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Abstract
Single photons are expected to play an essential role in the transfer of quan-
tum information in modern quantum technology. Monolayers of transition-metal
dichalcogenides (TMDs) with implanted defects are promising candidates for single
photon sources that allow us to control the polarization of the emitted photons due
to their unique spin-valley locking property. This work provides a computational
study of a variety of possible materials for implantation, which could possibly
be used to confine the photon emission in real space allowing for single photon
emission. Several of the tools necessary to carry out the study have been developed
and implemented in the course of this work. Here, the focus is on the predic-
tion of electron energy loss spectra and band structure calculations for crystals
including a defect. The latter is not straight forward, since the calculation of such
defects is done in a supercell consisting of multiple pristine unit cells. The band
structure for a supercell is completely different from the pristine one unless the
developed unfolding method is applied. This method reveals the defect as a small
perturbation to the pristine system, allowing to calculate band structures of defect
systems that are comparable to experiments. Experimental electron energy loss
spectroscopy (EELS) measurements have a finite k resolution due to the finite size
of the collection aperture in the transition electron microscope. This spectrum
deviates significantly from the EELS spectrum for zero k momentum, as it is com-
monly calculated using the theoretical dielectric function. Here, a stable method
for integrating the theoretical spectra over k is developed that solves the added
difficulty of the integrand varying over several (typically six) orders of magnitude
around k = 0. This scheme is extended by an extrapolation method for a fast
convergence of the introduced vacuum, necessary for calculating monolayers in the
context of 3D periodic boundary conditions. The combination of both shows a very
favorable agreement with experimental spectra, when applied to three prototypical
two-dimensional systems. Density-functional theory (DFT) studies of structural
relaxations, band structures, and EELS spectra are carried out for a variety of
TMDs (MoS2, MoSe2, WSe2) with defects (P, Cr, S, Se, vacancy) , applying the
developed methods. The investigated system of MoSe2+S turns out to lower the
conduction band state at the direct band gap compared to the pristine MoSe2 while
preserving the spin-valley locking property. The optical transition in a small island
of this material surrounded by MoSe2 is therefore a promising candidate for single
photon emission. Also doping with chromium, which introduces an addition state
within the band gap, is a promising candidate to localize the photon emission.
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Zusammenfassung
Einzelne Photonen könnten in der Zukunft eine essenzielle Rolle in der Übertragung
von Quanteninformation für moderne Quantentechnologie spielen. Monolagen aus
Übergangsmetalldichalkogeniden (TMDs) mit implantierten Defekten sind viel-
versprechende Kandidaten für Einzelphotonenquellen, die es ermöglichen, dank
ihrer besonderen „spin-valley locking“ Eigenschaft, die Polarisation der emittier-
ten Photonen zu kontrollieren. Diese Arbeit behandelt eine rechnerische Analyse
einer Vielzahl möglicher Materialien zur Implantierung, die dazu genutzt werden
könnten, die Photonenemission im Realraum einzuschränken, um die Erzeugung
einzelner Photonen zu ermöglichen. Im Verlauf dieser Arbeit wurden die hierfür
nötigen Programme entwickelt und implementiert. Das Augenmerk liegt an die-
ser Stelle auf der Vorhersage von Bandstrukturen der Defektsysteme und deren
Elektronenenergieverlustspektren. Rechnerisch werden solche Defektsysteme in
Superzellen dargestellt, die aus einer Vielzahl ungestörter Einheitszellen bestehen.
Deren Bandstruktur lässt sich nur mit Hilfe der entwickelten Rückfaltungsmethode
in Bezug zu der Bandstruktur der ungestörten Einheitszelle setzen. Hierbei wird der
Defekt als eine Störung des ursprünglichen Materials dargestellt und kann somit
mit der entsprechend experimentellen Messung verglichen werden. In der experi-
mentellen Elektronenenergieverlustspektroskopie (EELS) haben die gemessenen
Spektren eine begrenzte k Auflösung, aufgrund des begrenzten Einsammelwinkels
des Spektrometers im Elektronemikroskop. Dieses Spektrum unterscheidet sich
deutlich von dem üblicherweise berechneten EELS Spektrum basierend auf der
dielektrischen Funktion ohne Beachtung eines möglichen Impuls Übertrags. Im
Folgenden wird eine Methode zur Integration der theoretischen Spektren über k
entwickelt, die, trotz der zusätzlichen Schwierigkeit eines um bis zu sechs Größen-
ordnungen schwankenden Integranden bei k = 0, stabil ist. Diese wird erweitert um
eine Extrapolationsmethode zur schnellen Konvergenz des zusätzlich hinzugefügten
Vakuums, um die Berechnung von Monolagen mit 3D periodischen Randbedin-
gungen zu ermöglichen. Angewendet auf drei typische zweidimensionale Systeme
hat die Kombination aus beiden Methoden eine hervorragende Übereinstimmung
mit dem Experiment gezeigt. Für eine Vielzahl von TMDs (MoS2, MoSe2, WSe2)
mit Defekten (P, Cr, S, Se, Fehlstelle) wurde die Bandstruktur und räumliche
Relaxation mit Dichtefunktionaltheorie (DFT) sowie die EELS Spektren, unter
Anwendung der entwickelten Methoden, studiert. Es konnte gezeigt werden, dass
MoSe2+S ein niedrigeres Leitungsband bei der direkten Bandlücke hat als das
störstellenfreie MoSe2 und dennoch die „spin-valley locking“ Eigenschaft behält.
Somit ist die optische Anregung in einer kleinen Insel dieses Materials umgeben von
reinem MoSe2 ein vielversprechender Kandidat für die Emission einzelner Photonen.
Das Dotieren mit Chrom ist durch einen zusätzlichen Zustand in der Bandlücke
ebenfalls ein vielversprechender Kandidat zur Lokalisierung der Photonenemission.
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Chapter 1
Introduction

We Motivationare at the transition to a new quantum age. Quantum technology in the form
of quantum computing, quantum annealing and quantum communication is evolving
from a theoretical quantum mechanical concept to working machines. Unprecedented
computational abilities through new devices on the basis of quantum technology will
lead to advances in materials design, artificial intelligence, and health care [1]. The
development of materials to meet the requirements of these devices is a key field
of research. Quantum information has to be transferred from and to a stationary
”qubit” system. Specially prepared photons can be used for this purpose. This thesis
is concerned with the search for materials that could be used to create photons for
this and many more applications in the context of quantum technology. In recent
years, transition-metal dichalcogenides (TMDs) have gained more and more atten-
tion in this context, where they are promising candidates for novel semiconductor
devices [2]. Monolayer-thick samples have remarkable physical properties due to their
two-dimensional structure making them an exciting platform for the development of
photonic devices with new functionalities.
Methods in quantum computing, quantum research, and quantum cryptography, like
the BB84 algorithm [3], rely on single photons with known polarization. Electrically
driven photon emission with these properties [4] is a key requirement to make these
methods available for widespread practical applications. In TMDs a combination of
the hexagonal lattice symmetry with massive atoms that introduce a spin splitting
of energy levels due to their strong spin-orbit-coupling (SOC) results in a spin-valley
locking. Here, the energetically most favorable state of an excited electron within the
symmetry of the crystal is connected to its spin. Exploiting this spin-valley locking
property of the TMDs allows controlling the polarization of the emitted photon by
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the spin of the electron introduced into the system [5]. A suitable defect in the TMD
monolayer could localize the emission of photons in real space and therefore allow for
electrically driven single photon emission [6, 7].

TheAim of this
work

aim of this work is to identify suitable materials for implantation in MoSe2

or MoS2 for optical experiments, aiming to achieve single photon emission. These
defects should reflect the symmetry of the host lattice and preserve the spin-valley
locking property. The defects are mainly located in the chalcogen layer because here
the experimental realization of the implantation process is more feasible and introduces
less strain on the structure as a whole [2]. To verify the suitability, the electronic
structure is analyzed with ab-initio methods in this thesis. This analysis includes
structural relaxations, calculations of valence band electron energy loss spectra [8, 9],
and band structures within the Jülich DFT code package [10–12].
This work is embedded in a project together with three experimental groups: The group
of Prof. Beata Kardynal at PGI-9, Forschungszentrum Jülich doing photoluminescence
(PL) experiments, the group of Prof. Ursel Bangert at the University of Limerick doing
investigations using transition electron microscopy (TEM) and performing electron
energy loss spectroscopy (EELS), as well as the group of Prof. Hans Hofsäss, Universität
Göttingen, implanting defect atoms into the samples. This work supports the planning
process, measurement, and interpretation of results by theoretical developments and
modeling of material properties.

InSupercell
unfolding

order to perform calculations including a defect atom, this defect atom has
to be embedded in a pristine environment. A supercell consisting of multiple pristine
unit cells has to be constructed for this purpose. This results in an accordingly smaller
reciprocal cell. The band structure of a supercell appears very different from the pristine
band structure even though it describes the same (or a slightly distorted) system. Since
the band structure of a supercell (with a defect) is not straightforward to interpret,
a method for unfolding the bands is implemented using an algorithm based on the
one by Rubel and coworkers [13]. The result is a band structure that looks similar to
the one of the primitive unit cell but contains additional information on the defect states.

EELSEELS for 2D
Systems

spectra are used to characterize the possible electron excitations within a
system. EELS is an important tool to distinguish pristine and defected regions in a
sample. With fine enough resolution, it may even be possible to distinguish different
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types of defects. For this purpose, it is important to compare the measured spectra
with theoretically simulated spectra. The calculation of these spectra can be done
using many-body perturbation theory. Using the random-phase approximation (RPA)
(Sec. 2.3) the results turn out to be different from experimental loss spectra obtained
from EELS. The reason for this could be either the inadequacy of the RPA or the
interpretation of the inverse dielectric function as the EELS spectrum, which might
be too simplistic for a direct comparison to experimental spectra. In the scope of
this thesis the latter will be demonstrated. Furthermore, it is shown that computing
electron energy loss spectra for comparison to experiment requires a methodological
extension in order to include multiple momentum transfers, which turns out to be
necessary for a typical transition electron microscope (TEM) setup. This methodology
is derived and applied to pristine and defect systems. For prototypical pristine 2D
systems (hBN, graphene and MoS2) a very favorable agreement with experimental
measurements is found. The calculation of monolayer material properties requires
a much larger computational effort than the treatment of a bulk material, since the
former requires larger unit cells due to the additional vacuum to be included. For
theoretical methods that require 3D periodic boundary conditions a large vacuum has
to be placed in between the periodic images of the slabs to effectively decouple them.
Especially for the case of RPA the long range screening effects cause a slow convergence
with respect to the added vacuum, making supercell calculations including a defect
atom practically impossible due to limited computational resources. In this work a
method for extrapolating to infinite layer distance is developed, drastically reducing
the required vacuum in the computational unit cell.

The Monolayer
properties

study of monolayer materials is very interesting, since their properties can be
significantly different from the bulk material due to a different structure, surface states,
and less screening. Besides the very well known graphene, TMDs form another class of
materials that can be exfoliated into two-dimensional materials down to monolayer
systems. Like graphene, TMDs also show very different material properties in the
monolayer configuration than in the bulk configuration. In Fig. 1.1 the band structure
of a MoSe2 monolayer is shown in comparison to the band structure of bulk MoSe2.
Comparing the band gap the K point, it becomes obvious that the monolayer has
a direct band gap whereas the bulk material has an indirect one. This makes the
monolayer material very interesting for optical applications. Photons carry very little
(nearly no) momentum, therefore a direct band gap is needed for their emission (unless
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(a) MoSe2 bulk (b) MoSe2 monolayer

Figure 1.1: The most evident difference between the MoSe2 bulk and MoSe2 monolayer
band structure is the change from an indirect band gap semiconductor
(bulk) to a direct band gap semiconductor (monolayer).

multi-scattering events with a phonon are taken into account). The same property is
found for other TMDs like MoS2, WS2, and WSe2.

IntroducingFunctionaliza-
tion of defects

defects into the crystal structure of the material breaks the transla-
tion symmetry and changes its properties. Clear diamonds obtain a red colour from
nitrogen-vacancy defects, transistors would not work without controlled doping and
there are countless more examples. There is a complete description and classification of
defect states in Sec. 2.5, at this point the emphasis is on the motivation for introducing
defect atoms into the system. Defect atoms can have many effects on the crystal.
Three of them that are of relevance at this point are: changing the atomic structure,
changing the electric properties, and changing the optical properties (additional energy
levels).
Introducing a change of the structure (phase) is for example used in new types of
nonvolatile memory [14]. Changing the charge of the system is used in the design
of P-doped or N-doped semiconductors by introducing an electron into the system
or taking one out. But in general, introducing a defect to the system breaks the
translational symmetry of the lattice, therefore lifting the degeneracy of certain states.
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Or the defect atom introduces additional defect levels due to its electronic configuration.
If these defect states lie within the band gap of a semiconductor they can change the
optical emission spectrum drastically. They can also be used to trap an electron-hole
pair (exciton) at them if it is energetically more favorable for the exciton to be located
at the defect atom. A localization of the excited state in real-space corresponds to emis-
sion (due to recombination of the electron-hole pair) only at that point, which means
only a single excitation at a time - a requirement for single photon emission. Implan-
tation in the case of a monolayer TMD is only possible with very low ion energy [15, 16].

This Computational
methods

work is mainly based on the Fleur code and the SPEX code developed at
the Forschungszentrum Jülich. The Fleur code [10] is an open-source community code
that is an implementation of density-functional theory in the linearized augmented
plane-wave (LAPW) basis (Sec. 2.2), allowing for an all-electron treatment. The im-
plemented full-potential linearized augmented plane-wave method is widely considered
the most precise electronic structure method. Its basic workflow is the self-consistent
solution of the Kohn-Sham equations (Sec. 2.1). It includes a large variety of features
with a focus on non-collinear magnetism. In this work the main use is the structure
optimization through force relaxation, the calculation of band structures, and in the
case of defect systems, their unfolding in reciprocal space. The DFT result of Fleur
provides a starting point for applying RPA.
SPEX [17] is an independent part of the Jülich FLAPW code family. It uses the
self-consistent solution from Fleur to calculate theoretical spectra and quasiparticle
properties employing the GW approximation. It is based on many-body perturbation
theory and also uses the FLAPW method with the addition of the mixed product
basis (MPB) [12]. It is a feature rich software that allows for the calculation of ”EELS
and optical spectra as well as total energies in the RPA approximation, and spin-wave
and optical (experimental) spectra from the Bethe-Salpeter equation, Hubbard U
parameters, Wannier interpolation, and more” [17]. In this work it is used to calculate
the dielectric function based on RPA (Sec. 2.3). The dielectric function is the main
ingredient for calculating the EELS spectrum.

Bringing Using the
combined
finding

together the results of the EELS spectrum and unfolded band structure
for a defect system allows for a thorough understanding of the electronic properties of
the defect and an assumption of the experimental results to be expected. The unfolded
band structure helps to evaluate the type of defect state introduced and its interplay
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with the spin-valley locking property. Whereas the EELS spectrum delivers information
on the transitions that can actually be excited. This knowledge is on the one hand
important for the decision on the kind of defect to be investigated in order to achieve
single photon emission. On the other hand, it is indispensable to the analysis of the
measured data. Without predictions of the expected result, the interpretation of PL
spectra and EELS experiments is very difficult.

BeforeOrganization of
this thesis

diving into the main topics of this thesis, the first chapter gives a motivation
for this work as well as an overview of the techniques involved. In the following chapter
the theoretical background is build up to lay the foundation for the developments
within this work. It is meant to be a compact easy to follow summary of the essential
points to understand the following work, rather giving the main idea and reference
to relevant literature than repeating complete derivations available from the original
sources. The main content is organized in the following three chapters. First hidden
features of band structures for supercells are discussed by introducing an unfolding
scheme and its application to defect systems. Then the calculation of EELS spectra
for monolayers is extended to include effects inherent to the experimental method that
have been neglected before. To effectively reduce the vacuum needed in the calculation
of monolayers an extrapolation scheme is introduced. This developed methodology
makes prediction of EELS spectra for monolayers including defect atoms possible which
is shown in the following using the systems from the first part. The work will conclude
with a summery, outlook, and a set of additional information and descriptions on the
developed tools.
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2.1 Density-functional theory (DFT)
Density-functional theory (DFT) is a widely spread method in theoretical condensed
matter physics to determine the ground-state properties of a many-body systems of
electrons in a crystal. Taking into account the Born-Oppenheimer approximation, the
atom cores can be considered fixed for the observation of the electron movement. DFT
is applied in theoretical chemistry and physics in different kind of approximations and
implementations specialized for specific cases and systems. It is based on the finding
that relevant properties of a system can be extracted from its position dependent
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density [18]. P. Hohenberg and W. Kohn showed that the ground state of an electronic
system is uniquely determined by its electron density. Additionally, they proved that
the ground-state density n0(r) minimizes the total energy functional E[n(r)].

E[n(r)] = T [n(r)] +W [n(r)] + V [n(r)] (2.1.1)

with the kinetic energy T [n(r)], the electron-electron interaction energy W [n(r)], and
the external potential energy V [n(r)] =

∫
n(r)V (r)dr where V (r) is the external poten-

tial created by the positive charges of the nuclei. Unfortunately they did not describe
how to obtain the universal functional T [n(r)]+W [n(r)], which is an ongoing field of
research as more and more sophisticated approximations are still being developed.
W. Kohn and L. J. Sham introduced a fictitious non-interacting system with an effective
potential [19]. This non-interacting system is much easier to compute than the interact-
ing system. The Kohn-Sham system is designed to have the exact same ground-state
density n0(r) as the interacting many-body system, so that the ground-state properties
of the interacting system can be extracted, given the exact functional. Strictly speaking
excited states of the interacting system cannot be determined from the Kohn-Sham
system.
The Kohn-Sham wave functions can be found by solving the stationary Schrödinger
equation and diagonalizing the Kohn-Sham Hamiltonian.

(
− ~2

2m∇
2 + VKS(r)

)
φi(r) = εiφi(r) (2.1.2)

All equations are given in atomic units where e = me = ~ = 1
4πε0

= 1 a.u. but
the constants are included nevertheless as a reminder to the well known form in SI
units. The electron density is then given by the sum over the orbital densities of the
occupied states n(r) = ∑

i

∫
φi(r)φ∗

i (r)dr. This density is identical to the density of
the interacting system. Unfortunately the Kohn-Sham potential depends itself on the
density

VKS(r) = V (r) +
∫ e2 n(r′)
|r− r′|

dr′ + δEXC

δn(r) (2.1.3)
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and therefore this system of equations can only be solved self-consistently. Here EXC is
the exchange-correlation energy in correspondence with the Kohn-Sham total energy:

E[n(r)] = TKS[n(r)] +WH [n(r)] + V [n(r)] + EXC [n(r)] (2.1.4)

Here EXC accounts for the difference between the many-body electron-electron inter-
action energy and the Hartree energy WH =

∫∫ e2

2
n(r)n(r′)

|r−r′| dr′dr as well as a correction
to the Kohn-Sham kinetic energy of the non-interacting system in comparison to the
interacting one. One of the first approximations for an ab-initio functional to calculate
EXC , the local-density approximation (LDA), already delivers surprisingly precise
results. It depends only on the electron density at each point in space and gives
the exchange-correlation energy according to the homogeneous electron gas with the
same density. To achieve higher accuracy, needed for example for the prediction of
chemical bonds, one has to use more accurate approximations for EXC . The gener-
alized gradient approximation [20, 21] (GGA) is not only using the density but also
the density gradient. Both approaches deliver very good results for the ground-state
properties. In theory the Kohn-Sham system describes the ground state of a system
correctly and delivers eigenvalues also for the excited states, though these eigenvalues
have, strictly speaking, no meaning for the real interacting system. Therefore, the
band structure is quantitatively wrong for the excited states and the resulting band
gap is usually underestimated. To overcome this shortcoming more computationally
demanding methods like time-dependent density-functional theory (TDDFT) and GW
have to be used. There are also attempts to lift the shortcomings of the LDA and GGA
functional by further extensions like hybrid functionals, metaGGA, and hyperGGA
(improving the precision according to ”Jacob’s ladder” [22]).
Walter Kohn got the Nobel Prize in chemistry in 1998 for his work on DFT, because
his theory revolutionized the ability of modeling material properties.

2.2 FLAPW method
The potential V (r) of a crystal consists of regions around the atom cores that experience
predominantly the Coulomb potential of the nuclei and areas in between the atoms
where the potential is only slowly varying. A code based on the plane-wave basis can
only model well the regions with relatively flat potential and therefore has to adopt some
kind of pseudo-potential around the atom cores (unless infinitely many basis functions
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Valence electrons

Figure 2.1: Visualization of the atomic potential landscape in a crystal. As an example
a localized core state, an extended valence band state, and a semi-core state
are drawn. Adapted from [23].

are used, which is computationally impossible). The aim of the full-potential linearized
augmented plane-wave (FLAPW) method is to lift this limitation and consider all
electron wave functions of the crystal without the assumption of a pseudo-potential.
Therefore, the crystal is divided into areas around the atom core, where the basis
functions already incorporate the 1/r potential and areas in between where the wave
functions are modeled by plane waves. These two basis sets have to be matched at
the so called muffin-tin boundary. In Fig. 2.1 the atom landscape is pictured. In
addition to the described treatment of the valence electrons the core electrons are
treated separately. To increase the flexibility of the basis set and allow for a better
matching at the muffin-tin boundary additional local orbitals are included within the
muffin-tin sphere that help to describe the semicore electrons. These electrons have
an energy in between the valence band electrons and core electrons but are mostly
confined to the muffin-tin sphere. The treatment of these semicore electrons is one
of the difficulties of the LAPW basis set and can be addressed by introducing local
orbital basis functions [24].
The construction of the electron wave functions in the LAPW basis can be summarized
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Figure 2.2: Visualization of the LAPW basis with the interstitial region (white) and
the muffin-tin spheres (blue). The drawing is 2D, even though the basis is
in 3D.

as the following, with basis functions χk,G(r) (Fig. 2.2).

χk,G(r) =


1√
Ω
ei(k+G)r interstitial region∑

l,m

(
aα,G

lm (k)uα
l (rα) + bα,G

lm (k)u̇α
l (rα)

)
Ylm(r̂α) muffin-tin α

(2.2.1)

Here G are the reciprocal crystal basis vectors, Ω is the unit cell volume, u̇α
l and u̇α

l (rα)
are solutions for the spherical potential (and the corresponding derivatives), Ylm denote
the spherical harmonics and aα,G

lm (k) as well as bα,G
lm (k) are matching coefficients to

make sure the transition between the muffin-tin area and the interstitial region with
plane wave basis functions is smooth.
Using the FLAPW method, the stationary Schrödinger equation (Eq. (2.1.2)) can be
expressed as an eigenvalue problem using the basis functions χk,G(r) [11]. The electron
wave functions Ψn

k(r) with a Bloch vector k and a band index n can be formulated in
the expansion coefficients ck,G

n .

Ψk
n(r) =

∑
G
ck,G

n χk,G(r) (2.2.2)

The Hamiltonian used for the stationary Schrödinger equation can be expressed
in the basis of the functions χk,G(r). Together with the overlap matrix (Sk

G′,G =∫
Ω χ

∗
k,G(r)χk,G′(r)d3r) the generalized eigenvalue problem can be set up [11].

∑
G
Hk

G′,Gc
k,G
n = εk

n

∑
G
Sk

G′,Gc
k,G
n (2.2.3)
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Here, εk
n are the eigenvalues that give the Kohn-Sham band structure of the system.

2.3 Random-phase approximation (RPA)
In the random-phase approximation [25, 26] the polarizability of a system is calculated
by taking into account that an excitation will cause a change of potential that itself
introduces a small perturbation, thus inducing an infinite series of excitations. This
can be visualized in an infinite series of excitation diagrams, where each circle denotes
an electron-hole excitation and the dashed lines bare Coulomb interactions.

χ(q, ω) = +

+ + ...

(2.3.1)

In reciprocal space of a periodic system this can be summarized in the following
microscopic response function χG,G′(q, ω):

χG,G′(q, ω) = PG,G′(q, ω) +
∑
G1

PG,G1(q, ω)vG1χG1,G′(q, ω) (2.3.2)

where PG,G′(q, ω) denotes the polarizability and v the Coulomb potential. The polariz-
ability can be calculated using the Kohn-Sham eigensolutions with the wave functions
ϕn(r) and the eigenvalues εn. n is the index for each state (or in reciprocal space to
the band index) (atomic units).

P (r, r′;ω) = 2
occ.∑

n

unocc.∑
n′

ϕ∗
n(r)ϕn(r′)ϕn′(r)ϕ∗

n′(r′)

×
[

1
ω + εn − εn′ + iη

− 1
ω − εn + εn′ − iη

] (2.3.3)

Here η is a positive infinitesimal which reflects the time ordering of the response
function. Furthermore, the Bloch vector is suppressed for simplicity and a non-spin-
polarized system is assumed, which leads to a factor of two instead of an explicit spin
summation [12]. The summation over band index n′ for the unoccupied states is in
theory up to infinity. In practice the number of included states in the summation is a
convergence parameter of the calculation.
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2.4 The dielectric function
The response of a material to an external electric field is described by the dielectric
function ε(q, ω). The external perturbation can have the form of light, an incoming
charged particle, or an electric field. The dielectric function itself is determined by the
possible excitations (single excitations and collective excitations) within the crystal.
These are not only determined by the components of the crystal but also by its electronic
structure, crystal shape, and the interface to the surrounding.
In condensed matter physics there is a wealth of theories that aim at a model description
of this dielectric function like the Drude model or Lorentz model. In the macroscopic
Maxwell equations the dielectric function relates the electric field with the displacement
field. In this work the dielectric function is determined by ab-initio calculations based
on density-functional theory (DFT) and the random-phase approximation (RPA).

2.4.1 The microscopic dielectric function

In general the microscopic dielectric function ε(r, r′, ω), as it is used in linear response
theory, is dependent on the place of interest in real space r, all other positions r′, and
the frequency of the excitation ω. With this, the total potential due to some arbitrary
external potential can be written as:

Φtot(r, ω) =
∫
ε−1(r, r′, ω)Φext(r′, ω))dr′ (2.4.1)

The microscopic dielectric function can be calculated from the polarizability (Eq.
(2.3.3)) found within the framework of the random-phase approximation and the
Coulomb potential v(r− r′′) by:

ε(r, r′;ω) = δ(r− r′)−
∫
v(r− r′′)P (r′′, r′;ω)d3r′′ (2.4.2)

In a periodic system with lattice vectors G, G′ and using a plane-wave representation,
the microscopic function reads:

εGG′(k, ω) = 1
V

∫∫
e−i(k+G)rε(r, r′;ω)ei(k+G′)r′d3r d3r′ (2.4.3)

The normalization of the plane waves ei(k+G)r/
√
V results in a prefactor of 1/V , where

V is the crystal volume. The dielectric function is here shown for the plane-wave
representation, whereas the used code frameworks (Fleur and SPEX) rely on the
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FLAPW method. As described in the Sec. 2.2 the LAPW basis is different in the
area around the atom cores, but it can be treated analogously to the plane-wave
basis with simple changes. The same holds for the mixed product basis (MPB) [12]
additionally used within the SPEX code. For simplicity, it is sufficient to show the
physical quantities for the plane-wave basis.

2.4.2 The macroscopic dielectric function

The microscopic dielectric function plane-wave representation is connected to the
macroscopic one, describing the system on a large scale, by [25, 27]:

εM(q, ω) = 1
ε−1

M (q, ω)
= 1
ε−1

00 (q, ω)
(2.4.4)

Here ε00(q, ω) is the long wavelength part of the microscopic dielectric function in
reciprocal space (G = G′ = 0 component of εGG′(q, ω)). The macroscopic dielectric
function is the one that is used in classical electrodynamics (real or reciprocal space -
whichever is useful at the time) relating the displacement field D and the electric field
E.

D = εME

For the complete characterization of the dielectric function in reciprocal space it is
important to note the angular dependence around q = 0. Depending on the direction
q̂ from which one approaches q = 0 the limit limq→0 ε00(q, ω) has in general a different
value. It can therefore be formulated in vector form by ε(q, ω) ∼ q̂Tε(ω)q̂. The
3× 3 dielectric tensor has the following form, that can be simplified depending on the
symmetries of the system.

ε(ω) =


εqx,qx(ω) εqx,qy(ω) εqx,qz(ω)
εqy ,qx(ω) εqy ,qy(ω) εqy ,qz(ω)
εqz ,qx(ω) εqz ,qy(ω) εqz ,qz(ω)

 . (2.4.5)

The ”inverse” tensor ε−1(ω), that is used for the macroscopic relation therefore has to
be understood as the tensor approximating q̂Tε−1(ω)q̂ ≈ 1/(q̂Tε(ω)q̂). For a system
that does not have a diagonal and isotropic dielectric tensor, this does not simplify to
ε−1(ω) = [ε(ω)]−1 [12] but is rather identical to the second order in the components of
q̂.
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2.5 Model description of defect states
Any irregularity in a perfect crystal structure is a defect. First of all, one can differentiate
the type of defect by its spatial extent. There are line defects (whole lines or planes of
dislocation) and there are point defects (small groups of atoms or single atoms). Single
atom point defects are the only ones discussed in this work.
They can be further classified by their position within the crystal structure. There
are interstitial defects, where an atom sits in between two lattice sites, substitutional
impurities, where a different atom sits at the same site as the replaced host lattice
atom and there are vacancies.
Furthermore, a defect can either be a donor, an acceptor or isoelectronic. This
differentiation is done by whether the defect donates an electron to the system, accepts
an electron from the system or does not change the electronic configuration at all. This
can be determined from the position in the periodic table in relation to the host atom
being replaced.
If the defect is considered within a semiconductor material, the type can be further
differentiated by the defect states it introduces in the band gap. If the additional
defect states are located close enough to the conduction band minimum (CBM), in the
case of a donor, or close enough to the valence band maximum (VBM), in the case of
a acceptor, to be ionized at room temperature, they are considered ”shallow” defects.
Defects in the middle of the band gap are considered ”deep” defects.
For the treatment of defects within a crystal there exists a variety of model approaches.
Here two of them are introduced that help to understand the role of a defect atom
within a crystal and allow for an interpretation of calculated electronic band structures.
The ”effective mass model” can treat defect states that are very shallow and only show
a small perturbation in comparison to the host lattice state. On the other hand ”deep
defects” result in electronic states that have more in common with a single atom then
with a host lattice state.

2.5.1 The effective mass model

To gain an understanding of the effects a defect atom has onto the crystal and its
electronic properties (band structure) it is instructive to study a very reduced model.
The effective mass model is only valid for shallow dopants (hydrogenic defects), that
add a small perturbation to the system.
The starting point is the Schrödinger equation of an undisturbed crystal. This derivation
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is guided by the lecture of Akiko Natori [28]. SI units are used in this chapter, to give
explicit results in the end.

