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Wage-Specific Search Intensity*

I propose a model in which agents decide on job search intensity for each possible wage, 

unlike the usual setup of constant search intensity over wage draws. The proposed 

framework entails efficiency gains in that agents do not waste effort to searching for 

low paying unacceptable jobs or less offered high paying jobs. The proposed framework 

generates accepted wages distributions that differ substantially from the truncated 

distributions stemming from the usual setup. These different empirical implications are 

exploited for building two nonparametric tests, which reject constant search intensity over 

wages, using NLSY97 data. I further estimate the identifiable structural parameters of 

the two models resulting in better fit for the wage-specific setup. I quantify the increased 

effectiveness of wage-specific search in more total search intensity, faster transitions to 

the upper tail of the wage distribution, and higher wages, in particular, more than 25% 

increase in accepted wages after unemployment.
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1 Introduction

Agents who look for a job do not just decide on the search intensity of their general job

search, but also on the search intensity for specific types of jobs characterized by their

location, wages, benefits and other job atributes. Moreover, there is evidence that

people direct their job search. In this article, I propose a model of wage-specific search

intensity which I compare to its restricted model of non-wage specific general job

search. I present empirical evidence that the wage-specific model is a more accurate

representation of the job search process.

In the proposed model of job search agents optimally choose the search intensity

for each possible wage, unlike the classic model in which search intensity is the same

for all posible wages. Agents do not need to exert any effort in searching for low

wages or high wages that are unlikely to be offered. Wage-specific search intensity

is found to be empirically more important especially for the upper segments of the

actual wage distribution.

The classic model of search intensity or endogenous search effort was proposed

originally by Burdett and Mortensen (1978). This work established the theoretical

connection between search effort and arrival rates (see also Burdett 1979, Benhabib

and Bull 1983, Pissarides 2000, Shimer 2004, Christensen et al., 2005). Since then

there has been intense research on how search effort should be incorporated into the

job search model, as well as how it should be measured. Examples of this research

focus on the impact of search intensity on wage dispersion (Gautier and Moraga-

González 2016, 2018, Faberman, Mueller, Åhahin, and Topa 2017, Bagger and Lentz

2019), on the reduction of search intensity or discouragement during unemployment

(DeLoach and Kurt 2013), or on the impact of search methods on job duration and

transitions (Bloemen 2005, Faberman and Kudlyak 2019). In recent decades the

evidence that individuals choose which jobs to apply for has substantiated several

models of directed search and wage posting: agents direct their search to the most

attractive alternatives (Moen 1997, Shimer 1996, Rogerson, Shimer and Wright 2005,

Albrecht, Gautier and Vroman 2006, Menzio 2007, Lester 2010).

In the job search literature there is a consensus that there are two kinds of models.

One kind is undirected or random search in which workers have no ability to seek or

direct their search towards different parts of the wage distribution, or toward different

types of jobs. The other kind is directed search in which workers do not randomly

search among all possible jobs, but apply for jobs that are more likely to match their
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skills and interests. This latter framework is partly motivated by evidence that people

choose where to search, but also by that directed search entails markert optimality,

which is not necessarily present in random search frameworks.

In this paper, I propose a relatively simple model to modify the random search

framework to allow for targeted search. The contribution of this paper to the economic

literature is to propose a tractable model of wage-specific search intensity with two

non-parametric tests that show that the proposed model is a good representation of

the data, and further assess quantitatively its effi ciency gains over the classic setup.

I find that allowing unemployed agents to choose search intensity for each possible

wage increases their total search intensity, their transitions to the upper tail of the

wage distribution, and their average accepted wage, by more than 25%.

The rest of this document is organized as follows. The next section describes

and characterizes the theoretical model. Section 3 explains the computation of the

steady-state distribution for employment status and wages. Section 4 describes the

data; Section 5 and 6 perform non-parametric tests for the restricted and unrestricted

model. Section 7 describes the estimation procedure to recover the model’s parameters

and discusses the identification strategy. Section 8 presents the empirical results and

several goodness of fit tests. Section 9 evaluates the effi ciency gains of wage-specific

search versus constant search intensity over wages. Finally, Section 10 summarizes

the main conclusions of this paper. Further details on this paper are provided in an

Appendix.

2 Model

Consider a discrete time framework in which individuals look for a job both when

they are unemployed and employed. In both employment statuses they receive wage

offers from a known wage offer distribution F defined over x ∈ [w,w]. The unem-

ployed receive unemployment transfers b; the employed lose their jobs with exogenous

separation rate θ > 0. Agents choose search intensity s (x) for each possible wage

offer x; the arrival rate is linear in search intensity:

λ (s (x)) = λ+ λss (x)

where λs = λ−λ, 0 ≤ λ < λ ≤ 1. Accordingly, search effort is bounded: s (x) ∈ [0, s],

s = 1−λ
λ−λ ≥ 1. Total search cost is the infinitesimal sum of wage-specific convex search
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costs, specified as a power function:1

a

∫
sα (x) dx, a > 0, α > 1.

