obtained from Figure 4.53 resemble

those for the island system model, i.e., the upper and lower bounds

approach each other for a rising number of typical days and seg-

ments per typical days and lead to the same optimal objective if

the used time series equal those of the reference case.
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Figure 4.54 depicts the objec-
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electricity or gas network. Fur- rigure 4.54. Upper and lower bounds
thermore, the deviations from of the self-sufficient building model de-

the optimal objective of the ref- pending on the runtime
erence case are much worse for strongly aggregated configura-
tions for the same reason: In case of a completely isolated system,
the model completely relies on storage technologies for times at
which feed-in from the solar panels is not available. As an over- or
underestimation of time series based on aggregation also change
the cumulative feed-in and demand for the system, storage tech-
nologies are disproportionally affected.

4.4.1.3. Tightness of Bounds Based on Over- and Underestimation

In summary, the method of over- and underestimating time series
does not provide tight upper and lower bounds in case of the tested
models, unless aggregation configurations are chosen with a high
number of total time steps and a correspondingly small computa-
tional speedup compared to the fully resolved case. Furthermore,
the approach suffers from the curse of dimensionality. As an ex-
planation, we can adapt the method of taking shoulder values for
representing a group of values by their “shoulder values” intro-
duced in Figure 2.19 and add hypothetical data points as depicted
in Figure 4.55:
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Figure 4.55. Increasing distance from over- or underestimating representative
values for a rising dimensionality of the considered data

While the extreme values (the red dots) in Figure 4.55 from a single
time series, e.g., a demand time series D, are values that appear
in the original data (the blue dots), they become synthetic values
if more time series are considered. For instance, if an additional
wind time series is considered as shown in the middle of Figure
4.55, the representative (red) extreme values do not match any of
the original data sets’ (blue) values. This effect becomes more
dominant with a growing dimensionality of the input data as shown
in the right of Figure 4.55. Simply put, this would result in the as-
sumption that in a multiregional model, a minimum wind capacity
factor would appear in all regions simultaneously, which is an un-
realistically conservative assumption for obvious reasons. There-
fore, the application of this method was limited to single-node co-
or trigeneration systems as in [79, 181]. Further, the models to
which the presented method was applied in the literature were al-
ways connected to an electricity or gas grid and storage was of
minor importance to the models. Moreover, no capacity factor time
series with a large spread between minimum and maximum values
were considered. Accordingly, the method provided much smaller
gaps in these models. Further, the models considered a large num-
ber of operational binary variables whose number grows propor-
tionally to the number of considered time steps, which prolonged
the solving process of the fully resolved model disproportionally.
Therefore, iterative procedures where proposed to gradually
tighten the bounds. Against the backdrop of relatively loose
bounds at relatively highly resolved aggregation configurations,
however, these iterative methods are not likely to outperform the
fully resolved model and are therefore not further investigated.

4.4.2. Model-Specific Bounds for MILPs without Cost Time Series
As shown in Section 4.4.1, bounds based on over- or underesti-
mating time series are not tight, especially, if multiple time series
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enter the model and storage technologies play an important role.
However, for mixed-integer linear program models that neither
consider cost nor revenue time series, the temporal aggregation
using a centroid representation and the multi-level approach pro-
posed in Section 3.4.2 provide alternatives for tighter bounds and
computational speed-up. Both conditions are fulfilled by the island
system model, i.e. it is a mixed-integer linear program and does
not consider cost or revenue time series. Instead, a constant price
for the electricity obtained from the backup-plant is assumed.
Therefore, binary variables of the island system model can be re-
laxed or the model can be aggregated using centroids in order to
obtain lower bounds to the original problem. For the upper bound,
the binary variables can be fixed to values obtained from an ag-
gregated model run followed by a re-run as linear program consid-
ering the fully resolved time series. Figure 4.56 depicts the two
lower bounds obtained from temporal aggregation using centroid
representation (yellow) as well as relaxation of the mixed-integer
linear program (red) and the upper bound using a linear program
with fixed binary variables based on the optimal solution of a pre-
ceding aggregated model run (green) on the left. On the right, the
corresponding gap depending on runtime for the respective Pa-
reto-optimal combination of bounds is shown.
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Figure 4.56. Left: Lower bounds obtained from temporal aggregation using
centroid representation (yellow) and relaxation of the mixed-integer linear pro-
gram (red) and an upper bound using a linear program with fixed binary varia-

bles based on the optimal solution of a preceding aggregated model run

(green). Right: Gap depending on runtime for the respective Pareto-optimal

combination of bounds
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It is worth mentioning that only those numbers of segments and
typical days were chosen for the centroid-based aggregation,
which where optimal according to the optimal pathway algorithm,
i.e. they are the same clustering configurations as represented by
the green dots in the lower left graph of Figure 4.16. For the first
stage of the 2-Level algorithm, the distribution-preserving algo-
rithm was chosen because it outperformed all other algorithms with
respect to accurate system designs at low temporal resolutions. As
the first stage only serves for fixing the set of binary variables, the
result after the second stage remains an upper bound irrespec-
tively of the representation method chosen in the first stage. Anal-
ogously to the lower bound given by centroids, only those configu-
rations were chosen, which were proposed by the optimal pathway
algorithm for the distribution-preserving representation.

Compared to Figure 4.52, the bounds obtained in Figure 4.56 are
significantly tighter. Especially the centroid-based representation
of aggregated time series provides tighter lower bounds at small
runtimes than the systematic under- and overestimation of time se-
ries to obtain lower bounds. The main reason for this is the fact
that the centroid-based algorithm preserves the mean value and
likewise the cumulative value of a time series. For models that
heavily rely on storage technologies, not only the values of time
series itself, but also the mean or cumulative values of time series
play an important role, as for instance, a mean capacity factor can
also be interpreted as mean energy availability factor. Even though
extreme values are not preserved in the aggregation, the possible
mean feed-in into storages remains the same, which is not the
case if capacity factors are systematically overestimated.

Moreover, Figure 4.56 reveals that the configurations incorporating
the solving of linear programs with both fixed or relaxed binary var-
iables and a comparable size as the reference mixed-integer linear
program take a longer minimum amount of time because the over-
all number of variables remains approximately the same as in the
reference mixed-integer linear program. Here, the speed-up is ob-
tained by solving at most one aggregated mixed-integer linear pro-
gram and one linear program instead of iteratively solving linear
programs in a branch-and-bound algorithm as in the reference
case. In summary, the centroid-based aggregation and the 2-Level
approach using the distribution-preserving algorithm in the first
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stage provide the tightest bounds in case of the island system
model.

By taking the Pareto-optimal upper and lower bounds with respect
to their corresponding runtime, the gap shown in the right graph of
Figure 4.56 can be calculated using Equation (3.33). Here, it can
be stated that it is indeed possible to achieve a significant speed-
up of solving times by more than a factor of ten with a remaining
optimality gap of 0.1% in case of the island system, if all model
features are exploited and the right aggregation configurations are
chosen.

However, it is not known a priori, which aggregation configurations
lead to which optimality gaps. Therefore, practical algorithms could
either rely on parallel solving of many different aggregation config-
urations and taking the lowest upper and upmost lower bound after
a predefined runtime, or they could focus on iteratively increasing
the number of typical days and segments until a desired optimality
gap is reached in case that parallel computing is not an option.

4.4.3. Summary

In conclusion, Section 4.4 has shown that aggregation techniques
indeed offer an option for obtaining upper and lower bounds to the
optimal objective value of the fully resolved reference system and
that it is possible to quantify the maximum deviation from it without
solving the fully resolved model. Yet, the results also imply that a
profound knowledge about the respective model as well as tailor-
made aggregation approaches are required in order to obtain tight
bounds. Moreover, this implies that methods found in the literature
do not necessarily provide good or even meaningful solutions
when applied to different models. Against this backdrop, heuristics
such as the optimal pathway algorithm or the distribution-preserv-
ing representation method, which were developed in the scope of
this thesis and proven to outperform status quo methods on vari-
ous different models, will most likely keep their raison d’étre as
they require very little knowledge about the individual model and
yet provide good solutions.
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4.5. Discussion

The following section first debates the major results of this work
and subsequently puts them into context with a broader general
modeling error in order to provide an outlook on the interaction be-
tween temporal aggregation and other model simplifications.

4.5.1. Discussion of the Main Results

Against the background of a steadily growing research field of en-
ergy system modeling and the pressing necessity to capture the
impact of renewable energy sources on a diversity of energy sys-
tems, the methods developed in the scope of this thesis supple-
ment temporal aggregation techniques in multiple ways.

In contrast to existing works in this discipline, the methods devel-
oped within the scope of this thesis were challenged by fundamen-
tally different energy system models. Despite the fact that a multi-
tude of temporal aggregation methods existed in order to reduce
the complexity of models, these methods were never applied to
more than three models as shown in Appendix B. If multiple models
were considered, they did not substantially differ from each other
as opposed to the models introduced in Section 4.1. Accordingly,
the effectiveness of a method could be hardly predicted.

This major drawback of existing methods was systematically ad-
dressed in this work, as it categorized both, methods and models.
The reduction of methods to the most promising ones with respect
to general applicability and the simplification of model structures
to a subset of determinants allowed for a large-scale cross-com-
parison of all promising methods on a set of fundamentally different
models. Here, methodological improvements presented in Chapter
3 were rigorously designed for a general applicability for different
types of models.

As it could be shown, the effectiveness of a method always de-
pends on certain model requisites, but the latest methods still offer
room for improvements that are generally applicable and outper-
form current state-of-the-art methods.

In order to link the results of Chapter 4 semantically, Figure 4.57
depicts a decision tree to find the optimal aggregation method de-
pending on the model type.
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Figure 4.57. Decision tree illustrating how to find an optimal temporal aggre-
gation based on the model type and the findings of Section 4.2 and 4.3

The first decision, i.e. whether an aggregation using typical time
steps or typical days is advisable, relates to Section 4.3, in which
the self-sufficient building model was compared to the electrical
dispatch model. The major finding derived from this section is the
dependency on the model structure: While the self-sufficient build-
ing model considers multiple storage technologies, the dispatch
model is temporally decoupled. Therefore, the model is independ-
ent from the chronology of time steps. As many low-dimensional
time step candidates are more convenient for clustering than many
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high-dimensional typical day candidates, the aggregation to typical
time steps outperforms the aggregation by typical days. In contrast
to that, the chronology between intra-daily time steps was im-
portant to the battery and the thermal storage and the chronology
between typical days is crucial for the appropriate modeling of stor-
age technologies in case of the self-sufficient building model. Ac-
cordingly, the aggregation to typical days was the significantly bet-
ter choice in this case. In this context, the finding that the optimal
aggregation method does not depend on the periodicity of the input
data, but on the model structure itself, is an important contribution
of this work.

In case of the energy system models that consider storage tech-
nologies working on a daily or seasonal level, i.e. the island system
model, the self-sufficient building model and the European model,
multiple options for enhancing the quality of temporal aggregation
were developed within the scope of this thesis. First, it was shown
that an aggregation to typical days with an hourly resolution only
is significantly outperformed by combined solutions that reduce
both, the number of typical days and the number of time steps
(segments) within each typical day. Furthermore, an algorithm was
developed that searches for an optimal ratio between the number
of typical days and the number of segments for a given number of
total time steps without being forced to solve the energy system
model itself. Those aggregation configurations that were proposed
by the algorithm proved to be closest to the optimal objective func-
tion of the fully resolved case under the premise that the represen-
tation method itself was meaningful. Further, a novel representa-
tion algorithm was proposed that not only aims at preserving the
first statistical momentum, the mean, but also at preserving the
second one, the variance, as well as the value distribution in the
aggregation process. This algorithm outperformed all other repre-
sentation methods significantly in case of single-regional energy
system models and yielded good results for the European model.

Yet, the representation by medoids slightly outperformed the dis-
tribution-preserving algorithm in the latter case, because the Euro-
pean model comprises numerous low-correlated and aperiodic
wind time series, whose variance on longer time scales (daily
means) was underestimated by the distribution-preserving algo-
rithm. Due to the consideration of different storage technologies
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working on different time scale lengths, variances on different time
scales affect the sizing of components as well. By addressing this
observation, an adapted version of the distribution-preserving al-
gorithm was developed that approximately preserved the variance
of daily means as well. Consequently, it outperformed the repre-
sentation by medoids with respect to both, technology sizing and
technology allocation.

Moreover, 365 days itself considered by the reference case are
likely not sufficient to capture enough possible operation situations
of the model. Accordingly, the use of existing days in case of large
multi-regional energy system models with low-correlated time se-
ries seems appropriate, if the database itself is not sufficiently
large and the exact allocation of technologies is not of great inter-
est.

Apart from that, it could be shown that the runtime is nearly pro-
portional to the total number of time steps in case of the small
models, whereas the runtime decreases disproportionally with a
lower number of total time steps in case of the much larger Euro-
pean model. Accordingly, the benefit of temporal aggregation in-
creases the bigger the model becomes.

With respect to error bounding based on time series aggregation,
Section 4.4 revealed both, potentials and limitations. On the one
hand, approaches based on a simple over- and underestimation of
the aggregated time series do not provide tight bounds if the con-
sidered model is isolated and relies on renewable energy sources
as well as a high share of storage technologies. On the other hand,
it could also be shown that in case of the island system model,
tighter bounds could be derived if model-specific features such as
the presence of binary design variables or the absence of cost time
series were exploited. However, these tighter bounds come at the
expense of general applicability.

As major practical advices for future applications of temporal ag-
gregation techniques for energy system modeling, the following as-
pects are to be stressed:

e Temporal aggregation techniques are heuristics and can
bias some time series and the subsequent sizing and oper-
ation of the corresponding technologies more than they can
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bias others. Therefore, a sensitivity analysis using marginal
deviations from the temporal resolution is inevitable in order
to detect and avoid these biases.

e The majority of aggregation techniques do not aim at pre-
serving statistical features of the original time series other
than their mean. The results of this work imply that the
preservation of additional statistical features is crucial for
improving existing methods. Future research could also fo-
cus on an explicit consideration of cross-correlations of time
series and their impact on energy flows.

e The No-Free-Lunch-Theorem for optimization [197] appears
to apply to temporal aggregation methods as well: For a
large number of sufficiently different energy system models,
it is unlikely that an aggregation method can be found that
outperforms all the others and on all models. Although it
could be shown that some methods significantly dominate
others in general, this implies that the more a method is
tuned to a given model, the less applicable it is to others.

4.5.2. Temporal Aggregation in the Context of Other Simplifications
As discussed previously, temporal aggregation is based on a math-
ematically conclusive theory and can be used as a plausible and
efficient heuristic to simplify energy system models or to define
analytically correct upper or lower bounds of the original problem.
Furthermore, the results demonstrated that numerous indicators
exist for quantifying the effectiveness of these approaches. How-
ever, these indicators always refer to input data or models, which
may already be strongly simplified themselves and which may
therefore influence the effectiveness of an additional temporal ag-
gregation. This means that temporal aggregation is generally ap-
plied to a model that could already be inaccurate with respect to
numerous other aspects. This raises the question what impact tem-
poral aggregation has on an overall model error, i.e. whether tem-
poral aggregation can be used without introducing a new major
source of inaccuracy.

One approach to address this issue is a large-scale sensitivity
analysis in which a model is iteratively solved for numerous differ-
ent model simplifications and their cross-combinations. These
large-scale sensitivity analyses comprise many different simplifi-
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cation approaches, which are explicitly considered within the pro-
ject that granted the funding for this work, and among which tem-
poral aggregation is only one. For one of the models within this
project, the FINE-infrastructure model, a multi-regional energy sys-
tem model considering gas and electricity infrastructure as well as
renewable capacity expansion, a large-scale analysis was con-
ducted comprising more than 8000 model configurations with the
following parameter variations:

e The number of typical days

e The number of segments per typical day

e The number of regions

e The number of technologies (of a kind) per region

e The cost-curve modeling: linear vs. intercept-slope

e The electricity grid model: loss-free (noLoss) vs. linear-opti-
mal power flow (lopf)

e The storage modeling approach: Daily storage only vs. sea-
sonal storage formulation

e The emission reduction target scenario

e The PV potential scenario

The first two parameters were widely discussed within this work.
The number of regions refers to the number of energy hubs be-
tween which energy can be exchanged and the number of technol-
ogies refers to the number of wind turbine and PV panel types. In
case of fewer technologies, different turbine or panel types are ag-
gregated to single ones with averaged operation profiles. The cost-
curve modeling addresses the way that annualized investment
costs are modeled depending on the installed capacities. While
there is a linear relationship between the built capacity and the
total annualized investment costs in the linear case, the intercept-
slope formulation considers an additional binary cost if the respec-
tive component is build. In this way, economies of scale can be
approximated because capacity-specific component costs can de-
crease for larger component sizes. The electricity grid modeling
refers to whether phase angles within the AC grid are omitted or
approximated by a linearization. In the latter case, their impact on
the active power can be considered. Storage components can be
modeled in a simplified way either, such that their state of charge
at the end of each day equals the one at the beginning of each
day, or, with an additional set of variables and constraints, this
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state of charge can be superposed with a seasonal state of charge.
The emission reduction target refers to the percentage by which
the total CO2 emissions should be reduced compared to the level
of 1990. Lastly, the PV potential refers to the total amount of avail-
able area for photovoltaic panels and different scenarios were
used to account for uncertainties with respect to this aspect.

The first seven aspects can be understood as model-related level
of detail, whereas the last two are related to scenario aspects, i.e.
they specify the input data to use rather than the modeling ap-
proach. In order to allow for comparability, these scenarios were
fixed to a 100% emission reduction target and an identical prede-
fined maximum PV potential. As the runtime was limited to 24 h,
not all configurations were solved within this time window. Con-
cisely, those configurations that were “comparably complex” with
respect to more than four out of the seven varied model features
did not stay within the time limit. Therefore, the following analysis
further focuses on a subset of model features, namely the number
of regions, the number of typical days and segments per typical
day and whether the electricity grid is modeled using the linear op-
timal power flow approach or not.

Figure 4.58 depicts the root-mean-square error of the cost shares
and the deviation of the total annualized costs from the fully re-
solved reference case of all remaining model runs depending on
the runtime. The color of the sample points represents the number
of total time steps of the respective model run and those with a red
edge are Pareto-optimal. The points connected by red and orange
arrows are configurations that differ by only one model attribute,
and they are separately listed in Table 4.8. Here, the labels refer
to the number of regions, time steps, segments and the power flow
modeling of the electricity grid.
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Figure 4.58. Root-mean-square error (RMSE) of the cost shares and devia-
tion of the total annualized costs from the fully resolved reference case de-
pending on the runtime. The color of the sample points represents the number
of total time steps of the respective model run and those with a red edge are
Pareto-optimal. The points connected by red and orange arrows are configu-
rations that differ by only one model attribute.
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Table 4.8. The model runs connected by red and orange arrows: Each config-
uration differs from the respective base case by only one attribute, which is
further simplified
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Linear Optimal
Power Flow
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Shares [-]
Total Cost
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Simp. 1.3

VAl 25 20 12 Yes 197352 0.064875 0.6282
ErEs |20 12 Yes 120.81  0.087521 0.0653
ST 25 |10 ] 12 |Yes  814.02 0.100840 2.6295

25 20 12 |[No | 1310.26 0.059544 1.3388

Once again, Figure 4.58 illustrates the significant correlation be-
tween the number of total time steps and runtime of the model.
However, as multiple model simplification approaches are in-
volved, longer runtimes do not necessarily indicate smaller errors,
because some features may still not be sufficiently detailed despite
of a high number of typical days and segments.

Furthermore, it is remarkable that for both a posteriori error met-
rics, i.e., the root-mean-square error of the cost shares and the
total cost deviation, the Pareto-optimal model configurations con-
sider a comparably small number of typical days, which indicates
that temporal aggregation is capable of significantly reducing the
model complexity while maintaining small model deviations. This
is explicitly not the case for other model simplifications, which im-
plies that temporal aggregation is among the most effective com-
plexity reduction techniques.

With respect to an exact quantification of the effectiveness of tem-
poral aggregation compared to other simplification techniques, Fi-
gure 4.58 demonstrates that this is hardly possible. As the two sets
of model configurations connected by arrows imply, the error intro-
duced by temporal aggregation does not only depend on the extent
to which the model is already temporally aggregated, but also on
the other model simplifications, e.g., the number of regions and
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power flow modeling. The base configuration of the red arrow set
with 10 regions, 40 typical days, 12 segments per day and linear
optimal power flow modeling is already spatially strongly aggre-
gated, whereas it is temporally comparably highly resolved. Here,
a further aggregation of regions leads to a stronger error increase
than a reduction of typical time steps. In contrast to that, the base
case of the orange arrow set with 25 regions, 20 typical days and
12 segments per typical day has a smaller temporal resolution and
a higher spatial resolution. In this case, the opposite effect can be
observed: While a further reduction of the number of typical days
has a larger impact on the respective model error, a reduction of
the number of regions is more effective in this case.

For both configurations, it can be observed that the choice of the
power flow modeling has comparably small effects on both, errors
and runtime. Further, it can be seen that different error indicators
may assess an aggregated model’s quality differently. This leads
to the effect that some further model simplifications may in fact
counterbalance the deviations introduced by other simplifications
and thereby decrease certain errors. For example, the optimal ob-
jective function value of a simplified model may be underestimated.
However, a further simplification with respect to the modeling of a
certain component may make it less flexible and therefore econom-
ically less attractive. Furthermore, the optimal objective function
value can be increased again by this simplification suggesting that
the chosen simplification would improve the model accuracy again.
In fact, however, other accuracy measures such as the root-mean-
square error of cost shares can further deteriorate. From a practi-
cal point of view, this implies that the choice of an error metric
should always fit the aspects the respective model focuses on.
However, this also impedes an assessment of simplification meth-
ods when being applied to different models with different research
foci.

To summarize, the fact that temporal aggregation is much more
favorable for a regionally strongly aggregated model than for a re-
gionally higher resolved one with already aggregated time series
implies that a clear assignment of shares of a model’s overall error
to its respective simplifying assumptions is not directly possible.
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Still, it is possible to compare the effectiveness of different simpli-
fication measures to each other based on a ceteris paribus as-
sumption. This means that the runtime gains and accuracy losses
of a simplification approach, which is ceteris paribus applied to a
given model instance, can be compared to those of another sim-
plification approach. In case that one simplification approach offers
larger gains in runtime while maintaining a smaller loss of accuracy
or result deviations, this approach can be preferred to the other
one. If this observation also holds true for different models with
diverse model foci, it is valid to call this method superior to the
other one.

Remarkably, the complex and often enough neither known, nor
guantifiable interactions of different simplifications or modeling ap-
proaches can be tackled by the same methods as introduced in
Section 3.3. Concisely, the Pareto-principle and sensitivity anal-
yses are applicable for different models, accuracy and perfor-
mance indicators as well as different simplification approaches.
Furthermore, the Pareto-principle and sensitivity analyses are also
applicable in an even more general way regarding which model
features to choose and which to neglect when creating models for
new application cases. In this context, it deems advisable to start
with a simple model and iteratively test novel model features with
a potentially higher level of detail. If the results shift remarkably,
these additional features should be kept, as they may be crucial
for an accurate solution, whereas those with little impact on the
result could be omitted. Furthermore, an increase in the level of
detail should always be deliberately distributed across multiple
(potential) model features with a likely impact on the model results
as the gains in accuracy are often degressive with respect to the
level of detail of a single model feature, which could be shown for
temporal and spatial resolution in Figure 4.58.

These findings support the approach to apply all temporal aggre-
gation methods with different period lengths, numbers of typical
periods, segments per period, and representation methods to a set
of heterogeneous models in order to derive relatively generalizable
empirical findings on the chosen method as presented in Chapter
4,
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5. Summary

The following section outlines the chain of reasoning of this work
and points out its scientific contributions by summarizing its key
aspects and condensing its main conclusions.

5.1. Scope and Objective

Energy systems are becoming more complex and so are their mod-
els. Solving complexity issues in models means mastering com-
plex system-related questions.

Over the last decades, energy systems have become increasingly
complex due to the development of new technologies, new ways
of energy consumption and a growing connectivity between differ-
ent energy sectors. Even more significantly, energy systems are
progressively challenged by the need for reducing greenhouse gas
emissions and a substitution of fossil energy sources by intermit-
tent renewable ones such as solar and wind energy.

To address this rising complexity and support planning or decision-
making processes in the operation and transformation of energy
systems, optimization-based time-discrete models have emerged
as a tool to account for different technologies and measures, time
horizons, system locations as well as humerous other aspects of
real energy systems.

Yet, the polynomial and in some cases exponential dependency of
the models’ runtime and their respective number of variables and
constraints limits their maximum size, level of detail or inner-struc-
tural connectivity. In concert with the increasing complexity of mod-
ern energy systems, this issue outweighs algorithmic progress in
mathematical optimization or hardware development.

