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Summary

The medial septum, diagonal band of Broca has received most attention as a pu-
tative pacemaker of the hippocampal theta rhythm. However, due to its high in-
terconnectivity with various cortical and subcortical regions, the medial septum is
involved in a variety of neural processes. This thesis focuses on the relation between
medial septal spiking activity, hippocampal theta rhythm and locomotion. It was
previously demonstrated that theta-periodic optogenetic activation of medial septal
glutamatergic neurons entrains hippocampal theta oscillation and initiates persis-
tent locomotion of the animal. We showed that hippocampal theta oscillation and
locomotion, both persisting after the stimulus offset, can be induced by a brief con-
tinuous light stimulation of medial septal glutamatergic neurons. The hippocampal
theta rhythm is not necessary for inducing persistent locomotion, as locomotion ini-
tiation is not affected by blocking synaptic transmission in the medial septum that
abolishes the hippocampal theta. Furthermore, we observed persistent spiking ac-
tivity of the medial septal neurons, lasting for many seconds after the stimulus offset.
To test whether the persistent activity is generated locally in the medial septum, we
repeated the stimulation experiment in an acute medial septal slice preparation. The
persistent activity had a shorter duration than in vivo, but was present both in the
intact slice and with blocked synaptic transmission, indicating that the persistent
firing is a result of intrinsic dynamics of medial septal glutamatergic neurons. Fur-
ther analysis of spontaneous spiking activity of neurons in the acute medial septal
slice preparation revealed the existence of theta-rhythmic neurons that synchronize
their firing, suggesting that the medial septum can generate the theta oscillation
independently of external feedforward and feedback input. Even though medial sep-
tal synaptic connectivity is necessary for the hippocampal theta rhythm, our results
suggest that the theta-rhythmic firing is a result of intrinsic cellular dynamics and a
low level of synchrony can be achieved without synaptic coupling. It remains an open
question how the septal theta-rhythmic input is transformed into a travelling theta
wave observed in the hippocampus. The last part of the thesis offers a framework
for studying the generation of periodic travelling waves in spiking neural networks.
We developed a parameter mapping between a discrete network of neurons and a
population model that describes the spatio-temporal spread of activity as a continu-
ous process. Using this mapping, we derived conditions for the existence of periodic
travelling waves in the spiking neural network.



Zusammenfassung

Das mediale Septum, diagonales Band von Broca, hat die meiste Aufmerksamkeit
als mutmaßlicher Schrittmacher des im Hippocampus auftretenden Theta Rhythmus
erhalten. Aufgrund seiner hohen Interkonnektivität mit verschiedenen kortikalen
und subkortikalen Regionen ist das mediale Septum jedoch an einer Vielzahl von
neuronalen Prozessen beteiligt. Diese Arbeit konzentriert sich auf die Beziehung
zwischen Spiking-Aktivität des medialen Septums, Theta-Rhythmus des Hippocam-
pus und Bewegung. In der Vergangenheit wurde gezeigt, dass die theta-periodische
optogenetische Aktivierung glutamaterger Neuronen im medialen Septum die Theta-
Oszillation des Hippocampus mitreißt und eine anhaltende Bewegung des Tieres
initiiert. Wir zeigten, dass Theta-Oszillation des Hippocampus und Bewegung, die
beide nach dem Stimulus-Offset anhalten, durch eine kurze kontinuierliche Licht-
stimulation glutamaterger Neuronen im medialen Septum induziert werden können.
Die Präsenz des Theta-Rhythmus im Hippocampus ist dabei für die Induktion an-
haltender Bewegung nicht notwendig, da die Initiierung der Bewegung durch die
Blockierung der synaptischen Übertragung im medialen Septum, die den Theta-
Rhytmus aufhebt, nicht beeinflusst wird. Darüber hinaus beobachteten wir an-
haltende Spiking-Aktivität der Neuronen im medialen Septum, die viele Sekunden
nach dem Stimulus-Offset anhielt. Um zu testen, ob die anhaltende Aktivität lokal
im medialen Septum erzeugt wird, wiederholten wir das Stimulationsexperiment
in einem akuten medialen Septumschnittpräparat. Die anhaltende Aktivität hatte
eine kürzere Dauer als in vivo, war aber sowohl in dem intakten Schnitt als auch
bei blockierter synaptischer Übertragung vorhanden, was darauf hindeutet, dass
die anhaltende Aktivität ein Ergebnis der intrinsischen Dynamik der glutamater-
gen Neuronen des medialen Septums ist. Weitere Analysen der spontanen Spiking-
Aktivität von Neuronen in der akuten medialen Septum-Präparation zeigten die Ex-
istenz von theta-rhythmischen Neuronen, die ihr Feuern synchronisieren, was darauf
hindeutet, dass das mediale Septum die Theta-Oszillation unabhängig von externem
Feedforward- und Feedback-Input erzeugen kann. Obwohl die synaptische Konnek-
tivität des medialen Septums für den Theta-Rhythmus des Hippocampus notwendig
ist, deuten unsere Ergebnisse darauf hin, dass das theta-rhythmische Feuern ein
Ergebnis intrinsischer Dynamik der Zellen ist und ein geringer Grad an Synchroni-
sation auch ohne synaptische Kopplung erreicht werden kann. Es bleibt eine offene
Frage, wie der septale theta-rhythmische Input in eine wandernde Theta-Welle umge-
wandelt wird, welche im Hippocampus bereits beobachtet wurde. Der letzte Teil der



Arbeit behandelt ein Rahmenwerk, mit welchem die Erzeugung von periodischen,
sich ausbreitenden Wellen in gepulsten neuronalen Netzwerken (auch aus dem En-
glischen “Spiking Neural Networks”) untersucht werden kann . Wir entwickelten ein
Parameter-Mapping zwischen einem diskreten Netzwerk von Neuronen und einem
Populationsmodell, das die räumlich-zeitliche Ausbreitung der Aktivität als einen
kontinuierlichen Prozess beschreibt. Unter Verwendung dieses Mappings haben wir
Bedingungen für die Existenz periodischer, sich ausbreitender Wellen im gepulsten
neuronalen Netzwerk abgeleitet.
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1 Introduction

1.1 The function of brain oscillations

Brain oscillations have been discovered almost a century ago by Hans Berger (Berger,
1929), the inventor of electroencephalography (EEG). Driven by his interest in
telepathy (Buzsáki, 2009), he recorded EEG activity from the occipital lobe of a
human subject and noticed strong power around 10 Hz when the subject’s eyes were
closed. With the eyes open, he observed a faster oscillation with frequency around
30 Hz. By giving these two rhythms the names "alpha" and "beta", he initiated the
convention to call brain rhythms by Greek letters. Since then, oscillations in various
frequencies have been described across the whole brain and measured by both non-
invasive and invasive techniques. In humans, the following main frequency bands
are distinguished: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz)
and gamma (30-100 Hz) (Buzsáki, 2009), each with different behavioural correlates,
mechanisms of generation and brain regions where they occur (Buzsáki, 2019).
Alterations of oscillatory activity have been reported in many psychiatric diseases

