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ABSTRACT
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Air Pollution and Respiratory Infectious 
Diseases
Recent research suggests that short-term exposure to air pollution is associated with an 

elevated prevalence of respiratory infectious disease. We examine the relationship between 

the air quality index (AQI) and weekly cases of influenza-like illnesses (ILI) and COVID-19 

in the United States. We address potential bias from omitted variables and measurement 

error with an instrumental variable approach using atmospheric temperature inversions. 

Unlike other recent studies, we find no relationship between air quality and either ILI or 

COVID-19 cases.
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1 Introduction

Air pollution exposure has been linked to a wide range of adverse health

outcomes such as lower life expectancy, higher infantmortality, andmore

frequent emergency room visits (Dockery et al. 1993, Chay &Greenstone

2003, Currie&Neidell 2005, Schlenker&Walker 2016). More recentwork

has linked air pollution exposure to respiratory infectious diseases such

as influenza (‘the flu’) and COVID-19, both for long-term exposure and

for short-term fluctuations (Weaver et al. 2022). From an economic view-

point, this is important because respiratory infectious diseases generate

substantial disruptions and costs. The total annual economic burden of

influenza on the US economy is estimated at $87.1 billion, and COVID-19

is projected to cost the US more than $16 trillion (Molinari et al. 2007,

Cutler & Summers 2020).

In this paper, we studywhether fluctuations in air quality are linked to

the twomost commonand costly respiratory infectious diseases, influenza-

like illnesses (ILI) and COVID-19. In theory, air pollution can a�ect res-

piratory infectious diseases in threemainways: First, exposure to air pol-

lution can a�ect the body directly, either by making the respiratory sys-

temmore vulnerable to such diseases or by inducing inflammatory reac-

tions which impair the immune response to new infections (Ciencewicki

& Jaspers 2007). Second, the existence of pollution in the air might a�ect

the airborne survival of respiratory viruses, allowing the virus to remain

in the air for longer (Martelletti & Martelletti 2020). Third, air pollu-

tion might also lead to changes in human behavior that in turn can im-

pact virus transmission. While the first two channels suggest that there

might be a positive link between pollution and respiratory diseases, the

last one is more ambiguous. We, therefore, aim to estimate the relation-

ship between air pollution and respiratory infectious diseases empiri-

1



cally. Throughout, we focus on short-term links, analyzing U.S admin-

istrative data on ambient air pollution and cases of ILI and COVID-19 at

the weekly level.

Assessing the link between pollution and infectious respiratory dis-

ease is challenging due to the presence of correlated omitted variables

andmeasurement error. Time-varying economic activity is just one of the

many possible omitted variables that is likely to a�ect both air pollution

and the propagation of infectious diseases. In addition, air quality mea-

surement likely su�ers from measurement error due to variation within

spatial units and across time. We overcome these challenges by using an

Instrumental Variable (IV) approach that relies on atmospheric temper-

ature inversions. Importantly, we document that inversions, which have

previously been used as an instrumental variable for air pollution in the

economics literature (e.g. Arceo et al. (2016) or Bondy et al. (2020)), are

subject to seasonal patterns which raise concerns about the validity of

such instrumentation in some settings. In multi-year panels, this can be

accounted for by using appropriate fixed e�ects. Where only one year of

data is available, as in our COVID-19 sample for example, using fixed ef-

fects to overcome this empirical challenge is clearly not feasible. We there-

fore propose an alternative specification using deviations from long-term

averages to overcome this seasonality issue. We hope that this approach

may prove useful to other researchers investigating air pollution in con-

texts of seasonality.

Several recent papers in the economics literature document a posi-

tive association between air pollution and respiratory infectious diseases.

Clay et al. (2018) find a positive link between elevated pollution from

coal plants and the number of deaths during the 1918 Spanish flu pan-

demic across U.S. cities, exploiting di�erential timing of the Spanish flu

pandemic to overcome confounding factors. Using random variation in
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wind direction as an instrument, Gra� Zivin et al. (forthcoming) find

that elevated levels of air pollution (based onmonthly AQI) significantly

increase influenza hospitalizations in the U.S. Austin et al. (2020) and Is-

phording & Pestel (2021) apply similar IV approaches to study the im-

pact of particulate matter (PM) concentrations on COVID-19 cases and

deaths in the U.S and Germany respectively. Both studies find significant

positive e�ects. Finally, Persico & Johnson (2021) document increased

COVID-19 cases and case fatalities in the weeks following the rollback of

environmental regulations in the U.S. These findings suggest a reinforc-

ing relationship between these two important sources of externalities.