For that reason, different approaches can be found in the literature
which aim for a heuristic simplification of these energy system
models, among which temporal aggregation focuses on a reduc-
tion of the model’s number of time steps to a representative smaller
one. Due to the time-discreteness of the optimization models, this
directly reduces the number of time-dependent variables and con-
straints and ultimately reduces the model size to guarantee the
solvability of large or complex energy system models within a rea-
sonable amount of time. However, the solutions obtained are gen-
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erally either suboptimal to or mathematically infeasible for the orig-
inal fully resolved problem due to the heuristic nature of this ap-
proach.

This work focuses on the enhancement of temporal aggregation
and development of novel methods in order to decrease the aggre-
gation-induced error for optimization problems and to allow for
even stronger aggregations while maintaining the quality of the
achieved optimization-based system solution. In this way, even
more complex energy system models can be optimized, which can
equip decision makers with more reliable information on a cost-
efficient design of the future energy system.

5.2. General Approach and State of the Art

As models become increasingly complex, a case-specific handling
of complexity issues becomes impracticable. Therefore, a system-
atic handling of complexity issues and a clear categorization of
simplification approaches is an emerging research topic.

In most cases in the literature, temporal aggregation is applied to
a model solely to ensure its computational solvability, i.e. the focus
lies on the model rather than the employed model simplifications,
whereas only a small part of the literature on energy system mod-
els deals with aggregation approaches explicitly. Therefore, a
large variety of different methods existed prior to this work, which,
in many cases, did not refer to each other or did not assess the
guality of the respective aggregation approach systematically.

In order to address this lacking transparency and to use the most
promising state-of-the-art approaches as a starting point for further
improvements on temporal aggregation, more than 130 different
publications were reviewed with respect to the employed temporal
aggregation technique, the model and its features, to which the
aggregation was applied.

The review reveals that the most promising approaches rely on
clustering as this technique aggregates only those periods or time
steps that are similar to each other and therefore reduces the er-
rors that occur by omitting time steps. However, in most cases,
either periods or single time steps were clustered, but both ap-
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proaches were generally not combined with each other, i.e. an ag-
gregation of periods with a further aggregation of time steps within
these periods was widely neglected.

Furthermore, the approaches to represent the clusters of similar
time steps by either the clusters’ centroids or medoids proved to
be insufficient for many applications as it underestimates extreme
values of the original dataset. Therefore, many approaches include
a post-processing step in which assumingly relevant additional
time steps of the original dataset are added to the aggregated one,
which, however, is often solely based on specific knowledge about
the model and cannot be generalized.

Apart from that, the vast majority of studies in the literature relied
on at most two different models, which belonged predominantly to
the same model or application type. Therefore, an important addi-
tional prerequisite of this work was to develop a generally applica-
ble method and to ensure the consistent outperformance com-
pared to state-of-the-art methods for different model types.

Based on these findings, this work identified two major research
gaps as key elements of current temporal aggregation with poten-
tial for improvement:

1. The combination of different temporal aggregation ap-
proaches in order to leverage their respective potential with
respect to speed-up and accuracy

2. An approach of clustering-based temporal aggregation that
automatically accounts for system-relevant features of the
original time series

5.3. Methodology

The chronology and the statistical features of time series are cru-
cial determinants for a reliable design and operation of energy sys-
tems. Preserving them as much as necessary while reducing the
number of time steps as strong as possible is the key to superior
temporal aggregation techniques.

Clustering-based methods for reducing the number of total time
steps by determining typical periods and by merging adjacent time
steps to longer ones bear a certain degree of similarity and can be
freely cross-combined. For that reason, the general process of ag-
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gregating typical periods and further reducing their temporal reso-
lution is first explained in detail based on the respective latest de-
velopments in either approach.

Subsequently, the clustering procedure itself is decomposed into
the grouping of time series data and the representation of each
group of time steps or periods by a single typical one. In that way,
the question how to represent a group of time steps or periods by
a single representative in an optimal way with respect to its impli-
cations on the operation (and design) of an energy system can be
handled in an isolated way.

In this context, prior research has shown that especially certain
statistic features of the employed time series determine the cost
optimal design and operation of an energy system. Therefore, an
algorithm is developed that directly constructs representative peri-
ods based on groups of periods in such a way that the original time
series’ value distribution is approximated as close as possible and
thereby circumvents the requirement of manually adding extreme
periods or time steps from the original time series to the aggre-
gated ones.

Furthermore, as it is possible to combine the number of aggregated
typical periods and the number of inner-period time steps freely,
an algorithm is developed which decides on a close-optimal trade-
off between both parameters. Thereby, the concept of Pareto-op-
timality is introduced to distinguish superior aggregation algo-
rithms from inferior ones with respect to their capability to acceler-
ate the energy system optimization while keeping the aggregation-
induced deviations low.

Lastly, the potential of aggregating time series to determine tight
upper and lower bounds of the fully resolved optimization problem
is investigated from an exact mathematical instead of an experi-
mental point of view. These approaches allow for quantifying the
worst-case error of using aggregated time series without being
able to solve the fully resolved optimization problem itself by com-
paring the model’s upper bound approximation to its lower one.

In order to substantiate the outperformance of the aggregation ap-
proach developed within this work compared to state-of-the-art
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temporal aggregation techniques, four fundamentally different en-
ergy system models are introduced as case studies. These vary
with respect to their purpose (dispatch model vs. capacity expan-
sion model), scope (single-nodal vs. multi-regional) and their math-
ematical structure (linear and temporally decoupled, linear and
temporally coupled as well as mixed-integer linear and temporally
coupled).

On these models, up to four different temporal aggregation tech-
niques are performed, two of which are the current state-of-the-art
approaches, and the respective number of typical periods and in-
ner-period time steps is varied resulting in over 2,400 different
model runs.

5.4. Results and Main Conclusions

The optimal temporal aggregation approach works on every en-
ergy system model and outperforms any other aggregation ap-
proach with respect to model acceleration and accuracy for any
extent of aggregation. Although the No-Free-Lunch-Theorem also
applies to temporal aggregation, the algorithm developed in this
work still outperforms other methods considerably for various mod-
els.

With respect to all temporally coupled models, a significant outper-
formance of the approach developed in this thesis could be ob-
served. Choosing a good trade-off between the number of aggre-
gated time periods and the temporal resolution within each period
as well as an explicit preservation of the original time series’ value
distribution in the corresponding aggregated data set significantly
outperforms even the most recent temporal aggregation ap-
proaches considerably. Specifically, the methods developed in this
work were able to accelerate all temporally coupled models by the
order of two magnitudes while keeping the deviation of the optimal
objective function value well below 5%. Compared to state-of-the-
art temporal aggregation methods, this corresponds to an addi-
tional speedup by the order of one magnitude at a constant or even
smaller error level.

Yet, the heuristic nature of temporal aggregation approaches and
the diversity of energy system models reveal that there are also
special model types for which different aggregation approaches
can perform slightly better. In particular, it could be shown that the
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consideration of time-coupling constraints, e.g., of storage tech-
nologies, is a remaining important explanatory variable for choos-
ing an appropriate temporal aggregation method. In case storage
technologies and other time-linking constraints are neglected, the
chronology of time steps becomes irrelevant for the optimization
model and time steps can be aggregated in an arbitrary order.
However, given rising shares of intermittent renewable energy
sources, storage technologies steadily gain importance and it can
therefore be expected that these model types remain an exception.

Concerning approaches for defining upper and lower bounds to the
fully resolved energy system model using aggregated time series,
a comparable model dependency was found. For linear programs,
these approaches are of minor practical use, as they do not pro-
vide tight upper bounds in a non-iterative manner. In contrast to
that, error bounding using temporal aggregation has revealed a
certain potential for mixed-integer linear programs, in which it can
assist in finding good incumbent solutions for a subsequent
branch-and-bound procedure.

These findings support the hypothesis that the No-Free-Lunch-
Theorem, which is well known in mathematical folklore, also ap-
plies to temporal aggregation. This means that the more a temporal
aggregation technique is adapted to a specific model class or spe-
cific model instance in order to tweak its performance, the less
likely it becomes to work sufficiently on other model instances.
Against this background, it is remarkable that the following general
conclusions can still be drawn from this work:

e Temporal aggregation should be based on clustering in or-
der to keep the error induced by merging similar time steps
as small as possible.

o If the model is temporally decoupled, single time steps
should be clustered; otherwise, periods corresponding to ex-
pected storage cycles and their inner temporal resolution
should be clustered in a balanced manner.

¢ Not only extreme values, but in fact the whole value distri-
bution of the original time series should be preserved as
closely as possible in the aggregated data set in order to
obtain both appropriate system designs and reasonable op-
eration schedules.

218



5.4. Results and Main Conclusions

In case mixed-integer linear programs are to be solved, so-
lutions based on aggregated data bear a considerable po-
tential for defining promising incumbent solutions for subse-
quent branch-and-bound routines.

Compared to exact mathematical methods, temporal aggre-
gation for energy system models is a generally applicable
heuristic, which yields good results independently of the
model type and very good results when being slightly
adapted to the model type.

For the most common type of temporally coupled energy
system models, an algorithm could be developed that does
not require additional knowledge of the modeler and
achieves speed-up by a factor of more than 100 with a result
deviation well below 5%.
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Appendix

A.Glossary Used For Literature Research

Table A.1. Glossary used for literature research
(taken from Hoffmann et al. [1])

Keyword Used
for Literature

Synonym

(Term in this Review)

Definition

Research

Clustering

Complexity Re-
duction

Energy System
Optimization
Model,

Energy System
Model

Typical Period

Representative
Day,
Representative
Week
Sampling,
Random Sam-
pling,
Subsampling

Snapshot

System State

Grouping,
(Clustering)

None,
(Complexity Reduc-
tion)

Energy System Opti-
mization Model,
(Energy System
Model)

None,
(Period)

Typical,
(Typical)

None,
(Sample)

System State,
Time Step,

(Time Step,

If subset of time se-
ries: Typical Time
Step)

Snapshot,

Time Step,

(Time Step,

If subset of time se-
ries: Typical Time
Step)

“Given a dataset of n time series
data D = {F;,F,, ..., F,}, the process
of unsupervised partitioning of D
into C = {Cy, Cy, ..., C} in such a way
that homogeneous time series data
are grouped together based on a
certain similarity measure” [135]
Different techniques to increase the
computational tractability of energy
system models [41]

A model “the analysis of existing
national energy systems, as well as
the prediction of potential future
scenarios, is usually performed
with” [15]

A group of consecutive time steps
describing a regular amount of time
(e.g., 24 h)

A single time step or a period repre-
senting a group of time steps or pe-
riods determined by clustering

A single time step or period taken
from the original time series

A term used in the literature for typi-
cal time steps

A term misleadingly used in the lit-
erature for typical time steps. It ac-
tually describes the state of a sys-
tem under both external conditions
(e.g., capacity factors) and internal
state variables (e.g., storage levels)
at a specific time step
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Keyword Used
for Literature
Research

Synonym

(Term in this Review) Definition

The resolution of a discretized time
series given by the length of its time
steps

In the narrow sense:

The reduction of time steps in time

Temporal Reso-  None,
lution (Temporal Resolution)

Time Series Ag- Temporal Aggregation,

gregation, - . series
Tim ries Aggrega-
Temporal Ag- 'Eion)e Series Aggrega In a broader sense:
gregation The reduction of the number of time
steps or time series
. . Time Slot, Hlerarghlcglly merged tme steps
Time Slice (Time Slice) appearing in a systematic order as
used by the TIMES framework
. The smallest possible time interval
Time Step Snapshot . - .
. : of a discrete time series repre-
Typical Time System State .
Ste (Time Step) sented by a single value for each
P P attribute
Periods or single time steps consid-
. . ered to capture the basic character-
Typical Day Representative istics of the external operating con-
Typical Week (Typical) P g

ditions of an energy system are
named “typical”
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B. Table of Methods

Table B.1. Table of methods (taken from Hoffmann et al. [1])

[Year| Author Energy System | Normali- [Distance| Clustering/ Repre- Extreme peri- |Linking Periods| Dura-

Model for Case zation Metric Grouping sentative ods

Study, (Framework)

1999 dra None (just app! 1) No No Multiple discrimi- mean No Yes No
etal. [59] nant analysis

2002 Yokoyama et Building or district No No Season-based  (probably) No No No

al. [71] model, no storage (summer, mid- mean
technologies, but season, winter)
multiple commodities with 4, 2, or 1h
resolution
2007 Leeetal. unit commitment No No No No No Yes No
[168] problem for 48 unit

power system (not

further specified)
2007 Swider etal. Single-node model No No Every two (probably) No No No
[132] for electricity produc- months, one mean
tion in Germany with weekday and one
wind and pumped weekend day
hydro storage with 2h resolution
2008 Marton etal. None (just approach)  No Integral of Clustering by mean Yes, if outlier Yes No, alt-
[103] absolute comparing each surpass a cer- hough
error (L1 new day to clus- tain threshold of curve
norm)  ters of preceding the IAE and the was
days following day is called
close to the pre- the dura-
ceding cluster tion
curve
2008 Mavrotas et Building model for a No No  Monthly average ~ mean No No No
al. [60] hospital, no storage
technologies, but
multiple commodities
2008 Mavrotas et Building model fora No/not ~ No/not Seasonal re- Rescaled Peak demand No No
al. [60] hospital, no storage mentioned men-  scaled average mean value of each
technologies, but tioned further seg- cluster is kept
multiple commodities mented for each attrib-
ute
2009 Alzate etal. Customer or unit par- Z-normali- No (Ham- Spectral cluster- None (just No No No
[198] titioning/ none (just ~ zation  ming dis- ing grouped)
approach) tance for
out-of-
sample
exten-
sion)
2009 Casisietal. District model, no No No Season-based (3 (probably) No No No
[124] storage technolo- seasons for en- mean
gies, but multiple ergy demand and

commodities
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Year|

Author Energy System | Normali- [Distance| Clustering/ Repre- Extreme peri- |Linking Periods| Dura-

Model for Case zation Metric Grouping sentative ods tion

EENEIS Curve

24 for sold en-

ergy to the grid)
2009 Lozano etal. Building model for a No No Monthly average (probably) No No No
[121] hospital, no storage with distinction mean
technologies, but between week-
multiple commodities day and weekend
2010 Lozano etal. District model, ther- No No Monthly average (probably) No No No
[104] mal storage units, mean
multiple commodities
2010 Nicolosi etal. Single-node electric-  No No  Fullresolution, 4  means No No No
[109] ity dispatch model for seasons,
Texas (ERCOT), no Wednesday, Sat-
storage, technolo- urday and Sun-
gies mentioned, day with hourly
(THEA) resolution, 16
time slices
2011 Dominguez- None (just approach) Yes, but Euclidean  k-medoids medoids  Peak heating No No
Mufioz et al. not men- and peak cool-
[61] tioned ing day
which
2011 Haydtetal. Island electricity No No LEAP: 9 time means No Yes LEAP:
[110] model for Flores slices from the Yes
(Azores), no explic- duration curve TIMES:
itly modeled storage TIMES: 4 sea- No
technologies (only sons, Wednes-
via availability), day, Saturday
(TIMES, LEAP, En- and Sunday with
ergyPlan) hourly resolution
EnergyPLAN: full
hourly resolution
2011 Ortiga etal. Building model, ther- No/not  No/not Graphical existing Peak heating No Yes
[164] mal storage units, mentioned men- method days and peak cool-
multiple commodities tioned ing day
2011 Pinaetal. Island electricity No No 4 seasons, week- (probably) No Yes No
[113] model for Sdo Miguel day, Saturday mean
(Azores), no explic- and Sunday with
itly modeled storage hourly resolution
technologies (only
via availability), no
storage technolo-
gies, (TIMES)
2011 Weberetal. Multi-node district No No 3 seasons further (probably) No No No
[122] model, daily heat segmented into 6  mean
and electricity stor- irregular periods

ages, multiple com-

modities
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[Year| Author Energy System | Normali- [Distance| Clustering/ Repre- Extreme peri- |Linking Periods| Dura-
Model for Case zation Metric Grouping sentative ods tion
EENEIS Curve
2012 Buoro etal. Building model, ther- No No Monthly average, (probably) No No No
[94] mal storage units, typical weeks mean
multiple commodities with 168 h
2012 Devogelaer et Multi-node model for No No 26 2-week peri-  (probably) Peak demand Yes No
al. [114] Belgium, multiple ods with three mean slice
storage technolo- daily levels

gies, multiple com-

modities, (JRC-EU-

TIMES)
2012 Mehleri etal. District model, no No No 3 seasons further (probably) No No No
[134] storage technolo- segmented into 6  mean
gies, multiple com- irregular periods
modities
2012 Van der Wei- Multi-node electricity No No N hourly samples Existing No No No
jde et al. [165] model for Great Brit- hours

ain, no explicitly
modeled storage

technologies (only as

source/sink)
2012 Welsch etal. Single-node electric- No No In Proposal: 4  (probably) No Yes No
[111] ity model for a town, seasons, work mean
battery storages, de- days and week-
mand shifting, ends, 3 daily in-
(0SeMOSYS) tervals. In exam-
ple: Just one day
in hourly resolu-
tion
2013 De Sisternes Single-node electric- Min-max Euclidean  Exhaustive existing  Including peak No Yes
etal. [98] ity model, no storage normaliza- search or heuris-  weeks week or peak
technologies, but tion for tic day
minimum up- and NLDC
down-times
2013 Kannan et al. Single-node electric- No No Season-based ~ Average No Yes No
[115] ity model for Switzer- (four seasons
land and pumped hy- and to diurnal
dro storage, (TIMES) time slices), or
weekdays, Satur-
days, Sundays in
hourly resolution
2013 Mehleri etal. District model, ther- No No 3 seasons with  (probably) No No No
[199] mal storage units, hourly resolution mean

multiple commodities

2013 Pinaetal. Electricity model for No None One weekday,  Not men- No No No
[125] Portugal, storage one Saturday tioned
technologies consid- and one Sunday,
ered, but modeling 4 seasons
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[Year| Author Energy System | Normali- [Distance| Clustering/ Repre- Extreme peri- |Linking Periods| Dura-

Model for Case zation Metric Grouping sentative ods tion

EENEIS Curve

not explained, num-
ber of regions not
mentioned, (TIMES

and EnergyPLAN)

2013 Simdes et al. Multi-node model for No No Season-based ~ Average  Average peak Yes No
[116] Europe, multiple (four seasons, demand during
storage technolo- day, night and each season
gies, multiple com- peak time slice)

modities, (TIMES)

2013 Spiecker et al. Multi-node electricity  No/not None One weekday ~ Notmen-  Yes, with sto- Yes No
[126] model for Europe, mentioned and one week- tioned chastic ap-
hydro storage units, end day for every proach
cogeneration units two months with
on regional scale 2h resolution
2013 Voll etal. District model, no No No Monthly average mean Two more time No No
[108] storage technolo- steps for sum-
gies, multiple com- mer and winter
modities peak loads
2014 Adhauetal. Stochastic single- No/not  Euclidean k-means centroids No No No
[200] node electricity  mentioned

model, no storage

technologies

2014 Benitez et al. Customer or unit par- No/not Euclidean ~ Dynamic k- centroids No Yes (yearly tra-  No
[201] titioning/ none (just mentioned means jectory)
approach) (only one
attribute)
2014 Deane etal. unit commitment of No No Downsampling ~ average No Yes No
[69] the Irish electricity (5, 15, 30 and 60
system, pumped hy- min)

dro storage,
(PLEXOS)
2014 Fazlollahi et District heating Min-max Euclidean k-means centroids  Attribute peaks No No

al. [143] model, no storage normaliza-

technologies tion
2014 Fazlollahi et Two single-node dis- Min-max Euclidean k-meansand  centroids Attribute peaks No No
al. [74] trict models with  normaliza- segmentation

fixed capacities, no tion
storage technolo-
gies, multiple com-
modities, unit com-
mitment (minimizing
operating costs)
2014 Greenetal. Electric dispatch No (just Euclidean k-means centroids Dominant ramp No No
[177] model for UK, two attrib- integration
pumped hydro stor-  utes of

same
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Year| Author

2014 Poncelet et al.

[42]

2014 Stadler et al.

[123]

2014 Wakui et al.

[120]

2014 Wogrin et al.

[90]

2014 Xiao etal.

[171]

2015 Agapoff et al.

[68]

2015 Brodrick et al.
[202]

2015 Bungener et
al. [75]

Energy System
Model for Case

EENEIS

Normali- | Distance

Clustering/

zation Metric Grouping

age simulated, num- scale clus-

ber of regions not
mentioned
Island electricity
model for Belgium,
no storage technolo-
gies or transmis-
sions, re-evaluation
with unit commitment
model, (TIMES)
Building model, mul-
tiple storage technol-
ogies, multiple com-

modities (DER-CAM)

Building model, ther-
mal storage units,
multiple commodities

Single-node electric-

ity model, no storage utes of the

technologies

Island electricity
model for, no storage
technologies

Multi-node electricity

model for capacity mentioned

expansion planning,
no storage technolo-
gies
Single-node model
of a coal-plant with
alternative natural
gas and solar ther-
mal heat sources
and carbon capture
and storage, CO2
solvent storage unit,
multiple commodities
unit commitment of a
chemical cluster,

multiple commodities

tered)

No No Season-based
(four seasons,
night, day and

peak slice)

No (seven typical
days or one typi-
cal weekday, one
typical weekend
day and one

peak day)

Season-based

No (attrib- Euclidean k-means, hourly,

6 typical time

same unit) steps (system
states)
No No No
No/not Euclidean k-means, typical

hours (snap-

shots)
Normali- Euclidean k-means
zation by
dividing
by the av-
erage
Normal- None, but  Evolutionary
izedby variance mechanisms
average indicator (segmentation)
values and zero
and multi- flowrate
plied by indicator
weight

Repre- Extreme peri-

sentative ods

(probably) By choosing
mean peak slice
(probably) Peak demand
mean day in case of
typical weekday
and typical
weekend day
(probably) Peak summer
mean day and peak
winter day
centroids No
No No
medoids Included as
clustered fea-
tures (min, max,
std., local differ-
ence and avg.)
centroids No
means No

Linking Periods| Dura-
tion

Curve

No No
No No
No No
No No
Yes No
No No
No No
Yes (adjacent No

time steps are

merged)
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[Year| Author Energy System | Normali- [Distance| Clustering/ Repre- Extreme peri- |Linking Periods| Dura-
Model for Case zation Metric Grouping sentative ods tion
EENEIS Curve
2015 Deml etal. Single-node electric No No Progressive means No Yes No
[76] dispatch model, downsampling

pumped hydro stor-

age
2015 Fitiwi etal. |IEEE 24-bus Relia- Normal- Euclidean k-means, typical Medoids No No No
[146] bility Test System ized by hours (snap-  closest to
[203], multi-node  maximum shots) the clusters’
electricity model, no line length centroids

storage technologies and base

load
2015 Harbetal. Building model and No No Monthly average, mean No No No
[106] district model, ther- also 15 min. and
mal storage units, hourly resolution
multiple commodities
2015 Harbetal. District model, ther- No No Cluster by sums ~ means No No No
[95] mal and battery stor- of weeks
age units, multiple (sensitivity analy-
commodities sis also for differ-
ent day num-
bers), typical
weeks
2015 Marquant et District heating No/not Euclidean  k-medoids medoids  Peak electricity No Yes
al. [152] model, no storage mentioned and peak heat-
technologies, multi- ing days
ple commodities
2015 Merkel etal. District model, ther- No No Season based  (probably) No No No
[96] mal storage units, (three weeks existing
multiple commodities from spring/au- weeks
tumn, summer
and winter), 15
min. resolution
2015 Munoz et al. |IEEE Reliability Test No/not Euclidean Daily moment-  centroids  Top 10 peak No No
[166] System [173], multi- mentioned matching, k- load hours in-
node electricity means for hours, cluded
model, no storage typical hours
technologies (snapshots)
2015 Poncelet et al. None (just approach) No/not L1-Norm Using so-called  existing No No Yes
[185] mentioned “bins” days
2015 Samsatli et al. Multi-node island No No Season-based  (probably) No Yes No
[22] model, multiple hy- (four seasons, mean
drogen storage tech- weekdays and
nologies, multiple weekend days)
commodities
2015 Schiefelbein District model, ther-  No/not Euclidean k-medoids medoids No No

etal. [158] mal storage units, mentioned

multiple commodities
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[Year| Author Energy System | Normali- [Distance| Clustering/ Repre- Extreme peri- |Linking Periods| Dura-
Model for Case zation Metric Grouping sentative ods tion
EENEIS Curve
2015 Wakui etal. Building model, ther- No No Season based  (probably) Peak summer No No
[118] mal and battery stor- mean day and peak
age units, multiple winter day
commodities
2015 Wouters et al. District model, heat, No No Season-based  (probably) Sensitivity anal- No No
[127] cold and battery stor- (spring/autumn, mean ysis by adding
age technologies, summer and win- variability to PV
multiple commodities ter) input data
2015 Yangetal. District model, heat No No Season-based  (probably) No No No
[128] and cold storage (spring/autumn, mean
technologies, multi- summer and win-
ple commodities ter), 2h resolution
2015 Yokoyama et Building model for a No No Season-based  (probably) No No No
al. [72] hotel, no storage (summer, mid- mean
technologies, but season, winter)
multiple commodities with 8, 4, or 2h

resolution and for

commercial
solver 1h
2016 Amerietal. District model no No No Season-based  (probably) No No No
[129] storage technolo- (summer and mean
gies, multiple com- winter)
modities
2016 Becketal. Electric building No No Single day mean No Yes No
[70] model, battery stor- downsampled
age (10, 30, 60, 300,
900, 3600s), ana-
lyzed single days
2016 Bracco etal. District model, ther-  No/not No Season-based  (probably) No No, initial condi- ~ No
[130] mal and battery stor- mentioned (summer, winter, ~ mean tions at each
age technologies, mid-season) day, e.g.
multiple commodi- SOC(p,t=0)=0
ties, (DESOD)
2016 De Sisternes Single-node electric- Min-max Euclidean  Exhaustive existing  Including peak No Yes
etal. [97] ity model, battery normaliza- search or heuris-  weeks week or peak
storage and mini-  tion for tic (refers to [98], day
mum up- and down-  NLDC but with addi-
times tional cycled

power error), typ-
ical weeks

2016 Frewetal. Multi-node electric  Yes,but None  Randomdays  Existing  Extreme days No (netstorage Yes

[167] model of the US,  not men- days, containing the  vuels of each
pumped hydro, ther- tioned is weights cal- peak value for day must be zero
mal and battery stor- which, but culated with each of the eight or SOC at start

age technologies, averaged least attributes of each day
(POWER) across all squares equals that at the
potential method end)
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Author Energy System
Model for Case