(for a review see Buzsáki and Watson, 2012). Moreover, the induction of brain os-
cillation by various techniques modulates behavioural performance such as memory
(Turnbull et al., 1994; McNaughton et al., 2006; Shirvalkar et al., 2010; Lipponen
et al., 2012), attention (Dugué et al., 2015) or response time in a visual task (Bosman
et al., 2012). Despite a large body of evidence that the occurence and properties of
brain oscillations correlate with behavioural states and performance, the question
whether oscillations are an epiphenomenon or have a functional role is still under
debate (Singer, 2018; Sejnowski and Paulsen, 2006). According to a broadly ac-
cepted view, the brain oscillations organize transfer of spiking activity and thereby
facilitate communication between neural populations on different scales, from local
cell assemblies to whole brain areas (Singer, 1999, 2000; Buzsáki, 2009). The slow
oscillations (e.g. theta) are generally thought to organize long-range communication
and the fast oscillations (e.g. gamma) short-range communication (Buzsáki et al.,
2013), although gamma-band synchronization was also observed between distant ar-
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1 Introduction

eas (Gregoriou et al., 2015). A different view on the origin of coherence between
areas was recently formulated by Schneider et al. (2020). According to their model,
coherence of two brain areas can be caused by synchronously firing neurons in one
area that send output back to the same area as well as to some other area. Pentto-
nen and Buzsáki (2003) noticed that the mean frequencies of the different frequency
bands are equidistantly distributed on the natural logarithmic axis. According to
their hypothesis, the non-rational relationship between the different frequencies en-
sures that they can serve as distinct communication channels that do not interfere.
In general, synchrony increases robustness and efficiency of communication, at the
expense of information processing capacity (Buzsáki and Watson, 2012; Pryluk et al.,
2019). The binding role of oscillations has been extensively discussed in the con-
text of visual processing. The gamma oscillation in the visual cortex has long been
considered as the mechanism for the binding of visual features (Singer, 1999; Gray,
1999; Singer and Gray, 1995). However, even here concerns were raised (Ray and
Maunsell, 2010) due to the dependence of the gamma frequency on visual contrast
(Bartoli et al., 2019), leading to occurence of different frequencies in response to
visual stimuli with non-homogeneous contrast. In the context of the hippocampus,
gamma frequency variations were interpreted as a routing mechanism (Colgin et al.,
2009).

There is also a debate about the direct influence of oscillations in the local field
potential on activity of neurons. According to the traditional view, oscillations visi-
ble in the local field potential are regarded as a footprint of synchronized oscillatory
activity of a group of neurons, rather than a functional system itself. However, some
evidence for a direct influence of the field potential changes along the cell membrane,
so called ephaptic coupling, on brain’s function was found. Anastassiou et al. (2011)
showed that ephaptic coupling of cortical neurons (changes in membrane potential
caused by voltage changes in the extra-cellular space along the cell membrane) can
affect precise spike timing, and therefore possibly modulate the level of synchrony
and information transfer. Even more striking is the observation of Iaccarino et al.
(2016) that the induction of gamma oscillation, but not other frequencies, activated
microglia to remove amyloid plaques in mice, suggesting a possible coupling between
brain oscillations and the immune system.

If a population of asynchronously active neurons receives correlated input, only
those neurons with membrane potential sufficiently close to the threshold will re-
spond with an action potential. However, if the post-synaptic neurons are synchro-
nized, the incoming input will either result in a strong response by majority of neu-
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1.2 The hippocampal theta oscillation

rons if their membrane potentials are close to the threshold, or no response at all in
the opposite case. Such routing mechanism is called "communication by coherence"
(McLelland and VanRullen, 2016). According to this concept, the phase alignment
of a slow oscillation (e.g. theta) with a faster oscillation (e.g. gamma) selects the
representation to be attended. Moreover, the amplitude of the faster oscillation can
be modulated by the phase of the slower oscillation, a phenomenon called "cross-
frequency coupling" (Fries, 2005; Lisman and Jensen, 2013; Canolty and Knight,
2010). Some experimental studies suggested that the strength of cross-frequency
coupling predicts behavioural performance for instance in mnemonic (Händel and
Haarmeier, 2009) or visual tasks (Köster et al., 2018). Based on these two con-
cepts, two mechanisms for simultaneous representations of multiple items, so called
multiplexing, have been defined (McLelland and VanRullen, 2016): LJ-multiplexing
and F-multiplexing (Figure 1.1 adapted from McLelland and VanRullen (2016)).
The LJ-multiplexing, named after John E. Lisman and Ole Jensen, proposes that
all items, each corresponding to one period of the faster oscillation, are represented
in one period of the slower oscillations, whereby more strongly activated ensem-
bles will participate at earlier phases than less strongly activated ensembles. The
F-multiplexing corresponds to communication through coherence and was named
after Pascal Fries. Here, only one item defined by the faster oscillation will be rep-
resented in a single cycle of the slower oscillation and the item is chosen based on
phase-alignment. Some studies suggested that cross-frequency coupling and commu-
nication by coherence are two complementary multiplexing mechanisms that coexist
and facilitate each other (McLelland and VanRullen, 2016; González et al., 2020).

1.2 The hippocampal theta oscillation

One of the most prominent brain rhythms is the hippocampal theta oscillation (7–14
Hz), typically recorded in the hippocampal CA1 region, but present in the whole hip-
pocampus (Lubenov and Siapas, 2009; Buzsáki, 2002; Mikulovic et al., 2018; Goyal
et al., 2020; López-Madrona et al., 2020) and beyond (Paz et al., 2008; O’Neill
et al., 2013; Spaak and de Lange, 2020; Quilichini et al., 2010; Fournier et al.,
2020). However, also other types of theta oscillations were reported in the cere-
bral cortex, unrelated to the hippocampal theta rhythm (Cashdollar et al., 2009).
The hippocampal theta oscillation was initially associated with arousal (Green and
Arduini, 1954; Petsche et al., 1962), but later many other behavioural correlates
were identified, such as orienting, voluntary movement, anxiety, motivation, mem-
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1 Introduction

Figure 1.1: Illustration of multiplexing mechanisms. LJ-Multiplexing based on cross-
frequency coupling (left) and F-multiplexing based on communication through
coherence (right). In LJ-multiplexing, all items are represented in a single cycle
of the slower oscillations, each corresponding to one cycle of the faster oscillation.
In F-multiplexing, only a single item is represented during a single cycle of the
slower oscillation. Here, each item is associated with a different phase of the
faster oscillation and the one that is best aligned with the slower oscillation
is chosen in every cycle of the slow oscillation. Adapted from McLelland and
VanRullen (2016) with permission from PLOS Computational Biology.
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1.2 The hippocampal theta oscillation

ory or decision making (Buzsáki, 2005). Over 1500 experiments have been published
that tried to identify the behavioural correlates of the hippocampal theta rhythm,
without reaching a clear conclusion (Buzsáki, 2005). In the last decades, the theta
rhythm has received most attention in the context of spatial navigation (Bose and
Recce, 2001; Tingley and Buzsáki, 2018; Wang et al., 2015; Fuhrmann et al., 2015).
The hippocampal pyramidal neurons, known as place cells, fire selectively at certain
locations in the environment, so called place fields. Place cells were originally discov-
ered in rodents (O’Keefe and Dostrovsky, 1971; O’Keefe, 1976), and later confirmed
in humans (Ekstrom et al., 2003). Each place cell starts to fire when the animal
enters its place field, with increasing firing rate as the animal progresses towards the
center of the place field. The cell becomes silent again as the animal leaves its place
field. Moreover, the place cell firing is organized by the theta oscillation. A place
cell starts firing at a late phase of the theta cycle and the phase of locking systemat-
ically decreases as the animal traverses the correspoding place field, a phenomenon
called phase precession (O’Keefe and Recce, 1993). This mechanism is thought to
result from short-term synaptic depression and facilitation (Wang et al., 2015) and
ensures that the order of place cells firing is preserved in each theta cycle (Skaggs
et al., 1996). In rodents, both the frequency and power of the theta oscillation
were thought to correlate with the speed of locomotion (McFarland et al., 1975).
Contrary to this traditional view, Kropff et al. (2021) argue in a recent study that
the frequency of theta oscillations correlates with positive acceleration, rather than
speed. In humans, the movement onset is associated with an increase of both low
and high theta power and the power is greater before and during longer translational
paths, compared to shorter ones (Bush et al., 2017). Notably, the frequency of the
theta rhythm in humans during virtual navigation is slower than during real naviga-
tion (Bohbot et al., 2017), challenging the view that the theta oscillation is generally
slower in humans than in rodents (Jacobs, 2014). In the absence of the theta oscil-
lation, the activity of place cells is mostly governed by sensory input (Wang et al.,
2015). The function of the theta oscillation in facilitating inter-areal communication
is nicely illustrated by the results of Fournier et al. (2020) who demonstrated that
the activity of the mouse primary visual cortex during navigation in a virtual reality
is modulated by the hippocampal theta oscillation. Moreover, Fournier et al. (2020)
found neurons in the primary visual cortex that encode spatial position and show
phase precession with respect to the theta rhythm.