Hcrysψ(r) = Eψ(r) (2.5.1)

Hcrys is the undisturbed Hamiltonian of the pristine crystal. The solutions to this
Hamiltonian are given by the eigenfunctions φnk(r) and eigenenergies εnk. An additional
perturbation V (r) is added to the crystal (that could be a defect).

(Hcrys + V (r))ψ(r) = Eψ(r) (2.5.2)

The solutions to this new Schrödinger-equation will be expressed using the former
eigenfunctions as a basis. This is useful because one can assume that a single shallow
defect will only slightly alter the wave functions. This is not true for deep defects,
which will be considered in Sec. 2.5.2.

ψ(r) =
∑
m

∫
χm(k)φmk(r) dk

(2π)3 (2.5.3)

For this derivation we are only interested in the conduction band minimum, which
we assume to have band index n and to be located at the Γ point (k = 0). The
eigenfunctions is φnk(r) = unk(r)eikr, unk(r) being the lattice periodic part of the Bloch
function. At k = 0 the planewave part vanishes φn0(r) = un0(r)ei0r = un0(r). So in the
present case the following approximation is true for the states around the conduction
band minimum:

φnk(r) ≈ un0(r)eikr = φn0(r)eikr (2.5.4)

Therefore, the new wave function is:

ψ(r) ≈ φn0(r)
∫
χn(k)eikr dk

(2π)3 (2.5.5)

Performing the Fourier transform delivers:

ψ(r) = φn0(r)χn(r). (2.5.6)
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Now using this, the effect of the unperturbed Hamiltonian on the new wave function
will be investigated.

Hcrysψ(r) = Hcrys

∫
χn(k)φnk(r) dk

(2π)3 (2.5.7)

=
∫

χn(k)εnkφnk(r) dk
(2π)3 (2.5.8)

≈ φn0(r)
∫
χn(k)εnke

ikr dk
(2π)3 (2.5.9)

Each band n can be represented by an infinite series of polynomials km (with prefactors
amn): εnk = ∑

m amnk
m

Hcrysψ(r) ≈ φn0(r)
∑
m

amn

∫
χn(k)kmeikr dk

(2π)3 (2.5.10)

= φn0(r)
∑
m

amn

∫
χn(k) (−i∇)m eikr dk

(2π)3 (2.5.11)

= φn0(r)
∑
m

amn (−i∇)m
χn(r) (2.5.12)

= φn0(r)εn(−i∇)χn(r) (2.5.13)

Reintroducing the energy eigenvalues instead of the infinite series was now useful. But
instead of the discrete eigenvalues used before, the ”Effective mass approximation” is
used, where the local change of the curvature determines the effective mass (m∗ =
~2
(

d2ε
dk2

)−1
). The energy eigenvalues for the conduction band around Γ are in this case:

εn(k) ≈ εc + ~2k2

2m∗ (2.5.14)

The next step is to solve the Schrödinger equation for the envelope function χ(r). The
connection between the envelope function and the wave function is given by the Bloch
eigenfunctions, that serve as a basis ψ(r) ≈ φn0(r)χn(r)

(εn(−i∇) + V (r))χ(r) = Eχ(r) (2.5.15)(
− ~2

2m∗∇
2 + V (r)

)
χ(r) = (E − εc)χ(r) (2.5.16)
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All the effects of the defect are included in εc and the effective mass m∗. With the
Coulomb potential from a donor ion in the electrostatic screening environment of the
crystal:

V (r) = − e2

4πε0εsr
(2.5.17)

the solution of the Schrödinger equation is analogous to the unperturbed system:

E = εc −
e4m∗

8h2ε2
0ε

2
s

= εc −Ry
m∗

m0ε2
s

(2.5.18)

The final energy of the defect state is only determined by the Rydberg constant
(Ry = 13.6 eV), the dielectric environment, and the effective mass. This emphasizes
that in the case of a shallow dopant the defect state will appear similar to the host
state (also when analyzing the band structure).

2.5.2 Deep defects

One possible definition of ”deep” defect states is purely based on their position within
the band gap, but it is also possible to distinguish ”deep” and ”shallow” defects by
their interaction distance within the crystal [29]. Shallow defects act similar to the host
lattice wave function and are spatially very extended whereas the influence of deep
defects is concentrated on one atom side. In the picture of a simple Kronig–Penney
model this means that one of the potential wells has increased height of the barriers 2.3.
In contrast a shallow defect would correspond to the modulation of one valley. For a
deep defect this is often connected to a local structure change making spatial relaxation
highly important [30]. Their localization in real space means that they are delocalized

x

V

Figure 2.3: Visualization of the Kronig–Penney model with changed potential barriers
due to a ”deep” defect.

in reciprocal space. This delocalization enables them to interact with a variety of
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momentum vectors or phonons, also allowing for non-radiative recombination [31].
Their treatment requires therefore not only the focus on the minimum of one single
band (like in the effective mass theory) but rather the treatment of the whole band
structure [31].

2.6 Observation techniques
To understand the purpose of the methods developed and tools used in the following
it is important to give a short overview of the experimental techniques involved in
characterizing monolayer-thick TMDs.

2.6.1 TEM

Transmission electron microscopy (TEM) is a very powerful and versatile technique. It
functions somewhat similarly to light microscopy but with fast electrons and magnetic
lenses that change their trajectory [32]. At the top of the microscope an electron gun,
based on a Schottky-field emitter, produces a coherent electron beam. These electrons
are then accelerated to up to 300 keV. There are two main modes how the electron
beam can be focused on the probe:

1. A focused beam that can be used for scanning the probe (Scanning Transmission
Electron Microscopy (STEM))

2. A parallel broad beam, by which a larger area can be investigated with collinear
electrons

Since the probe is thin enough for the electrons to be transmitted, they can be detected
underneath the probe. Here is a second system of lenses allowing to operate the TEM
in two modes (depending on the incoming electron beam):

1. Real space imaging

2. Momentum space imaging

The real space imaging allows us to picture single atoms, their position, distance to
other atoms, and using their intensity some information on the type of atom. In
momentum space the electrons are scattered after interaction with the material. They
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are then collected inside some aperture, effectively limiting the maximum scattering
angle detected. By detection with a pixelated detector or limiting the detection to a
certain scattering angle it is also possible to obtain information about the transferred
momentum during interaction with the probe.
Additionally, it is possible to analyze the energy of the electrons detected. The result
is a loss spectrum specific to the excitation within the probe. This electron energy loss
spectroscopy (EELS) gives a wealth of information on the material and its properties.
There is a variety of developments combining EELS with momentum resolution or
spatial resolution. To add spatial resolution it is either possible to use a focused
electron beam or to record an image in real space and analyze the EELS spectrum
at each pixel. Even combination of spatial resolution and momentum resolution are
possible but in the end one is limited by the Heisenberg uncertainty principle [33], even
though the experimental limit due to the number of available electrons is reached at
much lower resolution [34, 35]. Especially for the monolayer materials of interest to
this work the intensity of the electron beam has to be carefully limited in fluence and
energy to not destroy the probe before it is imaged.

2.6.2 Photoluminescence spectroscopy

Photoluminescence spectroscopy allows us to investigate the optical and electronic
properties of the direct band gap. Electrons from the valence band are excited with
photons to the conduction band, where they relax to the lowest conduction band state
before recombination with the vacancy left in the valence band. During this relaxation
process a photon is emitted that can be detected. This method is sensitive to exciton
binding energies (also trions etc.) and can also detect very low concentration of defect
atoms.
An extension of this experiment can be used to proof single photon emission [36]. For
this the emitted light is analyzed behind a beam splitter with two photodetectors
ensuring that there is only one single photon emission within a certain very short delay.

2.6.3 Angle-resolved photoemission spectroscopy

Another widely used technique that enables us to directly measure the band structure
is the angle-resolved photoemission spectroscopy (ARPES). Here high energy photons
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(35− 100 eV) are used to extract electrons from the material. These electrons are then
measured with energy and angular resolution [37]. This allows for the determination
of all occupied energy levels within the full Brillouin zone including the according
momentum information. MoS2 has already been measured in high quality [38].
The unfolded band structures show what would be expected in an ARPES measurement
for a defect systems.
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In the calculation of a pristine lattice one chooses the smallest possible unit cell,
reflecting the symmetry of the pristine lattice. In reciprocal space the energy values
and wave functions are calculated in the whole Brillouin zone but then a path along a
few of the high symmetry points is chosen, and the energy values are only plotted along
this path — this is the well known band structure. There is no useful representations
of the full Brillouin zone including the relevant energy levels at each point in reciprocal
space, unless one restricts the plot to a certain energy, for example the Fermi energy.
For most materials the minima and maxima do appear at, or close to, high symmetry
points. So it is sufficient to analyze the band structure instead of the full Brillouin
zone.
To calculate a single defect one has to build a supercell made up of multiple pristine
unit cells. The defect atom is put in one of the primitive cells, but is embedded in
a pristine surrounding. If the aim is to calculate a single defect the supercell has
to be chosen large enough so that its periodic images, due to the periodic boundary
conditions, don’t interact. The reciprocal cell of such a supercell is much smaller than
the original primitive reciprocal cell. Consequently, also the high symmetry points and
path are different from the primitive reciprocal cell. This implies that for a system
without any defect the calculated supercell band structure changes depending on the
supercell size, even though the same pristine ”physical” system is calculated. In an
experimental context a constructed supercell is not visible as a supercell — rather it is
shown as the primitive system (and in the case of a defect with a small perturbation).
Instead of calculating a new system (the supercell system), one would like to relate
the results back to the primitive reciprocal cell. This unfolding to the primitive cell is
done through the technique that is presented in the following.
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3.1 Theory for unfolding the band structure
Relating the band structure of the supercell to the band structure of the primitive cell
consists of two steps. First the band structure of the supercell has to be calculated,
not along the high symmetry path in the reciprocal supercell, the reciprocal cell of the
supercell, but along the band structure path of the primitive unit cell. This path can
cross multiple of Brillouin zones of the reciprocal supercell (depending on the size of
the supercell). At each k-point of this path some kind of weight has to be found to

Figure 3.1: Schematic drawing of a quadratic dispersion calculated in a two unit cell
large supercell (1D case) in comparison to the same band structure path
in the primitive reciprocal cell. An example for possible unfolding weights
(spectral weights) is shown.

differentiate between the energy levels that are also visible in the band structure of the
primitive cell and energy levels that exist due to the supercell construction. In Fig. 3.1
a schematic drawing of the expected weights for a two unit cell large supercell in 1D is
shown. The derivation for a plane wave basis follows the idea from [13].

Starting from Bloch plane waves in a unit cell of volume Ω with the according coefficients
Cn,K(G)

Ψn,K(r) = 1√
Ω
∑
G
Cn,K(G)ei(K+G)·r (3.1.1)
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the wave functions are normalized with the condition
〈
Ψn,K

∣∣∣Ψn,K
〉

= 1. Therefore the
coefficients fulfill the condition:

∑
G
Cn,K(G) · C∗

n,K(G) = 1 (3.1.2)

Figure 3.2: Schematic drawing of a 2×2 supercell in reciprocal space (red) and the
corresponding primitive reciprocal cell (blue). A k point and its periodic
images belonging to the primitive unit cell (g1, g2) are marked (crosses) in
comparison to the same K point of the reciprocal supercell (G1, G2) with
the according periodic images (circles).

When calculating a supercell it is possible to find the k points of the primitive unit
cell that correspond to one K point of the supercell with the following condition:

k = K +m1G1 +m2G2 +m3G3 (3.1.3)
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with mi = {0, 1, ..., ni − 1} and ni being the size of the supercell (in multiples of the
primitive unit cell) along the i’s direction. For each set of k + {g} there is a subset of
K + {G} that fulfills k + g = K + G. This subset of G vectors can be used to calculate
an individual weight between 0 and 1 for each state at K. The subgroup of these G
vectors fulfilling the condition is called G̃. Here the selected K and the selected group
of G̃ are both dependent on the k, so strictly speaking one would have to write K(k)
and G̃(k). The sum of plane wave coefficients (wn(k)) has a value between 0 and 1,
since it is restricted to a subset G̃ of G vectors. Without this restriction, so summing
over the full set of G vectors, it would be 1.

wn(k) =
∑
G̃

|Cn,K(G̃)|2 (3.1.4)

In the FLAPW method this is a little different. Here the LAPW basis functions are
given by

Ψn,K(r) =
∑
G
Cn,K(G) · χK,G(r) (3.1.5)

with χK,G(r) being the complete set of basis functions of interstitial plane waves
and spherical harmonics. In this case the normalization condition

〈
Ψn,K

∣∣∣Ψn,K
〉

= 1
corresponds to:

1 =
∫ ∑

G
C∗

n,K(G) · χ∗
K,G(r)

 ·
∑

G′
Cn,K(G′) · χK,G′(r)

 dr (3.1.6)

1 =
∑
G

∑
G′
C∗

n,K(G) · Cn,K(G′)
∫
χ∗

K,G(r) · χK,G′(r) dr (3.1.7)

The overlap matrix of the basis functions is known and can be written as SK,G,G′

SK,G,G′ =
〈
χK,G

∣∣∣χK,G′

〉
=
∫
χ∗

K,G(r) · χK,G′(r) dr (3.1.8)

1 =
∑
G

∑
G′
C∗

n,K(G) · Cn,K(G′) · SK,G,G′ (3.1.9)

So the “spectral weights” can be defined exactly the way they were written before.

wn(k) =
∑

G̃(k)

∑
G′
C∗

n,K(k)(G̃(k)) · Cn,K(k)(G′) · SK(k),G̃(k),G′ (3.1.10)
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Another option is to use a representation of the LAPW basis in-plane waves. Despite
the fact, that this representation has a very slow convergence, I want to show that it is
possible to apply. Starting from a representation for

χK,G(r) =
∑
Z
Dn,K,G(Z)ei(K+Z)r (3.1.11)

and replacing the LAPW basis functions

Ψn,K(r) =
∑
G
Cn,K(G) · χK,G(r) (3.1.12)

=
∑
G
Cn,K(G) ·

∑
Z
Dn,K,G(Z) · ei(K+Z)r

 (3.1.13)

=
∑
G,Z

Cn,K(G) ·Dn,K,G(Z) · ei(K+Z)r (3.1.14)

the norm becomes a little more complicated
〈
Ψn,K

∣∣∣Ψn,K
〉

= 1

〈
Ψn,K

∣∣∣Ψn,K
〉

=
∫ ∑

G,Z

∑
G′,Z′

C∗
n,K(G) ·D∗

n,K,G(Z) · e−i(K+Z)r·

Cn,K(G′) ·Dn,K,G′(Z′) · ei(K+Z′)rdr
(3.1.15)

〈
Ψn,K

∣∣∣Ψn,K
〉

=
∑

G,G′

∑
Z
C∗

n,K(G) ·D∗
n,K,G(Z) · Cn,K(G′) ·Dn,K,G′(Z). (3.1.16)

Now the “spectral weights” can be defined the same way like before again implying
that K(k) and G̃(k) are k dependent due to the selection of the subgroup of G

wn(k) =
∑

G̃,G′

∑
Z
C∗

n,K(G̃) ·D∗
n,K,G̃(Z) · Cn,K(G′) ·Dn,K,G′(Z). (3.1.17)

Given the overlap matrix in the plane wave representation:

SK,G,G′ =
〈
χK,G

∣∣∣χK,G′

〉
(3.1.18)

=
∫ ∑

Z,Z′
D∗

n,K,G(Z)e−i(K+Z)rDn,K,G′(Z)ei(K+Z)r dr (3.1.19)

=
∑
Z
D∗

n,K,G(Z)Dn,K,G′(Z) (3.1.20)
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Using this result the “spectral weight” can be rewritten, giving the same result like
before.

wn(K) =
∑

G̃,G′

C∗
n,K(G̃) · Cn,K(G′) · SK,G̃,G′ (3.1.21)

The band structure along the reciprocal path of the primitive unit cell is then calculated
with an additional ”plotting weight” for each state.
In principle the unfolding technique is not limited to the case of stretched unit cells
(see Eq. (3.1.3)). The supercell can also be rotated (and stretched) as long as the
transformation matrix between the lattice vectors contains only integer values. For the
reciprocal lattice vectors the condition (i = 1, 2, 3)

gi = n ·Gi (3.1.22)

with the transformation matrix

n =


n1,1 n1,2 n1,3

n2,1 n2,2 n2,3

n3,1 n3,2 n3,3

 . (3.1.23)

has to exist. For the selection of the subset of G, which fulfills k + g = K + G, it
is required that each entry of the matrix n has an integer value. By using a general
transformation matrix it is possible to unfold from rotated cells. This is interesting
in the case of surface state calculations. For the here investigated case of TMDs
a supercell is just a stretched primitive cell, meaning the transformation matrix is
diagonal.

3.2 Implementation
The unfolding mechanism is implemented within the Fleur code. Performing the
calculation as a post processing tool would require large files to be written out to hard
disk, since the full G dependence of the wave functions is needed.

3.2.1 Calculations within the Fleur code

The necessary routines for the unfolding mechanism are implemented in the Fleur
routine ”Fleur/kpoints/unfoldBandKPTS.f90”. The routine is executed within the
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is especially helpful for an easy calculation when using a rotated supercell because it
spares the identification of the corresponding K point in the first Brillouin zone of the
reciprocal supercell. The subset of G can then be found by using the transformation
matrix n (Eq. (3.1.22)) and checking whether n−1G gives an integer valued result in
the reciprocal lattice vector basis.
A test case showing silicon in a pristine 2×2×2 silicon supercell is shown in Fig. 3.3.
It is impressive to see that the supercell calculation would have suggested silicon as a
direct band gap semiconductor (grey and blue band structure), whereas the unfolding
correctly reveals the band gap as being indirect (only blue band structure).
The usage within the Fleur input file is well described in the online available manual
www.flapw.de/MaX-5.1/documentation/bandUnfolding/ [10]. For completeness a
copy of my description from the manual is given in the following.

Description of unfolding in the Fleur manual

This feature is controlled by a separate flag within the output section. In this section
the size of the supercell has to be specified (in multiples of the primitive unit cell). Un-
folding the band structure can only be used when the flag for a band structure calculation
(/output/@band) is set. When the Boolean flag /output/unfoldingBand/@unfoldBand
is set to T, two band structures are calculated. The band structure of the provided
cell (supercell) and a band structure for the primitive cell, meaning the unfolded
band structure, is written out. Fleur then creates additional output files (band_sc.1,
band_sc.2 and band_sc.gp) with the same usage as described for the normal band
structure calculation. The gnuplot file can be used directly to plot the unfolded band
structure. Additionally, the information is also written to the banddos.hdf file. There
it can be used for other plotting tools. This allows for additional analysis, for example
the combination of band unfolding and band character weight is then possible to plot.
The calculation can only run with a number of k-points for the band structure that is
a multiple of the number of MPI threads. This is checked at the beginning of the cal-
culation, if the associated error message is displayed, please adapt your parallelization
or number of k-points accordingly.
It follows an example for a 4× 4× 4 diamond supercell with a single A-nitrogen-center
defect. The band unfolding specification in the input file for such a calculation is:

<unfoldingBand unfoldBand="T" supercellX="4" supercellY="4" supercellZ
="4"/>
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Fig. 3.4 shows the supercell band structure along the high symmetry path of the
primitive unit cell with the obtained unfolding weights. The visualization of the
weights makes the unfolded band structure clearly identifiable while the supercell band
structure is very faint. In addition to this visualization the two defect states due
to the A-nitrogen-center are highlighted in the band gap (yellow). Additionally, the
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Figure 3.4: Unfolded diamond band structure with A-nitrogen-center defect (blue).
Additionally, the defect states within the band gap are highlighted. This
plot is done using the developed graphical MATLAB tool.

ability to use a rotated supercell is available. This can be useful for surfaces. The full
transformation matrix between the primitive cell and the supercell can be given below
the unfolding input (example: hexagonal lattice (MoS2) scaled by

√
3 and twisted —

the resulting band structure is shown in Fig. 3.42). It has to consist of integer values
for the unfolding to work. Should one use the entries supercell... in addition to the
full matrix, then both are combined.

<unfoldingBand unfoldBand="T" supercellX="1" supercellY="1"
supercellZ="1">

<transMat>
<row-1>-1 2 0</row-1>
<row-2> 2 -1 0</row-2>
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<row-3> 0 0 1</row-3>
</transMat>

</unfoldingBand>

It is important to note that the k-point path is not adapted automatically to the
supercell when using the full transformation matrix. This means the path has to be
given in terms of the supercell coordinates.
In the case of using the entries supercellX, supercellY, and supercellZ it is not
necessary to adapt the k-point path to the supercell, rather the path of the primitive
cell can be given as an input. If the supercell has the same ratio of basis vectors as the
primitive cell the path is found automatically by the input generator.
The unfolding method is also of high interest for the calculation of film systems and
surface states. In this case the unfolding is either performed purely in the z-direction
or combined with a transformation matrix to allow the setup of an efficient surface cell.
To simplify the setup the flag &expert primCellZ=6.854 / in the input generator
can be used. This flag has two different functionalities. In the case of a true film
system film=T the vacuum is set accordingly, so that the unfolding works (an integer
multiple of the primitive cell is required). For the case of a pseudo film system (3D
periodic system with additional vacuum) the input generator checks if the cell is a
multiple of the size of the primitive cell in z-direction. The size of the primitive cell is
to be given in atomic units.

3.2.2 Unfolding in the case of SOC (2nd variation)

The Fleur code has the ability to treat spin-orbit coupling (SOC) in 2nd variation.
This gives a significant speedup compared to the treatment in 1st variation. In this
context a treatment in 2nd variation means that SOC is handled as a variational
treatment to the before diagonalized scalar-relativistic Hamiltonian. This treatment
requires an implementation of the unfolding after the inclusion of SOC, which is also
done. Additionally, the combination of the unfolding weights with the spin weights
along a certain quantization axis has to be handled for the plotting. The usage within
the Fleur input file is explained at the end of the previous section. An example for
MoS2 in a 3 × 3 supercell is shown in Fig. 3.5, where the splitting between the two
spin channels (projection onto the z-direction) with opposite ordering at K and −K is
easy to identify.
As a side note, it can be mentioned that the basis functions in 2nd variation are
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Figure 3.5: Unfolded MoS2 band structure in a 3 × 3 supercell including spin-orbit
coupling in 2nd variation. The spin-valley locking property is clearly visible.

the wave functions calculated in 1st variation. These are then used to calculate the
unfolding weights.

Unfolding with SOC in the Fleur manual

It is also possible to use the unfolding method for the case of spin-orbit coupling in 2nd
variation (l_soc="T"). In this case a second variation eigenvalue problem is solved and
the resulting wave functions are used. The switch useOlap allows us to control whether
the overlap matrix for the basis functions is used or not. In the case of unfolding for
the second variation wave functions this switch has to be set to false (useOlap="F").

<unfoldingBand unfoldBand="T" supercellX="4" supercellY="4" supercellZ
="4" useOlap="F"/>

3.2.3 Visualization

A GUI (graphical user interface) tool based on MATLAB has been designed to autom-
atize the plotting of the banddos.hdf file. Band structures are vastly used to show the
properties of a material, plotting them is a very repetitive task in some sense and for
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Figure 3.6: Screenshot of the GUI for visualization of unfolded band structures. A
plotting process of MoS2 with a P defect is shown. In the upper area a plot
of the atom groups helps to select a projection onto one.

this Fleur already creates an automatized gnuplot script. But it becomes much more
insightful to combine this information with the projection onto a certain atomic orbital
or a certain orbital character or in the case of SOC with the projected spin weight.
Combining a band structure with the information on the atomic orbital allows us to
connect a certain state with its position in real space (if it is localized), for example in
the case of a MoS2 defect system the real space origin of the defect state. Combinations
with the orbital character allow for an understanding of the states involved and are
crucial to construct Wannier orbitals. In the case of a supercell this has to be combined
with the calculated unfolding weight.
This is easily possible with the developed GUI, as including additional information
in the band structure is just one click. Additionally, it is possible to export the plot
as a publishable PDF and also as a raw text file that can be used for other plotting
tools. It also allows us to combine the unfolding weights from Fleur with energy values
from SPEX. A detailed description with directions to the download can be found in
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the Appendix (Appx. A).
The major advantage of such a GUI is that trying out different projections or combi-
nations is very fast and easy. So gaining an intuitive understanding of the system is
possible.

3.3 Features of unfolded band structure
In this section different features of unfolded band structures are discussed. The coupling
between two bands, avoided crossings and defect levels are well visible in the band
structure of MoSe2+P, shown as an example in Fig. 3.7. The comparison to the pristine

Figure 3.7: Unfolded band structure of 3×3×1 MoSe2+P (right) in comparison to
the pristine MoSe2 (left). Spin up is plotted in blue and spin down in
red. Wherever a defect level (from the phosphorus atom) crosses a state of
MoSe2, the Hamiltonian can have interaction terms and therefore an avoided
crossing may appear (hybridization). An additional band is visible crossing
the Fermi energy. The same state is observed in the density of states at
the phosphorus atom. This plot is done for demonstrational purpose only.
The band structure for the relaxed system is found in Sec. 3.5.6.

structure demonstrates how the defect introduces a perturbation to the whole system.
Unfolding the band structure allows the results of a supercell calculation to be related
to the results of the primitive unit cell of the pristine material. This means that the
defect can actually be seen in the band structure as a small perturbation to the pristine
system.
In the following the coupling between two bands, which is responsible for the avoided
crossings, will be analyzed. Also, the relevance of the supercell size for calculations
involving defects will be discussed.
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3.3.1 Coupling between two bands

Depending on the energy difference and the symmetry two bands can couple to each
other. The aim is to set up a model to analyze and visualize this behaviour. The model
is based on the following plot (MATLAB). It recreates the situation of two interacting
states.

clear;
close all;
k = linspace(-pi,pi,300);
E=0;
t=0;
figure(10)
hold on
for i=1:5

E=(i-2)*2;
for j=0:4

t=j*0.3;
lambda_1=(k.^2+E)./2+sqrt((k.^2-E).^2./4+t^2);
lambda_2=(k.^2+E)./2-sqrt((k.^2-E).^2./4+t^2);
w=sqrt(t^2./(t^2+(k.^2-lambda_2).^2));
w_host=sqrt(t^2./(t^2+(k.^2-lambda_1).^2));
subplot(5,5,5*(i-1)+1+j);
hold on
ylim([-5 10])
scatter(k,lambda_1,2*w_host.^4+0.0001)
scatter(k,lambda_2,2*w.^4+0.0001)
hold off
xticks([-pi 0 pi])
xticklabels({'-\pi','0','\pi'})

end
end
hold off

The model is constructed of 2 bands. One band has a quadratic dispersion (similar to
a delocalized host band). The other resembles a defect band without any dispersion
(localized) at energy ε. The two bands are interacting with the parameter t. This
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Figure 3.8: 2 band model: The model resembles the situation of a defect band close to
a host material band. From left to right the interaction strength increases.
From top to bottom the distance between the two bands is decreased.
The line width corresponds to the amount of ”host” band (”defect” band)
character, except for the first column.
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interaction causes them to avoid one another. The Hamiltonian for this system is:
k2 t

t ε

x
y

 = λ

x
y

 (3.3.1)

The solution to this eigenvalue problem with eigenvectors v1,2 =
x1,2

y1,2

 and eigenvalues

λ1,2 is found by diagonalization.

λ1,2 = k2 + ε

2 ±
√

(k2 − ε)2

4 + t2 (3.3.2)

v1 =
 1
−k2−λ1

t

 and v2 =
 1
−k2−λ2

t

 (3.3.3)

The corresponding weights that attribute the amount of ”host” band character (and
the amount of ”defect” band character) for each eigenvector is corresponding to its
normalization prefactor (reciprocal length):

w1 =

√√√√ t2

t2 + (k2 − λ1)2 (3.3.4)

w2 =

√√√√ t2

t2 + (k2 − λ2)2 (3.3.5)

These ”energy eigenvalues” are plotted together with the corresponding weights in the
Fig. 3.8. It can be seen how the influence between the two bands increases on one
another with a growing interaction constant.
Now, when analyzing unfolded band structures it is important to keep this interpretation
in mind because the thickness could be interpreted as a electron density or a probability
to find an electron at a certain momentum and energy. Both is not wrong in the
context of a supercell but cannot be interpreted directly from the thickness. A high
unfolding weight (thick line in the band structure plot) only implies that this certain
state has a symmetry that corresponds to the one of the primitive cell. This can also
be fulfilled by an extended defect state. The number of electrons in a certain state
can only be understood from the original (supercell) band structure (not unfolded) -
also in the unfolded one it is possible to identify the number of electrons, if a state is
known to be non-degenerate (for example a certain defect state).
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3.3.2 Relevance of the supercell size (MoS2+Cr)

If the aim is to simulate a single defect the supercell size has to be chosen large
enough. Depending on the type of defect a different size can be required to suppress
the interaction between periodic images of the defect atom (due to the 3D periodic
boundary condition). For instance, in the following example of a substitutional atom in
the metal layer a 5×5 supercell is needed instead of the 3×3 one, which is used for the
phosphorous defect. This is visible in Fig. 3.9 where the defect state has a well visible
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(a) MoS2+Cr using a 3×3×1 supercell.
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(b) MoS2+Cr using a 5×5×1 supercell

Figure 3.9: Comparison of the two different supercell sizes demonstrates that a 5×5×1
supercell is necessary for the defect to have very little dispersion, as one
would expect for a single defect . The smaller supercell size shows a system
where the concentration of defect atoms is high enough for them to interact.

dispersion for the case of a 3×3×1 supercell (Fig. 3.9a), which implies an interaction
between the periodic images of the chromium atom. For the larger 5×5×1 supercell
the defect state has barely any dispersion making it appear like a localized atomic
state — spread out in reciprocal space and therefore localized in real space. Thus, the
larger 5×5×1 supercell is necessary in order to calculate an isolated chromium defect.
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3.4 Band structures of monolayers with isoelectronic
substitutional atoms

There are two approaches for determining the crystal structure when performing
calculations in computational physics. Either one uses an experimentally given structure
and position of the atoms or one calculates the positions of the atoms by minimizing
the force between them (sometimes under certain constraints).
But also the experimental structure can depend on many factors like sample preparation,
temperature, impurities and the substrate. These can introduce strain (locally or
globally), accidentally changing the properties of the material. On the other hand,
strain can also be used on purpose as a tool to tailor the properties of a material.
In the following the interplay between the atomic structure and resulting electronic
properties will be investigated. The results are then used to explain the influence of
isoelectronic substitutional atoms in TMD monolayers.