We contribute to this growing literature by exploiting an alternative

instrument, atmospheric inversions, and by estimating similar models

for both influenza and COVID-19 in the United States. Our estimates

are precise, based on several time windows of exposure and are robust

to di�erent specifications. Contrary to previous studies, we find no ev-

idence that elevated levels of air pollution a�ect weekly influenza and

COVID-19 cases in the U.S. once we control for seasonality or instrument

for pollution using temperature inversions. Considering that all other

studies, without fail, find a positive association, we believe that it is vital

to document our precise null results to foster further investigation on this

matter.

2 Data

To study the impact of ambient air pollution on the prevalence and sever-

ity of respiratory infectious diseases, we assemble two health datasets.

The first dataset is a weekly panel on influenza-like illnesses (ILI) at

the US state level. It is based on data provided by the Center for Disease

Control (US CDC) listing weekly counts of ILI patients across US states
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over 9 years/full flu seasons—from the 2010/11 flu season beginning in

October 2010 until the 2018/19 flu season ending in October 2019. We

exclude more recent flu seasons to avoid an overlap with the COVID-19

pandemic.

The second dataset is a weekly panel of COVID-19 cases and fatalities

at the US county level. It is based on data collected by usafacts.org that

covers 1,004 US counties representing 79.6% of the US population from

January 2020 until the launch of the vaccination program in December

2020.

We complement health datawith information on theAirQuality Index

(AQI) from the US Environmental Protection Agency (US EPA), which

we average from the daily to the weekly level. We also construct weather

covariates describing surface air temperature, precipitation and relative

humidity based on data from NOAA’s NARR database. Finally, for our

instrumental variable strategy, we construct measures of atmospheric in-

version frequencies based on data from NASA’s MERRA-2 database. A

detailed description of sample construction is provided in Appendix A.1.

Summary statistics and the distributions of the outcomes variables are

presented in Table 1 and Figure A.1 respectively.

[Table 1 about here.]

3 Methodology

We estimate the short-term relationship between air pollution and two

measures of respiratory disease: Weekly cases of (1) influenza-like ill-

ness (ILI) at the state level, and weekly cases of (2) COVID-19 at the

county level. First, consider the expected number of ILI cases in state i

during week t:
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E(Casesi,t) = exp[� AQIi,t + f(Weatheri,t) + µt + �i] (1)

The expected number of ILI cases exponentially1 depends on air qual-

ity, weather and additional time-invariant factors. AQIi,t is the average

air quality index (AQI) in state i during week t, Tempi,t is average tem-

perature,RHi,t is relative humidity, andRaini,t is cumulative rainfall. We

flexibly account for weather conditions in f(Weatheri,t) by including 20

temperature bins2, relative humidity, and its’ interaction with tempera-

ture, as well as rainfall and its square. We also include state fixed e�ects

�i and year-week fixed e�ects, µt. We will show that these fixed e�ects

influence the results due to the likely strong degrees of seasonality.

For our second sample,Casesi,t denotes the number ofCOVID-19 cases

in county i duringweek t, and all other variables are alsomeasured at the

county-level. In both cases, our coe�cient of interest is �, which describes

the relationship between AQI and (exponential) cases of respiratory dis-

ease.

We estimate Equation 1 using the Poisson pseudo-maximum likeli-

hood (PPML)3 regression as proposed by Silva & Tenreyro (2006) and

implemented using the computationally e�cient routine in the presence

of high-dimensional fixed e�ects as developed by Correia et al. (2020).

However, these estimates may be biased for at least for two reasons—

identification and measurement. In terms of identification, estimate �̂

could be biased when certain variables are omitted from Equation 1 that
1Exponential mean specifications are standard for count data with long right tails. As
shown inAppendix Figures A.1, both the ILI and the Covid-19 case counts exhibit such
distributions.

2Temperature bins are cut at: -30, -10, -5, 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28,
30, 45 (all in �C.).