The value function2 when unemployed is

rV u = max
s(x)≤s

{(b− a
∫ w

w∗
sα (x) dx) (1 + r) +

∫ w

w∗
λ (s (x)) [V e (x)− V u] dF (x)}, (1)

while the value function when employed at wage w is

rV e (w) = max
s(x)≤s

{(w − a
∫ w

w

sα (x) dx) (1 + r) (2)

+[(1− θ)
∫ w

w

λ (s (x)) [V e (x)− V e (w)] dF (x)− θ (V e (w)− V u)]}.

Clearly, V e (w) is increasing in w, so that the reservation wage is defined by

w∗ = {w | V e (w) = V u}. Nobody can be employed by less than this reservation
wage.

Proposition 1 w∗ > b.

Proof: Suppose that w∗ ≤ b, then because θ > 0, the RHS of (2) is always less

than the RHS of (1), which is not possible by the definition of the reservation wage

The reservation wage is greater than the unemployment transfers b, a feature of

the model that emerges from the assumption that layoffs imply moving directly to

unemployment, without on-the-job search at the same time.

The power specification for search costs makes it possible to obtain explicit wage-

specific search intensities from the two Euler equations by employment status:

s∗ (x, 0) ≡ min
[
(γ [V e (x)− V u] f (x))

1
α−1 , s

]
, x ≥ w∗,

s∗ (x,w) ≡ min
[
((1− θ) γ [V e (x)− V e (w)] f (x))

1
α−1 , s

]
, x ≥ w,

where γ = λs
αa(1+r)

. These search intensities balance returns to search over its marginal

1This is common specification, for instance Yashiv (2000), Christensen et al. (2005), Gomme and
Lkhagvasuren (2015).

2In discrete time the reward per period is adjusted by the term (1 + r), unlike in continuous time
setups.
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cost for each possible wage. Search intensity may be nonmonotonic in x, as it depends

on the shape of f (x).

Proposition 2 s∗x (x,w) > (=, <)0, ∀x,∀w ∈ 0 ∪ [w,w], s∗ < s, iff V ex (x)
V e(x)−V e(w) > (=

, <)− fx(x)
f(x)

.3

Proof: In Appendix

When the wage offer distribution is nondecreasing in wage offers, fx ≥ 0, search

intensity is increasing in targeted wages, s∗x > 0. In general, when the marginal value

of targeted wages relative to the excedent in values is larger than the decrease of the

wage offer density relative to its density level, search intensity is increasing; otherwise

it is decreasing. If the wage offer density function over targeted wages x is unimodal,

the search intensity function will be also unimodal, peaking at a higher wage than

the former. Moreover, because V ex (x)
V e(x)−V e(w) is increasing in w, the peak of the search

intensity function is also increasing in wage w.

Proposition 2 also implies that search intensity peaks at the same targeted wage

whether unemployed or employed at the reservation wage.

Corollary 1 s∗x (x,w∗) = 0⇐⇒ s∗x (x, 0) = 0, because V e (w∗) = V u.

These peaks occur at the same wage x; however, at different levels of search

intensity.

Proposition 3 s∗ (x, 0) ≥ s∗ (x,w∗), ∀x.
Proof: From the definition of s∗ (x, 0) and s∗ (x,w), when V e (w) = V u, then

s∗ (x,w) = (1− θ)
1

α−1 s∗ (x, 0), thus s∗ (x, 0) > s∗ (x,w∗), or s∗ (x, 0) = s∗ (x,w∗) =

s

Proposition 4 i) s∗w (x,w) < 0 , ∀x, ∀w ∈ [w,w], s∗ < s.

Proof: It follows from the derivative s∗w. See Appendix for explicit expressions

Proposition 3 implies that search intensity is higher when unemployed than when

employed at the reservation wage, whereas Proposition 4 means that search intensity

is decreasing in current wages. It follows that wage-specific search intensity and thus

arrival rates are always higher when umemployed than when employed at any wage:

3For s∗x (x, 0), the corresponding condition is V e
x (x)

V e(x)−V u > − fx(x)f(x) .
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Corollary 2 s∗ (x, 0) ≥ s∗ (x,w∗) ≥ s∗ (x,w),∀x,∀w ≥ w∗.

Corollary 3 λ (s∗ (x, 0)) ≥ λ (s∗ (x,w∗)) ≥ λ (s∗ (x,w)),∀x,∀w ≥ w∗.

The usual framework consists of the same search intensity and arrival rate for all

wages, thus therein total search costs are a
∫ w
w
sαdx = aRs

α, where aR = a (w − w).