According to Buzsáki (2002), the theta oscillation represents an online state of
the hippocampus, a signal to cortical areas that it is ready to receive and process
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1 Introduction

information. The incoming information is then parsed into windows created by the
theta oscillation (Lisman and Jensen, 2013; Buzsáki, 2019). The hypothesis of theta
signal acting as a parser for neocortical messages is largely based on the discovery
of cross-frequency coupling between the hippocampal theta and gamma oscillations
(Bragin et al., 1995; Buzsáki et al., 2003; Tort et al., 2008). The gamma sequences
represent the incoming messages from the neocortex that are temporally organized
by the theta rhythm (Lisman and Jensen, 2013). The strength of the theta – gamma
coupling varies depending on the behavioural state. In particular, theta – gamma
coupling supports memory encoding (Tort et al., 2009) and retrieval (Vivekananda
et al., 2020). The theta-gamma coupling is also less prominent in patients with
Alzheimer’s disease or mild cognitive impairment, and serves as the best predictor
for performance in a working memory task (Goodman et al., 2018).

Two types of hippocampal theta oscillation have been reported: type 1 (7–14 Hz)
and type 2 (4–9 Hz). Theta 1 occurs during active states such as locomotion or ex-
ploration (Whishaw and Vanderwolf, 1973; Oddie and Bland, 1998; Buzsáki, 2002;
Fuhrmann et al., 2015) and disappears under anesthesia (Kramis et al., 1975). Type
2 theta, on the contrary, is related to emotions and occurs in inactive states includ-
ing REM sleep and anesthesia (Kramis et al., 1975; Bland, 1986; Sainsbury et al.,
1987). Recently, both types of theta oscillations were reported in the human anterior
and posterior hippocampus (Goyal et al., 2020), which are structurally analogous to
the rodent ventral and dorsal hippocampus (Zhang and Jacobs, 2015). Both types
of theta oscillation critically depend on the input from the medial septal nucleus
(Mizumori et al., 1989; Vinogradova, 1995). The mechanism of hippocampal theta
generation and the involvement of the distinct medial septal cell populations is dis-
cussed in detail in Chapter 3. The complexity of the hippocampal theta generation
was highlighted in the recent study of López-Madrona et al. (2020), who identified
three different current generators of the theta hippocampal rhythm in the dorsal
hippocampus of a rat with dynamically changing interactions.

Another aspect of the hippocampal theta oscillation is the spatio-temporal dy-
namics of its spread. Recordings from both the rodent (Lubenov and Siapas, 2009)
and human (Zhang and Jacobs, 2015) hippocampus revealed that the theta oscil-
lation is a travelling wave. The amplitude of the theta oscillation recorded in the
dorsal hippocampus is strongly modulated by locomotion (Kropff et al., 2021; Mc-
Farland et al., 1975). In the ventral hippocampus, type 2 oscillation was reported
(Mikulovic et al., 2018) and the locomotion-dependent modulation of amplitude is
only very weak (Patel et al., 2012). In agreement with the differential involvement of
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1.3 The medial septum

the dorsal and ventral hippocampus in spatial navigation, the amplitude of the type
1 theta oscillation decreases along the dorso-ventral axis (Patel et al., 2012). Several
mechanisms have been suggested how the theta oscillation becomes a travelling wave
(Lubenov and Siapas, 2009; Ermentrout and Kleinfeld, 2001). First, the projections
from the medial septum, the pacemaker of the hippocampal theta oscillations, are
topographically organized with potentially different transmission delays (Witter and
Amaral, 2004). Other proposed mechanisms involve the generation of a propagating
wave within the hippocampus, or dependence on topographically organized projec-
tions from the entorhinal cortex (Lubenov and Siapas, 2009). In Chapter 4 we
present a mathematical framework for studying the generation of periodic travelling
waves in neural network models.

1.3 The medial septum

The medial septum, diagonal band of Broca (MSDB) is often referred to as a sub-
cortical hub. It is located in the basal forebrain and receives connections from the
hippocampus, the amygdala, the thalamus, the ventral tegmental area and other
structures. It sends axons, among others, back to the hippocampus, amygdala, the
hypothalamus and the ventral tegmental area (Swanson and Cowan, 1979; Müller
and Remy, 2018; Swanson and Risold, 2000). The most important target of the
MSDB is the hippocampal formation.
The MSDB consist of three main neuronal populations: cholinergic (Frotscher and

Léránth, 1985), GABAergic (Kiss et al., 1990) and glutamatergic (Hajszan et al.,
2004). All three subpopulations are reciprocally connected (Leao et al., 2015). The
GABAergic population is considered as the main pacemaker of the hippocampal
theta oscillation (Robinson et al., 2016; Hangya et al., 2009). The cholinergic neurons
provide slow excitation to the septal network and are thought to play a modulatory
role in the theta generation (Müller and Remy, 2018). The involvement of the differ-
ent MSDB subpopulations in the theta generation is described in detail in Chapter 3.
Moreover, optogenetic activation of the MSDB glutamatergic cells reliably initiates
locomotion, independently of glutamatergic synaptic transmission (Fuhrmann et al.,
2015). Hence, the MSDB provides consistent input to motor-generating areas, as
well as to the hippocampus by two distinct pathways. We provide further evidence
for the dissociation of the theta- and motor-generating circuit in Chapter 2.
The MSDB can be regarded as an interface between emotions and cognitive func-

tions such as memory and navigation. Septal lesion leads to a severe impairment
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Figure 1.2: Sketch of the MSDB functional connectivity. The MSDB modulates the
activity of several cortical and subcortical strutures via the theta oscillations
and arousal (blue colour), and thereby is involved in their functions: spatial
navigation and episodic memory (green), reward and navigation (orange) and
divergent polyvalent signal processing (black), such as further processing of spa-
tial position (Tingley and Buzsáki, 2018). The red colour indicates planning
and cognitive behaviour. Reproduced from Tsanov (2018) with permission from
John Wiley & Sons, Inc.

