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ABSTRACT

Adapting to Climate Risk?
Local Population Dynamics in
the United States”

Using a new composite climate-risk index, we show that population in high-risk counties
has grown disproportionately over the last few decades, even relative to the corresponding
commuting zone. We also find that the agglomeration is largely driven by increases in the
(white) working-age population. In addition, we show that high-risk tracts have typically
grown more than low-risk tracts within the same county, suggesting the presence of
highly localized amenities in high-risk areas. We also document heterogeneous population
dynamics along a number of dimensions. Specifically, population has been retreating
from high-risk, low urbanization locations, but continues to grow in high-risk areas with
high residential capital. The findings above hold for most climate hazards. However, we
document that tracts with high risk of coastal flooding have grown significantly less than
other tracts in the same county.
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1 Introduction

Over the last decades, the frequency and intensity of natural hazards in the United
States (U.S.) has increased. According to the National Oceanic and Atmospheric Ad-
ministration (NOAA), the U.S. experienced more than twice the number of billion-dollar
disasters during 2010-2020 than it did in the previous decade and, in fact, four of the
five most costly natural disasters have occurred since 2010.1

We illustrate this point in Figure 1 using SHELDUS data (CEMHS (2022)). The
chart identifies the most damaging event in each year between 1960 and 2020 on the
basis of inflation-adjusted cost, separately for each of the main types of natural hazards.
During the 1960s, the most damaging events were relatively benign (with costs falling
mostly in the first two quintiles of the distribution). However, over the following decades,
the most damaging events have become much more costly, with an increasing presence
in the fourth and fifth cost quintiles.

In addition to the increased frequency of extreme natural disasters, the increase
in damage over the last few decades appears to be intimately related to the increasing
agglomeration of people and economic activity in high-risk areas.? Despite a few notable
exceptions where hurricanes led to a persistent reduction in local population (Deryugina
et al. (2018)), there seems to be a general trend toward population agglomeration in
hurricane-prone areas.®> Previous studies have shown that, for several decades, coastal
counties in the U.S. have grown disproportionately, including many counties that have
been hit by large hurricanes over this period of time (Wilson and Fischetti (2010) and Lin
et al. (2021)).* Similar findings have been found regarding the pace of new construction
in places with a high risk of wildfires (Radeloff et al., 2018) and heatwaves (Partridge et
al., 2017). However, to the best of our knowledge, no study has done a comprehensive
analysis of population dynamics that considers all major natural hazards, which also
includes droughts, riverine flooding, tornados, hail, and so on.

Our goal is to investigate population dynamics in areas with high climate risk, with a

"Hurricanes Sandy (2012), Harvey (2017), Irma (2017), and Maria (2017).

2Across the world, infrastructure investment in flood-prone coastal areas continues to rise, often
ignoring sea-level rise projections (Balboni (2021)).

3Deryugina et al. (2018) analyzed the effects of hurricane Katrina on the population of New Orleans,
along with the effects on their employment and income. They find a persistent reduction in population
but only small and highly short-lived effects on labor market outcomes. Specifically, eight years after
the storm, over a third of the displaced population had not returned to New Orleans.

4Qver one third of the U.S. population lives in coastal counties. According to Wilson and Fischetti
(2010), between 1960 and 2008, the share of population living in coastal counties along the Gulf of
Mexico soared by 150%, more than double the national average.



focus on examining whether population retreat is taking place. To do this, we introduce
a novel composite measure of climate risk (based on the historical frequency of climactic
events over the last few decades) and merge it with population data at the county and
sub-county levels over the last century. Accounting for local amenities (by including the
appropriate fixed-effects), we also examine whether within-county population dynamics
mitigate or exacerbate cross-county population shifts. Last, our analysis also considers
heterogeneity in the population effects of climate risk along several dimensions, including
by region, type of natural hazard and degree of urbanization.

Our analysis delivers several findings. First, we find that over the last three decades,
high-risk counties have grown about 2.9 log points more, per decade, than low-risk coun-
ties. Second, we show that even after netting out the average growth in the commuting
zone, high-risk counties have grown disproportionately more than low-risk ones over the
last few decades (with an excess of 0.5 log points per decade). These results suggest the
presence of attractive amenities in high climate-risk areas that operate at the county
or sub-county levels. Additionally, we show that high-risk tracts typically grow more
than low-risk tracts within the same county, which exacerbates the increase in climate
exposure implied by the county-level analysis.

Our results also highlight that the effects of climate risk on population growth vary
across several dimensions. We have found stark differences in the geographic sorting of
different socio-demographic groups. More specifically, the increasing population agglom-
eration in high climate-risk counties appears to be largely driven by white, working-age
individuals. Retirement-age and (less affluent) non-white populations appear to be re-
treating from counties with high climate risk.

We also documented differential trends on the basis of the degree of urbanization.
Specifically, we find population retreat from high-risk, low-urbanization locations. In
contrast, high-risk, high-urbanization locations exhibit higher growth than low-risk lo-
cations in the same commuting zone. We also find evidence of micro-retreat in the
context of coastal flooding risk. Namely, we show that tracts with high risk of coastal
flooding grew less than other tracts in the same county. However, we do not find this
pattern for other natural hazards. We argue that this is because coastal flooding is an
easily predictable, highly localized risk, which allows residents to “insure” themselves by
locating in low-risk tracts within attractive counties. Not surprisingly, regional differ-
ences in urbanization and exposure to various kinds of natural hazards generate different
population-risk dynamics across regions. We show the existence of a high population

growth differential in high-risk counties in the South and Northeast, but negative differ-



entials in the Midwest and West.

All in all, our findings show increasing agglomeration in high climate-risk areas in the
South and Northeast of the United States, likely driven by robust local economies and
possibly reinforced by inertia in public investments in densely population risky locations.
This trend implies that climate events with record-breaking damages will continue to
take place over the foreseeable future, even in the unlikely event that climate risk were
to stay constant.

The paper is organized as follows. Section 2 reviews the relevant literature and Sec-
tion 3 describes our data sources. Section 4 introduces some definitions and presents
nationwide trends. Section 5 contains our analysis of population retreat on the basis
of the composite climate risk index. The remaining sections analyze heterogeneity ac-
cording to the degree of urbanization (Section 6), region (Section 7), demographic group

(Section 8), and type of natural hazard (Section 9). Section 10 concludes.

2 Literature

The literature on climate risk and population dynamics is growing rapidly. Many studies
have focused on the effect of extreme weather events and natural hazards on migration.
Boustan et al. (2020) analyze the effect of a wide range of natural disasters on net-
migration over the period 1920-2010 and find that severe disasters such as wildfires and
hurricanes tend to trigger county-level out-migration. However, they find that flooding
episodes tend to attract migrants.

The demographic effects of climatic events are also a function of population density
and pre-existing demographic trends. For example, Fussell et al. (2017) document that
hurricanes and tropical storms lower population growth only for the small subset of U.S.
counties with high-density and growing populations, which only represent 2% of all US
counties. This finding leads them to conclude that long-term local population trends
overshadow the effects of episodic weather events. Other studies have also suggested
that the effects of flooding on migration are heterogeneous in household and regional
characteristics (as in the review by Hauer et al. (2020)).

Interestingly, other papers have studied the information content of natural hazards
and whether residents in those affected areas truly do update beliefs. For example,
Petkov (2022) studies whether unexpected hurricanes lead to belief updating by locals
and lead to larger population loss relative to more predictable hurricanes. His analysis

shows that population growth declines more in counties that had not suffered hurricanes



in the past.®

Our work is more closely related to studies examining local population dynamics
on the basis of climate risk, rather than the effects of episodic climate events. Lin et
al. (2021) document that, between 1990 and 2010, new residential construction in the
Gulf of Mexico and Northeast regions of the U.S. was concentrated in high-density areas
(Census blocks) with high projected risk of coastal flooding. The authors argue that
urban agglomeration economies still overpower the risk associated with sea-level rise.
Compared to their paper, our analysis includes both earlier data (going back to 1920)
and more recent data (for 2020). We also go beyond the analysis of coastal flooding risk
and consider a wide range of climate hazards.

In the context of wildfire risk, Fussell et al. (2017) study the number of housing units
built in the wildland-urban interface, an area prone to wildfires. The authors find that
between 1990 and 2015, construction in the wildland-urban interface was the fastest-
growing land use type in the United States. Similar trends have been found in regions
at risk of droughts and heat waves. For instance, Partridge et al. (2017) document that,
in the second half of the 20th century, Americans moved to locations that are predicted
to experience severe heat waves and long-term droughts.

Social scientists have also used observed migration patterns and current climate pro-
jections to simulate future climate migration scenarios. These models make predictions
of the demographic effects of climate change. Some studies emphasize that economically
vulnerable populations may not be able to afford retreating to low-risk locations and
may be trapped in high-risk locations (Black et al. (2011), Hauer et al. (2020), Hauer
et al. (2022)). On their part, Black et al. (2011) point out that migration is already an
important coping strategy in several countries, as is the case in Bangladesh in response
to large-scale flooding episodes. They also predict that environmental factors will play
an increasingly larger role in shaping international migration in many other areas of the
world.

Other authors have focused on the impact on the geographical distribution of eco-
nomic activity. Using a dynamic model of the world economy, Desmet et al. (2021)
simulate the effects of sea-level rise on firms’ location decisions, taking into account the
effects of local agglomeration economies. Based on conservative sea-level rise projections,
they estimate that by 2050 about 0.2% of the world’s population (and firms) will have

SPetkov (2022) also reports that unexpected hurricanes increase housing prices, but other studies
find the opposite effect on housing values (e.g. Ortega and Tapnar (2018) and Indaco et al. (2021)).



been displaced (reaching 1.5% in year 2100).° Interestingly, welfare losses are estimated
to be larger than real GDP losses because the population endogenously retreats toward
(non-coastal) areas with worse amenities. Importantly, their analysis implies highly het-
erogeneous geographical effects. For instance, while the U.S. as a whole is predicted to
experience only a negligible reduction in real GDP (peaking at 0.01%), coastal areas
in South Florida and Texas (and to a lesser extent in the Northeast) are predicted to
suffer much larger output and population losses, which are offset by gains in neighboring

inland locations.

3 Data sources

3.1 Population by county

We use the Surveillance, Epidemiology, and End Results Program (SEER) dataset com-
piled by the National Cancer Institute. This dataset spans 1969-2020 and breaks down
county population by 19 age groups, race (3 groups) and gender. We impose a few
data restrictions: we drop Alaska and Hawaii due to the difficulty of linking counties
over time for these states, and a few groupings of counties that were only used in the
1970 Census (FIPS 36910, New York City). Values for a handful of counties are in-
terpolated for 1970 and 1980. Importantly, our estimation sample for the county-year
models will be 1980-2020 to avoid problems arising from changes in county definitions
in the earlier years. The details are in Appendix A. We extend the previous dataset
backward by merging historical Census estimates for county population (overall) for the
period 1900-1970. These data allow us to trace the evolution of population for the vast
majority of counties for over a century (1900 to 2020). For years prior to 1970 we use
the county-level data as is.