Henceforth, the usual framework is called the ‘restricted’model, as it imposes a unique

search intensity over wages to the ‘unrestricted’model. In a restricted framework,

search intensity depends on the average of marginal weighted gains over costs:

s∗ (0) ≡ min

[(
γR

∫ w

w∗
[V e (x)− V u] dF (x)

) 1
α−1

, s

]
,

s∗ (w) ≡ min

[(
(1− θ) γR

∫ w

w

[V e (x)− V e (w)] dF (x)

) 1
α−1

, s

]
,

where γR = λs
αaR(1+r)

. The restricted model shares some features with the unrestricted

model, such as w∗ > b, that search intensity is decreasing in current wages, s∗w (w) < 0,

and that search intensity is always greater when unemployed than when employed,

s∗ (0) ≥ s∗ (w), ∀w ≥ w∗, which reflect diminishing returns to search over current

wages. To illustrate the properties of the wage-specific search model with respect to

the restricted model, I solved the model numerically by value function iteration until

convergence to a reasonable tolerance is attained.4

[Figure 1 here]

Figure 1 illustrates search intensity over targeted wages by employment status for

the restricted and unrestricted framework. Search intensity functions approximately

mimic the unimodal shape of the lognormal wage offer distribution. As detailed in

Proposition 2, search intensity curves peaks on targeted wages are increasing in prior

wages. This figure also shows that wage-specific search intensity does not need to

waste search effot in wages that will be rejected anyway, that is, below the reservation

wage, as it occurs with the restricted model search intensity, which is a horizontal

line around the middle of targeted search intensity.

[Figure 2 here]

4I assume a lognormal wage offer distribution: lnw ∼ N (µ, σ), and parameter values r=0.02,
b=1300, µ=8.1, σ=0.5, λ=0.01, λ=0.95, θ=0.01, a=1, α=2.6.
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Figure 2 shows total costs by current wages for the restricted and unrestricted

models. Decreasing returns to search by current wages explain that both total costs

are decreasing. Taking search costs as a measure of search effort, there is more total

effort when agents can target their search to specific wages.

[Figure 3 here]

Figure 3 presents the hazard rate for job-to-job transitions by current wages. Being

able to choose wage-specific search effort implies a higher hazard for transitioning to

higher paying jobs, but a lower hazard to transitioning to lower wages.

[Figure 4 here]

Figure 4 compares the wage offer distribution with the accepted wage distribution

for the two models, when individuals were previously unemployed. For the restricted

model, the accepted wage distribution is a truncated wage offer distribution; for the

unrestricted model, it is a displaced and rescaled version thereof and is thus associated

with higher mean wage offers.

[Figure 5 here]

Finally, Figure 5 shows the wage distribution for the restricted and unrestricted

models, when individuals change employers, conditional on three prior employment

statuses: unemployed, employed at a medium wage, and employed at a high wage.

As in Figure 4, in the restricted model accepted wage distributions are truncated

wage offer distributions, while in the unrestricted model accepted wage distributions

emerge from the interaction of truncated wage offer distributions and wage-specific

search efforts.

In sum, by removing the restriction that search efforts are constant over targeted

wages, there are effi ciency gains that allow individuals to focus their job search and

increase their transition to jobs in the upper segments of the wage distribution. These

effi ciency gains also incentivize individuals to exert more effort than when they cannot

target their job search to more highly paying jobs.

Unrestricted search intensity has hace different empirical implications than re-

stricted search intensity. In the latter, the distribution of accepted wages, regardless

of the previous employment status or wage, coincides with the wage offer distribution

once truncation is accounted for. By contrast, in the unrestricted model accepted
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wage offer distributions do variate depending on previous employment status and

wages. We use these different implications to build tests to distinguish empirically

between these two models.

3 Steady-State distribution

The steady-state distributions of wages and employment status h (·) is defined over
0 ∪ [w∗, w] and can be computed recursively, exploiting the model’s feature that job

separations are exogenous. Let h (0) be the fraction of individuals that are unem-

ployed, a masspoint, and h (x) the fraction of individuals that are employed at wage

x. Evidently, h (0) +
∫ w
w∗ h (x) dx = 1, and clearly h (x) = 0 for x < w∗.

The steady-state unemployment rate is then defined by

0 = θ (1− h (0))︸ ︷︷ ︸
Job separations

−h (0)

∫ w

w∗
λ (x, 0) dF (x) ,︸ ︷︷ ︸

Job entrants

and has this explicit expression:

h (0) =
θ∫ w

w∗ λ (x, 0) dF (x) + θ
.

This expression is computed directly from the model’s parameters. Then, the

steady-state density for wage x is given by

0 = (1− θ) f (x)

∫ x

w∗
λ (x,w) dH (w)︸ ︷︷ ︸

Entrants from lower wages

+h (0)λ (x, 0) f (x)︸ ︷︷ ︸
Job entrants

−h (x) (1− θ)
∫ w

x

λ (z, x) dF (z)︸ ︷︷ ︸
Quitters to higher wages

− h (x) θ.︸ ︷︷ ︸
Job separations

This expression defines explicitly the steady-state the density function over wages x :

h (x) =
(1− θ)

∫ x
w∗ λ (x,w) dH (w) + h (0)λ (x, 0)

(1− θ)
∫ w
x
λ (z, x) dF (z) + θ

f (x) .

This formula requires first the computation of the steady-state unemployment rate

h (0) and the steady-state density for wages w lower than x: h (w) , w < x. Given
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this configuration, there is no need for any iterative procedure for computing this

steady-state distribution. The whole distribution can be calculated recursively, first

computing the steady-state unemployment rate, then the lowest acceptable wage,

x = w∗, and then higher wages until wage w is reached. In practice, a discretized

approximation is computed, which makes the solution straightforward.

