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ABSTRACT

IZA DP No. 15980 FEBRUARY 2023

Remote Work across Jobs, Companies, 
and Space*

The pandemic catalyzed an enduring shift to remote work. To measure and characterize this 

shift, we examine more than 250 million job vacancy postings across five English-speaking 

countries. Our measurements rely on a state-of-the-art languageprocessing framework 

that we fit, test, and refine using 30,000 human classifications. We achieve 99% accuracy 

in flagging job postings that advertise hybrid or fully remote work, greatly outperforming 

dictionary methods and also outperforming other machine-learning methods. From 2019 

to early 2023, the share of postings that say new employees can work remotely one or 

more days per week rose more than three-fold in the U.S and by a factor of five or more in 

Australia, Canada, New Zealand and the U.K. These developments are highly non-uniform 

across and within cities, industries, occupations, and companies. Even when zooming in on 

employers in the same industry competing for talent in the same occupations, we find large 

differences in the share of job postings that explicitly offer remote work. 
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1 Introduction

The COVID-19 pandemic propelled an enormous uptake in hybrid and fully remote work.

Over time, it has become clear that this shift will endure long after the initial forcing event.

Looking forward, U.S. survey data say that one-quarter of full workdays will happen at home

or other remote location after the pandemic ends, five times the pre-pandemic rate (Barrero

et al., 2021). The pandemic also drove large, enduring increases in remote work in dozens

of other countries (Criscuolo et al. 2021, Aksoy et al. 2022). There are few, if any, modern

precedents for such an abrupt, large-scale shift in working arrangements.

Most previous e↵orts to quantify and characterize this shift rely on surveys of workers

and employers and assessments of remote-work feasibility by occupation. We rely instead

on the information contained in job vacancy postings. Specifically, we consider the full text

of over 250 million postings in five English-speaking countries. In doing so, we apply state-

of-the-art language-processing methods to analyze the text and determine whether the job

allows for remote work. We fit, test, and refine our language-processing model using 30,000

classifications generated by human readings. We also identify the city, employer, industry,

occupation, and other attributes associated with each job vacancy.

Vacancy postings pertain to the flow of new jobs rather than the stock.1 In addition,

postings that promise remote work two days a week, for example, entail a commitment–or at

least a statement of intent–that extends into the future. For both reasons, postings need not

show the same pattern of remote work as the currently employed. Indeed, the remote-work

share of postings lags far behind the remote-work share of employment in the pandemic’s

early stages. And while the incidence of remote work among the employed fell markedly in

the two years after spring 2020, we show that the remote-work share of postings rose sharply

over the same period.

Our approach to studying the remote-work phenomenon has several noteworthy strengths.

First, our data cover almost all vacancies posted online by job boards, employer websites,

and vacancy aggregators from 2014 to 2022 in our five countries. Coverage on this scale is

infeasible with survey methods. Second, postings typically describe the job and its attributes

in considerable detail, as suggested by a median posting length of 347 words. Comparable

1Vacancy distributions by industry, employer size, and worker turnover rates di↵er greatly from the corre-
sponding employment distributions, and the di↵erences are highly sensitive to labor market conditions. See
Davis et al. (2012).

1



detail is hard to obtain from other sources, especially at scale.2 Third, we apply frontier

methods to develop a language-processing model that reads and classifies postings in an

automated manner. The model achieves a 99% accuracy rate in flagging jobs that allow for

remote work, greatly outperforming dictionary methods. Our model also outperforms a va-

riety of other methods. Fourth, the combination of scale, rich text data, and automation lets

us characterize the shift to remote work in a highly granular manner. We track the evolu-

tion of remote work at a monthly frequency in hundreds of occupations, thousands of cities,

tens-of-thousands of employers, and in city-by-occupation and employer-by-occupation cells.

We post many of these statistics at www.WFHmap.com, with frequent updates.

The share of postings that say new employees can work remotely one or more days per

week was tiny before the pandemic: 1% or less in Australia, Canada and New Zealand as of

2019, about 3% in the U.K., and about 4% in the U.S. From 2019 to 2022, this remote-work

share rose more than three-fold in the U.S and five-fold or more more in the other countries.

As of January 2023, the remote-work share exceeds 10% of postings in Australia, Canada,

the U.K, and the U.S., and it appears to be on an upward trajectory in all five countries.

Remote-work posting shares vary greatly across occupations, industries, and cities. Look-

ing across occupations, the remote-work share correlates positively with computer use, edu-

cation, and earnings. Finance, Insurance, Information and Communications have especially

high remote-work shares. Chicago, London, New York, San Francisco, Toronto, and other

cities that function as business service hubs have high remote-work shares. These di↵erences

have widened since the pandemic struck. According to a linear least-squares regression, 63%

of the variation across occupations in 2022 remote-work shares is accounted for by their 2019

shares. In contrast, just 28% of city-level variation in 2022 remote-work shares is accounted

for by 2019 shares.

We also find that the shift to remote work is highly non-uniform across same-industry

employers, even when they are recruiting in the same occupational category. This emergent

heterogeneity on the demand side expands opportunities to satisfy preferences over remote

work on the supply side.3 Our non-uniformity result also carries another important message:

in many occupations, it is misleading to think of remote-work suitability as a purely techno-

logical constraint. Remote-work intensity is, instead, an outcome of choices about job design

2Previous research exploits the detail in vacancy postings to study technical change, the cyclicality of skill
requirements, their relationship to wages, how compensation and other job attributes a↵ect applicant flows
and, of course, to classify jobs in a fine-grained manner. Examples include Modestino et al. (2016), Deming
and Kahn (2018), Hershbein and Kahn (2018), Davis and Samaniego de la Parra (2020), Forsythe et al.
(2020), Marinescu and Woltho↵ (2020), and Acemoglu et al. (2022).

3On preference heterogeneity in regards to remote work, see Bloom et al. (2015), Mas and Pallais (2017),
Wiswall and Zafar (2018), Barrero et al. (2021), and Aksoy et al. (2022).
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and how to operate an organization. These choices are influenced by the external environ-

ment and subject to shock-induced shifts. In line with this view, Aksoy et al. (2022) find

that employers plan higher levels of work from home after the pandemic ends in countries

that experienced longer and stricter government-mandated lockdowns during the pandemic.

Several recent papers use job postings to study the remote-work phenomenon. See Draca

et al. (2022) for the U.K., Alipour et al. (2020) for Germany, and Bamieh and Ziegler (2022)

for Austria. Bai et al. (2021) use pre-pandemic postings in the U.S. to construct firm-

level indexes of remote-work feasibility, which they relate to post-pandemic performance as

measured by sales, net income, and equity returns. Perhaps the closest forerunner to our

paper is Adrjan et al. (2021), who use postings data at the country-sector-month level to

study remote work from January 2019 to September 2021. Previous studies use dictionary

methods (keyword search criteria) to identify postings that allow for remote work.

In contrast, we apply a large-scale language-processing framework to the task, an ap-

proach that is rapidly di↵using in data-science applications but, thus far, is little used in

economics. First, we pre-train the DistilBERT framework (Sanh et al., 2020) on one mil-

lion text chunks drawn from vacancy postings.4 This step familiarizes DistilBERT with the

(heterogeneous) structure of job ads. Second, we consider 10,000 text chunks drawn from

vacancy postings and assign three human readers to label each one. The reader assigns a

positive label if the text says the job allows work from home (or other remote location) one

or more days per week. Third, we fit the pre-trained DistilBERT framework to the human

labels to obtain a model that classifies each posting as follows: the job allows hybrid or

fully-remote work arrangements, or it does not. Finally, we apply the resulting “Work from

Home Algorithmic Measure” (WHAM) to classify all 250 million job postings.

WHAM greatly outperforms a previously used dictionary in classifying the remote-work

status of vacancy postings. The dictionary method yields high classification error rates that

vary greatly over time and across occupations. Expressions like “home or o�ce working

possible” and “work from home care facilities” and “requires a Home O�ce work permit”

suggest some of the di�culties that arise when applying dictionary methods to job ads.

Logistic regressions and GPT-3 o↵er large improvements over dictionary methods. WHAM

o↵ers even larger improvements, substantially outperforming all other methods when applied

to vacancy postings, as measured by accuracy rates, precision, and F1 scores.

Few previous works in economics combine a frontier language-processing framework with

4DistilBERT is a smaller, faster version of the BERT framework introduced by Devlin et al. (2019), which
has 60,000 Google Scholar citations as of February 2023. BERT and DistilBERT exploit machine-learning
tools and are pre-trained on the full English-language Wikipedia corpus and the Toronto Book Corpus. For
a helpful non-technical overview of BERT, see Luktevich (2022).
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human-generated labels to develop an automated classification model and to quantify its

performance. In the only example we know, Shapiro et al. (2022) develops a BERT-based

model and finds little gain relative to dictionaries in detecting news sentiment.5 However,

they use fewer than 1,000 human-labeled text examples in fitting their BERT-based model,

which may explain why it yields small performance gains.

A prominent line of research classifies occupations as suitable or unsuitable for remote

work based on descriptions of work activities and experiences.6 Our analysis highlights

some limitations of this approach. First, remote-work intensity is a malleable feature of

jobs, occupations, and organizations. Second, classifications based on suitability assessments

explain little of the variation in remote-work posting shares. For occupations that Dingel and

Neiman (2020) classify as unsuitable to be done entirely from home, the remote-work share

of U.S. postings in 2022 ranges from 0 to 50% with a mean of 5% and standard deviation of

7%. For occupations they classify as suitable for work from home, the share ranges from 0.3

to 74% with a mean of 18% and standard deviation of 12%.

Another prominent line of research surveys workers and employers to study working

arrangements. Barrero et al. (2020), Bartik et al. (2020), Bick et al. (2022) and Brynjolfsson

et al. (2020) document and characterize the enormous uptake in work from home in spring

2020. Bartik et al. (2020), Barrero et al. (2021) and Ozimek (2020) use employer plans

and other forward-looking survey data to forecast that the big shift to remote work will

endure. Relative to our approach, the survey-based approach is more useful for eliciting

the perceptions, attitudes, and expectations of workers and employers. Our approach o↵ers

several other distinct advantages, as discussed above.