3.4.1 Interplay of structure and electronic properties for the
pristine material

The pristine TMD monolayer is for computational purposes defined by 4 main quantities:
The in-plane lattice constant (a), the out-of-plane lattice constant (c), the vacuum
in the cell, and the z-parameter. The in-plane lattice constant is well known by
experimental crystallographic methods (the lattice constant without strain). The
vacuum included in the supercell is rather a computational parameter and should be
chosen so that periodic images of the layer do not interact. The out-of-plane lattice
constant gives, in combination with the z-parameter, the position of the chalcogen
atoms with respect to the metal layer. To be precise, it defines the distance between
the metal and the chalcogen layer. The atom positions in the hexagonal unit cell are
given by (this depends on the basis-vectors (a and c)):

Mo : (1/3, 2/3, 0)

S : (2/3, 1/3,±z)

In the following the influence of the lattice constant and the z-parameter on the band
structure will be analyzed. Therefore, the structure parameter z is artificially set to a
value which results in a position that does not minimize the forces. Thus, it creates a
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Figure 3.10: Influence of the structure parameter (z) on the band gap at K and Q for
a pristine MoS2 monolayer.

structure that is not relaxed. The resulting band gap for MoS2 at K and the indirect
band gap between K and Q (midpoint between K and Γ) are shown in Fig. 3.10. For
a very compressed system the valence band maximum shifts from the K point to the Γ
point, making it an indirect band gap. Here, the focus is on a small compression and
the band gap at the K point and at the Q point. A direct connection between the size
of the band gap and the z-parameter is obvious in Fig. 3.10. For a compressed layer (in
z-direction) (small z) MoS2 has a direct band gap, whereas for a stretched layer (large
z) the band gap becomes indirect. The relaxed position (PBE) for the sulfur layer
is at z = 0.128. The relation between the size of the band gap and the z-parameter
is nearly linear. This calculation highlights the importance of finding the relaxed
position of the chalcogen layer before calculating any electronic properties because
these are strongly dependent on the position of the atoms. Changing the z-parameter
is somewhat artificial and experimentally not possible to do, but introducing strain
into the layer by stretching or compressing along the in-plane direction is possible (for
example by bending the substrate [39]). This will also lead to a repositioning of the
chalcogen layers. If the layer is stretched it leaves more room for the chalcogen atoms,
allowing them to move closer. The opposite is true for compression. The relaxed
position (residual force 5 · 10−4 eV/Å) can be expressed in terms of a corresponding
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(a) band gap at K and Q (b) structure parameter (z)

Figure 3.11: Effect of strain onto the lattice of MoS2. Negative values correspond to
compression. Positive values mean tensile stress. The band gap change
is shown as well as the relaxed position of the sulfur layer. The relaxed
position can be expressed in terms of the z-parameter.

z-parameter (Fig. 3.11b). The band gap change (Fig. 3.11a) is stronger than compared
to just changing the z-parameter, but shows exactly the same behaviour.
This investigation implies that for the calulcation of defect atoms the relaxation of the
atomic positions is crucial. Especially for defect atoms from the same group of the
periodic table this is important, as the electronic configuration is similar (compared to
the host atom) and only the size of the defect atom is significantly different.

3.4.2 MoS2+Se

Motivated by an experimental observation done by Minh Bui and Beata Kardynal,
different concentrations of selenium implantation are investigated. They observed
that at low temperature and for high concentrations of selenium implantation the
photoluminescence is quenched [40]. A possible explanation could be that the band
gap becomes indirect for high selenium concentrations. The fact that this behaviour of
the photoluminescence is only visible at low temperature suggests that the difference
between the fundamental indirect band gap and the direct band gap cannot be large
compared with the thermal energy at room temperature. Otherwise, the photolumines-
cence would also be quenched at higher temperature at the same concentration — this
is not observed. In the following, different concentrations of selenium in a 3×3 supercell
of MoS2 will be studied. The top chalcogen layer contains 9 atoms, all compounds
with zero to four sulfur atoms replaced by selenium atoms are tested as well as the
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( a ) tilt e d vi e w
( b ) si d e vi e w

Fi g u r e 3. 1 2: At o mi c st r u ct u r e of M o S 2 wit h i m pl a nt e d s el e ni u m s h o wi n g t h e r el a x e d
p o siti o n of t h e d ef e ct at o m, s hift e d o ut of t h e m et al l a y e r. T h e e x a ct
at o mi c p o siti o n s c a n b e f o u n d i n t h e a p p e n di x ( S e c. C. 3 ).
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Fi g u r e 3. 1 3: C o m p a ri s o n of t h e p ri sti n e m at e ri al wit h a l o w c o n c e nt r ati o n s of s el e ni u m
i m pl a nt ati o n i n M o S2 i n t h e t o p l a y e r of a 3× 3 × 1 s u p e r c ell.

J a n us c o m p o u n d i n w hi c h all s ulf ur at o ms (t o p l a y er) ar e r e pl a c e d b y s el e ni u m.
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Fi g u r e 3. 1 4: C o m p a ri s o n of t w o di fi e r e nt l o w c o n c e nt r ati o n s of s el e ni u m i m pl a nt ati o n
i n M o S2 i n t h e t o p l a y e r of a 3× 3 × 1 s u p e r c ell.

B ef or e b ei n g a bl e t o c al c ul at e t h e b a n d str u ct ur e, o n e h as t o c ar ef ull y r el a x t h e

at o m p ositi o ns. T his is v er y i m p ort a nt, si n c e t h e dist a n c e a n d a n gl e b et w e e n t h e m et al

l a y er a n d t h e c h al c o g e n l a y er si g ni fl c a ntl y d et er mi n e w h et h er t h e b a n d g a p is dir e ct or

i n dir e ct b y alt eri n g t h e dis p ersi o n of t h e c o n d u cti o n b a n d ( als o p artl y of t h e v al e n c e

b a n d). D uri n g t h e s p ati al r el a x ati o n, m ostl y t h e s el e ni u m at o m m o v es o ut of t h e pl a n e

w hi c h is n ot s ur prisi n g as it is l ar g er t h a n t h e s ulf ur at o m. T h e ot h er at o ms i n t h e

u nit c ell o nl y c h a n g e t h eir p ositi o n sli g htl y. B y c o m p ari n g Fi g. 3. 1 3 a n d Fi g. 3. 1 4

t h e pr e di ct e d tr a nsiti o n b et w e e n a dir e ct b a n d g a p a n d a n i n dir e ct b a n d g a p c a n b e

o bs er v e d. As t h e c o n c e ntr ati o n i n cr e as es ( Fi g. 3. 1 5 ) t h e c o n d u cti o n b a n d mi ni m u m

at t h e K p oi nt i n cr e as es i n e n er g y a n d t h e c o n d u cti o n b a n d mi ni m u m at t h e Q p oi nt

d e cr e as es. T h e w h ol e tr a nsiti o n is s u m m ari z e d i n Fi g. 3. 1 6 . All c al c ul ati o ns ar e c arri e d

o ut wit h e x a ctl y t h e s a m e p ar a m et ers a n d wit h o ut S O C.
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Fi g u r e 3. 1 5: C o m p a ri s o n of t w o di fi e r e nt hi g h c o n c e nt r ati o n s of s el e ni u m i m pl a nt ati o n
i n M o S2 i n t h e t o p l a y e r of a 3× 3 × 1 s u p e r c ell.

I n S e c. 3. 4. 1 t h e i n fl u e n c e of t h e str u ct ur e p ar a m et er z o n t h e b a n d g a p is st u di e d.

T h e s el e ni u m p ositi o n b ei n g sli g htl y o ut w ar d of t h e s ulf ur pl a n e is c orr es p o n di n g t o a

l ar g er z p ar a m et er. T h er ef or e, Fi g. 3. 1 0 c o n n e cts t h e ori gi n of t h e b a n d g a p c h a n g e

o bs er v e d f or a n i n cr e asi n g c o n c e ntr ati o ns of s el e ni u m ( Fi g. 3. 1 6 ) wit h t h e s p ati al

p ositi o n of t h e s el e ni u m at o m.

T o a n al y z e t h e p ossi bilit y f or p h ot o n e missi o n f urt h er, t h e i m a gi n ar y p art of

t h e di el e ctri c f u n cti o n, s h o wi n g t h e p ossi bl e tr a nsiti o ns i n t h e m at eri al, is pl ott e d f or

t h e di fi er e nt c o n c e ntr ati o ns. W hil e c al c ul ati n g t h e di el e ctri c f u n cti o n ( b as e d o n t h e

p ol ari z ati o n f u n cti o n) wit hi n t h e S P E X c o d e, it is i m p ort a nt t o us e a fi n e e n o u g h

e n er g y m es h f or t h e fr e q u e n c y i nt e gr ati o n t o d e pi ct t h e s m all e n er g y c h a n g es b et w e e n

t h e di ff er e nt b a n d g a ps. I n t h e c as e s h o w n h er e, a s m all b a n d g a p c h a n g e is of hi g h

i nt er est, t h er ef or e di fi er e nt m es h es f or t h e fr e q u e n c y i nt e gr ati o n w er e t est e d. T h e

c o n v er g e n c e b e h a vi or is s h o w n i n Fi g. 3. 1 7 . It t ur ns o ut t h at a s etti n g of ” HI L B E R T
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Figure 3.16: Overview of the band gap size for different concentrations of selenium in
MoS2. The concentration is given with respect to the amount of sulfur
atoms in the pristine material.
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(a) Convergence behavior for the dielectric func-
tion (MoS2) with increasing energy mesh
(Hilbert) density (illustrated on the right),
shown for one sulfur atom of the top layer
being replaced by selenium (4×4×1 k-point
grid).

(b) Illustration of the Hilbert mesh points used in
the calculations of the dielectric function on
the left.

Figure 3.17: Influence of the Hilbert energy mesh on the imaginary part of the dielectric
function. The label ”Hilbert” refers to the SPEX input file [17], where
the first number defines the amount of mesh points up to 5 Htr and the
second number the exponential growth of the distance between the mesh
points.

400 30” is sufficient to clearly distinguish the different excitations. The first number
”400” refers to the number of mesh points up to 5 Htr and the second number ”30”
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Figure 3.18: Imaginary part of the dielectric function (MoS2) for different selenium
concentrations on a 8×8×1 k-point grid in reciprocal space.

to the exponential growth of the distance between the mesh points up to 5 Htr. The
resulting dielectric functions are shown in Fig. 3.18. The change of the band gap,
which corresponds to the onset of the spectrum, is clearly visible for the different
concentrations of selenium.

3.4.3 MoSe2+S

The investigation in Sec. 3.4.2 shows that MoS2+Se is not useful as a potential single
photon emitter, because the band gap at K is increased by the dopend rather than
reduced, as it is needed for a localized photon emission. Consequently, the open question
is if the opposite change could be achieved, meaning a decrease of the direct band gap.
If implantation with a larger atom (selenium replacing sulfur) forces the implanted
atom out of the layer, making the material an indirect band gap semiconductor, then
implantation with a smaller atom (sulfur instead of selenium) maybe has the opposite
effect. This idea is supported by the observations made for the effect of strain on the
pristine material (Fig. 3.10 and Fig. 3.11a).
In a similar setup as in Sec. 3.4.2 MoSe2 is implanted with different concentrations
of sulfur. Performing the spatial relaxation immediately shows a large force on the
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sulfur atom pushing it into the layer. Fig. 3.19 shows the final relaxed position (0.17 Å

(a) tilted view
(b) side view

Figure 3.19: Atomic structure of MoSe2 with implanted sulfur showing the relaxed
position of the defect, shifted towards the metal layer. The exact atomic
positions can be found in the appendix (Sec. C.3).

into the layer) for one out of nine selenium atoms replaced by a sulfur atom. Fig. 3.20
shows the band structure of MoSe2 with one sulfur atom in the chalcogen layer after
relaxation. The direct band gap decreases by about 20 meV compared to the pristine
system. The change is mainly due to the conduction band shift. For the case of three
sulfur atoms replaced in the chalcogen layer the shift of each of the atoms is a little
smaller (0.003 Å less than in the case of one sulfur) but the decrease of the band gap
is more than doubled with the increased concentration (43.5 meV) (Fig. 3.21). The
indirect band gap (between Q point and K point) is in both cases increased. For a
higher concentration also more distortion of the band structure is visible. Additional
bands with low intensity (low unfolding weight) appear both in the conduction bands
and in the valence bands. In photoluminescence experiments it should be possible to
measure the decrease of the band gap. Now the question is, if this type of implantation
can be used for single photon emission. Since this type of implantation rather changes
the overall band structure than introducing a defect state (like for phosphorus), it
seems that the defect state is very spread out in real space. A small dispersion of a
band in reciprocal space (very flat band) is connected to a localization of the electron
wave functions in real space and vice versa. Nevertheless, having a cluster of this
”alloy” could be assumed to limit the effect of a reduced band gap to a confined area
and trap an exciton, given the size of the area is limited to the size of an exciton in
this material.
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Figure 3.20: Unfolded band structure of a 3×3 supercell MoSe2 with substitutional
implantation of one sulfur atom in the chalcogen layer (5.5 % sulfur
considering both chalcogen layers). The pristine band structure of MoSe2
is shown in turquoise for comparison. The calculation is done without
SOC. The direct band gap at K is reduced by 20 meV due to the sulfur.
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Figure 3.21: Unfolded band structure of a 3×3 supercell MoSe2 with substitutional
implantation of three sulfur atoms in the chalcogen layer (16.7 % sulfur
considering both chalcogen layers). The pristine band structure of MoSe2
is shown in turquoise for comparison. The calculation is done without
SOC. The direct band gap at K is reduced by 43.5 meV due to the sulfur.
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3.4.4 WSe2+S

For WSe2+S a similar effect should be observable as for MoSe2+S, since the structural
and electronic properties are similar. The largest difference is the stronger spin orbit
coupling in tungsten compared to molybdenum. Therefore, the following calculations
treat the full SOC. The unfolding of the wave functions from the supercell to the
primitive cell is here performed using the wave function found in 2nd variation treatment
for SOC (Sec. 3.2.2).
Here one full band structure of the pristine WSe2 is included to show the strong
effect of SOC in the conduction band (Fig. 3.22). The spin-valley locking property is
well visible. The spin splitting of the valence band at +K (and −K) point is 0.5 eV.
Replacing one out of nine atoms in the chalcogen layer delivers the result shown in
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Figure 3.22: Pristine monolayer WSe2 showing the effect of SOC when comparing the
K and −K valley. The layers are separated by a vacuum of 12.98 Å. The
two spins are shown in red and blue.

Fig. 3.23. The structural relaxation causes the sulfur atom to be moved by 0.166 Å
into the layer. This is done before introducing SOC in 2nd variation. The exact atomic
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Figure 3.23: Unfolded band structure of a 3×3 supercell WSe2 with substitutional
implantation of one sulfur atom in the chalcogen layer (5.5 % sulfur). The
pristine band structure of WSe2 is shown in turquoise for comparison.
The calculation is done with SOC.

positions can be found in the appendix (Sec. C.3). The shift of the conduction band
and the resulting closing of the direct band gap is 15 meV. Here, the spin ordering in
the valence and conduction band are opposite, as usual for any TMD showing with
spin-valley locking. Therefore, the smallest direct band gap includes a spin-flip. For a
higher concentration of three out of the nine selenium atoms in the top layer being
replaced by sulfur, the changes due to the increased concentration are comparable to
MoSe2 (Fig. 3.24). At the same time as the conduction band is reduced at the K point,
it increases in energy at the Q point.
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Figure 3.24: Unfolded band structure of a 3×3 supercell WSe2 with substitutional
implantation of three sulfur atoms in the chalcogen layer (16.7 % sulfur).
The pristine band structure of WSe2 is shown in turquoise for comparison.
The calculation is done with SOC.

3.5 Band structures of monolayers with implanted
atomic defects

Since this work is part of a project together with experimental groups from the Uni-
versity of Limerick, the University of Göttingen, and the Forschungszentrum Jülich,
the aim is to apply the developed methods to a range of different host materials and
implants that are of high interest to these groups. For the conducted experiments
the defect atoms (ions) are implanted into the monolayer with ultralow energy. This
implantation process can introduce a large range of defects which are not thermody-
namically allowed, but at the same time the use of the low implantation energy limits
the number of possible implantation sites e.g. selenium will replace only sulfur in the
top layer. Here MoS2 and MoSe2 with phosphorus doping, chromium doping and a
vacancy defect will be investigated. Phosphorus is a prototypical dopant from group
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V with one valence electron less than selenium or sulfur. Chromium as a transition
metal has many oxidation states. It is from the same group as molybdenum and is
predicted to form a defect state. However, during the implantation process it can end
up in different position of the lattice and therefore one needs to know the effect of each
of them on the band structure. It is possible to find chromium atoms at the metal site,
at the chalcogen site, or at the chalcogen site with an additional chalcogen atom on
top. Doping with phosphorus or chromium is substantially different compared to the
exchanging of sulfur and selenium (isoelectronic) as they introduce donor or acceptor
levels in the band structure rather than a change of the overall dispersion.

3.5.1 MoS2+P

(a) tilted view (b) top view

Figure 3.25: Atomic structure of MoS2 with phosphorus showing the relaxed position
of the defect, slightly shifted towards the metal layer in comparison to the
other chalcogen atoms. The exact atomic positions can be found in the
appendix (Sec. C.3). Plotted using XCrySDen [41].

Replacing one chalcogen atom by a phosphorus atom is likely to leave an open
bond due to the missing electron and therefore introduce a defect state.
The calculation is performed in a 3×3 supercell. During the force relaxation process the
phosphorus atom does not move by much. The relaxation is first done for the pristine
material, then the defect is introduced for another relaxation within the supercell. The
final positions after all forces are converged up to a maximum of 5 · 10−2 eV/Å can be
found in the appendix (Sec. C.3). The calculation shown here does not include SOC,
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Figure 3.26: Unfolded band structure for MoS2+P, calculated in a 3×3 supercell. The
state slightly above the Fermi level for one spin state is clearly visible.

therefore does not show the splitting at the K and -K valley.
Fig. 3.26 shows the unfolded band structure of the defect system. The most prominent
defect state is evident right at the Fermi energy. Here, the host material band structure
is clearly visible and not shifted compared to the pristine band structure, but an
additional state is visible shortly above the Fermi energy. This state is actually
spin-polarized, which seems likely, since phosphorus is a group-V element with one
missing electron compared to sulfur (group-VI) that was replaced. The additional
states introduce transitions with very low energy, or to be more precise in this case it
is even crossing the Fermi energy — making the material metallic. Its capability to
possibly trap excitons for single photon emission is not very high, as it does not lower
the band gap directly at the K point. Overall this defect band right at the Fermi level
is a characteristic single atom defect and does not seem to interact much with the host
system, since its dispersion is very low (spread out in reciprocal space) suggesting a
high localization in real space.

3.5.2 MoS2+Cr (@ Mo)

Implantation of chromium into a molybdenum substitutional site requires higher energy
than implantation of chromium into other sites of the lattice. Therefore during the
process of implantation of chromium into the molybdenum sub-lattice, the following
configurations have to be considered: substitutional implantation at the molybdenum
site, substitutional implantation at the sulfur site, and substitutional implantation at
the sulfur site with an additional sulfur atom on top.
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(a) tilted view
(b) top view

Figure 3.27: Atomic structure of MoS2 with implanted chromium at a metal atom
showing the relaxed position of the defect and neighbouring chalcogen
atoms, slightly shifted towards the defect atom. The exact atomic positions
can be found in the appendix (Sec. C.3). Plotted using XCrySDen [41].
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Figure 3.28: Unfolded band structure for MoS2+Cr, calculated in a 5×5 supercell. The
defect state within the band gap is clearly visible. The calculation includes
two spins, which are degenerate due to the lack of SOC.

First the substitutional implantation of molybdenum will be investigated, since it
seems most intuitive to replace one metal atom with another. It should be mentioned
that implantation into the metal layer by low energy ions is in general more difficult
than implantation into the chalcogen layer, since the probability of creating a vacancy
in the chalcogen layer is higher than for implantation into the latter.
The spatial relaxation of the structure with chromium replacing one molybdenum atom
in a 5×5 supercell is only causing a marginal shift within the layer of the sulfur atoms
towards the chromium defect (Fig. 3.27). Also the molybdenum sub-lattice does not
show a significant movement. It turns out (see Sec. 3.3.2) that a large supercell of 5×5
primitive unit cells is needed to decrease the interaction between periodic images of the
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defect. The Fermi level remains unchanged in the following band structure calculation
(Fig. 3.28). The well visible defect states (spin degenerate) appear right below the
conduction band minimum (about 300 meV and 110 meV). This means that chromium
introduces acceptor-like states, as they can be unoccupied or capture one electron.
The lower defect state has a high unfolding weight around the K point. This means it
reflects the symmetry of the host lattice quite well, which could be due to coupling to
neighbouring states of the host lattice (see Sec. 3.3.1). This state could be well suited
for single photon emission as the spin-valley locking property of the host material is not
influenced by any defect state and should therefore be preserved (Fig. 3.28 is without
SOC). The energy gap between the host state and the defect level is suitable to bind
the electron-hole pair. Furthermore, the small dispersion of the defect states suggests
a high localization in real space.

3.5.3 MoS2+Cr (@ S)

The doping with chromium is also possible at the position of sulfur, replacing one
chalcogen atom. This type of doping introduces a high strain onto the lattice. Therefore,
a 5×5 supercell is used to allow for larger movement in the relaxation process and
minimize the interaction between periodic images of the defect. During the spatial
relaxation shown in Fig. 3.29 the chromium atom moves out of the plane by 0.427 Å.
This type of defect introduces multiple defect states within the band gap and shifts
the Fermi energy, meaning some of the states are donors. Furthermore, it introduces a
spin-splitting of the defect states. Since the calculation is done without SOC, there
is no definition of which spin corresponds to spin up or spin down, but nevertheless
the blue bands of Fig. 3.30 can only be occupied by one spin and the red bands by
the other (for most of the band structure they are on top of one another — spin
degenerate). Note that the chromium atom is slightly magnetic. None of the defect
states within the band gap seem to show a strong interaction with a host state, since
the unfolding weight is spread nearly evenly over the whole band structure path. This
is true even for the states close to the valence band and conduction band edge. For
photon emission this defect is most likely unsuitable, since the possible transitions are
significantly different for the two spins. For the one spin (blue) a possible transitions
is be between the two defect states without involving the valence band of the host
material and therefore the spin-valley locking property is lost. For the other spin the
band gap is significantly changed due to the additional donor state in the middle of the
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(a) tilted view (b) side view (c) top view

Figure 3.29: Atomic structure of MoS2 with implanted chromium at a chalcogen atom
showing the relaxed position of the defect, shifted out of the layer. The
exact atomic positions can be found in the appendix (Sec. C.3). Plotted
using XCrySDen [41].

band gap. Furthermore, a small spin splitting of the original valence band maximum
(now located at about -1 eV) is visible.
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Figure 3.30: Unfolded band structure for MoS2+Cr (@ S), calculated in a 5×5 supercell.
The defect state within the band gap is clearly visible.

3.5.4 MoS2+Cr+S

When implanting chromium into MoS2 (substitutional implantation of chromium at
the sulfur site), it is possible that the sulfur atom that has been released from the
lattice does not have enough energy to escape and binds as an adatom to the chromium
atom that replaced it in the lattice. This fills the open bond from the chromium atom,
creating a very stable defect. The configuration is shown in Fig. 3.31. The spatial
relaxation in this case only moves the chromium atom a little inwards. The overall
Fermi energy is not changed (unlike the same implantation without an additional
sulfur atom). Also, there is no spin-splitting. The state within the band gap is a deep
defect level, which is ”atomic-like” without any dispersion or concentration of unfolding
weights. The other defect states around 2 eV cause an avoided crossing close to the
K point with a high concentration of the unfolding weight. Here, the defect state
seems to couple with the host state, just like it can be observed in the 2-band model
(Sec. 3.3.1). This type of defect could be a promising candidate for photon emission if
it had only one state and if the state right in the middle of the band gap wouldn’t exist.
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(a) side view (b) top view

Figure 3.31: Atomic structure (relaxed) of MoS2 with chromium implantation at the
chalcogen atom plus an additional chalcogen atom on top. The exact
atomic positions can be found in the appendix (Sec. C.3). Plotted using
XCrySDen [41].
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Figure 3.32: Unfolded band structure for MoS2+Cr+S, calculated in a 5×5 supercell.
The defect state within the band gap is clearly visible. The calculation
includes two spins, which are degenerate due to the lack of SOC.

Possible transitions will have a completely different energy than the ones of pristine
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MoS2. This is only true if the transition is allowed (transition element not zero). This
is investigated later in this work (Sec. 5.3). The results will show that this is the case.

3.5.5 MoS2+vacancy

(a) side view (b) top view

Figure 3.33: Atomic structure (relaxed) of MoS2 with a missing chalcogen atom. The
exact atomic positions can be found in the appendix (Sec. C.3). Plotted
using XCrySDen [41].

During the implantation process it is also possible to create of vacancies in the
chalcogen layer. Therefore, the investigation of such defects is important in order to
differentiate them from the others in experimental observations. Experimentally these
can be realized by implantation of a noble gas atom that will not dislodge the lattice
atom (metal sub-lattice), nor will it bind to any host atom. Probably, also implantation
with any ion can result in vacancies as a side effect. During the relaxation process the
neighbouring atoms move a little towards the vacancy, filling up a bit of the available
space. The resulting band structure seems to be quite distorted with a small shift of
the Fermi energy. Additionally in Fig. 3.34, there is a defect state in the middle of the
band gap, showing only small dispersion. Energetically this defect state is in the same
region as the defect state for MoS2+S+Cr. In other materials clusters of vacancies are
used as photon sources [42].
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Figure 3.34: Unfolded band structure for MoS2 with a vacancy in the chalcogen layer,
calculated in a 3×3 supercell. The defect state within the band gap is
clearly visible. The calculation includes two spins, which are degenerate
due to the lack of SOC.

3.5.6 MoSe2+P
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Figure 3.35: Unfolded band structure for MoSe2+P, calculated in a 3×3 supercell. The
state slightly above the Fermi level is clearly visible.
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The structure of MoSe2+P looks similar to the structure of MoS2+P, just with
a small difference in the relaxed positions. Just like for MoS2+P, the calculation is
performed in a 3×3 supercell. The phosphorus is pressed towards the metal layer by
0.18 Å in comparison to the selenium atoms. This is closer to the metal layer than
in the case of MoS2+P. The exact atomic positions can be found in the appendix
(Sec. C.3). This is not very surprising, since the selenium atoms are larger than the
sulfur atoms. The same has been observed when replacing selenium with sulfur. A
very interesting marginal difference in the band structure is the appearance of the
defect state at the Fermi energy (Fig. 3.35). At the K point this defect state seems to
actually bend away from the valence band edge, so the highest state is not the defect
state but the host state. This was much less pronounced for MoS2, but it is also visible,
just much closer in energy. It is very surprising that the resulting band structure is
not spin-polarized (both spins (blue and red) are overlaid). The starting point for the
charge distribution was chosen to be spin-polarized (the same as for MoS2), so it is
unclear how this behavior can be understood in comparison to MoS2.

3.5.7 MoSe2+Cr (@ Mo)

The configuration of MoSe2+Cr (@ Mo) is very similar to MoS2+Cr (@ Mo), here also
a 5×5 supercell is used. The exact atomic positions for the spatial relaxation can be
found in the appendix (Sec. C.3). It is interesting to note that the defect states close
to the conduction band minimum actually have the same relative distance as from
the conduction band of MoS2+Cr (@ Mo). Since MoSe2 has a smaller band gap, this
implies that the defect state also has to shift in energy. For a pure single atom state
one would rather expect that the energy level is independent of the host material. This
supports the fact that the defect state is bound with the host conduction band state,
which is to be assumed from the strong unfolding weight close to the K point (showing
that the defect state shares some of its symmetries with the host state).
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Figure 3.36: Unfolded band structure for MoSe2+Cr, calculated in a 5×5 supercell.
The defect state within the band gap is clearly visible. The calculation
includes two spins, which are degenerate due to the lack of SOC.
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3.5.8 MoSe2+Cr (@ Se)
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Figure 3.37: Unfolded band structure for MoSe2+Cr (@ Se), calculated in a 5×5
supercell. The defect states within the band gap are clearly visible. The
calculation includes 2 spins but no SOC.

The configuration is similar to the one of MoS2+Cr (@ S), but during the spatial
relaxation process chromium moved only half the distance (compared to MoS2+Cr (@
S)) out of the layer (0.26 Å). The exact atomic positions can be found in the appendix
(Sec. C.3). All observations for the band structure are equivalent to MoS2+Cr (@
S), due to the shift of the Fermi energy even the band gap is similar to MoS2+Cr
(@ S). The only difference is within the valence band, where the host states (and
the connected defect state) are closer to the Fermi energy. Here the defect states
were also shifted according to the host material even though they look very much like
independent particle bands due to their tiny dispersion and no concentration of the
unfolding weight.

3.5.9 MoSe2+Cr+Se

The atomic configuration is similar to MoS2+Cr+S (5×5 supercell), but with small
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Figure 3.38: Unfolded band structure for MoSe2+Cr+Se, calculated in a 5×5 supercell.
The defect state within the band gap is clearly visible. The calculation
includes two spins, which are degenerate due to the lack of SOC.

differences in the spatial relaxation. The exact atomic positions can be found in the
appendix (Sec. C.3). The band structure is similar, except for the smaller band gap
due to the host material. Also, the defect band in the middle of the band gap is moved
by a little — from 0.96 eV for MoS2+Cr+S to 0.88 eV for MoSe2+Cr+Se.

3.5.10 MoSe2+vacancy

Also in the case of MoSe2, it is important to calculate the effect of a vacancy defect, to
be able to differentiate it from the other type of defects in experimental observations.
Vacancies can occur at any step during the sample preparation process but most likely
during the implantation. During the relaxation process the neighbouring atoms move
a little towards the vacancy, filling up a bit of the available space. The resulting band
structure seems to be quite distorted. Additionally, there is a defect state in the middle
of the band gap, showing only small dispersion. Energetically this defect state is in
the same region as the defect state for MoSe2+Se+Cr.
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Figure 3.39: Unfolded band structure for MoSe2 with a vacancy in the chalcogen layer,
calculated in a 3×3 supercell. The defect state within the band gap is
clearly visible. The calculation includes two spins, which are degenerate
due to the lack of SOC.

3.5.11 MoSe2+Cr (interstitial)

(a) tilted view (b) top view

Figure 3.40: Atomic structure of MoSe2 with implanted chromium at an interstitial
position showing the relaxed position of the defect atom. The exact
atomic positions can be found in the appendix (Sec. C.3). Plotted using
XCrySDen [41].
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MoSe2 has a larger lattice constant than MoS2 (3.28 Å and 3.15 Å), therefore
it is more likely to have a chromium defect in the interstitial position between the
molybdenum atoms in the metal layer. This configuration is shown in Fig. 3.40 where it
is clear that the neighboring molybdenum atoms (and connected selenium atoms) drift
away from the introduced chromium defect (the exact atom positions can be found in
Sec. C.3). The final positions of the atoms turned out to be stable. The resulting band
structure (Fig. 3.40) shows a spin polarization for the defect states. The introduced
donor states shift the Fermi energy to the upper half of the host material band gap. In
order to analyze further which (optical) transition are possible the absorption function
of a range of different chromium defects, including this one, is shown in Sec. 5.3.3.
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Figure 3.41: Unfolded band structure for MoSe2 with a chromium defect atom at
an interstitial position, calculated in a 5×5 supercell. The calculation
includes two spins, but does not include SOC.
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3.6 Unfolding of the band structure for other types of
supercells and systems

The unfolding mechanism can also be applied to other types of supercells, also those
requiring the unfolding only in one or two spatial directions. Furthermore, it is even
possible to treat rotated supercells as long as the transformation matrix consists only
of integer values.