4 Data

Data come from the United States National Longitudinal Survey Youth Cohort of

1997 (NLSY97). This is a nationally representative sample of 8,984 youths who

were 12 to 16 years old as of December 31, 1996. The dataset consists of 682,784

observations for the time period 1997-2015. Interviews were conducted annually up to

2011, and bi-annually afterward. The dataset includes a weekly employment history

from which we take the last week in the quarter as representative for the whole

quarter. The survey keeps track of employment transition including employer changes

and weekly wages, which are derived from hourly wage rates and hours worked weekly.

In the sample there are only individuals who have turned 18 after they obtain

their highest reported education level. They are considered employed if their weekly

wage is at least $100 per week; otherwise, they are classed as unemployed. The

sample is organized in unemployment or employment spells, which can be complete

or incomplete (right-censored). The spell ends with an employment change, which

can be job-finding, when the individual is unemployed, or job separation or a job-to-

job transition, when the individual is employed. The final sample consists of 154,874

observations contained in 9,344 spells.

5 Testing for equal conditional wage distributions

The two models’empirical implications can be tested using nonparametric approaches.

Let g (x | w) be the empirical density function for wages x conditional on past wages

w or past unemployment g (x | 0). There is a masspoint for unemployment denoted

by g (0 | w). Then the observed transitions can be related to the transitions gener-

ated by the model. For legibility, in this section arrival rates are expressed shortly as

λ (x, 0) = λ (s∗ (x, 0)) and λ (x,w) = λ (s∗ (x,w)).

Given that the separation rate is exogenous and constant, it is straightforward to

identify this parameter from the data: g (0 | w) = θ. The density function for targeted
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wages conditional on current unemployment is g (x | 0) = λ (x, 0) f (x), x ≥ w∗ and

conditional on current employment at wage w is g (x | w) = λ (x,w) f (x), x ≥ w.

Thus, the job-finding transition is 1 − G (w∗ | 0) =
∫ w
w∗ λ (x, 0) dF (x) and the job-

to-job transition from employment at wage w is 1 − G (w | w) =
∫ w
w
λ (x,w) dF (x).

Then, there is a clear empirical distinction between the restricted model and the

unrestricted model for the employed:

g (x | w, x > w) =
g (x | w)

1−G (w | w)
=

f (x)

1− F (w)
, restricted model, and (3)

=
λ (x,w) f (x)∫ w

w
λ (x,w) dF (x)

, unrestricted model.(4)

Transitions from unemployment, g (x | 0, x > w∗), have similar expressions. As dis-

cussed in Section 2, in the restricted model all conditional truncated accepted wage

distributions coincide with the truncated wage offer distribution. In the restricted

model search intensity does not build the shape of the conditional accepted wage

distribution. By contrast, in the unrestricted model the conditional accepted wage

distribution is smooth, not truncated, and different by current employment status

and targeted wages. This difference between models can be exploited to build a sta-

tistical test. For the restricted model, if we truncate a conditional distribution at

the same wage w1, the resulting conditional distributions should be exactly the same

regardless of whether the prior wage was w1 or w2. Thus we have a null and an

alternative hypothesis.

H0 : g (x | w1, x > w1) = g (x | w2, x > w1) , w1 > w2,

H1 : 6= .

This test is also applicable when the prior status is unemployment: g (x | 0, x > w1),

w1 > w∗. Accepting the hypothesis of equality of truncated conditional distributions

lends empirical support to the restricted model, while rejection thereof works in favor

of the unrestricted model.

A Kolmogorov-Smirnov (KS) test determines equality between conditional distri-

butions by prior wages and unemployment. Wage distributions are conditioned on

being unemployed or employed in one of the four quartiles of the wage distribution

in the previous period

[Figure 6 here]
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Figure 6 presents these distributions both for wages (left panel) and logwages

(right panel). Even though by construction their support is truncated by the as-

sumption that wages have to be higher than prior wages, none of them looks like

a truncated distribution; they all start smoothly from the truncation point. For a

proper comparison of these conditional distributons, however, we have to truncate

each distribution at the same point, as shown in the next figures, a pairwise graphical

comparison of conditional distributions with a KS-test.

[Figures 7-10 here]

Figure 7 compares two wage distributions, one is conditional on being unemployed

in the previous period and the other is conditional on being employed at wages from

the first quartile of the prior wage distribution. This comparison is made for wages

in the left panel and logwages in the right panel. KS-tetsts in both panels reject

the hypothesis that these two distributions are equal. This test is repeated with

a comparison for wage distributions conditional on unemployment, first and second

quartile in Figure 8, for unemployment, first, second and third quartile, in Figure

9, and for unemployment and the four quartiles in Figure 10. All of these tests

rejects that any pair of conditional wage distributions are equal, thus implying a

sound rejection of the restricted search intensity model. Moreover, the Kolmogorov

D-statistic increases with the distance between quartiles, that is, the combined D-

statistic for the first and second wage quartile is 0.21, for the first and third quartile

it is 0.29, and for the first and fourth quartile it is 0.44.