The next section describes our vacancy posting data and develops our classification model.

Section 3 assesses the model’s performance in absolute terms, and relative to other ap-

proaches. Section 4 sets forth our main findings related to remote-work intensity over time

and across countries, cities, occupations, and more. We also compare our remote-working

posting shares to survey-based measures of remote work. Section 5 concludes.

5Bajari et al. (2021) and Bana (2022) use BERT to predict prices from Amazon product reviews and wages
from job posting text, respectively. Each paper achieves high predictive performance. Their applications
don’t involve the use of human-generated labels.

6Dingel and Neiman (2020) is the most influential example. Other examples include del Rio-Chanona et al.
(2020), Mongey et al. (2021), and Adams-Prassl et al. (2022). Like us, Adams-Prassl et al. (2022) concludes
that remote-work intensity varies greatly across jobs within occupations.

4



2 Data and Measurement

To measure remote-work posting shares, we exploit a near-universe of online job postings

from January 2014 through January 2023 for our five countries.

We extract 10,000 text sequences from selected postings and ask humans to read them.

Each sequence is about 45 words long, and the average posting has about six sequences.

Breaking postings into sequences facilitates human and algorithmic classification at scale,

as we discuss below. Our human readers answer this question: ‘Does this text explicitly

o↵er an employee the right to remote-work one or more days a week?’, yielding a binary

classification. The pairwise agreement rate between readers exceeds 90 percent.

We turn to the ‘DistilBERT’ language-processing framework to build a text-classification

model for our purposes.7 DistilBERT is pre-trained on thousands of books and the English-

language Wikipedia corpus, which helps it interpret the intended meaning of a given docu-

ment or passage. We further pre-train on roughly one million text sequences drawn from our

corpus of vacancy postings. This further pre-training step familiarizes the framework with

the nature of the text in vacancy postings.

After pre-training, we use the human labels to train, or fit, a bespoke classification

model for predicting these labels. We call this model the ‘Working-(from)-Home Algorithmic

Measure’ (WHAM ). We will show that WHAM achieves near-human performance in its

classification task, and that it outperforms a variety of other approaches. We describe our

approach in some detail, because we think it has useful applications to many other text-

analysis tasks in economics and other fields.

2.1 Job Vacancy Data

We examine online vacancy postings collected by Lightcast (formerly Emsi Burning Glass),

an employment analytics and labor market information firm. Lightcast scrapes postings

from more than fifty thousand online sources that incluide vacancy aggregators, government

job boards, and employer websites. Lightcast claims to cover a “near-universe” of online

postings in our five countries during the period covered by our analysis. See Appendix A for

a detailed description of our data and pre-processing steps.

7DistilBERT is a direct descendant of BERT, which is widely used in industry. BERT stands for Bidirectional
Encoder Representations from Transformers. Transformers are a deep-learning method in which every
output element is connected to every input element of a text sequence. This allows the meaning of a
particular word to depend on the context of surrounding words, which as we show below is crucial in our
setting. See Phuong and Hutter (2022) for a formal overview of how Transformers work. Vaswani et al.
(2017) is the seminal contribution.
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Burke et al. (2020) compare vacancy postings in Lightcast data for the United States to

job vacancy data from the U.S. Job Openings and Labor Turnover Survey (JOLTS). The two

sources are reasonably well aligned, but the JOLTS data show larger vacancy shares in food

services, public administration and construction and smaller shares in finance, insurance,

healthcare, social assistance and educational services.

For each online vacancy posting in our dataset, we have access to a plain text document

scraped from the job listing. We also observe the posting date, employer name, occupation,

location of the employer, industry, and more. We consider postings listed from January

2014 and January 2023, dropping those with an unknown occupation (less than 1%. We

use a 5% random sample of postings before January 2019, and the universe of postings

thereafter. The resulting dataset covers more than 250 million online vacancy postings in

five countries, spanning 5.2 million employers and nearly 40 thousand cities. Table 1 provides

more information.

For our baseline results, we re-weight the postings in each country-month cell to match

the U.S. occupational distribution of new online vacancy postings in 2019. Appendix B

reports selected results for alternative weighting schemes.

2.2 The Measurement Problem

The measurement problem we face is to determine whether each job posting allows a new hire

to work remotely, understood here to encompass both fully remote and hybrid positions. We

adopt a binary classification approach, and refer to a ‘positive’ posting as one that mentions

the ability to work remotely, and a ‘negative’ posting as one that does not. For positions

that o↵er hybrid working arrangements, we use a threshold of at least one day per week

for our positive classification8 This approach e↵ectively measures an employer’s willingness

to commit ex ante to o↵ering flexibility in work location. Negative postings may in fact

be associated with work-from-home positions, for example because the ability to work from

home is assumed by market participants to be feasible in particular jobs, or because the

employer prefers to bargain over work arrangements during the hiring process rather than

make a prior binding commitment. We return below to discuss the interpretation of our

measure, and first focus on developing an accurate and robust classification.

The most precise way of classifying postings is arguably via direct human reading. Given

the size of our data, however, this approach is not feasible to scale and some means of

automated classification is required. The most standard approach adopted in the text-as-

8In principle our measurement approach could be extended to the intensive margin (days per week), but for
simplicity we begin with the this binary classification.
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data literature in economics is to use a dictionary of keywords whose presence is assumed

to indicate a positive classification. As an initial step, we use the keywords in Table C.1

to classify job postings as positive or negative. While we do not claim the dictionary of

terms is fully optimized, it is in line with others in the literature for classifying postings as

work-from-home (Adrjan et al., 2021).

An issue that becomes immediately apparent upon inspecting job postings that are clas-

sified by keywords is the presence of notable errors, which Table 2 illustrates. False positives

include references to companies’ home o�ces and working in homes dedicated to health-

care provision. A second, and perhaps most worrying, source of false positives is that the

structure of job ads shifts during COVID-19 in a way correlated with the presence of false

positives. This is due to the fact that, after early 2020, many postings feature a new text

field indicating whether home work is allowed, and then explicitly state it is not—a naive

application of the dictionary method would infer from this text field that the job posting

allows working from home.9 Table 2 also lists examples of false negatives, which illustrates

the many and complex ways that companies can use to describe remote work. Accounting

for this linguistic variety with a fixed set of keywords is a major challenge.

2.3 Our Approach to Classification

Our approach to address the classification errors in the dictionary approach has three steps.

First, we use at least three human auditors to read and classify 10,000 pieces of text extracted

from job ads which produces 30,000 labels. Second, we train a modern machine learning

algorithm using these human classifications. Third, we take this predictive model out-of-

sample to classify each job ad as either positive or negative. The hope is to scale the

accuracy of human reading—which can only be deployed on a small fraction of data—to the

entire dataset. While this approach is common in the machine learning literature, it is not

often used in economics, even though it appears to hold great promise. We call the final

model used in this paper the Working-from-Home Algorithmic Measure (or WHAM) model.

The main text contains an overview of our methodology, with further details in Appendix

C.
9One approach to correcting this problem is to extend the dictionary to incorporate negation (e.g. to treat
as a negative classification the phrase ‘this is not a remote work position’). In section 3 we show that this
indeed improves measurement accuracy but not by as much as our proposed solution below.
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2.3.1 Breaking Up Job-Ad Text into Sequences

While we ultimately wish to classify job postings, we initially label and classify smaller units

of text we refer to as sequences. The first reason for doing so is that human labeling of entire

job postings is prone to a high error rate because of their length and complexity. The second

reason is that the typical posting has a great deal of information unrelated to remote work,

for example descriptions of the skills required for the job, the tasks involved, etc. Mixing

text relevant for work-from-home with a great deal of irrelevant text introduces noise into

the classification algorithm.

The procedure for generating sequences has three salient features. First, postings always

begin with a job title, e.g. “Software Programmer familiar with R and Python.” We extract

these as a single sequence. Second, the beginning of each posting typically has a number of

bullet points or other structured fields. In most cases, these also form a single sequence.10

Finally, the remainder of a posting is typically structured like standard prose with a succes-

sion of paragraphs. Each paragraph is taken as a single sequence, unless it passes a length

threshold. In this case, we break it into multiple sequences of consecutive sentences.

This procedure produces approximately 1.6 billion sequences out of the over 250 million

job postings.

2.3.2 Human Labels for Training and Evaluation

From the sample of sequences, we first chose 10,000 to label manually. One quarter of these

sequences was chosen at random from the set of sequences that contained a set of dictionary

terms listed in Table C.1. Another quarter was chosen to contain a broad set of terms

that might reflect work-from-home language, including the generic terms ‘remote’, ‘home’,

‘work’, ‘location’; any word that begins with ‘tele’; and any two-word sequence that begins

with ‘remote’. Another quarter consisted of sequences that might confound a classifier,

including ‘home repairs’, ‘nursing home’, ‘remote construction’, etc. The final quarter was a

random sample of sequences not satisfying the three aforementioned criteria. Each portion

of the label sample is balanced across year-quarter from 2014Q1 through 2021Q3. We also

balance the sample evenly across countries11 to account for varying English idioms in di↵erent

geographic locations.

We used Amazon Mechanical Turk to generate labels. To ensure high-quality workers,

10The exception is if the number of distinct structured fields is too large, in which case we split them into
multiple sequences.

11We draw one quarter of this dataset from each of USA, UK, Canada, and a further one quarter from the
pooled Australia and New Zealand data.
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we set up an initial screening test that required prospective workers to label 20 sequences

that we had previously manually classified. Only workers that made at most one error were

allowed to proceed to label the full set. Another quality control strategy was to pay around

25% above typical market rates for labeling tasks. This motivated workers who passed initial

screening to continue on the project.12

Each of the 10,000 sequences were labeled by three distinct workers. There is a high

agreement rate among workers: 66.9% of examples are unanimous negative examples and

25.5% are unanimous positive examples. The remaining 7.6% examples are evenly balanced

between one dissenting vote for either positive or negative. Note that, while half of the

sample was chosen to contain a word with the potential to denote work-from-home, only

29.2% of the sequences receive a majority of positive votes.