As shown in Table 1, population counts obtained aggregating our county dataset are
fairly accurate.” As seen in Figure 2, between 1920 and 2020 the country’s population
increased by about 220 million, corresponding to an average decadal growth of 11.3 log
points (Table 1, column 2). Population growth has slowed down since 1970, averaging

10.4 log points per decade. Interestingly, the elderly and non-white populations have

6Their estimates only consider the costs associated with locations that will become permanently
flooded and do not take into account the increased frequency of flooding episodes in other coastal areas.

"According to the BLS, the U.S. population in 2020 was 331.4 (April 1 estimate). The SEER data
report 327.3 million people. The 4-million disparity is due to the exclusion of Alaska, Hawaii and Puerto
Rico.



grown at much higher rates than the rest of the population over the period 1970-2020.
Over this 50-year period, the population age 65 and above and the non-white population
grew by an average of 21.3 and 23.3 log points per decade, respectively, more than twice
the rate for the overall population. The higher growth rate among the elderly population
in the last 50 years reflects both the aging of baby-boomers and the steady increase in
longevity. The higher growth rates for non-whites might reflect the increase in immigra-
tion (from abroad) since the 1965 changes to US immigration policy (Immigration and
Nationality Act), which opened the door to several decades of high immigration.

The top half of Table 2 presents summary statistics for the county data. The first
set of variables reports the average decadal population growth (change in log population
divided by the number of decades). Over the two last decades, population in the average
county has grown by an average of 2.5 log points per decade (and solely 0.6 log points in
the 2010s) but, obviously, there’s a great deal of variation (ranging from a 31 log point
reduction to a 51 log point increase). The table also shows that population growth has
slowed down considerably. Between 1920 and 2020 the average population growth in
the average county was 5.2 log points per decade, more than twice the value for the
2000-2020 period.

3.2 Population by Census tract

The Longitudinal Tract Data Base Census Dataset (LTBD) provides Census-tract pop-
ulation data for the period 1970-2020. It combines data from the decennial Census
and the ACS and, crucially, the tract boundaries have been harmonized to 2010 Census
tract boundaries as described in Logan et al. (2014). We use the full-count (standard)
dataset.®

The bottom half of Table 2 presents summary statistics for the population data at
the Census tract level. The first set of variables reports the average decadal population
growth (change in log population divided by the number of decades). Over the last two
decades, population in the average Census tract has grown by an average of 6.7 log points
per decade. As expected, the variation in population growth across tracts is relatively
large, with some tracts seeing population reduce by 285 log points and others seeing
population increase by 636 log points. As was the case at the county level, population
growth at the tract level has slowed down considerably. Between 1970 and 2020 the

8The data is freely available at https://s4.ad.brown.edu/Projects/Diversity /Researcher /Bridging.htm.
See Appendix B for more details.



average population growth was 16.4 log points per decade, more than three times larger

than the value for 2010-2020.

3.3 Our composite climate risk index

We use natural hazard risk metrics provided by FEMA (November 2021 version).? Our
starting point is the most comprehensive metric, which includes data for a large number
of natural hazards and is a function of both the expected annual losses from each of the
18 hazards in each geographic area, and the area’s social vulnerability and community
resilience. This index combines information on 18 natural hazards,'® and takes values
that range from 0 to 100.

It is important to note that expected annual losses are a combination of the expected
annual frequency of the climate events and the degree of exposure, which is a function
of the area’s population and its housing stock. Therefore there will be a mechanical
correlation between this risk metric and population, both in levels and growth rates.

Given our interest in examining how climate risk impacts population growth, it is
more appropriate to measure climate risk by annual frequency. Annualized frequency
for each hazard is calculated as the number of historical occurrences (in counts of events
or event-days) over the length of the time period, using a variety of primary sources that
vary across each of the 18 specific hazards.!' Since our interest is on climate risk, we
exclude two of the 18 natural hazards that are not related to climate, namely, volcanic
activity and earthquakes.

We then build a composite risk measure based on annual frequency, which we denote
by Z. First, we standardize the annual frequency metric for each hazard (using the
corresponding mean and standard deviation). Next, we average the standardized annual
frequencies using hazard-specific weights, and denote the weighted composite index by
ZW. The weights are meant to capture the disparity in the economic consequences of
each hazard. Specifically, we compute each natural hazard’s share in the expected annual

loss due to property (buildings) damage and crop losses nationwide.!? Furthermore, we

9The data can be freely downloaded at https://hazards.fema.gov/nri.

10T hese are: Avalanche, Coastal Flooding, Cold Wave, Drought, Earthquake, Hail, Heat Wave, Hur-
ricane, Ice Storm, Landslide, Lightning, Riverine Flooding, Strong Wind, Tornado, Tsunami, Volcanic
Activity, Wildfire and Winter Weather.

HMore details on the calculation of annualized hazard frequency can be found at
https://hazards.fema.gov/nri/annualized-frequency.

12For droughts the expected annual losses for building damages are not part of the dataset. We
replaced them with expected annual agricultural losses. Ten out of the 16 hazards considered account
for the vast majority of the nationwide economic damage caused by climate events. We list them next



compute the 25th and 75th percentiles of the composite variable and define a county as
low risk if the composite annual frequency measure is below the 25th percentile, medium
risk if it falls between the 25th and 75th percentiles, and high risk if it is above the 75th

percentile.!

3.4 Population and economic density of locations

The response to climate risk may differ on the basis of several location characteristics:
population density (Pop/Area), economic density ((Buildings + Agricultural)/Area)
and overall economic value (Buildings + Agricultural). In particular, we hypothesize
that wealthier areas may respond to high climate risk by making their buildings and
infrastructure more resilient to climate events in ways that poorer locations cannot. Be-
sides affordability, there may also be cost-benefit considerations. Resiliency investments
in low-density areas may have very low economic returns compared to relocation.

The FEMA-NRI dataset contains data on each location’s surface area and the 2018
values of the buildings and agricultural products (defined as the sum of the values of

crops and pastureland), both at the county and tract levels.!

4 Definitions and nationwide trends

This section defines our measures of population growth and examines both nationwide
trends and the geographic distribution of climate risk. These exercises both provide an

overview of the data and help assess their quality.

4.1 Population growth

We begin by pooling all counties together and examining the evolution of population

over time for the US as a whole. Figure 2 plots the evolution of population in levels (top-

in decreasing order, along with the corresponding shares: hurricanes (0.21), droughts (0.21), riverine
flooding (0.18), tornadoes (0.13), wildfires (0.10), hail (0.06), coastal flooding (0.05), strong winds
(0.04), ice storms (0.01) and winter weather (0.01). The Appendix also includes results based on an
unweighted composite risk measure, which turn out to be very similar to those obtained with the
weighted composite index.

13Tt is worth noting that the annual frequency distributions differ in the county and Census tract
datasets, which delivers different threshold values for the risk categories.

14The original source for building values is Hazus 4.2, Service Pack 01, which provides 2018 valua-
tions of the 2010 Census. The values of crops and pastureland were derived from the United States
Department of Agriculture 2017 Census of Agriculture, which are provided at the county level.



left) and in logs (top-right). ' The top figures plot the evolution of the US population
in levels and logs. The bottom left figure plots the decadal population growth rates for
the 10-years beginning in year t. Namely,

g: = InPop;, 19 — InPopy, for t = 1900, 1910, ...,2010. (1)

As illustrated in Figure 2 (bottom-left figure), there is a downward trend in decadal
growth rates, but there is also substantial variability, partly reflecting economic condi-
tions. Specifically, decadal population growth was the lowest in the 1930s and 2010s,
with 6.9 and 6.3 log points, respectively.

To smooth out fluctuations, it is helpful to define the average decadal growth rate

over periods of time ranging from initial year t and final year 2020, or

__ InPopayga — InPop;
907701 x (2020 — 1)

. for t = 1900, 1910, ..., 2010, (2)

where the denominator simply counts the number of decades between initial year ¢ and
year 2020. A little algebra easily shows that g, is simply the average of the decadal
population growth rates (g;) for the corresponding decades (beginning with years 7 =
t,...,2010). Note also that Gyy0 = g2010-

The bottom-right figure in Figure 2 clearly shows the downward trend in the growth
rate for the overall population. Between the years 1900 and 2020, the average population
growth rate has been around 12% per decade. In comparison, the corresponding rate fell
to 10% for the 1970-2020 period and fell further to roughly 6% for the 2010-2020 decade.®
To a large extent this trend reflects the reduction in fertility rates accompanying the
secular increase in per-capita income. Despite large improvements in life expectancy
and periods of high immigration, population growth has trended downward between

1900 and 2020.

4.2 Population growth and climate risk

It is helpful to consider our county-level population datasets and partition all counties

into 3 groups on the basis of our composite climate risk index (ZW). Specifically, we

15The figures also plot the evolution of two demographic groups: the population age 65 and over and
the non-white population. Both groups have grown rapidly, relative to the overall population, since
1970.

16The figures also plot the data for the population age 65 and over and the non-white population.
Since 1970 these groups have increased at much higher rates, on average, than the overall population.



consider the three climate risk levels (indexed by r) defined in : low (r = 0), medium (r =
1) and high risk (r = 2). We then classify all counties by their composite risk category
and pool all counties with the same risk category. Last, we compare the evolution of
population across the three risk categories. In particular, we are interested in assessing
whether population growth has been lower in high-risk areas, which would indicate
population retreat.

We examine the trends in terms of the average decadal (10-year) growth rates {g; —
g}, for r = 1,2. As can be seen in Figure 3 (bottom right), up until the 1970s, the
average growth differential between high-risk and low-risk areas was high and relatively
stable, roughly 6 percentage points per decade. Since then, the gap in growth rates
appears to have fallen gradually: over the last 20 years the average growth rate has been
about 4 percentage-points higher in high-risk areas than in low-risk ones. In comparison,
medium-risk areas have grown at similar rates as low-risk areas, except for the 1970-2000,
period where medium-risk areas grew at somewhat higher rates than low-risk areas.

In conclusion, the data indicate that population growth remains much higher in high-
risk areas than in low-risk areas, even though the gap appears to have been closing slowly
in the last few decades. In other words, nationwide population is not retreating from
high-risk counties. Rather, these counties continue to grow disproportionately, albeit at

a decreasing rate.

4.3 The geographic distribution of climate risk

To understand the geographical variation of our composite risk measure, we map it at
the county level. As shown in Figure 4, there is substantial geographical heterogeneity
in climate risk measure (ZW). Specifically, climate risk in the Northeast is concentrated
among coastal counties. To a large extent, this is also the case in the South (and partic-
ularly in southern Florida), although many counties in northern Texas and Oklahoma
also exhibit moderate levels of climate risk. In the West the highest climate risk area
falls in counties on both sides of the California-Arizona border. Last, the Midwest is
generally a region with low climate risk and only some counties in Nebraska and Kansas
exhibit moderately high climate risk.