6 Testing for constant relative search effort

A second nonparametric test is for constant relative search effort over current wages,

as predicted by the restricted model. Certainly, the reason for the coincidence of

conditional accepted wage distributions in the restricted model is that therein there

is a constant search intensity over targeted wages. Thus, another way to check for

the restricted model is to build a ratio of conditional densities by accepted wage:

g (x|w1)
g (x|w2)

=
λ (w1)

λ (w2)
, restricted model, and

=
λ (x,w1)

λ (x,w2)
, unrestricted model.
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These ratios of conditional densities by prior unemployment, g(x|w)
g(x|0) , have similar ex-

pressions. For the restricted model, a ratio of two empirical conditional distributions

is constant over accepted wages x, unlike the unrestricted model. We can build then

a hypothesis test for the restricted model

H0 : d
g(x|w)
g(x|0)
dx

= 0

H1 : 6=

and similarly for d
g(x|w1)
g(x|w2)
dx

= 0. Accepting the hypothesis of constant relative search

intensity implies a clear empirical support for the restricted model.

This test is similar in essence to the KS-test, but it requires some previous steps

for its empirical implementation:

1. Smooth the empirical bivariate distribution of current wages and prior wages

g (x,w) by a bivariate kernel density estimation.

2. Build several ratios of conditional wage distributions, for each possible com-

bination of prior wages and truncations points: r (x,w1, w2, z) = g(x,w1 | x>z)
g(x,w2| x>z)

.

These ratios are built for truncation points z that are greater than or equal to

prior wages w: z ≥ w and current wages have to be greater truncation points:

x > z.

3. Run fixed effect regressions that control for several possible levels of these ratios,

which are assumed to be fixed-effect intercepts for prior wages and truncation

points: a (w1, w2, z). The parameter of interest is the slope b over current wages

x.

r (x,w1, w2, z) = a (w1, w2, z) + bx

4. Perform a significance test for b, which is really a test for d
g(x|w)
g(x|0)
dx

= 0, explained

above.

Wages are discretized in 100 points that are truncated over the first 60 points,

so that there are always at least 40 points of current wages available as observations

of the estimation. Certainly, for lower current wages there are fewer prior wage and

truncation points, but there are more current wage points. For higher wages, there

are more prior wages and truncation points for conditioning the distribution of x, but

there are fewer current wages, so that the estimation is less precise.
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[Figure 11 here]

The results for the slopes of these estimations by truncation points with confidence

intervals as upper and lower bounds are reported in Figure 11. The slope of x is

generally statistically significant: for almost all prior wages we reject the hypothesis

that there is a constant search intensity over targeted wages. This rejection is clearer

for higher wages than for lower wages, which coincides with the previous KS-tests

shown in indicating larger distances between conditional wage distributions for larger

distances between prior wages.

In sum, from the empirical distributions of current wages conditional on prior

wages and unemployment I build two tests for constant wage-specific search inten-

sities. The first is a KS-test of equality of accepted wage distributions conditional

on different prior wages and the second is a test that search intensities are constant

ratios over targeted wages. Both of these tests reject the implications of the restricted

model, namely that the conditional distribution of accepted wages is a truncated wage

offer distribution and that search intensity is constant over targeted wages.

7 Recovering model’s parameters

Besides these nonparametric tests, it is possible to recover the theoretical model para-

meters from the data. We do that by means of a General Method of Moments (GMM)

Estimation. This procedure relates a parameter set to a weighted measure of distance

between sample and predicted moments: G (Θ) = (ma −mp)
′W−1 (ma −mp), where

ma is a vector of actual moments, mp is a vector of simulated moments, and W is a

weighting matrix. The moments used in this estimation are the following:

1. wage segment-unemployment distributions

2. transitions between wage segments, and

3. employment status transitions.

I compute the predicted moments from the steady-state employment and wage

distribution as well as the employment and wage segment transitions predicted by

the theoretical model. For W I use a diagonal matrix consisting of each element

of the vector mp. Since the moments are probabilities of being in a wage segment
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or of transitions between segments, the criterion function is in fact a sum of χ2-

statistics, that is, χ2 = (ma−mp)2
mp

. The estimated behavioral parameters are thus

Θ̂ = arg minG (Θ).

The identification of wage-specific search intensity is only possible if some para-

meters are fixed. It is not possible to identify λ, λ, a, and α at the same time. With

data on out-of-the labor force, one could identify the lower bound for the arrival

rate λ from the transitions from out-of-the labor force to employment (see Flinn and

Heckman 1983). With data on time spent in job search, one could identify the scale

parameter of the cost function a. Accordingly, to reinforce the identification of some

parameters, unemployment transfers b, the interest rate r and thus the discount rate,

the bounds of the arrival rates, and the scaling factor a of the search intensity cost

function are fixed. More concretely, the interest rate is fixed at 4% annually, which is

0.985% for a quarter; transfers while unemployment are set at a low value of b = 200

and λ = 0 and λ = 1, and the search cost scale parameter is set at a = 1000. As

discussed previously, the separation rate is definitely well identified from observed

average job separations, so we fix this parameter, θ̂ = g (0 | w) = 3.64%.