3.6.1 Surface states of simple unit cell

Simply including additional vacuum in the z-direction and calculating additional surface
states being created is a straightforward application for the unfolding algorithm. There
is only one requirement — the supercell has to be an integer multiple of the bulk
unit cell. Therefore, Fleur includes the option to ensure this by setting the height
(z-direction) of the bulk unit cell. Fleur is then calculating/checking for the requirement
of being an integer multiple itself. Unfortunately, the interesting surface states are often
constructed in a different type of crystal symmetry than the bulk unit cell. This makes
it impossible to use the unfolding, unless a special type of surface cell is constructed.

3.6.2 Rotated supercells and general surface states

For example bismuth tellurides have a rhombohedral bulk unit cell, but when con-
structing a surface cell the preferred construction is in a hexagonal unit cell. Therefore,
there is no integer valued transformation possible between the two cells. In this case a
new surface unit cell can be found that is transformable to the bulk unit cell by an
integer valued matrix that includes rotations.
This option to include the full transformation matrix is implemented. Therefore all
types of unit cells, including rotated ones, can be calculated using Fleur and the
implementation done as part of this work.

Before being able to use the unfolding, one has to construct the surface cell that is
connected with the primitive bulk cell by an integer transformation. There is published
work on this by S. Yang et al. [43] including a code to perform the construction of the
surface cell automatically. But it is also possible to come up with the special surface
cell ”by hand”.
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Here an example of twisted MoS2 is shown (Fig. 3.42). A supercell is scaled by a
factor of

√
3 in each in-plane direction and twisted by 120°. The exact coordinates of the

used supercell can be found in the appendix (Sec. C.3). The according unfolding input
is used as an example in the description of the unfolding implementation (Sec. 3.2.1).
This example demonstrates convincingly that the unfolded band structure is the same
as for a stretched unit cell (compare Fig. 3.13a).
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Figure 3.42: Unfolded band structure for twisted MoS2. The band structure without
unfolding is shown in grey. This demonstrates the possibility to obtain
the primitive unit cell band structure from the rotated unit cell.
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Phenomena in low-energy electron
energy loss spectroscopy (EELS)
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Electron energy loss spectroscopy (EELS) allows us to gain a wealth of infor-
mation on the electronic structure of the crystal. In comparison to optical methods,
transitions including momentum transfer are possible. The method was so successful
that measuring instruments were especially built for EELS. Later the measurement
procedure was established inside a transmission electron microscope (Sec. 2.6.1).

73



4.1 Introduction to EELS
An intuitive starting point for the discussion on EELS is the energy loss of an electron
when traveling through a probe. Energy is lost due to inelastic scattering processes that
can be described by the dielectric response of the material. Initially, this was derived by
P. Nozières and D. Pines [44]. It has been summarized in multiple reviews [45, 46] and
many PhD theses [47, 48]. Here, I will follow the derivation by P. Schattschneider [9].

4.1.1 Theoretical scattering cross section

The EELS experiment can be understood in a semi-classical approach, where an
incoming electron interacts with some effective field, losing energy along the trajectory.
In this approach, the relevant quantities have a simple physical interpretation. First,
the theoretical scattering cross section of EELS will be calculated. The electron beam
given by the current j(r, t) experiences a decelerating field E(r, t) created by the
electrons of the material. The loss of energy (energy dissipation) per unit volume at
point r and time t is given by [9].

L(r, t) = E(r, t)j(r, t) (4.1.1)

For an electron travelling in z direction the energy loss per unit path length is given
by the following integration with d2x⊥ being the in-plane integration, perpendicular to
the z direction.

p =
∫

d2x⊥

∫
dt L(r, t) (4.1.2)

The corresponding in-plane Fourier transform of the energy loss is dependent on z.

Lz(q⊥, ω) =
∫

d2x⊥

∫
dt L(x⊥, z, t)e−i(q⊥x⊥−ωt) (4.1.3)

In (q⊥, ω) space Eq. (4.1.1) is a convolution with z as a parameter.

Lz(q⊥, ω) = 1
(2π)3 Ez(q⊥, ω) ? jz(q⊥, ω) (4.1.4)

Now rewriting the energy loss per distance (Eq. (4.1.2)).

p = 1
(2π)3

∫
d2q⊥

∫ ∞

−∞
dωEz(−q⊥,−ω)jz(q⊥, ω) (4.1.5)
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Using the Fourier space representations of the real quantities E and j, it becomes clear
that they obey the following: Ez(−q⊥,−ω) = E∗

z(q⊥, ω) and jz(−q⊥,−ω) = jz(q⊥, ω).
Using this and exploiting the symmetry of the integral gives:

p = 1
(2π)3

∫
d2q⊥

∫ ∞

0
dω (E?

zjz + Ezj?
z) (4.1.6)

The energy loss per unit length can also be written in terms of the energy loss ~ω and
the differential scattering probability ∂3P

∂2q⊥∂ω
. Here the energy loss P is written per

momentum transfer and per frequency.

p =
∫

d2q⊥

∫ ∞

0
dω ~ω

∂3P

∂2q⊥∂ω
(4.1.7)

This leads to the final scattering probability.

∂3P

∂2q⊥∂ω
= 1

(2π)3~ω
(Ez

?jz + Ezjz
?) (4.1.8)

4.1.2 Electron energy loss

In this derivation, the electron is considered as a point charge traveling at speed v at
normal incidence, creating a plasmon in the probe. The velocity component in the
direction of this plasmon is v‖. The momentum of this plasmon is split up into qz = ω

v

(will be a result later) parallel to the incident electron and q⊥ perpendicular to the
incident electron. The electron is described by [9]1:

j̃‖(r, t) = −v‖eδ(r− vt)←→ j‖(q, ω) = −2πev‖δ (ω − qzv) (4.1.9)

with the representation in terms of q⊥, ω, z [9]:

j‖ (q⊥, z, ω) = 1
2π

∫
dqz j‖e

iqzz (4.1.10)

using the geometric relation v‖/v = qz/q = qz/
√
q2

z + q2
⊥ and integrating (

∫
dx δ(ax) =

1
a
) the current is described as [9]:

j‖ (q⊥, z, ω) = −e ω

v
√

(ω/v)2 + q2
⊥

ei ω
v

z (4.1.11)

1 With the Fourier transforms (Sec. D.1): −j‖(q, ω) =
∫

dt
∫

dr v‖eδ(r − vt)e−iqreiωt =
v‖e
∫

dt e−iqvteiωt = 1
2π 2πv‖e

∫
dt e−i(qzv−ω)t = 2πev‖δ (ω − qzv)
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The electric field is found using the Maxwell equations (cgs units).[9]

∇D(r, t) = 4πρ(r, t) (4.1.12)

The Fourier transform of both sides of the equation is performed. The charge on the right
side can be replaced similarly to the current defined before (ρ(r, t) = −eδ(r− vt)←→
ρ(q, ω) = −2πeδ (ω − qzv)):

iqD(q, ω) = −8π2eδ (ω − qzv) (4.1.13)

The dielectric function is introduced via ε(q, ω)E(q, ω) = D(q, ω).

iε(q, ω)qE(q, ω) = −8π2eδ (ω − qzv) (4.1.14)

The electric field is rotation-free, since it is created from a potential (E(r) = −∇Φ(r)).
The electric field is parallel to q (E(q) = −iqΦ(q) (Fourier transform)). To calculate
the energy lost, the component parallel to the current is of interest. Here again, the
in-plane Fourier transform is performed (z-direction is left unchanged). This is analogue
to the Fourier transform used for the current.

E‖ (q⊥, z, ω) = 1
2π

∫
dqz E‖e

iqzz = 4πe
ivq

ei ω
v

z

ε (q, ω) (4.1.15)

with q:

q2 = q2
⊥ + q2

z = q2
⊥ + (ω

v
)2 (4.1.16)

The energy loss due to the dissipation in this field, created by the response from the
material to the external field,

∫
dt
∫

d3rE(r, t)j(r, t) can then be found. Using the
result for the scattering cross section (Eq. (4.1.8)) the energy loss probability per
energy and per momentum is (q⊥ denotes the possible momentum transfers in-plane
(perpendicular to the incident electron)):

∂3P

∂2q⊥∂ω
= 4πe2

(2π)3~ω
ω

v2q2

(
1

iε (q, ω) −
1

iε∗ (q, ω)

)
(4.1.17)
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Simplification leads to the final differential scattering cross section:

∂3P

∂2q‖∂ω
= − 8πe2

(2π)3~
1

v2q2 Im 1
ε(q, ω) (4.1.18)

The energy loss derived from the differential scattering cross section is dependent on
the frequency ω (or energy ~ω). If the detector is placed at different angles from normal
incidence, one can also record EELS spectra for different in-plane wave vectors q⊥. For
a fixed q⊥, there are two ω-dependent functions that contribute to the spectrum. The
inverse macroscopic dielectric function ε−1(q, ω) and the prefactor 1

q2 = 1
q2

⊥+(ω/v)2 . The
dielectric function is responsible for the peak structure of the spectrum, whereas the
prefactor acts as a weight function. This prefactor gives low energies a higher weight
than high energies [49].
To further assess the relative importance of the two terms, it is helpful to estimate
the orders of magnitude of the different quantities. The prefactor to the momentum
dependent loss function contains the momentum as well as the speed of the electron.
The momentum can be separated into the contribution perpendicular to the electron
and in the direction of the electron. Due to the high speed of the electron, assuming
all energy loss in the direction of the electron is a very good approximation. Therefore,
this momentum component can be expressed via the energy loss and the frequency
q⊥ = ω/v. This means the prefactor does not only vary with the momentum transferred
to the plasmon (or excitation of the material) and the speed of the electron but also
with the energy lost. The significance of this dependence varies with the energy range
and momentum range studied. Commonly only the term dependent on the dielectric
function is used as the energy loss −Im ε−1(q, ω) [49]. A detailed discussion and
evaluation of the energy loss will follow in Sec. 4.4.

4.2 Dielectric layer model
Van-der-Waals bound layered materials like MoS2 can be separated into two effective
dielectric environments. An effective dielectric material inside the slab and a vacuum
area in between the slabs are combined in the full dielectric function. The areas can
be seen as separate capacitors which are combined by Kirchhoff’s law (Fig. 4.1).

4.2 Dielectric layer model 77



4.2.1 Theoretical description of the layer model

The layered structure in Fig. 4.1 can be considered as a set of capacitors. Perpendicular
to the layers it is a series of capacitors with dielectric constants of ε and εvac. In
the direction of the layers these are capacitors in parallel. Inside the material ε‖ is
considered identical to ε⊥. By Kirchhoff’s laws two capacitors in series have a total
capacitance Ctotal of:

1
Ctotal

= 1
C1

+ 1
C2

(4.2.1)

The capacitance of a parallel plate capacitor can be calculated by:

C1 = ε0ε1
A

d
(4.2.2)

assuming A� d. Here A stands for the area of the capacitor and d for the thickness.
Considering a unit cell size of L and an effective thickness of deff. This can be written as:

Figure 4.1: Representation of a TMD slab system with
effective dielectric constant ε‖,ε⊥, and εvac.
deff denotes the effective layer thickness,
which is determined in Sec. 4.2.2.

1
ε0εtotal

A
L

= 1
ε0

A
L−deff

+ 1
ε0ε

A
deff

(4.2.3)

The effective dielectric constant
is therefore:

εtotal = 1
1 + deff

L
(1

ε
− 1)

(4.2.4)

The similar consideration can be
made for the parallel case.

Ctotal = C1 + C2 (4.2.5)

Here the capacitors are placed as
shown in Fig. 4.2a with a depth of T and a cell size in parallel direction of Lx. Therefore,
d equals Lx and A is calculated by T · deff (respectively T · (L− deff)). In this case the
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total dielectric constant is given by

ε0εtotal
L · T
Lx

= ε0
(L− deff) · T

Lx

+ ε0ε
deff · T
Lx

(4.2.6)

This simplifies to:

εtotal =
(

1− deff

L

)
+ ε

deff

L
(4.2.7)

(a) Model for parallel electric field ε‖ (b) Model for perpendicular electric field ε⊥

Figure 4.2: Illustration of the fictitious capacitors in the homogeneous layer model for
the case of the dielectric constant in parallel and in perpendicular direction

Alternative derivation in a model crystal

A thorough derivation for a mixed material assuming a grid of independent dipoles
by D. E. Aspnes can be found in [50] and is analogously done in the following. A
heterogeneous dielectric medium can be modeled as a cubic lattice with points of
known polarizability α in front of a vacuum background. Each of the points produces
a dipole field of

Edip(r) = 3(p · r)r− pr2

r5 , (4.2.8)
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where p is the dipole vector. This allows us to write down the full electric field at
every point (Rn labels the lattice sites):

e(r) = E +
∑
Rn

Edip(r−Rn) (4.2.9)

p(r) =
∑
Rn

αe(0)δ(r−Rn) (4.2.10)

The local field e(0) = E +∑
Rn 6=0 Edip(Rn) is simple for full cubic symmetry, since in

that case the sum vanishes so that E = e(0) = Eloc. With a volume density of n and
the volume integral of a dipole field −4πp/3, the average macroscopic field and dipole
moment can be found.

P = nαEloc and E = Eloc

(
1− 4π

3 nα

)
(4.2.11)

Including the dielectric function D = εE = E + 4πP allows us to find the Clausius-
Mossotti expression and extend it for two different types of dielectric response.

ε− 1
ε+ 2 = 4π

3 nα = 4π
3 (naαa + nbαb) (4.2.12)

This can be reformulated using the macroscopic quantity ε rather than (the microscopic)
α so that the equation becomes (fa being the volume fraction):

ε− 1
ε+ 2 = fa

εa − 1
εa + 2 + fb

εb − 1
εb + 2 (4.2.13)

Now using a self consistent approach of an average host medium with dielectric constant
of ε rather than the vacuum, the effective medium approximation (EMA) is found.

fa
εa − ε
εa + 2ε + fb

εb − ε
εb + 2ε = 0 (4.2.14)

For a layered material this can be simplified further. Instead of using spherical dipoles
two cases can be looked at.
For a parallel field, the electric field E is uniform everywhere and by simply averaging
the dielectric displacement D = faDa + fbDb one finds:

ε = faεa + fbεb (4.2.15)
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In perpendicular direction to the layers, D is uniform and therefore averaging E leads
to E = faEa + fbEb:

1
ε

= fa
1
εa

+ fb
1
εb

(4.2.16)

This is equivalent to the case of parallel and perpendicular capacitors. These equations
are called Wiener absolute bounds. Nevertheless, this is based on macroscopic quantities,
assuming the microstructure is small (compared to the wavelength of light). For an
excitation with momentum transfer, the electric field is changing on the microscopic
scale, therefore the full microscopic treatment is needed in that case and the layer
model is only an approximation.

4.2.2 Different MoS2 layer distances within the model

By assigning an effective layer thickness, an effective material dielectric function can
be calculated for different layer distances. This quantity should then be independent
of the vacuum distance between the layers.

Calculating the effective layer thickness

Combining the two formulations for the parallel and the perpendicular oriented dielectric
function, the effective layer thickness (d) can be calculated (Eq. (4.2.7) and Eq. (4.2.4)).
In the following, ε‖ refers to the total dielectric constant parallel to the layers and
ε⊥ to the total perpendicular dielectric constant. The dielectric constant (ε) is the
dielectric function (ε(ω)) for ω = 0. Solving the two equations for ε, the effective
dielectric constant inside the material, gives:

ε = ε⊥ ·
ε‖ − 1
ε⊥ − 1 (4.2.17)

Also the effective layer thickness deff can be calculated with the same formulas.

deff = L ·
(ε⊥ − 1)(ε‖ − 1)
ε⊥(ε‖ − 2) + 1 (4.2.18)

For different vacuum distances of MoS2, these quantities have been calculated. It is
important to notice that the results only match up with the here described theory in
the case of the renormalized dielectric function. The results are summarized in Tab. 4.1
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layer distance in Å ε⊥ ε‖ ε deff

12.30 1.67898 7.42119 15.88 5.308
24.60 1.25406 4.20543 15.82 5.320
36.90 1.15631 3.13396 15.79 5.325
49.20 1.11285 2.59826 15.76 5.327
123.0 1.04220 1.63486 15.68 5.319

Table 4.1: Effective layer thickness and effective dielectric constant for MoS2 layer
distances with A-A stacking.

Effective layer dielectric function

In the following, the effective dielectric function for a monolayer of MoS2, calculated
from the dielectric function of a slab system, will be analyzed for different vacuum
spacings. Using an effective layer thickness of 5.3 Å (Sec. 4.2.2) the effective dielectric
function within the material can be calculated by rearranging Eq. (4.2.4).

ε = 1
L
d
( 1

ε⊥
− 1) + 1

(4.2.19)

This dielectric function should converge with larger distance between the layers, since it
is constructed to describe only the response of the material slab and compensates for the
vacuum spacing used. For a larger vacuum gap, the interaction in between the layers
is reduced. Therefore, it can be observed that the dielectric function perpendicular to
the material layers for 34.9 Å and 49.2 Å is nearly identical (Fig. 4.3). Consequently, it
is necessary to use at least a spacing of 34.9 Å to model a monolayer within the layer
model.
The same analysis is also possible for the parallel dielectric function by rearranging Eq.
(4.2.7):

ε = 1− L

d
+ ε‖

L

d
(4.2.20)

Here, the convergence with larger vacuum spacings is very fast. To calculate the optical
absorption (imaginary part of the dielectric function) in the in-plane case a vacuum
distance of 12.3 Å is sufficient.
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Figure 4.3: Imaginary part of the effective dielectric function perpendicular to the
layer compared for different vacuum distances (MoS2). The convergence
with a vacuum spacing of 34.9 Å and 49.2 Å can be clearly seen . The
comparison to the unchanged dielectric function (out-of-plane direction),
plotted as dotted lines (axis label on the right), makes the convergence
behavior obvious.
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12.3 Å - effective
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49.2 Å - effective
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49.2 Å - original

Figure 4.4: Imaginary part of the effective dielectric function parallel to the layer
compared for different vacuum distances (MoS2). The convergence with
a larger vacuum spacing can be clearly seen . The comparison to the
unchanged dielectric function (in-plane direction), plotted as dotted lines,
makes the convergence behavior obvious.
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Effective EELS spectrum

In the previous section, the effective dielectric function was calculated. Now, from
this, an effective EELS spectrum ( Im 1

ε
(Eq. (4.1.18)) can be found and compared

to the EELS spectrum with vacuum (the one of the slab system). Surprisingly, this
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Figure 4.5: Effective EELS spectrum for 12.3 Å to 49.2 Å compared with the original
EELS. The original EELS refers to the EELS based on the calculated
dielectric function including vacuum without any model considerations.

effective EELS (Fig. 4.6) changes the peak position compared to the EELS spectrum
with vacuum (Fig. 4.9). In both cases (out-of-plane and in-plane), there are significant
differences between the effective EELS and the calculated EELS including vacuum.
But the effective EELS seems to converge very fast with the layer distance. This is to
be expected as the effective dielectric function based on the layer model also converged
very quickly with the layer distance. Using this effective dielectric function to calculate
EELS is assuming it would give the correct response. But it is rather a result of a
model calculation assuming the material slab is isotropic — the different results for
the effective dielectric function, comparing the one in the in-plane direction and the
one in the out-of-plane direction, show that this is clearly not the case. Therefore,
it is clear that these results show just a model system, but this model system is not
sufficient to treat the anisotropic MoS2 system. Also, these considerations only focus
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12.3 Å - effective
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Figure 4.6: Effective EELS spectrum for 12.3 Å to 49.2 Å compared with the original
EELS. The original EELS refers to the EELS based on the calculated
dielectric function including vacuum without any model considerations.

on a static homogeneous charge distribution in the material layer — this is not the
case in reality. Nevertheless, the layer model is very helpful to understand the overall
behavior of these layered materials and to estimate an effective layer thickness. But
overall, a more sophisticated model is needed to calculate the effective spectra.

4.2.3 Influence of vacuum within the layer model

In Sec. 4.2.1, an effective medium theory is described where a system of homogeneous
layers resembles the real slab system with quasi 2D monolayers and vacuum in between.
Even though this effective theory does not describe the EELS spectrum in a realistic
way, it is very useful for gaining understanding. Using this model the influence of
increasing vacuum on certain quantities can be modeled and understood. Within the
model, the horizontal component of the dielectric function ε‖, the vertical component
ε⊥ and a theoretical dielectric function within the homogeneous slab ε are used. This
effective dielectric function is, as previously shown, (Fig. 4.4 and Fig. 4.3) nearly
independent of the distance between the layers. In Sec. 4.2.1 the following equations
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were found:

ε⊥ = 1
1 + d

L
(1

ε
− 1)

(4.2.21)

ε‖ =
(

1− d

L

)
+ ε

d

L
(4.2.22)

From this, optical excitations (the imaginary part of the dielectric function) or EELS
spectra ( Im

(
ε−1(ω)

)
) can be calculated for each component. Since the vacuum

included should not have an influence on the final result (it does not contribute to the
dielectric properties of the layer (except the states at the surface)), scaling with the
amount of introduced vacuum L/d is necessary so that a convergence with increasing
layer distance can be found. A detailed discussion of the quantities involved can be
found in Sec. 4.3.1. The relevant quantities for the optical excitations and the EELS
spectra will be analyzed in the following. The model dielectric function will be used to
understand the speed of convergence with increasing layer distance.

L

d
Im

(
ε−1

⊥ (ω)
)

= L

d
Im

(
1 + d

L
( 1
ε(ω) − 1)

)
(4.2.23)

= Im
L
d

(
1 + d

L
( 1
ε(ω) − 1)

) (4.2.24)

= Im
(
L

d
+ 1
ε(ω) − 1

)
(4.2.25)

Only the imaginary part is of interest, therefore all purely real quantities can be left
out.

= Im
(

1
ε(ω)

)
(4.2.26)

One is left with a result that is independent of L, since ε(ω) is the dielectric function
inside the material slab and thus independent of L. So for the perpendicular direction,
the EELS result should, if scaled properly, be approximately independent of the chosen
layer distance. This is only true under the assumption of the layer model that considers
the charge distribution as homogeneous. Since the non-homogeneous part of the inter-
layer interaction is not taken into account, there is a visible (but fast) convergence
with interlayer distance in Fig. 4.10 as the non-homogeneous part of the inter-layer
interaction decreases. This is only true for the case of LFE being included.
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Next, EELS for the parallel case ( Im
(
ε−1

‖ (ω)
)
) is considered.

L

d
Im

(
ε−1

‖ (ω)
)

= L

d
Im

 1
1− d

L
+ ε(ω) d

L

 (4.2.27)

= L

d
Im

 1− d
L

+ d
L

Re(ε(ω))− i Im (ε(ω)) d
L(

1− d
L

+ d
L

Re(ε(ω))
)2

+
(

Im (ε(ω)) d
L

)2

 (4.2.28)

Now that the denominator is purely real, eliminating all terms that have no imaginary
contribution is possible.

= − Im

 ε(ω)(
1− d

L
+ d

L
Re(ε(ω))

)2
+
(

Im (ε(ω)) d
L

)2

 (4.2.29)

For large layer distances this simplifies to:

lim
L→∞

L

d
Im

(
ε−1

‖ (ω)
)

= − Im
(
ε(ω)

)
(4.2.30)

This suggests that scaling by the vacuum distance delivers a result independent of the
layer distance for large layer distances.
Contrary to this, in Fig. 4.9 it seems like scaling is not necessary. It rather can be
observed that one part of the structure gradually disappears as the interlayer distance
is being increased. A possible explanation for this can be found in the very slow
convergence with respect to the layer distance. Approximating Eq. (4.2.29) leads to:

− Im

 ε(ω)(
1− d

L
+ d

L
Re(ε(ω))

)2
+
(

Im (ε(ω)) d
L

)2


≈ − Im

(
ε(ω)

)
− Im

(
ε(ω)

) d
L

(2− 2 Re(ε(ω)))

− Im
(
ε(ω)

)
( d
L

)2[3(Re(ε(ω))− 1)2 − ( Im ε(ω))2] + ...

(4.2.31)

Compared to the case of EELS based on the dielectric function in perpendicular
direction to the surface, it takes much higher L in order to achieve convergence.
Fig. 4.10 does not even show a converged result. The required layer distance seems to
be much larger than the here calculated distances.
The next case that is considered, is the absorption function for the perpendicular part
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of the dielectric function.

L

d
Im

(
ε⊥(ω)

)
= L

d
Im

 1
1− d

L
+ d

L
1

ε(ω)

 (4.2.32)

= L

d
Im


1− d

L
+ d

L
Re( 1

ε(ω))− i Im ( 1
ε(ω))

d
L(

1− d
L

+ d
L

Re( 1
ε(ω))

)2
+
(

Im ( 1
ε(ω))

d
L

)2

 (4.2.33)

Now eliminating all terms that are only real gives:

= − Im


1

ε(ω)(
1− d

L
+ d

L
Re( 1

ε(ω))
)2

+
(

Im ( 1
ε(ω))

d
L

)2

 (4.2.34)

For large layer distances, this simplifies to:

lim
L→∞

L

d
Im

(
ε⊥(ω)

)
= − Im

(
1

ε(ω)

)
(4.2.35)

The result suggest that by scaling with a factor of L/d there should be convergence
visible. In Fig. 4.8, exactly this can be seen for the physically meaningful case including
LFE. Looking at the speed of convergence also in this case, like in the case of EELS
for the parallel component, a quite slow convergence behavior with increasing layer
distance L is evident in the following expression:

− Im


1

ε(ω)(
1− d

L
+ d

L
Re( 1

ε(ω))
)2

+
(

Im ( 1
ε(ω))

d
L

)2


≈ − Im

(
1

ε(ω)

)
− Im

(
1

ε(ω)

)
d

L
(2− 2 Re( 1

ε(ω)))

− Im
(

1
ε(ω)

)
( d
L

)2[3(Re( 1
ε(ω))− 1)2 − ( Im 1

ε(ω))2] + ...

(4.2.36)
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Now investigating the fourth and last case — the absorption function for the parallel
component of the dielectric function:

L

d
Im

(
ε‖(ω)

)
= L

d
Im

(1− d

L

)
+ ε(ω) d

L

 (4.2.37)

= Im
(
ε(ω)

)
(4.2.38)

This result is independent of the layer distance, therefore the observation in Fig. 4.7
can be explained. Scaling with L/d compensates the added vacuum.

Calculations for MoS2 with increasing layer distance

In Sec. 4.2.3, predictions were made on the dependence of optical excitations and
EELS spectra on the interlayer distances. In the following, calculations for MoS2 are
shown for different layer distances. The graphs are grouped per component, similar
to the considerations in the previous section. There is always one plot with and one
without local field effects (LFE) — where useful, also the scaling by L/d is shown.
For experimental predictions, only the figures including LFE are of interest, since
the real physical system is not homogeneous. Without LFE the effect of local charge
distribution changes, as they appear in the real system, are not correctly shown. The

Im (ε) nLFE LFE
‖

√ √

⊥
√

X

Table 4.2: Does scaling Im (ε) by L/d deliver results that converge quickly?
”
√

” stands for yes, ”X” for no.

− Im (ε−1) nLFE LFE
‖ X X
⊥ X

√

Table 4.3: Does scaling − Im (ε−1) by L/d deliver results that converge quickly?
”
√

” stands for yes, ”X” for no.

figures without LFE are only interesting for comparison with the before discussed
model and to understand the influence of LFE.
Before showing all the plots, the two tables (Tab. 4.2 and Tab. 4.3) summarize the
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results, giving an overview of the overall behavior. From this overview it is already
clear that scaling according to the vacuum is not enough to correct the influence of
the vacuum on the calculated spectra. The convergence is sometimes not even visible,
even though a layer distance of up to 123 Å was used.

The following overview of plots is not supposed to be a final result — it is to
highlight the influence of the included vacuum (slab system) onto the two components
of the dielectric function (in-plane and out-of-plane).
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Å
layer

d
istan

ce
24.6

Å
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Å

la
ye
r
d
is
ta
n
ce

12
3

Å
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Å

la
ye
r
d
is
ta
n
ce

49
.2
Å
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Å

F
ig

ur
e

4.
8:

C
om

pa
ris

on
of

di
ffe

re
nt

la
ye

r
di

st
an

ce
s

w
ith

an
d

w
ith

ou
t

sc
al

in
g

by
th

e
va

cu
um

siz
e

fo
r

M
oS

2.
H

er
e

th
e

im
ag

in
ar

y
pa

rt
of

th
e

ou
t-

of
-p

la
ne

co
m

po
ne

nt
w

ith
an

d
w

ith
ou

t
LF

E
is

sh
ow

n.

4.2 Dielectric layer model 93



0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

0
10

20
30

4
0

50

-Im
(

1

ε‖(ω)

)

E
n
ergy

(eV
)

-Im
(

1

ε
‖
(
ω
)

)

for
M
oS

2
n
o
L
F
E

layer
d
istan

ce
12.3

Å
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4.2.4 Classical derivation of the plasma frequency

In Fig. 4.10 the EELS spectrum for the out-of-plane component of the dielectric
function (inc. LFE) (MoS2) shows the main peak around 25 eV. It can be observed
that the peak position is independent of the interlayer distance. The similar plot for
the in-plane component (Fig. 4.9) shows a completely different behavior. Here, again
looking at the physically meaningful case including LFE, the peak position of the first
excitation changes depending on the included vacuum. It shifts from around 8 eV for a
layer separation of 12.3 Å to around 5 eV for a layer distance of 123 Å.
This shifting of the main excitation can maybe be explained with the shifting of the
plasma frequency. Using the values from Tab. 4.1 it is possible to calculate the plasma
frequency in the in-plane and in the out-of-plane direction for different layer distances.
The results will then be compared to the described observations for the peak positions.
The plasma frequency can be derived using only the Poisson equation, the continuity
equation and an approximation for only small density changes.

Starting with the Poisson equation, where Φ is the potential, q the charge and ρ the
density

∆Φ(r, t) = −qρ(r, t)
ε

(4.2.39)

and the continuity equation, where j is the current

q
∂ρ(r, t)
∂t

+ div(j(r, t)) = 0 (4.2.40)

one can use Newton’s laws, where v is the speed and m the mass,

F(r, t) = m
∂v(r, t)
∂t

(4.2.41)

expressing the force via the electric field E(r, t),

F(r, t) = qE(r, t) = −q · grad(Φ(r, t)) (4.2.42)

to substitute the expression for the current. Thereby the differential equation for a
harmonic oscillator is found.

j(r, t) = q · ρ(r, t)v(r, t) (4.2.43)
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For small density changes this can be approximated to

j(r, t) ≈ q · ρ0v(r, t) (4.2.44)

deriving the whole equation by time allows for substitution into Newton’s law.