EENEIS

2016 Haikarainen Customer or unit par-
et al. [204] titioning/ district
model, thermal stor-
age units, multiple
commodities
2016 Kools etal. District electricity
[107] model, battery stor-
age units, heat de-
mand driven CHP
units considered
2016Linetal. [179] Multiple building
models, thermal and
battery storage units,
multiple commodities
2016

Lythcke-  CHP-plant model, no

Jorgensen et storage technolo-
al. [93] gies, multiple com-

modities

2016 Merrick etal. Single-node electric-
[46] ity model, no storage

technologies

2016 Nahmmacher Multi-node electricity

etal. [63] model LIMES-EU
[205] with intraday
storage technolo-

gies, (LIMES-EU)

2016 Oluleye et al. Single-node district

[133] model, thermal stor-
age units, multiple

commodities

Normali- |Distance| Clustering/

zation Metric

Grouping

developa-
ble sites
No  Euclidean k-means
No No Averaging of
eight consecutive
weeks in each
season to one
typical day
No/not  Euclidean  k-means
mentioned
(attributes
of the
same unit)
Heat de-  No/not So-called
mand men- “CHOP” aggrega-
normed by tioned tion (graphical
maximum method) for five
value years of hourly
data
No None  Monthly median

and peak elec-
tricity demand
day with 4h reso-
lution and only
one averaged pe-
riod
Demand: Euclidean hierarchical
region-
specific di-
vided by
maximum
value
VRE: di-
vided by
maximum
value
across all
regions
None None One weekday
and one week-
end day for win-

ter, summer and

Repre-

sentative

means

mean

Existing day
which is
closest to

the centroid

means

medoids

medoids

Not men-

tioned

Extreme peri- |Linking Periods| Dura-

ods tion

Curve

No No No
Normal distribu- Control policy for ~ No
tions added for the storage (not

1 min, 15 min across days)
and 1h resolu-
tion (stochastic

impact)

No No (periodic No

s0C)

No No No
Peak electricity No No

demand days

No No No

No No No
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[Year| Author Energy System | Normali- [Distance| Clustering/ Repre-

Model for Case zation Metric Grouping sentative

EENEIS

transition with 7
(6) time bands
(slices)

2016 Patteeuw et Building heating No/not  L1-Norm Using so-called  existing

al. [99] model of nine build-  men- “bins”, heuristic, weeks (6)
ings, thermal storage tioned, hierarchical clus-
units, multiple com- Demand: tering according
modities region- to Nahmmacher
specific di- etal. [63] for the
vided by years of 2013-
maximum 2016
value

2016 Ploussard et |IEEE 24-bus Relia- No/not Euclideank-means, , typical —Existing

al. [92] bility Test System mentioned hours (snap- snapshot
[203], multi-node shots) closest to
electricity model, no the cen-
storage technologies troids
2016 Ponceletetal. Island electricity No None  For each of the mean
[117] model for Belgium, four seasons one
no storage technolo- night, day and
gies or transmis- peak electricity
sions, re-evaluation time slice

with unit commitment
model, (TIMES)

2016 Poncelet et al. Single-node electric- No/not L1-Norm, Using so-called  existing

[147] ity model based on  men-  Euclidean “bins”, heuristic, ~days, me-
[206], no storage tioned, hierarchical clus- doids
technologies, Demand: tering according
(LUSYM) region- to Nahmmacher
specific di- etal. [63]
vided by
maximum
value
2016 Samsatli et al. Multi-node hydrogen- No No Season-based  (probably)
[23] electricity model for (four seasons, mean
Great Britain, multi- work days and
ple hydrogen storage weekend days)

units, multiple com-

modities
2016 Schitz et al. Building model, ther- Min-max Euclidean k-means centroids
[144] mal and battery stor- normaliza- k-medians medians
age units, multiple tion k-medoids medoids
commodities k-centers centers
2016 Stenzel etal. unit commitment of No None downsampling means
[44] building electricity

Extreme peri-

ods

Coldest week

and week with
highest e-de-
mand (same

week)

No

Peak electricity

time slice

No, for heuris-
tics days with
highest and low-
est value for E-
demand and
highest and low-
est average for

wind and PV

No

No

No

No

No

Linking Periods| Dura-

tion

Curve

No
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Author Energy System | Normali- [Distance| Clustering/ Repre- Extreme peri- |Linking Periods| Dura-

Model for Case zation Metric Grouping sentative ods tion

EENEIS Curve

model with battery

storage
2016 Wakui etal. Building model, ther- No No Season based  (probably) Peak summer No No
[119] mal and battery stor- mean day and peak
age units, multiple winter day
commodities
2016 Wogrin et al. Single-node electric- No/not Euclidean k-means (98 typi- centroids No, but the first Yes No
[88] ity model, pumped mentioned cal time steps and last hour of
hydro and battery (system states)) the time horizon
storage were manually
added
2017 Bahletal. District model from  No/not  (proba- k-means, typical centroids Feasibility time No No
[180] Voll et al. [108], no mentioned bly) Eu-  hours (snap- steps (peak val-
storage technolo- (attributes clidean shots) ues) and opera-
gies, multiple com-  of same tion optimization
modities scale clus- for full time se-
tered) ries
2017 Brodrick et al. unit commitment of Z-normali- Euclidean k-means centroids No No No
[149] an integrated solar  zation
combined cycle, no
storage technolo-
gies, multiple com-
modities
2017 Hértel etal. Multi-node transmis-  Either Euclidean k-means, k-me- Centroids, Heurisitc defin- No No
[91] sion expansion plan- normed by doids, hierar-  medoids, ing new cluster
ning model, no stor-  highest chical, systematic sample centers if 95%
age technologies  value per sampling, mo- points of a cluster’s
market or ment-matching, , data points are
highest typical hours below or above
value (snapshots) a 6h moving av-
across all erage, with the
markets lowest or high-
est chosen as
the new cluster
center
2017 Heuberger et Single-node electric- Yes, but Euclidean k-means means  Day with annual No No
al. [176] ity model with carbon not men- electricity peak
capture and storage  tioned demand
and grid-level stor-  which
age
2017 Marquant et District heating No/not Euclidean  k-medoids medoids  Peak electricity No Yes
al. [153] model, thermal and mentioned and peak heat-
battery storage units, ing days
multiple commodities
2017 Moradietal. Sinlge-node model No No Season-based  (probably) No No No

[131] of an energy hub, (one work day mean

thermal and battery
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Year| Author

2017 Pfenninger et Multi-node electricity Normal- Euclidean k-means, hierar-

al. [43]

2017 Renaldi et al.

[66]

2017 Timmerman

etal. [112]

2017 Schiitz et al.

[105]

2017 Sunetal.
[141]

2017 Teichgraber

et al. [150]

Energy System

Model for Case
EENEIS

storage, multiple

commodities

model for Great Brit-
ain, pumped hydro
and battery storage

units

Single-node district
heating system,
long- and short-term
thermal storage
units, multiple com-
modities
Two business park
models (one based
on the model of Voll
et al. [108]), thermal
and electrical stor-
age units, multiple
commodities, (Syn-
E-Sys)
Building model, ther-
mal and battery stor-
age units, multiple
commodities
Customer or unit par-
titioning/ none (just

approach)

Oxyfuel natural gas
plant, liquid oxygen
storage, multiple

commodities

Normali- |Distance| Clustering/ Repre-

zation Metric sentative

Grouping

and one week-
end day per
spring, summer,

autumn and win-

ter)
centroids,
ized by chical, downsam- medoids
the maxi- pling, heuristics
mum
value
across all
time steps
and model
zones
No None Multiple time ~ Downsam-
grids for different  pled 3h
storage technolo-  steps for
gies long-term
storage
No No Season and (probably)
weekday-based mean
(4x2x4 6h inter-
vals)
No No Monthly average (probably)
(one typical day mean
per month and
weighted)
Time Likeli-  Vine-copula mix- ~ None
steps wise hood- ture model
(in period) function
average s
divided by
maximum
value of
each cus-
tomer
Z-Normali- Euclidean k-means centroids

zation

Extreme peri-

ods

Min/max solar
and wind days,
wind and pv
weeks and
wind-demand

weeks

No

No

No

No

No

Yes

No

Linking Periods| Dura-

tion

Curve

232



B. Table of Methods

Year| Author Normali-

Energy System

Model for Case zation

EENEIS
2017 vom Stein et Multi-node electricity No
al. [84] dispatch model for
Europe, pumped hy-

dro storage

2017 Yangetal. Customer or unit par- Z-normali-

[207] titioning/ none (just ~ zation
approach)
2017 Zhuetal.
[208] (refers airport in China opti- not men-
tioned

to[61])  mizing economics or

CO: emissions, no  which
storage technolo-

gies, but start-up and
shut-down costs

2018 Almaimouni et Single-node capacity Normalize

al. [142] expansion planning by vm — 1
for electricity, vali- - with m as
dated with rolling  number of

horizon unit commit- days, prin-

ment, no storage  cipal com-
technologies ponents
2018 Bahletal. District model from  No/not

[181] Voll et al. [108] and a mentioned
single-node pump  (attributes

system, no storage  of same

technologies, multi- scale clus-

ple commodities tered)

2018Bahl et al. [79] District model from  Yes, but
Voll et al. [108] with not men-
additional heat and  tioned

cold storage units, ~ which

multiple commodities

2018 Brodrick et al. unit commitment of Z-normali-

[102] refers to an integrated solar  zation
[149] combined cycle, no
storage technolo-
gies, multiple com-
modities
2018 Gabrielli et al. Single-node district  No/not

[21]
tery and hydrogen
storage, multiple

commodities

Building model for an Yes, but Euclidean k-medoids (only

model, thermal, bat- mentioned

Distance| Clustering/ Repre- Extreme peri- |Linking Periods| Dura-
Metric Grouping sentative ods tion
Curve
L1-Norm Clustering of con-  mean No Yes (clustering No
secutive time of consecutive
steps with objec- time steps)
tive to minimize
gradients within
clusters
Shape- k-shape none No No No
based
distance
medoids No No No
three season-
specific typical
days)
Euclidean k-means centroids No No Only as
error es-
timator
Euclidean k-means, typical undersesti- Feasibility time No No
hours (snap- mators from steps (peak val-
shots) minimum  ues) and opera-
values of  tion optimization
each cluster for full ime se-
ries
Euclidean k-medoids (daily medoids fur- Feasibility time No No
clustering and  ther seg- steps (peak val-
segmentation) mented  ues) and opera-
tion optimization
for full time se-
ries
Euclidean k-means (6 rep- centroids Three extreme No No
resentative days) hours
further reduced
to three extreme
hours
Not men- k-means centroids  Maximum and Yes No
tioned minimum values
(probably of the demand
Euclid- profiles
ean/ de-
fault for
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[Year| Author Energy System | Normali- [Distance| Clustering/ Repre- Extreme peri- |Linking Periods| Dura-
Model for Case zation Metric Grouping sentative ods tion
EENEIS Curve
Matlab k-
means)
2018 Kotzuretal. Three single-node Min-max Euclidean k-means, averag- centroids  Peak periods No No
48] models (CHP sys- normaliza- ing, k-medoids, medoids  heat and elec-
tem, residential tion hierarchical, typi- tricity demand,
building, island sys- cal days and typi- minimum PV
tem), thermal, bat- cal weeks feed-in
tery and hydrogen
storage, multiple
commodities
2018 Kotzuretal. Three single-node Min-max Euclidean Exact k-medoids medoids No Yes No
[20] models (CHP sys- normaliza-
tem, residential tion
building, island sys-
tem), thermal, bat-
tery and hydrogen
storage, multiple
commodities
2018Lara et al. [30] Multi-node electricity ~Men-  Euclidean k-means for the centroids No No, 50% SOC No
model for Texas, tioned, but years of 2004- heuristic
multiple storage units not which 2010
(e.g., lithium-ion, one
lead-acid, and flow
batteries)
2018 Liu et al. [151] Multi-node electricity Z-Normali- DTW dis-  (k-means ini- medoids, No No No

model for Texas zation tance, tially), hierar-  centroids for

(greenfield capacity Euclidean chical, k-means-
expansion planning), as bench- k-meansas  benchmark
storage units and mark benchmark

ramping constraints

considered
2018 Mallapragada Electricity capacity Min-max Euclidean 4 seasons and 4 medoids No No, refers to No
etal. [45]  expansion planning normaliza- and L1- ~daily segments [30], 50% SOC
(2004-2010) model for Texas, no tion be- Norm (as Vs, heuristic
storage or transmis- tween 0  bench- k-means

sion units, ramping in  and 2 mark)
production cost sim-

ulation considered

2018 Neniskis et al. Electricity and district No None Workday and means  No (but synthe- No No
[57] heat model of Lithua- weekend day ei- sized wind time
nia, pumped hydro ther for four sea- series)
storage, multiple sons or for twelve
commodities, (MES- months
SAGE)
2018 Pineda etal. Multi-node electricity Men-  Euclidean  Hierarchical medoids No Yes, by cluster- No
771 model of Europe, in- tioned, but ing adjacent peri-
ods
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[Year| Author Energy System | Normali- [Distance| Clustering/ Repre- Extreme peri- |Linking Periods| Dura-

Model for Case zation Metric Grouping sentative ods tion

EENEIS Curve
traday, interday stor- not which
age and ramping one

constraints consid-

ered
2018 Schiitz et al. Building model, ther- Min-max Euclidean k-means centroids No No No
[64] mal and battery stor- normaliza- k-medians medians
age units, multiple tion k-medoids medoids
commodities k-centers centers
2018 Stadler et al. Building model, ther- No/not  (proba- k-medoids medoids No No No

[209] mal and battery stor- mentioned bly) Eu-

age units, multiple clidean
commodities
2018 Teichgraber ~ Two minimal unit Element- Euclid- k-means Centroid, No No No
etal. [157] commitment prob-  wise Z- ean, k-medoids medoids

lems: An electricity Normali- Dynamic Barycenter Aver-

storage model and a  zation Time aging
gas turbine dispatch Warping, k-shape
model Shape- hierarchical
based
Distance
2018 Tejada- unit commitment of Yes, but (proba-  k-medoids for medoids No Yes No

Arango et al. the Spanish electric- not men- bly) Eu- RP, k-means for  centroids
[25] ity system, battery ~ tioned  clidean Ss
and pumped hydro what kind

storage of normali-
zation
2018 Tejada- unit commitment of  No/not Euclidean k-means (for typi- centroids No No No
Arango etal. the IEEE 14 bus mentioned cal hours)

89] electricity model, bat- (attributes
tery and pumped hy- of same

dro storage scale clus-

tered)
2018 Tupper etal. unit commitment of No/not  Euclid- k-medoids medoids No No No
[210] the IEEE 30 bus mentioned ean, band
electricity model with distance
wind generation, no
storage technologies
2018 Van der Hei- Single-node district  No/not  L1-Norm Using so-called  existing No, but each Yes Yes
jde et al. [100] heating model, ther- mentioned “bins” and four weeks  season needs to
mal storage seasons contain at least
one typical week
2018 Voulis etal. Customer or unit par- Normali- Euclidean k-means (spatio- Centroids No No No
[148] titioning/ none (just zation by temporal differen-
approach) maximum tiation between
e-demand workdays, week-

ends, neighbor-

hoods, districts

235



B. Table of Methods

[Year| Author Energy System | Normali- [Distance| Clustering/ Repre- Extreme peri- |Linking Periods| Dura-

Model for Case zation Metric Grouping sentative ods tion

EENEIS Curve

and municipali-

ties)
2018 Welder et al. Multi-node model for Min-max Euclidean hierarchical medoids No Yes Yes
[24] power-to- hydrogen normaliza-
in Germany, hydro- tion
gen storage technol-
ogies, multiple com-
modities
2019 Baumgartner District model from  No/not Euclidean  k-medoids Segmented Feasibility time No No
etal. [83] Voll et al. [108] with mentioned under- and steps (peak val-
additional heat and overestima- ues) and opera-
cold storage units tors tion optimization
and a single-node for full time se-
pump system, multi- ries
ple commodities
2019 Baumgértner Single-node model  No/not Euclidean k-means Centroids, Feasibility time Yes No
etal. [82] for industrial site  mentioned segmented steps (peak val-
based on Baumgart- under- and ues) and opera-
ner et al. [211] with overestima- tion optimization
heat, cold and bat- tors for full time se-
tery storage, Multi- ries
node model for Ger-
many with battery
and hydrogen stor-
age, multiple com-
modities
2019 Gabrielli et al. Single-node district ~ No/not  Not men- k-means centroids ~ Maximum and Yes No
[160] model, thermal, bat- mentioned tioned minimum values
tery and hydrogen (probably of the demand
storage, multiple Euclid- profiles
commodities ean/ de-
fault for
Matlab k-
means)
2019 Hilbers et al. Single-node electric- Yes, but Euclidean Samples (hourly)  Existing Yes with the No No
[161] ity model of Great not men- As benchmark: k- hours method of sub-
Britain, no storage  tioned medoids (days) As bench- sampling and
technologies which mark: me-  keeping the
doids (days) most expensive
days
2019 KannengieRer Multi-node district Min-max Euclidean hierarchical medoids  No, but opera- No Yes
etal. [4] model and single- normaliza- tion optimization
node island model, tion for full time se-
thermal, battery and ries

hydrogen storage,

multiple commodities
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Year| Author Normali-

Energy System

Model for Case zation
EENEIS

2019 Motlagh et al. Customer or unit par- No/not

[212] titioning/ none (just mentioned

approach)

2019 Pavicevi¢ et Customer or unit par- No

al. [213] titioning/ multi-node
electricity model of
the western Balkan,
pumped hydro stor-
age and CHP with
thermal storage,
(Dispa-SET)
2019 Postges et al.

Single-node electric- Yes, cap-

[172] ity model, no storage specific

technologies, analyti-  costs
cally solved as peak-
load-pricing model
2019 Sawvidis et al. unit commitment of
[85] dispatch electricity
model for Germany,
pumped hydro stor-
age, (E2M2)

2019 Sunetal. Multi-node electricity Min-max

[140] model of Great Brit- normaliza-
ain with intraday tion, di-
storage mension-
ality re-
duction
applied
2019 Teichgraber ~ Two minimalUC  Element-
etal. [47] problems: An elec-  wise Z-
tricity storage model Normali-
and a gas turbine zation
dispatch model
2019 Van der Hei-  Multi-node district ~ No/not

jde et al. [26] heating model, ther- mentioned

mal storage

Distance| Clustering/ Repre- Extreme peri- |Linking Periods| Dura-
Metric Grouping sentative ods tion
Curve
Adja- Feature-based None No No No
cency clustering or dy-
metric, in namic load-clus-
mapping tering
parame-
ter space:
Euclidean
d
None By technology means No No No
and location
None  Segments in the Sorted exist- Yes, by deter- No Yes
duration curve  ing hours  mining the ca-
implying use of pacity of each
different technol- component from
ogies (hours) the merit order
No No No Certain time se- Yes, by cluster- No
ries qualities de- ing adjacent peri-
fine intervals in ods
which can be
downsampled
Euclidean  hierarchical medoids No No No
Euclid- k-means Centroid, No No No
ean, k-medoids medoids
Dynamic Barycenter Aver-
Time aging
Warping, k-shape
Shape- hierarchical
based
Distance
L1-Norm Using so-called  existing No, but rear- Yes Yes
“bins” days ranging the typi-

cal days to the
original se-
quence using a

MIP
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[Year| Author Energy System | Normali- [Distance| Clustering/ Repre- Extreme peri- |Linking Periods| Dura-
Model for Case zation Metric Grouping sentative ods tion
Curve
2019 Yokoyama et Building model for No None downsampling means No No No
al. [73] two hotels and four
office buildings, no
storage technolo-
gies, but multiple
commodities
2019 Zattietal. District model of ~ Min-max Euclidean  (k-means, (centroids), Automatically in- No No
[145] Parma university normaliza- k-medoids) medoids  tegrating atypi-
campus and building  tion k-MILP (modifica- cal days
model, thermal and tion of k-me-
battery storage, mul- doids)
tiple commodities
2019 Zhangetal. Single-node electric- No/not Euclidean  k-means means No, but used No No
[214] ity model consisting mentioned Vine-Copula,
of hydro, PV and ARMA-model

wind power plants and latin hyper-

with reservoir stor- cube sampling

age to generate sce-

narios
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C.Customer and Unit Partitioning

“It is noteworthy that aggregations based on time series do not
necessarily mean the aggregation of the temporal dimension. In-
stead, similar time series can also be clustered in order to generate
a smaller number of possible technologies or regions with similar
demand behavior or similar technologies. This is referred to as
customer [141] and unit [213] partitioning. Given the fact that in
some cases new methods were first introduced in this field of time
series aggregation, a short overview of methods used in this field
could imply possible approaches for the temporal aggregation
methods presented above.

One of these examples was published by Alzate et al. [198], who
used spectral clustering with an out-of-sample extension to cluster
customer profiles for electricity demand. For this, 123 time series
were used for training and 122 for validation. The approach signif-
icantly outperformed the selection found by k-means clustering.
Benitez et al. [201] implemented a modified version of k-means for
customer partitioning that was not only capable of clustering
groups of customers with their daily profiles, but also with respect
to their yearly profiles. This means that each cluster center of a
(daily) period followed a trajectory throughout the year resulting in
representative yearly profiles. Sun et al. [141] used a C-vine cop-
ula-based mixture model to cluster residential electricity demands
by maximizing a log-likelihood function, which slightly outper-
formed k-means clustering but was computationally significantly
more demanding. Yang et al. [207] used k-shape clustering for
forming typical residential daily profiles before applying it to time
series aggregation purposes. This highlights the importance of
cross-linking different research fields within energy system analy-
sis. Recently, Motlagh et al. [212] applied two different clustering
algorithms on electricity demands for customer partitioning. The
first one included a preliminary principal component analysis to de-
crease the complexity, followed by clustering using the adjacency
metric, while the second one was model-based and transferring
the profiles into the phase space. Then, a mapping strategy based
on neural regression was used and the Euclidean distance be-
tween the map parameters was calculated, which outperformed the
first, feature-based approach.” (Hoffmann et al. [1])
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With respect to unit partitioning, Pavi€evi¢ et al. [213] introduced
three levels of potential clustering scopes. The first was based on
similar characteristics if the components were small, at the same
location, with the same commodities and comparable temporal
characteristics, while the second focused on the same location and
the same commodities, and the third only on the same commaodi-
ties, such as averaged heat and electricity demands of industrial
sites and residential buildings. Haikarainen et al. [204] used k-
means clustering for grouping different nodes in an energy network
that were then represented as a single component with averaged
costs and the traits of all of the included technologies (supply, de-
mand, storage). Based on decisions made for a coarse clustering,
the number of clusters was stepwise increased, and, in a final run,
all binary decision variables were retained and a linear program
was solved for the fully resolved energy grid. This means that the
clustering was not based on temporal features, but on spatial ones.
This means that the units were merged based on their distance to
each other, not their traits.