We concentrate the identification power of the data on the curvature parameter α

for both restricted and unrestricted models. We also estimate the mean and standard

deviation of logwages and the separation rate. The parameters to estimate are then

Θ = {µ, σ, α}.
For identification of the remaining model’s parameters we can use the criteria by

Flinn and Heckman (1982a, 1982b), matching the employment transitions and con-

ditional wage distributions to their empirical counterparts. A key feature of these

authors’identification strategy is the coincidence between the accepted wage distri-

bution and a truncated wage offer distribution. This feature also characterizes the

restricted model and makes the identification of the wage offer distribution straight-

forward. As discussed in the previous sextion on nonparametric tests, the restricted

model implies a similar shape of all accepted wage distributions conditional on prior

wages or unemployment (Equation 3). In the data, however, we may have different

accepted wage distributions by prior wages and unemployment. The unrestricted

model consists of diferent wage-specific arrival rates by previous employment status

and a common wage offer distribution with two parameters (Equation 4), which can

then be properly identified.

We optimize both criterion functions by means of the Powell algorithm, as in Press

et al. (1992). For the likelihod function asymptotic standard errors are computed
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from first derivatives computed by a smoothing polynomial interpolation around their

estimated value. For the GMM estimation standard errors are computed from 20

bootstrap computations of the parameter set.

8 Empirical Results

This section presents the estimated parameters and an assessment of the two models’s

accuracy in replicating the data.

[Table 1 here]

Table 1 reports the results of the estimation for both models. The unrestricted

model has a mean of logwages of 7.10 and a standard deviaton of 0.85 which reflect a

less dispersed wage offer distribution than the restricted model, whose logwage mean is

7.35 and standard deviation is 0.82. Hoever, the unrestricted model has lower search

costs than the restricted model, captured by a higher curvature parameter for the

cost function, 7.56, than the estimated parameter for the restricted model, 5.16. This

suggests the the predicted shape of accepted wages is relatively more influenced by

wage-specific arrival rates in the unrestricted framework. These parameters generate

an overall better fit of the unrestricted model, as measured by the criterion function

of the GMM procedure.

[Table 2 here]

Table 2 shows unemployment rates and transition rates from unemployment and

from employment for the two models. Both models overpredict the unemployment

rate of 7.33%, which comes from their underprediction of the actual job-finding rate

of 41.74%. For these statistics the unrestricted model performs somehow better.

Also, both models underpredict the job-to-job transition rate of 5.89, with some

more accuracy for the restricted model, measured by the goodness of fit test, a χ2-

statistics. Both models have the same job separation rates, as this is determined by

a fixed parameter that comes from descriptive statistics.

[Table 3 here]

Table 3 reports the actual and predicted wage segment distributions for the two

models, computed at steady-state. The predictions of the two models are barely



16

different from each other and both of them are close to the actual distribution in

the middle segments. Altogether, the goodness of fit metric indicates a fairly good

replication of the actual data by both models. However, there is underprediction in

the lower tails and overprediction in the upper tails of the distribution. This can be

visualized in the following figures.

[Figure 12 here]

[Figure 13 here]

The predicted and actual steady-state accepted wage distributions and the esti-

mated wage offer distributions are illustrated in Figure 12. The corresponding image

for log-wages is reported in Figure 13. The wage offer distribution of unrestricted

model is clearly more concentrated around lower wages than the restricted model,

which presents a larger dispersion, as we anticipated in the discussion of Table 1.

The difference in shapes of accepted wage distributions is sensible, because wage-

specific search intensity creates more dispersion in the distribution of accepted wages

from the same wage offer distribution than the model with a constant search intensity,

as shown in Section 2. Figure 13 shows these same graphic information in log-wages

and is particularly useful to illustrate that both models’underprediction of the lower

tail of the accepted wage distribution. The predicted distribution has the reservation

wage as truncation point, which implies that the model does not account for very low

wages. Nevertheless, the models’replication of the main shape of the accepted wage

distribution is acceptable, both visually and by formal goodness of fit tests.

[Table 4 here]

Table 4 presents the transition matrix between wage segments.5 In general, the

restricted model replicates slightly better the actual transition for lower wages, while

the unrestricted model does better with medium and upper wage segments, and un-

employment. This is in line with the results of the non-parametric tests that show

that the unrestricted model performs particularly better for the upper tail of the

conditional wage distributions.

In summary, with a few identifying assumption the structural parameters of the

restricted and unrestricted models are identified and estimated. By goodness of fit

metrics both models are able to replicate fairly well the main observables, with the

5Because these model do not generate wage-specific job separation rates, I just report transitions
between wage segments, conditional on not transitioning to unemployment.
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unrestricted model performing better altogether, especially for transitions from un-

employment and the upper segments of the wage distribution and the restricted model

performing relatively better for the lower segments of the wage distribution.

9 Effi ciency gains in job search

Can we measure the effi ciency gains of wage-specific job search over the classical setup

of constant search intensity for all wages? After recovering the behavioral parameters

of the unrestricted job search model, we calculate the counterfactual outcomes if we

restrict search intensity to be equal across wages. The quantitative comparison of

these two outcomes measures the effi ciencty gains of the wage-specific search model

over its classic countepart.