1
q ρ0

∂j(r, t)
∂t

= ∂v(r, t)
∂t

(4.2.45)

1
q ρ0

∂j(r, t)
∂t

= − q

m
grad(Φ(r, t)) (4.2.46)

Applying the Nabla operator to both sides allows for substitution of the Poisson Eq.
(4.2.39) and the continuity Eq. (4.2.40).

1
q ρ0

∂∇j(r, t)
∂t

= − q

m
∆(Φ(r, t)) (4.2.47)

∂2ρ(r, t)
∂t2

= −q
2ρ0

mε
ρ(r, t) (4.2.48)

This is a harmonic oscillator with the eigenfrequency ωp called the plasma frequency.

ω2
p = q2ρ0

mε
(4.2.49)

Let us do an estimate for the here studied case of a MoS2 monolayer, calculated as a
slab system. q is the charge of an electron. m is the mass of an electron. The density
can be approximated by the amount of valence electrons in the system and the system
size (here 12.3 Å layer spacing is used). For the dielectric constant, the in-plane value
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of 7.4 can be used (Tab. 4.1).

ω2
p = q2ρ0

mε
=

(1.602 · 10−19C)2 26 · 1
12.3Å·8.593Å2

9.109 · 10−31kg 8.854 · 10−12 C
V m · 7.4

(4.2.50)

ωp = 1.02 · 1016 1
s (4.2.51)

This is equivalent to an energy of 6.77 eV. For a layer distance of 123 Å this is a little
different. With a dielectric constant of 1.63 and a lower electron density, the energy
corresponding to the plasma frequency is at 4.56 eV. This shift roughly corresponds
to the observed shift of the first excitation in Fig. 4.9. For the out-of-plane direction
the same procedure cannot be applied because the slab structure prevents a hopping
of electrons from one layer to another. Therefore, the structure cannot be seen as an
overall system (as for the in-plane case) but rather as an individual layer. Consequently,
the plasma frequency should be independent of the layer distance. Exactly this can be
observed in Fig. 4.10 (inc. LFE), showing the same peak position for all layer distances.
Only the peak height is scaled depending on the included vacuum. Using the results
from Tab. 4.1 one finds a dielectric constant of 1.68 (12.3 Å) for the out-of-plane case.
This corresponds to a plasma frequency of 14.2 eV, which does not exactly match the
before shown plot, but nevertheless is in the same order of magnitude.

4.3 Calculating EELS spectra for 2D systems
The aim of the following section is to describe the electron energy loss function including
the momentum dependence and compare it to experimentally measured spectra. The
understanding gained in the layer model will help with a correct understanding of
the results. First, a formal derivation for the response function in a 2D system will
be presented followed by a method for extrapolating to infinite layer distance (a true
monolayer) based on the ideas for a 2D response function. The main aim is to cancel
all interlayer interactions and effects due to the supercell construction.

4.3.1 Treatment of vacuum in supercell calculations

The effect of an increasing amount of vacuum in one unit cell for an increasing interlayer
distance has to be corrected. Otherwise, the observables of the material would become
smaller the larger the distance between the layers L is chosen.
As a brief reminder before going through the full derivation, the dependence between
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the physical quantities and the included vacuum will be repeated. In the thesis of
Ralf Hambach [47] it was formulated in the following way. d is the effective material
thickness, one possibility to determine it is using layer model (Sec. 4.2).

χ(q,q′) ∝ Ω−1 P (q,q′) ∝ Ω−1 Ω ∝ L/d (4.3.1)

Energy loss function for large supercells

The energy loss in the material is described in a simplified way by (real space represen-
tation of Eq. (4.1.18)):

L(r, r′, ω) ∝ −Im
(

1
ε(r, r′, ω)

)
(4.3.2)

In the framework of GW the screened interaction W and dielectric functions ε are
formulated as the following (here matrix notation is used for better readability, so
ε(r, r′, ω) is written as ε(ω)) [12, 51]. 1 is to be understood as the identity matrix
where necessary.

ε(ω) = 1− vP(ω) (4.3.3)

v denotes the Coulomb interaction v(r, r′) = 1
|r−r′| and P the polarization function. The

connection between the polarization function and the independent-particle polarizability
χ0 is given by P = χ0 + χ0fXCP , where fXC is the exchange-correlation kernel [47] (p.
42). For RPA fXC = 0 is true, therefore P = χ0.

W(ω) = v + vP(ω)W(ω) (4.3.4)

W(ω) = ε−1(ω)v (4.3.5)

Here ε−1 means the inverse of ε, this can be calculated using the Neumann series
((1 − A)−1 = ∑∞

k=0 A
k (within the convergence radius)) but also by combining Eq.

(4.3.4) and 4.3.5:

ε−1(ω) = 1 + vP(ω) + vP(ω)vP(ω) + ... (4.3.6)
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This means the following statement can be made for the energy loss function, including
local field effects:

−Im
(
ε−1(ω)

)
= −Im

(
1 + vP(ω) + vP(ω)vP(ω) + ...

)
(4.3.7)

= −Im
(
vP(ω) + vP(ω)vP(ω) + ...

)
(4.3.8)

The polarization function is inversely proportional to the size of the supercell [47].
Therefore, when scaling the loss function by the volume of the supercell and increasing
the vacuum to infinity, higher terms can be neglected giving:

−Im
(
ε−1(ω)

) Ω→∞−−−→ −Im
(
vP(ω)

)
= Im

(
ε(ω)

)
(4.3.9)

This implies that one can use −Im
(
ε−1(ω)

)
or Im

(
ε(ω)

)
, given that the spectrum is

converged. The layer distances needed to achieve a converged result can be very different
for the loss (−Im

(
ε−1(ω)

)
) and the absorption spectrum (Im

(
ε(ω)

)
). Therefore, it is

helpful to use which ever one converges faster.

4.3.2 Material response in quasi 2D crystals

Calculating material response for quasi 2D crystals is very different compared to the
continuous bulk crystal. Using the common techniques to evaluate the whole supercell
(slab system including vacuum) leads to a wrong interpretation of the monolayer, since
the additional vacuum and interlayer interaction of the slab system (supercell) should
not be included in the true monolayer. Therefore, the results for the slab system
without additional adjustment do not allow for precise predictions and comparisons to
the experiment (that uses a monolayer). This derivation follows the work done by V.
Nazarov [52] and shows a way to obtain the response of the monolayer system from
the response of the slab system.

The induced charge due to an external field can be written as:

ρ(r, ω) =
∫

χ(r, r′, ω)Φext(r′, ω)dr′ (4.3.10)

The induced potential, due to a charge density, is defined as follows:

Φind(r, ω) =
∫
R3

ρ(r′, ω)
|r− r′|

d3r′ (4.3.11)
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For the 2D case and for the 3D case the Fourier transformation can be performed to
find the according expression in reciprocal space.

3D: Φind
G‖

(q, ω) = 4π
|q + G|2

ρG(q, ω) 2D: Φind
G‖

(q, ω) = 2π
|q + G|

ρG(q, ω) (4.3.12)

Using cylindrical coordinates this can be rewritten using r as 2D in-plane coordinate,
with the aim to find a mixed real space and reciprocal space representation:

Φind(r, z, ω) =
∫
R2

∫ ∞

−∞

ρ(r′, z′, ω)√
(z − z′)2 + (r− r′)2

dz′d2r′ (4.3.13)

Performing the 2D Fourier transformation only in-plane (e−ik‖rd2r) leads to the follow-
ing result:

Φind(k‖, z, ω) =
∫
R2

∫
R2

∫ ∞

−∞

ρ(r′, z′, ω)√
(z − z′)2 + (r− r′)2

dz′d2r′e−ik‖rd2r (4.3.14)

Substituting r− r′ = y and d2r=d2y leads to:

Φind(k‖, z, ω) =
∫
R2

∫
R2

∫ ∞

−∞

ρ(r′, z′, ω)√
(z − z′)2 + (y)2

e−ik‖(y+r′)dz′d2r′d2y (4.3.15)

The integration can now be split up into a part for r′ and one for y:

Φind(k‖, z, ω) =
∫ ∞

−∞

∫
R2
ρ(r′, z′, ω)e−ik‖r′d2r′ ·

∫
R2

e−ik‖y√
(z − z′)2 + (y)2

d2y dz′ (4.3.16)

In each integral, the coordinate system is changed to polar coordinates, with r and θ

being the angle between k‖ and r′ (k‖ and y). In the local density (ρ(r′, z′, ω)), the
vector r′ is left unchanged, even though it could also be formulated in polar coordinates.

Φind(k‖, z, ω) =
∫ ∞

−∞

∫ 2π

0

∫ ∞

0
ρ(r′, z′, ω)e−i|k‖|r1 cos(θ1)r1dr1dθ1

·
∫ 2π

0

∫ ∞

0

e−i|k‖|r2 cos(θ2)√
(z − z′)2 + (r2)2

r2dr2dθ2 dz′
(4.3.17)
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The first integral is the Fourier transformed density. The second integral can be solved
using the first order Bessel function J0(x) = 1

2π

∫ π
−π e

ix sin(φ)dφ = 1
2π

∫ 2π
0 e−ix cos(φ)dφ.

Φind(k‖, z, ω) =
∫ ∞

−∞
ρ(k‖, z

′, ω) ·
∫ ∞

0

2πJ0(|k‖|r2)√
(z − z′)2 + (r2)2

r2dr2 dz′ (4.3.18)

Substituting r = |k‖|r2 and therefore dr2 = dr
|k‖| leads to:

Φind(k‖, z, ω) =
∫ ∞

−∞
ρ(k‖, z

′, ω) ·
∫ ∞

0

2πJ0(r)√
(z − z′)2|k‖|2 + (r)2

r

|k‖|
dr dz′ (4.3.19)

Solving the integral and replacing k‖ with G‖ + q‖, to adjust the situation to a crystal
with translation symmetry, leads to:

Φind
G‖

(q‖, z, ω) =
∫ ∞

−∞
ρG‖(q‖, z

′, ω) 2π
|G‖ + q‖|

e−|z−z′||G‖+q‖|dz′ (4.3.20)

In the calculation, a stack of layers is used with layer distance d, as seen in Fig. 4.11,

Figure 4.11: Infinite stack of layers with distance d used in a slab system.

so that in the following it is possible to differentiate between the density response of
the whole system to an external field χ̃ and the density response of only one layer to
the external field χ. The latter one is a mixture of the response to the external field
and the induced field of the other layers in the stack that act onto one layer.

4 Phenomena in low-energy electron energy loss spectroscopy (EELS)102



The result in Eq. (4.3.20) can be rewritten as a sum over an infinite stack of layers
(indexed m) with distance d.

Φind
G‖

(q‖, z, ω) = 2π
|G‖ + q‖|

∑
m

∫ d/2

−d/2
ρG‖(q‖, z

′, ω)e−|z−z′−md||G‖+q‖|dz′ (4.3.21)

The effective field acting on one layer is the combination of the external field with the
induced field of all other layers. Therefore, the m = 0 contribution of the induced field
has to be left out.

Φeff
G‖

(q‖, z, ω) = Φext
G‖

(q‖, z, ω) + 2π
|G‖ + q‖|

∑
m6=0

∫ d/2

−d/2
ρG‖(q‖, z

′, ω)e−|z−z′−md||G‖+q‖|dz′

(4.3.22)

For this consideration z is confined to d
2 > z > −d

2 . Therefore, the sum over m can be
split up into a negative part and a positive part which then can be simplified.

Φeff
G‖

(q‖, z, ω) = Φext
G‖

(q‖, z, ω) + 2π
|G‖ + q‖|

∫ d/2

−d/2
ρG‖(q‖, z

′, ω)

·
∞∑

m=1
e(z−z′−md)|G‖+q‖| + e−(z−z′+md)|G‖+q‖| dz′

(4.3.23)

Φeff
G‖

(q‖, z, ω) = Φext
G‖

(q‖, z, ω) + 2π
|G‖ + q‖|

∫ d/2

−d/2
ρG‖(q‖, z

′, ω)

·
∞∑

m=1
e−md|G‖+q‖| ·

(
e(z−z′)|G‖+q‖| + e−(z−z′)|G‖+q‖|

)
dz′

(4.3.24)

With the cosh(x) = ex+e−x

2 and the geometric series ∑∞
m=1 q

m = −q
q−1 , this can be

simplified to:

Φeff
G‖

(q‖, z, ω) = Φext
G‖

(q‖, z, ω) + 2π
|G‖ + q‖|

· 2
ed|G‖+q‖| − 1

·
∫ d/2

−d/2
ρG‖(q‖, z

′, ω) cosh
(
(z − z′)|G‖ + q‖|

)
dz′

(4.3.25)
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Now the Fourier series expansion for cosh in the regime d
2 > z > −d

2 can be used to
find the full 3D reciprocal space representation. The potentials are also replaced by
the corresponding Fourier series expansion without renaming [52]

.

∑
Gz

Φeff
G‖,Gz

(q‖, ω)eiGzz =
∑
Gz

Φext
G‖,Gz

(q‖, ω)eiGzz + 4π
|G‖ + q‖|(ed|G‖+q‖| − 1)

·
∫ d/2

−d/2

∑
Gz′

ρG‖,Gz′ (q‖, ω)eiGz′ z′

∑
Gz

∑
Gz′

DGz ,Gz′ (|G‖ + q‖|)eiGzz−iGz′ z′dz′

(4.3.26)

where [52]

DGz ,Gz′ (p) = 4(p2 −GzGz′)
d2(p2 +G2

z)(p2 +G2
z′)

cos
(

(Gz +Gz′)d
2

)
sinh2

(
pd

2

)
(4.3.27)

The sum and integral can be exchanged and summarized. When doing so, one
summation has to be renamed to G′

z′ :

∑
Gz

Φeff
G‖,Gz

(q‖, ω)eiGzz =
∑
Gz

Φext
G‖,Gz

(q‖, ω)eiGzz + 4π
|G‖ + q‖|(ed|G‖+q‖| − 1)

·
∑
G′

z′

∑
Gz

∑
Gz′

ρG‖,G′
z′

(q‖, ω)DGz ,Gz′ (|G‖ + q‖|)

∫ d/2

−d/2
eiG′

z′ z
′
eiGzz−iGz′ z′dz′

(4.3.28)

Solving the integral gives d · δG′
z′ ,Gz′ . Therefore, one sum can be neglected.

∑
Gz

Φeff
G‖,Gz

(q‖, ω)eiGzz =
∑
Gz

Φext
G‖,Gz

(q‖, ω)eiGzz + 4πd
|G‖ + q‖|(ed|G‖+q‖| − 1)

·
∑
Gz

∑
Gz′

ρG‖,Gz′ (q‖, ω)DGz ,Gz′ (|G‖ + q‖|)eiGzz
(4.3.29)
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Due to the orthogonality of the plane wave basis, comparing the sum is equivalent
to comparing the components. This leaves us with the following expression in 3D
reciprocal space.

Φeff
G‖,Gz

(q‖, ω) = Φext
G‖,Gz

(q‖, ω) +
∑
Gz′

4πdρG‖,Gz′ (q‖, ω)DGz ,Gz′ (|G‖ + q‖|)
|G‖ + q‖|(ed|G‖+q‖| − 1)

(4.3.30)

The density-response function of just one slab, taking into account the induced field
from all other slabs, is given by:

ρG(q‖, ω) =
∑
G′

χG,G′(q‖, ω)Φeff
G′(q‖, ω) (4.3.31)

The density-response function of the whole stacked system, as calculated, on the other
hand is defined as:

ρG(q‖, ω) =
∑
G′

χ̃G,G′(q‖, ω)Φext
G′ (q‖, ω) (4.3.32)

Since the density change for both formulations is the same, one can relate the two
different density-response functions to one another.

∑
G′

χ̃G,G′(q‖, ω)Φext
G′ (q‖, ω) =

∑
G′

χG,G′(q‖, ω)

·

Φext
G′ (q‖, ω) +

∑
Gz′

4πdρG′
‖,Gz′ (q‖, ω)DG′

z ,Gz′ (|G′
‖ + q‖|)

|G′
‖ + q‖|(ed|G′

‖+q‖| − 1)


(4.3.33)

The density included in the induced potential can be replaced by the response to the
external field (Eq. (4.3.32)). ρG′

‖,Gz′ (q‖, ω) = ∑
G′′ χ̃G′

‖,Gz′ ,G′′(q‖, ω)Φext
G′′(q‖, ω)

∑
G′

χ̃G,G′(q‖, ω)Φext
G′ (q‖, ω) =

∑
G′

χG,G′(q‖, ω)Φext
G′ (q‖, ω)

+
∑
G′

χG,G′(q‖, ω)
∑
Gz′

4πdDG′
z ,Gz′ (|G′

‖ + q‖|)
|G′

‖ + q‖|(ed|G′
‖+q‖| − 1)

∑
G′′

χ̃G′
‖,Gz′ ,G′′(q‖, ω)Φext

G′′(q‖, ω)

(4.3.34)
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Renaming G′′ and G′ as well as reordering the sums helps to get the term in a similar
structure.∑

G′
χ̃G,G′(q‖, ω)Φext

G′ (q‖, ω) =
∑
G′

χG,G′(q‖, ω)Φext
G′ (q‖, ω)

+
∑
G′

∑
G′′

∑
Gz′

χG,G′′(q‖, ω)
4πdDG′′

z ,Gz′ (|G′′
‖ + q‖|)

|G′′
‖ + q‖|(ed|G′′

‖ +q‖| − 1)
χ̃G′′

‖ ,Gz′ ,G′(q‖, ω)Φext
G′ (q‖, ω)

(4.3.35)

Since the external field is fully arbitrary, the equation can be rewritten as:

χ̃G,G′(q‖, ω) = χG,G′(q‖, ω)+
∑
G′′

∑
Gz′

χG,G′′(q‖, ω)
4πdDG′′

z ,Gz′ (|G′′
‖ + q‖|)

|G′′
‖ + q‖|(ed|G′′

‖ +q‖| − 1)
χ̃G′′

‖ ,Gz′ ,G′(q‖, ω)

(4.3.36)

In the attempt to express the whole summation as matrix-products, first a new matrix
is introduced.

4πdDG′′
z ,G′′′

z
(|G′′

‖ + q‖|)
|G′′

‖ + q‖|(ed|G′′
‖ +q‖| − 1)

=̂
4πdDG′′

z ,G′′′
z

(|G′′
‖ + q‖|)

|G′′
‖ + q‖|(ed|G′′

‖ +q‖| − 1)
δG′′

‖ ,G′′′
‖

= CG′′,G′′′(q‖)

(4.3.37)

This allows us to rewrite the sum. Due to δG′′
‖ ,G′′′

‖
, the sum can be generalized.

χ̃G,G′(q‖, ω) = χG,G′(q‖, ω)+
∑
G′′

∑
G′′′

χG,G′′(q‖, ω)CG′′,G′′′(q‖)χ̃G′′′
‖ ,G′(q‖, ω) (4.3.38)

This is equivalent to the following short form in matrix notation.

χ̃(q‖, ω) = χ(q‖, ω) + χ(q‖, ω)C(q‖)χ̃(q‖, ω) (4.3.39)

This can be inverted to find an expression for χ.

χ̃(q‖, ω)
[
1 + C(q‖)χ̃(q‖, ω)

]−1
= χ(q‖, ω) (4.3.40)
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With CG,G′(q‖) simplified to:

CG,G′(q‖) =δG‖,G′
‖

((|G‖ + q‖|)2 −GzG
′
z)

((|G‖ + q‖|)2 +G2
z)((|G‖ + q‖|)2 +G′2

z )

cos
(

(Gz +G′
z)d

2

)(
1− e−d(|G‖+q‖|)

) 4π|G‖ + q‖|
d|G‖ + q‖|

(4.3.41)

4.3.3 Extrapolating to infinite layer distance

In Sec. 4.3.2, the effects of the repeated slab systems were discussed. In the following
derivation, the aim is to extrapolate from the repeated slab system to the monolayer
including the effects of momentum transfer. This will allow for a very fast convergence
with respect to the interlayer distance in the repeated slab system.
The starting point is Eq. (4.3.20) written for only one layer.

Φintra
G‖

(q‖, z, ω) =
∫ d/2

−d/2
ρG‖(q‖, z

′, ω) 2π
|G‖ + q‖|

e−|z−z′||G‖+q‖|dz′ (4.3.42)

Approximating it for a thin layer (z − z′ ≈ 0) and introducing the average charge per
layer ρG‖

(q‖, ω) yields:

≈
∫ d/2

−d/2
ρG‖(q‖, z

′, ω) 2π
|G‖ + q‖|

dz′ (4.3.43)

= ρG‖
(q‖, ω) 2πd

|G‖ + q‖|
(4.3.44)

Equation (4.3.22) is used with an additional distinguishment between the layer thickness
for integration d and the distance between the layers L.

Φinter
G‖

(q‖, z, ω) = 2π
|G‖ + q‖|

∑
m6=0

∫ d/2

−d/2
ρG‖(q‖, z

′, ω)e−|z−z′−mL||G‖+q‖|dz′ (4.3.45)
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Equivalent to Sec. 4.3.2, this can be solved (d < L) (Eq. (4.3.25)) and also approximated
for a thin layer (z − z′ ≈ 0) with an average charge.

Φinter
G‖

(q‖, z, ω) = 2π
|G‖ + q‖|

· 2
eL|G‖+q‖| − 1

·
∫ d/2

−d/2
ρG‖(q‖, z

′, ω) cosh
(
(z − z′)|G‖ + q‖|

)
dz′

(4.3.46)

≈ 4π
|G‖ + q‖| · (eL|G‖+q‖| − 1)

·
∫ d/2

−d/2
ρG‖(q‖, z

′, ω)dz′ (4.3.47)

= ρG‖
(q‖, ω) 4πd

|G‖ + q‖| · (eL|G‖+q‖| − 1)
(4.3.48)

Using these two simplified equations, the inverse dielectric function can be formulated
from the definition:

ε−1(q‖, ω, L) = δΦeff

δΦext (4.3.49)

=
δ
[
Φext

0 + Φinter
0 (q‖, ω) + Φintra

0 (q‖, ω)
]

δΦext
0

(4.3.50)

Here, the G‖ 6= 0 components are neglected. This corresponds to the assumption
of a homogeneous charge distribution within the layer. In perpendicular direction,
they are not ignored, since the real space representation was used here. Introducing
the averaged renormalized response function R(q‖, ω, L) = δρ0(q‖,ω,L)

δΦext
0

(L dependence
explicitly mentioned) leads to:

ε−1(q‖, ω, L) = 1 + 2πd
|q‖|

(
1 + 2

eL|q‖| − 1

)
R(q‖, ω, L) . (4.3.51)

The averaged response function can be expressed via the polarization functionR(q‖, ω, L) =
ε−1(q‖, ω, L)P (q‖, ω). This is a reformulation of Eq. (4.3.6) where ε−1(ω) = 1+vP(ω)+
vP(ω)vP(ω) + ... = 1 + vR(ω).

ε−1(q‖, ω, L) =
1− 2πd

|q‖|

(
1 + 2

eL|q‖| − 1

)
P (q‖, ω)

−1

(4.3.52)
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In RPA the head element of the 3D renormalized response function is calculated
(ε−1(ω) = 1 + vR(ω)). This is defined as:

ε−1
00 (q‖, ω, L) = 1 + 4π

q‖2R00(q‖, ω, L) (4.3.53)

The 3D response function is connected to the response function of the layer by appro-
priate scaling with the added vacuum. R00(q‖, ω, L) = d

L
R(q‖, ω, L), therefore:

ε−1
00 (q‖, ω, L) = 1 + 4π

q‖2
d

L
R(q‖, ω, L) (4.3.54)

Using R(q‖, ω, L) = ε−1(q‖, ω, L)P (q‖, ω) and Eq. (4.3.52) this yields:

ε−1
00 (q‖, ω, L) = 1 + 4π

q‖2
d

L

P (q‖, ω)

1− 2πd
|q‖|

(
1 + 2

e
L|q‖|−1

)
P (q‖, ω)

(4.3.55)

The loss function of interest is the L scaled single monolayer limit (L → ∞) of the
bulk loss function.

A(q‖, ω) = − lim
L→∞

L Im (ε−1
00 (q‖, ω, L)) (4.3.56)

= −4πd
q‖2 Im

 P (q‖, ω)
1− 2πd

|q‖|P (q‖, ω)

 (4.3.57)

Replacing P (q‖, ω) from Eq. (4.3.55) a result only dependent on the calculated loss

function can be formulated ( P (q‖, ω) =
[

4π
q‖2

d
L

1
ε−1

00 (q‖,ω,L)−1 + 2πd
|q‖|

(
1 + 2

e
L|q‖|−1

)]−1

).

A(q‖, ω) = − Im

 L
1

ε−1
00 (q‖,ω,L)−1 + L|q‖|

e
L|q‖|−1

 (4.3.58)

The result is independent of layer thickness d, which is very good, since this parameter
is not uniquely defined in the crystal. The limiting cases of this loss function are

lim
q‖→0

A(q‖, ω) = L Im ε00(q‖, ω, L) (4.3.59)

and lim
L→∞

A(q‖, ω) = −L Im ε−1
00 (q‖, ω, L) (q‖ > 0) . (4.3.60)
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It is most obvious how well this approach works by looking at the very fast convergence
of Eq. (4.3.58) with increasing layer distance (Fig. 4.12). The two limiting cases
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49.2 Å
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Figure 4.12: Loss function of MoS2 calculated by extrapolation using Eq. (4.3.58) for
different layer distances. A very fast convergence is visible, independent
of the momentum transfer (in-plane).

(Eq. (4.3.59) and Eq. (4.3.60)) recover the absorption function (Im ε(ω)) and the
loss spectrum (-Im 1

ε(ω)) like it is typically used. This demonstrates nicely that the
extrapolated loss function extends the well known way of calculating the loss function.
In Fig. 4.13 the convergence of the two limiting cases towards the extrapolated loss
function can be observed with increasing layer distance. This behavior has been
predicted in Sec. 4.3.1.
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−1

Im(ε)
−Im(1

ε
)

extrapolated

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

In
te
n
si
ty

(a
.u
.)

Energy (eV)

MoS2, 123 Å vacuum, 0 Å
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MoS2, 12.3 Å vacuum, 0.04 Å
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MoS2, 123 Å vacuum, 0.2 Å
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Figure 4.13: Fig. 4.12 shows the explicit convergence of the extrapolated loss function,
whereas here the convergence of the the two limiting cases towards the
extrapolated loss function with increasing layer distance is shown.
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4.4 Momentum dependent EELS
Focusing on the full energy loss equation (Eq. (4.1.18)) there are two momentum
dependent terms. The prefactor 1

q2 and the dielectric function itself. Fig. 4.14 shows

MoS2 extrapolated EELS spectra for a range of momentum transfers inc. LFE
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Figure 4.14: Momentum resolved EELS spectra for MoS2 with a momentum transfer
between 0 (Γ) and a momentum transfer of K = (1/3, 1/3, 0). The
color darkness (white-blue-green) corresponds to the extrapolated EELS
intensity. A layer distance of 24.6 Å is used.

the extrapolated EELS formula Eq. (4.3.58) and its change over different momenta.
A clear shift of the main peaks is visible. The following sections are concerned with
including the loss function for different momenta in the full energy loss.
In the end, the derived method of including multiple momentum transfers in one
spectrum will be combined with the extrapolation method derived in the previous
section.
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4.4.1 Momentum summation EELS

The treatment of the z-component of the momentum transfer (in the direction of the
beam) is interesting and not very intuitive. In reciprocal space, a certain energy loss
is connected to one or multiple momentum transfers. In order for the electron to
lose energy, the momentum has to be changed (decelerated in the direction of the
beam). The electron has a probability to be deflected to a certain angle depending
on the momentum transfer occurring. In the classical derivation, it is interesting how
starting from a classical starting point one ends up at a possibility distribution (a
quantum mechanical concept) (Sec. 4.1). Treating the energy difference along the
z-direction allows for all electron excitations with a momentum transfer in the x/y
plane of the Brillouin zone (taking into account the dispersion relation of the material)
(Eq. (4.1.18)), that itself only contribute marginally to the total energy.

∂3P

∂2q‖∂ω
= − 8πe2

(2π)3~
1

v2q2 Im 1
ε(q, ω) (4.4.1)

Here the definition of q‖ is changed to define parallel as parallel to the plane (for an
electron at normal incidence):

q2 = q2
‖ + q2

z = q2
‖ + (ω

v
)2 (4.4.2)

The momentum in z-direction is calculated by qz = ω
v

where ω is determined by the
energy loss via E = ~ω. The speed of the electron has to be calculated in a relativistic
way, due to the high energy of the electron. Starting with the total energy E = m(v) ·c2

consisting of the kinetic energy Ekin and the energy at rest E0 (E = Ekin + E0), using
the relativistic mass of m(v) = m0√

1− v2
c2

one finds the speed. Here c is the speed of light

and m0 the mass at rest.

v = c

√√√√1−
(

m0c2

Ekin +m0c2

)2

(4.4.3)

In order to compute the summation, one substitutes the integral by a sum over a finite
grid in reciprocal space. This is easily possible by introducing a surface element (dA).
The treatment of the Γ point, or to be precise close by since the z-component is not
0, introduces some additional complication, since its weight is very high due to the

1
q2

‖+q2
z

prefactor compared to all other points. If the grid is not chosen fine enough, on
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the scale of ω
v
, the Γ point is not calculated correctly, since it has an extraordinarily

high and strongly varying weight that could only be sampled correctly by a very high
mesh point density around it. For a typical setup (speed of the electron and energy
loss) ω

v
is on the order of 0.00001 1/Bohr, whereas a very small momentum transfer

is 0.01 1/Bohr (requiring 100× mesh points in reciprocal space). Therefore, the Γ
point should be treated with an integral explicitly. For this approach, the grid for
summation has to be fine enough so that the dielectric function between the Γ point
and its closest neighbors does not differ significantly. In that case one can assume the
dielectric function to be only ω dependent around the Γ point. Thus, the integral can
be solved explicitly using polar coordinates. Starting from (4.1.18) the integral can be
separated from the sum.

∫
q′

4πe2

(2π)3~
1

v2q′2 2 Im 1
ε(q′, ω)d2q′ (4.4.4)

≈ 4πe2

(2π)3~v2


∑

q‖ 6=0

1
q2

‖ + (ω
v
)2 2 Im 1

ε(q, ω)dA

+
∫

q‖<qc

1
q2

‖ + (ω
v
)2 2 Im 1

ε(0, ω)d2q‖


(4.4.5)

By introducing polar coordinates (q‖ and φ) and performing the φ integration, this
can be simplified.