of memory (Winson, 1978; Vinogradova, 1995). As an essential structure for the
theta-rhythm generation, the MSDB is indirecty involved in various functions that
are modulated by the rhythm such as navigation, voluntary movement, anxienty or
motivation (Section 1.2). Figure 1.2 adapted from (Tsanov, 2018) depicts how the
MSDB modulates activity and function of other cortical and subcortical areas via
the theta-rhythmic spiking. An interesting association between emotional states and
spatial navigation has been made by Wells et al. (2013), who described differential
effects of novelty and anxienty on the linear relationship between theta frequency
and running speed. Apart from its involvement in the theta rhythm generation, the
basal forebrain is the main source of acetylcholine in the brain and thereby modu-
lates various functions, such as the circadian rhythms (Yamakawa et al., 2016), sleep
states (Hasselmo and Giocomo, 2006), learning and memory (Hasselmo, 2006), at-
tention (Hasselmo and McGaughy, 2004) or arousal (Everitt and Robbins, 1997).
The MSDB has also been investigated in the context of potential therapeutical ma-

nipulations. An improvement in memory performance was reported following a deep
brain stimulation of the medial septum (Jeong et al., 2014). Electrical stimulation
of the medial septum was also suggested as an effective therapy for temporal lobe
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epilepsy by restoration of the hippocampal theta oscillation (Fisher, 2015). Fur-
thermore, the medial septal electrical stimulation increases seizure threshold and
improves cognitive abilities in epileptic rats (Izadi et al., 2019). Recently, a quick
termination of an epileptic seizure was achieved by a closed-loop electrical stimula-
tion of the medial septum (Takeuchi et al., 2020), where precise timing of stimulation
determined by pre-stimulus internal rhythm was essential.

1.4 Mathematical and computational modelling of
travelling waves

The theta oscillation spreads across the hippocampus as a periodic travelling wave
(Lubenov and Siapas, 2009; Zhang and Jacobs, 2015, Section 1.2) that can be gener-
ated by a wealth of mechanisms, depending on different cellular and network prop-
erties. Computational models can provide mechanistic understanding of dynamic
processes in the neural tissue, provided they are well constrained. Undoubtedly, the
priority should always be to find sufficiently specific biological constraints both from
the bottom-up and top-down perspective, that is by known cellular and network
properties, as well as characteristics of the neural activity, respectively. However,
in reality it is often not possible to fully constrain the model parameters, leading
to a variety of possible dynamical states. At this point, mathematical analysis can
provide the missing constrains from the top-down perspective.
Neural activity can be modelled at different levels of description in terms of both

cellular dynamics and synaptic connections. The Hodgkin-Huxley neuron model
is typically used as a detailed model of spike generation (Hodgkin and Huxley,
1952). When the phenomenon of interest relies on the network-level, rather than
single-neuron mechanisms, more phenomenological single-cell models with simpler
dynamics are suitable. Such models include the leaky-integrate-and-fire model with
its several alternatives (Lapicque, 1907; Stein, 1967; Latham et al., 2000), the theta
model (Ermentrout and Kopell, 1986) or the so called Izhikevich model (Izhikevich,
2003). Such networks enable large-scale simulations of cortical columns with real-
istic neural density (Potjans and Diesmann, 2014; Jordan et al., 2018). However,
constraining parameters of such network simulations and investigating their dynam-
ics typically requires large parameter scans that can be computationally costly and
time consuming.
Neural mass models, on the other hand, allow for mathematical tractability at

the expense of reduced biological detail. Here, individual cells are not modelled

9



1 Introduction

explicitly, but as a continuum of points, so called mean-field, with average response
properties (Wilson and Cowan, 1972a, 1973a; Amari, 1977; Amit and Brunel, 1997a;
Brunel and Hakim, 1999; Brunel, 2000), for a review see (Deco et al., 2008). Travel-
ling waves of spiking activity have been extensively studied in such models. However,
even neural mass models might be difficult to analyze mathematically when certain
biological phenomena are explicitly modelled. The best example of an important
phenomenon that dramatically increases complexity of the model is the transmission
delay. While the dynamical system generated by the system of equations describing
the population dynamics without transmission delay resides in a finite dimensional
state space, the addition of transmission delay moves it to an infinite-dimensional
state space. Concerning linear stability analysis, this leads to transcendental char-
acteristic equations with infinite number of solutions and increased complexity of
possible dynamical states. Nevertheless, even in such case linear stability analysis
can be applied (Veltz and Faugeras, 2011; Diekmann and Korvasová, 2016).

Constraining simulations of discrete spiking neural networks by mathematical
analysis of continuous neural mass models requires a link between these two lev-
els of description. Concretely, one has to know how to map parameters of one model
to the other to be able to apply theoretically obtained results to defining parame-
ters in the spiking network model. Such link has been provided for networks with
both homogeneous connectivity (Ott and Antonsen, 2008; El Boustani and Destexhe,
2009; Buice et al., 2010; Schwalger et al., 2017; Schuecker et al., 2015), and distance-
dependent connectivity (Kriener et al., 2014; Avitable and Wedgwood, 2017; Senk
et al., 2020a). In relation to septal generation of the hippocampal theta oscillation,
the mean-field description (Luke et al., 2013) of a network of theta neurons (named
after the angular state variable of the model in Ermentrout and Kopell, 1986), or the
equivalent quadratic leaky-integrate-and-fire neurons (Brunel and Latham, 2003), is
of particular interest. These models are capable of producing theta-rhythmic burst-
ing typically observed in a subpopulation of medial septal neurons (King et al., 1998;
Borhegyi et al., 2004; Mamad et al., 2015; Kocsis et al., 2021). Recent results sug-
gested that the theta rhythm is generated by a population of MSDB intrinsically
rhythmic pacemakers that synchronize via the so called Huygens synchronization,
similarly as clocks on a wall (Kocsis et al., 2021). Consequently, networks of pulse-
coupled oscillators (Mirollo and Strogatz, 1990) that were already studied in the
context of the hippocampal travelling waves (Ermentrout and Kleinfeld, 2001; Skin-
ner et al., 2001) and were consistent with experimentally obtained results (Penn
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et al., 2016; Goyal et al., 2020), could also be an appropriate model for the medial
septal network.

1.5 The scope of the thesis

The aim of this thesis is to investigate the role of the medial septum, diagonal band
of Broca in the generation of the hippocampal theta rhythm, and in initiation of
locomotion. Furthermore, we developed a theoretical framework for studying the
origin of oscillations and travelling waves in simulations of spiking neurons with
distance-dependent connectivity. The main questions can be summarized as follows.

• Can locomotion and hippocampal theta oscillation be triggered by
continuous light stimulation of MSDB VGluT2 neurons? What is
the response of MSDB neurons to the stimulation?

It has been previously shown that theta-periodic optical stimulation of the
MSDB vesicular glutamate transporter type 2 (VGluT2) triggers locomotion
and strong theta power in the hippocampal local field potential (Fuhrmann
et al., 2015). In Chapter 2 we ask the question whether the theta-periodicity
of the stimulus was necessary for both hippocampal theta and locomotion
induction. Next, we study the response of the MSDB neurons to the optical
stimulus under different pharmacological conditions. To further understand
the dependence of the persistent firing on MSDB synaptic connections and
external input, we repeat the same stimulation experiment in an acute MSDB
slice preparation.

• Can the medial septal network produce synchronous regular spiking
in the theta frequency range independently of external input? What
is the frequency-generating and synchronizing mechanism?

Despite decades of research, the origin of the hippocampal theta oscillation
is still under debate (Buzsáki, 2019). The MSDB is seen as the pacemaker
of the theta rhythm (Petsche et al., 1962, 1965; Robinson et al., 2016; Kocsis
et al., 2021), but it still remains unclear whether it can synchronize the theta
rhythm independently. Several successful attempts were made to induce the
theta oscillation in a MSDB slice preparation, but in all cases specific receptors
had to be activated (Wen et al., 2013; Garner et al., 2005; Lu et al., 2011).
In Chapter 3, we analyze the spontaneous spiking activity in an acute MSDB
slice preparation, in particular synchronization in the theta frequency range.