Naturally, there is regional variation in the specific climate hazards concerning the
population. Obviously, landlocked counties are not exposed to coastal flooding and
tornadoes are much more frequent along the Tornado Alley (which includes parts of

Texas, Louisiana, Oklahoma, Kansas, South Dakota, Iowa and Nebraska). Figure 5

10



plots county-level risk levels (based on estimated annual frequency) for the 10 natural
hazards with positive weight in our composite measure (see Section 4.2).17

Droughts are a serious concern in many counties in the western half of the United
States. In contrast, the eastern and southern coastal counties face moderate to high risk
of hurricanes. We also note that wildfire risk correlates with risk of droughts, whereas
coastal flooding risk largely coincides with risk of hurricanes (particularly in southern
counties in Texas, Louisiana and Florida).'

In later sections we will also examine whether different natural hazards affect pop-
ulation growth differently, possibly due to differences in the availability of mitigation

technologies or other factors.

5 Is there population retreat from high climate risk

locations?

5.1 County-level analysis

The findings in the previous section show that population is not retreating from high
climate-risk areas. At best, we observe a recent reduction in the gap between growth
rates in regions with high and low climate risk. This section will offer a more formal
test of the retreat hypothesis exploiting cross-county variation.

Naturally, if population is growing faster in high-risk areas it must be because those
areas enjoy amenities with high attraction power. These amenities may differ in terms
of geographic scope.’® Some may spread across whole states (e.g., low taxation), other
amenities may better coincide with commuting zones (e.g., strong labor markets), yet
others may operate at the county or sub-county level (e.g., nice views or proximity to
nature).

We hypothesize that, if we were able to condition on all relevant amenities, we would

1"The figures are sorted (top to bottom) in decreasing weight in our composite index. The hazards
with the highest weights are droughts (0.21), hurricanes (0.21), riverine flooding (0.18) and tornadoes
(0.13).

8Note though that several counties in the northwest are at high risk of coastal flooding but are not
exposed to hurricanes.

YFor example, Rappaport and Sachs (2003) show that US economic activity is overwhelmingly con-
centrated in coastal counties and argue that this is a result of the amenities that stem from proximity
to the ocean in terms of productivity and quality of life. Edward L. Glaeser and Saiz (2001) argue that
the inherent economic success of a city hinges on its consumption value, which is closely related to the
amenities it offers.

11



be able to observe population retreat from high-risk areas. In other words, individuals
currently living in an area with high climate risk would be willing to relocate to lower
climate-risk areas with the same amenities. We refer to this as the conditional retreat
hypothesis and we will also test it below.

We analyze these questions exploiting cross-county variation to estimate differences
in population growth on the basis of climate risk, where growth will sometimes be defined
relative to the neighboring counties to net out the effects of region-specific factors. For
our analysis, we focus on the most recent decades, both for data quality reasons and
because it is the period where climate risk has become more salient.?’

We consider a series of cross-sectional models that differ in their dependent variable.
To fix ideas, denote the the average (decadal) change in log population in county c
between years 1990 and 2020 by g.. We posit that

g, = o+ pRiskMed. + poRiskHigh. + u., (3)

where RiskMed. and RiskHigh. are dummy variables taking a value of one for
medium or high-risk counties, respectively. The omitted category are counties with
low (or non-existing) risk. Coefficients 51 and f, estimate the excess mean population
growth in medium-risk and high-risk counties relative to low-risk counties nationwide.

It is also interesting to ask if counties with higher climate risk grow more (or less) than
neighboring counties located in the same commuting zone. Appropriately demeaning the

dependent variable allows us to address this question. In this case, we estimate the model
J.—g,=a+ BiRiskMed, + BaRiskHigh, + u., (4)

where the dependent variable is the average population growth in county ¢ net of the
average population growth among all counties in the same commuting zone z. To the
extent that commuting zones characterized by higher climate risk grow systematically
more (less) than commuting zones with low risk, the estimates for B1 and 5 will be
lower (higher) than the analogous estimates obtained in Equation (3).2! Note also that
Equation (4) neutralizes the effect of factors that make a commuting zone more (or less)

attractive, on average, than other, less desirable commuting zones. Examples of such

20There are over 3,000 counties in the United States (and over 700 commuting zones). We have
harmonized county boundaries from 1980 onward.

2INote that B2 = FE(g.|HighRisk) — E(g.|LowRisk), whereas in Equation (4), By = Py —
(E(g,|HighRisk) — E(g.|LowRisk)).

12



factors are cross-state (or cross-city) differences in taxation, weather or the robustness
of their local economies during the period of consideration. Hence, this model provides
a test of the conditional retreat hypothesis.?

Let us begin with some descriptive statistics. The top panel in Table 2 describes
the main variables in the county-level dataset. Roughly, there are 3,100 counties in the
United States.?> Over the last century, population in the average county grew by 5.2
log points per decade. This growth rate remained at this level (or higher) until 1980.
Between 1980 and 2020, the average county grew by 4.3 log points per decade, and over
the last decade the growth rate for the average county fell to 0.6 log points. Turning now
to measures of climate risk, the average county had a FEMA national risk index (NRI)
of 10.6, which ranges from 0 to 100. Naturally, our composite climate indices, defined
as averages of standardized annual frequencies across all natural hazards (weighted or
unweighted) have a zero mean value. The table also reports the 3 categories for the

weighted composite index.

5.1.1 Main results

We now turn to the estimation of Equation (3). Table 3 reports the results. Before
turning to our composite climate risk index, we employ FEMA’s National Risk Index
(NRI). As seen in column 1, there is a strong positive association between high-risk
counties (on the basis of the NRI) and population growth. However, this index is
constructed on the basis of the frequency of natural disasters and a measure of exposure,
which includes building values that are obviously correlated with population. As a result,
there is a nearly mechanical relationship between high values of the NRI and a county’s
population growth. Primarily for this reason, we built a composite index that is purely

based on the average annual frequency of natural hazards in each county. Instead,

22 An alternative approach to netting out factors that affect all counties in a commuting zone equally
would be to include commuting-zone fixed-effects in the estimation of Equation (3). However, in that
case, the interpretation of the coeflicients of interest is less straightforward. When we include fixed-
effects, identification is based on the correlation between the transformed (demeaned) population growth
and the transformed risk dummy. Note that the transformed risk dummy becomes a continuous variable,
so it is no longer the difference in the mean for high-risk versus low-risk counties. The demeaned
dummy variable then becomes a measure of relative risk (vis-a-vis the corresponding commuting zone)
whose variation is entirely driven by the fraction of high-risk counties in the commuting zone. In our
opinion, this ‘local’ measure of county risk (which depends on the mean risk among the counties in the
commuting zone) is less helpful than using a ‘global’ measure of county risk. At any rate, we shall also
report estimates obtained by including fixed-effects.

230ur dataset excludes Alaska and Hawaii because of their peculiar county structure, which makes it
difficult to harmonize boundaries over time.
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columns 2-6 employ our climate risk index (ZW). As expected, the association between
population growth and climate risk at the county level is considerably weaker in column
2 than in column 1. Nonetheless, we still find evidence of higher population growth (over
the last 3 decades) in high-risk counties. We estimate the growth gap between low and
high-risk counties to be 2.9 log points (i.e., about 3%) per decade. In contrast, medium-
risk counties have grown, on average, at the same rate as low-risk counties over the last
30 years. Thus, we reject the retreat hypothesis, confirming the findings in Figure 3. In
other words, high-risk counties continue to gain population, presumably because these
locations have amenities that offset the expected losses associated with climate risk.

Columns 3 and 4 examine whether higher-risk counties have grown disproportionately
relative to their neighbors. Respectively, the dependent variables in these columns net
out the average population growth in the state and commuting zone where each county
is located. The point estimates fall in value, indicating that high-risk counties tend
to be located in high-risk areas (states or commuting zones). However, the estimates
show that high-risk counties have grown at a higher rate than the commuting zone (or
state) where they are located. Based on column 4, we estimate the high-low net gap in
population growth to be 0.5 log points per decade.

Column 5 restricts the sample to commuting zones with an above average propor-
tion of medium-risk or high-risk counties, which increases the net population growth
gap between high-risk and low-risk counties. Last, column 6 reports estimates from a
model that includes commuting-zone fixed-effects (where the dependent variable is the
average change in log population). Intuitively, this model correlates deviations in popu-
lation growth relative to each county’s commuting zone with a measure of relative risk.
The estimates entail a larger gap in population growth between high-risk and low-risk
counties.

In sum, our estimates show that high-risk counties have grown substantially more
than low-risk counties over the last 3 decades, even when the comparison is restricted
to counties in the same commuting zone. This result points to the presence of impor-
tant amenities at the county or sub-county levels and imply a rejection of both the

unconditional and conditional retreat hypotheses.

5.1.2 Flexible relationship

Let us now examine a more flexible model than Equation (3) using local linear regres-

sion. This analysis will be informative regarding the functional form for the relationship
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between our composite index (as a continuous variable) and the average population
growth. The results are depicted in Figure 6. The top figure plots average decadal pop-
ulation growth and our frequency-based composite risk index at the county level. The
figure shows a positive association between climate risk and population growth across
the whole range of the composite index, with the exception of the first bin. The bottom
figure is the conditional counterpart of the previous figure, where each county’s average
population growth rate has been demeaned using the corresponding commuting-zone
value. In this case, the relationship is both closer to a linear function and exhibits a

smaller slope.?4

5.1.3 Evolution over time

It is also interesting to examine the evolution of the growth differentials between high
(and medium) risk counties and low risk counties over time.?> The results are collected in
Figure 7. The top figure is based on models where the dependent variable is the average
population growth in the county, whereas in the bottom figure the dependent variable
has been demeaned using the average population growth in the county’ commuting zone.

The time profiles are generally similar in both figures, indicating a secular reduc-
tion over time of the excess growth of high risk-counties relative to low-risk counties.
Nonetheless, the two figures diverge in regard to the recent trends. Over the last 30
years, the high-low climate risk growth gap has risen when we consider county growth
relative to the corresponding commuting zone (bottom figure), but this is not the case

in the top figure.

5.1.4 Summing up

Our county-level analysis offers two main conclusions. First, we find no evidence of
population retreat from areas with high climate risk. In other words, we reject the
unconditional retreat hypothesis. Over the last three decades, on average, high-risk
counties have grown more than low-risk counties (by 2.9 log points per decade). In ad-
dition, the same qualitative pattern is found when considering each county’s population

growth relative to the growth of the corresponding commuting zone, which neutralizes

24Conservatively, our regression models do not assign extra weight to more populated counties, which
tend to have the largest values for the composite climate risk index.

25An important caveat is that county boundaries have only been harmonized for years 1980-2020 so
as to be stable over time. As we move back in time, there will be an increasing number of boundary
changes, which reduces the reliability of the estimates.
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the effect of state and commuting-zone characteristics (such as changes in taxation or
strong local labor markets).
Thus, we also reject the conditional retreat hypothesis, suggesting that the amenities

that attract people to high climate-risk areas operate at the county or sub-county levels.