3PPMLmaintains the exponential mean structure, incorporates zero counts, and relaxes
the mean-variance equivalence typical of standard Poisson models.

5



a�ect both air quality and respiratory outcomes. The level of economic

activity in a given region and during a given week is just one of the many

possible candidates for such an omitted variable. Regarding measure-

ment, the assignment of air quality is bound to be imprecise due to vari-

ation within spatial units and weeks, biasing estimates �̂, generally to-

wards 0.

To address these concerns, we turn to a second identification strategy

that relies on atmospheric temperature inversions as an instrument to

induce plausibly exogenous variation in the levels of air quality. Temper-

ature inversions are short-term atmospheric episodes, usually occurring

over a day or less, which lead to a reversal of temperature profiles that

lower atmospheric ventilation and thus temporarily increase ground-level

pollution levels. They are best suited as instruments for short-term fluc-

tuations in air quality at the daily (Jans et al. 2018, Sager 2019) or weekly

level (Arceo et al. 2016). Specifically, we estimate the following linear

first-stage relationship:

AQIi,t = ⇢ INVi,t + �(Weatheri,t) + ⌘t + ✓i + vi,t (2)

Air quality in a given county or state i and during week t, AQIi,t, de-

pends on the share of days in that week during which inversions oc-

curred, INVi,t, as well as the same covariates as in Equation 1. As we

will show, inversions are systematically associated with higher levels of

air pollution throughout all specifications and both samples. To estimate

the exponential relationship stipulated in Equation 1, we employ a con-

trol function approach as proposed byWooldridge (2015). In a first step,

we estimate Equation 2 using Ordinary Least Squares (OLS) estimation.

We then add the residuals from that regression, v̂i,t, to the PPML estima-

tion of Equation 1.
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4 Results

4.1 PPML Estimates

We now turn to the results, beginning with the ILI state-year sample. Re-

sults from the non-instrumented PPML regression are shown in panel

(a) of Table 2. In column (1), we include weather controls but no fixed

e�ects. As in previous studies, we find a positive association, suggest-

ing that each 1-point increase in AQI is associated with an increase in ILI

cases by 1.2%. However, once we include state and year-week fixed ef-

fects in column (2), we find a precisely estimated zero. When we add

one-week lags of ILI cases and AQI to account for any potential autocor-

relation across time, the coe�cient remains statistically and economically

insignificant.

[Table 2 about here.]

Another concern is that pollution anddisease are seasonal (aswe show

in Figure A.2) and that seasonality may di�er across regions. For exam-

ple, we may see more pollution and more flu cases during late January

in states that routinely experience severe winters. This introduces a sub-

stantial risk of bias when estimating the relationship between air quality

and respiratory disease without accounting for region-specific seasonal-

ity trends. We take two approaches to region-specific seasonality. First,

we include state-calendarweek fixed e�ects in column (4) of Table 2. The

coe�cient of interest remains at essentially zero. Second, in column (5)

we calculate AQI as the deviation from its’ long-run average by state and

calendar week. Given the similarity to the calendar week fixed e�ects, it

is not surprising that the coe�cient is also zero. However, using long-

run deviations of AQI allows us to do the same in the COVID-19 sample

where we have only one year of data.
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Panel (b) of Table 2 shows equivalent results for COVID-19 cases by

county and week. Here, state fixed e�ects are replaced with county fixed

e�ects. We limit ourselves to the time before any Covid-19 vaccines were

widely available, essentially the year 2020, and are thus not able to esti-

mate a specification with county-calendar week fixed e�ects. While the

simple specification without fixed e�ects in column (1) again suggest a

positive association, we detect no such relationship after accounting for

time-invariant factors, common time-varying shocks, and region-specific

seasonality. In fact, our results are small but the sign of the coe�cient

actually reverses, suggesting that higher levels of pollution reduce the

number of COVID-19 cases. Given the limited testing capacity during the

beginning of the pandemic and the virus’ ability to spread asymptomatic-

ally, we also examine the e�ect of air pollution on COVID-19 fatalities,

with a time lag of two weeks to allow for the delay between infection and

death. The results are presented in Table A.1 and show no link between

pollution and COVID-19 related mortality.