11



1 Introduction

• Can mean-field theory and linear stability analysis be used to under-
stand the generation of periodic travelling waves in spiking neural
networks?

Neural activity is modelled at different levels of description: from detailed
biophysical simulations to differential equations describing the average popu-
lation dynamics. These models provide an additional value when information
obtained at one level of description can be transferred to the other level of
description. In Chapter 4 we aim at bridging the gap between a spiking simu-
lation of neurons with distance-dependent connectivity and a population neural
field model. We define a mapping between parameters of the two models and
use the obtained framework to investigate the generation of periodic travelling
waves, so called wave trains, in spiking neural networks.
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2 Persistent firing of medial
septal glutamatergic neurons
in response to optogenetic
stimulation

∗ ∗ ∗

This chapter is based on the publication (Korvasová et al., 2021). The author per-
formed all data analysis, visualization, wrote the Results section and a part of the
Methods section related to data analysis. Sanja Mikulovic took part in writing the
Introduction and Discussion of the manuscript, the parts of the Methods section
related to experimental procedures were written by Hiroshi Kaneko and Liudmila So-
sulina. All authors of the manuscript participated in the review and editing. The
project was supervised by Tom Tetzlaff, Sanja Mikulovic and Stefan Remy. Figures
with captions were created by the author and already presented in (Korvasová et al.,
2021).

∗ ∗ ∗

Glutamatergic neurons in the medial septum and diagonal band of Broca (MSDB)
are the most recently identified subpopulation of the MSDB (Hajszan et al., 2004).
A growing body of evidence suggests their importance in modulating activity in
the MSDB during locomotion and affecting the accompanying hippocampal theta
rhythm (Manseau et al., 2005; Huh et al., 2010; Leao et al., 2015; Robinson et al.,
2016; Fuhrmann et al., 2015; Zhang et al., 2018; Dannenberg et al., 2019). In par-
ticular, the activity of MSDB glutamatergic neurons (VGluT2 - vesicular glutamate
transporter 2) is increased during locomotion and correlates with speed (Fuhrmann
et al., 2015). Moreover, both locomotion and hippocampal theta can be induced by
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theta-rhythmic optogenetic stimulation of MSDB VGluT2 neurons, outlasting the
stimulus by several seconds (Fuhrmann et al., 2015; Justus et al., 2017). It remains
unknown whether the rhythmicity of the stimulation is necessary for locomotion and
theta induction, or whether the VGluT2 neurons only contribute tonic excitation
to the local MSDB network and continuous stimulation would be sufficient. Fur-
thermore, the mechanism leading to the persistence of the induced activity after
the stimulus offset is not known, as is the relation between the persistent firing of
MSDB VGluT2 neurons, persistent locomotion and persistent hippocampal theta
oscillation.
A sustained increase in spiking activity, referred to as persistent firing, has been

observed in several brain areas of primates (Gottlieb et al., 1989; Supèr et al., 2001;
Zhou and Fuster, 1996), humans (Todd and Marois, 2004; Schluppeck et al., 2006;
Srimal and Curtis, 2008) and more recently rodents (Pastalkova et al., 2008; Yoshida
and Hasselmo, 2009; MacDonald et al., 2011; Harvey et al., 2012). From the be-
havioural point of view, persistent firing has been traditionally associated with work-
ing memory (Fuster, 1973; Kubota et al., 1974; Zylberberg and Strowbridge, 2017),
but later a more general function was suggested such as motor control (Kiehn and
Eken, 1998), decision making (Seo et al., 2007) or reinforcement learning (Seo et al.,
2009). The existence of persistent firing in the MSDB has not yet been established
and is of interest due to involvement of the MSDB in these behaviours (Turnbull
et al., 1994; McNaughton et al., 2006; Shirvalkar et al., 2010; Lipponen et al., 2012;
Fuhrmann et al., 2015).
In this study, we demonstrate that a one-second continuous light pulse reliably

triggers locomotion and hippocampal theta oscillation, while the hippocampal theta
oscillation is not causally related to locomotion. On the level of MSDB, we observed
robust persistent firing both in vivo and in vitro that does not depend on synaptic
connectivity within the MSDB. Hence, we hypothesize that the MSDB persistent
firing is generated by single-cell mechanisms of MSDB VGluT2 neurons.
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2.1 Optical stimulation of MSDB VGluT2 neurons induced locomotion,
hippocampal theta oscillation and persistent firing of MSDB neurons

2.1 Optical stimulation of MSDB VGluT2 neurons
induced locomotion, hippocampal theta
oscillation and persistent firing of MSDB
neurons

Mice were positioned on a spherical or linear treadmill and head-fixed (Figure 2.1A).
The locomotion speed, CA1-hippocampal local-field potential (LFP) and MSDB
multi-unit activity were simultaneously monitored (Figure 2.1B). To test whether
non-rhythmic optogenetic stimulation of MSDB VGluT2 neurons triggers locomo-
tion and CA1 theta oscillation, MSDB VGluT2 neurons were stimulated by 1s con-
tinuous light pulses (Figure 2.1C).

After the onset of the stimulation, we observed a reliable increase of MSDB spiking
activity, CA1 LFP power in the theta-frequency range (7− 12 Hz) and an onset of
locomotion (Figure 2.1D, E, Figure 2.6). Moreover, all three effects were still
present after the stimulus offset and were considered persistent if they lasted for
more than 1s after the stimulus offset (persistent activity was defined as significantly
higher firing rate in the interval (2, 4) seconds after the stimulus onset, compared
to the baseline computed from 2 seconds before to the stimulus onset). However,
the duration of the persistent activity differed between the different modalities.
Locomotion typically started before the onset of CA1 theta oscillation and lasted for
less than 5 seconds (mean 4.4 s, standard deviation 2.9 s). The duration of the MSDB
persistent spiking activity was much longer, outlasting the 20s recording. This
dataset therefore cannot answer the question of when and how the MSDB persistent
activity stops. To assess the relevance of MSDB elevated firing in physiological
conditions, we also monitored the level of MSDB spiking activity during voluntary
running and showed a significant increase compared to baseline, as predicted by the
stimulation experiment (Figure 2.1F).