5.2 Micro retreat: tract-level analysis

There is an important caveat to the conclusion of no retreat from high climate risk
locations, even after controlling for state and commuting-zone amenities. It might be the
case that retreat takes place at the sub-county level. In other words, while population in
high-risk counties has been growing disproportionately, it is conceivable that the growth
is concentrated in low-risk towns or neighborhoods within those counties. If this were
the case, the outlook would be much more optimistic. We refer to the disproportionate
growth of low-risk sub-county locations as the micro retreat hypothesis.

In order to assess whether micro-retreat is taking place, we switch to tract-level data.
There are about 70,000 Census tracts in the United States. The main implementation
challenge is the changing tract boundaries between each decennial Census. We use the
LTBD dataset (Logan et al., 2014), which contains harmonized tract boundaries for the
1970 through 2010 Censuses. When we merge these data with the FEMA NRI dataset,
we obtain 59,030 tracts for years 1990, 2000, 2010 and 2020.26

Our empirical specifications are analogous to those used in our county-level analysis;
the only changes are that observations are now defined at the tract level (indexed by r)
and that we use county-level averages to compute relative tract-level growth. Namely,

the models we consider are:

g, = a+ piRiskMed, + BaRiskHigh, + u, (5)
9, —9. = oa+ B1RiskMed, + BoRiskHigh, + u, (6)

The bottom panel in Table 2 describes the main variables in the tract-level dataset.
Roughly, our merged dataset (which excludes Hawaii and Alaska) contains 58,500 tracts.
Over the last 5 decades, the average tract has grown by 16.4 log points per decade, which

26For years 1970 and 1980 the number of tracts is significantly lower (around 49,000 tracts on average)
so we exclude these years from the main estimation sample. Census tracts in the LTBD data we use
are harmonized to 2010 boundaries.
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is much higher than the corresponding value in the counties dataset (6.2 log points).?
The growth rate for the average county has also declined over time. In the last decade
this value was 4.8 log points (compared to 0.6 log points in the county-level data).

The estimates of the relationship between current climate risk and population growth
over the last 3 decades are collected in Table 4. The first column estimates Equation (5).
The estimates show that high climate-risk tracts have grown at a much higher rate than
low-risk tracts nationwide (by a differential of 9 log points per decade). In columns 2-4
we demean the dependent variable using the average growth rate in the corresponding
state, commuting zone and county. As expected, the high-low relative gap decreases in
size, but remains almost unchanged across the three columns. Namely, high-risk tracts
have grown about 1.5 log points more than low-risk tracts in the same state/CZ/county.
Furthermore, column 5 shows that the excess growth in high-risk tracts is even larger
in counties with high climate risk (defined as counties with above average proportion
of medium-risk or high-risk tracts). Last, column 6 shows that the results are qualita-
tively similar when employing a model that includes tract-level fixed-effects (though the
estimated high-low excess growth is much larger than in our preferred specification).

In sum, our estimates entail a clear rejection of the micro retreat hypothesis stated
above. In fact, not only high-risk counties are growing more than low-risk ones (within
the same commuting zones). Our results here show that that high-risk tracts are also
growing more than low-risk (and medium-risk) tracts within the same county. Thus,
the sub-county population dynamics imply that the degree of exposure to climate risk
is underestimated in the county-level analysis. Furthermore, our estimates suggest that
the amenities that make high-risk tracts attractive are highly localized in scope (at the

sub-county level).

6 Heterogeneous effects by residential capital

So far, we have failed to find evidence of population retreat from high-risk locations, even
after neutralizing the effects of state-level, commuting-zone and county-level amenities.
However, this does not mean that all communities respond in the same way to climate
risk. In particular, risky locations with a high concentration of residential capital (along

with population and businesses) may invest more in resiliency measures to protect their

27Tt is worth noting that population growth at the tract level is censored. When a tract reaches a
certain threshold (around 4,000 individuals), the tract is split into two separate tracts. However, this
is not the case in our harmonized dataset, which keeps boundaries stable at their 2010 values.
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housing stock and infrastructures, whereas capital-poor regions may not be able to afford
such investments. As a result, population dynamics may differ substantially across high
climate-risk locations on the basis of the value of their residential capital stock. In fact,
in the context of coastal flooding risk, Lin et al. (2021) show that residential construction
in the United States is increasingly concentrated in high-risk and high-density coastal
areas, but it is not known if these dynamics apply more generally to other climate
hazards.?®

To analyze these questions, we partition counties on the basis of (i) overall value of
their residential capital, (ii) median value of homes, and (iii) economic density (defined
as overall value per unit of surface). We measure housing values using the 2000 Census
(100% sample, Census Table) and extend our previous empirical model to allow for
heterogeneous effects of climate risk on population growth for counties above and below
the median value of the corresponding discriminating variable.?? The overall housing
stock in the median U.S. county in year 2000 had a value of $0.9 billion; the median
home value in the median county was $75,600 (and the median homeownership rate
was 80.1%). We use these cutoff values to partition counties according to whether their
year-2000 values for these variables are above or below the corresponding mean.

Our dependent variable is the 1990-2020 average change in log population. As before,
we present both estimates of models where the dependent variable is the gross population
growth rate of counties and models where we net out the mean value for neighboring
counties.

Table 5 collects the results. Column 1 estimates the model for the average change in
population growth. This specification includes interactions terms that allow for hetero-
geneous coefficients for counties with low (versus high) overall residential capital stock,
where the cutoff is given by the median value of residential capital across all counties
(in year 2000). The estimates in column 1 show that in counties with low residential
capital stock, climate risk is not related to population growth. Instead, the picture is

very different in counties with high residential capital stock. First, population growth in

28Relatedly, Balboni (2021) estimates large costs from coastal favoritism in deciding the location of
public infrastructure works.

2980 far we have not located comprehensive data on housing values for all U.S. counties for year
1990 so we use year-2000 values. We do have the 1990 data for Census tracts based on the 5% Census
sample. However, aggregation of the median tract housing values to the county level results in 1,877
counties, well short of the approximately 3,100 plus counties in the United States. As we show below,
the stock of residential capital is very persistent at the county level over a 10-year period, resulting
in the partition of counties being practically the same. Hence, relying on year-2000 values to analyze
population growth over the 1990-2020 period is a fairly safe choice.
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these counties is uniformly higher in these counties (by 5.9 log points per decade) regard-
less of climate risk. But, additionally, high-capital, high-risk counties have grown more
than low-risk counties that also have a large residential capital stock. The estimates in
column 2 show that the excess growth in high-risk, high-capital counties is also observed
after netting out the growth of the corresponding commuting zone. However, as before,
this population agglomeration in high-risk counties is not happening in counties with
lower residential capital. Column 3 focuses on population growth between years 2000
and 2020, which is better aligned with the year in which we measure housing values.
The results are practically identical to those in column 2, confirming that the correlation
for county housing values for years 2000 and 1990 is very high.

Columns 4-5 repeat the analysis but, this time, counties are partitioned on the basis of
median housing values (among homeowners). The estimates confirm the agglomeration
of population in high-risk counties with high median housing values. In regard to low-
value counties, we now find higher population growth in high-risk counties (column
4), but this is largely due to the relatively high population growth in the corresponding
commuting zones. In fact, high-risk counties with low median housing values have grown
less than their neighboring counties (in the same commuting zone).

Columns 6 and 7 partition counties by economic density, defined as the value of the
stock of residential capital divided by the area of the county. The results are also in line
with what we found in the previous columns of the table.

In conclusion, our analysis in this section clearly indicates that the agglomeration of
population in high-risk areas is a phenomenon taking place in denser areas, where the
housing stock is larger and characterized by higher median values. This finding echoes
the conclusions in Lin et al. (2021). In contrast, high-risk counties in less urbanized areas
are not growing at different rates than low-risk counties in those areas. If anything, they

appear to be growing relatively less.?°

7 Regional heterogeneity

It is also interesting to examine regional trends based on our composite index. Table 7
reports the results. Let us consider first the top panel of the table, where we focus on av-

erage decadal population growth for the period 1990-2020. Column 1 simply reproduces

300ur results also relate to Fussell et al. (2017) who analyze the effects of hurricanes (and tropical
storms) on population growth and also find heterogeneous effects (on the basis of prior population
trends).
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our earlier finding: nationwide high-risk counties have grown more than low-risk coun-
ties. Column 2 includes region-specific intercepts, which reveal important differences in
average county growth rates across regions. The average counties in the Midwest (omit-
ted category) and in the Northeast have grown about 1 log point per decade between
1990 and 2020. In contrast, the average counties in the South and the West have grown
an additional 5.3 and 8.8 log points per decade, respectively. More importantly, the
inclusion of these regional dummy variables sharply lowers the estimated coefficient on
the high-risk category and calls for the estimation of separate regional models (columns
3-6).

Columns 3 and 5 clearly show that population is increasing much more rapidly in
high-risk counties in the Northeast and the South, relative to low-risk counties in the
corresponding region. The pattern is markedly different from what we observe in the
Midwest or West regions. In these regions, high-risk counties have grown less than
low-risk counties between 1990 and 2020. Interestingly, these patterns echo our earlier
finding that the agglomeration in counties with high climate risk is solely taking place
in dense, urban areas with high housing values.

Let us now turn to the bottom panel of Table 7. Here, the dependent variable nets
out the average population growth across counties in the corresponding commuting-zone.
Columns 1 and 2 still show the disproportionate relative growth of high-risk counties.
In the subsample analysis in columns 3-6, the estimates lose precision. However, the
point estimates still suggest relative growth in high-risk counties in the Northeast and
the South (and perhaps West). Once again, we do not find any hint of agglomeration in
high-risk counties in the Midwest between 1990 and 2020.

A more panoramic view can be gained if we vary our time window. Specifically, the
estimates in Figure 8 refer to average decadal population growth between initial year
T = 1900, ...,2010 and nowadays (i.e. year 2020), separately by Census region.?! We
observe that the population growth differential for high-risk counties was historically
very high in the South and, even though it has fallen over time, it remains high (at
around 5 log points per decade) for the last 30 years. More strikingly, in the Northeast,
high-risk counties grew at the same rate as medium-risk counties between 1970 and 2020
(at about 2 log points higher than low-risk counties). But, over the last 5 decades, the
high-low growth gap has widened the gap relative to medium-risk and high-risk counties,

reaching close to 5 log points for the last decade.

31Recall that we have only harmonized county boundaries for the period 1980-2020. Hence, estimates
using earlier Census data are less reliable.
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In comparison, the dynamics of population growth and climate risk at the county
level are very different in the Midwest and West regions. In the Midwest, throughout the
whole period displayed in the figure, we observe lower population growth in medium-risk
and high-risk counties than in low-risk counties. In the West, we observe a vanishing
of the growth differential between high-risk and low-risk counties. In fact, over the last
three decades, high-risk and medium-risk counties have grown less than low-risk counties
in the region. Several factors probably contribute to create these regional disparities.
However, the comparison between the estimates in the top and bottom panels of Table 7
shows that the association between population growth and climate risk at the county
level within a given Census region is largely explained by the pull force of high-growing
commuting zones, which happen to exhibit relatively high climate risk.3

Another way to look at the data is to compare counties that experienced population
growth (over the period 1990-2020) to those that suffered a decline in terms of their
climate risk exposure. The top panel in Table 6 reports this information for the U.S.