4.2 Instrumental Variable Estimates

Next, we turn to the control function estimates using inversions as an in-

strument for air quality. The ILI results are shown in Panel (a) of Table

3, with each column again showing equivalent specifications to those in

Table 2. This approach requires that more frequent inversions are asso-

ciated with higher pollution levels. Our first-stage results in the bottom

panel show this to be the case. Increasing the share of inversion days in

a week from 0 to 1 is associated with an increase in AQI of between 12

and 18 points in our state-level sample. Importantly, columns (4) and

(5) show that the instrument is robust to accounting for region-specific

seasonality. The approach also requires that the frequency of inversions
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is not, after controlling for weather conditions and fixed e�ects, associ-

atedwith any change in respiratory health other than through changes in

air quality. We are not aware of any mechanism that would lead to such

confounding, though we cannot be certain.

[Table 3 about here.]

Turning to the coe�cient of interest, we again estimate a positive rela-

tionship between AQI and ILI cases in column (1). After including state

and week fixed e�ects (column 2) and controlling for one-week lags for

ILI cases, AQI and inversions (column 3), the coe�cient of interest falls

by more than half, but remains positive and statistically significant. As

discussed above, we believe that it is crucial to account for region-specific

seasonality. When we do so, by including state-calendar week fixed ef-

fects (column 4) or by taking deviations from the long-run mean for ILI

cases, AQI and inversions (column 5), the point estimates become very

small and are no longer significantly di�erent from 0.

[Figure 1 about here.]

The control function results for the COVID-19 sample are shown in

Panel (b) of Table 3. Again, inversions systematically predict AQI at the

county level. And again, we fail to detect any systematic relationship be-

tween air quality and COVID-19 cases after adjusting for region-specific

seasonality in column (5). Table A.2, shows similar results for COVID-19

fatalities.

Our results fail to support a relationship between air pollution and

respiratory disease at the weekly level. However, it might be that pol-

lution exposure takes some time to translate into higher case counts. In

Figure 1, we allow for a delay of up to six weeks. Panel (a) is equivalent

to column (5) of Table 2 and panel (b) shows control function estimates
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equivalent to column (5) in Table 3, but with leads and lags.4 In pan-

els (c) and (d), we do the same for COVID-19 cases, and in panels (e)

and (f) for COVID-19 fatalities. Throughout, we find no association to

air quality in either the preceding or following weeks.

5 Conclusion

This paper has examined the short-term relationship between air pol-

lution and respiratory infectious diseases in the United States. While

some empirical models suggest that air pollution is indeed associated

with weekly cases of ILI and Covid-19, as found in previous studies, this

relationship vanishes when we use our instrumental variable approach

or account for seasonality. Importantly, our null results are precise, ro-

bust to di�erent specifications, and remain virtually the same for di�er-

ent time windows of exposure. We recognise that a number of contri-

butions find a positive relationship between air pollution and infectious

diseases. Indeed, we are not aware of any published work that finds an

absence of such a relationship, as we do here. One explanation for the

di�erence could be sampling noise, as every paper uses somewhat di�er-

ent data sources, time periods and geographic units. Other explanations

are less sanguine, such as publication bias that may prevent null results

from being circulated. Whichever the reasons, we believe that it is vital

to document our null results to foster further academic investigation on

this matter.

4We estimate equation 2 in each time period (same week + 6 lags + 6 leads), including
each time all inversion instruments (same week + 6 lags + 6 leads). We then estimate
equation 1 with leads and lags, as well as residuals from all first-stage regressions.
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Figure 1: Association between Leads/Lags of AQI Deviations and Disease

(a) ILI Cases: PPML (b) ILI Cases: CF/PPML

(c) COVID-19 Cases: PPML (d) COVID-19 Cases: CF/PPML

(e) COVID-19 Fatalities: PPML (f) COVID-19 Fatalities: CF/PPML

Note: The figures on the left plot the estimates based on Equation 1 equivalent to column (5) of Table 2, but
with 6 leads and lags. The figures on the right plot the estimates based on the control function approach
equivalent to column (5) of Tables 3, 3 and A.2 respectively, but with 6 leads and lags. The 95% confidence
interval is included in gray.
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Table 1: Summary Statistics

Min. Max. Mean Median SD.