2.3.3 Developing the WHAM model

In the last five years, the field of natural language processing has been revolutionized by

models that allow the meaning of word sequences to arise by how they interact. Consider the

sentences ‘Some of the deep-sea wells we operate are in remote locations’ and ‘We are pleased

to o↵er opportunities for remote work’. Each includes the word ‘remote’ but only the latter

is a positive example of remote work. The important point is that the interaction of ‘remote’

with surrounding context words determines the overall meaning of these sentences. Moreover,

not all context words are equally informative: for example, in the first sentence ‘deep-sea’,

‘wells’, and ‘locations’ are more important than ‘some’ and ‘we’ in understanding the meaning

of ‘remote’. Self-attention (Vaswani et al., 2017) is a mathematical construct that allows

vector representations of individual words to interact with each other to form new vectors

that encode the meaning of sequences. These interaction weights e↵ectively determine which

words should be “paid attention to” in resolving these meanings. Self-attention is the key idea

that powers models such as BERT, RoBERTa, GPT, GPT-3, PALM, and, most famously,

ChatGPT. For more details on these models, collectively called Transformers, see Ash and

Hansen (2023).

The particular Transformer model we adopt in the development of WHAM is DistilBERT

(Sanh et al., 2020). DistilBERT is based on Google’s BERT model (Bidirectional Encoder

Representations from Transformers, Devlin et al., 2019), which when originally released set

important new performance benchmarks for common NLP tasks (since eclipsed by larger-

12In general workers appeared engaged and focused on the labeling task. We received communication from
multiple workers seeking to clarify ambiguous cases, which went above and beyond what AMT required
for payment.
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scale models). Since 2020, Google has used BERT to process its online search queries.

DistilBERT ‘distills’ the information in BERT by training a simplified model to reproduce

the same output as BERT. The main advantage is that DistilBERT obtains an expressive

language model with far fewer parameters which reduces processing time and estimation

costs.

We make two main modifications to the o↵-the-shelf DistilBERT model to build WHAM.

First, the initial set of parameters of o↵-the-shelf DistilBERT is obtained by predicting

randomly deleted words in generic English from surrounding context words. We instead

update these parameters to predict randomly deleted words in a sample of 900,000 job

posting sequences which is balanced across all years and countries. This step creates word

representations that are specific to the language of job postings.

Second, we further modify o↵-the-shelf DistilBERT to predict human labels from vector

representations of job posting sequences. We split our labeled sequences into training and

test sets of 5,950 and 4,050 sequences, respectively. The prediction problem is conducted at

the label rather than sequence level, so there are 3 * 5,950 = 17,850 total observations in the

core training sample of labeled data.13 Appendix C details how we specify the prediction

model’s hyper-parameters. Table 3 provides an illustration of which words are influential

in the classification problem, and compares the WHAM approach to a dictionary approach.

Crucially, the weights attached to words are learned by the algorithm rather than imposed

ex ante by researchers, and the weight on a particular word depends on the surrounding

words. In the following section, we compare the test-set accuracy of the estimated model

with that of other algorithms in the literature and show its performance is outstanding.

2.3.4 Predicting Remote Work Language at Scale

Finally, we use the estimated prediction model to assign a continuous probability to all

sequences in our corpus. The higher the probability, the more confidence the model has that

this sequence denotes an o↵er of remote work arrangements. Figure B1 plots a histogram of

the share of sequences that fall in di↵erent probability intervals. The distribution is bimodal

at the lowest and highest probability bins, with the former dominating the distribution. As

expected, most sequences do not contain work-from-home language because, as we show

below, most job postings do not explicitly mention the possibility to work from home and,

among those that do, the majority of sequences discuss other features of the position. The

13During an initial exploratory phase, we labeled a sample of around 10,000 additional sentences (rather
than sequences) using a combination of Mechanical Turk, hired research assistants, and ourselves. Since
these are also potentially informative, we include them in the training set. In most cases, these sentences
only received a single label and so in total generate 11,574 additional labels in the training set.
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bimodality of the distribution shows that the classification algorithm typically produces a

clear prediction, in line with human labelers’ high agreement rates. We use an 0.5 threshold

for assigning a sequence a positive classification according to WHAM’s predicted probability,

but the properties of the predicted probability distribution imply that our results are not

sensitive to this particular cuto↵.

2.3.5 Aggregating Measurement back to Job Postings

We have conducted all the analysis so far at the sequence level, but are ultimately interested

in a job-posting-level classification. For this, we use a simple ‘max’ rule and positively

classify a job posting if it contains one or more positive sequences. Table B.1 shows the

number of positively classified sequences in each job ad. We can see that among the positive

job ads (those with one or more positive sequence), the majority have just a single positive

sequence. This reduces concern that the algorithm produces correlated false positive hits

at the posting level.14 This posting-level classification constitutes the final output from our

WHAM model, which we use to study the adoption of remote work.

2.3.6 Public Access to WHAM

To allow researchers to interact with and study the properties of our model, we make available

a simple online tool that allows one to input arbitrary text and receive a predicted probability

as output. The URL is https://huggingface.co/spaces/yabramuvdi/wfh-app-v2, which

will reproduce the same probabilities as in the paper.15 One can verify that the examples in

Table Table 2 that confound dictionary approaches are correctly classified by WHAM.

2.3.7 Computational Performance of WHAM

One constraint on implementing large-scale NLP models is computational. To provide some

performance guidelines, Table Table B.2 tabulates the hardware we use for each step of de-

velopment, the time taken, and the cost involved. All estimation is done on the Google Cloud

Platform. In neither time nor money terms is the implementation of WHAM particularly

14We have manually read a number of randomly drawn postings with more than five positive sequences, and
found no instance of the algorithm failing. In some cases, the scraping procedure that gathers data from
online job portals appears to have identified as a single job ad a succession of postings by recruitment
agencies. In other words, the measurement error arises from the data itself rather than the classification
approach.

15Many thanks to Yabra Muvdi for estimating the model and making it accessible. The model is subject to
revision, at which point the predicted probabilities for a given text may change. Users who find systematic
biases in the predictions are welcome to contact the authors with their findings, which can be incorporated
into future work.
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costly from a computational perspective: the total run time for all steps is 51 hours, and the

total cost is approximately $1,500. Our view is that researchers should therefore not view

computational costs as a major impediment to adopting large language models.

On request, we make available all code to e�ciently train WHAM and apply it out-of-

sample. Interested researchers should register interest at WFHmap.com.

3 Assessing the Performance of WHAM

Above we highlight instances in which the presence or absence of keywords is insu�cient

to correctly classify a selection of job posting texts due to the complexity of surrounding

context. In order to quantify the gains from adopting our approach, we now undertake a

systematic comparison of the ability of di↵erent algorithms to correctly classify unseen texts.

To do so, we adopt a standard approach in the machine learning literature and randomly

split the 10,000 human-labeled sequences into training and test sets (of sizes 5,950 and 4,050,

respectively). We then train WHAM just on the training data and use the fitted model to

assign a predicted value to each test-set observation. By way of comparison, we also use

the following alternative methods for classifying test-set observations (full details of each

approach are in Appendix C):

1. All Zero. Each test-set observation is assigned a 0 to match the modal outcome.

2. Dictionary. We use a term set similar to that from Adrjan et al. (2021),16 and count

an observation as positive if it contains a term from this set.

3. Dictionary with Negation. Shapiro et al. (2022) shows that accounting for negation can

improve the performance of dictionaries. We adopt a similar method and only count

the presence of a dictionary term as indicating remote work when a negation term does

not appear in the surrounding context.

4. Logistic Regression. Adams-Prassl et al. (2020) uses Lightcast data from the UK to

measure the prevalence of flexible work schedules, i.e. the times at which work must be

completed, from job posting text. The paper uses humans to manually annotate 7,000

texts, and fits a (penalized) logistic regression model for classification. The features of

the logistic regression are the word frequencies in a given document. We implement a

similar logistic model on our training data and use it to classify test data.

16The terms are reported in Table Table C.1. The remote work measures in Adrjan et al. (2021) are based
on data from Indeed which potentially has a di↵erent structure from the Lightcast data.
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5. Logistic Regression with Negation. We expand the feature set of the logistic regression

to incorporate negation and re-estimate it on the training data.

6. GPT-3. Brown et al. (2020) introduced GPT-3, a large language model capable of

performing a variety of natural language tasks with limited or no training examples

to learn from. We query the model with the prompt “Identify if the text o↵ers the

possibility of remote work at least one day per week” and convert the answer into a

0/1 classification.17

7. WHAM with Generic English. Rather than pre-train DistilBERT using job posting

text, we use its o↵-the-shelf word embeddings trained on general English.

Table 4 reports the test-set performance for all methods. A straightforward metric is the

error rate, i.e. the fraction of mis-classified texts. On this measure, WHAM outperforms

all other methods with an error rate of 0.02.18 GPT-3 has an error rate three times that of

the baseline model, while the dictionary method’s error rate is eight times higher. On the

other hand, the pre-training of the model with job posting text generates only a modest an

improvement over generic English.

A more standard performance metric in the machine learning literature is the F1 score

which accounts for both a classifier’s ability to recover the true positives (recall) as well as

the share of predicted positives that are true positives (precision).19 The F1 score varies

between 0 and 1, where higher values indicate better performance. Again, we observe that

WHAM substantially outperforms all other measures.20

One concern is that the distribution of positive and negative postings in the test data does

not correspond to that of the full population of job postings: the data extracted for labeling

is specifically designed to over-represent positive cases. To obtain a sense of classification

17Deploying GPT-3 on the full Lightcast dataset would be prohibitively expensive at current costs, but we
still report its test-set performance for benchmarking purposes. More recently, ChatGPT, a successor
model to GPT-3, has generated a great deal of public interest. ChatGPT is largely built on an underlying
model that OpenAI calls text-davinci-03 whereas GPT-3 is built on text-davinci-02. In our experiments,
the former outperforms the latter, so we only report results for GPT-3.