33 Among counties with negative population growth, the composite risk

as a whole.
index takes a value of negative 0.04. In contrast, the mean value for growing counties is
0.02. The difference between the two values is small but already indicates that growing
counties tend to have (slightly) higher exposure to climate risk.

Let us now turn our attention to the Northeast region (in the second panel). The first
row of the panel already indicates that the Northeast is heavily exposed to hurricanes
(0.43), riverine flooding (0.68) and coastal flooding (0.88). Moreover, growing counties
have a very high exposure to these hazards, even relative to the rest of the region (with
values of 0.73, 0.79 and 1.43, respectively). In contrast, counties with falling population
have substantially lower exposure to these hazards. Rather similarly, huricanes are the
most prominent natural hazard in the South (0.47 for all counties in the region), and
growing Southern counties are characterized by high risk of hurricanes (0.58 for growing
counties). In contrast, the main natural hazard in the Midwest is hail (0.47) and growing
counties have relatively low exposure to this particular hazard (0.36). In turn, the main

exposure in the West is to drought (0.96) and wildfires (0.94). Interestingly, shrinking

32Differences in the specific hazard mix affecting each region may also play a role (as illustrated in
Figure 5). The West is mainly exposed to droughts, wildfires and, to a lesser extent, coastal flooding,.
Coastal areas in the South and the Northeast are at high risk of coastal flooding and hurricanes. In
contrast, the Midwest has a relatively low exposure to all climate hazards. We explore this dimension
in the next section.

33The average value across all conuties for all risk measures in the table is zero because we stan-
dardized the annual frequencies of each hazard (and the composite ) to have a zero mean and a unit
standard deviation.
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counties exhibit a very high risk of drought (1.37), consistent with our retreat hypothesis.
However, wildfire risk is higher in growing counties (1.01) than in those losing population
(0.60). All in all, these observations underscore the presence of regional differences in
exposure to each type of natural hazard. The following sections will try to shed some

light on the nature of this distinction.

8 Heterogeneity by demographic group

This section examines if the population trends described above differ along two demo-
graphic dimensions: age and race. For ease of comparison, the top panel in Table 8
simply reproduces results from the previous section (Table 7).

The middle panel of the table focuses the analysis on the growth of the population
age 65 and above. The estimated intercepts in columns 1-5 show that this demographic
group has grown substantially more than the whole population over the 1990-2020 period
(15.6 versus 3.8 log points per decade), fueled by the aging of the baby boom. However,
the excess growth of the 65-and-older population in high climate-risk counties has been
smaller than the excess growth for the overall population. In other words, the attraction
power of high climate-risk locations appears to be linked to considerations that are less
important to older individuals, suggesting that job opportunities may be the driving
factor behind the increasing population agglomeration in high climate-risk areas. It is
also worth noting that the South stands out from the other regions because the excess
growth of the 65-and-older population in high-risk areas is almost as large as the excess
growth for the population as a whole. Namely, the factors attracting the older and
younger populations to high-risk locations are much more aligned in the South than
elsewhere in the United States.

The bottom panel of the table examines the association between climate risk and the
local growth in the non-white population. Once again, the growth of this demographic
group over the 1990-2020 period has been much larger than that of the overall population
(41.9 log points per decade, as shown in column 1). But, as was the case for the
population age 65 and above, the excess growth for this group in the high climate-risk
counties has been much smaller than for the overall population. In fact, our estimates
suggest that, except for the Midwest, the non-white population has grown less in high-
risk counties than in low-risk ones. This pattern suggests that the non-white population
may have been priced out of rapidly growing high-risk areas.

Before concluding the section, it is worth turning to column 6, where the dependent
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variable has been demeaned using the average population growth rate in the commuting
zone. This transformation is meant to remove the attraction power of the commuting
zone, helping isolate the role of county-level amenities. As discussed earlier, the estimate
in the top panel suggests that high-risk counties have more attraction power than other
counties in the same commuting zone. The analogous estimate in the middle panel
shows that this is also the case for the population age 65 and older, who also seem
willing to accept the higher risk of some counties in order to enjoy the local amenities,
such as proximity to the coast or to wooded areas. In contrast, the falling non-white
population in high-risk relative to low-risk counties reveals that the amenities found in
high climate-risk counties are not strong enough to attract this population, or that the
average individual in this group cannot afford to live in those counties.

To sum up, our analysis in this section highlights stark differences in the geographic
sorting of different socio-demographic groups. More specifically, the increasing popula-
tion agglomeration in high climate-risk counties appears to be largely driven by white,
working-age individuals. Retirement-age and (less affluent) non-white populations ap-

pear to be retreating from counties with high climate risk.

9 Heterogeneity by climate hazard

This section starts by constructing hazard-specific risk categories, also based on average
annual frequencies, but using different thresholds than the composite index that account
for the low frequency for some natural hazards. Next, we will examine the conditional
and unconditional retreat hypotheses separately for each natural hazard.

There are reasons to suspect that local population dynamics will vary across different
natural hazards. For instance, the geographic scope of a natural hazard may be an im-
portant aspect shaping residents’ adaptation (or the feasibility of resiliency investments).
Namely, while some natural hazards impact a whole county with similar intensity (e.g.,
hurricanes), others are much more localized and affect only a small subset of the county
(e.g., coastal flooding). We will refer to the latter as micro-hazards and identify them
in the data on the basis of within-area variability. Importantly, individuals can easily
adapt to micro-hazards by simply relocating to nearby towns or neighborhoods with
relatively lower climate risk while still enjoy amenities that operate at higher geographic

levels (such as a strong labor market).
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9.1 Hazard-specific risk categories

Some climate hazards are very infrequent: for 6 of the hazards in our data, the 25th

34 Thus, the definitions for our categories of

percentile of annual frequency is zero.
low, medium and high risk need to account for this feature of the data. Accordingly,
in our definition the Low risk category includes locations (counties or Census tracts)
with zero or below the 10th percentile of annual frequency. The medium (Mid) risk
category includes locations with an annual frequency higher than the 10th percentile
(hence, strictly positive) but lower than the 50th percentile conditional on positive
annual frequency. Naturally, the High category contains the locations with an annual
frequency above the conditional 50th percentile.

Table 9 reports the resulting classification (for counties).?> As can be seen in column
2, avalanches, coastal flooding, and to a lesser extent, cold waves, hurricanes and heat
waves are infrequent hazards. The low frequency partly reflects that some locations have
zero exposure to that particular hazard, such as counties in the interior with zero risk of
coastal flooding. Our hazard-specific partition of counties into low, medium and high-
risk categories can be seen in columns 3-5. Infrequent hazards, such as coastal flooding,
entail a high concentration of counties in the low-risk category (88% of counties). In
contrast, widespread events, such as lightning, entail a higher concentration of counties

in the medium and high-risk categories.

9.2 Unconditional retreat

We now turn to the estimation of (average decadal) population growth gaps on the
basis of climate risk based on Equation (3), but this time we consider each natural
hazard separately. The results are collected in the top panel of Table 10. Column 1
reproduces the estimates using the composite index, which show substantially higher
population growth in high-risk counties than in low-risk ones over the period 1990-
2020 (by about 2.9 log points per decade). The following columns consider all major
climate hazards separately (defined as those with the highest weights in the composite

index). Clearly, population growth is significantly higher in high-risk counties (relative

34In fact for 3 hazards (avalanches, coastal flooding and tsunamis) even the 75th percentile is zero.

35 As reported in column 6, just 7 hazards account for 94% of the economic cost of natural hazards in
the U.S., which determines the weights in our composite risk index (defined as the importance-weighted
annual frequency for each hazard). In decreasing order of importance (and weights in parentheses):
drought (0.21), hurricane (0.21), riverine flooding (0.18), tornados (0.13), wildfires (0.10), hail (0.06)
and coastal flooding (0.05).
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to low-risk ones) for droughts, hurricanes, wildfires, coastal flooding and, to a lesser
extent, riverine flooding. The only exceptions to this pattern are counties with high risk
of tornadoes and counties with high risk of hail. In sum, we reject the unconditional

retreat hypothesis for 5 out of the 7 main natural hazards.

9.3 Growth relative to the commuting zone

We now turn to the estimation of models for county population growth net of the average
for the commuting zone. By construction, this comparison neutralizes the effect of
amenities that operate at the level of commuting zones (or a higher geographical level).

The estimates are reported in the middle panel of Table 10. Two main observations
stand out. First, we do not estimate any excess population growth in counties at high
risk of drought, hurricane and hail. Furthermore, the sign for the coefficient for coastal
flooding turns negative and the point estimate implies a (marginally statistically signif-
icant) 0.4 log point lower decadal population growth in high-risk counties relative to
low-risk counties within the same commuting zone.

The vanishing of the excess population growth in counties with high risk of droughts,
hurricanes and coastal flooding when using the corresponding commuting zones as bench-
mark indicates that the amenities that drive population growth operate at the geographic
level of commuting-zones (or higher), or that the scope of these natural hazards en-
compasses entire commuting zones. This could plausibly be the case for droughts and
hurricanes, but does not explain the reversal of the sign for coastal flooding, which is

much more geographically localized.

9.4 Tract-level data and growth relative to the county

We now turn to our tract-level dataset to examine sub-county population dynamics by
natural hazard, which will allow us to investigate if micro-retreat is taking place. In
other words, it will reveal whether sub-county population shifts exacerbate or mitigate
the increasing exposure of high-risk counties.

The bottom panel in Table 10 presents the estimates for population growth net of
the county average. Two results stand out. First, we find a negative (and statistically
significant at a 10% level) coefficient for the high-risk dummy variable for coastal flooding
risk. Namely, over the last 3 decades, these tracts have grown less than other tracts
within the same county (by about 0.8 log points per decade). Secondly, this is not the

case for any of the other natural hazards: on the basis of within-county comparisons,
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tracts at high risk of droughts or hurricanes grew at the same rate as low-risk tracts,
and tracts with high-risk of riverine flooding, tornadoes, wildfires or hail grew more than
tracts with low risk levels for those specific hazards.?¢

In sum, for most natural hazards, high-risk counties have grown disproportionately
more than low-risk counties (with the exceptions of counties with high risk of tornados
or hail). When we turn to within-county, cross-tract comparisons, we find that these
agglomeration dynamics are reinforced in counties with high risk of riverine flooding,
tornadoes, wildfires and hail. In contrast, we do not find within-county variation in
population growth on the basis of risk of drought or hurricanes. In the case of coastal
flooding risk, our estimates suggest that high-risk tracts have grown less than low-risk

tracts within the county.

9.5 The micro-retreat hypothesis

What explains the differential sub-county population dynamics in areas exposed to
coastal flooding relative to other types of climate risk? We hypothesize that residents
of areas with high risk of coastal flooding can reduce their risk exposure by relocating
within the same county, which allows them to continue enjoying many of the same ameni-
ties. In contrast, this type of micro-retreat may not be feasible for residents exposed to
other natural hazards.