To get some understanding of the mechanism underlying the persistent activity,
we tested whether it relies on synaptic connectivity by applying a synaptic blocker
cocktail (Figure 2.2A) that inactivates glutamatergic, GABAergic and cholinergic
connections in the MSDB (Figure 2.2B). Although this experiment cannot ex-
plain the mechanism in detail, it can uncover whether the activation of MSDB non-
glutamatergic neurons is a necessary conditions for locomotion or the hippocampal
theta oscillation. Our results suggested that activating MSDB non-glutamatergic
neurons is necessary neither for locomotion initiation (Figure 2.2C-E upper panel),
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Figure 2.1: Brief continuous MSDB VGluT2 stimulation triggers persistent
activity in the MSDB, locomotion and hippocampal theta.
A. Experimental setup: a head-fixed mouse running on a spherical or linear
treadmill. Produced using the SciDraw database (Branco and Costa, 2020).
B. LFP electrode in CA1, optical fiber and tetrode in the MSDB. Produced
using The Scalable Brain Atlas (Bezgin et al., 2009), based on The Allen Ref-
erence Atlas (Lein et al., 2007). C. Continuous 1s light stimulation of MSDB
VGluT2 neurons. D. Representative recordings of speed, CA1 LFP with the
corresponding spectrogram and MSDB extracellular potential. The grey verti-
cal band marks the continuous light stimulus (0–1 s), the dotted lines mark the
time interval used to analyze post-stimulus activity (2–4 s). E. Trial-averaged
speed (upper panel), CA1 LFP power in the frequency range 7–12 Hz (mid-
dle panel) and the average histogram of multi-unit spiking activity of channels
with persistent activity (PA) (lower panel). Average across all recording sessions
with 4 mice. For significance of a single-channel positive response to one stim-
ulus repetition, p < 0.05 from the one-sided Mann-Whitney U-test applied on
inter-spike intervals was required. F. Distribution of time-averaged speed (upper
panel), CA1 LFP power in the range 7–12 Hz (middle panel) and mean firing
rate of channels with persistent activity (lower panel) for time periods 2 seconds
before the stimulus when the mouse was at rest, in the interval 2–4 seconds and
during voluntary running. The bar denotes the median, the square the mean and
the box spans between the first and the third quartile. Additional information
is provided in Section 2.6.2. Reproduced from (Korvasová et al., 2021).
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nor for the persistent activity in the MSDB (Figure 2.2C-E lower panel, Figure
2.7). However, the CA1 theta oscillation was abolished by the synaptic blockade
(Figure 2.2C-E middle panel). These results also imply that the hippocampal theta
oscillation is not necessary for locomotion. The locomotion duration was similar as
without blocked synaptic transmission in the MSDB (mean 3.7 s, standard deviation
2.9 s). The persistent activity again exceeded the recording and therefore could not
be quantified. We did not observe any systematic difference between trials recorded
on the spherical and linear treadmill (Figure 2.8). Finally, after blocking MSDB
glutamatergic synapses only, we observed reliable locomotion initiation, as well as
MSDB persistent activity (Figure 2.9).

2.2 Persistent activity is presumably a single-cell
effect

The in vivo experiment described in Section 2.1 did not rule out the possibility
that the persistent activity is driven by feedback from a different brain area. To
test whether MSDB can generate persistent activity independently, we repeated the
experiment with the same stimulation paradigm in an acute MSDB slice preparation
(Figure 2.3A) and recorded the extracellular potential with a 6× 10 microelectrode
array (MEA) (Figure 2.3B). As in the previous section, a 1s continuous light pulse
was used to activate VGluT2 neurons (Figure 2.3C). Subsequently, we also repeated
the experiment with blocked synaptic transmission.
We observed robust persistent activity for a few seconds after the 1s continuous

optical stimulus was turned off (Figure 2.3D). Persistent activity was detected
in roughly one fifth of MSDB cells (Figure 2.3E) and the median firing rate of
persistently firing cells increased increased from the baseline 5 spikes per second
to 12 spikes per second (Figure 2.3F). The increase of firing rate above baseline
was observable for at least 20s (Figure 2.3G), in line with the activity observed in
vivo. The coefficient of variation of the inter-spike intervals was higher after the
stimulus compared to baseline (Figure 2.3H). This effect might be caused by the
activation of bursting neurons with possibly regularly spaced bursts, and is therefore
not necessarily in contradiction with the elevated hippocampal theta power. In terms
of reliability of responses, about one fifth of neurons showed persistent firing after
all repetitions of the stimulus (Figure 2.3I).
Further, we blocked synaptic transmission in the MSDB (Figure 2.4A, B) to test

the effect of the network on persistent activity. The elevated firing, persisting after
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Figure 2.2: Blocking intraseptal synaptic connectivity abolished CA1
theta, but not locomotion and MSDB persistent activity.
A. Blocker cocktail was applied through a cannula in the MSDB. Pro-
duced using The Scalable Brain Atlas (Bezgin et al., 2009), based on The
Allen Reference Atlas (Lein et al., 2007). B. Types of synapses blocked by
the blocker cocktail. Excitatory synapses are marked by green arrows and
inhibitory by blue circles. C. Representative recordings of speed, CA1 LFP
with the corresponding spectrogram and MSDB extracellular potential. The
grey vertical band marks the continuous light stimulus (0–1 s), the dotted lines
mark the time interval used to analyze post-stimulus activity (2–4 s). Same
mouse as in Figure 2.1D. D. Trial-averaged speed (upper panel), CA1 LFP
power in the frequency range 7–12 Hz (middle panel) and the average histogram
of multi-unit spiking activity of channels with persistent activity (PA) (lower
panel). Average across all recording sessions with 3 mice. For significance of a
single-channel positive response to one stimulus repetition, p < 0.05 from the
one-sided Mann-Whitney U-test applied on inter-spike intervals was required.
E. Distribution of time-averaged speed (upper panel), CA1 LFP power in the
range 7–12 Hz (middle panel) and mean firing rate of channels with persistent
activity (lower panel) for time periods 2 seconds before the stimulus when the
mouse was at rest, in the interval 2–4 seconds and during voluntary running.
The bar denotes the median, the square the mean and the box spans between the
first and the third quartile. Additional information is provided in Section 2.6.2.
Reproduced from (Korvasová et al., 2021).
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Figure 2.3: Stimulus-induced persistent activity is generated locally in the MS.
A. Experimental setup: oxygenation chamber. B. An acute coronal slice was
positioned on a 6x10 MEA with electrode distance 100 µm. Produced using
The Scalable Brain Atlas (Bezgin et al., 2009), based on the Allen Reference
Atlas (Lein et al., 2007). C. Continuous 1s light stimulation of MSDB VGluT2
neurons. D. Representative traces of the extracellular potential in the acute
MSDB slice preparation. The grey vertical bands mark the continuous light
stimulus (upper panel). Extracted single-unit activity for one representative
slice (lower panel). E. Percentages of units with significant increase (dark green),
significant decrease (yellow) and no significant change (light green) of firing rate
in response to the stimulus. For significance of a single-unit response to one
stimulus repetition, p < 0.05 from the one-sided Mann-Whitney U-test applied
on pre- and post-stimulus inter-spike intervals was required (pre: (−2, 0) s, post:
(2, 4) s). F. Distribution of firing rates before and after the stimulus (pre: (−2, 0)
s, post: (2, 4) s). Only units with persistent activity were considered. Statistical
significance of the difference between pooled mean firing rates pre and post: p =
1.9·10−40 (237 trials, first stimulus). G. Trial-averaged time course of single-unit
spiking activity. Single stimulus response per unit. H. Distribution of coefficients
of variation (CV) or inter-spike intervals (ISIs), pre stimulus ((−2, 0) s, blue) and
post stimulus ((2, 4) s, red). Single stimulus response per unit. I. Percentages of
units that respond with given reliability across five stimulus repetitions. (Two-
sided Wilcoxon’s signed-rank test, 19 brain slices.) Reproduced from (Korvasová
et al., 2021).

19



2 Persistent firing of medial septal glutamatergic neurons in response to
optogenetic stimulation

the stimulus offset, was still reliably observed in roughly ∼ 30% of cells, similarly as
without blocked synapses (Figure 2.4C, D). However, the firing rate reached lower
values with 9 spikes per seconds after the stimulus compared to the baseline median
6 spikes per second (Figure 2.4E), as non-VGluT neurons could not be recruited by
fast glutamatergic excitation in the blocked scenario. The duration of the persistent
activity, on the other hand, was not affected by blocking synaptic transmission
(Figure 2.4F). The coefficient of variation showed more similar values before and
after the stimulus, compared to the intact slice (Figure 2.4G). The reliability of
inducing persistent activity by the stimulus was lower in the blocked network, with
about half of units responding to only one from five repetitions (Figure 2.4H).