18This error rate is consistent across countries and years. When broken down by country, the test set error
rate is 0.02 in each case. When broken down by year, the set error rate is 0.02 in each year except for 2015
(error rate 0.03) and 2014 (error rate 0.01).

19Among a set of classified observations, let TP, FP, TN, and FN be the number of true positives, false
positives, true negatives, and false negatives, respectively. Precision is TP / (TP + FP), and recall is TP
/ (TP + FN).

20An alternative dictionary for measuring remote work adoption is proposed in Draca et al. (2022) which
uses our same UK Lightcast sample. The overall error rate of this dictionary in the full test data set
is 0.19 and for the test data set arising from the UK is 0.17. Interestingly, the F1 score we obtain for
logistic regression (0.81) is similar to that reported by Adams-Prassl et al. (2020) for classifying flexible
work scheduling (0.83, see Table 3 of that paper).
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accuracy on the full population, we create a simulated dataset of 1000 * 4,050 = 4,050,000

observations, 3% (97%) of which are sampled with replacement from the set of positive

(negative) test set examples. Table 4 reports the same metrics as Table 4 but computed on

this more unbalanced dataset. Again, we find that WHAM outperforms all other methods,

but in this case the di↵erence in F1 scores is even starker. Our baseline WHAM achieves a

0.85 F1 score, while the F1 score of GPT-3 falls to 0.52 and other methods have even worse

performance. Moreover, pre-training becomes more important as the F1 score for WHAM

with generic embeddings drops to 0.78. These results arise because, as Table 4 shows, WHAM

has a particularly low false positive (FP) rate compared to other methods. When negative

examples dominate the evaluation sample, correctly classifying them becomes important

for overall performance and WHAM is strong in this dimension. Since this sample’s label

composition is more in line with the expected composition of the universe of job postings,

our findings highlight the potential gains in accuracy of using our approach.

We view these results as methodologically important because they are among the first,

to our knowledge, to quantify the gains of adopting modern NLP methods for text classi-

fication in economic environments. There are very few papers in the economics literature

that systematically compare di↵erent classification approaches, and those that do have not

found that large language models outperform simpler approaches. For example, Shapiro

et al. (2022) does not report large gains from using BERT over simpler models for classify-

ing news sentiment. One reason that we, in contrast, do find large gains is the size of our

training data. Shapiro et al. (2022) trains BERT on 800 labeled articles whereas we have

an order of magnitude more training data, which provides more information for estimating

the complex ways in which word sequences map into outcomes. We conjecture that other

prediction problems using text in economics might similarly benefit from a large training

sample combined with sequence embedding models.

A separate question is how WHAM compares to alternative methods on the full data

sample. Rather than consider all alternatives, we focus on how WHAM compares to the

Dictionary method, which is most common in the literature measuring remote work adoption

from job posting text. Figure 1 plots monthly time series of the share of remote work postings

in the US sample from 2019 through early 2023.21 The patterns present in both series di↵er

markedly. According to the Dictionary method, the remote work share surged at the onset

of the COVID-19 pandemic, peaked in early 2021, and fell markedly throughout 2021 before

stabilizing in 2022. In contrast, the WHAM method suggests a more modest immediate

21These time series are computed using the approach we adopt for the baseline results discussed in the next
section, and are not the simple raw positive share.

14



reaction to the pandemic followed by a steady growth rate thereafter. Two features of the

Dictionary series are of note: First, the initial COVID-19 shock drove a large number of

both real and negated mentions of remote work arrangements, so this series increases much

more dramatically than the WHAM series. Second, towards the end of 2022 a handful

of very large job boards altered their structure to partially address this issue of negation.

Importantly, this second event appears not to have induced a discontinuity in our WHAM

measure, likely because it is robust to changes in structure so long as the intended meaning

remains consistent. Clearly, then, the choice of measurement approach can have important

quantitative implications even in aggregate.22

Of course, aggregate comparisons between methods can mask underlying di↵erences at

more granular levels. To illustrate this, we compute the growth rate in remote work adoption

according to the Dictionary method and WHAM from 2019 to 2022 for individual SOC2

occupations, pooling all 2019 postings and 2022 postings together. In these two years, the

Dictionary method appears similar to WHAM but with an upward shift of around five

percentage points. However, as Figure 2 reveals, there are large di↵erences in the specific

occupations that each method associated with growth in remote work adoption. According

to the Dictionary method, the ‘Food Preparation and Serving’ occupation has experienced

highest growth in adoption, while for WHAM the highest-growth occupation is ‘Computer

and Mathematical’. Moreover, according to WHAM all occupations experienced positive

growth in adoption, whereas adoption rates fall for the ‘Farming, Fishing, and Forestry’

occupation according to the Dictionary method. The higher accuracy of WHAM in the

sample of human labels suggests its ranking of occupations is more reliable. In the next

section we provide a more in-depth analysis of occupation-level heterogeneity according to

WHAM.

In sum, the WHAMmodel displays a very high classification accuracy—relative to human

labels—and di↵ers markedly from the most popular alternative approach in the literature

based on keyword search. This di↵erence is especially pronounced since 2020, even at the

aggregate level. We believe our approach to measurement provides a highly accurate clas-

sification of remote work o↵ers in the text of job postings, and base the remainder of the

paper on analyzing its output.

22The patterns in the Dictionary series need not match those from Adrjan et al. (2021) even though we use
a similar set of keywords, as the structure of the Lightcast data could di↵er in important ways from that
of the Indeed data that Adrjan et al. (2021) use.
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4 Results

In this section we document how the percent of new remote work vacancies–the fraction of

all new vacancies which explicitly o↵er the right to work remotely one or more days per

week–has changed over time. We document this across countries, occupations, cities, and

employers. This covers both hybrid and fully remote work.

This section is organised as follows: First, we look at the percent of remote work vacancies

across each of our five countries. We plot this as a monthly time series, spanning January

2014 to January 2023. Second, we compare the percent of new remote work vacancies across

broad and narrowly defined occupations, contrasting our measurements in 2019 2022. We

show that the substantial rise since the onset of COVID is highly uneven across occupations,

and find that occupations with the highest 2019 percentage of remote work were the most

likely to top the list in 2022. We also compare occupation-level classifications used in the

literature to our measurement. Third, we compare the percentage of new vacancies o↵ering

remote work arrangements across cities. We show that cities with higher remote work per-

centages in 2019 do not strongly predict higher percentages by 2022 (unlike occupations).

This suggests that additional confounding city-level characteristics have played an important

role in the adoption of remote work. We also compare a monthly time series across a selec-

tion of US cities. Fifth, we compare our measures to survey information from the American

Communities Survey (ACS). We show that MSA’s which have a high remote work share of

vacancies in our data also have high fractions of the population who selected “Worked from

home” when asked about their commuting methods. Fifth, we show that the percentage of

remote work vacancies posted by employers who operate in the same industry, and search

for the same talent, can vary widely.

4.1 Remote Work across Countries

How did the share of advertised hybrid and fully remote work di↵er across countries prior

to, during and after the pandemic? In Figure 3 we plot the monthly time series of the share

of advertised remote work for the US, UK, Canada, Australia and New Zealand. For each

country and in each month, this figure reports the weighted-mean of the percent of remote

work vacancies across nearly 800 narrow occupation groups. We weight each group based

on the share of vacancies in this group in the USA during 2019. Our baseline results utilise

this method to reduce the impact of compositional di↵erences, both across time and across

countries. Three high-level facts emerge:

1. Unprecedented and sharp increase of advertised remote work at the onset
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of COVID-19

In March-April 2020, the share of new job vacancies which advertised remote work

saw a sharp rise across all countries. On average, the increase from February 2020 to

April 2020 was 200%. While this immediate increase occurred across all our countries,

the level-change was most pronounced in countries with a more severe initial COVID

outbreak (USA, UK and Canada).

2. Sustained growth thereafter

Since the large spike in March-April 2020, there has been sustained growth in the per-

cent of advertised remote work. In level-terms, this growth has been most pronounced

in the UK (where COVID lockdowns most lingered and were most severe relative to

the other countries in the sample). We also see evidence of higher growth rates in Aus-

tralia and NZ, as their pandemic experience worsened during 2021. In all countries,

the growth in advertised remote work has continued long after the forcing event of the

pandemic subsided. An additional reason for this high and persistent growth is that

our measure of new job vacancies lags the stock of employees actually working from

home, possibly because employers were slow to accept this as a permanent practice.

3. Substantial heterogeneity across countries, even before the pandemic

The USA had nearly 4% advertised remote work share in 2019, the highest of any

country. The UK was only marginally lower, where as Australia, Canada and New

Zealand had respectively half, a third, and a tenth the share of the US in 2019. By

mid 2022 the spread in levels is much greater, but proportional di↵erences have reduced.

In our robustness exercises, we also look at the raw shares of remote work, i.e. without

the re-weighting applied to our baseline Figure 3. Comparing the unweighted Figure B.2

to Figure 3 tells us the direction and magnitude of the impact that occupation composition

plays in our results. For example, in mid 2022 the di↵erence between the UK and USA is

8 percentage points using the raw data and 4 percentage points after re-weighting. This

suggests that roughly half of the di↵erence in advertised remote work shares between the

US and UK is accounted for by di↵erences in the types of jobs being advertised, which is

unsurprising as the UK is on the whole more skewed towards white-collar jobs with a higher

propensity to be worked from home.
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4.2 Remote Work across Jobs

We first show the share of advertised remote work by grouping job ads into broad occupation

groups (based on two-digit SOC 2010 classifications), which Figure 4 reports. For this, we

look only at data from the United States. The di↵erences across broad occupation groups

varies greatly. In 2019, we see that just one-in-twenty positions of all job ads in ‘Computer

and Mathematical’ occupations explicitly o↵ered remote work arrangements in their postings,

whereas in 2022 this share raises to a more one-third of new ads o↵ering remote work. As

one might expect, the share of advertised remote work correlates positively with computer

use, education, and earnings and is lower in occupation groups which require specialised

equipment or customer interactions. Lastly, Figure 4 provides some evidence that the 2019

shares of remote work correlates with post-pandemic shares.