The first step toward investigating the micro-retreat hypothesis is to determine which
natural hazards entail high variation in exposure across tracts within a given county.
Additionally, this variation should be easily predictable; otherwise, county residents
cannot determine which low-risk tracts can provide “insurance” against that specific
climate risk.

To measure the degree of cross-tract, within-county variability of each natural hazard,
we follow the following 3 steps. For each county ¢, we first compute the mean and
standard deviation (across tracts) of the average annual frequency of the climactic event,
which we denote by (mg,s.). We then compute the coefficient of variation specific to
each county ¢ as CoV, = s./m.. Last, we average CoV, across all counties (with m. > 0).
For instance, we expect high variability in exposure to coastal flooding within coastal
commuting zones or counties, but much lower variability in exposure to hurricanes, which
tend to impact whole counties to a similar degree (and even commuting zones).

The resulting cross-tract variability measures are reported in Table 11, which con-

36Estimates for additional model using the tract-level dataset are reported in Table 13.
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siders the natural hazards used in the construction of our composite climate risk index.
Column 1 reports the share of commuting zones where all tracts have zero risk (for the
corresponding natural hazard). We observe that 87% of the commuting zones have zero
exposure to coastal flooding (followed by 35% with zero risk of hurricanes), reflecting
that only coastal areas are exposed to coastal flooding. In contrast, all commuting zones
are exposed to tornados, wildfires, hail and strong winds. Similarly, column 2 reports on
the share of counties that have no exposure to the corresponding natural hazard, mean-
ing that all tracts in the county have zero risk. Both qualitatively and quantitatively, the
results resemble column 1: 88% of counties are not exposed to coastal flooding, and 27%
have no exposure to hurricanes. Clearly, only coastal counties (mostly in the Northeast
and South of the country) are exposed to coastal flooding, and while hurricanes have
a much larger geographical scope, large areas in the interior and north of the country
have zero exposure. We turn next to column 3, which reports the coefficient of within-
county variation for each of the natural hazards, which averages only the counties with
positive exposure to the corresponding natural hazard. Two natural hazards stand out
in terms of their within-county variability: coastal flooding (CoV = 111) and tornados
(CoV =103).

It is worth noting that there is a fundamental difference in the nature of the within-
county variability for coastal flooding and for tornados. For coastal flooding, the high
variability reflects the large disparity in risk for tracts on the coast and tracts in the
interior of the same county. Thus, it is fairly obvious to any county resident which tracts
provide “insurance” against the risk of coastal flooding. In contrast, the within-county
variability of tornados has to do with the randomness of their path, which implies that
no tracts in the county can be considered entirely risk-free. As a result, micro-retreat
is only an effective way to mitigate climate risk, without losing access to county-level
amenities, in the case of risk of coastal flooding. More colloquially, residents of counties
with high risk of coastal flooding can ‘have it both ways’, that is, they can reside in low-
risk tracts within attractive counties. It is worth noting that this finding is consistent
with the results in Lin et al. (2021). Their analysis of residential construction in U.S.
coastal areas shows that building density peaks at 2.5 km from the coast (and declines
asymmetrically, falling more rapidly as we approach the waterfront).

In sum, the feasibility of micro-retreat is a plausible explanation for the pattern of
estimates in the bottom panel of Table 10, which entails that county-level estimates of
climate risk over-estimate the actual risk in areas at high risk of coastal flooding, but

under-estimate risk in locations highly exposed to some of the other natural hazards
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(such as riverine flooding, tornados or wildfire).

10 Conclusions

Our paper introduces a new composite climate-risk index that is designed to analyze the
effects of climate risk on demographic and economic outcomes. The composite index
has both high geographic granularity and includes all major natural hazards. Unlike
FEMA'’s National Risk Index (or NRI), cross-county (or cross-tract) variation in our
composite index stems exclusively from differences in the average annual frequency of
each hazard and is not mechanically related to local population levels.

On the basis of our climate risk index, we find that population is not retreating
from the average county with high climate risk. In fact, we find that high-risk counties
have grown more than low-risk ones, which leads us to reject the unconditional retreat
hypothesis. Specifically, over the last three decades, high-risk counties have grown about
2.9 log points more, per decade, than low-risk counties. This pattern is also found even
after netting out the average growth in the commuting zone: over the past three decades,
high-risk counties grew about 0.5 log points more, per decade, than low-risk counties
within the same commuting zone. Thus, we also reject the conditional retreat hypothesis.
This finding also implies that the factors that attract people to high climate-risk areas
operate at more narrow (i.e., county or sub-county) geographical levels. Further, we
show that the increasing population agglomeration in high climate-risk counties appears
to be largely driven by white, working-age individuals. Retirement-age and (less affluent)
non-white populations appear to be retreating from counties with high climate risk.

We also analyzed population dynamics at a more granular geographical level (i.e.,
Census tracts). It is plausible that, when deciding where to live, individuals will favor
low-risk locations (tracts) over high-risk areas within the same county. This allows
individuals to enjoy the amenities of the county while avoiding tracts with relatively
high climate risk. We refer to this as the micro-retreat hypothesis. Our analysis implies
that this is not generally the case. We find that high-risk tracts have typically grown
more than low-risk tracts within the same county. Importantly, this finding indicates
that the county-level analysis underestimates the degree of population concentration in
high-risk areas.

We also conducted heterogeneity analysis along various dimensions. First, we inves-
tigated the role of urbanization in mediating the relationship between climate risk and

local population growth. We did not find increasing agglomeration in high-risk areas
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with low residential capital (in terms of scale, median value and density). In contrast, we
clearly rejected the retreat hypothesis in more urbanized areas. Our finding of increasing
agglomeration in high-risk, high-urbanization areas implies that the conclusions in Lin
et al. (2021) extend to natural hazards other than coastal flooding. Furthermore, we
documented a high population growth differential in high-risk counties in the South and
Northeast, but negative differentials in the Midwest and West. These regional differ-
ences probably reflect both differences in exposure to various kinds of natural hazards,
and variation in the degree of urbanization.

Our analysis is too descriptive in nature to identify the factors responsible for shift-
ing population toward high-risk, high-urbanization local areas. However, our findings
suggest that these areas may be highly productive and offer high wages. As a result, peo-
ple gravitate toward those areas despite the high exposure to disruptive climate shocks.
In a way, suffering damaging climate shocks once in a while is viewed as “the cost of
doing business” in those locations. In a recent study, Pang and Sun (2022) provides a
dynamic model with endogenous migration across multiple locations that differ by flood
risk and productivity. The earlier interpretation of our findings is highly consistent with
the equilibrium dynamics in his setup.

Last, we analyzed whether our results vary by hazard type. For most individual
hazards, we find that population growth is higher in counties with high climate risk than
in counties with low risk (except for tornados and hail). Thus, the unconditional retreat
hypothesis is rejected for most natural hazards. On the other hand, within commuting-
zone comparisons reveal that excess population growth in high-risk counties disappears
for droughts, hurricanes, hail, and coastal flooding. This implies that commuting-zone
amenities, such as strong labor markets, may explain the vigorous population growth in
areas with high exposure to these types of climate risk.?”

We also find evidence of micro-retreat, namely lower population growth in high-risk
Census tracts (relative to the corresponding county), in the case of coastal flooding risk,
but not for the other natural hazards. We argue that this might be because counties
with high-coastal risk are characterized by predictable, highly localized risk. As a result,
residents can ‘have it all’, that is, they can reside in low-risk tracts within attractive
counties.

All in all, our findings show increasing agglomeration in high climate-risk areas in the

3TDesmet et al. (2021) analyze the costs of sea-level rise using a model where individuals and firms
make location decisions taking into account both agglomeration economies and mobility costs. In their
setting, firm-level spillovers slow down retreat from high-risk locations.
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South and Northeast of the United States, likely driven by robust local economies and
possibly reinforced by inertia in public investments in densely population risky locations
(Balboni (2021)). This trend implies that climate events with record-breaking damages
will continue to take place over the foreseeable future, even in the unlikely event that

climate risk were to stay constant.
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Figure 2: Nationwide trends. All regions pooled
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right figure in logs, bottom-right figure is the decade-over-decade change in log population
and the bottom-right figure is the average decadal growth between the year indicated in the
horizontal axis and year 2020.
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Figure 3: National trends. By climate risk (weighted composite)
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Figure 4: Composite risk index (ZW) at county level
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Notes: Map plots composite risk measure for each county. Map separates counties by Census
region (Northeast, Midwest, South and West). Heat-map shows counties with more risk in red
and counties with lower risk in purple.
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Figure 5: Risk for individual hazards at county level
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Figure 6: Population growth and composite climate risk. Flexible functional form
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Notes: Each point is a county and the horizontal axis correspond to our main composite
climate risk index (weighted average of annual frequency of each natural hazard). The
top figure plots the average decadal population growth in the period 1990-2020 for each
county. The bottom figure is analogous but the data for each county have been demeaned
using the average value in the corresponding the commuting zone. Each red square is
the local linear regression estimate for the corresponding bin. The shaded band depicts
the 95% confidence interval.
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Figure 7: Evolution population growth differential. County population growth (top);
demeaned by CZ average growth (bottom)
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Figure 8: Estimates growth gaps by Census region. Average decadal population growth
by county
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estimates obtained from models without fixed-effects where the omitted category are counties
with low risk (below 25th percentile). Annual frequencies obtained from FEMA’s natural
hazard risk metrics.
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Table 2: Descriptive Statistics (counties and tracts)

Variable Obs Mean Std. Dev. Min Max
Counties

(DIn 2020-2010
DIn 2020-2000

)/ 1 3,107 0.006  0.089  -0.401 0.866
( )/ 2 3,106 0.025  0.094  -0.308 0.512
(DIn 2020-1990) / 3 3,06 0.048  0.100  -0.242 0.589
(DIn 2020-1980) / 4 3,104 0.043  0.105  -0.270  0.661
(DIn 2020-1970) / 5 3,091  0.062 0110 -0.219 0.747
(DIn 2020-1960) / 6 3,088 0.058 0112  -0.240 0.719
(DIn 2020-1950) / 7 3,084 0055  0.113  -0.252 0.662
(DIn 2020-1940) / 8 3,080 0.051 0112 -0.241 0.619
(DIn 2020-1930) / 9 3080 0.051 0107 -0.215 0.623
(DIn 2020-1920) / 10 3,049 0.052  0.104  -0.189  0.617
FEMA NRI Risk Score 3,104 10.628  6.759  0.000 100.000

7 Risk Composite 3,114 0.000 0.257 -0.844  1.757
ZW Risk Composite 3,114  0.000 0.404 -0.917  2.031
Low ZW Risk 3,114 0.250 0.433 0.000  1.000
Med ZW Risk 3,114 0.500 0.500 0.000  1.000
High ZW Risk 3,114 0.250 0.433 0.000  1.000
Tracts