= 4πe2

(2π)3~v2


∑

q‖ 6=0

1
q2

‖ + (ω
v
)2 2 Im 1

ε(q, ω)dA

+ 4π Im 1
ε(0, ω)

∫ |qc|

0

q‖

q2
‖ + (ω

v
)2 dq‖


(4.4.6)

=...+ 2π Im 1
ε(0, ω)(ln

(
|qc|2 + (ω

v
)2
)
− ln

(
(ω
v

)2
)

) (4.4.7)

qc has to be chosen depending on the grid. One could think half of the average distance
between two grid points would be a reasonable choice, but the correct choice is to make
it dependent on the area of the Brillouin zone and total numbers of grid points (evenly
spaced grid).

π · q2
c = |bx × by|

numqpts
(4.4.8)

qc =

√√√√ |bx × by|
π · numqpts

(4.4.9)

4 Phenomena in low-energy electron energy loss spectroscopy (EELS)114



In the above discussion, ε is always considered to be a single complex number, but,
strictly speaking, this is not the case. Especially at the Γ point, where there is no
direction given, it is important to consider ε as a tensor quantity. Therefore, the
integral should be calculated a little different assuming ε has the entries ε1, ε2 and ε3

on the diagonal and there are no off-diagonal elements. This means:

ε(0, ω) =


ε1(0, ω) 0 0

0 ε2(0, ω) 0
0 0 ε3(0, ω)



4πe2

(2π)3~v2


∑

q‖ 6=0

1
q2

‖ + (ω
v
)2 2 Im 1

ε(q, ω)dA

+
∫

q‖<qc

1
q2

‖ + (ω
v
)2 2 Im 1

ε(0, ω)d2q‖


(4.4.10)

=...+
∫

q‖<qc

1
q2

x + q2
y + (ω

v
)2 2 Im 1

1
q2 (q2

xε1(0, ω) + q2
yε2(0, ω)) + (ω

v
)2ε3(0, ω))dqxdqy

(4.4.11)

=...+ 2 Im
∫

q‖<qc

1
q2

xε1(0, ω) + q2
yε2(0, ω)) + (ω

v
)2ε3(0, ω)dqxdqy (4.4.12)

With the assumption ε1 = ε2 the integral can be solved:

=...+ 4π Im
∫ |qc|

0

q‖

q2
‖ε1(0, ω) + (ω

v
)2ε3(0, ω)dq‖ (4.4.13)

=...+ 2π Im 1
ε1(0, ω)(ln

(
ε1(0, ω)|qc|2 + ε3(0, ω)(ω

v
)2
)
− ln

(
ε3(0, ω)(ω

v
)2
)

) (4.4.14)

=...+ 2π Im 1
ε1(0, ω)(ln

ε1(0, ω)|qc|2

ε3(0, ω)(ω
v
)2 + 1

) (4.4.15)
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Instead of treating it explicitly, one can also use an approximation around the Γ point
ε−1(q) ≈ 1

q2 qT ε′q.

4πe2

(2π)3~v2


∑

q‖ 6=0

1
q2

‖ + (ω
v
)2 2 Im 1

ε(q, ω)dA

+
∫

q‖<qc

1
q2

‖ + (ω
v
)2 2 Im 1

ε(0, ω)d2q‖


(4.4.16)

≈...+
∫

q‖<qc

1
q2

‖ + (ω
v
)2 2 1

q2 Im qT ε′(0, ω)qd2q‖ (4.4.17)

=...+
∫

q‖<qc

1
q2

x + q2
y + (ω

v
)2 2 1

q2 Im (q2
xε

′
1(0, ω) + q2

yε
′
2(0, ω)) + (ω

v
)2ε′

3(0, ω))dqxdqy

(4.4.18)

=...+ 2 Im
∫

q‖<qc

1
q4

(
q2

xε
′
1(0, ω) + q2

yε
′
2(0, ω)) + (ω

v
)2ε′

3(0, ω)
)

dqxdqy (4.4.19)

Now introducing polar coordinates and assuming ε′
1 = ε′

2 gives the following.

=...+ 4π Im
∫ qc

0

1
(q2 + (ω

v
)2)(q2 + (ω

v
)2)

(
q2ε′

1(0, ω) + (ω
v

)2ε′
3(0, ω)

)
qdq (4.4.20)

=...+ 4π Im
∫ qc

0

q3ε′
1(0, ω) + q(ω

v
)2ε′

3(0, ω)
q4 + 2q2(ω

v
)2 + (ω

v
)4 dq (4.4.21)

This integration can be calculated explicitly, for a simpler notation the dependencies
of ε are left out.

=...+ 2π Im
(ω

v
)2(ε′

1 − ε′
3)

(ω
v
)2 + q2

c

+ ε′
1 ln

(
(ω
v

)2 + q2
c

)
− ((ε′

1 − ε′
3) + ε′

1 ln
(

(ω
v

)2
)

)

(4.4.22)

=...+ 2π Im

(
(ω

v
)2

(ω
v
)2 + q2

c

− 1)(ε′
1 − ε′

3) + ε′
1 ln

(ω
v
)2 + q2

c

(ω
v
)2


 (4.4.23)

With a dimensionless variable x = ω
qcv

, this can be simplified.

=...+ 2π Im
( x2

x2 + 1 − 1)(ε′
1 − ε′

3) + ε′
1 ln

(
x2 + 1
x2

) (4.4.24)

=...+ 2π Im
ε′

3 − ε′
1

x2 + 1 + ε′
1 ln

(
x2 + 1
x2

) (4.4.25)
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Application to monolayers

The above treatment of the prefactor shows how complex it is to handle the Γ point
correctly. It was shown before that at the Γ point it is more efficient to use Im ε‖

than Im 1
ε‖

because the convergence behavior is significantly faster with increasing
layer distance. For the perpendicular component the opposite is true. Here it is best
to use Im 1

ε⊥
. Equation (4.4.25) already gives the result for a dielectric function of the

form Im ε. Looking at the final result for the Γ point

Im
ε′

3 − ε′
1

x2 + 1 + ε′
1 ln

(
x2 + 1
x2

) (4.4.26)

it is possible to analyze this a little further, understanding the factors that have the
highest influence.
In Fig. 4.15, the two prefactors for ε′

1 and ε′
3 are shown in terms of x. What is the usual

value of x? For a common setting of fine q-grid sampling (qc ≈ 10−2), acceleration
voltage of 80 keV and an energy loss of a few electron volts, x is on the order of 10−2.
This means, unless looking at a very fine momentum grid or a very high transition
energy, ε′

1 dominates the behavior. Furthermore, the plotted prefactor also depends
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Figure 4.15: Visualization of the prefactor for the in-plane and the out-of-plane com-
ponent of the dielectric function.

4.4 Momentum dependent EELS 117



on the mesh density and speed of the electron. With an increasing mesh density the
magnitude of the Γ point contribution decreases. For an increasing speed of the electron
(acceleration voltage), the contribution of the Γ point increases.
When treating monolayers, the vacuum distance between the layers is a crucial conver-
gence parameter for a correct modeling. Depending on the momentum transfer q a
different convergence behavior can be expected. As previously shown for the Γ point,
Im ε converges by orders of magnitude faster than Im 1

ε
, this has also been proven

with a simple layer model. But already for small momentum transfers, this is not the
case anymore. For large momentum transfers (for instance 0.1 1/Bohr) EELS ( Im 1

ε
)

converges significantly faster than Im ε. This behavior will be demonstrated using
MoS2 as an example in the following.
As a result of this property, the momentum transfer up to which the energy loss is
treated with Im ε and from where on Im 1

ε
is used instead has to be carefully chosen.

Another possibility is to use a very large layer distance, then most spectra are converged
for both. Irrespective of this consideration, the only way to make sure that all spectra
are converged is to use the extrapolation scheme (Sec. 4.3.3).

Correct treatment of units

Equation (4.4.25) can be implemented together with the preceding sum. When doing
so, special care needs to be taken with the units used. In the ab-initio codes [10],
all (reciprocal) length specifications are in terms of the Bohr radius or in internal
coordinates, relating to the (reciprocal) lattice vectors. The energy loss is given in
eV or Hartree. The speed of the electron is given by the experimental setup in keV
(acceleration voltage).
The internal coordinate have to be converted to 1

Bohr . Using ~ = 6.5821195 · 10−16 eV·s
the energy loss can be converted into an angular frequency by E = ~ω and vice versa.
The acceleration voltage has to be converted into the speed of the electron. Due to the
very high speed, relativistic corrections need to be taken into account (Eq. (4.4.3)).
Using the speed of light c in m/s, m0 = me (in kg) as the rest mass of the electron
and Ekin as the kinetic energy of the electron in Joule calculated from the acceleration
voltage Ekin = acc. voltage(keV) · 103

1.60218·10−19
J

keV .

v = c ·

1−
(

me · c2

Ekin +me · c2

)2
 1

2 1
5.29177210903 · 10−11 m

Bohr
(4.4.27)
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4.4.2 EELS for pristine MoS2 monolayer with momentum
summation

Before showing the summed up spectrum, this section will start with discussing the
convergence behavior of the spectra for different momentum transfers, that are included
in the summation, with respect to the used vacuum. Without any momentum transfer
(Fig. 4.16a and Fig. 4.16b) a fast convergence for the absorption spectrum (Im ε(ω))
and a very slow convergence for the loss spectrum (EELS) (-Im 1

ε(ω)) is found. This has
been discussed in detail in Sec. 4.2.3. The two spectra are replotted here for the direct
comparison with the spectra for larger momentum transfer. In the simplified layer
model (Sec. 4.2), the interaction between the layers is strong due to the long-range
Coulomb interaction. For q 6= 0 the interlayer interaction becomes weaker, since the
charge distribution within one layer screens itself when probed at a distance (like a
multipole). If the distance between the layers, corresponding to the unit cell size L,
decreases at the same time as q is increased, the total interaction strength does not
change. In other words, if the factor L · q does not change, the interaction strength
does not change. Therefore, this factor can be used an indicator for a fast or slow
convergence behavior of the loss spectrum. In Fig. 4.17a and Fig. 4.17b, the convergence
behavior with a large momentum transfer is shown. The loss function converges very
fast with increasing layer distance (Fig. 4.17a). Overall, the criterion for the loss
function to be converged is qL >> 1 [47].
For the absorption spectrum, the opposite is found. It converges very slowly for large
momentum transfers. So, the absorption spectrum is converged for L/q >> 1.
In between, neither of the two (absorption spectrum and loss spectrum) is converged.
The momentum transfer used in Fig. 4.18a and Fig. 4.18b pictures exactly this case.
With increasing layer distance, the spectra in Fig. 4.18a and Fig. 4.18b converge
towards the same spectrum. This behavior, predicted in Sec. 4.3.1, is also partly visible
for the spectra without momentum transfer and with large momentum transfer. The
layer distance required to achieve convergence in these cases is impossible to compute,
due to the supercell size, but the direction of the convergence is visible with the here
used layer distances.
This finding underlines the fact that for a monolayer either of the two (absorption
spectrum or loss spectrum) describes the correct energy loss, if the layer distance is
chosen large enough for the spectrum to be converged (Sec. 4.3.1). For completeness
the convergence behavior with and without LFE can be found in Sec. D.2.
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(a) This graph shows EELS for MoS2 without any momentum transfer projected onto the
in-plane direction including LFE calculated for different interlayer distances. A very
slow convergence towards the absorption spectrum is visible.
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(b) This graph shows the absorption spectrum for MoS2 without any momentum transfer
projected onto the in-plane direction including LFE calculated for different interlayer
distances. A very fast convergence is evident. This can be used to simplify calculations.

Figure 4.16: EELS spectrum and absorption spectrum of MoS2 without momentum
transfer
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Å

layer distance 12.3 Å
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(b) This graph shows the absorption spectrum for MoS2 with 0.23 1
Å momentum transfer

including LFE calculated for different interlayer distances. The convergence is slow.

Figure 4.17: EELS spectrum and absorption spectrum of MoS2 with 0.23 1
Å momentum

transfer
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(b) This graph shows the absorption spectrum for MoS2 with 0.023 1
Å momentum transfer

including LFE calculated for different interlayer distances. The convergence is slow.

Figure 4.18: EELS spectrum and absorption spectrum of MoS2 with 0.023 1
Å momentum

transfer
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Summation with different mesh densities

Taking into account the convergence behavior described in the previous section the
spectrum at the Γ point is treated as the absorption spectrum, whereas the spectrum
at all other momentum transfers is treated as the loss spectrum. This gives a good
result already for small layer distances.
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Figure 4.19: Comparison and convergence of different k-point grids with the Γ point
treated explicitly (MoS2). The summation over the full Brillouin zone
for a 20× 20 (orange), 60× 60 (blue), 100× 100 (purple) and 180× 180
(green) grid are shown.

To achieve a precise result, the layer distance has to be increased until the k-point
closest to Γ is converged.
Fig. 4.19 shows the momentum summation for different grid densities. The used
grid evenly spans across the first Brillouin zone. Except from the spectrum at the Γ
point, all spectra are calculated using the loss function. The spectrum without any
in-plane momentum transfer is calculated using the absorption function, due to the
before discussed convergence behavior with interlayer distance. The high energy part
(25 eV to 50 eV) of the shown curve converges quickly with an increasing density of the
summation mesh, whereas the low energy region does not. This is especially evident
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Figure 4.20: Comparison of the experimental spectrum of MoS2 (orange) recorded
by our collaborators from the University of Limerick [53] and the EELS
summation (blue) using a 100×100 grid of k-points summed for the full
Brillouin zone.

between 0 eV and 10 eV. The reason for the slow convergence is the strongly varying
dielectric function around the Γ point that requires a very fine summation mesh to be
used. Here, this is especially obvious, since the spectrum for the smallest momentum
transfer (not at Γ point) is not converged for the used interlayer distance of 36.9 Å.
The finer the mesh is chosen, the smaller this smallest momentum transfer becomes.
The smaller the momentum transfer for which the spectrum is calculated using the
loss function, the more vacuum would have to be used. When comparing the summed
up energy loss to the experimental spectrum (Fig. 4.20), the difference between the
two is also due to the spectra, used for the summation, that are not converged with
respect to the interlayer distance. Nevertheless, the overall agreement is good, and
the only major difference is the lack of intensity between 4 eV and 7 eV. The plot of
Fig. 4.18a shows the spectrum for the smallest momentum transfer (not 0) included
in the summation (100×100 grid), as used for the comparison. The next challenge is
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to make sure that each individual spectrum used for the summation is converged by
using a sufficient amount of layer distance.

Mixing different layer distances

The aim is to use a mixture of calculated spectra with different layer distances to
achieve a well converged final result for the summation over a range of momentum
transfers. So, combining the dataset from the previous section (36.9 Å, 100×100) with

Figure 4.21: Comparison of the experimental spectrum of MoS2 (orange) recorded by
our collaborators from Limerick [53] and the EELS summation (blue)
using a combined dataset for different vacuum distances. 100×100 grid of
k-points summed for the full Brillouin zone.

a dataset around Γ (to be precise — around (0,0,ω/v) in reciprocal space) with 123 Å
layer distance, delivers a well converged spectrum along the whole energy range. To
combine these two datasets one has to scale the individual contributions according
to the added vacuum. For the comparison to experimental findings (Fig. 4.21), the
experimental spectrum is scaled in intensity according to the peak around 12 eV and
shifted to align the band gap. Fig. 4.21 shows a summed up loss spectrum that has a
very good agreement with the experimentally measured one across the whole energy
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range. The low energy excitations, as well as the main plasmon peak, are calculated in
agreement with the experiment.
The efficiency of the calculation can be further improved by using a fine grid around
the Γ point, where the dielectric function is strongly varying, and a coarse grid further
away, where the change between different momentum transfers is small. In this case
the surface element (for the summation) has to be scaled according to the used grid.

Combining the summation and the extrapolation scheme

Extrapolation to infinite layer distances allows us to achieve a very fast convergence
across all momentum transfers and energy ranges (Eq. (4.3.58)). Finally, this will be
combined with the summation expression in this chapter (Eq. (4.4.25)). Here, a layer
distance of 24.6 Å is sufficient. This scheme for calculating EELS spectra will be used
in all following calculations. Fig. 4.22 shows a very favorable agreement between the
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Figure 4.22: Comparison of experimental EELS Data for MoS2 [53] and the extrapolated
and summed loss function for 24.6 Å as well as the absorption function
( Im (ε)) without momentum transfer.

summed and extrapolated loss spectrum and the experimental measurement. A signifi-
cant improvement for the agreement with experiment in comparison to the absorption
spectrum (and loss spectrum without momentum transfer Fig. 4.16a) is evident.
The summation of multiple momentum transfers depends on the speed of the electrons
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used for the individual spectra (Eq. (4.4.4)), the maximum momentum transfer in
the summation (Sec. 4.4.1), and the grid density. Fig. 4.23 and Fig. 4.24 show the
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Figure 4.23: Impact of (convergence) quantities on the summed and extrapolated loss
spectrum of MoS2.

influence of these three quantities using the MoS2 monolayer as an example. A layer
distance of 36.9 Å is used as well as the extrapolation to infinite layer distance.

In Fig. 4.24 the dependence on the electron velocity is shown without the prefactor
of 1

v2 , since it results in an overall scaling but does not change the peak structure.
Fig. 4.24a shows that the impact of different electron velocities is significant in the
low energy region. The higher energy region, starting from 15 eV, is only marginally
changed. This behavior can be understood from Eq. (4.4.4) — the influence of the
out-of-plane momentum transfer, determined by the electron velocity and energy loss,
is high for small in-plane momentum transfers, which govern the low energy excitations.
Therefore, the impact of the electron speed is mostly visible in the low energy region.
Fig. 4.24b shows the same spectra but scaled according to the maximum intensity to
focus on the relative change of the peak structures. It shows that the peak around
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Figure 4.24: Influence of the speed of the electrons on the summed up spectrum —
prefactor of 1

v2 is left out to focus on the peak structure.

12 eV becomes more pronounced for lower electron velocities, since the impact of large
momentum transfers grows in comparison to small momentum transfers. The graph
makes clear that the influence of the electron speed is mainly visible in the ratio of
the two main excitation peaks, rather than in the overall structure that is nearly
unchanged.

4.4.3 Application to other 2D materials

In a further step the combined method of extrapolation to infinite layer distance and
summation over multiple momentum transfer will be applied to two other monolayer
materials. First graphene, which has no band gap and then hBN, which has a large
band gap. So, in combination with the results for MoS2 (small band gap), the results are
verified for a range of monolayer materials. Here, a grid point density for the summation,
corresponding to an equidistant 100×100 grid of the 2D Brillouin zone, is used. As the
momentum dependent prefactor falls off quickly with increasing momentum transfer, it
is sufficient to truncate the set to 20×20, while leaving the k-point density unchanged.
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Hexagonal boron nitride (hBN)

The absorption function without momentum transfer for hBN (Fig. 4.25, orange curve)
shows a shift and missing intensity of the main plasmon peak at 15-25 eV, compared to
the experimental spectrum. This difference is resolved when applying the summation
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Figure 4.25: Comparison of experimental EELS Data for hBN [54] and the extrapolated
and summed loss function as well as the absorption function ( Im (ε))
without momentum transfer.

and extrapolation scheme. All three spectra are scaled in intensity according to the
summed curve. The spectrum for each momentum transfer on the grid is added up

— the maximum momentum transfer taken into account is 0.5656 1
Å . Taking larger

contributions into account has been tested and changes the result only marginally. The
calculations are done for a layer distance of 50.35 Å.

Graphene

Comparing the experimental spectrum, the absorption function, and the summed
extrapolated loss function the two main peak positions do agree for all three spectra.
Only their intensities are different. The correlation between the summed extrapolated
loss function and the experimental spectrum is very good. Similar to hBN and MoS2,
the lack of intensity between the absorption spectrum (15-25 eV) and the experimental
spectrum is corrected by the introduced scheme. The maximum momentum transfer
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Figure 4.26: Comparison of experimental EELS Data for graphene [55] and the ex-
trapolated and summed loss function as well as the absorption function
( Im (ε)) without momentum transfer.

used for the summation is 0.5752 1
Å . Each spectrum is calculated with a layer distance

of 50.95 Å.
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Chapter 5
EELS calculation for implanted
systems
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In the following, the developed techniques for extrapolation to infinite layer
distances and integration over multiple momentum transfers will be applied to larger
systems including defects. First of all, we will make sure that the spectrum calculated
for the supercell is actually comparable to the primitive unit cell. This is important for
a good comparison of the defect system to the pristine system, that is not necessarily
calculated with the same supercell size.

5.1 The dielectric function in the supercell approach
The calculated spectrum for a pristine supercell should in principle be the same as for
the pristine unit cell. This can only be achieved, if all computational parameters are
well converged or similarly chosen for the two systems. The k-point grid has to be kept
constant in density (this means a reduction of the number of k-points in supercell), the
energy up to which empty states are included should also stay constant (this means
increasing the number of empty states included in the supercell calculation). Also, the
grid for summation over multiple momentum transfers has to be adapted similarly
to the k-point grid. Most importantly the energy mesh has to be chosen fine enough
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for both calculations to be converged, otherwise the structure of the spectrum is not
sampled with sufficient accuracy.
In the current implementation, only points in the first Brillouin zone are used. This
means that the maximum momentum transfer taken into account is limited. Since the
integrated spectrum converges quickly with the maximum momentum included, this
is no problem for the sizes of supercells used here. However, in the case of very large
supercells this implementation would have to be extended. In Fig. 5.1, the comparison
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Figure 5.1: Comparison of calculated EELS for MoS2 in a simple unit cell (dark orange)
and in a 3×3 supercell (blue). Special care was taken to converge all
computational parameters and the mesh for summation so that the results
are comparable. Also, the maximum momentum transfer included in the
integration is the same for both cases.

between an EELS calculation in a simple unit cell (orange) and in a 3×3 supercell
(blue) is shown. The here used parameter set for integration of momentum transfers
corresponds to 25×25 (5×5 in the outer region) k-points for the supercell and 75×75
(15×15 in the outer region) for the primitive cell. Furthermore, the energy mesh on the
imaginary axis consists of 400 points between 0 Htr and 5 Htr with an exponentially
increasing spacing. The number of empty states is increased from 200 to 1300, this is
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roughly compensating the number of additional states due to the larger unit cell - as a
result the same maximum energy is used in both setups.

5.2 Tool for visualization
A GUI (graphical user interface) tool based on MATLAB has been designed to fulfill
the task of summation for more complex datasets.

Figure 5.2: Screenshot of the GUI for visualization of EELS spectra. A plotting process
of the integrated EELS spectrum of MoS2 in comparison to the experimental
spectrum is shown. In the upper area, a plot of the irreducible wedge (red)
and the integration maximum (grey) is visualized.

It allows us to automatically combine datasets with different resolutions and
vacuum distances. Furthermore, it allows the selection of the included momentum
range, the acceleration voltage, kind of spectrum (absorption spectrum, loss spectrum,
extrapolated spectrum), plotting range, and the comparison to experimental datasets.
The output is possible as a text file or PDF file ready for presentation. A detailed
description with instructions to the download can be found in the appendix (Appx. B).

5.3 EELS signature of defect states
In the following, the developed tool will be used to apply the integration and extrapo-
lation scheme to supercells including defects. Here, a selection of the materials already
investigated in Sec. 3.5 will be used to identify the signature of defect states in EELS
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spectra. Also, the absorption spectrum is shown where useful to emphasize the effect
on the optical properties.

5.3.1 MoS2+P

In Sec. 3.5.1, a defect state is identified close to the Fermi level (Fig. 3.26). From the
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Figure 5.3: Comparison of calculated EELS for MoS2+P and the pristine MoS2, both
including the extrapolation and integration scheme. Both calculations
are done in a 3×3 supercell. The metallic character of the phosphorus
implantation is clearly visible.

unfolded band structure itself, one can only see that at a certain energy there is an
electronic state, but one cannot be sure which transitions from the conduction band or
valence band are possible. Here, the transition elements are evaluated to find exactly
this: the possible transitions. To make the comparison as accurate as possible, the
defect calculation and the calculation for the pristine system have been performed
with exactly the same parameter set in a 3×3 supercell. The comparison could have
been done with the primitive cell as well, but since the 3×3 supercell has already been
calculated before, it is also used here. In Fig. 5.3, the additional transitions due to
the defect states are directly visible. The peaks within the band gap of the pristine
MoS2 are most likely caused by transitions involving the defect level. Also, its metallic
character is evident, since for the energy towards 0 the intensity tends to infinity. It
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is remarkable that the EELS spectra above the band gap energy (pristine MoS2) are
nearly identical, with only little influence from the defect. The only observation is a
smeared out spectrum, due to the distortion of the lattice. This is to be expected,
since the avoided crossings, visible for the band structure at higher energies, will cause
more possible transitions but not change the overall peak structure.
The same comparison can be made for only the absorption spectrum, so only Im (ε)
at k = 0 is plotted. Fig. 5.4 is focused on the very low energy region (below 10 eV),
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Figure 5.4: Comparison of calculated absorption function for MoS2+P and the pristine
MoS2. Both calculation are done in a 3×3 supercell. The metallic character
of the phosphorus implantation is clearly visible.

of which the lower half is most relevant to optical transitions. Here, the intensity
peaks (below 1 eV) caused by transitions between the defect states and different valence
band levels can be seen separately. Overall, the absorption spectrum (Fig. 5.4) looks
very similar to the extrapolated and integrated loss spectrum (Fig. 5.3). This, again,
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supports the fact that most of the low-energy transitions are already sufficiently shown
for this material without including additional momentum transfers in the loss function.

5.3.2 MoS2+Cr+S

The following chromium defect is described in Sec. 3.5.4 including a band structure plot
showing the defect levels within the band gap (Fig. 3.32). The band structure (Fig. 3.31)
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Figure 5.5: Comparison of calculated EELS for MoS2+S+Cr (5×5 supercell) and the
pristine MoS2 (3×3 supercell). The influence of the defect is clearly visible.

shows two very pronounced defect states, one about 900 meV below the conduction
band minimum and another one 200 meV below the conduction band minimum. The
shallower defect state actually hybridizes with the host band minimum at the K point,
therefore reducing the band gap rather than introducing a distinct level. The influence
of these defect levels on the loss spectrum (Fig. 5.5) as well as on the absorption
spectrum (Fig. 5.6) can be clearly seen as two distinct features. On the one hand, an
additional peak at the position of the mid-gap defect state is introduced, on the other
hand the first excitation peak of the pristine material is shifted to a lower energy.
One should note that for the summed and integrated loss spectrum the maximum
momentum transfer taken into account is limited to the first Brillouin zone of the
5×5 supercell. Therefore, the momentum transfer in the pristine calculation (3×3
supercell), has also been limited to the same maximum to allow for the comparison.
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Figure 5.6: Comparison of calculated absorption function for MoS2+S+Cr (5×5 super-
cell) and the pristine MoS2 (3×3 supercell). The influence of the defect is
clearly visible.

Without this additional limitation, the two spectra would show a larger discrepancy
in the peak around 12 eV. All differences due to the two unit-cell sizes are taken into
account: k-point grid, number of empty states etc.

5.3.3 MoSe2+Cr in several configurations

During the implantation process of a chromium atom into MoSe2, the possibility to
control the exact position of chromium by the ion energy is limited. Therefore, it is
necessary to investigate the final configuration after the implantation. Besides using a
TEM and EELS measurements, it is also possible to differentiate the type of defect with
photoluminescence measurements. Here, the comparison in Fig. 5.7 of the absorption
functions for various chromium in MoSe2 configurations is supposed to give a guide to
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the interpretation of measured data. Fig. 5.7 shows an interstitial chromium atom, a
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Figure 5.7: Comparison of calculated absorption function for pristine MoSe2 (5×5 su-
percell) and MoSe2+Cr (5×5 supercell) in various positions of the crystal
structure (interstitial, Se substitutional, Mo substitutional, and Se substi-
tutional with additional Se). The influence of the different defects is clearly
visible.

chromium atom substituting selenium, a chromium atom substituting molybdenum,
and a chromium atom substituting selenium with an additional selenium atom on
top. The effect of the defect states shown in Sec. 3.5 can be clearly seen. It should
be noted, that the DFT calculation preceding the SPEX run of MoSe2+Cr+Se is,
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for computational reasons, calculated with a similar parameter set as the MoSe2+Cr
(interstitial) DFT calculation, which in this case means underconverged parameters.
The band structure corresponding to this underconverged parameter set (Sec. C.2)
can be found in Fig. D.3. The important defect state has the same energy for both
parameter sets.

5.4 Optical transition elements
Until this point, much effort has been put into calculating spectra (EELS and optical).
These can be measured in experimental setups, but, when engineering electronic and
optical properties by introducing defects, it is also interesting to ask the question of
where exactly the possible transitions have their origin.

To calculate the dielectric function possible transitions are ”added up” in RPA.
Here in Fig. 5.8, the transition elements are shown on top of the band structure.
The thickness of each line corresponds to the size of the transition element, with
the according color representing the transition energy. The plot is done for direct
transitions, so without any momentum transfer. It is not surprising but nice to see
this explicitly that the strongest transition is at the K point.
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Chapter 6
Conclusions

This Aim: Single
photon emission

work focuses on the investigation of monolayer materials with ab-initio elec-
tronic structure methods. Monolayer thick samples of transition-metal dichalcogenides
(TMDs) have shown remarkable physical properties like spin-valley locking and a direct
band-gap that could be used for single photon emission. To create single photons from
a TMD monolayer, the emission has to be confined to a single atomic site under the
collection lens, restricting it to one photon at the time. This can be achieved with
the aid of suitable defect atoms that locally modify the electronic potential but also
preserve the spin-valley locking property in order to control the chirality of the emitted
photon. Instead of a single dopant also a small area with a reduced band gap, close
to the exciton Bohr radius, can localize the emission. To experimentally evaluate the
success of a implantation procedure, spectroscopy methods like electron energy loss
spectroscopy (EELS) in a transition electron microscope (TEM) and photoluminescence
measurements are applied. Methods in computational solid state physics bring us into
the position to predict the electronic characteristic of certain implanted systems, so
that only the most promising candidates must be tested experimentally. Therefore,
the aim of this work is to develop and apply the required computational methods for
the prediction of defect properties in monolayer thick samples.
In this work, an unfolding scheme is used to reveal the influence of possible defects on
the material within the band structure. Furthermore, a summation and extrapolation
method is developed to theoretically predict the spectrum for a two-dimensional mate-
rial in an EELS experiment.

The Modeling of
defect systems

calculation of a crystal with a defect, employing a software based on periodic
boundary conditions, is performed in a supercell consisting of a defect embedded in
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multiple pristine unit cells. For the calculation of an isolated defect, the supercell is
chosen large enough so that the interaction between periodic images of the defect atom
is sufficiently suppressed.