To investigate the relationship between 2019 and 2022 shares further we next turn to

an analysis at the detailed ONET occupation-level. We group our US job vacancies into

granular occupations (using O*NET definitions), and plot both the 2019 and 2022 percent

of advertised remote work (on a log-scale), presented in Figure 5. After dropping a handful

of data points with fewer than 250 postings in 2019, we retain 875 O*NET occupations.23

Figure 5 also shows the feasibility classification according to Dingel and Neiman (2020). A

black circle represents jobs which these authors classify as ‘not suitable for full-time telework’,

and an orange triangle denotes the opposite 24. An unweighted ordinary-least-squares trend

line is also depicted in blue. Our main takeaways from Figure 5 are:

• The bivariate unweighted-OLS fit using a log-log specification yields an R2 of 0.63,

which shows that–for a given ONET occupation–the share of vacancies which adver-

tised remote work pre-pandemic was strongly predictive of the share post-pandemic.

• The slope coe�cient from the bivariate unweighted-OLS model shows that the elasticity

of 2019 percent to 2022 percent was 0.76%.25

• Across all ONET occupations depicted, the mean share of new postings which adver-

tised remote work was 4% in 2019 and 10% in 2022.

• There is substantial variation in the share of advertised remote work across occupations,

which grows over time. Across all ONET occupations, the standard deviation in the

23In total, there are 1,016 O*NET occupations. Our sample of O*NET codes which have greater than 250
vacancy postings in 2019 is 875. This attrition is expected, for example a number of military occupations
are not present in our data.

24These are taken from the authors replication data, accessed April 2022, which can be found here.
25Our ordinary least-squares estimates impose a power-law coe�cient, given the log-log specification.
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shares of advertised remote work was 5% in 2019 and 11% in 2022.

• Dingel and Neiman (2020)’s classification can account for a small part of the variation

in the 2022 levels of advertised remote work. For occupations that they classify as

unsuitable to be done entirely remotely, the share of advertised remote work in 2022

ranges from 0 to 51% with a mean of 5% and standard deviation of 7%. For occupations

they classify as suitable for telework, the share ranges from 0.3 to 74% with a mean of

18% and standard deviation of 12%.26

We view three key points of di↵erence between our measurement approach and those

measures which assess telework feasibility for each occupation. First, since our measurement

works at the job vacancy level and not the occupation level, our measure o↵ers more variation

and a signal heterogeneity in remote work feasibility within occupations and across firms.

Second, whereas the feasibility measures treat each job as a collection of tasks, our measure

combines both task-feasibility as well as employer and employee preferences, labour market

forces, past experience with remote arrangements, and so on.27 The third reason for the dis-

crepancy is that our measurement exercise will likely have some amount of under-reporting,

as employers may not explicitly advertise remote work in their vacancies but none-the-less

allow such arrangements.

4.3 Remote Work across Cities

Next we compare the percent of new vacancy postings which advertised remote work across

cities. Job posting are matched to a city based on specific locations listed on the website

from which it was scraped, or else mentioned in-text.28

26In a few cases, the D&N machine classification appears very inaccurate. For example, travel agents
have been classified as ‘not teleworkable’, although both before and after the pandemic roughly 1-in-3
jobs advertised remote work. This is likewise the case for ‘Advertising Sales Agents’ and ‘Interpreters &
Translators’. Some of these outliers appear to be resolved by the hand coded measure, but these data are
only available at a higher level of occupational-aggregation.

27A clear example of the di↵erences between our measurement approach and Dingle and Neiman (2020) is
for teaching jobs. For example, while D&N correctly classify jobs for “physical education teaching” as
being feasible for full time home working (i.e. via a virtual class room), we know anecdotally that this
arrangement was very taxing on sta↵ and avoided as soon as normal schooling resumed. We find that
teaching jobs in general (and “physical education teachers” in particular) have some of the lowest shares
of advertised remote work of any job, highlighting that feasibility and actual behaviour can vary markedly.

28Since the predominant remote work arrangements are hybrid, the location of the work site remains a key
feature of most jobs. However, in the case of a ‘fully remote’ position this analysis becomes less precise. We
plan to refine our measurement approach in future work to distinctly classify ‘hybrid’ vs ‘fully remote’ work
arrangements, but have thus far concluded that the majority of remote work jobs o↵er hybrid arrangements
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Figure 6 shows the percent of advertised remote work across a selection of large interna-

tional cities, both for 2019 and 2022. We see that the percentages vary widely. For example,

in 2022, 1-in-4 new job postings in Washington (DC) advertised remote work arrangements,

compared to 1-in-14 in Perth, Australia. The substantial increases as well as the large

heterogeneity in these shifts can be seen both across- and within-countries.

Further evidence of the large shift in both levels and spread of remote work ads is shown

in Figure 7, which plots all cities in our data with more than 250 new vacancies in 2019.

The mean (standard deviation) increased from 4% (2%) in 2019 to 10% (5%) in 2022. An

unweighted OLS regression line fitted to these city-level data show a much lower coe�cient

of determination (R2) of 0.28, compared to the value of 0.63 when running the same exer-

cise across occupation-groups. This highlights that the 2019 shares are far less informative

predictor of post-pandemic shares at the city level.

This sizable increase in the levels and spread of remote work across cities, as well as

the weak relationship between 2019 and 2022 shares, poses an interesting question: What

are the city-level determinants of remote work adoption? We hypothesize that a mix of

institutional features, infrastructure quality, pandemic severity (both in disease and policy)

and the composition of jobs and firms in each city are all important factors. We leave a more

formal tests of these predictions to future work.

We next turn to more granular monthly time series for selected US cities, shown in Figure

8. As well as illustrating the granularity of our data, a number of interesting features emerge

from these time series:

• Cities from the North-East and West regions (e.g. San Francisco, Boston, New York)

all experience similar increases at the outset of the pandemic, but have very di↵erent

growth levels subsequently. By 2023, these di↵erential growth rates result in very

dispersed levels.

• We also see substantial fluctuations over time in these North-East and Western cities.

These fluctuations appear to be correlated across series, for example the July 2021 dip

occurs in SF, Boston, Colorado, and to a lesser extent NYC.

• By contrast, cities from the South show far less growth since COVID and also less

volatility. Savannah and Miami Beach appear to have partially reverted back to pre-

pandemic shares of advertised remote work.

• Note that in this exercise, we do not re-weight the data, such that much of the variation

across cities is likely to be driven by di↵erences in occupation and industry composition.
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We leave as future work a mapping from our time-series measures and forcing events,

such as shelter-in-place orders.

4.4 Comparing Job Advert Measurement to Survey Responses

across MSAs

Our measurement of remote working utilises new job postings, which is conceptually a very

di↵erent empirical object to measures of the share of employees / work days conducted in

peoples homes. To understand how these di↵erent measurement approaches might relate (if

at all) to one another, we utilise recent survey evidence form the American Communities

Survey (ACS).29 Specifically, we use the (survey weighted) share of 2021 employees across

Metropolitan Statistical Area’s (MSAs) who, when asked about their commuting method,

respond that they ‘Worked from home’30. We compare this to the fraction of new job ads

from each MSA which advertised remote work in 2022.

Figure 9 compares the our measure of remote work from job ads to the ACS’s survey

measure. A least-squares regression line (shown in blue) has a slope coe�cient of 0.36.

Strictly interpreted, this suggests that ceteris paribus an MSA with 10% more employees

who respond ‘Working at home’ to the ACS commute question would accompany a 3.5%

increase in the percent of new job ads o↵ering hybrid or fully remote arrangements. The

overall fit of this least squares regression line is rather high, with a coe�cient of determination

(R2) of 0.55. Taken in tandem, this evidence suggests our measurement approach relates

to the stock of remote workers. This, along with the many advantages of working with job

postings (large scale, very high granularity, long historical time series) support the use-case

for our data.

4.5 Remote Work across Companies

Ultimately, the decision to advertise remote work arrangements is made by each employer

who is searching for talent. By-and-large, workers value the flexibility to work some days

remotely, with survey evidence estimating that a typical worker would sacrifice 6% of their

29The American Community Survey (ACS) is a demographics survey program conducted by the U.S. Census
Bureau. The ACS regularly gathers information previously contained only in the long form of the decennial
census, such as ancestry, citizenship, educational attainment, income, language proficiency, migration,
disability, employment, and housing characteristics.

30ACS respondents are instructed to “Mark (X) ONE box for the method of transportation used for most of
the distance” which suggests that only those who work in a fully remote capacity should select this box,
since persons with 1+ days of commute per week have more mileage from that commute mode.
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salary to receive this amenity (Barrero et al., 2021). Thus, one important reason why em-

ployers have increasingly chosen to o↵er remote work arrangements even after the pandemic

is to attract workers. Similarly, remote work arrangements can also lessen the burden of

distance and allow firms to recruit for talent in wider geographic areas. Again, this deepens

the labour market and may facilitate matching with better candidates. Another reason why

we see that employers are o↵ering remote work arrangements in their vacancy listings might

be due to learning. Most CEO’s comment that mass remote-work of sta↵ would have been

unthinkable prior to 2020, yet the forced experimentation during COVID-19 has left many

with at least an indi↵erence to such practices and at most tangible evidence of the produc-

tivity benefits these bring. Finally, firms–especially those who are expanding quickly–may

see remote work arrangements as a way to reducing o�ce space and energy consumption. On

the other hand, the need to adjust internal processes to a fully or partially remote workforce

may also inhibit firms from explicitly committing to this work arrangement.