[Table 5 here]

In Table 5 I compare three outcomes of the unrestricted and restricted model using

the estimates of the unrestricted model. Outcomes are accepted mean wages, search

costs, and hazard rates from the current employment or wage status. Allowing for

wage-specific job search increases reservation wages by 166%, implying wage gains by

22% when people were unemployed. These wage gains are decreasing in current wages.

Total search costs are higher for wage-specific search and their gains are increasing

in current wages. That is, wage-specific search intensity is higher than classic search

intensity mainly for upper wage segments, about 35% higher. Hazard rates in the

unrestricted setup are lower for unemployent, by 29%, and for lower wage segments,

but up to 26% higher for upper wage segments. This is because wage-specific search

is targeted to the upper wage segments and, accordingly, transitions therefrom are

faster in contrast with slower transitions from lower segments.

[Table 6 here]

Table 6 is similar to the previous table, but there we compare outcomes between

the counterfactual unrestricted model and the estimated restricted model. Effi ciency

gains are higher than in the previous table. Reservation wages increase by 325%

and accepted mean wages after unemployment increase by 50%. As in the previous

table, wage gains are decreasing, search costs increasing, and hazard rates increasing

in current wages. Once again, transitions are slower from unemployment and lower

wage segments and faster from upper wage segments.
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The analysis of the two estimated models deliver a similar message about the

effi ciency gains of wage-specific search. Compared with constant search intensity over

wages, wage-specific search implies higher reservation wages and thus wage gains that

are decreasing over current wages, whereas search intensity is increasing in current

wages. However, hazard rates from unemployment and lower current wages are lower

for wage-specific search, by more than 25%, but higher by more than 25% from higher

current wages than for constant search intensity over wages.

10 Conclusions

In this paper I have proposed a model of job search wih optimal choice of wage-

specific search intensity. The proposed framework is based on random search, yet

it it extended to allow for a controlled random process, so that search is no longer

“undirected”. The proposed model allows agents to concentrate their search effort in

the upper wage segments, so that they do not have to spend any effort in wage offers

that they will not accept anyhow, as in the usual framework in which search effort is

not targeted.

I have shown that wage-specific search intensity generates a distribution of ac-

cepted wages that differs substantially from the truncated distribution that emerges

from the usual search intensity setup. In the latter a constant search intensity over

targeted wages is related to the same truncated accepted wage offer distribution by

prior wages or unemployment. When search intensity is allowed to be wage-specific,

accepted wage distribution differ by prior wage. These different empirical implica-

tions between these two setups are the basis to build two nonparametric tests. Once

they are performed, both these tests reject the implications of the widely used model

of search intensity of a constant search intensity for all possible wage draws.

I also have estimated the main behavioral parameters of the wage-specific search

model, which is able to replicate the data fairly. Usual goodness of fit tests coincide

with the nonparametric tests in indicating that the wage-specific setup presents a

better fit to the data than the usual constant search intensity setup. I calculate the

effi ciency gain of wage-specific search over classic search in up to 25% higher wages,

more search activity mainly for higher wages up to 35% increase in total search cost,

and slower transitions to lower wage segments but faster transitions to upper wage

segments.

The proposed framework of wage-specific search intensity has been estimated with
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a relatively conventional dataset. In future research datasets that contain observed

metrics of search intensity can certainly bring more precision to disentangle between

the two models. A fruitful extension of the proposed framework would be also to

allow for equilibrium.
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Appendix
A Proof of Proposition 1
The derivates of search intensities over current and targeted wages when s < s are:

s∗w =
1

α− 1
s∗ (x,w)

−V e
w (w)

V e (x)− V e (w)
,

s∗x =
1

α− 1
s∗ (x,w)

[
V e
x (x)

V e (x)− V e (w)
+
fx (x)

f (x)

]
.

The first derivate is always negative, while the second derivate is positive if
V ex (x)

V e(x)−V e(w) > −
fx(x)
f(x)

, which defines the condition for Proposition 1. Certainly, for

s∗ (x, 0), the corresponding condition is V ex (x)
V e(x)−V u > −

fx(x)
f(x)

.
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Table 1. Parameter Estimates and Standard Errors
Unrestricted and Restricted Models

Parameter Θ GMM
Unrest Rest

Mean of logwages µ 7.09875 7.35161
0.019687 0.026771

S D of logwages σ 0.84621 0.82067
0.007437 0.010945

Search cost α 7.56240 5.16086
0.199205 0.138046

Criterion Function S 0.562579 0.613192

Table 2. Actual and Predicted Employment Status and Transitions
Restricted and Unrestricted Models. In Percent

Transitions Actual Unrestricted Restricted
Unemployment Rate 7.33 10.79 10.93

χ2-statistic 0.0328 0.0355
p-value 0.85631 0.85054

Job Finding 41.74 30.07 29.64
χ2-statistic 0.0560 0.0602
p-value 0.81299 0.80618

Job Separations 3.64 3.64 3.64
Job-to-Job 5.89 4.61 4.93

χ2-statistic 0.0030 0.0017
p-value 0.99852 0.99917

Table 3. Actual and Predicted Wage Distributions
Unrestricted and Restricted Models. In Percent