2.3 MSDB network amplifies persistent activity

In the previous two sections we showed that persistent activity in the MSDB occurs
even with blocked synaptic transmission. However, the network may still have a
quantitative effect on the activity such as increase the firing rates or prolong the
duration of the persistent activity. We observed qualitatively different relations
between measures with and without synaptic blockers when applied to the in vivo
and in vitro recordings.
In vivo, the firing rate during the stimulus was higher in the blocked condition and

did not significantly differ after the stimulus (Figure 2.5A). Also the durations of
the persistent activity with and without synaptic blockers were comparable (Figure
2.5B). However, persistent activity was detected in a larger proportion of channels
in the intact network as compared to blocked. As mentioned earlier, this effect
may be caused by secondary synaptic activation of non-VGluT2 type neurons in the
MSDB by the directly stimulated VGluT2 cells. Some cells stopped firing after the
stimulus and resumed firing only after several seconds, as in the example in Figure
2.7. This phenomenon was observed more frequently in the blocked condition than in
the intact (Figure 2.5C). In both cases, the channels with high levels of persistent
activity also exhibited high levels of activity during the stimulus (Figure 2.5D),
indicating that persistently firing cells are presumably mostly VGluT2 cells.
In the in vitro recordings, blocking synaptic transmission decreased the firing rate

both during and after the stimulus (Figure 2.5E), but the duration of persistent
activity did not seem to be strongly affected (Figure 2.5F). Similarly as in vivo,
we observed persistent activity in a larger proportion of channels in the intact slice
and stimulus-induced suppression of activity in a larger proportion of channels in
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Figure 2.4: Persistent activity is generated by intrin-
sic dynamics of MSDB VGluT2 neurons
A. Application of the blocker cocktail to the MSDB. Produced using
The Scalable Brain Atlas (Bezgin et al., 2009), based on The Allen Reference
Atlas (Lein et al., 2007). B. Types of synapses blocked by the blocker cocktail.
Excitatory synapses are marked by green arrows and inhibitory by blue circles.
C. Representative traces of the extracellular potential in an acute MSDB slice
preparation. The grey vertical bands mark the continuous light stimulus (upper
panel). Extracted single-unit activity for one representative slice (lower panel).
D. Percentages of units with significant increase (dark green), significant de-
crease (yellow) and no significant change (light green) of firing rate in response
to the stimulus. For significance of a single-unit response to one stimulus
repetition, p < 0.05 from the one-sided Mann-Whitney U-test applied on pre-
and post-stimulus inter-spike intervals was required (pre: (−2, 0) s, post: (2, 4)
s). E. Distribution of firing rates before and after the stimulus (pre: (−2, 0) s,
post: (2, 4) s). Only units with persistent activity were considered. Statistical
significance of the difference between pooled mean firing rates pre and post:
p = 2.3 · 10−31 (185 trials). F. Trial-averaged time course of single-unit spiking
activity. Single stimulus response per unit. G. Distribution of coefficients of
variation (CV) or inter-spike intervals (ISIs), pre stimulus ((−2, 0) s, blue) and
post stimulus ((2, 4) s, red). Single stimulus response per unit. H. Percentages
of units that respond with given reliability across five stimulus repetitions.
(Two-sided Wilcoxon’s signed-rank test, 11 brain slices.) Reproduced from
(Korvasová et al., 2021). 21
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the blocked network (Figure 2.5G). The fact that neurons with high firing rates
post stimulus also show high firing rates during the stimulus (Figure 2.5H, Figure
2.11B) supports the hypothesis that the directly stimulated VGluT2 neurons are the
main generators of the persistent activity.

2.4 Discussion

In this chapter we demonstrated that a 1 second continuous light stimulation of
MSDB VGluTs neurons initiates locomotion, hippocampal theta oscillation and el-
evated firing rate in the MSDB, all persisting after the stimulus offset. Unlike the
theta oscillation, the locomotion initiation was not affected by blocking synaptic
transmission in the MSDB (Figure 2.2 D-F). In line with previous findings (Koenig
et al., 2011; Brandon et al., 2011; Pastalkova et al., 2008; Robinson et al., 2016),
our results suggest that synaptic connectivity within the MSDB is necessary for
the generation of the hippocampal theta rhythm. Moreover, the observed MSDB
persistent firing appears to be cell-intrinsic and potentially driving locomotion.
Our results support the view that MSDB activity passed by the direct septo-

hippocampal glutamatergic projections alone cannot induce hippocampal theta os-
cillation (Robinson et al., 2016). However, the hippocampal theta might be modu-
lated by the direct MSDB VGluT2 input as suggested by Fuhrmann et al. (2015).
Kocsis et al. (2021) recently showed that the hippocamapal theta oscillation is driven
by parvalbumin-positive neurons activated by tonic excitation. The elevated firing
rate and persistent activity that we observed in the MSDB might serve as such tonic
excitation for the MSDB interneurons.
Previous studies reported that the hippocampal theta oscillation appears together

with the locomotion onset (Teitelbaum et al., 1975) or a few hundred milliseconds
before (Green and Arduini, 1954; Vanderwolf, 1969; Whishaw and Vanderwolf, 1973;
Bland et al., 2006; Fuhrmann et al., 2015). In the current study we observed first
the onset of locomotion and only subsequently the increase in hippocampal theta
power. A potential reason for the delayed onset of the hippocampal theta oscillation
could be the high firing rate of MSDB cells during the continuous light stimulation
(Figure 2.5A).

Despite the fact that the hippocampal theta oscillation is not necessary for lo-
comotion initiation and maintenance, the effect on other functions necessary for
ethologically relevant movement such as navigation or movement planning remains
unclear. It was shown that the loss of theta oscillation induced by MSDB inhibition
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Figure 2.5: MSDB network increased the strength of firing response.
A. Relative rate response during and after the stimulus in the intact network
(blue-grey) and with the blocker cocktail (pink). The relative rate response dur-
ing (resp. after) the stimulus was calculated as the mean firing rate during the
stimulus (resp. in the interval (2, 4) s) divided by the baseline calculated over
2 seconds prior to the stimulus in each channel. Numbers of trials: 56 in vivo
intact, 33 in vivo blocker cocktail. Statistical significance: rate increase during
the stimulus p = 0.031, post stimulus p = 0.11. The bar denotes the median, the
square the mean and the box spans between the first and the third quartile. Sta-
tistical significance was calculated using the two-sided Mann-Whitney U-test. B.
Trial-averaged instantaneous firing rate of the MSDB population divided by the
pre-stimulus baseline. C. Percentages of channels where a significant increase,
resp. decrease was observed compared to pre-stimulus baseline. Significance
of rate increase or decrease in each channel was calculated using the one-sided
Mann-Whitney U-test. D. Relationship between the multi-unit firing rate dur-
ing (horizontal axis) and in the interval (2, 4) s (vertical axis). E. As A in the
acute MSDB slice preparation. Numbers of trials: 261 from 19 intact slices, 83
from 11 slices with blocker cocktail. Statistical significance: rate increase during
the stimulus p = 4 ·10−30, post stimulus p = 6 ·10−12. E-H. As B,C in the acute
MSDB slice preparation. Reproduced from (Korvasová et al., 2021).