Our analysis of employers is by no means exhaustive, and we leave for future work a

more in-depth match to firm-level covariates. The first piece of analysis illustrates that

the prevalence of employers who explicitly o↵er remote work arrangements in their vacancy

postings varies greatly, even among same-industry firms recruiting in the same occupational

category. Figure 10 takes selected employers, and finds:

• Figure 10: Panel A shows the share of remote work vacancies posted by four large

aerospace manufacturing firms (NAICS code 3364). We consider only management

occupations in this panel, and find that both Boeing and Lockheed Martin explicitly

o↵er remote arrangements in half of their postings in 2022.31 We further see that

Northrop Grumman makes explicit o↵ers of remote work in less than one-in-four man-

agement job vacancy postings. In contrast, SpaceX made no explicit o↵ers for such

arrangements in any of its new job listings in 2022. All of these firms explicitly o↵ered

minimal amounts of remote work in 2019.

• Figure 10: Panel B shows selected insurance firms who advertise vacancies for workers

in the mathematical science occupations. We chose this occupation because we know

it has a high national share of remote work vacancy postings. We see that United

Health had a sizable fraction (52%) of vacancies which explicitly o↵ered remote work,

31Without further analysis, we cannot say if a 50% share of remote work vacancies in 2022 results from
some switch in behaviour (e.g. if firms post uniformly in time, and switch to fully remote halfway through
the year, we would calculate a 50% share) or else if this is driven by some more granular cross-sectional
di↵erence between jobs with and without remote arrangements on o↵er. This will be addressed in future
revisions.
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even pre-pandemic in 2019, which grew to 80% by 2022. Mutual of Omaha had a

more modest pre-pandemic remote work share, but by 2022 mentions such practices in

nearly all vacancies targeting mathematicians. Humana saw more than a doubling in

its remote work share, but remains substantially lower than its peers.

• Figure 10: Panel C conducts the same exercise for selected auto manufacturing firms

who hire engineers. Almost no explicit o↵ers of remote work were made in 2019. During

2022, Honda explicitly o↵ers 1-in-2 new engineering hires the right to work remotely

at least one day per week. GM o↵ers less than half this number, and Ford less than a

6th. Tesla job postings make almost no o↵ers of remote work in either 2019 or 2022.

5 Conclusion

This paper’s first contribution is to develop a methodology for classifying job postings as

o↵ering fully remote or hybrid work arrangements. We take an o↵-the-shelf, large-scale

Transformer model and adjust it to both account for the specific language structure of

postings and, more importantly, to predict tens of thousands of human-labeled sequences.

The resulting WHAM algorithm substantially outperforms existing methods in terms of out-

of-sample classification accuracy, including the language models that underlie GPT-3 and

ChatGPT. To the best of our knowledge, this is the first attempt in the literature to assess

the gains from adopting large language models for economic measurement, and our results

suggest the promise of the method more broadly.

We then apply WHAM to the full universe of Lightcast data across five English-speaking

countries (USA, UK, Canada, Australia, and New Zealand). This generates a dataset of

remote and hybrid work adoption whose scale, granularity, and high frequency extend well

beyond what is possible to achieve with surveys. We use this to zoom in on countries, occupa-

tions, industries, cities, and firms and, in each case, document a high degree of heterogeneity

in remote work adoption since the pandemic. Moreover, this heterogeneity is not simply a

function of pre-pandemic conditions. For example, the incidence of remote and hybrid work

across cities in 2019 explains relatively little of the cross-city increase in adoption since.

We conjecture that the heterogeneity we document has its roots in myriad forces, including

worker and firm preferences, competitive pressures in the labour market, and local norms.

An important topic for future research, which our measures can help advance, will be to

quantify the relative importance of these factors.

Many of the data series in this paper are available through a companion website WFHmap.com

which we will continue to update regularly going forward.
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TABLES AND FIGURES



Table 1: Counts of Vacancy Postings, Employers, and Cities, January 2014 to

January 2023

Note: Reported counts pertain to the universe of online postings from January 2019 onwards and a 5% random sample from 2014 to 2018, after
we drop about 6% of the postings in the data-cleaning steps described in Appendix A. We rely on Lightcast’s proprietary algorithm to identify
employers and cities.

(1) (2) (3) (4)

Country Vacancies Employers Cities

New Zealand 1,700,523 36,201 67

Australia 8,607,160 197,870 59

Canada 11,711,357 712,577 3,691

United Kingdom 74,576,747 876,103 2,268

United States 161,872,915 3,485,630 31,635

Total 258,468,702 5,308,381 37,720



Table 2: Examples of Classification Errors in Dictionary Methods

Note: The left column provides examples of how a dictionary method falsely classifies a vacancy posting as saying the job allows remote work.
The right column shows examples of how it falsely classifies a vacancy posting as not saying that the job allows remote work. Bold font
designates dictionary keywords, and yellow shading highlights text that helps determine a correct classification. These examples are based on
actual vacancy postings in our dataset and the dictionary used in Adrjan et al. (2021).



Table 3: WHAM Attention Weights Compared to Dictionary Keywords

Note: The left column illustrates the role of attention weights in WHAM classifications of vacancy postings, where darker shadings pertain to
higher weights. The right column illustrates the application of dictionary methods to the same text passages, where highlight text pertains to
keywords.



Table 4: WHAM Outperforms Other Classification Methods

Note: This table reports classification performance metrics, which we calculate using a hold-out sample of human-classified text sequences.
“Error Rate” is the overall rate of misclassifications (relative to humans). “Precision” is the ratio of true-positive classifications to the sum of true
positives and false positives. “F1 score” is the harmonic mean of Precision and “Recall”, where Recall is the fraction of true positives divided by
the sum of true positives and false negatives – i.e., the denominator is the true number of positives, according to human classifications. Columns
(1)-(3) uses a 40% random subset of our audit sample, and Columns (4)-(6) uses a sample that approximates a random sample of our full
universe of postings. See Appendix B for details, including a description of each algorithm.

Audit Sample Approximate Random Sample

(1) (2) (3) (4) (5) (6)

Error Rate Precision F1 Score Error Rate Precision F1 Score

All Zero .28 .00 .00 .03 .00 .00

Dictionary .16 .68 .74 .14 .15 .25

Dictionary w/ Negation .12 .82 .78 .07 .28 .40

Logistic Regression .11 .81 .81 .07 .26 .40

Logistic Regression w/ Negation .08 .87 .85 .05 .36 .50

GPT-3 .06 .87 .89 .05 .36 .52

WHAM (Generic English) .03 .95 .95 .02 .66 .78

WHAM (Baseline) .02 .97 .97 .01 .75 .85



Figure 1: WHAM and Dictionary Methods Applied to U.S. Vacancy Postings

Note: This figure shows the percent of postings that say the job allows one or more remote workdays per week, as classified by WHAM (blue)
and a dictionary-based approach (black) using the keywords in Adrjan et al. (2021). For both methods, we reweight the data to match the U.S.
occupational distribution of vacancies in 2019 at the six-digit SOC level.
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Note: We sort postings into Standard Occupational Classifications (SOC) at the two-digit level and calculate the share of postings that say the
job allows for one or more days per week of remote work in 2019 and 2022. We then calculate the DHS growth rate from 2019 to 2022 as
(X_2022 - X_2019) / 0.5 * (X_2019 + X_2022). For the dictionary method, we use the keywords in Adrjan et al. (2021). The blue-dashed line
shows a 45 degree line.

Figure 2: Share of U.S. Postings that Allow Some Remote Work, Growth Rate

by Two-Digit Occupations, WHAM Compared to Dictionary Method
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Figure 3: Vacancy Postings that Explicitly Offer Hybrid or Fully Remote Work

Rose Sharply in All Five Countries from 2020

Note: This figure shows the percent of vacancy postings that say the job allows one or more remote workdays per week, encompassing both
hybrid and fully-remote working arrangements). We compute these monthly, country-level shares as the weighted mean of the own-country
occupation-level shares, with weights given by the U.S. vacancy distribution in 2019. Our occupation-level granularity is roughly equivalent to six-
digit SOC codes. See Appendix B for the corresponding raw series and series based on alternative weighting schemes.
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Figure 4: Professional, Scientific and Computer-Related Occupations Have the

Highest Shares of Postings that Offer Hybrid or Fully-Remote Work, U.S. Data

Note: Each bar reports the percent of vacancy postings that say the job allows one or more remote workdays per week in the indicated period
and occupation group (two-digit SOC).
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Figure 5: The Share of Vacancy Postings that Explicitly Offer Hybrid or Fully

Remote Work Rose in Almost Every Occupation, U.S. Data

Note: This figure plots the percent of postings that say the job allows one or more remote workdays per week for 875 occupations in 2019 and
2022. We define occupations by ONET codes, dropping those with fewer than 250 posting in 2019. The line shows the unweighted OLS fit:
log(y) = 1.22 + 0.76 log(x), which has an R2 value of 0.63. The color and shape denote whether Dingle & Neiman (2020) classify the occupation
as feasible for fully remote working.
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Figure 6: The Share of Vacancy Postings that Explicitly Offer Hybrid or Fully 

Remote Work Varies Widely across Major Cities

Note: Each bar reports the percent of vacancy postings that say the job allows one or more remote workdays per week in the indicated period
and city. City refers to the location of the establishment or firm that is hiring.
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Figure 7: The Share of Vacancy Postings that Explicitly Offer Hybrid or Fully 

Remote Work Grew at Different Rates across Cities since the Pandemic

Note: This figure plots the city-level percent of postings that say the job allows one or more remote workdays per week in 2019 and 2022. “City”
refers to the location of the establishment or firm that is hiring. The line shows the unweighted OLS fit: log(y) = 1.61 + 0.46 log(x), which has an
R2 value of 0.28.
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Figure 8: Share of Postings Offering Hybrid or Fully Remote Work vary across

US cities

Note: We calculate the monthly share of all new job vacancy postings which explicitly advertise remote working arrangements (i.e. both hybrid
and fully-remote), by selected cities. Prior to aggregation at the monthly level, we employ a jackknife filter to remove a small number of outlier
days (see Appendix A: Data for further details). This figure shows the 3-month moving average. Cities chosen above are selected examples to
illustrate the wide cross-city spread.
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Figure 9: Share of Vacancy Postings Offering Hybrid or Fully Remote Work Compared

to Share of Employed that Designate “Worked from home” as commute method, U.S.