This highlights that temporal, spatial and technological information
can theoretically be aggregated based on their own or based on
each other. Thus, time series aggregation is traditionally seen as
the aggregation of time series derived from temporal information.
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D. An Example for Time Series Normalization

D.An Example for Time Series Normalization

“In the following, a hypothetical time series is normalized as per
equations (2.1)-(2.3). The time series is given as six-dimensional
row vectors including only positive values, representing 4 h inter-
vals of electricity demand in kW for January 15t

x=[1 2 3 3 2 1] (D.1)
Min-Max-Normalization:

_ x-min(x) x-1 [0 1 2 2 1 0]
XMin-Max = max(x) —min(x)  3—-1_ 2 (D.2)
=[0 05 1 1 05 0]

Max-Normalization:

X x [1 2332 1]

XMax = max(x) =3 3

1 2 1
3 11 3 5] (D.3)

Z-Normalization:

(D.4)

(D.5)

(D.6)

Xz = — =7[—1 0110 -1]=|=

x—2 6 NG
2

” (Hoffmann et al. [1])
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E. Clustering Algorithms Applied in the Literature

“One of the most common partitional clustering algorithms used in
energy system optimization is the k-means algorithm, which has
been used in a variety of studies [20, 21, 30, 43, 48, 64, 68, 74,
79, 83, 88-92, 102, 142-146, 148-151, 157, 160, 176, 177, 179,
180, 200, 202, 214]. The objective of the k-means algorithm is to
minimize the sum of the squared distances between all cluster
members of all clusters and the corresponding cluster centers, i.e.:

Nk

minz Z dist(xp, rk)z (E'l)

k=1 peCy
The distance metric in this case is the Euclidean distance between
the hyperdimensional period vectors with the dimension
dim(vec(T x A)) and their cluster representatives ry ., i.e.:

Na N

E.2
dist(xp,rk) = Z Z(Xp,a.t - rk_a_t)z ( )
a=1t=1
Here, the cluster centers are defined as the centroid of each clus-
ter, i.e.:

1
Ikat = Z Xpat (ES)
Cd £

This NP-hard problem is generally solved by an adopted version
[81] of Lloyd’s algorithm [80], a greedy algorithm that heuristically
converges to a local minimum. As multiple runs are performed in
order to improve the local optimum, improved versions (such as k-
means++) for setting initial cluster centers have also been pro-
posed in the literature [215].

The only difference regarding the k-medoids algorithm is that the
cluster centers are defined as samples from the dataset that mini-
mize the sum of the intra-cluster distances, i.e., that are closest to
the clusters’ centroids.

1
Iy = argmin — Z dist(xp,xl)2 (E.4)
X1ECK Nk
peCik

This clustering algorithm was used by numerous authors [20, 25,
47,48, 61, 64, 79, 83, 91, 144, 145, 152, 153, 157, 158, 161, 208-
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210}, either by using the Partitioning Around Medoids (PAM) intro-
duced by Kaufman et al. [216] or by using a mixed-integer linear
program formulation introduced by Vinod et al. [156] and used in
several studies [20, 47, 48, 61, 144, 157, 208]. The mixed-integer
linear program can be formulated as follows:

Np Np
' E.5)
min d(x;, %) X 2 (
2.2
Subject to:
Np
ZZi.j:lViEI....,Ni (E.6)
j=1
Zij <y V Lji€1,..,N; (E_7)
, E.8
ZYi = Ng (E.8)

In a number of publications [47, 48, 64, 91, 144, 145, 157], k-me-
doids clustering was directly compared to k-means clustering. The
general observation is that k-medoids clustering is more capable
of preserving the intra-period variance, while k-means clustering
underestimates extreme events more gravely. Nevertheless, the
medoids lead to higher root-mean-square errors compared to the
original time series. This leads to the phenomenon that k-medoids
outperforms k-means in the cases of energy systems sensitive to
high variance, as in self-sufficient buildings, e.g., as shown by
Kotzur et al. [48] and Schiitz et al. [144]. In contrast to that, k-
means outperforms k-medoids clustering in the case of smooth de-
mand time series and non-rescaled medoids that do not match the
overall annual demand in the case of k-medoids clustering, as
shown by Zatti et al. [145] for the energy system of a university
campus.

In contrast to partitional clustering algorithms that iteratively deter-
mine a set consisting of k clusters in each iteration step, agglom-
erative clustering algorithms such as Ward’s hierarchical algo-
rithm [78] stepwise merge clusters aimed at minimizing the in-
crease in intra-cluster variance
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SSE = Z dist(xp, 1) (E.9)
PECk

in each merging step until the data is agglomerated to k clusters.
The algorithm is thus deterministic and does not require multiple
random starting point initializations. Analogously to k-means and
k-medoids, the cluster centers can either be represented by their
centroids [47, 157] or by their medoids [4, 24, 43, 47, 48, 63, 77,
91, 140, 147, 151, 157]. The general property that centroids un-
derestimate the intra-period variance more severely due to the av-
eraging effect is equivalent to the findings when using k-means
instead of k-medoids.

Apart from the frequently used clustering algorithms in the litera-
ture, two more clustering algorithms were used in the context of
determining typical periods based on unsorted time intervals of
consistent lengths.

k-medians clustering is another partitional clustering algorithm
that is closely related to the k-means algorithm and has been used
in other studies [64, 144]. Taking into account that the Euclidean
distance is only the special case for y = 2 of the Minkowski dis-
tance [217]

Na N v
a Nt Y

E.10
dist(xp, rk) = (Z Z |Xp,a,t - rk.a,t|y> ( )

a=1t=1
k-medians generally tries to minimize the sum of the distances of
all data points to their cluster center in the Manhattan norm, i.e.,
for y =1 and the objective function [218, 219]:

Ny Na Nt
minz Z dist(xp, rk) with dist(xp, rk) = Z lep'a't - rk‘a_t| (E'll)
k=1 peCy a=1t=1

For this, the L1 distance is usually used in the assignment step
[218] and the median is calculated in each direction to minimize
the L1 distance within each cluster [219]. However, Schitz et al.
[64, 144] used the Euclidean distance (like for k-means) in the as-
signment step to isolate the influence of using dimension-wise me-
dians instead of dimension-wise means (i.e., centroids). Thus, all
values come from the original dataset, but not necessarily from the
same candidates [64].
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Moreover, Schiitz et al. [64, 144] used k-centers clustering, which
minimizes the maximum distance of all candidates to its cluster
center, i.e., according to Har-Peled [220]

C?éi‘gk (‘Sé%ff (dist(xp,rk))) with dist(xp, i)
N. N (E.12)

5 S

a=1t=1

The last group of clustering algorithms applied for time series ag-
gregation in energy system models is time shift-tolerant clustering
algorithms. These algorithms not only compare to the values of
different time series at single time steps (pointwise), but also com-
pare values along the time axis with those of other time series
(pairwise). In the literature [47, 157], dynamic time warping
(DTW) and the k-shape algorithm are used, both of which are
based on distance measures that are not sensitive to phase shifts
within a typical period, which is the case for the Euclidean dis-
tance. The dynamic time-warping distance is defined as:

(E.13)

dist(xp, rk) = mv‘i]n

Here, w describes the so-called warping path, which is the path of
minimal deviations across the matrix of cross-deviations between
any entry of x, and any entry of ri [47, 221]. The cluster repre-

sentative r, are determined using DTW Barycenter Averaging,
which is the centroid of each time series value (within an allowed
warping window) assigned to the time step [222]. Moreover, a
warping window [47, 157] can be determined that limits the assign-
ment of entries across the time steps. Shape-based clustering
uses a similar algorithm and tries to maximize the cross-correlation
amongst the periods. Here, the distance measure to be minimized
is the cross-correlation and the period vectors are uniformly shifted
against each other to maximize it [47, 157, 221, 223]. It must be
highlighted that both dynamic time warping and shape-based dis-
tance, have only been applied on the clustering of electricity prices,
i.e. only one attribute [47, 157]. Moreover, Liu et al. [151] also ap-
plied dynamic time warping to demand, solar and wind capacity
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factors simultaneously. However, it is unclear how it was guaran-
teed that different attributes were not compared to each other
within the warping window, which remains a field of future re-
search. Furthermore, a band distance, which is also a pairwise ra-
ther than a pointwise distance measure, was used in a k-medoids
algorithm by Tupper et al. [210], leading to significantly less loss
of load when deriving operational decisions for the next day using
a stochastic optimization model.” (Hoffmann et al. [1])
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F. Modified Feature-Based Merging

“Apart from the methods that are based on the direct clustering of
the time series’ values or periods, a number of methods exist that
group time series in a consecutive manner [59] or by means of
other features, such as sorted time series (i.e. duration curves) [4,
24, 26, 97-100, 147, 152, 153, 185]. Other publications use use
statistical features such as the average, variance, minimal and
maximal values [68] or predefine the clusters based on additional
information [93]. These methods will be presented in the following.

With respect to grouping consecutive typical periods, an early pub-
lication by Balachandra et al. [59] started by grouping daily residual
load profiles by month, then applied multiple discriminant analysis
to these groups and reclassified the days at the beginning or end
of a group (month) to the preceding or subsequent group if they
were more similar to it. This resulted in nine consecutive groups
represented by their centroids. However, this aggregation was not
applied to an energy system optimization.

Furthermore, a number of publications [26, 99, 100, 147] rely on
the principle introduced by Poncelet et al. [185]. For this, the nor-
malized duration curves were placed into bins, i.e., how many
hours of the year surpass a certain level between zero and the
maximum level of the specific attribute. The same was performed
for each candidate day. Then, the sum of absolute differences be-
tween the hours at which the reference curve surpassed a bin bor-
der and the hours at which the curve derived from a linear combi-
nation of a given number of candidates surpassed the same bin
borders was minimized in a mixed-integer linear program.

Another approach aimed at reproducing a yearly duration curve
was introduced by de Sisternes et al. [97, 98]. Here, the duration
curve of power feed-in by wind and solar at a certain penetration
level was calculated and approximated by an exhaustive search
for a combination from a subset of typical weeks. As it was a com-
binatorial problem, the computation time rapidly increased for
higher numbers of weeks. In a later publication [97], the variability
of the selected weeks was used as an additional metric.

Instead of clustering the original time series, the yearly duration
curve was approximated in a number of publications [4, 24, 152,
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153]. For this, the candidate days were simply sorted prior to being
clustered. This decreased the averaging effect of statistical events
such as wind, as the largest value and second largest, etc. always
lay in the first dimension and second dimension, etc.

With respect to the clustering of other statistical features apart from
the distribution curve (duration curve), Agapoff et al. [68] applied
k-means clustering to snapshots (i.e., typical time steps) and used
different features for the clustering: Either absolute values or av-
erage, minimum, maximum and standard deviation of all consid-
ered regions for either price differences, non-controllable demand
and generation or both. This is an extension with promising results
to all thus far used clustering algorithms only applied to normalized
absolute values.

Finally, yet significantly, Lythcke-Jagrgensen et al. [93] introduced
a so-called CHOP-method that was based on splitting the range of
each attribute, in this case the power price and relative heat de-
mand on a five-year basis, into different intervals based on im-
portant values (e.g., zero-price) and even divisions between them.
Then, all values (i.e., hours) were transferred in a 2d space in
which the intervals for both attributes formed a grid. From each
cell, the centroid was subsequently calculated if it contained any
candidate hours. As information about the chronology of these typ-
ical time steps was lost, the design of storage technologies re-
sulted in large deviations from the reference case.

These cases highlight that methods based on well-known ap-
proaches are constantly customized for specific energy system
models and improved where possible, which illustrates that the de-
velopment of temporal aggregation methods is a dynamic pro-
cess.” (Hoffmann et al. [1])
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G.Proofs and Lemmata for Section 3.2
Lemma 1:

Given a set X = {x;}X; of M-dimensional real valued data vectors
with x; = (x5, ..., x™MT, let p = (i, ..., ?M)T be an M-dimensional real
valued data vector and let ||-|| be the Euclidean norm. Then

N N
1 o1 ;
S R
i=1 i=1

is the vector that minimizes the sum of squared distances to all
vectors of the set X, i.e.

N M
1 1
=g =z =5 > (- W)’ (G.2)

j=1

Mz

I
Jay

i

Proof:
The necessary condition for a minimum is given by:

of(w)

=0 (G.3)

The sufficient condition for a minimum of a multidimensional func-
tion is given by the positive definiteness of the Hessian matrix:

He() = (

o%f )
— positive definite G.4
ou' oW ij=1,..M ( )

Inserting yields the critical point for the necessary condition:

NE . (G.5)
2( | ') o
—= x—Nd|=0eW=xc) x vji=1,..,M
i\ 2
and for the entries of the Hessian matrix, inserting yields
2 1 N M j 2 a 2 N ]
w0 = e NZ; (i-w) )= oW <_Nz Ch u’)>

= (G.6)
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2 1 N M
fuw (0 = e NZZ < —W
1

= (G.7)

N

a_w(__z( —u’) Vij=1,.,MAi#]j

i=

Therefore, the M x M Hessian matrix takes the following form:

20 - 00
02 - 00

Hw:=|: : =~ : :|=2Iy (G.8)
00 - 20
00 - 0 2

with Iy being the M x M identity matrix.

Lastly, the positive definiteness of the Hessian matrix in the critical
point needs to be shown. Positive definiteneness can e.g. be
shown using Eigenvalues as sufficient condition, which must be
strictly positive for the given matrix. Therefore, it must hold that:

det(He(W) —AD =0 A A>0 (G.9)
Insertion of Equation (G.8) yields:
detQly —Aly) =2 -OM=01=2>0 (G.10)

Since the unique Eigenvalue of the Hessian matrix is strictly larger
than 0, f(p) is minimized for p = %Z{‘lei. n

Lemma 2:

Note: The following lemma (i.e. the problem definition and the
proof) is derived from Sifa et al. [184], who used it to show that a
maxoid is the point of a dataset which is furthest away from the
dataset’s centroid. Analogously, we use this lemma to show that a
dataset’'s medoid is defined as that sample point which is closest
to the dataset’s centroid.

Given a set X = {x;}N; of real valued data vectors, let u = —Zl 1 Xi

be the sample mean and ||-|| be the Euclidean norm. Further, let x;
and x; be two sample points of the dataset X, i.e. xj,xx € X, then

N N

1 1

Sl =l = 5 D = xil? (G.11)
i=1 i=1
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implies that
[ (G.12)

This means that x, is closer to the dataset’s centroid than x; (Equa-
tion (G.12)) if the sum of squared Euclidean distances between x
and all the other sample points in X is smaller than the respective
value for x; (Equation (G.11)).

With respect to maxoids and medoids, this means in particular that
the maxoid is the sample point furthest away from a dataset’s cen-
troid because it maximizes the sum of squared Euclidean dis-
tances whereas the medoid is the sample point is the sample point
closest to the centroid as it minimizes the sum of Euclidean dis-
tances.

Proof:

The left hand side of the equation above can be expanded and the
squared expression can be resolved as follows:

NZMX, il NZH(X]—u)—(xl Wl

N

(b = 1l* = 205 = W) "G = 0 + I — wli?)
= 1 N 1 N 1 N
2 T
=l =l = 2(x — ) (NZXl_NZ ) NZ”Xi_H”Z (G.13)
1
:||X1—H||2—2(Xi—H)T(u-ﬁ ) |IXl—u||2

N
1
= = wll* 5 ) s = w?
i=1

As this transformation is also valid for the right hand side of the
equation above, one yields:

N N

1 1

S M= il =l = W2+ Dl = wl? (G.14)
i=1 i=1

and thus:

1 S 1 S

2

2 > = 2

”X] |J-|| N__ T ”Xk IJ-” 'N-__ T (G15)

o lx =l = lxe— > =
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Lemma 3:

Given two sets X = {x; k} and Y = {y;}\, of real valued m-di-

=1k=1
mensional data vectors, let y; = %Zfﬂxj,k be the sample mean, let
z;; be an N x N matrix and let ||| be the Euclidean norm. Then the

optimal solution y; of the following two mixed-integer linear pro-
grams is identical:

K N N
Z”Yi — .l x 2, mi“ZZ”Yi —wll* x 2,

[\:42
M=

i=1 j=1 k=1 =1 j=1
N N

st ) zj;=1V] stZz”—IV]
£, (G.16)
N N
Zzi,j=1‘v’i ZZl']=1VI
j=1 j=1

z;; € {0,1} z;; € {0,1}
Proof:

This is a direct consequence of Lemma 2. For the optimal solution
! the following holds for the left minimization problem with F as
the feasible solution space:

N K N N K
Dt =l x < Y Y vl x 7y ¥ vieF (G.A7)
j=

j=1 k=1 i=1 j=1 k=1

Mz

Il
Jy

i

Analogously, for the optimal solution yi’"2 of the right optimization
problem we vyield:

N N
yi*’z—uj||2><zi.iSZZ”YI—MJII xz; Vy €F  (G.18)

From Lemma 2 we extract the following relationship:

K K
Dl =l = Kl =l + ) s = (G.19)
k=1 i=1

Inserting this into the upper equation, we yield:

N
W +Z||x]k ol <

=1

N N
<2 (ks -l Y. )y ¥ e
)]

i=1 i=1

Mz

=y

(G.20)
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Removing identical parts on both sides of the equation leads to:

>

i=1j

N N
_I’J‘J” XZ!J—ZZlyl—Hj”zXZi,j V y;€F (G.21)

i=1 j=1

Mz

I
-

Which is identical to the optimal solution of the right optimization
problem. Therefore:

yit=y? m (G.22)

Lemma 4.

Given two sets X = {x;}}\, and Y = {y;}}, of real valued m-dimen-
sional data vectors, let z;; be a N x N matrix and let ||-|| be the Eu-
clidean norm. Then the linear relaxation of the minimization prob-
lem

. 2
min ||yl Xj ” X Zij

M=
Mz

=
Il
=

j

s.t. zij=1V]j

'Mz

N

(G.23)

=z 0

M

Zij =1Vvi
j=1
z;; € {0,1}
is convex if y; and x; are known.
Proof:

The linear relaxation of the above mentioned minimization problem
is:

N
min "> llyi = x

j=1

Mz

I
-

st ) zj;=1V]j

'MZ

z 0l
fuy

(G.24)

zjj=1Vi

'M

j=1
zi; <1
Zi,j >0
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Substitution by ¢;; = |ly; — x]-||2 as parameter yields:

min(C1 - €N €21 - ONN)(Z1a - ZIN Z21 - ZNN)T
N
S.t.ZZi'j=1Vj
i=1
N (G.25)
Zzi,j=1Vi
j=1
lNZXNZ T 1N2
(_ )(21,1 wo Z4N Z21 - ZNN) S( )
INZXNZ ON2

This is obviously of the shape:

min cTx
s.tAx=b (G.26)
Cx<d

And hence a linear program. =

Lemma 5:

Given two sets X = {x;}2; and Y = {y;}2, with two real valued data

vectors each, and let ||-|| be the Euclidean norm. Then the optimal
solution of the minimization problem

N=2N=2
. 2
min >[Iy =" x 2
i=1 j=1
N=2
S.t.ZZi'j = 1V]
£ (G.27)
N=2
zjj=1Vi
j=1
z;; € {0; 1}
is given by:
||Y1_X1||2+||YZ_X2”2 (G28)
Proof:
. _ 1 0
For z;;, only two allowed solutions exist, i.e. z;; = 0 1 and

2= o)
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This means, that the optimal solution has to be one of the following:
SSE; = |ly; — X% + lly2 — %17 (G29)
And

SSE; = lly2 — x4/I? + llys — %217 (G.30)

If we define x, = x; + Ax with Ax > 0 and y, =y, + Ay with Ay > 0.
Then, inserting into SSE; yields:
SSE; = Ily; — %4112 + llys + Ay — x; — Ax||?
=yi - 2yix +x
+yf + Y14y — yixy —yiAx +y{Ay + Ay? — AyTx, — AyTAx
—yTx; — Ay"x; + x2 + xTAx — yT Ax — AyTAx + xTAx + Ax? (G.31)
= 2y% + Ay? + 2x? + Ax? + 2yT Ay + 2x]Ax — 2yT Ax — 24y "%,
—4yTx, — 2AyTAx

For SSE,, we obtain:

SSE, = |ly; + Ay — X% + ly, —x; — Ax||?
=yi +y1Ay — yix, +yiAy + Ay® — Ay"x; —yix; — AyTx; +x§
+y? —yTx; — yTAX — yTx; + %% + xJAX — yT Ax + x] Ax + Ax? (G.32)
= 2y? + Ay? + 2x?% + Ax? + 2yT Ay + 2xTAx — 2yTAx — 28y "%,

—4yTx
Substitution provides:
SSE; = SSE, — 2AyTAx (G.33)
And because Ay,Ax > 0
SSE, < SSE, (G.34)

This means that the minimum solution is achieved when the big-
gest y is assigned to the bigger x and the smaller y is assigned to
the smaller x. m
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H.Classification of Optimization Problems
Depending on the application, optimization-based energy system
models contain different formulations of the objective function and
a diverse number of side constraints. Those not only differ with
respect to the represented component characteristics, but also
with respect to the mathematical classification of equations and
inequalities.

As shown by Kotzur et al. [224], the most common program types
appearing in energy system models based on optimization are lin-
ear programs (LPs), mixed-integer linear programs (MILPs) and
(convex) quadratic programs (QPs). Generally, only a loose con-
nection between the model application and the optimization pro-
gram type exists, i.e. different model approaches of a single energy
system might exist that lead to different program types. However,
the algorithms’ complexity of the corresponding program type lim-
its the size of the model.

The following section provides an overview of the program types
frequently used in energy system models and highlights the chal-
lenges for corresponding solving algorithms. Moreover, for each
program type a small example is provided to illustrate the individ-
ual challenges of corresponding solving algorithms. Subsequently,
the acceleration potential of each program type is evaluated for
temporal aggregation techniques.

H.1l. Linear Programs (LPs)

Due to the simplicity of linear program solving algorithms, this pro-
gram type is predominantly used for large scale energy system
models. A linear program consists of a linear objective function and
exclusively linear side constraints consisting of equalities and ine-
qualities, i.e.:

min cTx

s.t.tAx=Db
Cx<d

(H.1)

Here, the variables are defined as real-valued entries in the vector
x. In the case of combined capacity expansion and unit commit-
ment models, this vector contains both, design and operation var-
iables such as unknown capacities and energy outputs at a certain
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time step. The cost vector c captures the cost contributions of each
value in x. Moreover, the variables are constrained by equations
defined by the matrix A and the constraint vector b as well as ine-
qualities defined by the matrix C and the inequality vector d. As will
be shown in the following sections, theses matrices have a certain
block structure if the constraints and variables of energy system
models are sorted by the time step to which they refer. This is es-
sential for an in-depth understanding of temporal aggregation tech-
nigues.

As linear programs are always convex, i.e. a minimum is always
unique and global, if the optimization program is neither un-
bounded nor infeasible, solving algorithms such as the simplex al-
gorithm [225] or the interior point algorithm [226] can be directly
applied to the problem and rapidly converge. The following ex-
tremely simple energy system model may serve as an example for
the structure of linear programs.

Example 1
Consider an energy system consisting of two potential energy
sources and one energy sink whose energy demand (e.g. elec-
tricity) needs to be satisfied at a single time step as shown in
Figure H.1. Cost parameters assumed in the following are ficti-
tious.

Figure H.1. A hypothetical simple energy system
Option 1 is to buy the electricity from the grid for 300 ﬁ Option
2 is to produce the electricity from another local component park
for 250 ﬁ The demand to be satisfied in this time step is

1 MWh. Moreover, electricity can only be supplied by the sources
and not fed into them. Accordingly, the optimization problem is:

min(TAC) = min (W id * 300i + Wigcar * 250i) (H.2)
grid MWh oca MWh
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Wgrid: Vvlocal =0

Of course, the solution is trivial, i.e. the electricity is completely
produced in the local component park for ZSOMLM. As 1MWh is
demanded, the minimum objective is min(TAC) = 250€. Despite
of its simplicity, the example is already sufficient to illustrate the
convexity of this program type and its most common solving al-
gorithms.

Figure H.2 shows the graphical interpretation of the problem and
the most basic solving algorithms, the simplex algorithm and the
interior point algorithm.

Wiocall feasible space

1MWh:

TMWh Wg rid

X2

. feasible space
feasible space

objective gradient

objective gradient

starting
point e X
X 1 1

Figure H.2. The picture at the top shows the solution space and the optimal
value for the optimization problem above. The picture on the bottom left
shows the standard simplex algorithm for a linear program. The picture on the
bottom right shows the interior point algorithm for a linear program
Although this work does not focus on a manipulation of solving al-
gorithms for mathematical optimization, a sufficient knowledge
about the most basic algorithms is essential to understand the

mechanisms that lead to their acceleration using aggregated data.
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Generally, the solution space formed by linear equations and ine-
gualities is always defining a convex polyhedron [227, 228]. Since
the gradient of maximum ascent or descent of the objective func-
tion is constant throughout the solution space, the extreme values
lie either on the edge of the polyhedron, if this edge is orthogonal
to the objective functions’ gradient of maximum descent (ascent),
or on a vertex.