SinceUnfolding the
supercell band

structure

the supercell is much larger than the primitive unit cell, the folded band
structure of the supercell appears very different from the band structure of the primitive
unit cell, even tough it describes the same (when calculated without a defect) or a
slightly distorted system (when a defect is present). Therefore, an algorithm is devel-
oped to unfold the band structure from the small Brillouin zone of the supercell to the
large Brillouin zone of the pristine unit cell. In this work, an algorithm by Rubel and
coworkers [13] has been extended to the LAPW basis and implemented within the Fleur
code [10], which is developed at the Peter Grünberg Institut of the Forschungszentrum
Jülich. The implementation allows for the unfolding of supercell band structures in
all three dimensions. This means that the unfolding for a bulk system (all three
dimensions), as well as a monolayer system (only two dimensions (in-plane)), or a
system stacked in one direction (only one dimension) is possible. Additionally, the
implementation allows for the unfolding of rotated supercells with respect to the pristine
unit cell. This is especially helpful in the case of surface states. Furthermore, the
implementation has been extended to the wave functions used in the Fleur code for the
calculation of SOC in 2nd variation. For calculations including defects, it is now possi-
ble to automatically have the unfolded band structure as an output from the Fleur code.

TheNew insights
from unfolded

band structures

unfolded band structure directly compares to the one from experimental
measurements. Comparing these two band structures improves the interpretation
of measurements, as an identification of measured states is simplified. Besides the
importance for experimental comparison, it allows for a significantly better understand-
ing of the calculated band structure. High symmetry points of the pristine unit cell
with certain properties (direct band gap, spin-valley locking) can be related to the
corresponding high symmetry point of the defect system. This algorithm was applied
to a variety of defect systems of interest to the collaboration this thesis is part of:
MoS2+(Se, P, Cr in various positions of the lattice, and a vacancy), MoSe2+(S, P, Cr
in various position of the lattice, and a vacancy), and WSe2+S.

EELSEELS spectra in
simulation

measurements allow us to investigate the possible excitations of a system.
This technique is used to verify the type of defect and its suitability for single photon
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emission. It is possible to predict the measured spectrum utilizing the random-phase
approximation (RPA). The treatment of monolayers with a code that requires 3D
periodic boundary conditions requires supercells of empty space modelling the vacuum
in the out-of-plane direction, which has to be chosen large enough for the layers to be
electronically decoupled.

The Developed
extrapolation
scheme for
EELS

energy loss spectrum obtained from the dielectric function calculated with
RPA shows a very slow convergence with respect to this interlayer distance due to the
long-range Coulomb interaction, therefore requiring very large unit cells. To reduce
the computational effort and thus allow for the treatment of larger supercells in lateral
direction, the development of an extrapolation scheme to infinite layer distance is
necessary. This scheme is based on ideas by Nazarov [52, 56] and re-derived for the
present case of the loss function.

The Adding
momentum
transfer to the
EELS spectrum

EELS spectrum that is measured in a TEM includes electrons with a range of
momentum transfers, since the electrons are collected in a finite aperture after passing
through the probe. This implies that the loss function has to be calculated for all these
different momentum transfers and summed accordingly. Here, the treatment of the
area around Γ in reciprocal space requires the derivation of an integration formula due
to the strongly varying loss function in this region (typically six orders of magnitude).
The development of the extrapolation scheme together with the summation scheme
puts us in the position to calculate a well converged EELS spectrum comparable to
the experimentally measured one.

This Successful
agreement with
experimental
EELS spectra

has been demonstrated for the prototypical monolayer materials of MoS2

(semiconductor), graphene (semimetal), and hexagonal BN (insulator). Especially for
MoS2, the inclusion of these two schemes is necessary to achieve a simulation result that
is in agreement with the experiment, in contrast to the spectrum without including
momentum transfers. The EELS spectrum is also calculated for the defect systems
of MoS2+P and MoS2+Cr. Additionally, this method allows for the calculation of a
momentum resolved EELS curve with finite resolution, since the limiting momenta
for the summation can be chosen according to the experimental setup. The resulting
spectra can not only be used to help interpret experimental measurements, but also to
predict the influence of certain materials implanted in the system and only investigate
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the most promising candidates that could facilitate single photon emission.

TwoTwo standalone
tools developed

standalone tools based on MATLAB have been developed to automatize the
unfolding of supercell band structures and the calculation of EELS spectra including
the summation and extrapolation scheme. These tools are available as described in
Appx. A and Appx. B.

TheImpact on
method

development
and

understanding
of TMD

monolayer
defects

main result from this thesis is, on the one hand, the algorithm for unfolding
a supercell band structure that allows for a meaningful interpretation and a direct
comparison to experiments. On the other hand, the calculation of EELS spectra for
monolayer materials has been extended with a momentum summation and extrapolation
scheme. This results in a computationally efficient calculation of spectra that are
directly comparable to EELS measurements in a TEM as they incorporate all the
different momentum transfers included in the experiment. This has been demonstrated
for multiple materials among which are graphene, hBN, and MoS2. It has also been
applied to the doped systems of MoS2+P and MoS2+Cr.

The presented results have found defect states in MoS2/MoSe2+Cr (in various
positions of the crystal) that fall into the band gap as well as a local modification of
the band gap in MoSe2+S. These local defects give rise to a reduction of the energy
gap, which may be able to trap excitons and thus confine the photon emission in
real space. At the same time, these defect atoms seem not to break the spin-valley
locking property of the TMD host material, which is necessary to eventually control
the polarization of the emitted photon by the spin of the excited electron. Thus, we
conclude that these are promising candidates for the construction of electrically driven
single photon sources with known polarization.

InFurther
extensions and

applications

future research, this work can be extended by including more precise methods
like GW , which corrects the band energies by including a many-body self-energy, or solv-
ing the Bethe-Salpeter equation, adding excitonic contributions to the spectrum. Also,
the developed method can be applied to all band structure calculations that include
supercells. The calculations of EELS spectra can be further put to use for all systems,
especially monolayer materials, where the extrapolation scheme plays an important role.
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Appendix A
Tool for plotting band structures

The tool for plotting band structures is written in MATLAB as an app but can
be exported as a standalone software. It is publicly available from the git repository for
tools in our institute https://github.com/JuDFTteam/masci-tools/tree/develop/
masci_tools/tools/banddos_tool. It can either be loaded as an app into MATLAB,
exported as a standalone software, or edited within MATLAB.
The graphic interface (Fig. A.1 consists of two plotting areas, several optional switches,
the input selection, and a button to start the plotting procedure. A description of the
most important functions is given below.
Depending on the size of the system to be plotted, it can take several minutes for
the file system to scan the whole banddos.hdf (can be several GB) file from Fleur
and extract the data needed for the plot. The plotting procedure is started with a
click on the button ”update”. The top left area, below the file selection box, shows
the atomic structure including a color coded visualization of the atom groups. This is
important for the top right area, where additional properties of the band structure can
be defined. It is possible to plot only the energy levels connect to the muffin-tin sphere
of a certain atom group and thereby analyze the real space properties of parts of the
band structure. In addition, also the orbital character of the states can be selected.
Since the tool allows for a fast testing of different settings, it is easy to find the orbital
character of a certain band, needed as an input to construct Wannier orbitals. In
the same area, there is also a ”tick-box” to differentiate the contribution of the two
different spins along the selected spin quantization axis (in Fleur) in the case of SOC.
The ”unfold bandstr” button adds the unfolding weights to the plot in order to plot a
supercell band structure.
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Figure A.1: Screenshot of the GUI for visualization of unfolded band structures. A
plotting process of MoS2 with a P defect is shown. In the upper area, a
plot of the atom groups helps to select a projection onto one.

The area to the right of the band structure plot is concerned with the settings for the
band structure plot of which most are self-explanatory. There is the option to show
the folded band structure in the background and highlight certain states (selected by
the band index from Fleur). Also, the point size of the shown plot and the one of the
exported plot are selectable. The exported band structure is saved as a PDF file with
the correct label for the high symmetry points. Furthermore, it is possible to export
the plot as an ordinary text file, so that one can use it for any other plotting tool as
an input. In the bottom right corner, there are options to include a band structure
file from SPEX in order to compare or replace the energy levels from Fleur. To create
the input for this, the option ”write qpts for spex” helps to create the needed band
path input for SPEX. Finally at the bottom, there is the option to plot a second band
structure into the same plot in order to compare it. This can be useful when comparing
a defect band structure and a pristine one.
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Appendix B
Tool for plotting EELS

For the calculation of EELS spectra the developed methodology of extrapolating
to infinite layer distance and summing over multiple momentum transfers is imple-
mented in a standalone MATLAB app. It is available from https://github.com/

Figure B.1: Screenshot of the GUI for visualization of EELS spectra. A plotting
process of the integrated EELS spectrum of MoS2 in comparison to the
experimental spectrum is shown. In the upper area a plot of the irreducible
wedge (red) and the integration maximum (grey) is visualized.

JuDFTteam/masci-tools/tree/develop/masci_tools/tools/EELS_tool as a MAT-
LAB app installer and as a source file.
This app uses the output from multiple runs of SPEX as an input. The different runs
of SPEX calculate the dielectric function for different momentum transfers. The list of
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points in reciprocal space that are equally spaced can also be calculated with SPEX.
The app contains a feature in the bottom right corner to cut out all mesh points from
such a list that exceed a maximum momentum transfer given as input. Furthermore,
the app uses the basis.hdf file from Fleur as an input to read the information about
the crystal cell. At the top of the graphical user interface (Fig. B.1) the information
on the input folder and calculation settings are given. The upper plot shows a map of
the points in reciprocal space that define the different momentum transfers used. To
the left of this plot there are setting to include the results from an experiment as a
comparison (exp_data.txt). The corresponding curve can be shifted and scaled. In
the middle there are settings for the maximum and minimum momentum transfer used
for the summation and an option to only plot the result for one certain momentum
transfer. Since the speed of the electron influence the loss spectrum, this should also
be given as an input in the according field. It is possible to select different summation
prefactors, but the one corresponding theory is selected as a default. Also, the setting
for including the spectrum at the Γ point in the in-plane direction as Im (ε) and
in the out-of-plane direction as Im (1

ε
)are selected by default. Instead of using the

extrapolation scheme ”mixed”, there is also the option to just look at the absorption
spectrum or the loss spectrum. Similar to the band structure plotting tool, it is possible
to set basic parameters for the plot, use a PDF export, or use a text file export. Next
to the ”update” button there is the option to ”hold”, keeping multiple runs of the tool
visible in the plotting window for comparison.
The tool also allows the usage of an additional k-point set. This can be helpful when
combining a fine grid around the Γ point with a coarse grid everywhere else in the
Brillouin zone. Either all calculations up to a certain maximum momentum transfer
are replaced or just at the points that did exist in the coarse dataset.
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C.1 Self-consistent DFT calculations
All calculations in this work require a converged self-consistent DFT run. For a spatial
relaxation this is done several times after each change of the atomic positions. For band
structure and EELS calculations it serves as a starting point. All DFT calculations
have been done with the Fleur code. The default input parameter created by the
input generator of the release version MaX 5.0 have been used. In the case of spatial
relaxation the muffin-tin radius is adapted automatically by Fleur so that the muffin-tin
spheres don’t crash. When the calculation is then started with the relaxed positions
they are again chosen by default. The band structures are calculated for 320 k-points
unless something different is noted. Here, the input file for the input generator of the
relaxed pristine MoSe2 is included as an example.

&input film=F cartesian=f symor=t/
0.5 -0.5 0.0 ! a1
0.5 0.5 0.0 ! a2
0.0 0.0 1.0 ! a3
6.2039733 ! lattice constant
1.0 -3.0 3.9348 ! scale
3
42 0.333333 0.666667 0.125
34 0.666667 0.333333 -0.00523187248
34 0.666667 0.333333 0.25523186614
&factor 1.0 1.0 1. /
&end /

A description of this file format can be found in the Fleur manual at flapw.de. Ch. 1
includes a MoSe2 bulk and monolayer band structure for demonstrational purpose that
is done without spatial relaxation using a lattice constant of a = 3.2917 Å. All input
files are available upon request.

C.1.1 Crystal structure of pristine systems

For the pristine systems of MoS2, hBN, and graphene the following unrelaxed structures
are used.

MoS2: The lattice constant of the layered bulk system (a = 3.15 Å [57]) is used. The
monolayer consists of a Mo layer sandwiched between two S layers. The bulk structure

C Computational parameters150

flapw.de


is used with additional vacuum in between the layers to construct the monolayer. This
layer distance is mentioned next to the respective plots. The sulfur layer is allowed to
relax in perpendicular direction up to a residual force of 5 · 10−2 eV/Å. The relaxed
positions of the sulfur layers are at c(1/4− z) and c(z − 1/4) relative to the Mo layer
with the bulk lattice constant c = 12.3 Å and the internal lattice parameter z = 0.124.
This is in good agreement to the experimental and theoretically optimized structure of
the bulk phase [58].

hBN: For hBN the monolayer is one atom thin, so relaxation in perpendicular direc-
tion does not make sense. The lattice constant of the layered bulk system of a = 2.504 Å
[59] is used.

graphene: For graphene the monolayer is also one atom thin. The lattice constant of
the layered bulk system of a = 2.462 Å [60] is used.

C.2 EELS calculations
EELS calculations consist of two sets of parameters. First the parameters for the
RPA based dielectric function and then the set of parameters for the integration over
multiple momentum transfers. The latter one is mentioned next to the individual plots.
The dielectric function is calculated from the polarizability (Eq. (2.3.3)) for which the
calculation involves a summation over occupied and unoccupied states and in reciprocal
space also k-points. The number of empty states used and the number of k-points
depends on the atom type and unit cell size. In reciprocal space the tetrahedron
method [61] is used to interpolate between the k-points. Unless noted otherwise, the
following parameters were used:

MoS2: A k-point grid of 12×12×1 and 190 bands are used.

hBN: A k-point grid of 42×42×1 and 190 bands are used.
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graphene: A k-point grid of 42×42×1 and 190 bands are used.

MoS2+Cr+S: A k-point grid of 5×5×1 and 1800 bands are used.

MoS2+P: A k-point grid of 8×8×1 and 1300 bands are used.

MoSe2+Cr in several configurations A k-point grid of 5×5×1 and 1800 bands are
used for all calculations of this type. Additionally, the DFT calculation (preceding
the SPEX run) for MoSe2+Cr+Se has been done with similar cutoff and convergence
parameters as the MoSe2+Cr (interstitial) DFT calculation (parameters in the Fleur
input file: mtSphere radius Se=1.93, mtSphere radius Cr=1.73, mtSphere radius
Mo=1.73 (MoSe2+Cr (interstitial)), mtSphere radius Mo=1.373 (MoSe2+Cr+Se),
Kmax=3.6, and Gmax=10.8)(converged parameter set for MoSe2+Cr+Se: mtSphere
radius Se=1.93, mtSphere radius Cr=1.93, mtSphere radius Mo=2.32, Kmax=4.1, and
Gmax=12.3). This increases the comparability and reduced the computational cost.

Additionally, a very fine energy mesh on the imaginary axis has been used as
defined with the according graphs. For the analysis of the pristine systems a frequency
(ω) mesh between 0 and 2 htr has been employed with an increment of 0.005 htr and a
total number of 401 frequency mesh points. Furthermore, two setting to speed up the
calculation were used, so that an exemplary input for MoS2+Cr+S of SPEX looks like
the following (description can be found at [17]).

##################
### Input file ###
##################
BZ 5 5 1
JOB DIELEC +:{0:1.1,0.002}/10
ITERATE SR
STOREIBZ
NBAND 1800
MEM 400000
SECTION WFPROD
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FFT 6
END
SECTION MBASIS
OPTIMIZE MB 3.2

END
SECTION SUSCEP
HILBERT 400 30

END
RESTART 03000
KPT +=(0,.06666,0)

C.3 List of materials (supercells)
In the following the full specification of the unit cells (including the defect systems) is
given. The unit cells described are the ones after spatial relaxation, meaning the ones
used for the band structure and EELS calculations.
To make usage in other tools and for further research as easy as possible the common
XSF format is used. This can be directly copied to several other tools. The relevant
part of the format used here is described in the following. The file for MoS2+P is used
as an example:
Following the first two initial lines the lattice vectors are given. Each row corresponds to
one primitive vector. The coordinates are given in Angstrom. This block of three rows
is followed be the coordinates of the atoms. Starting with the word ”PRIMCOORD”
and followed by the next line stating the number of atoms (27) and the number (1)
that can be ignored. The atoms are defined per row, First the ordering number in the
periodic system (42) and then the Cartesian coordinate in Angstrom. If forces on the
atoms would be included, these would follow in the same row in Cartesian coordinates
in the units of Hartree per Angstrom.

C.3.1 MoS2+P

CRYSTAL
PRIMVEC

4.7249996 -8.1839394 .0000000
4.7249996 8.1839394 .0000000
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.0000000 .0000000 12.2999990
PRIMCOORD

27 1
42 .0000000 1.8223358 1.5782739
42 -1.5781891 -.9111679 1.5782739
42 1.5781891 -.9111679 1.5782739
15 .0000000 .0000000 -.0048391
16 .0000000 .0000000 3.1535600
42 1.5794465 4.5440658 1.5778761
42 -1.5794465 4.5440658 1.5778761
42 .0000000 7.2797473 1.5778761
16 1.5781468 2.7266448 -.0048654
16 -1.5722703 -2.7300376 -.0048654
16 1.5722703 -2.7300376 -.0048654
16 3.1504171 .0033928 -.0048654
16 -1.5781468 2.7266448 -.0048654
16 -3.1504171 .0033928 -.0048654
16 1.5866501 2.7277299 3.1563438
16 -1.5689583 -2.7379443 3.1563438
16 1.5689583 -2.7379443 3.1563438
16 3.1556085 .0102144 3.1563438
16 -1.5866501 2.7277299 3.1563438
16 -3.1556085 .0102144 3.1563438
42 3.1539076 1.8209094 1.5721834
42 .0000000 -3.6418188 1.5721834
42 -3.1539076 1.8209094 1.5721834
16 .0000000 -5.4559596 -.0093940
16 .0000000 -5.4559596 3.1520273
16 .0000000 5.4559596 .0016686
16 .0000000 5.4559596 3.1500959

C.3.2 MoS2+Cr (@ Mo)

CRYSTAL
PRIMVEC
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7.8749994 -13.6398991 .0000000
7.8749994 13.6398991 .0000000
.0000000 .0000000 12.2999990
PRIMCOORD

75 1
24 .0000000 .0000000 .0000000
16 .0000000 -1.7434048 -1.5278856
16 .0000000 -1.7434048 1.5278856
16 1.5098328 .8717024 -1.5278856
16 1.5098328 .8717024 1.5278856
16 -1.5098328 .8717024 -1.5278856
16 -1.5098328 .8717024 1.5278856
42 1.5639396 2.7197356 .0000000
42 -1.5733903 -2.7142792 .0000000
42 1.5733903 -2.7142792 .0000000
42 3.1373299 -.0054564 .0000000
42 -1.5639396 2.7197356 .0000000
42 -3.1373299 -.0054564 .0000000
42 3.1470079 5.4508060 .0000000
42 -3.1470325 -5.4507918 .0000000
42 3.1470325 -5.4507918 .0000000
42 6.2940405 -.0000142 .0000000
42 -3.1470079 5.4508060 .0000000
42 -6.2940405 -.0000142 .0000000
16 3.1424306 3.6269202 -1.5755363
16 3.1424306 3.6269202 1.5755363
16 -1.5697897 -4.5348848 -1.5755363
16 -1.5697897 -4.5348848 1.5755363
16 1.5697897 -4.5348848 -1.5755363
16 1.5697897 -4.5348848 1.5755363
16 4.7122203 .9079646 -1.5755363
16 4.7122203 .9079646 1.5755363
16 -3.1424306 3.6269202 -1.5755363
16 -3.1424306 3.6269202 1.5755363
16 -4.7122203 .9079646 -1.5755363
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16 -4.7122203 .9079646 1.5755363
16 -3.1512584 -7.2738862 -1.5735286
16 -3.1512584 -7.2738862 1.5735286
16 3.1512584 -7.2738862 -1.5735286
16 3.1512584 -7.2738862 1.5735286
16 .0000000 -12.7320258 -1.5735286
16 .0000000 -12.7320258 1.5735286
16 3.1475888 -1.8172613 -1.5792373
16 3.1475888 -1.8172613 1.5792373
16 .0000000 3.6345225 -1.5792373
16 .0000000 3.6345225 1.5792373
16 -3.1475888 -1.8172613 -1.5792373
16 -3.1475888 -1.8172613 1.5792373
42 4.7192556 2.7246635 .0000000
42 .0000000 -5.4493270 .0000000
42 -4.7192556 2.7246635 .0000000
42 -1.5760002 -8.1833619 .0000000
42 .0000000 -10.9130743 .0000000
42 1.5760002 -8.1833619 .0000000
16 -1.5773069 -10.0039246 -1.5733683
16 -1.5773069 -10.0039246 1.5733683
16 .0000000 -7.2719489 -1.5733683
16 .0000000 -7.2719489 1.5733683
16 1.5773069 -10.0039246 -1.5733683
16 1.5773069 -10.0039246 1.5733683
42 4.7230577 -2.7268586 .0000000
42 .0000000 5.4537172 .0000000
42 -4.7230577 -2.7268586 .0000000
16 4.7236395 -4.5458046 -1.5748218
16 4.7236395 -4.5458046 1.5748218
16 6.2986020 -1.8178895 -1.5748218
16 6.2986020 -1.8178895 1.5748218
16 -1.5749625 6.3636941 -1.5748218
16 -1.5749625 6.3636941 1.5748218
16 -6.2986020 -1.8178895 -1.5748218
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16 -6.2986020 -1.8178895 1.5748218
16 1.5749625 6.3636941 -1.5748218
16 1.5749625 6.3636941 1.5748218
16 -4.7236395 -4.5458046 -1.5748218
16 -4.7236395 -4.5458046 1.5748218
42 -1.5758122 8.1834705 .0000000
42 .0000000 10.9128572 .0000000
42 1.5758122 8.1834705 .0000000
16 .0000000 9.0932660 -1.5747695
16 .0000000 9.0932660 1.5747695

C.3.3 MoS2+Cr (@ S)

CRYSTAL
PRIMVEC

7.8749994 -13.6398991 .0000000
7.8749994 13.6398991 .0000000
.0000000 .0000000 12.2999990
PRIMCOORD

75 1
42 .0000000 1.8122522 1.6470775
42 -1.5694564 -.9061261 1.6470775
42 1.5694564 -.9061261 1.6470775
24 .0000000 .0000000 -.4273585
16 .0000000 .0000000 3.2016413
42 1.5742650 4.5375309 1.5708930
42 -3.1424845 -3.6321189 1.5708930
42 3.1424845 -3.6321189 1.5708930
42 4.7167495 -.9054119 1.5708930
42 -1.5742650 4.5375309 1.5708930
42 -4.7167495 -.9054119 1.5708930
16 1.5381576 2.6653691 .0100050
16 -1.5391985 -2.6647681 .0100050
16 1.5391985 -2.6647681 .0100050
16 3.0773561 -.0006010 .0100050
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16 -1.5381576 2.6653691 .0100050
16 -3.0773561 -.0006010 .0100050
16 1.5921029 2.7453984 3.1894756
16 -1.5815333 -2.7515008 3.1894756
16 1.5815333 -2.7515008 3.1894756
16 3.1736362 .0061023 3.1894756
16 -1.5921029 2.7453984 3.1894756
16 -3.1736362 .0061023 3.1894756
42 3.1503231 7.2744261 1.5703433
42 -3.1503231 7.2744261 1.5703433
42 .0000000 12.7309459 1.5703433
16 3.1481226 5.4514014 -.0076351
16 -3.1469908 -5.4520548 -.0076351
16 3.1469908 -5.4520548 -.0076351
16 6.2951134 .0006534 -.0076351
16 -3.1481226 5.4514014 -.0076351
16 -6.2951134 .0006534 -.0076351
16 3.1474952 5.4570633 3.1489367
16 -3.1522078 -5.4543425 3.1489367
16 3.1522078 -5.4543425 3.1489367
16 6.2997031 -.0027208 3.1489367
16 -3.1474952 5.4570633 3.1489367
16 -6.2997031 -.0027208 3.1489367
42 3.1360903 1.8106226 1.5867501
42 .0000000 -3.6212451 1.5867501
42 -3.1360903 1.8106226 1.5867501
42 4.7237481 4.5478335 1.5720132
42 -1.5766653 -6.3648026 1.5720132
42 6.3004133 1.8169691 1.5720132
42 1.5766653 -6.3648026 1.5720132
42 -6.3004133 1.8169691 1.5720132
42 -4.7237481 4.5478335 1.5720132
16 4.7170658 2.7233992 .0016364
16 .0000000 -5.4467984 .0016364
16 -4.7170658 2.7233992 .0016364
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16 4.7253654 2.7281910 3.1466441
16 .0000000 -5.4563819 3.1466441
16 -4.7253654 2.7281910 3.1466441
16 -1.5743245 -8.1843294 -.0049551
16 .0000000 -10.9111393 -.0049551
16 1.5743245 -8.1843294 -.0049551
16 -1.5762513 -8.1832169 3.1525231
16 .0000000 -10.9133643 3.1525231
16 1.5762513 -8.1832169 3.1525231
16 4.7236528 -2.7272022 -.0045587
16 .0000000 5.4544044 -.0045587
16 -4.7236528 -2.7272022 -.0045587
16 4.7210222 -2.7256834 3.1449317
16 .0000000 5.4513669 3.1449317
16 -4.7210222 -2.7256834 3.1449317
42 .0000000 -9.0932660 1.5747800
42 -1.5752419 10.0027324 1.5736662
42 .0000000 7.2743333 1.5736662
42 1.5752419 10.0027324 1.5736662
16 -1.5745741 8.1841853 -.0045695
16 .0000000 10.9114276 -.0045695
16 1.5745741 8.1841853 -.0045695
16 -1.5759453 8.1833936 3.1525093
16 .0000000 10.9130109 3.1525093
16 1.5759453 8.1833936 3.1525093

C.3.4 MoS2+Cr+S

CRYSTAL
PRIMVEC

7.8749994 -13.6398991 .0000000
7.8749994 13.6398991 .0000000
.0000000 .0000000 12.2999990
PRIMCOORD

76 1
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42 .0000000 1.9545556 1.5290634
42 -1.6926948 -.9772778 1.5290634
42 1.6926948 -.9772778 1.5290634
16 .0000000 .0000000 .1233758
24 .0000000 .0000000 2.9824138
16 .0000000 .0000000 4.9994112
42 1.5926092 4.5597739 1.5636095
42 -3.1525754 -3.6591270 1.5636095
42 3.1525754 -3.6591270 1.5636095
42 4.7451846 -.9006469 1.5636095
42 -1.5926092 4.5597739 1.5636095
42 -4.7451846 -.9006469 1.5636095
16 1.6184567 2.7608798 -.0437766
16 -1.5817637 -2.7820645 -.0437766
16 1.5817637 -2.7820645 -.0437766
16 3.2002204 .0211847 -.0437766
16 -1.6184567 2.7608798 -.0437766
16 -3.2002204 .0211847 -.0437766
16 1.5675339 2.7354523 3.1416291
16 -1.5852043 -2.7252503 3.1416291
16 1.5852043 -2.7252503 3.1416291
16 3.1527381 -.0102020 3.1416291
16 -1.5675339 2.7354523 3.1416291
16 -3.1527381 -.0102020 3.1416291
42 3.1509974 7.2740369 1.5774337
42 -3.1509974 7.2740369 1.5774337
42 .0000000 12.7317244 1.5774337
16 3.1640314 5.4681269 -.0023914
16 -3.1535211 -5.4741950 -.0023914
16 3.1535211 -5.4741950 -.0023914
16 6.3175526 .0060681 -.0023914
16 -3.1640314 5.4681269 -.0023914
16 -6.3175526 .0060681 -.0023914
16 3.1525981 5.4593742 3.1529621
16 -3.1516577 -5.4599171 3.1529621
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16 3.1516577 -5.4599171 3.1529621
16 6.3042558 .0005429 3.1529621
16 -3.1525981 5.4593742 3.1529621
16 -6.3042558 .0005429 3.1529621
42 3.1398869 1.8128145 1.5699602
42 .0000000 -3.6256291 1.5699602
42 -3.1398869 1.8128145 1.5699602
42 4.7270325 4.5532152 1.5797134
42 -1.5796838 -6.3703378 1.5797134
42 6.3067163 1.8171226 1.5797134
42 1.5796838 -6.3703378 1.5797134
42 -6.3067163 1.8171226 1.5797134
42 -4.7270325 4.5532152 1.5797134
16 4.7298409 2.7307749 .0186868
16 .0000000 -5.4615499 .0186868
16 -4.7298409 2.7307749 .0186868
16 4.7184387 2.7241919 3.1414907
16 .0000000 -5.4483837 3.1414907
16 -4.7184387 2.7241919 3.1414907
16 -1.5733319 -8.1849025 .0039901
16 .0000000 -10.9099932 .0039901
16 1.5733319 -8.1849025 .0039901
16 -1.5725476 -8.1853553 3.1531597
16 .0000000 -10.9090876 3.1531597
16 1.5725476 -8.1853553 3.1531597
16 4.7304220 -2.7311104 .0040533
16 .0000000 5.4622208 .0040533
16 -4.7304220 -2.7311104 .0040533
16 4.7272322 -2.7292688 3.1357442
16 .0000000 5.4585376 3.1357442
16 -4.7272322 -2.7292688 3.1357442
42 .0000000 -9.0932660 1.5779319
42 -1.5721183 10.0009290 1.5731258
42 .0000000 7.2779401 1.5731258
42 1.5721183 10.0009290 1.5731258
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16 -1.5754669 8.1836698 .0021744
16 .0000000 10.9124585 .0021744
16 1.5754669 8.1836698 .0021744
16 -1.5735262 8.1847903 3.1476712
16 .0000000 10.9102176 3.1476712
16 1.5735262 8.1847903 3.1476712

C.3.5 MoS2+vacancy

CRYSTAL
PRIMVEC

4.7249996 -8.1839394 .0000000
4.7249996 8.1839394 .0000000
.0000000 .0000000 12.2999990
PRIMCOORD

26 1
42 .0000000 1.7717995 1.6143630
42 -1.5344233 -.8858997 1.6143630
42 1.5344233 -.8858997 1.6143630
16 .0000000 .0000000 3.1979759
42 1.5742919 4.5470418 1.5443583
42 -1.5742919 4.5470418 1.5443583
42 .0000000 7.2737954 1.5443583
16 1.5432760 2.6629977 .0035067
16 -1.5345856 -2.6680150 .0035067
16 1.5345856 -2.6680150 .0035067
16 3.0778616 .0050174 .0035067
16 -1.5432760 2.6629977 .0035067
16 -3.0778616 .0050174 .0035067
16 1.5529012 2.7377194 3.1506847
16 -1.5944839 -2.7137116 3.1506847
16 1.5944839 -2.7137116 3.1506847
16 3.1473852 -.0240078 3.1506847
16 -1.5529012 2.7377194 3.1506847
16 -3.1473852 -.0240078 3.1506847
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42 3.1279933 1.8059478 1.5799395
42 .0000000 -3.6118955 1.5799395
42 -3.1279933 1.8059478 1.5799395
16 .0000000 -5.4559596 .0186904
16 .0000000 -5.4559596 3.1389256
16 .0000000 5.4559596 -.0389491
16 .0000000 5.4559596 3.1045032