Metropolitan Statistical Areas

Note: The vertical scale is the percent of postings in 2022 that say the job allows one or more remote workdays per week (i.e. both hybrid and
fully-remote). The horizontal scale is the percent of employees who select “Worked from home” as their commute method in 2021 in the
American Communities Survey (ACS). ACS respondents are instructed to “Mark (X) ONE box for the method of transportation used for most of
the distance,” which suggests that only those who work in a fully-remote capacity should select this box. (Persons with 1+ days of commute per
week have more mileage from that commute mode.) The line shows the unweighted OLS fit: log(y) = 3.12 + 0.36 log(x), which has an R2 value of
0.55. The regression includes one observation that is outside the plotted axes.
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Figure 10: The Prevalence of Postings that Allow Hybrid or Fully-Remote Work Varies 

Greatly, even among Same-Industry Firms Recruiting in the Same Occupational 

Category 

Note: For each firm, year and indicated occupation, we report the percent of U.S. postings that say the job allows one or more remote workdays
per week.
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ONLINE APPENDIX



A Data Appendix

In this Appendix we provide further commentary on the corpus of online job vacancy post-
ings.

A.1 Data Provider

Our corpus of online job vacancy postings is provided by the labour market and analytics
company ‘Lightcast’ (formerly Emsi Burning Glass). Lightcast has been scraping online job
vacancy postings in the USA since 2007, and has continued to expand to other countries.

A.2 Web Sources

Each job vacancy posting is scraped by Lightcast from the internet. Specifically, the company
scrapes over 50,000 web sources. These sources include private online job vacancy aggregators
(e.g. Indeed.com, Monster.com), public online job boards (e.g. New York City Department of
Labour’s ‘JobZone’), and employers’ own recruitment web pages (e.g. careers.microsoft.com,
usajobs.gov). Lightcast actively audits their list of web sources to ensure data from new
websites is on-boarded in a timely manor.32 One of the main competitive advantages of
Lightcast’s data product is the breadth of their sources. These data are often referred to in
the literature as the ‘near universe’ of online job vacancy postings.

A.3 What’s in the job vacancy posting data?

Once an online job vacancy posting is scraped, Lightcast processes this data to produce
three categories of information: (i) plain text, (ii) meta data, and (iii) structured data. A
description of each of these categories follows presently:

A.3.1 Plain Text

The plain text of each job ad contains the full textual description of the job, as written by
employers. To construct this, Lightcast takes the HTML file scraped from a given website
and does two further processing steps. First, it parses out portions of the HTML file which
do not contain information about the vacancy (e.g. removing website headers, footers, and
side-menu bars). Second, Lightcast takes this portion of HTML which (ideally) contains
only information about the job vacancy, and turns it HTML into plain-text.

A.3.2 Meta Data

Each vacancy posting also contains a number of meta-data items. These are immutable
properties of each web scraped vacancy. The most important of these is the date the page
was scraped. Another important piece of meta-data is the URL from which the posting was
scraped.

32One reason we eschew analysis of the count of postings and instead focus on shares is that the underlying
donor pool of online sources is constantly changing.
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A.3.3 Structured Data

The most commonly used data product that Lightcast creates is the set of structured data.
This dataset contains one row for each job vacancy posting, and a large number of additional
information such as the job title, occupation, salary, educational requirements, location, and
employer name. These variables are extracted using Lightcast’s own proprietary algorithms.
These fields di↵er from meta data because they may contain missing values and/or measure-
ment error due to imperfect algorithmic extraction.

A.4 Errors and Missing Information

Overall, the data product is a highly informative and accurate product. We view the inci-
dence of errors as very minute, but acknowledge that any dataset with hundreds of millions
of observations scraped from over 50,000 sources will never be perfect. Both the structured
data and the plain text data require a number of pre-processing steps and the use of al-
gorithmic feature extraction, which in a very small number of cases produce errors (e.g.
misclassification of occupations, truncation of plain text, presence of erroneous text). In this
subsection we highlight some of the errors we have encountered, and discuss the strategies
we employed to ensure our results remain robust to such issues.

A.4.1 Missing Values

A specific value (e.g. the educational requirement for a job) might be missing for at least
two reasons: (i) the employer does not mention this explicitly in the text of the job ad,
and (ii) the algorithm used to extract this feature from the text failed. The former issue
is especially problematic in the context of educational requirements (e.g. we see that very
few vacancies for Medical Doctors explicitly mention a requirement to have gone to medical
school). This is because certain features of the job will likely be taken as given (for example,
specialized degrees for medical doctors). We also see that a large share of vacancy postings
do not list the salary (this is almost entirely due to lack of information, and not poor feature
extraction). One could employ imputation methods to address these missing values (see
Bana (2022), who predict the salary with a very high degree of accuracy from the text).
The main strategy employed in this paper was to only utilise covariates which contain fewer
missing values, such as occupation classifications and location information.

A.4.2 Erroneous Plain Text

In a very small number of cases we observe that the plain text includes some parts of the
website other than the job description. For example, the plain text from one job board in
New Zealand included a number of vacancy posting text from ads that were being cross-
promoted to the browser, essentially turning each document into a compilation of six job
ads.
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A.4.3 Truncated Plain Text

In a small number of other cases, the plain text is truncated. For example, we found one
employer who listed each jobs location using an interactive link which must be clicked to
appear. Since the web scraper only parses static information, this portion of the job ad
was missing from the plain text. We conducted extensive tests, and stress that in the vast
majority of cases the plain text provides an accurate representation of the job vacancy
posting.

A.5 Checking for Correlated Measurement Error

As discussed above, since our measurement of remote working relies on the underlying plain
text, some measurement error is inevitable. One concern we took seriously is the possibil-
ity that this noise may be correlated within online sources. We discuss our approach to
addressing this below.

A.5.1 Validation of Large Job Boards

In some instances the pre-processing of job posting websites includes additional erroneous
text. When this occurs, it is very likely to be true for all job postings scraped from the same
web source. To ensure our results are not overly sensitive to such issues, we first identify the
twenty largest web sources for each country. We then create twenty versions of country-level
time series of monthly remote work vacancy shares, leaving one job board out at a time.
This process revealed one problematic source from each of Canada, USA, NZ and UK. We
found two problematic job boards in Canada. Table A.1 reports the fraction of total job ads
that were removed after dropping postings from these sources.

A.5.2 Outlier Detection and the Jack-Knife Filter

When we present monthly time series data, we apply an algorithm which filters outlier days
whose contribution to the over-all monthly share of vacancy postings o↵ering remote work
is at odds with other days in a given month. This filter has a very minimal impact on the
results (e.g. we drop less than a quarter of one percent of job postings from the US based
on this filter). The few outlier days we do filter out occur when a large number of vacancies
get posted on a single day which are concentrated by employer/occupation/web source. Our
extensive audits of the data reveal that outlier days are due to compositional discontinuities
at the daily frequency, and not caused by measurement error in our algorithm. Our filter is
based on the Jack-Knife resampling procedure, and works as follows:

• For a given calendar month M denote SM as the share of vacancy postings which o↵er
remote work

• For each day t 2 M , compute the share of remote work postings excluding all postings
on this focal day t from the calculation. Define this share as SM\{t}
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• If the absolute level deviation between SM and SM\{t} is greater than 2 percentage
points, or else if the absolute ratio of their natural logarithms is greater than 0.1, then
we classify focal day t as an outlier

• Recalculate the share of vacancy postings for monthM excluding all postings on outlier
days

This filter alters the data minimally. For example, in the United States, it removes 0.2% of
the total number of vacancy postings. The number of postings which are filtered is shown
in the below table:

A.6 Representativeness of Online Job Vacancy Postings

Lightcast frequently reviews the representativeness of the job vacancy postings it scrapes, to
ensure the information renders an accurate picture of the overall labour market. Both our
analysis and that of our data provider, as well as many other papers in the literature who
utilise these data, all find a high degree of fidelity between the share of job vacancies across
occupations and industries, and other o�cial Government data products which measure
similar phenomena.

In our baseline results, we also re-weight the data to reduce sensitivity to shifts in the
overall composition of the labour market. The next section discusses this further, but we
note that this provides additional robustness to concerns of representativeness

B Supplementary Results

See figures below.
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C Supplementary Information on Measurement

C.1 Estimation details for WHAM

WHAM builds from DistilBERT (Sanh et al., 2020), which has a Transformer architecture
with six layers and 66 million parameters. It was originally estimated to predict randomly
deleted words in a corpus of unpublished books and all English Wikipedia. We use the
uncased version of the model.

The first estimation step in WHAM is to pre-train o↵-the-shelf DistilBERT (Sanh et al.,
2020) to predict randomly deleted words in a random sample of 900,000 job posting sequences
which is balanced across all years and countries. The total fraction of deleted words is
15%. We use guidelines from the original BERT paper (Devlin et al., 2019) to select the
hyperparameters for estimation: a batch size of 8, three training epochs, and a learning rate
of 5e-5.33

The second estimation step in WHAM is to fine-tune the model to predict human labels.
To select the estimation hyperparameters, we use three-fold cross validation and the training
data used for the benchmark exercises reported in section 3. We perform an exhaustive search
over learning rates {2 ⇤ 10�5, 3 ⇤ 10�5, 5 ⇤ 10�5}, epochs {2, 3, 5} and batch sizes {16, 32},
and select the set of hyperparameters with the highest average F1 score across training
data splits. The resulting choices are 5e-5, 2, and 16, respectively. The model estimated
with these choices solely on the training data is used to determine the test-set performance
reported in section 3. To produce output on the entire dataset, we re-estimate the model
using all human labels (from both training and test sets) using the same hyperparameters
and use this model to predicted remote work on all sequences in the Lightcast data.