A. ILI Sample (State Level)

ILI Patient Rate 0 161.9 6.0 2.4 10.3
Air Quality Index 15.4 213.8 43.6 41.4 13.1
Inversions per Week 0 1.0 0.2 0.2 0.2
Relative Humidity 8.2 94.7 69.9 74.1 14.7
Precipitation (in mm) 0 25.5 2.6 1.8 2.7
Temperature (in �C) -23.2 40.3 13.2 14.2 10.8
Population (in 1,000) 494 33,872 5,626 4,042 6,118
Observations: 21,519

B. Covid Sample (County Level)

COVID-19 Case Rate 0 5,675.4 136.4 47.2 224.4
COVID-19 Fatality Rate 0 161.5 2.1 0 4.6
Air Quality Index 0 848.6 36.9 36.4 19.6
Inversions per Week 0 1.0 0.2 0.1 0.2
Relative Humidity 9.9 96.1 69.5 74.5 16.2
Precipitation (in mm) 0 43.5 2.6 1.6 3.1
Temperature (in �C) -17.9 40 14.6 15.2 10.2
Population (in 1,000) 0.6 9,519.3 232.4 91.8 500.6
Observations: 47,430

Note: Summary statistics for the ILI and Covid sample respectively.
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Table 2: The Association of AQI and ILI/COVID-19 Cases (PPML)

Panel (a): ILI Cases

(1) (2) (3) (4) (5)

AQI 0.012⇤⇤⇤ 0.000 0.001 0.000 0.000
(0.004) (0.001) (0.001) (0.001) (0.001)

Weather Controls Yes Yes Yes Yes Yes
State FE No Yes Yes N/A Yes
Week FE No Yes Yes Yes Yes
Flu/AQI Lags No No Yes No No
State-calendar week FE No No No Yes No
AQI Deviations No No No No Yes
Observations 21,519 21,519 21,418 21,519 21,519
Pseudo R2 0.09 0.87 0.88 0.89 0.87

Panel (b): Covid-19 Cases

(1) (2) (3) (4) (5)

AQI 0.008⇤⇤⇤ �0.002⇤⇤⇤ �0.001 - �0.003⇤⇤⇤

(0.0012) (0.0008) (0.0008) (0.0007)

Weather Controls Yes Yes Yes - Yes
County FE No Yes Yes - Yes
Week FE No Yes Yes - Yes
Flu/AQI Lags No No Yes - No
AQI Deviations No No No - Yes
Observations 47,431 47,430 46,325 000-000 47,430
Pseudo R2 0.11 0.90 0.90 - 0.90

Note: This table reports Poisson pseudo-maximum likelihood (PPML) estimates based on Equation 1.
Panel (a): The dependent variable are weekly ILI cases at the US state level provided by the Center for Dis-
ease Control (US CDC), and the main explanatory variable is the air quality index (AQI) (in column (5)
deviations) by the US Environmental Protection Agency (US EPA), with higher AQI values indicating higher
air pollution. Standard errors in parentheses are cluster-robust to autocorrelation within each flu season by
state.
Panel (b): The dependent variable areweeklyCOVID-19 cases at theUS county level provided byusafacts.org,
and the main explanatory variable is the air quality index (AQI) (in column (5) deviations) by the US En-
vironmental Protection Agency (US EPA), with higher AQI values indicating higher air pollution. Standard
errors in parentheses are cluster-robust to autocorrelation at the level of counties.
⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table 3: The Association of AQI and ILI/COVID-19 Cases (CF/PPML)

Panel (a): ILI Cases

(1) (2) (3) (4) (5)

AQI 0.063⇤⇤⇤ 0.022⇤⇤⇤ 0.017⇤⇤⇤ 0.001 0.005
(0.012) (0.003) (0.002) (0.004) (0.003)

Weather Controls Yes Yes Yes Yes Yes
State FE No Yes Yes N/A Yes
Week FE No Yes Yes Yes Yes
Flu/AQI Lags No No Yes No No
State-calendar week FE No No No Yes No
AQI Deviations No No No No Yes
Observations 21,519 21,519 21,418 21,519 21,519
Pseudo R2 0.09 0.87 0.89 0.89 0.87
First stage: ⇢̂ 12.3⇤⇤⇤ 15.9⇤⇤⇤ 16.4⇤⇤⇤ 17.7⇤⇤⇤ 17.8⇤⇤⇤