C.3.6 MoS2 rotated supercell

SLAB
PRIMVEC

2.7279811 -4.7250019 .0000000
2.7279811 4.7250019 .0000000
.0000000 .0000000 6.6147151
PRIMCOORD

9 1
42 .0000000 .0000000 .0000000
42 .0000000 -3.1500013 .0000000
42 .0000000 3.1500013 .0000000
16 .9093270 -1.5750006 1.5867936
16 .9093270 1.5750006 1.5867936
16 -1.8186541 .0000000 1.5867936
16 .9093270 -1.5750006 -1.5867936
16 .9093270 1.5750006 -1.5867936
16 -1.8186541 .0000000 -1.5867936

C.3.7 MoSe2+P

CRYSTAL
PRIMVEC

4.9245019 -8.5294875 .0000000
4.9245019 8.5294875 .0000000
.0000000 .0000000 12.9179534
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PRIMCOORD
27 1

42 .0000000 1.8805477 1.6870263
42 -1.6286021 -.9402739 1.6870263
42 1.6286021 -.9402739 1.6870263
15 .0000000 .0000000 .1826497
34 .0000000 .0000000 3.3984910
42 1.6444520 4.7369002 1.6693100
42 -1.6444520 4.7369002 1.6693100
42 .0000000 7.5851746 1.6693100
34 1.6360201 2.8303629 -.0126935
34 -1.6331561 -2.8320164 -.0126935
34 1.6331561 -2.8320164 -.0126935
34 3.2691762 .0016535 -.0126935
34 -1.6360201 2.8303629 -.0126935
34 -3.2691762 .0016535 -.0126935
34 1.6521625 2.8455771 3.3611731
34 -1.6382608 -2.8536032 3.3611731
34 1.6382608 -2.8536032 3.3611731
34 3.2904233 .0080261 3.3611731
34 -1.6521625 2.8455771 3.3611731
34 -3.2904233 .0080261 3.3611731
42 3.2844815 1.8962963 1.6698988
42 .0000000 -3.7925926 1.6698988
42 -3.2844815 1.8962963 1.6698988
34 .0000000 -5.6863250 -.0191125
34 .0000000 -5.6863250 3.3537381
34 .0000000 5.6863250 -.0153052
34 .0000000 5.6863250 3.3487250

C.3.8 MoSe2+Cr (@ Mo)

CRYSTAL
PRIMVEC

8.2075032 -14.2158125 .0000000
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8.2075032 14.2158125 .0000000
.0000000 .0000000 12.9179534
PRIMCOORD

75 1
24 .0000000 .0000000 .0000000
34 .0000000 -1.8447116 -1.6437102
34 .0000000 -1.8447116 1.6437102
34 1.5975671 .9223558 -1.6437102
34 1.5975671 .9223558 1.6437102
34 -1.5975671 .9223558 -1.6437102
34 -1.5975671 .9223558 1.6437102
42 1.6365129 2.8467996 .0000000
42 -1.6471443 -2.8406616 .0000000
42 1.6471443 -2.8406616 .0000000
42 3.2836572 -.0061380 .0000000
42 -1.6365129 2.8467996 .0000000
42 -3.2836572 -.0061380 .0000000
42 3.2819834 5.6842360 .0000000
42 -3.2817010 -5.6843990 .0000000
42 3.2817010 -5.6843990 .0000000
42 6.5636844 .0001630 .0000000
42 -3.2819834 5.6842360 .0000000
42 -6.5636844 .0001630 .0000000
34 3.2823204 3.7874156 -1.6843097
34 3.2823204 3.7874156 1.6843097
34 -1.6388379 -4.7362806 -1.6843097
34 -1.6388379 -4.7362806 1.6843097
34 1.6388379 -4.7362806 -1.6843097
34 1.6388379 -4.7362806 1.6843097
34 4.9211583 .9488650 -1.6843097
34 4.9211583 .9488650 1.6843097
34 -3.2823204 3.7874156 -1.6843097
34 -3.2823204 3.7874156 1.6843097
34 -4.9211583 .9488650 -1.6843097
34 -4.9211583 .9488650 1.6843097
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34 -3.2838387 -7.5812832 -1.6824295
34 -3.2838387 -7.5812832 1.6824295
34 3.2838387 -7.5812832 -1.6824295
34 3.2838387 -7.5812832 1.6824295
34 .0000000 -13.2690587 -1.6824295
34 .0000000 -13.2690587 1.6824295
34 3.2825109 -1.8951586 -1.6863254
34 3.2825109 -1.8951586 1.6863254
34 .0000000 3.7903171 -1.6863254
34 .0000000 3.7903171 1.6863254
34 -3.2825109 -1.8951586 -1.6863254
34 -3.2825109 -1.8951586 1.6863254
42 4.9226831 2.8421124 .0000000
42 .0000000 -5.6842248 .0000000
42 -4.9226831 2.8421124 .0000000
42 -1.6420668 -8.5291606 .0000000
42 .0000000 -11.3733038 .0000000
42 1.6420668 -8.5291606 .0000000
34 -1.6421230 -10.4252885 -1.6824990
34 -1.6421230 -10.4252885 1.6824990
34 .0000000 -7.5810480 -1.6824990
34 .0000000 -7.5810480 1.6824990
34 1.6421230 -10.4252885 -1.6824990
34 1.6421230 -10.4252885 1.6824990
42 4.9237562 -2.8427320 .0000000
42 .0000000 5.6854639 .0000000
42 -4.9237562 -2.8427320 .0000000
34 4.9242712 -4.7381276 -1.6830970
34 4.9242712 -4.7381276 1.6830970
34 6.5654745 -1.8954801 -1.6830970
34 6.5654745 -1.8954801 1.6830970
34 -1.6412033 6.6336077 -1.6830970
34 -1.6412033 6.6336077 1.6830970
34 -6.5654745 -1.8954801 -1.6830970
34 -6.5654745 -1.8954801 1.6830970
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34 1.6412033 6.6336077 -1.6830970
34 1.6412033 6.6336077 1.6830970
34 -4.9242712 -4.7381276 -1.6830970
34 -4.9242712 -4.7381276 1.6830970
42 -1.6418266 8.5292993 .0000000
42 .0000000 11.3730264 .0000000
42 1.6418266 8.5292993 .0000000
34 .0000000 9.4772083 -1.6843111
34 .0000000 9.4772083 1.6843111

C.3.9 MoSe2+Cr (@ S)

CRYSTAL
PRIMVEC

8.2075032 -14.2158125 .0000000
8.2075032 14.2158125 .0000000
.0000000 .0000000 12.9179534
PRIMCOORD

75 1
42 .0000000 1.8691787 1.7458246
42 -1.6187562 -.9345894 1.7458246
42 1.6187562 -.9345894 1.7458246
24 .0000000 .0000000 -.2565957
34 .0000000 .0000000 3.4247798
42 1.6395791 4.7237963 1.6768751
42 -3.2711381 -3.7818153 1.6768751
42 3.2711381 -3.7818153 1.6768751
42 4.9107172 -.9419810 1.6768751
42 -1.6395791 4.7237963 1.6768751
42 -4.9107172 -.9419810 1.6768751
34 1.6026410 2.7750973 .0027772
34 -1.6019843 -2.7754765 .0027772
34 1.6019843 -2.7754765 .0027772
34 3.2046253 .0003791 .0027772
34 -1.6026410 2.7750973 .0027772
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34 -3.2046253 .0003791 .0027772
34 1.6502324 2.8535372 3.4005854
34 -1.6461195 -2.8559118 3.4005854
34 1.6461195 -2.8559118 3.4005854
34 3.2963519 .0023746 3.4005854
34 -1.6502324 2.8535372 3.4005854
34 -3.2963519 .0023746 3.4005854
42 3.2834088 7.5815314 1.6747089
42 -3.2834088 7.5815314 1.6747089
42 .0000000 13.2685623 1.6747089
34 3.2796208 5.6791937 -.0078908
34 -3.2785157 -5.6798318 -.0078908
34 3.2785157 -5.6798318 -.0078908
34 6.5581365 .0006381 -.0078908
34 -3.2796208 5.6791937 -.0078908
34 -6.5581365 .0006381 -.0078908
34 3.2782798 5.6857935 3.3582757
34 -3.2849018 -5.6819704 3.3582757
34 3.2849018 -5.6819704 3.3582757
34 6.5631816 -.0038232 3.3582757
34 -3.2782798 5.6857935 3.3582757
34 -6.5631816 -.0038232 3.3582757
42 3.2612067 1.8828586 1.6938398
42 .0000000 -3.7657171 1.6938398
42 -3.2612067 1.8828586 1.6938398
42 4.9219898 4.7400984 1.6773091
42 -1.6440507 -6.6326174 1.6773091
42 6.5660405 1.8925190 1.6773091
42 1.6440507 -6.6326174 1.6773091
42 -6.5660405 1.8925190 1.6773091
42 -4.9219898 4.7400984 1.6773091
34 4.9100511 2.8348193 .0068247
34 .0000000 -5.6696386 .0068247
34 -4.9100511 2.8348193 .0068247
34 4.9190656 2.8400238 3.3539329

C Computational parameters168



34 .0000000 -5.6800477 3.3539329
34 -4.9190656 2.8400238 3.3539329
34 -1.6408480 -8.5298643 -.0042008
34 .0000000 -11.3718964 -.0042008
34 1.6408480 -8.5298643 -.0042008
34 -1.6435922 -8.5282799 3.3646221
34 .0000000 -11.3750652 3.3646221
34 1.6435922 -8.5282799 3.3646221
34 4.9203226 -2.8407496 -.0036342
34 .0000000 5.6814991 -.0036342
34 -4.9203226 -2.8407496 -.0036342
34 4.9157065 -2.8380845 3.3520482
34 .0000000 5.6761690 3.3520482
34 -4.9157065 -2.8380845 3.3520482
42 .0000000 -9.4772083 1.6819546
42 -1.6422726 10.4253749 1.6790342
42 .0000000 7.5808753 1.6790342
42 1.6422726 10.4253749 1.6790342
34 -1.6408140 8.5298839 -.0045002
34 .0000000 11.3718572 -.0045002
34 1.6408140 8.5298839 -.0045002
34 -1.6429823 8.5286321 3.3639803
34 .0000000 11.3743608 3.3639803
34 1.6429823 8.5286321 3.3639803

C.3.10 MoSe2+Cr+Se

CRYSTAL
PRIMVEC

8.2075032 -14.2158125 .0000000
8.2075032 14.2158125 .0000000
.0000000 .0000000 12.9179534
PRIMCOORD

76 1
42 .0000000 2.0353505 1.6417547
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42 -1.7626653 -1.0176753 1.6417547
42 1.7626653 -1.0176753 1.6417547
34 .0000000 .0000000 .1017407
24 .0000000 .0000000 3.0049323
34 .0000000 .0000000 5.1796562
42 1.6556384 4.7406468 1.6767221
42 -3.2777013 -3.8041483 1.6767221
42 3.2777013 -3.8041483 1.6767221
42 4.9333397 -.9364985 1.6767221
42 -1.6556384 4.7406468 1.6767221
42 -4.9333397 -.9364985 1.6767221
34 1.6815579 2.8652252 -.0453967
34 -1.6405789 -2.8888844 -.0453967
34 1.6405789 -2.8888844 -.0453967
34 3.3221367 .0236592 -.0453967
34 -1.6815579 2.8652252 -.0453967
34 -3.3221367 .0236592 -.0453967
34 1.6290855 2.8380118 3.3765932
34 -1.6432476 -2.8298353 3.3765932
34 1.6432476 -2.8298353 3.3765932
34 3.2723331 -.0081765 3.3765932
34 -1.6290855 2.8380118 3.3765932
34 -3.2723331 -.0081765 3.3765932
42 3.2850654 7.5805750 1.6825630
42 -3.2850654 7.5805750 1.6825630
42 .0000000 13.2704751 1.6825630
34 3.2871886 5.6913047 -.0020772
34 -3.2852202 -5.6924412 -.0020772
34 3.2852202 -5.6924412 -.0020772
34 6.5724088 .0011365 -.0020772
34 -3.2871886 5.6913047 -.0020772
34 -6.5724088 .0011365 -.0020772
34 3.2827930 5.6865405 3.3675879
34 -3.2832920 -5.6862524 3.3675879
34 3.2832920 -5.6862524 3.3675879

C Computational parameters170



34 6.5660851 -.0002881 3.3675879
34 -3.2827930 5.6865405 3.3675879
34 -6.5660851 -.0002881 3.3675879
42 3.2634037 1.8841270 1.6880378
42 .0000000 -3.7682541 1.6880378
42 -3.2634037 1.8841270 1.6880378
42 4.9233673 4.7442765 1.6835794
42 -1.6469803 -6.6358993 1.6835794
42 6.5703476 1.8916229 1.6835794
42 1.6469803 -6.6358993 1.6835794
42 -6.5703476 1.8916229 1.6835794
42 -4.9233673 4.7442765 1.6835794
34 4.9242692 2.8430282 .0132172
34 .0000000 -5.6860563 .0132172
34 -4.9242692 2.8430282 .0132172
34 4.9237843 2.8427482 3.3601825
34 .0000000 -5.6854963 3.3601825
34 -4.9237843 2.8427482 3.3601825
34 -1.6413592 -8.5295691 .0005079
34 .0000000 -11.3724867 .0005079
34 1.6413592 -8.5295691 .0005079
34 -1.6410680 -8.5297373 3.3647332
34 .0000000 -11.3721504 3.3647332
34 1.6410680 -8.5297373 3.3647332
34 4.9251155 -2.8435168 .0034178
34 .0000000 5.6870336 .0034178
34 -4.9251155 -2.8435168 .0034178
34 4.9259121 -2.8439767 3.3606276
34 .0000000 5.6879533 3.3606276
34 -4.9259121 -2.8439767 3.3606276
42 .0000000 -9.4772083 1.6827088
42 -1.6408939 10.4245789 1.6810132
42 .0000000 7.5824673 1.6810132
42 1.6408939 10.4245789 1.6810132
34 -1.6417570 8.5293395 .0008323
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34 .0000000 11.3729460 .0008323
34 1.6417570 8.5293395 .0008323
34 -1.6414607 8.5295106 3.3628682
34 .0000000 11.3726038 3.3628682
34 1.6414607 8.5295106 3.3628682

C.3.11 MoSe2+vacancy

CRYSTAL
PRIMVEC

4.9245019 -8.5294875 .0000000
4.9245019 8.5294875 .0000000
.0000000 .0000000 12.9179534
PRIMCOORD

26 1
42 .0000000 1.8095228 1.7275535
42 -1.5670927 -.9047614 1.7275535
42 1.5670927 -.9047614 1.7275535
34 .0000000 .0000000 3.4515029
42 1.6420678 4.7382767 1.6495251
42 -1.6420678 4.7382767 1.6495251
42 .0000000 7.5824216 1.6495251
34 1.5968942 2.7662155 .0019896
34 -1.5971658 -2.7660586 .0019896
34 1.5971658 -2.7660586 .0019896
34 3.1940600 -.0001568 .0019896
34 -1.5968942 2.7662155 .0019896
34 -3.1940600 -.0001568 .0019896
34 1.6136987 2.8474230 3.3583226
34 -1.6590913 -2.8212156 3.3583226
34 1.6590913 -2.8212156 3.3583226
34 3.2727900 -.0262074 3.3583226
34 -1.6136987 2.8474230 3.3583226
34 -3.2727900 -.0262074 3.3583226
42 3.2522038 1.8776607 1.6823171
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42 .0000000 -3.7553214 1.6823171
42 -3.2522038 1.8776607 1.6823171
34 .0000000 -5.6863250 .0185766
34 .0000000 -5.6863250 3.3404669
34 .0000000 5.6863250 -.0398778
34 .0000000 5.6863250 3.3157728

C.3.12 MoSe2+Cr (interstitial)

CRYSTAL
PRIMVEC

8.2075032 -14.2158125 .0000000
8.2075032 14.2158125 .0000000
.0000000 .0000000 12.9179534
PRIMCOORD

76 1
24 -.0003618 -3.7908329 .0028323
42 -.0002284 .0328317 .0004780
34 -.0004554 -1.9165305 -1.6276154
34 -.0004574 -1.9154161 1.6308406
42 1.6470987 2.8453048 -.0001227
34 1.6505158 .9511234 -1.6932449
34 1.6511104 .9514516 1.6931240
42 3.2833388 5.6800280 -.0001842
34 3.2780369 3.7936287 -1.7004305
34 3.2780711 3.7936348 1.7001500
42 -3.3121387 -5.7027283 .0004090
34 -3.2819405 -7.5910866 -1.6930978
34 -3.2820139 -7.5916828 1.6930024
42 -1.9959657 -2.6389498 .0011300
34 -1.6238393 -4.7273919 -1.6272985
34 -1.6249122 -4.7278087 1.6305269
42 1.9952798 -2.6389484 .0011538
34 1.6230941 -4.7274603 -1.6272404
34 1.6241762 -4.7278810 1.6305002
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42 3.3321839 .0345705 -.0002864
34 3.4423042 -1.8029823 -1.7991192
34 3.4436726 -1.8021572 1.7995157
42 4.9214881 2.8446409 -.0002051
34 4.9504114 .9765370 -1.7039457
34 4.9502186 .9765286 1.7034551
42 -1.6474431 -8.5889046 -.0001467
34 -1.6534499 -10.4611932 -1.7036125
34 -1.6534955 -10.4611348 1.7032473
42 -.0003241 -6.0945610 .0011068
34 -.0001375 -7.7660900 -1.7986199
34 -.0001378 -7.7674540 1.7991483
42 3.3116203 -5.7026648 .0004177
34 3.2817387 -7.5909800 -1.6930747
34 3.2818177 -7.5915828 1.6929869
42 4.9777670 -2.8190395 -.0001916
34 4.9317654 -4.7328077 -1.6935119
34 4.9323677 -4.7324815 1.6933021
42 6.5765394 .0060331 -.0001555
34 6.6030019 -1.8876990 -1.7033762
34 6.6029062 -1.8877087 1.7030331
42 -.0000916 -11.3851851 -.0000837
34 -.0001359 -13.2680632 -1.7012287
34 -.0001313 -13.2680274 1.7010966
42 1.6472235 -8.5887952 -.0001445
34 1.6532917 -10.4610719 -1.7036040
34 1.6533386 -10.4610158 1.7032357
42 -3.2834946 5.6801494 -.0001843
34 -3.2781456 3.7937839 -1.7004451
34 -3.2781778 3.7937871 1.7001629
42 -1.6368060 8.5326434 -.0002141
34 -1.6406528 6.6335932 -1.6928480
34 -1.6407285 6.6336057 1.6925916
42 -.0002261 11.3691853 -.0001146
34 -.0001712 9.4718380 -1.7003212
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34 -.0001675 9.4717375 1.7000745
42 -6.5768038 .0061408 -.0001587
34 -6.6035025 -1.8875992 -1.7034073
34 -6.6034019 -1.8876066 1.7030563
42 -4.9216547 2.8448064 -.0002073
34 -4.9507115 .9767544 -1.7039730
34 -4.9505113 .9767385 1.7034724
42 -1.6472506 2.8454212 -.0001232
34 -1.6508117 .9512756 -1.6932837
34 -1.6514107 .9516048 1.6931535
42 -.0000627 5.6858637 -.0000520
34 -.0000419 3.7917440 -1.6926661
34 -.0000386 3.7915859 1.6924329
42 1.6364795 8.5326450 -.0002189
34 1.6405435 6.6335538 -1.6928332
34 1.6406211 6.6335719 1.6925749
42 -4.9783005 -2.8189139 -.0002014
34 -4.9322102 -4.7327143 -1.6935255
34 -4.9328060 -4.7323827 1.6933047
42 -3.3325304 .0347960 -.0002963
34 -3.4429267 -1.8027209 -1.7991346
34 -3.4442756 -1.8019058 1.7994967

C.3.13 MoS2+Se

The calculation are performed in the same unit cell for all concentrations. The starting
point is always the relaxed unit cell (here already including one defect atom). After
adding the according number of defects the cell is converged to a residual force of
5 · 10−2 eV/Å. The final positions are noted with the according result graphs.

MoS2+Se (1 out of 9) (unrelaxed)

CRYSTAL
PRIMVEC

4.7249996 -8.1839394 .0000000
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4.7249996 8.1839394 .0000000
.0000000 .0000000 24.5999981
PRIMCOORD

27 1
42 -3.1499998 .0000000 .0000000
42 -1.5749999 -2.7279798 .0000000
16 -3.1499998 -1.8186532 -1.5866999
34 -3.1499998 -1.8186532 1.5866999
42 -1.5749999 2.7279798 .0000000
42 1.5749999 -2.7279798 .0000000
16 -1.5749999 .9093266 -1.5866999
16 .0000000 -1.8186532 -1.5866999
16 -1.5749999 .9093266 1.5866999
16 .0000000 -1.8186532 1.5866999
42 -.0000000 5.4559596 .0000000
16 -.0000000 3.6373064 -1.5866999
16 3.1499998 -1.8186532 -1.5866999
16 -.0000000 3.6373064 1.5866999
16 3.1499998 -1.8186532 1.5866999
16 -1.5749999 -4.5466330 -1.5866999
16 .0000000 -7.2746128 -1.5866999
16 -1.5749999 -4.5466330 1.5866999
16 .0000000 -7.2746128 1.5866999
42 .0000000 .0000000 .0000000
42 1.5749999 2.7279798 .0000000
42 3.1499998 -.0000000 .0000000
16 1.5749999 .9093266 -1.5866999
16 1.5749999 .9093266 1.5866999
42 .0000000 -5.4559596 .0000000
16 1.5749999 -4.5466330 -1.5866999
16 1.5749999 -4.5466330 1.5866999
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C.3.14 MoSe2+S

Here two different concentrations are investigated. The relaxed positions for both are
given.

MoSe2+S (1 out of 9)

CRYSTAL
PRIMVEC

4.9245019 -8.5294875 .0000000
4.9245019 8.5294875 .0000000
.0000000 .0000000 12.9179534
PRIMCOORD

27 1
42 .0000000 1.8726945 1.6818588
42 -1.6218010 -.9363472 1.6818588
42 1.6218010 -.9363472 1.6818588
16 .0000000 .0000000 .1697965
34 .0000000 .0000000 3.3970648
42 1.6406554 4.7390922 1.6687896
42 -1.6406554 4.7390922 1.6687896
42 .0000000 7.5807907 1.6687896
34 1.6338552 2.8320263 -.0068463
34 -1.6356791 -2.8309733 -.0068463
34 1.6356791 -2.8309733 -.0068463
34 3.2695343 -.0010530 -.0068463
34 -1.6338552 2.8320263 -.0068463
34 -3.2695343 -.0010530 -.0068463
34 1.6402959 2.8435846 3.3548682
34 -1.6424686 -2.8423303 3.3548682
34 1.6424686 -2.8423303 3.3548682
34 3.2827645 -.0012544 3.3548682
34 -1.6402959 2.8435846 3.3548682
34 -3.2827645 -.0012544 3.3548682
42 3.2824014 1.8950953 1.6737653
42 .0000000 -3.7901907 1.6737653
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42 -3.2824014 1.8950953 1.6737653
34 .0000000 -5.6863250 -.0069140
34 .0000000 -5.6863250 3.3580554
34 .0000000 5.6863250 -.0123090
34 .0000000 5.6863250 3.3530629

MoSe2+S (3 out of 9)

CRYSTAL
PRIMVEC

4.9245019 -8.5294875 .0000000
4.9245019 8.5294875 .0000000
.0000000 .0000000 12.9179534
PRIMCOORD

27 1
42 .0189744 1.8846477 1.6875129
42 -1.6226655 -.9587561 1.6875129
42 1.6202433 -.9354478 1.6801314
16 -.0033130 .0019127 .1724456
34 -.0005967 .0003445 3.3966590
42 1.6607160 4.7275102 1.6875136
42 -1.6398871 4.7374078 1.6554806
42 .0018428 7.5809675 1.6554806
16 1.6381400 2.8450260 .1720420
16 -1.6447947 -2.8411840 .1720420
34 1.6183919 -2.8297666 -.0132967
34 3.2598456 .0133147 -.0132967
34 -1.6144256 2.8274327 -.0203095
34 -3.2558413 -.0155828 -.0203095
34 1.6408392 2.8434578 3.3967249
34 -1.6420871 -2.8427374 3.3967249
34 1.6450480 -2.8451588 3.3487887
34 3.2865037 -.0020740 3.3487887
34 -1.6445701 2.8448997 3.3425750
34 -3.2860405 .0017895 3.3425750
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42 3.2613206 1.9076617 1.6800893
42 -.0214232 -3.7782174 1.6800893
42 -3.2810040 1.8942885 1.6555041
34 -.0231608 -5.6729531 -.0127504
34 .0034440 -5.6883134 3.3484580
34 .0271344 5.6706589 -.0197378
34 -.0031009 5.6881153 3.3422743

C.3.15 WSe2+S

Here two different concentrations are investigated. The relaxed positions for both are
found without SOC. The relaxed positions are then used as a starting point for the
calculation including SOC, without further spatial relaxation.

WSe2+S (1 out of 9)

CRYSTAL
PRIMVEC

4.9455019 -8.5658606 .0000000
4.9455019 8.5658606 .0000000
.0000000 .0000000 12.9820049
PRIMCOORD

27 1
74 .0000000 -3.8065477 1.6823610
74 3.2965670 1.9032738 1.6823610
74 -3.2965670 1.9032738 1.6823610
16 .0000000 .0000000 .1664901
34 .0000000 .0000000 3.4155012
74 1.6294025 -.9407360 1.6924276
74 -1.6294025 -.9407360 1.6924276
74 .0000000 1.8814720 1.6924276
34 1.6395510 2.8424096 -.0071350
34 -1.6418235 -2.8410976 -.0071350
34 1.6418235 -2.8410976 -.0071350
34 3.2813744 -.0013120 -.0071350
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34 -1.6395510 2.8424096 -.0071350
34 -3.2813744 -.0013120 -.0071350
34 1.6483518 2.8569666 3.3714727
34 -1.6500298 -2.8559978 3.3714727
34 1.6500298 -2.8559978 3.3714727
34 3.2983816 -.0009688 3.3714727
34 -1.6483518 2.8569666 3.3714727
34 -3.2983816 -.0009688 3.3714727
74 -1.6484581 4.7588360 1.6760317
74 .0000000 7.6140492 1.6760317
74 1.6484581 4.7588360 1.6760317
34 .0000000 -5.7105737 -.0098245
34 .0000000 -5.7105737 3.3729669
34 .0000000 5.7105737 -.0155297
34 .0000000 5.7105737 3.3653143

MoSe2+S (3 out of 9)

CRYSTAL
PRIMVEC

4.9455019 -8.5658606 .0000000
4.9455019 8.5658606 .0000000
.0000000 .0000000 12.9820049
PRIMCOORD

27 1
74 .0003629 -3.8076480 1.6725497
74 3.2977014 1.9035096 1.6725497
74 -3.2753859 1.8910448 1.6905035
16 -.0185888 .0107322 .1707409
34 -.0027288 .0015755 3.4053183
74 1.6276932 -.9397491 1.6795809
74 -1.6497882 -.9270275 1.6942854
74 -.0220648 1.8922723 1.6942854
34 1.6248397 2.8414063 -.0116493
34 -1.6483103 -2.8278556 -.0116493
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34 1.6493028 -2.8530281 -.0129341
34 3.2954461 -.0018240 -.0129341
16 -1.6474451 2.8328686 .1644873
16 -3.2770586 .0102950 .1644873
34 1.6447501 2.8544383 3.3620553
34 -1.6496410 -2.8516145 3.3620553
34 1.6527777 -2.8567670 3.3572047
34 3.3004217 -.0029640 3.3572047
34 -1.6506849 2.8546729 3.4037020
34 -3.2975618 .0021986 3.4037020
74 -1.6478340 4.7336256 1.6736251
74 .0221449 7.6261140 1.6736251
74 1.6472209 4.7595503 1.6705006
34 .0226456 -5.7236482 -.0143423
34 .0062480 -5.7141810 3.3611070
34 -.0013030 5.7113260 -.0196188
34 -.0033497 5.7125077 3.3531819

C.4 Using quantities within the Fleur code
When working with results from Fleur or interpreting certain quantities in an experi-
mental context, the atomic quantities within the Fleur code have to be converted to
measurable quantities.

C.4.1 Reciprocal lattice vectors

In Fleur and SPEX the crystal is defined using reciprocal lattice vectors. Here is a
quick summary how to convert them from internal coordinates to SI units.
The lattice is given in the input file for the input generator of Fleur using Bohr as a unit.
One gives a matrix with each row containing one lattice vector with an additional factor
for each column. As an example the MoS2 monolayer is used, with a vacuum of 12.3Å.

0.5 −0.5 0
0.5 0.5 0
0 0 1

 is followed by a row containing the lattice constant of 5.9526 and

another row of prefactors (here -3 corresponds to
√

3) for the columns of the matrix.
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(
1 −3 3.9047

)
. This gives a total complete matrix of


2.976 −5.155 0
2.976 5.155 0

0 0 23.24

,

which is in units of Bohr and is saved to the file basis.hdf in the entry cell/amat.
The reciprocal lattice vectors are calculated by

bi = 2π aj × ak

ai · (aj × ak)(ax corresponds to the lattice vectors) (C.4.1)

and saved to the same file under cell/bmat. Here each column stands for one single

reciprocal lattice vector in units of 1
Bohr .


1.0555 1.0555 0
−0.6094 0.6094 0

0 0 0.2703

 So giving the

example of


0.1
0.1
0

 in internal reciprocal coordinates, this corresponds to a vector of

length 0.211 1
Bohr .
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Appendix D
Additional Remarks

D.1 Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
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D.1 Fourier transform

The Fourier transforms are defined as the following:

f(t) = 1
2π

∫
f̃(ω)e−iωtdω (D.1.1)

f̃(ω) =
∫
f(t)eiωtdt (D.1.2)

f(r) = 1
(2π)3

∫
f̃(q)eiqrdq (D.1.3)

f̃(q) =
∫
f(r)e−iqrdr (D.1.4)

Therefore the delta function is defined with the following prefactor.

δ(ω) = 1
2π

∫
e−iωtdt (D.1.5)

δ(q) = 1
(2π)3

∫
e−iqrdr (D.1.6)

D.2 Additional figures
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Å

lay
er

d
ista

n
ce

4
9
.2
Å
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Figure D.3: Unfolded band structure for MoSe2+Cr+Se, calculated in a 5×5 super-
cell with a similar DFT parameter set as MoSe2+Cr (interstitial). The
defect state within the band gap is clearly visible and not effected by the
underconverged parameter set. The calculation includes two spins, which
are degenerate due to the lack of SOC. This DFT calculation is used as a
starting point for the absorption spectrum of MoSe2+Cr+Se in Fig. 5.7.
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