One way to reach the minimum of a linear program is to find an
arbitrary vertex of the polyhedral solution space, which is a feasi-
ble, but suboptimal solution of the linear program and to move from
vertex to vertex along the edges of steepest descent (ascent). This
step is repeated until the vertex with the minimum (maximum)
value is reached, which is the general procedure of the simplex
algorithm shown in Figure H.2 b.

Another way to find the minimum (maximum) value of a linear pro-
gram is to find an arbitrary feasible point and to travel through the
inner of the solution space, e.g. by following the gradient of steep-
est descent (ascent) until a facet, edge or vertex of the polyhedral
is reached. From there, the search can be proceeded along the
convex hull until the optimal vertex is found. In fact, multiple inte-
rior-point algorithms exist, however, for the sake of simplicity, the
most important feature of these methods is, that they search the
inner of a feasible region for an optimal solution as shown in Figure
H.2 c.

Taking these methods into consideration, the reason for an accel-
eration of the optimization when using aggregation techniques
such as temporal or spatial aggregation now becomes evident: By
using an aggregated set of variables, the dimensionality of the pol-
yhedral solution space is reduced and accordingly the number of
edges and vertices. The impact of this geometric simplification is
especially comprehensible for the simplex algorithm because a
smaller number of edges is equivalent to a smaller number of iter-
ations until the optimal vertex is found. Furthermore, the complex-
ity of matrix operations decreases as well which holds true for both,
the simplex algorithm and interior point algorithms. The following
section will focus on the mathematical meanings of aggregation
techniques in detail.
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H.2. Mixed-Integer Linear Programs (MILPS)

In contrast to linear programs, mixed-integer linear programs also
contain discrete variables, i.e. some of the variables are only de-
fined for certain values, although the constraints and the objective
function are still linear, i.e.:

min cTx
s.ttAx=Db

Cx<d (H.3)

x; € ZVie Mintegervariables

Xj € R V 1€ Mjyregervariables

However, this leads to non-convex mathematical problems and
computationally more expensive solving algorithms. Mixed-integer
linear programs more realistically capture the nature of energy sys-
tems, e.g. when modeling a discrete number of components is of
interest. Furthermore, discrete variables are also needed when de-
cisions are to be modeled, e.g. the on/off status of certain compo-
nents as needed when minimum up- and downtimes should be rep-
resented in the model.

Excursus 2: A Definition of Relaxation
A comprehensible definition of relaxation for (general) minimiza-
tion programs was provided by Geoffrion and Nauss [187]:
“A problem (R) is said to be a relaxation of problem (P), if the
feasible region of (R) contains that of (P) and if the objective
function of (R) is less than or equal to that of (P) on the feasible
region of (P).”
For mixed-integer linear programs however, relaxation most fre-
quently refers to the specific process of replacing binary or inte-
ger variables by continuous real-valued variables [229].

Basic algorithms to solve mixed-integer linear programs are inter
alia the branch-and-bound and branch-and-cut algorithm. Gener-
ally, these algorithms are based on relaxing the discrete variables
and solving the resulting linear program. In a branching step, the
solution space is divided into subspaces across those discrete var-
iables, which are closest to optimum of the relaxed solution. Then,
the subspaces are relaxed again and the algorithm repeats this
process. Those subspaces, which cannot lead to the optimal solu-
tion anymore, e.g. because the optimization of another subspace
has already led to a better and feasible solution (including the dis-
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crete variables), are discarded in order to reduce the computa-
tional load. Branch-and-Cut algorithms additionally strive to re-
move parts of the relaxed solution space in such a way that as
many integer variables as possible lie on the convex hull of the
relaxed solution space. In that way the probability is increased that
the optimization of relaxed sub spaces directly lead to a feasible
solution of the mixed-integer linear program. This supports an early
removal of suboptimal branches.

Example 2
As an example for this process, the model of the preceding sec-

tion is extended. Given the fact that the component park used to
produce the demanded electricity consist of discrete compo-
nents, it is now considered that the component park contains

identical units with the capability to provide 0_4%"‘2’ in the re-

garded time step. This leads to unit-specific costs of 250 ijh*
0.41\/1—‘/\_/h = 100—. As the number of components has to be an
unit unit

integer, this ultimately leads to the following mixed-integer linear
program:

. H _€ €
min(TAC) = min (Wgrid *300 MWh + Nunie * 100 unit)

MWh
st Werig + Nunie * 04— > 1MWh (H.4)

Wgridr Nunit =0
Nunit EN

The corresponding solution space is shown in Figure H.3 a. In
contrast to the linear program, the solution space now consists
of single horizontal lines, which are further constrained by the
minimum demand to be provided and the non-negativity con-
straints, which is obviously not convex.
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Nynif Nynif

5 5

/ / Nypit 2 3
/ 3 / 3
2 ' 2

\ \ Nunit =2
1 1

TMWh Wgri MWh Wgrid

Figure H.3. The solution space of the mixed-integer linear program is de-
picted on the left and the single Branch-and-Bound step to determine the
solution with linear programs is shown on the right

In order to determine a solution for this problem, a single Branch-
and-Bound step is performed, which is shown in Figure H.3 b.
For this, the problem is first relaxed, i.e. the integer-constraint is
removed from the optimization problem. The optimal solution of
this linear program is again trivial, because it is most economic

to provide the electricity completely with the component park.

Since each component can provide O.ALI\STV\Q1 and 1MWh are de-

manded, 2.5 units are required and the minimum cost to provide
the electricity is again 2.5 units * 100& = 250€. The correspond-
ing solution is represented by the orange dot on the arrowhead
in Figure H.3 b. Obviously, this solution is not feasible for the
original mixed-integer linear program. Therefore, a branching
step is performed which means that the solution space is divided
into two subspaces, namely at the two integer variables which
are closest to the optimal number of units for the relaxed linear
program of the first stage, i.e. 2.5 units. The relaxed problems of
the two subspaces are thus:

€ €
min(TAC) = min (Wgrid *300 MWh + Nunie * 100 unit)

MWh
5.t Werig + Nunie * 04— > IMWh (H.5)
Wgridr Nunit =0
Nunit <2
And

. H _€ €
min(TAC) = min (Wgrid *300 MWh + Nunie * 100 unit)

MWh
st Werig + Nunie * 04— > 1MWh (H.6)
Wgrid' Nunit =0
Nunit =3
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The solution spaces of these two subproblems are represented
by the gray areas in Figure H.3 b. Solving both linear programs
leads to two feasible solutions of which only one is in fact optimal
for the original problem. For the first subproblem, the optimal so-
lution is to use 2 units to provide 0.8 MWh of electricity from the
component park and buy 0.2 MWh from the grid. This leads to

total costs of 0.2 MWh % 300 —— + 2 units * 100 — = 260€. The
MWh unit

solution of the second subproblem is to operate 3 units and not
to purchase electricity from the grid. This leads to electricity
costs of 3 units * 100& = 300€, which is obviously more expen-
sive. Therefore, the optimal solution of the original mixed-integer
linear program is 260€ at the coordinate (0.2 MWh | 2 units) which
is marked by the green dot in Figure H.3 b.

As shown, the solution of the mixed-integer linear program re-
quired the solution of three linear programs for one discrete varia-
ble only. A higher number of discrete variables leads to a dispro-
portionately higher number of linear programs to be solved. Alt-
hough modern solving algorithms are significantly faster due to the
early removal of suboptimal branches, the significantly higher com-
putational cost to solve mixed-integer linear programs is compre-
hensible. It is worth mentioning that mixed-integer linear programs
are accelerated in two ways by using aggregated time series:

1. Ifthe binary variables are operational variables defined for each
time steps, their number is directly reduced by the use of ag-
gregated time series and accordingly, less branch and cut steps
are needed. Further, also the size of the relaxed linear pro-
grams is reduced.

2. If the binary variables are design variables, their number re-
mains the same in the temporally aggregated model. However,
the size of the relaxed linear programs is reduced due to the
smaller number of time steps. Accordingly, each branch and cut
iteration takes less time.

Unlike operational variables, design variables are not defined for
each time step and therefore their number is generally smaller by
magnitudes. For large-scale energy system models, binary design
variables are therefore often the only computationally feasible op-
tion, which is also the case for the modeling framework FINE.
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H.3. Quadratic Programs (QPs)

The last program type that has recently been used for energy sys-
tem models are the so-called quadratic programs. This optimiza-
tion class contains quadratic terms in the objective function and
exclusively linear equations and inequalities as side constraints,
i.e.:

1
min 5 xTQx + cTx

s.ttAx=Db (H.7)
Cx<d
X;ER V i

In case the side constraints contain quadratic terms as well, the
problems are called quadratically constrained quadratic programs
(QCQPs). In contrast to linearly constrained solution spaces that
resemble n-dimensional polyhedrons like the polygons in Figure
H.2 b and c, quadratically constrained solution spaces can be non-
convex. For the reasons of non-convex solution spaces, no appli-
cation in energy system models to the best of the author’s
knowledge and substantially different solving algorithms, quadrat-
ically constrained quadratic programs are not regarded in the fol-
lowing.

Example 3
As an example for a quadratic program the linear program of the
preceding sections is once again modified. Consider the govern-
ment wants to balance the electricity demand and thus imposes
a tax that grows Iinearly with the amount of consumed electricity

=1—0 by source. Although this tax is unrealisti-
MWh MWh

cally high, it simplifies the following calculations. This leads to
the following quadratic program:

€
min(TAC) = min <W MWH (1 + Werig * MWh) + Wigcal

€
* 250 T (1 + Wigcal * MWh)) (H.8)

s.t. Wyrig + Wigeal = IMWh
Wgridr Vvlocal =0

This problem is now obviously quadratic and is graphically rep-
resented by the diagram in Figure H.4 a. The elliptical contour
plot of the objective function is derived by setting the objective
function equal to a constant value, i.e.:

(H.9)

€ 1
Cl = Wgrid * 300 —— MWh (1 1F Wgrld 23 MWh)
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+Vvlocal * 250

1
< (1 + Wlocal & MWh)

€

MWh
) 1 1

&0, =12 (wgrid iz + Weria —MWh)

) 1 1

+ (vvlocal W + vvlocal m)

_ (Wgria + 0.5 MWh)”  (Wigear + 0.5 MWh)?

- (1 MWh)? (1.0954 MWh)2

< Gy
This means that the contours are ellipses with their center at
(—0.5 MWh | — 0.5 MWh) and a y- to x-semi-axis ratio of :—y=

1.0954. As shown in Figure H.4 a, the solution moreover lies on
the line of Wgiq + Wiocat = IMWh. Substitution and setting the

first derivative to 0 thus yields:

€ 14)
0= (Wgrid 300 (14 Wara* m))

€ 14Y
+ (1 MWh — Wgy4q) * 250 T (1 + (1 MWh — Wgyiq) * W)

1 1Y
=0= (1'2 (W e+ War MWh)>

+ ((1 = Weria ﬁ)z + (1 — Werid ﬁ)) (H.10)

1 1
0= (22 Wgzridm —-1.8 Wgrid m + 2)

1
vid YWh 18

9 13
& Weria = 55 MWh = Wiea) = 5o MWh = TACnin ~ 407,55€

©0=44W,

As it can be seen, the quadratic taxation of energy balances the
usage of similar technologies. Although this minimal example
does not capture the majority of real energy system model fea-
tures, it yet succeeds to highlight a well-known tendency of them,
namely, the so-called penny-switching: Optimization-based en-
ergy system models usually choose exclusively the cheapest
technology from a set of rival technologies, even if their specific
cost difference is negligible. This leads to an unrealistic favoring
of single components among almost comparable ones. The
dampening of this effect is one of the major motivations for using
quadratic programs for energy system models as presented by
Lopion et al. [31].
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Wiocal feasible space

1MWh

TMWh 74

X1

Figure H.4. The graph at the top illustrates the quadratic program at hand,
the bottom left and the bottom right picture highlight the impact definiteness
on the existence of a single minimum of a quadratic program

At this point, it is noteworthy that a convex solution space due to
exclusively linear constraints and inequalities is not a sufficient
condition for the convexity of the quadratic program itself. For min-
imization problems, the objective function must be at least positive
semi-definite [230], i.e.:

xTQx=>0 V x; ER (H.11)

Simply put, this condition states that the unconstrained objective
has a minimum point. In particular, this means that the function has
no saddle points. For maximization problems, the objective needs
to be negative semi-definite, respectively, i.e.:

xTQx<0 V x; ER (H.12)

Figure H.4 b shows the general form of a quadratic program with
a positive semi-definite objective function for the two-dimensional
case. It is especially obvious that the quadratic program has only
one minimum since the curvature radius of the objective’s contour
lines are always facing towards the minimum point. However, this
is not the case for the maximums, which means that a minimization
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quadratic program with a positive semi-definite objective function
has only one minimum but can have multiple maximums. The op-
posite holds true for maximization quadratic programs with nega-
tive semi-definite objective functions.Figure H.4 ¢ shows the case
of an indefinite objective function, i.e. depending on the values of
¥, xTQx can be positive or negative. The objective in this case is:

f(x1,%;) = —(%; = ¢1)? + (x, — ¢)?

= —x? + x4 + 20,%, — 20,%, — ¢ + ¢} (H.13)
1 -2 0 '
=EXT( . 2)x+ (2c; —2c))x—c2+c3

As can be seen, the function contains a saddle point at (c;| c,)
which lies within the convex solution space and leads to two max-
imum and two minimum values within the feasible region. Accord-
ingly, the impact of non-definiteness is intuitively comprehensible.

Excursus 3: Implications of Positive Definiteness on energy system models
With respect to cost-minimizing quadratic programs for energy

system models, the positive definiteness means in particular that

e.g. positive taxations as shown in the example can be consid-

ered with a quadratic objective, but cost degression cannot with-

out losing the convexity of the program. For that reason, certain

effects, which could be appropriately represented by quadratic

functions, cannot be efficiently solved due to the non-convexity

of the resulting problem. Although solvers for non-convex quad-

ratic programs exist (c.f. [231]), these problems are np-hard

[232] and thus not efficiently solvable in a reasonable amount of

time.

In these cases, nonlinearities are frequently modelled using

piecewise linear functions in literature. This, in turn, requires ad-

ditional binary variables, e.g. for special ordered sets [233]. In

these cases, the programs become mixed-integer linear pro-

grams instead of quadratic programs.

Because of the convexity and thus the globality and uniqueness of
minimums in linear programs and positive semi-definite minimiza-
tion quadratic programs, the interior-point method is applicable to
quadratic programs as well. Apart from that, a convex quadratic
program can also be solved using a modified simplex-algorithm.
The modification of the algorithm is necessary because the simplex
algorithm moves from vertex to vertex along the edges of steepest
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descent of the polyhedral solution space until the desired minimum
is reached. In contrast to linear programs however, the minimum
of a convex minimization quadratic program is not necessarily a
vertex of the solution space but van also lie on the middle of an
edge as shown in the example or even within the solution space,
which the modified simplex algorithm has to consider. Yet, the
solving algorithms are not significantly slower than those for linear
programs and significantly faster than those for non-convex prob-
lems.

With respect to temporal aggregation techniques, quadratic pro-
grams only marginally differ from linear programs, as the con-
straints of a quadratic program and its corresponding linear pro-
gram are identical. The only difference that has to be carefully con-
sidered is the question how the weighting factors w, for aggregated
time series contribute to the objective function. The weighting fac-
tors express how many original time steps are represented by the
respective aggregated time step.

Excursus 4: The Generalization of Weighting Factors for Aggregated Quad-
ratic Objectives
For an objective function including component-wise time-inde-

pendent (Cyyc), time-dependent (Crp+) and time-dependent cu-
mulative (Cypcct) linear and cumulative costs (index 1 and q) the
aggregated time series are to be transformed as follows:
(H.14)
TAC = Z (CripeXric + CrigeXfre) TAC = Z (Crpe&ric + Crigc®iic)

ceCo ceCo
Tage

i
2 - -
+ Z Z(CTD,l,c,tXTD,C,t + CTD,q,c,tXTD,c,t) = + Z Z (CTD,I,c,tWtXTD,c,t ar CTD,q,c,twtx%D,c,t)

ceCo t=0 ceCo t=0

1 Tage
E C X -
* EhCies L + Crpepet WiXTDe,ct
ceCo =0 =

ceCo

T 2
T 2
+ Z CTDc,q,c,t (Z XTDc,c,t) Aee _
ceCo t=0 + Z Crpeget Z WXTDc,ct
t=0

This is a generalization of the objective used by Lopion et al.
[31]. Accordingly, the question whether the weighting factors
contribute not at all, linearly or quadratically to the objective func-
tion depends on the corresponding variable.
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H.4. Summary

Figure H.5 summarizes the theoretical findings of this section for
common cost-minimizing energy system models, which are by far
the most common class of energy system models to be found in
literature. As can be seen, the majority of nonlinearities captured
in energy system models lead to mixed-integer linear programs
and only the minority of nonlinearities can be depicted by (convex)
quadratic programs.

» degressive costs

* minimal up- and
downtimes

line- relax * minimal part—loads

arize or fix fixed unit sizes

progressive costs

else, if
possible

if not positive
semi-definite

Figure H.5. A summary of general energy system features whose considera-
tion transforms the program type into another one

Moreover, for each of the regarded program types the potential of
time series aggregation was evaluated and for mixed-integer linear
programs, a multi-level approach was developed to maintain the
feasibility of the aggregated solution. As especially the constrain-
ing equalities and inequalities of the considered program types do
not substantially differ from each other, Appendix | mainly focuses
on the mathematical meaning of aggregating linear programs. The
impact of time series aggregation on mixed-integer linear pro-
grams and quadratic programs can then easily be derived.
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I. Matrix Aggregation and Error Bounding

Apart from the aggregation of input data, the energy system model
needs to be adapted to the aggregated time series as well. The
following chapter is dedicated to describing and analyzing the im-
pact of time series aggregation on the energy system model itself.
As will be shown in the following, the process of time series aggre-
gation for energy system models does not only affect the optimal
solution of an energy system model due to fewer time steps with
modified values for each time series, but also due to the absence
of equations that were part of the fully resolved model. Therefore,
aggregation could have an impact on the energy system model
even if the time series could be perfectly represented by fewer time
steps (e.g., if storage equations are considered).

Section 1.1 focuses on a general categorization of the shape, in
which (linear) energy system models typically appear. Section 1.2
focuses on the impact that certain aggregation techniques have on
the error made by aggregation itself. These findings are used to
systematically over- and underestimate the reference system,
which enables the modeler to quantify the maximum aggregation-
induced error with respect to the fully resolved reference system.

Here, only linear programs will be considered, because some of
the applied mathematical principles hold for linear programs only.
However, as shown before, e.g. mixed-integer linear programs can
be relaxed to linear programs in a preceding step.

I.1. Matrix Aggregation

In order to derive the theoretical findings of the following section,
we introduce a simple energy system in Example 4, which captures
basic mathematical features of the energy system modelling
framework FINE. Here, it is important to highlight that FINE has far
more equation types. However, the procedures described in the
following are applicable to general energy system models with a
temporal discretization to time steps.

Example 4: An Example for the Typical Shape of Linear Programs for En-
ergy System Models

We consider a modified version of the energy system model from
Appendix H, which is now also equipped with a battery storage
as shown in Figure I.1.
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Storage

d
Source 2
.
Sink

Figure I.1. Modified sample energy system with an additional battery stor-
age
The objective of the energy system model is to minimize the total
annual costs, which are the sum of the capacity-specific annual-
ized investment costs and the capacity-specific operation costs

at each time step, i.e.:

min(icg; - Cgq + iCgy - Csp + iCsy - Cst)

T
+min (Z 0C52(8) - 052(8) + 0C55 (0) - 055(0) + 05D - O5¢e(0) + 05 (®) osm(t)> (-1)
t=1

With c, o capacities and operations of the components and ic, oc
annualized investment costs and operation costs of the compo-
nents. Here, the storage can either charge (os;(t) = 0) or dis-
charge (os¢q(t) = 0).
The commodity balance for each time step is given by:

051 (t) + 052 (t) + 05 (t) — 054 (t) = 05;(t) V tE€{1,.., T} (1.2)

Here, the energy sink is a component which is considered to ex-
ist already and whose energy demand needs to be fulfilled at any
time step. Accordingly, the operation of the sink og; equals the
energy demand, i.e.:

0si(t) = dem(t) (1.3)

For the energy sources, which are assumed renewable, the op-
eration never exceeds the product of the capacity and the ca-
pacity factor, i.e.:

csp - cfs; () —05;, () =0 V teE(L, .., T} (1.4)

Csy - Cfs, (1) — 05, (1) =20 V te(L,.., T} (1.5)

For the battery storage, the state of charge (SOC) should never
exceed its capacity cg; i.e.:
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cse = SOC(H) V te(d,.., T} (1.6)

The state of charge is calculated as forward-sum depending on
charging and discharging rates over the time steps, i.e.:

1
SOC(t + 1) = SOC(t) - Ngg + Nc - Osec(t) — — oseq(® V te{l,.., T} (1.7)
d

With n¢q the self-discharge over a time step, n. the charge effi-
ciency and nq4 the discharge efficiency.
As mentioned in Appendix H, linear programs can be repre-

sented by the following shape:
min c"x
s.t.tAx=Db
Cx<d

X €ER

(1.8)

For the considered energy system model, this leads to the fol-
lowing shape:

U U U T T T =TI U I
0 0 0 Il T T =1 0 I
0 0 0 T 1 1 -1 0
=1
A=|| o 0 0 Tt — Mu -1 |
o
0 0 0 -
Nc ™ Nsd
0 0 0 —1
=1e9] T
chip(1) -1
1 0 0o -1
f1(2) 1
= ) -1
1 0 0 -1
o) =T
cha () =i
1 0 0 -1
c=(ics; icsp icse 0Cgy(1) 0Cga(1) 0Csec(1) ocsea() 1 .. 0csi(T) o0csy(T)  ocsc(T) ocspq(T) 1T

x=(Cs1 Csz Cst 0s1(1) 053(1) 0gc(1) 0g5pq(1) SOC(L) .. 051(T) 05(T) 0gec(T) 0gea(T) SOC(T)T
b= (dem(1) .. dem(T) 0(1) .. O(T—1)T
dl = 03T*x1

du=¢

As shown above, the matrices for constraining equalities A and ine-
qualities C are usually very sparse. Furthermore, if the order of var-
iables is sorted by their corresponding time step, the constraining
matrices form a structure of blocks as marked by the red rectangles.
Commonly, the shape of linear energy system models can thus be
generalized as shown in Figure 1.2:
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Figure 1.2. The general structure of energy system models with variables
sorted by time steps

The example illustrates that both, the equality matrix A and the in-
equality matrix C, can possess parameter blocks B; and D; with i €
{1, ..., T} for time-dependent variables, e.g. the components’ oper-
ational variables. Furthermore, both matrices can possess param-
eter blocks A; and C; with i € {0, ..., T} for time-invariant variables
such as component capacities. Apart from that, energy system op-
timization problems also comprise the constraining vectors b, dl
and du. While the vector b is a parameter vector and contains e.g.
energy demands that need to be fulfilled at any time step, dl is, as
seen in the example, likely to be a null vector. Furthermore, the
upper bound vector du is often not defined at all. The cost vector ¢
contains all cost contributions of capacities and operations. More-
over, many energy system models comprise parameter blocks BL;
and DL; with i € {0, ..., T} that couple time steps with each other. As
shown in the example, these blocks e.g. result from storage equa-
tions in which a state of charge is modeled using the forward Euler
method [234, 235]. It is worth mentioning that variables like the
state of charge of the battery SOC are so-called state variables,
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which means that they depict a differential relationship for discrete
time steps [236]. As will be shown in the following, these variable
types have a severe impact on the efficiency of aggregation meth-
ods. If neither state variables (that is, storage components) are
part of the optimization model, nor other complicating constraints
such as maximum cumulative energy supplies for certain energy
sources, the BL and DL blocks are empty and can be removed from
the optimization problem. In this case, the problem can be simpli-
fied as illustrated in Figure 1.3:
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S
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Figure 1.3. The general structure of energy system models with variables

sorted by time steps without complicating constraints
Although the inner structure of each of the matrix and vector blocks
shown above differs from energy system model to energy system
model, their outer structure can be generalized by Figure 1.2 or
Figure 1.3 for temporally decoupled energy system models, pro-
vided that they are based on time discretization. As shown in the
example, time series are parameter sets that could theoretically
appear in any block within the optimization problem. However, two
basic features they have in common:

e Time series are either coefficients in the matrix or constants
in the vectors.
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e Each matrix or vector block contains exactly n values per
time series if it comprises n time steps.
An optimization problem with aggregated time steps possesses
less time steps, which also means that it has less blocks, accord-
ingly less variables, and less constraints. The structure of the ag-
gregated optimization problem with and without temporal coupling
constraints is illustrated in Figure 1.4 and Figure 1.5.