(DIn 2020-2010) /1 58,458 0.048  0.178  -3.924 4.369
(DIn 2020-2000) / 2 58,440 0.067  0.250  -2.853  8.041
(DIn 2020-1990) / 3 58438 0.099  0.244  -2.111  6.363
(DIn 2020-1980) / 4 46,188 0.141  0.320  -1.637 4.939
(DIn 2020-1970) /5 40,767 0.164  0.330  -1.336  4.564
FEMA NRI Risk Score 58488 16.177  6.935  0.000 87.087

Z Risk Composite 58,488  0.000 0.232 -0.696  6.077
ZW Risk Composite 58,488  0.000 0.418 -0.764  4.766
Low ZW Risk 28,488  0.250 0.433 0.000  1.000
Med ZW Risk 58,488  0.500 0.500 0.000  1.000
High ZW Risk 58,488  0.250 0.433 0.000  1.000

Notes: Unweighted summary statistics. Z risk score is based on FEMA’s annual frequency
of climate events. We standardize the frequency of each event and compute a simple average
(Z) and a weighted average (ZW). We define the 3 categories of composite climate risk (low,
medium and high) as follows: below the 25th percentile, between 25th and 75th percentiles,
or above the 75Hth percentile, respectively.
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Table 3: Estimates average population growth by composite climate risk

Period 1990-2020 (1) (2) (3) (4) (5) (6)
Climate iindex NRI ZW ZW ZW ZW ZW
Sample cty All All All All HM CZ All
AvDInPop net State net CZ net CZ FE CZ
HighRisk 0.071%**  0.029*** 0.010 0.005** 0.007*  0.023***

(0.008]  [0.008]  [0.007]  [0.002] [0.004]  [0.007]

MedRisk 0.023%%*  0.006 0.002  -0.001  0.00l  0.003
(0.005]  [0.006]  [0.005]  [0.002] [0.004]  [0.005]

Constant 0.041%%%  0.038%**  .0.004  -0.001  -0.002 0.041%**
0.002]  [0.005]  [0.004]  [0.001] [0.003]  [0.004]

Observations 3,103 3,106 3,106 3,106 2,584 3,103
R-squared 0.027 0.013 0.002 0.002 0.002 0.006
Mean Dep. Var. 0.048 0.048 0 0 0 0.048

Notes: The dependent variable is the change in the log of population between 2020 and 1990,
divided by 3 (decades). In column 1 the measure of climate risk is FEMA’s NRI. In columns
2-6, climate risk is measured using our index based on the (weighted) aggregation of the
standardized annual frequencies of all hazards, where the weights are based on the monetary
value of the nationwide damage due to each hazard. The dependent variable in columns 3
and 4 nets out the average population growth in the State and Commuting zone, respectively.
Column 5 restricts the sample to counties in commuting zones with above average proportion
of medium or high climate-risk counties. In column 6, the dependent variable is the (gross)
change in the log of population but the model includes (722) commuting-zone fixed effects.
In all models the omitted category is low risk. Standard errors are clustered at the level of
commuting zones. P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 4: Estimates population growth by composite climate risk. Tracts Analysis

1990-2020 (1) (2) (3) (4) (5) (6)
Tracts All All All All HM Cty FE Cty
AvDInPop net State net CZ net County net County
HighRisk 0.090*** 0.016 0.017%%%  0.015%** 0.031FFF  0.071%**
[0.023] [0.011] [0.005] [0.003] [0.006] [0.005]
MedRisk 0.028 0.015% 0.011* 0.008** 0.023***  (0.039***
[0.018] [0.009] [0.006] [0.004] [0.007] [0.004]
Constant 0.062***  -0.011*  -0.010**  -0.008*** -0.023%*F*  (0.061***
[0.019] [0.006] [0.004] [0.002] [0.006] [0.003]
Observations 57,931 57,931 57,931 57,931 47,291 58,438
R-squared 0.018 0.001 0.001 0.001 0.001 0.003
Number FE 2,821
Mean Dep.Var. 0.099 0 0 0 0 0.099

Notes: Dependent variable is the average decadal change in the log of population between
1990 and 2020. In all columns the climate risk categories are defined on the basis of the
weighted composite index. Column 5 restricts the estimation to counties with an above-average
proportion of medium-risk or high-risk tracts. In all models the omitted category is low risk.
Standard errors clustered by commuting zone in all columns, except column 6 where clustering
is at the county level. P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 5: Heterogeneity by residential capital stock

(1) (2) (3) (4) (5) (6) (7)
Het by ValueH  ValueH ValueH MedValH MedValH ValH/Area ValH/Area
Net AvGPop net CZ net CZ net CZ net CZ
Since 1990 1990 2000 1990 1990 1990 1990
Constant 0.006  -0.010%%* -0.011*** -0.018*** -0.010%** 0.009 -0.008***
[0.005] [0.002] [0.002] [0.004] [0.002] [0.006] [0.002]
Hval 0.059*%F*  0.017**%*  0.019***  0.095%**  0.016***  0.051*** 0.013%**
[0.008] [0.003] [0.003] [0.008] [0.003] [0.008] [0.003]
HighRisk -0.003 -0.004 -0.004 0.027%** -0.003 0.009 -0.002
[0.008] [0.003] [0.003] [0.007] [0.003] [0.009] [0.003]
MedRisk -0.000 -0.004 -0.005* 0.011**  -0.006** -0.004 -0.006**
[0.006] [0.003] [0.003] [0.005] [0.003] [0.007] [0.003]
Hval x HighRisk 0.058%%* 0.017*%*  0.018***  0.030**  0.021***  0.052%** 0.018%**
[0.012] [0.006] [0.006] [0.012] [0.006] [0.013] [0.006]
Hval x MedRisk  0.024**  0.010**  0.012*** 0.014 0.015%**  (.029%*** 0.013%**
[0.010] [0.004] [0.004] [0.010] [0.004] [0.010] [0.005]
Observations 3,106 3,106 3,106 3,106 3,106 3,106 3,106
R-squared 0.203 0.054 0.069 0.314 0.064 0.176 0.045
Mean DepVar 0.048 0.048 0.025 0.048 0.048 0.048 0.048

Notes: The header of each column defines the variable used to partition counties as being
above or below the median value for that variable (value of housing stock, median value of
residential properties, or value of the housing stock over area of the county). The data for
housing values is from the 2000 Census (summary tables). Dependent variable is the change in
the log of population between 2020 and 1990 (except for column 3 where the change is relative
to year 2000) divided by the number of decades between the beginning and endpoint of the
time interval. In all columns the climate risk categories are defined on the basis of the weighted
composite index defined at the county level. In all models the omitted category is low risk.
Standard errors clustered by commuting zone. P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 7: Regional heterogeneity.

Avg. decadal population growth 1990-2020. County

(1) (2) (3) (4) (5)
Since 1990
Region All NE MW South West
avGPop
HighRisk 0.029%**  0.037*** -0.030** 0.049***  -0.014
[0.008] [0.008] [0.012] [0.014] [0.017]
MedRisk 0.006 0.015%* -0.011 0.027*%*  -0.022*
[0.006] [0.008] [0.008] [0.012] [0.013]
Constant 0.038*** 0.006 0.019%**  (0.034*** (0.113***
[0.005] [0.007] [0.006] [0.011] [0.011]
avGPop net CZ
HighRisk 0.005%* 0.005 -0.000 0.005 0.007
[0.002] [0.003] [0.005] [0.004] [0.007]
MedRisk -0.001 0.001 0.000 -0.005 0.004
[0.002] [0.004] [0.003] [0.005] [0.006]
Constant -0.001 -0.002 -0.001 0.001 -0.003
[0.001] [0.002] [0.002] [0.004] [0.004]
Observations 3,106 217 1,054 1,421 411

Notes: The dependent variable in the top panel is the average decadal change in the log of
population between 2020 and 1990. Column 1 pools all counties. Columns 3-5 restrict samples
to the corresponding Census region. In all models the omitted category is low risk. Standard
errors are clustered at the level of commuting zones. P-values: *** p < 0.01, ** p < 0.05, *
p <0.1.
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Table 8: Demographic heterogeneity. Avg. decadal population growth 1990-2020.
County analysis

M ) &) @ ©) ©)
Region All NE MW South West All
Demean Cz
Pop
HighRisk 0.029*%**  0.037***  -0.030** 0.049***  _0.014 0.005**
[0.008] [0.008] [0.012] [0.014] [0.017] [0.002]
MedRisk 0.006 0.015* -0.011 0.027**  -0.022* -0.001
[0.006] [0.008] [0.008] [0.012] [0.013] [0.002]
Constant 0.038*** 0.006 0.019***  (0.034*** (.113*** -0.001
[0.005] [0.007) [0.006] [0.011] [0.011] [0.001]
Observations 3,106 217 1,054 1,421 411 3,106
R-squared 0.013 0.079 0.014 0.021 0.008 0.002
Age> 65
HighRisk 0.011 -0.014 -0.066***  0.040** -0.029 0.005*
[0.011] [0.012] [0.016] [0.017] [0.026] [0.003]
MedRisk -0.005 0.006 -0.047***  (0.033** -0.006 -0.000
[0.009] [0.014] [0.012] [0.016] [0.021] [0.003]
Constant 0.156%**  (0.149%**  (.124%**  (.145*%**  (0.266*** -0.001
[0.007] [0.012] [0.010] [0.013] [0.018] [0.002]
Non-whites
HighRisk -0.101%*%*  _0.131*** 0.049 -0.031 -0.018  -0.030***
[0.022] [0.048] [0.040] [0.040] [0.044] [0.006]
MedRisk -0.075%** -0.030 0.031 -0.075* -0.023  -0.025***
[0.019] [0.043] [0.027] [0.038] [0.029] [0.007]
Constant 0.419*%**  (0.385%**  (0.474*%*¥*  (.282*%**  (.462***  (0.020***
[0.016] [0.039] [0.022] [0.036] [0.025] [0.005]

Notes: The dependent variable in the top panel is the average decadal change in the log
of population between 2020 and 1990, except in the last column where the variable has been
demeaned using the commuting-zone average. Analogously, the middle and bottom panels refer
to the average decadal change in the log of the population age 65 or older and the non-white
population, respectively. Columns 1 and 6 pool all counties in the United States. Columns
2-5 restrict samples to the counties within the corresponding Census region. In all models the
omitted category is low risk. Standard errors are clustered at the level of commuting zones.
P-values: *** p < 0.01, ** p < 0.05, * p < 0‘148



Table 9: Risk categories individual hazards (counties)

Hazard Counties Freq. Zero Freq. Low Freq. Med. Freq. High Weights
Composite NRI 3,106 0.79 0.17 0.05