(1.6) (0.8) (0.7) (0.9) (0.9)

IV F-stat 59.9 378.4 506.5 432.3 414.4

Panel (b): Covid-19 Cases

(1) (2) (3) (4) (5)

AQI 0.126⇤⇤⇤ 0.019⇤⇤ 0.023⇤⇤⇤ - �0.006
(0.023) (0.007) (0.008) (0.007)

Weather Controls Yes Yes Yes - Yes
County FE No Yes Yes - Yes
Week FE No Yes Yes - Yes
Flu/AQI Lags No No Yes - No
AQI Deviations No No No - Yes
Observations 47,431 47,430 46,325 000-000 47,430
Pseudo R2 0.12 0.90 0.90 - 0.90
First stage: ⇢̂ 6.1⇤⇤⇤ 7.6⇤⇤⇤ 7.4⇤⇤⇤ - 7.8⇤⇤⇤

(1.2) (0.7) (0.5) (0.6)

IV F-stat 25.2 129.6 189.6 - 198.1
Note: This table reports Poisson pseudo-maximum likelihood (PPML) estimates based on the control func-
tion approach as proposed by Wooldridge (2015) that uses inversions (column (1)-(4)) and inversions de-
viations (column (5)) as instruments for air quality (columns (1)-(4)) and air quality deviations (column
(5)). The corresponding first-stage regression coe�cients are shown in the bottom rows. Standard errors in
parentheses are bootstrapped using cluster-wise resampling at the level of flu seasons by state.
Panel (a): The dependent variable areweekly ILI cases at the US state level provided by the Center for Disease
Control (US CDC).
Panel (b): The dependent variable areweeklyCOVID-19 cases at theUS county level provided byusafacts.org.
⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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A.1 Detailed description of data

To study the impact of ambient air pollution on the prevalence and severity
of respiratory infectious diseases, we assemble two datasets. The first dataset
is a weekly panel on influenza-like illnesses (ILI) at the US state level for the
study period between 2010 to 2019, covering all 50 states as well as the Dis-
trict of Columbia. The second dataset is a weekly panel on COVID-19 covering
1,004 US counties representing 79.6% of the US population from early until late
2020 when the vaccination program rolled out.5 Summary statistics for our key
variables in our data are presented in Appendix Table 1. In panel A, we show
key statistics for our state level data on ILI and in Panel B for our county level
COVID-19 sample. There are five main data inputs to create these datasets:

Influenza-like Illness Surveillance Network (ILINet):
The first data source is provided by the Center for Disease Control (US CDC)

in collaboration with the state and local health departments and health care
providers. From this dataset, we obtain information about weekly counts of
ILI patients across US states over 9 years/full flu seasons - from the 2010/11 flu
season beginning in October 2010 until the 2018/19 flu season ending in Oc-
tober 2019.6 We exclude more recent flu seasons to avoid an overlap with the
COVID-19 pandemic. The ILINet data is based on information from over 3,000
healthcare providers across theUS and allows to track theweekly ILI prevalence
for all states over several years. The CDC defines ILI patients as reporting symp-
toms of ‘fever (temperature of 100�F [37.8�C] or greater) and a cough and/or a
sore throat.7

COVID-19:
The second dataset covers weekly counts of COVID-19 cases and fatalities

from usafacts.org, which is based on county-level reports by local health au-
thorities across the US. This dataset covers the period between the start of the
pandemic in the US in January 2020 until the launch of the vaccination program
in December 2020. The dataset includes twomeasures of COVID-19 prevalence,
cases and fatalities.8 While cases might in principle be a better measure of dis-
ease prevalence, this indicator is hard to measure in practice. More specifically,
the limited testing capacity, especially during the beginning of the pandemic,
in conjunction with the virus’ ability to spread in asymptomatic people limits
the reliability of Covid cases as a main outcome of interest (Subbaraman 2020).
This type of reporting error is less likely to occur when using COVID-19 fatali-
5The remainder of the 3,143, most of which have small populations, do not report
COVID-19 counts.