- T
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Figure 1.4. The general structure of aggregated energy system models with
variables sorted by clustered time steps
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Figure I.5. The general structure of aggregated energy system models with
variables sorted by clustered time steps without complicating constraints
As Figure 1.4 and Figure 1.5 reveal, the aggregated optimization
problems bear a significantly similar structure as the original en-
ergy system models: In both the temporally coupled case and the
temporally decoupled case, the diagonal block structure is pre-
served. Further, the complicating variables and, for the temporally
coupled case, the linking blocks are at the same position as well.

However, there are three main differences:

1. The number of blocks is equivalent to the number of clus-
tered time steps or periods K, which is always smaller than
or equal to the number of time steps T of the original prob-
lem.

2. In general, neither the coefficients and constants of the
blocks, nor their inner structure is identical to those of the
original blocks. An exception is the case of a temporally de-
coupled system, in which single time steps are clustered to
typical time steps. Here, the inner structure of the blocks re-
mains and only the coefficients and constants within the
blocks are changed.

3. The objective function of the aggregated problem possesses
an additional weighting vector which weighs the cost contri-
bution of the aggregated time-dependent variables (index k)
according to the number of original time steps represented
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by the respective cluster. The time-independent variables

(e.g. capacities of a component) (index 0) are not affected

by aggregation and therefore not weighted (multiplied by 1).
As described in the introduction, the most common approach to
temporally aggregate energy system models is the utilization of
typical periods or, more specifically, typical days. In this case, not
sets of time steps are clustered and represented by a single time
step, but sets of periods, i.e. sets of groups of consecutive time
steps are represented by a single group of consecutive time steps.
In order to illustrate the process of aggregation by means of peri-
ods, the most general temporally coupled optimization problem
shown in Figure I.2 is restructured to blocks of periods as shown
in Figure 1.6.

Co | Ciq |®08| iy | Cyy |®00 | Cpr X1q |00 [ Xq7 | X;; |00@ pr ]

ot ot JJor. or..

Figure 1.6. The general structure of energy system models with variables
sorted by periods
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In this case, the blocks are restructured to bigger period blocks,
which consist of smaller consecutive time step blocks. As high-
lighted in Figure 1.6, those constraints that only link time steps
within a period and were part of BL or DL before, can now be re-
structured to be part of the larger diagonal period blocks. These
inner-period linking blocks are now denoted by BL and DL, while
the blocks that contain the remaining constraints linking periods to
each other are denoted by BL and DL. Accordingly, the temporal
restructuring of an optimization problem by means of time periods
instead of single time steps can lead to a structure with bigger but
fewer diagonal blocks, but smaller linking blocks, as BL and DL
contain less equations than BL or DL.

As the outer structure of the period-wise ordered optimization prob-
lem in Figure 1.6 resembles that of Figure 1.2, it can also be sum-
marized as shown in Figure 1.7 with P blocks of each kind and com-
parably small linking blocks BL and DL because the majority of
time-linking constraints is part of the diagonal blocksB and D.
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Figure I.7. The general structure of energy system models with variables
sorted by periods
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A frequent approach to aggregate the block structure shown in Fig-
ure 1.7 is to neglect the comparably small linking blocks BL and DL
and to reduce the remaining blocks to an optimization problem as
shown in Figure 1.5 with K clusters instead P periods with K < P. As
the constraints connecting linking periods to each other, which are
contained in the BL and DL blocks, are neglected in this process,
only the linking constraints for time steps within a period are pre-
served in this approach, because these equations became part of
the diagonal period-wise blocks B and D. For storage components,
this means that the modelling of the state of charge within clus-
tered typical days is possible, while it is not possible across multi-
ple typical days. As highlighted in the introduction, this property is
common among most approaches that use either typical days or
typical weeks for aggregation. It is noteworthy that a more realistic
storage behavior is often modelled using a cyclic storage con-
straint, which forces the storage components to have the same
state of charge at the beginning and the end of each typical period.
This constraint is then coupling all clustered typical periods K to
each other as a linking constraint that forms auxiliary linking blocks
BL or DL as shown in Figure 1.4. As a cyclic state of charge con-
straint at the beginning and the end of each typical day is relatively
restrictive, the aggregated energy system model can also contain
additional variables, which were not part of the original problem.
An example for this are the inter-daily state of charge variables
introduced by Kotzur et al. [20], which allow to cumulate energy in
the storage components over a sequence of typical days which
represents the original time series.

In conclusion, two major factors affect the structure of a linear pro-
gram for an energy system model with discrete time steps, if it is
temporally aggregated:

e The existence of temporally linking constraints, which con-
nect temporally dependent variables of one time step to
those of another time step, and how they are represented in
the aggregated problem.

e The number of consecutive time steps serving as an aggre-
gation candidate, i.e. single time steps or whole periods
(e.g. typical days).
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Besides, the in-depth analysis of linear optimization problems (to
which also mixed-integer linear programs can be relaxed) and the
impact of temporal aggregation on their structure, are a novelty of
this work. Furthermore, a profound knowledge about temporal ag-
gregation is needed in the following sections, in which general pro-
cedures and specific examples will be introduced that allow for a
systematic bounding of aggregation-induced errors in energy sys-
tem models. As will be shown in the following, the distinction be-
tween temporally coupled and temporally decoupled systems as
well as aggregation by time steps and aggregation by periods is
furthermore reasonable and helpful with respect to the choice of
the most suitable over- and underestimation technique.

[.2. Error Bounding

One of the main conclusions of the prior chapters is the fact that
time series aggregation can significantly decrease the computa-
tional burden and lead to plausible system designs and operations,
if the method is wisely chosen, but the precise error induced by the
usage of aggregated data is generally not estimated. Accordingly,
the development of these error estimates contributes to the relia-
bility of optimization results based on time series aggregation and
thus ultimately to the validity of aggregation techniques.

Therefore, the following section focuses on the over- and underes-
timation of a linear program’s optimal solution, if an appropriate
aggregation technique is chosen. Simply put, it is discussed, which
temporal aggregation methods lead to upper and lower bounds of
the fully resolved energy system model. If upper and lower bounds
to the original problem are known, three key questions can be an-
swered that still lack in the majority of modern aggregation tech-
niques:

What is the aggregation-induced error with respect to the original
optimization problem at worst?

This worst-case error equals the difference between the upper and
the lower bound to the original problem.

Under what circumstances is the solution based on aggregated
time series a feasible solution to the original problem?

A feasible, but suboptimal solution is generally provided by the up-
per bound of the original problem.
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What is the impact of a too small temporal resolution for energy
system models?

This question can be implicitly answered by analyzing the lower
bound of the original problem, which often relies on averaged time
steps at a smaller temporal resolution, as well as the gap between
the upper and the lower bound, which is significantly reduced if the
aggregation is performed on an adequate level. Moreover, this
analysis might even raise the question whether the temporal reso-
lution of the reference case itself is sufficient at all.

The succeeding section first introduces a general workflow for sys-
tematically determining upper and lower bounds of linear energy
system models in Section 1.2.1, which shortly summarizes the find-
ings of the preceding sections and explains important mathemati-
cal concepts (invariance and symmetry) of optimization prob-
lems, which are needed to aggregate them systematically. These
concepts are then specifically applied determining upper bounds
in Section 1.2.2 followed by methods for lower bounds in Section
1.2.3. As it will be shown in the following, a distinct case analysis
for ESOMs with linked and independent time steps is needed in
order to provide as tight bounds as possible without the loss of
generality. Therefore, each of the sections is further divided into
these two cases.

[.2.1. A General Workflow to Determine Bounds

As shown in the previous section, the actual reason for a speed-
up of temporally aggregated energy system models is the removal
of both variables and constraints and accordingly the application
of solving algorithms in a lower-dimensional hyperspace. In case
of linear programs, this also includes lower-dimensional polyhedral
feasible spaces with less vertices and edges. Although this con-
cept is easily understandable, the specific mathematical conse-
quences of these approaches remain widely neglected. The draw-
back of a heuristic usage of temporal aggregation techniques is
that:

e neither the deviation from the optimal solution of the fully re-
solved reference case is known

e nor the operational feasibility for the reference system can
be guaranteed.
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In a worst-case scenario, a model-based system design might be
realized which is more expensive than necessary and does not live
up to its tasks and expectations. Concretely, the system might lead
to supply shortages or even outages and could ultimately be use-
less. This is a strong motivation for systematically quantifying an
aggregation-induced error and thereby finding feasible solutions
for the original yet non-solvable optimization model. Moreover,
these theoretical investigations also help to assess modeling as-
sumptions more critical and in more detail.

As mentioned in the introduction, the concept of error bounding in
temporal aggregation originates from recent publications of which
the most influential publications were those of Bahl et al. [79, 180,
181, 237] and Baumgartner et al. [82, 83]. Furthermore, the math-
ematical abstraction of temporal aggregation in order to distinguish
between aggregated models, which are a relaxation of the full
model and vice versa, could also be observed in a publication by
Teichgraber et al. [47]. Apart from that, earlier efforts to model sea-
sonal storage with regularly ordered time slices [22, 111] and to
neglect non-critical state of charge constraints have led to the de-
velopment of a distinction between temporally coupled and tempo-
rally decoupled optimization problems within this thesis.

To this end, however, all mathematical proofs were focusing on
temporally decoupled systems and some of the methods were em-
pirically, but without a corresponding proof, transferred to tempo-
rally coupled systems. Moreover, the more general the proof was,
the less useful it was for specific problems and vice versa. Further-
more, only the mathematical concept of relaxation and implicitly its
counterpart, the concept of restriction, were considered. The nov-
elties developed within the scope of this thesis are:

e The establishment of a stepwise guide for determining upper
feasible and lower infeasible bounds to the original problem
based on aggregation.

e The application of invariance and symmetry concepts from
optimization theory, which dictate desirable features of fu-
ture aggregation approaches.

e The extension of theoretical proofs on temporally coupled
systems.
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The application of the methods to a number of different time
series simultaneously (demand, capacity factors, costs) in-
stead of demand time series (Bahl et al. [79, 180, 181, 237],
Baumagartner et al. [82, 83]) or cost time series (Teichgréaber
et al. [47]) only.

The implementation of the features into a general model
framework instead of a model, which means that these ap-
proaches are valid for each model designed with FINE.
Apart from some known, but yet partly unproven over- or
underestimating aggregation techniques, this will also lead
to the development of some novel aggregation techniques.

It is hence obvious that the implications of errors induced by tem-
poral aggregation in energy system modelling are still a widely un-
known research field with many open questions and with a need
for an easy-to-use applicability.

With respect to the first above-mentioned bullet point, the general
workflow for a systematical temporal aggregation of energy system
models comprises two steps in order to obtain a model with a re-
duced size:

1.

It is assumed that coefficients and constants in constraints
and the objective function are sufficiently similar for groups
of time steps so that these time steps can be identically par-
ametrized.
It is assumed that the sets of constraints and variables of
identically parametrized time steps can be replaced by a set
of constraints and a set of variables for a single representa-
tive time step. It is further assumed that the set of coeffi-
cients for these identically parametrized time steps can be
represented by a single set of coefficients multiplied by a
weighting factor. Accordingly, this assumption contains
three arbitrarily ordered sub-steps:

e Removal of constraints

¢ Removal of variables

e Multiplication of time-dependent variables by

weighting factors in the objective function

Depending on the purpose of a systematical aggregation, it can be
more suitable to remove the constraints before the variables or
vice versa. For upper and lower bounds, these roughly defined
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steps can further be refined to the general workflow for systematic
temporal aggregation shown in Figure 1.8.

Original (convex)
problem

Set parameters to be Set parameters to be
o aggregated equal aggregated equal
while overestimating while underestimating
A redundantly A redundantly
parametrized parametrized
upper bound lower bound
Equate variables, Remove constraints
9 substitute and that impede a

subtract constraints symmetrical problem

Aggregated upper A symmetrical
bound problem convex problem

Removal of
symmetric constraints
and variables

Aggregated lower
bound problem

Figure 1.8. A generally applicable workflow for determining aggregation-in-
duced upper and lower bounds for energy system models
Figure 1.8 illustrates that steps 1 and 2 are also generally applica-
ble for the workflow to define upper and lower bounds systemati-
cally of a computationally intractable energy system model by tem-
porally aggregating it.

However, the approaches differ in step 1 with respect to the equal-
ization of coefficients and constants of time steps to be aggre-
gated. While the coefficients and constants of cost-driving varia-
bles (capacities, operations, demands) need to be changed in such
a way that the variables and the cost-coefficients in the objective
function need to be bigger in the end for an upper bound of the
problem, the opposite holds true for a lower. As the number of
overall equations and variables does not change in neither of these
cases, step 1 is a relaxation of the original problem in case of the
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lower bound, as the feasible space is relaxed and (positive) cost
coefficients are underestimated. Conversely, step 1 is a restriction
in case of the upper bound because the feasible space is tightened
and (positive) cost coefficients are underestimated. For the sake
of clarity, the definition of the terms relaxation and restriction as
provided by by Geoffrion and Nauss [187] is repeated below.

Excursus 5: A Definition of Relaxation and Restriction by Geoffrion and
Nauss [187]

“A problem (R) is said to be a relaxation of problem (P) if the
feasible region of (R) contains that of (P) and if the objective
function of (R) is less than or equal to that of (P) on the feasible
region of (P).”

“A problem (Q) is said to be a restriction of problem (P) if the
feasible region of (Q) is entirely contained within that of (P),
and if the objective function value of (Q) is at least as great as
that of (P) everywhere on the feasible region of (Q).”

Step 2 differs depending on whether an under- or overestimation
is pursued. The overall goal is identical, i.e. to remove identically
parametrized equations and variables without violating the individ-
ual goal to overestimate an overestimation or to underestimate an
underestimation further.

In case of an overestimation, it is simpler to first equalize the cor-
responding variables of those time steps in step 2 that are to be
represented by a single time step in the aggregated problem. This
approach is per definition a restriction of the original problem,
which coincides with the goal to overestimate only. Then, variables
and constraints can be removed by substitution and subtraction in
order to obtain an upper bound of the fully resolved model.

In case of an underestimation, it is more suitable to remove con-
straints that impede a symmetrical problem, because the removal
of side constraints is again a further relaxation of the original prob-
lem. The second operation in step 2, the removal of constraints
and variables that refer to time steps to be aggregated due to the
assumption that they are identical, is the most critical step for an
underestimation of the original problem based on temporal aggre-
gation. The reason for this is the circumstance that setting varia-
bles equal in order to remove them and the corresponding equa-
tions by substitution and subtraction from the optimization model
generally works by adding additional equality constraints to the
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system. This is per definition a restriction of the original optimiza-
tion problem because the feasible space of the optimization is re-
duced. Therefore, it cannot be guaranteed that the aggregated
problem is still a lower bound unless the problem is symmetrical.
Here, the application of the concepts of variable invariance and
symmetry in convex optimization are a novelty of this thesis, which
can be used to guarantee that the lower bound provided by the
aggregated problem remains a lower bound. A definition can be
found below.

As it can be seen, the workflow for determining a lower bound
based on an aggregated problem bears one more challenge than
the workflow for determining an upper bound. While both ap-
proaches face the challenge to systematically over- or underesti-
mate coefficients and constraints in order to over- or underestimate
the original problem, a lower bound can moreover only be found
by aggregation, if the problem is symmetrical after step 1 or after
unsymmetrical equations have been relaxed or removed. There-
fore, symmetry is an important concept in the area of temporal ag-
gregation, which was neglected in literature to this end. In the fol-
lowing, it will be shown that symmetries are especially impeded by
temporally coupling constraints, for example in storage con-
straints.

Excursus 6: Invariance in Optimization Problems
A formal but yet understandable definition of invariance and sym-

metry in optimization problems was provided by Boyd et al. [229]:
“Symmetries and convex optimization. Suppose G=
{Qq, ...,Qx} S R™ " js a group, i.e. closed under products and in-
verse. We say that the function f: R"™ —» R is G-invariant, or sym-
metric with respect to G, if f(Q;x) = f(x) holds for all x and i =
1,..,k.”

“We define the fixed subspace of Gas F = {x|Qix =x,i=1,...,k}.”

“We say the optimization problem
minimize f;(x)
subjectto fi(x) <0, i=1,..,m

(1.10)

is G-invariant if the objective f; is G-invariant, and the feasible set
is G-invariant, which means
£() <0, fn(x) <02 £(Qx) <0, ..., fn(Qx) < 0 (1.12)
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fori=1,..,k.”... “If the problem is convex and G-invariant, and
there is an optimal point, then there exists an optimal point in F.
In other words, we can adjoin the equality constraints x € F to
the problem, without loss of generality.”

Excursus 6 states that for convex optimization problems such as
linear programs, the optimal values of a set of variables is identical
if the optimization problem is symmetric with respect to these var-
iables. With this proposition it is possible to set variables equal,
which is defined by the set F = {x|Q;x = x,i = 1, ...,k} and tightens
the feasible space, without removing the optimal solution of the
lower bound problem. This further allows the removal of variables
by substitution and the removal of constraints by subtraction,
shortly, aggregation. In the following, a short example for the pro-
posed workflow is presented in which the validity of step 2 is cho-
sen (as it is a minimum example, step 1 is skipped).

Example 5: Symmetry, Variable Equalizing and Constraint Subtraction for
Upper and Lower Bounds

Given the following linear program
fo(x) = min(x; + x;)

s.t. f1(x) =2-2%;—%, <0

f,x) =2—%x; —2x, <0

f3(x) =3—-3%x; —x, <0

(1.12)

The solution of the original problem is to be found at the inter-
section of f,(x) and f;(x), i.e. we solve the following linear system

of equations
{x1,x; ER|2 —x; — 2%, = 0A 3 — 3%, — X, = 0} (1.13)

which leads to
x; =0.8 x; =0.6 and fy(x*) = min(x; + x3) = 1.4 (1.14)

We now strive to aggregate the problem by removing at least one
variable and at least one constraint and thereby determine an
upper and lower bound based on aggregated time steps.

As discussed above, the upper bound is relatively simple to be
determined. As we want to aggregate at last one variable and

one constraint, we simply state x; = X,. Accordingly, we obtain
the following aggregated upper bound problem:

287



I. Matrix Aggregation and Error Bounding

f,(x) = min(2x;)

[\

s.t. fl(x):2—3x150<:>x12§ (1.15)

w

f3(x)=3—4X1£04:x221

f,(x) was removed from the problem as it was identical to f;(x).
The solution of this problem with f;(x) as the binding constraint
is:

%] =% and f,(®") = min(x;) = 1,5 (1.16)

For the determination of a lower bound according to the workflow
described above, those equation need to be removed first, which
impede a symmetrical problem. In the example, this is f;(x). Alt-
hough asymmetry is much more difficult to prove, than symmetry

can be shown, we consider the reflection matrix Q = (2 (1)) to

prove the symmetry of f;(x) and f,(x) with respect to x = (2)

which can be realized using the equation in Excursus 6:

reo=2-2 -] J)G)=2-@ »-(F)=tws=o (.17)

Ke=2-a 2-(] ) ()=2-a 2-(Z)=rw=0 (.18)

Further, the objective f,(x) is obviously symmetric as well be-
cause f,(Qx) = fy(x). Accordingly, f;(x) will be removed from the

problem. The symmetrical problem is now:
fo(x) = min(x; + x;)
sit. fi(x)=2-2%;—-%x,<0 (1.19)
f,(x) =2—%;, —2x, <0

Due to Excursus 6, we can now assume x; = X, Without removing
the optimal solution of the lower bound from the problem. Ac-
cordingly, we obtain the following aggregated lower bound prob-
lem:

f,(x) = min(2x;)

(1.20)

2
s.t. fl(x):2—3x1304:)x12§

f,(x) was removed from the problem as it was identical to f;(x).
The solution of this problem is

X =§ and f,(¥*) = mm(x;) = 1,3 (1.22)
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As fy(x) = 1,3 < f,(x*) = 1.4 < f,(®*) = 1,5, the general applica-
bility step 2 has been demonstrated. The graphical interpretation
of the upper and lower bound as well as the original problem are
shown in Figure 1.9.

X2 feasible space
3 d
2 d
1 J
0
0 1 2 3 X4
Xof feasible space xof feasible space

0

0

3 X
Figure 1.9. The original optimization problem (top), the upper bound due to
equalizing variables and removing redundant constraints (bottom left), and

the lower bound due to removal of the asymmetric constraint and equaliz-
ing variables due to symmetry (bottom right)

The picture at the top of Figure 1.9 visualizes the original asym-
metric problem, in which the solution is obviously neither sym-
metric. The bottom left picture shows the visual representation
of the upper bound problem. Here, the variables x,; and x, were
directly equalized. Geometrically, this can be understood as a
reflection of constraint f;(x) on the angle bisector line because

£,(x) = £;(Qx) holds for Q = (‘; é

constraint f;(x) is represented by a dashed red line and the
space, which it removes from the original feasible space, is vis-
ualized as white area. Obviously, both, the optimization problem
and the optimal solution of the upper bound are now symmetric

X

), if x; =x,. The reflection of
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again. The bottom right picture depicts the lower bound accord-
ing to the workflow. The removed asymmetric constraint is high-
lighted by a dashed red line while the minimization gradient is
highlighted as red vector. The remaining optimization problem is
clearly symmetric to the angle bisector line and convex, which
means that for the optimal solution of the lower problem X; = X3
holds.

To conclude, symmetry is an important principle that is essential
to estimate the aggregation-induced deviation from the optimal ob-
jective if the optimization problems are convex and invariant with
respect to certain variables. However, for this, the optimization
problem needs to contain groups of blocks of variables that are
identically parametrized, which is highlighted by the preceding step
1in Figure 1.8. Accordingly, the following two sections focus on the
guestion how to change the parameters of energy system models
by using data based on aggregated time series data systematically
in order to obtain an upper or lower bound. As will be seen in the
following, this can be realized by representing clusters of time se-
ries data by certain values they contain. Namely, for a systematical
over- or underestimation of the original problem, the minimum or
maximum representation or in seldom cases, in which the optimi-
zation problem has a special structure, also a centroid-based rep-
resentation can provide a tight bound.

Note: mixed-integer linear programs need to be either restricted or
relaxed to a linear program first because Excursus 6 does not hold
for non-convex problems. A small example is given in Excursus 7.

Excursus 7: Symmetric non-convex problems with non-symmetrical solution

Given the following mixed-integer linear program
fo(x) = min(x; + x;)
s.t. fHix)=1—%x,—%x,<0 (|.22)
Xq,Xy € Z*

The problem is obviously symmetric as f,(x) = f,(Qx) and f;(x) =

f,(Qx) with Q = ((1) (1)) However, the optimal solutions are either

(x11x3) = (1]0) or (xi|x3) = (0]1). This proves the a-symmetry of
optimal solutions for non-convex symmetric programs.
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[.2.2. Upper bounds

As highlighted in the introduction, upper bounds of the original
problem are not only needed to determine the maximum error
based on data aggregation by calculating the gap to the lower
bound, but they also provide a solution which is also feasible for
the fully resolved case. Further, once the parameters for time steps
to be aggregated are equalized based on an appropriate overesti-
mation according to step 1 of the aggregation workflow, the re-
moval of variables and constraints based on equalizing variables
is straightforward. First, the approach will be explained for tempo-
rally decoupled systems. In a second step, the approach will then
be applied to temporally coupled systems. However, this is com-
parably simple for upper bounds since equalizing variables never
leads to an underestimation of the optimal objective value.