C.2 Details for other classification approaches

Section 3 compares various alternatives to WHAM for classifying remote work, and here we
provide additional details on these.

C.2.1 Dictionary

We implement the dictionary approach with the following steps:

1. Preprocessing: We lowercase all text, remove punctuation symbols (except for hy-
phens and apostrophes), remove numbers, and replace all sequences of white spaces
with a single white space.

2. Tagging: We search for the appearance of any of the keyword phrases from Table
Table C.1. For phrases containing multiple words (e.g. ‘work from home’) we allow
for any arbitrary combination of white spaces and hyphens separating the words that
compose the dictionary keyword (e.g. ‘work-from-home’, ‘work- from- home’).

33The batch size determines how many text sequences are processed at each step in estimation. The number
of epochs determines the total number of times the entire data set is passed through in estimation. The
learning rate determines the speed at which the model parameters update in gradient descent.
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3. Binary classification: Any job posting that contains a match to any of the dictionary
keywords is classified as positive.

C.2.2 Negation adjustment

Our strategy for negation adjustment follows that proposed by Shapiro et al. (2022) to
capture negation in the context of sentiment analysis. For every keyword match from the
dictionary within a job posting, we consider it to be negated if any of the following is true:

1. There is a negation term in any of the three words before the keyword match. The set
of negation terms is displayed in Table C.2, and comes from the VADER Sentiment
Analysis toolkit.

2. “no” or “not” appear in the two words after the keyword match

3. A word that contains “n’t” is the immediate word after the keyword match

If a job posting is negated we then change its binary label from positive to negative.

C.2.3 Logistic regression

Our approach to logistic regression follows the approach in Adams-Prassl et al. (2020). We
start by applying the same pre-processing steps used for the dictionary approach to the
job postings: i) lowercase text, ii) remove punctuation (except for the hyphen), iii) remove
numbers, and iv) clean white spaces. Next we split the text into individual tokens and build
the document-term frequency matrix by using the 5,000 most common tokens. For each
keyword in our dictionary (the phrases in Table Table C.1) that is not part of the 5,000 most
common tokens, we add a column in the document-term matrix with its counts. Finally, we
transform the matrix into its binary form; every entry above one is replaced with a one. This
matrix then becomes the set of covariates used to predict human labels via logistic regression
with L1 regularization (LASSO). To determine the LASSO penalty, we use five-fold cross-
validation on the training data, and select the regularization parameter that achieves the
highest average F1 score across the five splits.

C.2.4 Logistic regression with negation

We follow an identical procedure to the one described for logistic regression but we further
extend the document-term matrix with one extra column per keyword in the dictionary that
indicates that the keyword was negated (according to our negation adjustment described
before).

C.2.5 GPT-3

We use OpenAI’s GPT-3 model to generate predictions on the presence of remote work in
our job postings. To do this, we craft a simple prompt that instructs the model to “Identify if
the text o↵ers the possibility of remote work at least one day per week” and ask the model to
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generate an answer. Figure C.1 illustrates a particular example using OpenAI’s Playground.

In most cases, the text generated by GPT-3 is a Yes/No answer. Sometimes, however,
the model generates longer answers (e.g. “temporarily due to covid”). In order to transform
these answers into a binary prediction we do the following: i) lowercase the answer of GPT-3
and clean any additional white spaces and ii) if the answer contains “no” as part of its three
first characters we assign a zero (no remote work) to the sequence, else we give it a one
(remote work).

We test both the ‘text-davinci-02’ model and the ‘text-davinci-03’ model using the same
prompt and report performance of the former given its lower error rate with respect to our
human labels.
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Figure A.1: Fraction of job vacancy postings we drop from sample due to

problematic job boards

Note: We do not identify these job boards, and instead refer to each by a letter e.g. “A”. This is to avoid any potential conflict with the commercial
interests of these websites, though it should be noted that this is not a failure of the job board but rather an issue with our web scraped data.
Researchers should contact us if they would like to know the names of each source which we drop. Column (3) reports the fraction of all postings
from Jan 2014 to Jan 2023, within the relevant country, that is removed from the raw data after we dropped the corresponding source.

(1) (2) (3)

Source Country Percent of Raw Data Dropped

A USA 6.7

B UK 3.6

C NZ 28.9

D Canada 3.9

E Canada 3.5



Figure A.2: Jack-Knife Time Series Filter Removes a very small amount of job

postings from monthly time series results

Note: This table records the total fraction of all online job vacancy postings which are dropped from our sample after applying our jackknife filter.
This is only imposed when we present monthly frequency time series plots, and works by identifying outliers at a daily frequency prior to monthly
aggregation.

(1) (2)

Country Percent of Raw Data Dropped

NZ 7.74

Australia 0.78

Canada 1.43

United Kingdom 0.06

United States 0.21



Figure B.1: Most Sequences are Assigned a Predicted Probability by WHAM at

Extreme Values

Note: WHAM assigns a predicted probability to each sequence in the full job posting dataset using our trained neural network model. This figure
presents a histogram of the share of sequences that fall in different bins according to these predictions.
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Table B.1: Most Job Postings Either Have Zero or One Sequence that gets

Classified as Offering Hybrid or Fully Remote Work Arrangements

Note: This table tabulates how many text sequences in each US job posting from 2021 are classified as offering remote work (either hybrid or
fully remote) according to WHAM. A typical job ad is split into six sequences. Most postings (90.42%) have no positive sequences. Of the
remaining fraction, most have only one positive sequence.

(1) (2) (3)
Remote

Work
Sequences

Number of 
Vacancy 
Postings

Share Of
Total
(%)

0 40,006,052 90.4

1 2,682,844 6.1

2 989,084 2.2

3 365,970 0.8

More than 3 201,523 0.5



Table B.2: Computing Hardware and Costs for the Three Stages of WHAM

Note: This table details the computational setup and time/money costs associated with the different stages of WHAM. All computations were
performed on the Google Cloud Platform.

(1) (2) (3)

Pretraining Fine-Tuning Full Sample 
Prediction

Computational setup
GCP Virtual Machine 

with 1 NVIDIA
V100 GPU

GCP Virtual Machine 
with 1 NVIDIA

V100 GPU

GCP Virtual Machine 
with 8 NVIDIA

A100 GPUs

Total time (hours) 12 3 36

Job postings (per 
hour) NA NA 7,000,000

Cost per hour (USD) $3 $3 $40

Total Cost (USD) $36 $9 $1,440



Figure B.2: The raw unweighted share of new job ads offering hybrid or fully

remote work is highest in the UK, as UK has very high proportion of ‘white-

collar’ jobs being advertised

Note: This figure shows the share of vacancy postings that say the job allows one or more remote workdays per week. We compute these
monthly, country-level shares as the raw mean from the universe of new job vacancy postings in each country from each month. Our baseline
approach presented in Figure 3 uses vacancy shares from the US to control for occupational composition across countries.
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Table C.1: Keywords Used to Implement the Dictionary Approach to Remote-

Work Classification

Note: These are the keywords that appear in Table A.2 of Adrian et al. (2021) for detecting the presence of remote work in the text of job
postings. The three exceptions are `homebased', `home based', and `remotely' which we add to the original terms to improve accuracy.

working remotely working from home work remotely

work from home work at home teleworking

telework telecommuting telecommute

smartworking smart working remote work 
teleworking

remote work remote remotely

homeoffice home office home based

homebased



Table C.2: Terms Used for Negation in the Dictionary Approach

Note: This is a set of terms that the VADER sentiment analysis tool uses for negation, and which Shapiro et al. (2022) adopt. We add the term
`no' to the baseline negation set.

aint arent cannot cant couldnt darent didnt doesnt

ain't aren't can't couldn't daren't didn't doesn't dont

hadnt hasnt havent isnt mightnt mustnt neither don't

hadn't hasn't haven't isn't mightn't mustn't neednt needn't

never none nope nor not nothing nowhere oughtnt

shant shouldnt uhuh wasnt werent oughtn't shan't shouldn't

uh-uh wasn't weren't without wont wouldnt won't wouldn't

rarely seldom despite no



Figure C.1: GPT-3 Example Prompt

Note: To compare our WHAM model to recent advances in generative AI, we analysed our audit sample of text sequences drawn
from job vacancy postings using GPT-3. The above is an illustration of the prompt we used. We report the performance of this
approach to classification in Table 4 which compares this measurement algorithm to WHAM. The example shown above highlights
that, unlike some other widely used methods, this technology is similar to WHAM in its ability to process context.


	Introduction
	Data and Measurement
	Job Vacancy Data
	The Measurement Problem
	Our Approach to Classification
	Breaking Up Job-Ad Text into Sequences
	Human Labels for Training and Evaluation
	Developing the WHAM model
	Predicting Remote Work Language at Scale
	Aggregating Measurement back to Job Postings
	Public Access to WHAM
	Computational Performance of WHAM


	Assessing the Performance of WHAM
	Results
	Remote Work across Countries
	Remote Work across Jobs
	Remote Work across Cities
	Comparing Job Advert Measurement to Survey Responses across MSAs
	Remote Work across Companies

	Conclusion
	Data Appendix
	Data Provider
	Web Sources
	What's in the job vacancy posting data?
	Plain Text
	Meta Data
	Structured Data

	Errors and Missing Information
	Missing Values
	Erroneous Plain Text
	Truncated Plain Text

	Checking for Correlated Measurement Error
	Validation of Large Job Boards
	Outlier Detection and the Jack-Knife Filter

	Representativeness of Online Job Vacancy Postings

	Supplementary Results
	Supplementary Information on Measurement
	Estimation details for WHAM
	Details for other classification approaches
	Dictionary
	Negation adjustment
	Logistic regression
	Logistic regression with negation
	GPT-3