Wage segment Actual Unrestricted Restricted
-2000 23.78 12.32 13.42

2000-4000 30.50 30.35 28.81
4000-6000 20.85 24.47 24.90
6000-8000 11.48 15.42 16.73

8000+ 13.38 17.43 16.14
χ2-statistic 0.0873 0.0836
p-value 0.99907 0.99915
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Table 4. Actual and Predicted. Wage Segment Transitions
Unrestricted and Restricted Models. In Percent

Wage Unemp -2000 2000 4000 6000 χ2 p
Segment -4000 6000 8000 8000+ statistic value

Actual 58.26 7.49 13.75 10.64 4.95 4.92
Unemployment Unrest 69.93 17.06 9.21 2.30 0.84 0.67 1.7301 0.88509

Rest 70.36 18.30 7.70 2.14 0.86 0.64 2.0454 0.84283

Actual 89.71 5.30 2.94 1.13 0.92
-2000 Unrest 86.40 9.49 2.48 0.91 0.73 0.0360 0.99984

Rest 86.41 9.23 2.56 1.03 0.77 0.0312 0.99988

Actual 92.15 4.12 2.07 1.66
2000-4000 Unrest 96.11 2.29 0.88 0.72 0.0220 0.99914

Rest 96.07 2.31 0.93 0.69 0.0216 0.99916

Actual 96.14 2.15 1.71
4000-6000 Unrest 98.51 0.80 0.69 0.0151 0.99247

Rest 98.62 0.79 0.59 0.0166 0.99172

Actual 97.56 2.44
6000-8000 Unrest 99.37 0.63 0.0137 0.90680

Rest 99.53 0.47 0.0163 0.89850

Table 5. Accepted Wages, Search Intensity and Hazard gains of Wage-Specific Search
Estimates of Unrestricted Model and Counterfactuals of Restricted Model

Accepted Mean Wages Search Costs Hazard
Unrest Rest Diff % Unrest Rest Diff % Unrest Rest Diff %

Reservation Wage 713 268 165.9
Unemployed 2365 1763 22.4 200 200 0.0 30.1 42.4 -29.1
Wages: 1000 2715 2504 8.4 474 432 9.9 26.2 27.2 -3.8

2000 3923 3717 5.5 353 310 13.8 12.6 12.1 4.3
3000 5134 4913 4.5 252 211 19.2 6.5 5.8 11.2
4000 6293 6048 4.1 173 137 26.4 3.6 3.0 17.9
5000 7357 7096 3.7 116 86 35.1 2.1 1.7 25.7

Table 6. Accepted Wages, Search Intensity and Hazard gains of Wage-Specific Search
Estimates of Restricted Model and Counterfactuals of Unrestricted Model

Accepted Mean Wages Search Costs Hazard
Unrest Rest Diff % Unrest Rest Diff % Unrest Rest Diff %

Reservation Wage 1055 248 325.2
Unemployed 3248 2159 50.4 200 200 0.0 18.9 29.6 -36.2
Wages: 1000 3210 2779 15.5 845 726 16.3 24.6 25.9 -5.0

2000 4343 3921 10.7 660 534 23.7 13.8 13.0 6.4
3000 5519 5076 8.7 494 372 32.6 7.9 6.7 17.6
4000 6646 6177 7.6 357 246 44.8 4.7 3.6 29.9
5000 8574 8162 5.1 159 88 81.7 1.9 1.1 66.0
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Figure 1. In Wage-specific and Classic, search intensity decreases in the current
wage

Figure 2. Wage-specific implies more total intensity than Classic
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Figure 3. Hazard rate while unemployed and for lower wages is higher in Classic

Figure 4. Offer and accepted wage distribution for the unemployed
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Figure 5. Accepted wage distribution for the employed by wage level: Classic (m)
and Wage-specific (s)

Figure 6. Wage and Logwage Distributions by Prior Wage Quartile



28

Figure 7. Wage and Logwage Distribution conditional by prior 1st quartile and
unemployment. KS-test

Figure 8. Wage and Logwage Distributions by prior 2nd and 1st quartile and
unemployment. Same truncation point. KS-test
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Figure 9. Wage and Logwage Distributions by prior 3rd, 2nd and 1st quartile and
unemployment. Same truncation point. KS-test
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Figure 10. Wage and Logwage Distributions by prior 4th, 3rd, 2nd and 1st quartile
and unemployment. Same truncation point. KS-test
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Figure 10 (cont.). Wage and Logwage Distributions by prior 4th, 3rd, 2nd and 1st
quartile and unemployment. Same truncation point. KS-test

Figure 11. Wage-density slope
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Figure 12. Wage Offer and Steady-State Accepted Wage Distributions, Actual and
Predicted

Figure 13. Log-wage Offer and Steady-State Accepted Log-wage Distributions,
Actual and Predicted
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