1.2.2.1. An Upper Bound for ESOMs with Unlinked Time Steps
From the previous section, we know that temporally decoupled
models can be written as:

min(cdx, + cfx)

s.t. AXg + BiXy = bryst

dl; < Cixo + Dix¢ < dug

Xg € R]Jf,xt € RLT

co € Rlo, ¢, € RIT

A € REa¥Jo B € REEQXIT v teT

C, € RiNeaXJo D, g RlNeaXIT v teT
brust € R'89,dl;, duc € R'Nea v teT

(1.23)

As any equality Aixy + Bixy = brys can be expressed as bgys <
Aixo + Bix¢ < bfiys With brys = by . it is sufficient to focus on ine-
qualities only in the following, i.e. dl < Cixq + Dix¢ < du. Further, we
assume all cost contributions to be positive for the sake of brevity

and in order not to shorten the case distinction, i.e. c, € RL",ct €

R'+T. This assumption is reasonable for the majority of energy sys-
tem models implemented in FINE because apart from revenues of
exported energy amounts, all costs are usually positive, e.g. ca-
pacity and operation costs as well as import costs. This assump-
tion helps us to understand the optimization problem stated above
better as the target is to minimize each variable in x, and x; without
violating any of the side constraints. In index notation, we yield
from dl < C;xy + Dix; < du the following set of constraints:
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Jo T

dlineq:t < Z CineqriorthOvO + Z dineq'jt:txjtrt < duineq,t A4 ineq € Ineq,t €T (|24)
jo it

We can now resolve this equation to one specific time independent
variable x;,-50 (the transformation for time-dependent variables

works analogously) depending on whether the coefficient Cipeqio=ht
is positive or negative. For Cipegio=pt > 0, We yield:

1 Jo It
Xjg=r0 Z | dlipqe — z CineqiotXjo0 ~ z ipegjetXjut | ¥ ineq € lnegt €T (1.25)

Cineqio=At : -
neqJo=A/ joZA T

1 Jo It
Homho S o Ui qe = Z CineqiotXjo0 ~ Z dipeqotXiet |V ineq €lneq tET  (1.26)
neqJo=A,

Jo#A J

And for ¢; . jo=at < 0 the formula reads:

1 Jo It
Xjp=h0 = dlipeqe = z CineqiotXjo0 ~ Z ipegiutXiet |V ineq € lneq t€T (1.27)
Tt

Cineqri():)\,t jomh

Jo#A Jt

1 Jo Jr
Xio=ho Z Ui qe = Z CineqiotXjo0 ~ Z dipeqotXjet |V ineq € lneq tET  (1.28)
neqJo=A,

Here, it was assumed that a coefficient has the same sign for all
time steps, as coefficients in energy systems are generally either
constant throughout time (compare the example of the previous
section) or are based on time series that do not cross zero (e.g.
efficiencies, capacity factors, energy supply and energy demand).
Alternatively, they can be represented by two independent varia-
bles, e.g. a price time series with negative prices can be divided
into a non-negative cost time series and a non-positive revenue
time series.

According to the non-negativity of the cost vectors defined above,
each variable reduces the costs if it is reduced itself. Accordingly,
the second and third equation are non-binding with respect to
Xj,=a,0 and can thus be neglected.

The first inequality becomes more restrictive if the right hand side
is overestimated because x; ), is tried to be minimized. Accord-
ingly, a conservative estimate is:

292



I. Matrix Aggregation and Error Bounding

1 Jo Jt
Rjporo =2 —F— rtrég‘)f (dlim,t) - Z Itlgérkl (Cineq,jo,t) Xjo0 + Z Itlélél;(l (dineq,j(,t) Xt (| 29)

min (Cineq,juﬂ,t) jorh Tt
V ineq € Ineqt €T
The fourth inequality is only a binding constraint if both factors on
the right hand side are negative. Otherwise, the expression is neg-
ative and &j - o = 0 is the binding constraint. This means that the
expression grows if the denominator is negative but gets closer to
zero and the numerator is negative but moves away from zero, i.e.:

1 Jo IT

Ria0 = ———( min (du- ) - z max (c- ; )x‘ + Z max (d» i )x-

jo=A,0 max (C- i ) teC ineq.t ) teCy, \ ineajot jo.0 [ teCyc Ineqivt) Tjut (I 30)
teCy ineqo=At jozEA it .

V ineq € lneq t€T

The example of the previous section has shown that dl; , « is often

undefined, which means that this inequality can be omitted in cer-
tain cases.

With respect to the objective function, an overestimation of the
original costs is achieved by:

(T T T T
mm(cioyoxjo_o + Cjt,txjt,t) < min (Cio.OXio.O + rtrelgli((c]-btijt)) (|,31)

For negatively defined revenue time series, this equation also
holds since the maximization leads to a minimization of their abso-
lute values.

Although the proposed method for overestimating the original
problem seems to be highly dependent on the mathematical struc-
ture of the problem, the direction in which a time series of coeffi-
cients needs to be overestimated is usually intuitively understand-
able, e.g. for a conservative estimation the following holds for cost-
minimizing systems implemented in FINE:

Table I.1.Time series to be over- or underestimated in order to receive an up-
per bound of the fully resolved reference system

[ teCy,

Capacity factors x
Conversion factors x
Demands ®
Supplies ®
Costs ®
Revenues x
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Moreover, as the number of clustered time steps K increases, less

time steps are assigned to the same cluster t € Cy, i.e. less coeffi-

cients are in the groups of which {relén(x) and rtlé.’élX(X) choose the
k k

most conservative one. This means that the error due to this esti-
mation decreases with the number of clusters. However, the com-
putational complexity rises likewise. Finally yet importantly, it
needs to be highlighted that all blocks that are assigned to the
same cluster A, Brec, Crecyr Diec, @s well as the corresponding
vector sections brys ec,, ditec, dutec, then share identical coeffi-
cients, i.e. a temporally decoupled system is then symmetric with
respect to the time steps assigned to the same cluster. This means
in turn that all symmetric variables and constraints can directly be
removed, if the symmetric variables are multiplied by the cardinal-
ity of the corresponding cluster group, which is in this case also a
symmetry group.

In order to illustrate the validity of the proposed method for un-
linked time steps, we adapt the extremely simple energy system of
the previous section to an energy system that comprises a capac-
ity-driven objective function, and a time-dependent energy balance
and component constraints.

Example 6: Upper bounds for a simple temporally decoupled problem
As depicted in Figure 1.10, the energy system now “consists of

two renewable energy sources with unknown capacities and
€

MWinst

for source 1 and

hourly depreciation costs of 120

100 —=

for source 2. Again, these assumptions are fictitious,

inst

however, the scale of component costs are roughly comparable

€ d
* — % ~
MW 365 3 30a

€ +365%420a~
d a

to the costs of solar cells with 120

1.31 Mio.€ and wind turbines with 100

inst

0.73 Mio. €.
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Figure 1.10. The adapted energy system comprising two different renewable
energy sources

Together with the side constraint, that the operation should never
exceed the installed capacity multiplied by the time-dependent
capacity factor of each component, this leads to the following
linear program:

€ d
in(TAC) = mi (C 120 +C 100 ) 365—
mln( ) e apcompl : M‘Ninstd apcompz * MWinstd * a
s.t. OPcomp1 + OPcompz = Dem vV teT
N (1.32)
OPcomp1, OPcompz = 0 V teT

CapFaCccmpl & Capcompl 2 Opccmpl vV teT
CapFaCcompZ * Capcompz 2 Opcompz VvV teT

Substitution of the operation variables Opcomp: and Opcompz DY
the capacity factors and the capacities yield:

d
min(TAC) = min (Capcompl *120 + Capcompz * 100 ) * 3655

€
M‘Ninstd Mwinstd
s.t. CapFaccompi * Capeomp1 + CapFaceomp2 * Capcompz = Dem V teT

(1.33)

As the demand needs to be satisfied at any point in time, the
inequality above has to be satisfied for each time step. To illus-
trate the impact of the proposed approach for tightening the fea-
sible space of the original linear program using aggregated time
steps, we now consider four hourly time steps with varying ca-
pacity factors and electricity demand, e.g. during a spring day.

€ d
+ Capcompsz * 100M— * 365;

min(TAC) = min (Ca * 120 )
pcompl Vvinstd

€
MWinstd
MWh
s.t. 0.25

MWh
* Capcomp1 + 0.2 M * Capcompz = 1 MWh

inst inst

MWh MWh
0.2 * CaPcompy + 0.25

inst M inst

* CaPeompz = 1 MWh (1.34)

02 MWh C +02 MWh
% N

Mvvinst apcompl Mvvinst

MWh MWh

* CaPcompy + 0.25 M

inst inst

* CaPcompz = 0.8 MWh

0.25

* CaPcompz = 1 MWh

These are linear equations, which can be transformed to the fol-
lowing intercept-slope forms:
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Capcompz =5 Mvvinst 125 Capcompl
Capcompz =4 Mvvinst -08 Capcompl (I 35)
Capcompz =4 MWinst -1 Capcompl '

Capcompz =4 M‘Ninst -1 Capcompl

The feasible space and the constraining linear equations are de-
picted in the upper graph of Figure I.11.

Capgomp2 feasible space
5MWh,,,%
MW, Capcomp1
Capcomp2 feasible space  CaPcomp2 feasible space
MW, 5MWhg
5MWisr Capcomp1 MWy Capgomp1

Figure I1.11. The optimal solution for three time steps (top) and the optimal
solution for the aggregated overestimation (bottom left) as well as the opti-
mal solution for the aggregated overestimation with a manipulated fourth
equation (bottom right)

As it can be seen, the optimal solution based on the three time
steps lies on the intercept of the first and the second linear equa-
tion, which leads to optimal capacities of (Capfomp:|Capiompz) =
(2,2 MWjst|2,2 MW;,i) and an optimal solution of min(TAC) =
488,8=  3655.” (Hoffmann et al [2])

Now, it is assumed that the three considered time steps are as-
signed to the same cluster. According to the proposed method
for overestimating the linear program’s optimal solution with an
aggregated linear program, the capacity factor time series are
now represented by their minimum value and the demand time
series is represented by its maximum, i.e.:
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Ca =0.2 MWh
apcompl — &b MWinst
— MWh (1.36)
(o =02—— '
apcompz Mvvinst
Dem = 1 MWh

The conservative estimation of the three time steps’ constraints
is thus the following constraint, which is represented by the
green line in the bottom left graph of Figure I.11:

h
* Capcompz = 1 MWh (1.37)

0% MWh
. Mvvinst

C + 0.2
MWt * LaPcomp1

According to the lower left graph of Figure 1.11, the optimal so-
lution according to the overestimated aggregated optimization
problem is  now given by  (Capiompi|CaPiompz) =
(0 MWipst|5 MWinst), Which leads to an objective value of
min(TAC) = 500§* 365 g. As it can be seen, the optimal objective

value is now indeed slightly higher than for the original problem.
However, significantly different component capacities are cho-
sen. The reason for this strong deviation with respect to the cho-
sen capacities is the aforementioned penny switching effect.

It is noteworthy that the proposed representation method is sen-
sitive to the value range of each attribute assigned to the same
cluster. As an example, the third and the fourth constraint are
linearly dependent equations, i.e. their feasible region is the
same. However, if we consider the fourth equation to be

0.3 Cap +0.3 © > 1.2 MWh 1.38
MWinst a compl Mvvinst apcompz ( . )

Which is still a linearly dependent multiple of the third equation,
the proposed method leads to an overestimating constraint of:

0.2 MWh C +0.2 MWh
b &3 o
MWinst apcompl Mvvinst

* Capcompz = 1.2 MWh (|39)

This bound is illustrated in the bottom right picture of Figure 1.11.
As it can be seen, the bound is now more restrictive despite of
the fact that the feasible regions of the fully resolved optimization
problem and the fully resolved problem with a manipulated fourth
equation are congruent. Here, the optimal solution according to
the newly calculated upper bound of the problem would be
(Captomp1|Captompz) = (0 MWine|6 MWips), which leads to an ob-

jective value of min(TAC) = 600%* 365 g. This emphasizes that
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the clustering errors must be as small as possible in order to
prevent a too conservative overestimation of the original energy
system optimization. An alternative method to provide tighter up-
per bounds would be the normalization of all equations that be-
long to the same cluster and choosing the most conservative
configurations from that normalized set of equations. However,
this approach needs detailed information about the attributes be-
longing to a set of equivalent equations and is thus not directly
applicable in an aggregation procedure. Therefore, it exceeds
the scope of this thesis.

This small example illustrates the theoretically shown validity of
the approach for ESOMs with independent time steps, but also
highlights that there is no guarantee for a good approximation of
the individual capacities of a large set of similar technologies (sim-
ilar costs, production of similar commodities, similar time series).
This, in turn, supports the earlier mentioned finding that only the
derivation of the TAC is a meaningful measure for the quality of an
aggregation, if feasibility of the design and operation are given.

1.2.2.2. An Upper Bound for ESOMs with Linked Time Steps

If the energy system model comprises linking constraints between
time steps, the energy system model is generally not symmetric
after step 1 of the aggregation workflow. Accordingly, the equaliz-
ing of variables and their subsequent substitution as described in
step 2 is required in order to reduce the complexity of the energy
system model.

As mentioned earlier, the equalizing of variables is always a re-
striction of the optimization problem and therefore in line with the
overall target described in this section to overestimate the optimi-
zation problem. Concretely, those variables are equalized that de-
scribe corresponding system features in different time steps if
these time steps are assigned to the same cluster. As an example,
the operation of a component is defined for three time steps, i.e.
OPcomp,;t ¥ t € {1,2,3}. Then, if the time horizon is clustered and time
step 1 and 3 are assigned to the same cluster, it is assumed that
OPcomp,1 = OPcomp,3- The last partial step within step 2 is the removal
of those constraints, which have become identical due to the
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equalizing of variables. More concretely, those constraints are re-
dundant, which refer to time steps of the same clusters and do not
couple time steps with each other. This means simultaneously that
e.g. storage constraints should not be removed in the aggregation
process and remain part of the aggregated problem. If this rule is
followed, i.e. if time-coupling constraints are not removed from the
aggregated optimization problem, it can be guaranteed that the ag-
gregated program with systematically over- and underestimated
coefficients according to Table 1.1 remains an upper bound o the
reference program.

[.2.3. Lower Bounds

In order to define the maximum aggregation-induced error, a lower
bound is needed as well. In accordance with the previous section,
the following one will first focus on temporally decoupled systems
and will then specify how a lower bound for temporally decoupled
systems can be achieved using symmetry and by symmetrizing
generally asymmetrical linking constraints.

1.2.3.1. A Lower Bound for ESOMs with Unlinked Time Steps

For temporally decoupled systems, the approach to determine
lower bounds is analogous to the procedure for determining upper
bounds. The only exception is that the min(x)-operator is swapped
with the max(x)-operator. This means that for the given optimiza-
tion problem

min(cdx, + cfx,)

s.t. AiXg + Bxy = brusy

dl; < Cixp + Dix¢ < duy

Xo € R]Jf,xt € R]I

co E R0, ¢, eRIT

A € REaX)o B € RiEaXIT v teT

C; € RiNeaXJo, D, € RlNeaXIT v t €T
brust € R'E9,dl;, duc ER'Nea v teT

(1.40)

it is again sufficient to focus on the term dl; < Cixy + Dix¢ < du;
only. Using the index notation of this equation

Jo T

dlineqrt < Z CineqrjﬂrthO:o + Z dineq:jt:txjtrt < duineq,t \4 ineq € Ineqlt €T (|.41)
jo jt
We can again specify the two constraints for an arbitrary design
variable in case Cineqio=At is positive:
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1 Jo It
Xjp=a0 = | dli; 0t — Z CineqiotXjo0 ~ Z QipegiotXipt | ¥ ineq € neqt €T (1.42)

G o
ineglo=At jomA n
1 Jo Jr

Xjg=no S T | Ui q0 — Z CineqiotXjo0 ~ z diyegqotXiet | V¥ ineq € lneq tET  (1.43)
ineqio=At joFA n

And two constraints in case Cinegio=At is negative:

1 Jo It
X020 € Blpsgt = D Creqio¥o0 = ) GirgitXvt | ¥ inca € lneqrt €T (1.44)

Cineqio=At

Jo®A it
1 Jo Jr

Xjg=a0 2 T | AUyt — Z CineqiotXjo0 ~ z dipequtXiet | V' ineq € lneq tET  (1.45)
ineqio=At oA T

Again, only the first one and the fourth one are binding if it is as-
sumed that all cost coefficients are positive. Furthermore, the proof
is analogous for time-dependent variables.

Here, the first inequality becomes less restrictive if the right hand
side is underestimated because x;,—,, is tried to be minimized for
a positive corresponding cost coefficient. Accordingly, an underes-
timation is:

It

1 Jo
Rjy=r0 = ——— | min (dli t) - max (Ci i t) Xjp0 — max<di j t) Xt
0=A, M ( Hine, tecn Cineadot ) Xjo tecy \ineqiet) Rt .46
?;g;‘ Cinegio=At joFA it )

V ineq € Ineqs t €T
As explained above, the fourth inequality is only a binding con-
straint if both factors on the right hand side are negative. Other-
wise, the expression is negative and ; _io = 0 is the binding con-
straint. This means that the expression decreases if the denomi-
nator is negative but moves away from zero and the numerator is
negative but gets closer to zero, i.e.:

Jo It
N . . la
Ri = ——— | max|(dy; - min(c¢_ 5 o)X 0— ) min(d; )X
jo=A0 =" ( Ineq.t) ( ‘neqvlont) jo.0 ( ‘nequt:t) jet
mi ( ineq,io:h) teCx teCy teCy (|47)

e joA e
Y ineq € lneg tET

For objective function, an underestimation of the original costs is
achieved by:

: T T : T s T
min(cj; oXjo,0 + CjiXjet) = min (Cjo.oon,o + ?;g]}(cjt.txjt,t)) (1.48)
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The following table summarizes the required over- and underesti-
mation of FINE-specific time series in order to achieve a system-
atic underestimation of the reference system based on aggregated
data:

Table 1.2.Time series to be over- or underestimated in order to receive a
lower bound of the fully resolved reference system

teCy, teCy

Capacity factors ®
Conversion factors ®
Demands x
Supplies ®
Costs x
Revenues ®

1.2.3.2. A Centroid-Based Alternative Lower Bound

In case that time-dependent variables of a temporally decoupled
optimization model do not have a time-dependent cost contribu-
tion, it can also be shown that a centroid-based representation of
the energy system’s aggregated time series lead to a tighter lower
bound of the energy system model. This effect was frequently ob-
served for capacity expansion models combined with k-means
clustering, in which the time-independent capacity costs have the
biggest impact on the overall costs. Theoretically, this was shown
by Teichgréber et al. [47] in case of time series in the upper bound
vector du. In the following, we further generalize this approach to
time series contained in either the matrices A,, B, C;, D; or the con-
straining vectors bgys, dl, du. For this, it is again sufficient to focus
on the inequality dl; < Cixo + Dix¢ < du, only. In index notation, we
yield:

Jo T

dlipeqr < Z CineqiotXioo + Z ipeqivtXipt < Ui oot V ineq € lneq t €T (1.49)

jo jt

The representation of clustered time steps by centroids leads to
the following inequality:

Jo It
—1 dl < —1 + —1 d < —1 d
E ineqt = E E CineqiotXjo.0 E 2 ineqietXjpt = E Uipeqt
[Cl & [Cl &4 ICil £ ]. [Ckl & (1.50)

€Ck Jt
v ineqelneq,kEK

As this constraint is a linear combination of the preceding equation
with respect to those time steps that are assigned to the same
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cluster, the constraint is not further restricting the original problem
if it is applied time step and variable wise (ipeq € Ineq, t € T). There-
fore, it can be added to the original set of constraints without in-
creasing the optimal solution. If the original equations are then re-
moved, the original problem is relaxed because the removal of con-
straints is always a relaxation of the original problem unless the
removed constraints are not linear dependent.

Due to the fact that the energy system model is assumed to be
temporally decoupled and the cost contributions of all time-de-
pending variables are considered constant, i.e. ¢j ¢, = Gj,¢, V t1,t2 €
{1, ..., T} and accordingly also ¢ ¢, = ¢, V t1, t; € C, the optimiza-
tion problem is then symmetric with respect to those time steps
that are assigned to the same cluster. As the optimization problem
is convex in case of a linear program, the optimal solution of the
corresponding operating variables is also symmetric, i.e. xj . =

X v, = X,k V t1,t; € C. For time-independent variables, this holds
anyways.

This proof generalized theorem 2 provided by Teichgraber et al.
[47] for time-dependent coefficients in equality or inequality con-
straints. In case of FINE, these are e.g. time series for capacity
factors and therefore an important generalization for renewable en-
ergy system models. Apart from the proof based on linear combi-
nations, the error due to averaged time series can more formally
be quantified for time-independent variables as presented in Ex-
cursus 8.

Excursus 8: Error of Temporally Averaged Constraints and Time-Independ-
ent Variables

If we resolve the equation above for a time-independent variable
Xj,=n,00 W€ 0ODtain Vineq € lneq, t € TA Yiec, Cipeqio=at > 0

1 Jo It
Y P — Z e Z CineqlotXjo0 ~ Z ipeqietXiet | (1.51)
teCk “ineqo=At jt

teCy joEA

Jo It
1
Xg20 S5 ) | Qineqe = 2 Cineqiot¥ioo = 2, dineqiee¥iet | (1:52)
teCk “ineqo=At i

teCy joEA
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And Vv ineq € Ineq,t ETA ZtECk Cineq»j0=)\ut <0:

1 Jo It

Xjo=ho S F————— Z dlipeqe = Z CineqiotXio0 ~ Z inegietXiet | (1.53)
teCk “ineqio=At {€Ck fomr 7
1 Jo It

1.54

Xjo=n0 Z 37— z Ujpeqt = Z CinegiotXjo,0 Z Qipeqotiee | (1-54)
teCk “ineqio=At t€C) jorh T

For the fully resolved case, we obtain, analogously to the previ-
ous sections, the constraints V ipeq € Ineq, t € T A Cinegio=at > 0:

1 Jo T
Xj0=)\v0 2 Ci it dlineq:t - Z Cineq:jOrthO:O - Z dineq:jt:txjtrt
neqJo=4A, jo7A =
. : (:55)
1
= rtg%])(( C: N dlineq:t - Z Cineq:jOrtX]'O:O - Z dineq:jt:txjtrt
ineglo=At frees) -
1 Jo T
Xi0=)l:0 = G ot duineq:t - Z CineqviorthO:O - Z dineq:jtrtxjtrt
neqJo=4A, jo#A T
. - (1.56)
1
2 AU, r = Z CineqiotXjo0 ~ Z QipegintXijet
neqJo=4A, joA Tt
ANd Vipeq € Inegs tETA Cinegio=pt < 0:
1 Jo It
K=o < o | dlineqt = Z CineqiotXjo0 ~ Z ineqietXjet
el jo=A it
" - (1.57)
1
=min| | Wineat ~ Z CineqiotXjo0 ~ Z ineqietXiet
gl jo=A it
1 Jo T
I L Z CineqiotXjo0 ~ Z igeq etXit
Tneqo=At joA Tt
(1.58)
1 Jo T
= 1;2?5(( G jo=ht duineq't - Z Cineq'jo'txio'o - Z dineq'jt'txjt.t
neqJo=A, joFA Tt

Here, the second line of each equation emphasizes that the up-
per and lower bounds of a variable are always defined by the
most restrictive constraints. Therefore, taking only the most re-
strictive constraints of all time steps assigned to the same cluster
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t € Cx does not change the feasible range of each time-independ-
ent variable x; -, o. In case of an upper bound, the most restrictive
constraint of a constraint class i,eq is the minimum one of that
cluster, and in case of a lower bound, it is the maximum one.

From Excursus 9, we receive the following inequalities Vin.q €
Ineq,t ETA Cineqn].():}\‘t > 0:

Jo It

1
Xjo=2,0 = I":I'EI(E:ll)(( C: ot dlineqvt - Z Cineq.jo.txjo.o - Z dineq.jt.txit.t
ineqio=A : -
neq-Jo joEA Tt
(1.59)
Jo It
1
2 ZtEC C: g dlineq:t - Cineq:joltxjo'o - dineq,jt'txjt.t
k “Ineqlo=At (2F g -
k jo*A it
Jo T
. 1
Xjg=po < M| om———| AUineqt = 2, CineqioXjo0 = 2, dineqieXict
1 Jo=A, h n
meeply joEA jt
(1.60)
Jo T
1
s Y C duineqrt - CinegiotXjo.0 — dineqrit:txit,t
teCk “ineqio=At 4 -
a teCk jo#A jt
And V lneq € Ineq,t ETA Cineq'joz)l't <0:
Jo IT
. 1
Xjo=20 s {2(1;2 C G dlineqrt - Cineq,jo,txjo,o - dineq,it,txjt,t
ineqjo=M : -
o jo#EA jt
(1.61)
Jo T
1
S T—— dli 0t~ ) CinegiotXio0 = ) QineqiotXjet
tECk “ineqio=At teCy jo#*A jt
Jo JT
1
Xjp=p0 Z Max | ———| du;, ;= Z CineqiotXjo0 ~ Z ineqittXiet
lie ineqjo=At jo7A n
(1.62)
Jo JT
1
2 e Z QU qt = Z CineadotXjo0 ~ Z ineqietiut
teCk “ineqjo=At t€Ck o= T

As the upper bounds based on averaged coefficients are bigger
than the original bounds and the lower bounds based on aver-
aged coefficients are smaller than the original bounds, the con-
straints as defined by averaged coefficients obviously define
looser bounds for time-independent variables.