6Following the US CDC convention of an epidemiological week, we define weeks as
starting on Sundays. A flu season is defined to run for one year starting in October.

7More information about the ILINet data can be found at: https://gis.cdc.gov/
grasp/fluview/fluportaldashboard.html.

8More information about the COVID-19 data can be found at: https://usafacts.org/
visualizations/coronavirus-covid-19-spread-map/.
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ties instead. Yet, fatalities are also a noisy measure of disease prevalence as the
time between infection and death can take several weeks and vary a lot between
cases. In addition, fatalities are not only ameasure of disease prevalence but also
of severity. Consequently, there are advantages and disadvantages from using
either cases or fatalities. For this reason, we decided to focus on cases but we
will show that we obtain similar results using deaths as an alternative measure.

Air Quality Index (AQI):
We complement the health data with measures of air quality from the US

Environmental Protection Agency (US EPA). The AQI is calculated on a daily
basis using a variety of measures including carbon monoxide, nitrogen diox-
ide, ozone, sulfur dioxide as well as inhalable particulate matters (PM2.5 and
PM10). For the period between 2010 and 2019, the EPA provides a daily AQI
for 1,173 counties representing 83% of the US population. A higher AQI indi-
cates a higher ambient air pollution level and ranges between 0 and 213.8 with
a mean of 43.6 and standard deviation of 13.1 in our ILI sample, and between
0 and 848.6 with a mean of 36.9 and a standard deviation of 19.6 in our Covid
sample (see Table 1).9 The AQI represents as noisy measure of air pollution
since the defining parameter varies across space and time, and measuring sta-
tions are capturing the air pollution at the station but not the average across the
county. To combine the daily county-level AQI data with the ILI and COVID-19
data, we aggregate the AQI by week, and for ILI additionally by state weighing
by county population.

Atmospheric Temperature Inversions:
To obtain quasi-random variation in local air quality, we use atmospheric

temperature inversions as an instrument. These are short-term atmospheric
episodes, usually occurring over a day or less, which lead to a reversal of tem-
perature profiles that reduce atmospheric ventilation and consequently increase
ground-level pollution levels. While inversion episodes tend to be associated
with other atmospheric and weather conditions, they are arguably indepen-
dent of human behavior on the ground which is why they have been proposed
as an instrument for air pollution at the daily (Jans et al. 2018, Sager 2019) or
weekly level (Arceo et al. 2016). Inversions follow cyclical patterns, which we
control for. We measure the occurrence of inversions based on satellite-derived
three-dimensional temperature profiles of the atmosphere, which come from the
MERRA-2 reanalysis project.10 These provide 3-hourly mean temperatures by
latitude, longitude and atmospheric pressure levels11, which correspond to al-
titude. We spatially match inversion grid centroids to US counties.12 Whenever
9As a reference, an AQI between 0-50 is considered as ‘Good’.
10Further information about the dataset can be found at: https://disc.gsfc.nasa.
gov/datasets/M2I3NVASM_5.12.4/summary.

11Location by latitude and longitude is divided into grid cells of size 0.625�⇥0.5�. Alti-
tude is divided into 42 atmospheric pressure levels with 25hPa intervals, which cor-
responds to approximately 200 meters.

12Specifically, we assign each grid point to the county it falls into and calculating mean
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the daily mean temperature at the pressure level closest to the ground is lower
than the temperature at the next higher-up level (25hPa less pressure which cor-
responds to roughly 200m in altitude), we define an inversion in that county on
that day. Our final instrumentmeasures the share of dayswithin eachweek dur-
ing which such an inversion occurred. When looking at the ILI sample, we ag-
gregate inversions to the state level using the county population share asweight.