Z Composite 3,116 0.25 0.50 0.25

ZW Composite 3,116 0.25 0.50 0.25

Drought 3,116 0.10 0.10 0.45 0.45 0.21
Hurricane 3,116 0.29 0.29 0.36 0.36 0.21
Riverine flooding 3,116 0.01 0.11 0.40 0.49 0.18
Tornados 3,116 0.00 0.10 0.40 0.50 0.13
Wildfires 3,116 0.00 0.10 0.40 0.50 0.10
Hail 3,116 0.00 0.10 0.40 0.50 0.06
Coastal flooding 3,116 0.88 0.88 0.06 0.06 0.05
Strong winds 3,116 0.00 0.10 0.40 0.50 0.04
Ice storm 3,116 0.04 0.12 0.40 0.48 0.01
Winter weather 3,116 0.03 0.10 0.43 0.47 0.01
Avalanche 3,116 0.93 0.93 0.04 0.03 0.00
Cold wave 3,116 0.37 0.37 0.32 0.31 0.00
Heat wave 3,116 0.26 0.26 0.38 0.35 0.00
Landslide 3,116 0.00 0.81 0.10 0.10 0.00
Lightning 3,116 0.00 0.10 0.40 0.50 0.00
Tsunamis 3,116 0.99 0.99 0.01 0.01 0.00

Notes: Specifically, we define the Low risk category to include locations (counties or Census
tracts) with zero or below the 10th percentile of annual frequency. The medium (Mid) risk
category includes locations with annual frequency higher than the 10th percentile (hence,
strictly positive) but lower than the 50th percentile conditional on positive annual frequency.
Naturally, the High category contains the locations with annual frequency above the conditional
50th percentile. The last column reports the weights given to each hazard in our composite
risk index, computed on the basis of each hazard’s share in the expected annual loss at the
national level (adding the monetary value of buildings and people). Adding the weights in the
last column results in a number lower than one due to rounding.
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Table 10: Heterogeneity by climate hazard

AvGpop (1) (2) (3) (4) (5) (6) (7) (8)

30 year W Dght Hren RFId Tornds Wildfir Hail CFld

Counties

AvGPop

HighRisk 0.029***  0.043***  (0.024%** 0.012 -0.028***  0.050***  -0.074%*F*  0.031%**
[0.008] [0.008] [0.008] [0.009] [0.009] [0.008] [0.009] [0.010]

MedRisk 0.006 0.016** 0.004 0.002 0.006 0.023%F%  _0.068***  0.063***
[0.006] [0.007] [0.008] [0.008] [0.009] [0.008] [0.009] [0.011]

Constant 0.038***  (0.022*** (0.038%**  (0.042%**  0.060***  0.014**  0.113***  0.043***
[0.005] [0.006] [0.006] [0.008] [0.009] [0.007] [0.007] [0.004]

Obs. 3,106 3,106 3,106 3,106 3,106 3,106 3,106 3,106

Counties

net CZ

HighRisk 0.005** 0.000 -0.001  0.013*%**  0.008**  0.006*** 0.001 -0.004*
[0.002] [0.002] [0.001] [0.003] [0.003] [0.002] [0.001] [0.002]

MedRisk -0.001 -0.001 0.001 0.006* 0.009** 0.005* -0.001 -0.002
[0.002] [0.002] [0.001] [0.003] [0.004] [0.003] [0.001] [0.003]

Obs. 3,106 3,106 3,106 3,106 3,106 3,106 3,106 3,106

Tracts

net County

HighRisk 0.015%** 0.000 0.000 0.030***  0.030***  0.062***  0.003* -0.008*
[0.003] [0.001] [0.000] [0.006] [0.005] [0.013] [0.001] [0.005]

MedRisk 0.008** -0.000 -0.000  0.025%*F*  -0.013***  0.026** -0.001 0.008**
[0.004] [0.001] [0.000] [0.005] [0.005] [0.012] [0.002] [0.003]

Obs. 57,931 57,931 57,931 57,931 57,931 57,931 57,931 57,931

Notes: The header of each column labels the natural hazard considered. The dependent
variable is the average decadal change in the log of population between 1990 and 2020. The
top and middle panels use the county-level dataset and the bottom panel uses the tract-level
dataset. In all models the omitted category is low risk. Standard errors clustered by commuting

zone. P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 11: Within tract and county variability by natural hazard

Commuting zones Counties
(1) (2) (3)
Share of CZ where  Share of counties where CoV
all tracts have 0 risk  all tracts have 0 risk  (counties with mean> 0)
Composite NRI 0.00 0.00 16.5
Composite (unweighted) 0.00 0.00 620.6
Composite 0.00 0.00 497.8
Drought 0.07 0.11 26.1
Hurricane 0.35 0.27 9.5
Riverine flooding 0.06 0.01 14.4
Tornados 0.00 0.00 103.2
Wildfires 0.00 0.00 66.4
Hail 0.00 0.00 6.1
Coastal flooding 0.87 0.88 111.2
Strong winds 0.00 0.00 7.1
Ice storm 0.03 0.03 14.0
Winter weather 0.02 0.02 6.5

Notes: These calculations are based on the tract-level dataset. The first (second) column
computes the share of commuting zones (counties) for which all tracts have zero risk for the
corresponding natural hazard. The third column reports the within-county dispersion of each
hazard’s risk. Specifically, we compute the coefficient of variation (CoV') for each county,
based on the county-specific standard deviation and mean of the average annual frequency,
and then average across all counties with positive mean average annual frequency. The table
only includes hazards with positive weight in our composite index.
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Appendix

A Adjustments to SEER county population data
We make the following adjustments:

1. Alaska and Hawaii are dropped from the dataset due to difficulties in linking

county-level data over time.

2. We drop two groupings of counties (with a FIPS code) that were only used in
the 1970 Census: 36910 - New York City and 51918 - Arling/Alexan/Fairfax/Falls
Church.

3. We impute some county population values for a few counties using linear interpo-
lation. In particular, we use the 1960 and 1990 values to impute values for 1970
and 1980 for counties with FIPS 35061, 51095, 51153, 51830. And we use the 1960
and 1980 value to impute the missing 1970 value for counties with FIPS 51165,
51177, 51179, 51199, 51510, 51580, 51610, 51630, 51660, 51690.

4. For a few counties in Virginia (FIPS 51683, 51685, 51735 and 51830), the 1982
data is available, but the 1980 is not. We use the 1982 value for 1980.

5. Last, we note that there are missing values for a few counties in Virginia that
cannot be interpolated because we lack values after 1970, but we keep them in the
data. In any case, they have small populations and they will not appear in the

estimation sample.

More details on the construction of the SEER data can be found at:

https:/ /seer.cancer.gov/seerstat /variables/countyattribs /ruralurban.html.

B LTBD data: population by Census tracts 1970-
2020

Our Census-tract population data is the Longitudinal Tract Data Base Census Dataset
(LTBD) available at https://s4.ad.brown.edu/Projects/Diversity /Researcher /Bridging.htm.

It combines data from the decennial Census and the ACS, harmonized to 2010 Census
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tract boundaries as described in Logan et al. (2014). We use the full-count (standard)
dataset.

The specific sources for the population counts (and age and race variables) in our
analysis are as follows: Total population for the 1970-2020 period is obtained from 1970
Census (Count 2, 100% Data, T1), 1980 (STF1, 100% Data, T1), 1990 (STF1, 100%
Data, P1), 2000 (SF1, 100% Data, P1), 2010 (SF1, 100% Data, P1), 2020 (PL94, 100%
Data).

C Figures and Tables
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Figure 9: National trends (pooling tracts) by climate risk
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Table 12: Risk categories individual hazards (tracts)

Climate hazard Tracts Zeros Low Mid High Weights
Composite NRI 58,488 0.69 0.20 0.11
Composite (unweighted) 58,488 0.25 0.50 0.25
Composite 58,488 0.25 0.50 0.25
Drought 58,488 0.20 0.20 0.40 0.40 0.21
Hurricane 58,488 0.14 0.14 0.44 0.42 0.21
Riverine flooding 58,488 0.20 0.20 0.40 0.40 0.18
Tornados 58,488 0.00 0.12 0.38 0.50 0.13
Wildfires 58,488 0.15 0.15 0.42 0.42 0.10
Hail 58,488 0.00 0.10 0.41 0.49 0.06
Coastal flooding 58488 0.75 0.75 0.12 0.12 0.05
Strong winds 58,488 0.00 0.10 0.40 0.50 0.04
Ice storm 58,488 0.07 0.12 0.42 0.46 0.01
Winter weather 58,488 0.08 0.11 0.44 0.45 0.01
Avalanche 58,488 0.95 0.95 0.03 0.02 0.00
Cold wave 58,488 0.43 043 0.32 0.24 0.00
Heat wave 58,488 0.22 0.22 0.40 0.38 0.00
Landslide 58,488 0.00 0.98 0.00 0.02 0.00
Lightning 58,488 0.00 0.10 0.40 0.50 0.00
Tsunamis 58,488 1.00 1.00 0.00 0.00 0.00

Notes: Specifically, we define the Low risk category to include locations (counties or Census
tracts) with zero or below the 10th percentile of annual frequency. The medium (Mid) risk
category includes locations with annual frequency higher than the 10th percentile (hence,
strictly positive) but lower than the 50th percentile conditional on positive annual frequency.
Naturally, the High category contains the locations with annual frequency above the conditional
50th percentile. The last column reports the weights given to each hazard in our composite
risk index, computed on the basis of each hazard’s share in the expected annual loss at the
national level (adding the monetary value of buildings and people).
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Table 13: Heterogeneity by climate hazard. Tracts-analysis

0 ) @) @ ) ©) @) ®)
30 year W Dght Hren RFId Tornds Wildfir Hail CFld
AvGPop
HighRisk 0.090*#*  (.122%** -0.052 0.049** -0.022 0.117*%%  -0.133%** 0.006
[0.023] [0.021] [0.036] [0.020] [0.046] [0.019] [0.050] [0.014]
MedRisk 0.028 0.037**  -0.095*** 0.035 -0.089* 0.038%*%  -0.146%** 0.015
[0.018] [0.014] [0.037] [0.023] [0.046] [0.017] [0.049] [0.017]
Constant 0.062***  0.035%**  0.162***  0.065*** 0.143***  0.033*  0.224***  0.096%**
[0.019] [0.013] [0.034] [0.023] [0.046] [0.020] [0.048] [0.012]
Observations 57,931 57,931 57,931 57,931 57,931 57,931 57,931 57,931
net CZ
HighRisk 0.017*** 0.002 -0.000 0.049***  0.037***  (.087*** 0.004 -0.012*
[0.005] [0.001] [0.001] [0.009] [0.006] [0.017] [0.002] [0.006]
MedRisk 0.011* 0.000 0.000 0.041***%  -0.026%**  0.043** -0.001 0.004
[0.006] [0.001] [0.001] [0.010] [0.006] [0.017] [0.003] [0.005]
net County
HighRisk 0.015*** 0.000 0.000 0.030%**  0.030***  0.062***  0.003* -0.008*
[0.003] [0.001] [0.000] [0.006] [0.005] [0.013] [0.001] [0.005]
MedRisk 0.008** -0.000 -0.000 0.025%%%  -0.013***  0.026** -0.001 0.008%**
[0.004] [0.001] [0.000] [0.005] [0.005] [0.012] [0.002] [0.003]

Notes: The header of each column labels the natural hazard considered. The dependent
variable is the average decadal change in the log of population between 1990 and 2020. All
panels based on the tract-level dataset. In all models the omitted category is low risk. Standard

errors clustered by commuting zone. P-values: *** p < 0.01, ** p < 0.05, * p < 0.1.
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