Graphically, the impact of averaging the coefficients in the con-
straint matrix on the feasible space of time independent variables
can be illustrated by the following example:
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Consider a feasible space F given by:

F={x= (i) € R2] dlneq, < Creq,X A dlreq, < Creq,x A dlreg,  (1.63)
Wit < CpeqeX A dlneq, < Cneq, X}

| Coer = (% 1) dnen = (55) (1.64)

Cocas = (3 1) lneg, = () (1.65)

Caeas = (% Z1)dlnea, = (75) (1.66)

Creas = (T3 77)rdneq, = (g (1.67)

It is now assumed that the first and second equation of each ma-
trix describe constraints for two different time steps. If these time
steps are now aggregated by averaging the coefficients in all ma-
trices and constraint vectors, we yield:

Cneq1 = (-0.75 1)'Eﬂneq1 = (—1.5) (|68)
Cneqz = (15 1), mneqz = (4) (|69)
Chegs = (075 —1),dlyeq, = (=3) (1.70)
(1.72)

Cneq4 =(-15 -1, a]neq4 = (-11)

The feasible spaced based on aggregated data with averaged
constraints for the time-independent variables is then given by:

< Cneqzx A Eﬂneq3 (|72)

Figure 1.12 illustrates the impact of averaging the constraints that
define the feasible space F. As it can be seen, the feasible space
based on the original set of constraints is smaller than the one
based on aggregated data F. If the objective function is not af-
fected by the aggregation, i.e. if the direction of the objective
function’s gradient remains the same, which is the case for time-
independent cost contributions of time dependent variables, this
is obviously a relaxation of the original problem.
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3-- I feasible space I
2.
1..

0 0
0 4 5 X1 0 1 2 3 4 5 X

Figure 1.12. The feasible space F and the feasible space based on averaged
constraints F

Excursus 9: Proof for Extreme Values of Sets of Ratios
Given two sets of values a;,b; € R with i =1, ...,n. Then, the fol-

lowing inequalities hold:

max( ) ?El v Zb >0 A max( )<2131 v Zb <0 (1.73)

mm( ) g:a: v Zb >0 A mln( ) E v Zb <0 (|_74)

Proof:

a
= b; b] <b; max (bi) v jefl,..,n}

= Zai < Zbi miax (b—i) (|_75)
@max( ) g';' v Zb >0 A max( ) Z'al v Zb <0

And

]b_

:ZaiZZbimiin(b—:) (1.76)
@mlln(b)SZIal v Zb >0 A mln(;>> il v Zb <0

b I > p, mm(;i) Vv je{l,..,n}
1

Excursus 8 shows exemplary that averaging of constraint coeffi-
cients leads to a relaxation in case that the cost contributions of
time-dependent variables (e.g. operation variables) are time-inde-
pendent (e.g. the cost of operating a component is constant for each
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time step) and in case that the energy system is temporally decou-
pled. This is also the reason that aggregation algorithms such as k-
means that use centroids as representation often lead to an under-
estimation of system costs and necessary capacities, which is fre-
guently described in literature. This can also be the case if the time
dependent operation costs of components in general and the ca-
pacity-costs of time-coupling storage components are small com-
pared to the capacity-specific costs of the other components. How-
ever, in these cases it cannot mathematically be guaranteed any-
more that averaging is providing a lower bound. Therefore, the next
section will also specify under what conditions the aggregation of
time-coupling constraints is not a restriction to the desired lower
bound.

At this point, it is worth mentioning that averaging is generally
providing a tighter lower bound then the proposed method of over-
and underestimating the time series listed in Table I.2. This is
shown in Excursus 10.

Excursus 10: Proof That a Lower Bound Based on Averaging is a Tighter
Bound Than Based on Over- and Underestimation
As
Z Cineqio=pt = |Ckl {gg; (Cineq.jo=m) = Z o (Cineq.io=x,t) (1.77)
teCy teCy
Z Cineqlo=ht = Z s (Cineqiore) = 1G] max (Ctaeato=nt) (1.78)
teCk teCy
And
Jo It
Z dlieqe = Z CineqiotXjo.0 ~ Z ineqietXjet
teCy jo#A T
Jo JT
; .79
= Z o (dlineq,t) - Z e (Ci.wq.jo.txio,o) = B (dim.jt.txit,t) (1.79)
teCy jorA it
Jo JT
= |Ckl rtggf (d]ineq,t) - Z gelglz (Cineq,jo,tho,o) - {Eé‘lf (dineq,jt,txjt,t)
jo#A jt
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Jo It
Z dlineq:t - Z Cineq,jo,tx]'o,o - Z dineq:jtrtxjtrt
teCk joEA it
Jo JT
= Z o (dlineq.t) - Z i (Cineq.jo,txio,o) =) (dineq,it.txit,t) (1.80)
teCy joEA jt
Jo JT
= |Ckl e (d]ineq,t) - Z e (Cineq,jg,txjo,o) = ,/5 (di“eq,jt,txjt,t)
jo#A jt

The following holds Vineq € Ineq, t € T A Cipegjo=at > 0

Jo JT
_t 1
Xg=n0 25— — it = ) CineqiotXio0 ~ 2 dineqjut¥jue
teCk Cineqjo=At

teCy jo#EA jt
) . . (1.81)
> 7( ) iy (dlineq,t) - Z ez (Ci“e,_l,io,t) Mo = )., T (dineq,jt,t) Xjt
{2%"5 Cineqio=At jo#A %
1 Jo IT
L — Z g = Z CineqiotXio0 ~ Z CRWRECR:
A (.82)
1 Jo It
< —————{ max(du ) = D" 10 (Congiot) X0 = - i (diegie) Xt
oo (Cineq.joﬂ.t) joA it
And V lneq € Ineq,t ETA Cineq‘].():}ht <0:
1 Jo JT
Xm0 S§——— z dli e = Z CineqiotXjo0 ~ Z Qi je Xt
t€Ck Cineqjo=At 4 -
k “lneqJo teCk joFA Tt I 83
1 Jo It ( . )
< 7( ) i (dlineq,t) - Z ez (Cineq,io,t) Xjo = 2 Max (dineq,jt,t) Xt
{2%}’5 Cineqlo=At jo#A Tt
1 Jo Jr
L — Z e = Z CineqlotXio0 ~ Z QipeqietXjot
tECk Hneado=At {eg, for T (1.84)

Jo It
z m<i“%ﬁ‘ () ‘;Eéﬁ(cineq.iovt) e T TCRY e
Here, the first right hand side of the equations shown above is
the upper or lower bound as obtained by averaging constraint
coefficients and the second right hand side as obtained by sys-
tematic maximization of minimization of coefficients for a system-
atic underestimation of the objective. As the upper bounds of var-
iables based on averaged coefficients are further overestimated
by the systematic minimization and maximization of coefficients
and as the lower bounds are further underestimated respectively,
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the averaging of coefficients based on centroids used as repre-
sentation method after clustering is a tighter bound than the sys-
tematic over- and underestimation of coefficients. Here, the proof
for time-dependent variables is completely analogous.

The validity of the previously shown approaches is now illustrated
with the example, which was already used for the upper bounds.
This example for lower bounds was also published in a prior pub-
lication by the author of this work [2].

Example 7: Two kinds of lower bounds for a simple temporally decoupled
problem
The cost minimization problem from Section 1.2.2.1 reads

€ d
in(TAC) = min( C 120———+C 100 ———— ) * 365—
min( D) mln( APcomp1 * MWineed + Capcomp2 * MWinstd) * a2

t. 0.25————* Cap, +02———=*C > 1MWh
s.t L * La . * La) =2
Mv‘/inst comp1l Mvvinst pcumpz

02— =*Ca +0.25——=*Ca = 1MWh .
Mwinst pcompl M‘Ninst pcompz

MWh C +0.2 MWh
* :
Mwinst apcompl M‘Ninst

MWh

0.2

* CaPcompz = 0.8 MWh

0.25

MWh
* CaPcompy + 0.25

* Cap > 1 MWh
inst M inst comp2

and is once more shown in the upper diagram of Figure 1.13 for
the sake of clarity.

Capgomp2 feasible space
5MWh,,,‘?
W Capcompt
Capcomp2 feasible space  CaPcomp2 feasible space
AW MW
MWy Capgomp1 MWt Capgomp1

Figure 1.13. The problem introduced before with lower bounds based on the
proposed minimization approach and based on averaging
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The first proposed approach is analogous to the method for up-
per bounds and is based on the representation of a cluster’s at-
tributes according to Table I.2. For the simplified model, in which
all four constraints are assigned to the same cluster, this leads
to the following values:

Ca 0.25—— MWh
APcomp1 = Mwmst
— MWh 1.86
Capcompz = 0.25 MW, ( )
inst

Dem = 0.8 MWh

The underestimating aggregated constraint according to the first
proposed method is thus:

MWh MWh
0.25 * Capcompr + 0.25

M inst inst

* Capcompz = 0.8 MWh (1.87)

This constraint is represented by the green line in the lower left
picture of Figure 1.13. The cost-optimal component sizes accord-
ing to this approach are  (Capiomp1|CaPiompz) =
(0 MW;,st13.2 MW;61), Which leads to total annual costs of

min(TAC) = 320%* 365§ and is accordingly smaller than the ref-

erence case of 488, §§ * 365 g. Because this method is the corre-

sponding underestimation method to the overestimation method
proposed in Section 1.2.2.1, it suffers from the same sensitivity
to equations of different scales and is, in general, not a very tight
lower bound. Therefore, we also investigate the impact of the
underestimation method based on averaging.

For this, each cluster is represented by their centroid. As only
one cluster is considered in this example, all time series are rep-
resented by their averages. This leads to the following capacity
factors and electricity demand:

N MWh
Capcompr = 0.225 MW, .
_ MWh (1.88)
Capcompz = 0.25 MW,
inst

Dem = 0.95 MWh

This further leads to the following constraining linear equation,
which is represented by the green line in the lower right graph of
Figure 1.13:

MWh M
0.225 * Capeompr + 0.225

inst inst

* Capcompz = 0.95 MWh (1.89)
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The optimal layout of the energy system is now
(Captomp1|Capiompz) = (0 MWipet|4.2 MW,)  with total annual

costs of FIA(TAC) = 422.25 « 365 g

This illustrates that the centroid-based representation provides a
tighter lower bound than the previously proposed underestimation
method. However, it needs to be evaluated whether the proposed
methods remain lower bounds if temporally linking constraints are
considered.

1.2.3.3. A Lower Bound for ESOMs with Linked Time Steps

As already mentioned for the upper bounds, energy system models
with linked time steps are generally not symmetric after step 1, i.e.,
even if the equations of those time steps, which are assigned to
the same cluster, are identically parametrized. However, the
straightforward equalizing of those time step specific variables,
whose time steps are assigned to the same cluster, cannot be ap-
plied if a lower bound of the original should be found because this
would be a restriction and would therefore overestimate the lower
bound determined in step 1. The only way to avoid an overestima-
tion in step 2 is thus to ensure that time steps assigned to the same
cluster are symmetric despite of their temporal coupling. As will be
shown in the following, this can only be achieved if the clustered
time steps (or periods) are adjacent.

As shown earlier, the state of charge of storage components is
given by:

1
SOC(t+ 1) = SOC(t) * Nsq + Ne * 05t () — 0 ogea(t) V te{L, .., T} (1.90)
d

This equation can also be expressed as an explicit equation:
t 1 t
S0C() = S0Cy g +1e~ ) Mha - 0seeD = D mha -0sea®  (1:92)
i i

According to step 2 of the workflow, the first step is to remove con-
straints that impede a symmetry with respect to the time steps to
be aggregated. It is not directly obvious for what cases the con-
straint at hand is symmetric. However, the self-discharge rate ngq
leads to an exponential expression that impedes symmetry for val-
ues ngg = 1. If ngg = 1 is assumed, the state of charge can be cal-
culated as follows:
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: 1
SOC(t) = SOC, + Z (nc ose() — = 05t,d(i)> (1.92)

This equation is neither symmetrical, but significantly simpler to
interpret. If we now consider that only adjacent time steps are clus-
tered, e.g. the specific time steps t; and t; + 1, the constraints
above yield for a storage component in these two time steps:

1
SOC(t; + 1) = SOC(ty) + Mc - 0sc(ty) — — 0Ost,a(t1) (1.93)

1
SOC(t; +2) = SOC(ty + 1) + 1 - 0gc(ty + 1) — n— “0sra(ty +1) (1.94)
d

Substitution into the second equation yields for the second equa-
tion:

SOC(t, +2) = SOC(t,) + e - (0ste(ty) + Oseelts + 1))
1 (1.95)
T (OSt,d(t1) + 0gpalt; + 1))

For a symmetry with respect to the time steps t; and t, + 1, the
constraint for SOC(t; + 1) needs to be omitted. As mentioned
above, the removal of constraints is a relaxation and thus only
leads to a further underestimation the of the original optimization
problem. The last remaining constraint for time-linking storage
components, for which symmetry needs to be shown, is thus de-
rived from the constraint for SOC(t; + 2):

fo(x) = SOC(t;) + e - (osm(tl) + 05ty + 1))
- 1.96
== (Osta(t) + 0sealty + 1) = SOC(t +2) =0 (1.96)

As shown in Excursus 6, a set of constraints is symmetrical if the
optimization problem is convex (given for all linear programs) and
can be transferred into each other with a transformation matrix. For
the constraint function f,(x) above, this can be shown as follows:
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[

Ne
/ Ne \\ 0 1 ( Ostc(ty) \
f,(Qx) = SOC(t,) + | -—— | (1 0 > \OS“(t‘ U SOC(t; +2)

Na 0 1 0st,a(ty)
1
Na

10/ \ogea(t; +1)
1
=500(t) + e+ (0see(t) + Ogtety + 1)) = = (Osta(ts) + Osta(ts + 1) = SOC(; +2)

=S0C(t) + .- (OStc(tl +1D+ OStc(tl) 1 (OStd(tl +1)+ OStd(tl)) —SOC(t; +2) (I 97)
T]C

Ne Ostc(t1)
OStc(tl + 1)

=S0C(t,) + | -— | osealty) —S0C(t, +2)
Ogpalt; +1)

=f(x)

This means that now also the time-dependent charge and dis-
charge rates of an arbitrary storage component are symmetric to
its adjacent time step and that the time steps are symmetric to each
other despite of their linking if all the other (temporally unlinked)
variables and constraints are identically parametrized, which is
guaranteed by step 1.

As shown in the previous section, also complete periods of time
steps can be interpreted as candidate blocks for temporal aggre-
gation. While an underestimation within these periods can already
be achieved with the proposed minimization and maximization
technique of time series according to step 1 of the workflow, a
lower bound to an energy system model that considers seasonal
storage can only be found if the clustered periods are adjacent.

To sum up, finding lower bounds to the original optimization prob-
lem based on temporal aggregation is a much more challenging
task than finding upper bounds as it requires a profound knowledge
on time step related asymmetries in the original optimization prob-
lem. With respect to models, in which the state of charge equation
for storage components is the only asymmetric equation, which is
the case in the models that were considered in the scope of this
thesis, one can state that two conditions have to be fulfilled in order
to find a true lower bound:

1. The self-discharge has to be zero or underestimated to be
zero

2. Periods to be clustered have to be adjacent. This is an ex-
ceptional side constraint for the clustering process. Further
segmentation to an even smaller number of time steps is
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possible, as segmentation always considers adjacent time
steps only.

Finally yet importantly, it needs to be highlighted that the validity
of the introduced workflow has been shown and that it can be dy-
namically adapted to the problem structure at hand. This system-
atic procedure as well as the extension of proofs for over- and un-
derestimating temporal aggregation techniques to temporally cou-
pled systems are the major contributions of this chapter and a nov-
elty of this work, although similar concepts existed before that were
proven for narrowly defined and temporally decoupled problem
structures only.
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J. Techno-Economic Model Assumptions

In the following, the techno-economic data for the island system,
the self-sufficient building and the electricity dispatch model are
listed. The data for the latter two models was also published in a
preceding publication by the author of this work [2].

J.1.Model Assumptions for the Island System Model

The component parameters of the island system model are derived
from Kotzur et al. [20] and described in Appendix J.1. Despite the
fact that the parameters are fictitious and are not discussed in de-
tail because the model is not meant to mirror a real energy system,
their scale is roughly oriented at real cost, efficiency and lifetime
values. Further, an interest rate of 4% was assumed.

Table J.1. Unit parameters of the island system derived from Kotzur et al. [20]

S| | :
o |z 2 g glg
% W, “2 > >0 | £ &)
; : S ERIEREEE
n 2 <|%|o8|8s|a_]E
o i W | S| g8o|oo|s @
< L A ([E|lcE| 2|03 =
@] o O jlwjow|ow|wn 4
EEEICIETH 50 100 8 100 0 20
Wind Energy 1,000 100,000 20 2,000 O 20
Backup Plant 1,000 O 30 0 0.2 25
Electrolyzer 500 100,000 15 3,000 O 70 15
Fuel Cell 1,100 100,000 33 3,000 0 50 15
Battery 300 0O 3 0 0 96 96 0.05 15
Hydrogen Storage [l 0 0 O 0 90 1 0 25
As shown in Table J.1, the wind Cost Battery
farm, the photovoltaic plant, the
electrolyzer gnd the fuel_ ce_ll are T ragen Subsyetem
modelled with capacity-inde-
pendent fixed expenditures e
(CAPEXFix and OPEXFix) if the
components are chosen to be
built as well as capacity-spe-
L . . Capacity
cific capacity- and operation ] )
Figure J.1.Trade-Off between fixed
costs (CAPEXcap and  anq capacity-specific expenditures

OPEXcap). In contrast to that,

315



J. Techno-Economic Model Assumptions

the storage components, i.e. the battery and the hydrogen pres-
sure vessels are modelled by linear capacity-specific costs only.
However, as the hydrogen pressure vessels can only be linked to
the electric subsystem via the electrolyzer and the fuel cell, the
hydrogen subsystem for storing energy has fixed expenditures it-
self if it is chosen to be built. This setup favors the hydrogen sub-
system for storing large amount of energy for a long time period,
while the battery is economically more convenient for short term
storing cycles, which is schematically shown in Figure J.1. Here,
the fixed expenditures of the relevant components - in case of their
construction - are modelled with binary variables, which turns the
optimization program into a mixed-integer linear program. The
backup plant meanwhile is considered to exist already. For that

are its

reason, it is assumed that energy specific costs of Zokxh

only cost contribution.

The island system considers three different input time series,
namely the capacity factors of the wind farm and the photovoltaic

plant in —_Wel _ and the electricity demand in kWg,.
KWinstalled

For the electricity demand, the ENTSO-e profile for Germany in
2013 was used and normalized to 1 MW peak demand in order to
achieve a more realistic sizing of an island system. However, it
needs to be highlighted that the profile is not representative for
demand profiles of that range because they normally do not con-
tain industrial base loads in contrast to the cumulative electricity
demand profile of Germany. Both, the electricity demand and the
capacity factor time series for the wind feed-in are drawn from Ro-
binius et al. [238], while the capacity factors for the photovoltaic
plant are determined with PV-Lib [239].

In summary, the island system is not suitable to derive findings for
a real application. However, the fact that it considers binary varia-
bles and three substantially different time series as well as two
different storage technologies enables it to answer research ques-
tions on the accuracy of the temporal aggregation with respect to
the components’ dynamic behavior.
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J.2.Model Assumptions for the Self-Sufficient Building Model
A detailed discussion of the cost parameters is presented in the
thesis of Roben [240] and is not repeated at this point for the sake
of brevity.

Table J.2 provides an overview of the components’ cost contribu-
tions and the data is qualitatively discussed with respect to its
meaning for the model from a mathematical point of view.

Table J.2. Cost parameters of the self-sufficient building
(taken from Hoffmann et al. [2])

Capex Opex Life- [Source
time
Components Fixed Variable Fixed
+ Variable

Photovoltalc GR 4000 €/kW % Inv./a a
— 769 elkwp 1 %lInv./a 20 a [241]
— — 75 €W, — — 20 a [242]
— 301 €kWh, — — 15 a [241]
_5,000 € 2,400 €kW,, 1 %Inv/a 15 a [240]
4,230 € 5049 €kW, 15 %Inv/a 20 a [243]
— 90 €/kWhn 0.01 % Inv./a 25 a [244]
— — 60 €KW, 2 %lnv./a 30 a [244]
E-Boiler
B — 079  €kWh,, — — 25 a [245]
— — 125  €kWh,, — — 25 a [246,
247]
— — [z €/kWh,, — — 25 a [248]
D 21233 € 7611 €kW,, 1  %lInv/a 20 a [246]
EENCHE 140 € 4086 €KW, 1 %Inv/a 20 a [246]
[LP-Compressor [B — 1716.71 €KW, 1  %Inv/a 25 a [249]
SISl 560 € 13298 €KW, 1  %Inv./a 25 a [249]
— — 1 €KW, 1  %linv/a — a —
1 and 2
— —1 €KW, 1 %Inv/a 25 a —
and 2

If cost curves of the respective components were available, they
were approximated by an inhomogeneous linear function with a bi-
nary fix cost, if the component is chosen to be built, and a contin-
uous capacity specific cost contribution. As Table J.2 reveals, this
applies for the rSOC, the heat pump, the (de-) hydrogenation units
and the high-pressure compressor. Analogously to the preceding
island system, this feature turns the optimization model into a
mixed-integer linear program. Besides, the cost for the organic hy-
drogen carrier (dibenzyl-toluene) is implicitly added to the capacity
specific costs of the LOHC storage.
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Apart from that, the non-referenced data needs to be explained in
detail. The disproportionally high costs of the ground-mounted
photovoltaic panels can be interpreted as an arbitrarily high pen-
alty factor. This guarantees that the rooftop panels are favored in
any case because ground-mounted photovoltaic panels are so-
cially not accepted in the residential sector. Yet, the option is still
considered in order to ensure that the system is always feasible
(even if the building’s energy demand would be unrealistically
high). In contrast to that, the heat exchangers and the expanders
do not contribute significantly to the overall costs of domestic re-
newable energy systems. However, in order to avoid an indifferent
solution with arbitrarily sized heat exchangers and expanders,
marginal costs of these components are implemented.

Finally yet importantly, “the time series data of the building model
comprises five different time series with hourly resolution: Three
solar profiles for the three differently oriented PV modules as well
as the electricity and the heat demand time series. The profiles
were generated using the open source software tsib [250, 251],
which was used to transform weather information such as global
horizontal irradiance and ambient temperature into demand pro-
files for archetype buildings and capacity factors for renewable en-
ergy sources used in the domestic sector. The raw weather data
used for generating the input time series is based on the COSMO
dataset [252-254] at the location of Berlin for the year 2013.” (Hoff-
mann et al. [2])

J.3.Model Assumptions for the Electricity Dispatch Model

“The list of plant technologies for the electricity dispatch model,
their rated power, and position are drawn from the Federal Network
Agency (Bundesnetzagentur) for 2019 [255] as well as the Interna-
tion Energy Agency (IEA) and Nuclear Energy Agency (NEA) [256].
The data for the length and capacity of the inner- and trans-Ger-
man transmission lines are derived from the preceding project
SciGRID [257]. The geoinformation data used for the illustrations
was obtained from Eurostat [258]. The electricity demand time se-
ries are taken from the ENTSO-E Transparency Platform [259] and
regionalized using data from the Country Working Group on En-
ergy Balances (Landerarbeitskreis Energiebilanzen) [260] and the
Federal and State Statistical Offices (Statistische Amter des Bun-
des und der Lander) [261]. Finally, the import costs per country

318



J. Techno-Economic Model Assumptions

and the capacity factors for renewable energy sources were all de-
rived from the ENTSO-E database for the year 2019 [259]. The
techno-economic assumptions of the generation units are depicted
in Table J.3.” (Hoffmann et al. [2])

Table J.3. Cost parameters of the dispatch model
(taken from Hoffmann et al. [2])

Compo- Efficiency Operational Cost Emission Factor Number
nents of units

38-45 % 22.2-23.0 €/MWh 0.016 tcoz/MWh 16,157

41-63 % 5.0-8.7 €/MWh 0.204 tcoz/MWh 90
(combined)

29-42 % 4.2-7.0 €/MWh 0.204 tco2/MWh 184
(simple)

23-50 % 10.6-16.8 €/MWh 0.342 tcoz/MWh 77
20-43 % 11.1-19.3 €/MWh 0.4 tcoz/MWh 60
33 % 7.5 €/MWh 0 tco2/MWh 7
30-40 % 4.8-8.4 €/MWh 0.266 tco2/MWh 47
Hydro 75 % 10.0 €/MWh = [= 74
(pumped

storage)

== 10.0 €/MWh = [= 7,254
(0]

o
Ph I- —_ - 7.5 €/MWh — | — 8,795
taic

(ground)

Photovol- — | — 7.5 €/MWh —_ — 1,991,267
taic  (roof-

top)

S 7.5 €/MWh — [ = 28,777
(on )

— [ = 17.0 €/MWh — | = 1,497
(offs e)

15-45 % 6.1-7.0 €/MWh 0.016 tcoz/MWh 463
(generation) -03

90 %  5.0-10.0 €/MWh == 112,154
(storage)
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