Additional Weather Controls:
While inversionsmaywell be independent of humanbehavior, they are known

to covarywith certainweather conditions—includingprecipitation patterns, frozen
rain, and fog formation—that may themselves a�ect human behavior. Conse-
quently, we add control variables measuring surface air temperature, precipi-
tation as well as relative humidity, which are taken from the North American
Regional Reanalysis (NARR) project by the National Oceanic and Atmospheric
Administration (NOAA) and spatially matched in the same way as described
above.
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temperature levels in a county on a day and each pressure level.For those few counties
which do not contain a grid point, we assign readings from the grid point closest to
the county centroid.
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A.2 Additional Tables

Table A.1: The Association of AQI and COVID-19 Fatalities (PPML)

Dependent variable: Covid-19 Fatalities

(1) (2) (3) (4) (5)

AQI 0.008⇤⇤⇤ �0.001 0.000 - �0.000
(0.001) (0.001) (0.001) (0.001)

Weather Controls Yes Yes Yes - Yes
County FE No Yes Yes - Yes
Week FE No Yes Yes - Yes
Flu/AQI Lags No No Yes - No
AQI Deviations No No No - Yes
Observations 44,250 44,250 42,295 000-000 44,250
Pseudo R2 0.10 0.75 0.76 0.75

Note: This table reports Poisson pseudo-maximum likelihood (PPML) estimates based on Equation 1 for the
Covid sample. The dependent variable are weekly COVID-19 fatalities at the US county level two weeks later
provided by usafacts.org, and the main explanatory variable is the air quality index (AQI) (in column (5)
deviations) by the US Environmental Protection Agency (US EPA), with higher AQI values indicating higher
air pollution. Standard errors in parentheses are cluster-robust to autocorrelation at the level of counties.
⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
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Table A.2: The Association of AQI and COVID-19 Fatalities (CF/PPML)

Dependent variable: Covid-19 Fatalities

(1) (2) (3) (4) (5)

AQI 0.090⇤⇤⇤ 0.068⇤⇤⇤ 0.045⇤⇤⇤ - �0.017
(0.026) (0.015) (0.007) (0.011)

Weather Controls Yes Yes Yes - Yes
County FE No Yes Yes - Yes
Week FE No Yes Yes - Yes
Flu/AQI Lags No No Yes - No
AQI Deviations No No No - Yes
Observations 44,250 44,250 42,295 000-000 44,250
Pseudo R2 0.11 0.75 0.77 0.75

First Stage relationship between inversions and AQI

(1) (2) (3) (4) (5)

Inversions 6.1⇤⇤⇤ 7.6⇤⇤⇤ 7.4⇤⇤⇤ - 7.8⇤⇤⇤

(1.2) (0.7) (0.5) (0.6)

IV F-stat 25.2 129.6 189.6 - 198.1
Adj. R2 0.15 0.52 0.62 - 0.27

Note: This table reports Poisson pseudo-maximum likelihood (PPML) estimates based on the control func-
tion approach as proposed by Wooldridge (2015) that uses inversions (column (1)-(3)) and inversions devi-
ations (column (5)) as instruments for air quality (columns (1)-(3)) and air quality deviations (column (5))
for the Covid sample. The dependent variable are weekly Covid fatalities at the US county level two weeks
later provided by usafacts.org, and the main explanatory variable is the air quality index (AQI) (in column
(5) deviations) by the US Environmental Protection Agency (US EPA), with higher AQI values indicating
higher air pollution. The corresponding first-stage regressions are shown in the bottom rows. Standard er-
rors in parentheses are bootstrapped using cluster-wise resampling at the level of counties. ⇤p<0.1;
⇤⇤p<0.05; ⇤⇤⇤p<0.01
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A.3 Additional Figures

Figure A.1: Distribution of outcome variables

(a) Distribution of ILI cases

(b) Distribution of Covid-19 cases

Note: Histograms showing the distribution of the two outcome variabels: (a) ILI cases per week per state
and (b) Covid-19 cases per week per county. Both graphs are truncated at the 90th percentile.
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Figure A.2: Aggregate Seasonality Patterns

(a) AQI (b) AQI Deviations

(c) Inversions (d) Inversions Deviations

(e) ILI Cases

Note: These figures use the ILI sample to plot key variables over calendar week (the weekly bins are in
orange). The AQI and inversions exhibit clear seasonal patterns, with the AQI being elevated during the
summer and inversions during the winter. In contrast, taking the deviations from their respective long-term
mean helps with removing the seasonality. ILI cases are displayed at the bottom and also exhibit a seasonality
with elevated levels during thewinter. It should be noted that these figures illustrate the aggregate seasonality
across US states, and that the seasonality within states or counties is likely to be even more pronounced and
vary across locations. By demeaning the AQI and inversions by state (or county) and calendar week, we
remove this location specific seasonality.
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