23



2 Persistent firing of medial septal glutamatergic neurons in response to
optogenetic stimulation

impairs spatial memory (Winson, 1978), accurate navigation (Bolding et al., 2020),
hippocampal firing fields (Pastalkova et al., 2008; Wang et al., 2015) and grid-cell
periodicity (Brandon et al., 2011; Koenig et al., 2011).
Persistent activity in different parts of the brain was previously linked to working

memory (Barak and Tsodyks, 2014), but also other functions such as reinforcement
learning, decision making or defensive behaviour (Seo et al., 2007; Barraclough et al.,
2004; Seo et al., 2009; Histed et al., 2009; Kennedy et al., 2020). The persistent
activity that we observed may also be involved in these functions, as the MSDB
takes part in behaviours such as working memory (Turnbull et al., 1994; McNaughton
et al., 2006; Lipponen et al., 2012; Roland et al., 2014; Li et al., 2020) or decision
making (Collins and Saunders, 2019). A likely scenario is that the MSDB VGluT2
neurons send direct projections to other brain areas that further project to motor-
generating areas, as we observed reliable locomotion initiation even with blocked
synaptic transmission in the MSDB (Figure 2.2). However, the functional relevance
of the MSDB persistent firing still remains unknown.
Another open question is the mechanism of generation of the observed persistent

firing in the MSDB, possibly involving both single-cell biophysical properties, as well
as network effects. Persistent firing was previously observed with blocked synaptic
transmission, pointing at intrinsic cellular mechanisms (Fransén et al., 2006; Pressler
and Strowbridge, 2006; Navaroli et al., 2012; Jochems and Yoshida, 2015; Knauer
et al., 2013). However, in other cases the synaptic circuit was necessary for per-
sistent activity (Inagaki et al., 2019; Hart and Huk, 2020) and network-generated
persistent firing was also successfully simulated in computational models based on
attractor networks (Amit and Brunel, 1997b; Barak and Tsodyks, 2007; Nachstedt
and Tetzlaff, 2017; Compte, 2006; Zylberberg and Strowbridge, 2017). In our ex-
periments we observed robust persistent firing even after the application of synaptic
blockers, supporting the hypothesis of intrinsic generation. The persistent firing was,
however, stronger in the intact network, indicating that the network properties may
also have a modulatory effect. Moreover, we cannot fully exclude the involvement
of gap junctions and metabotropic glutamate receptors in the generation of MSDB
persistent firing, as those were not blocked by the applied blocker cocktail. Further
experiments are necessary to answer these questions.
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2.5 Methods

2.5.1 Experimental procedure – in vivo recordings

2.5.2 Transgenic mice

Adult female VGluT2-cre mice Slc17a6tm2(cre)Lowl/J , (The Jackson Laboratory, Bar
Harbor, ME USA) were group-housed with 12-hour dark and light cycle and kept
single-housed after the chronic surgery with ab libitum water and food. Experiments
were performed during the light phase of the cycle. All experimental procedures were
approved by the authorities of North Rhine-Westphalia and carried out in accordance
with DZNE regulations in agreement with European Committees Council Directive.

2.5.3 Virus injection and surgical procedures

For the stereotactic injection of adeno-associated virus (AAV), the mice were anes-
thetized and head-fixed on a stereotactic frame. A craniotomy was drilled above the
medial septum (+1.0 mm anterior-posterior and +0.7 mm lateral, relative to bregma,
stereotactic coordinates from Franklin and Paxinos 2008). Channelrhodopsin-virus
(pAAV2.1-EF1a-double floxed ChR2-EYFP-WPR (H134R), 1 µl) was then injected
into both loci of the medial septum (−4.6 mm and −4.2 mm ventral, relative to
bregma, with 10◦ laterally) through the craniotomy at 0.1 µl/min. The tetrode
was placed 7 weeks after AAV injection. A fiber-optic cannula (OFC_400/430
0.37_5mm_SM3(P)_FLT, Doric Lenses, Quebec, Canada) was implanted 38◦ ven-
trally and 10◦ laterally, in the depth of 5.5 mm. Monopolar field potential electrode
was placed into the CA1 stratum radiatum (−2.0 mm anterior-posterior, −2.0 mm
lateral and −1.6 mm ventral, relative to bregma). For the tetrode recording, a
craniotomy of 1.0 mm drilled on the right hemisphere (+1.0 mm anterior-posterior
and +0.7 mm lateral from bregma). For the head-fixation during the recording, a
metal-bar (Luigs-Neumann, Ratingen, Germany) was placed on the skull. Recovery
time for the animals was 2 weeks.

2.5.3.1 Recording

Two types of treadmills were used for the recordings. First, a styrofoam spherical
treadmill of diameter 20 cm, only rotating in one direction. Second, a linear treadmill
of length 200 cm and width: 7 cm with virtual reality environment. Mice were
head-fixed on the treadmill and let to run, while the running speed was detected by
an optical computer mouse. Single/double shank tetrode (0.5 − 0.8 MΩ, Thomas
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RECORDING GmbH, Gießen, Germany) was glued to a 34G cannula and placed
to the MSDB in (depth 3400− 4300 µm, angle of 10◦ laterally). Multi-unit activity
was recorded and filtered with 500 − 2000 Hz bandpass filter using a 16 channels
extracellular amplifier (EXT-16DX, npi, Tamm, Germany). Local-field potential
was extracted using a 3 − 700 Hz bandpass filter and recorded by an extracellular
amplifier (EXT-02F/2, npi, Tamm, Germany). All signals were sampled at 25 kHz
using an ITC-18 interface (HEKA Elektronik, Lambrecht, Germany) and recorded in
Igor Pro 6.3 (WaveMetrics, Portland, USA). Light stimulation was performed using
a 488 nm diode laser (Excelsior-488C-200-CDRH, Spectra-Physics, Santa Clara,
USA). For synaptic blocker application, a UltraMicroPump with Hamilton syringe
(Word Precision Instruments, Berlin, Germany) via the 34G cannula was used.

2.5.4 Experimental procedure – in vitro recordings

2.5.4.1 Slice preparation

Acute MSDB sliced of 400 µm thickness were cut as described in (Fuhrmann et al.,
2015). Slices were then transferred to an interface chamber (Warner Instruments,
Hamden, USA) with ACSF (Maier et al., 2009) for recovery (mM): 119 NaCl, 2.5
KCl, 2.5 CaCl2, 1.0 NaH2PO4, 26 NaHCO3, 1.3 MgCl2, 10 glucose, oxygenated
with 95% O2 and 5% CO2 and kept inside on a lens cleaning tissue (Grade 105,
Whatman, Maidenstone, England) that ensures optimal oxygenation thanks to the
flow of ACSF (35◦C) for at least 3 hours.

2.5.4.2 Recording

Extracellular potential was recorded from the MSDB with a microelectrode array
(MEA), MEA2100-System (Multi Channel Systems, Reutlingen, Germany,
RRID:SCR_014809) on 60pMEA100/30iR-Ti MEAs with round titanium nitride
(TiN) electrodes, for details see (Sosulina et al., 2021). The MS slices was placed
onto a 6 × 10 grid of electrodes with 30 µm diameter and 100 µm distances. The
temperature of the ACSF was maintained at 35◦C using a heatable perfusion cannula
PH01 with a TC01 controlling unit (Multi Channel Systems, Reutlingen, Germany).
The placement of the slice was stabilized by a constant negative pressure of 25 −
30 mBar. Signals were recorded using the MC_Rack (V 4.5.16.0, Multi Channel
Systems, Reutlingen, Germany) at 25 kHz sampling rate with the MEA2100-lite-
Interface Board.
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MSDB VGluT2 neurons were stimulated with a light fiber coupled 473 nm diode
laser (LuxX473-80, Omicron-Laserage) with the tip placed ≤ 5mm from the slice.
Continuous stimulation with 1s duration was repeated 5 times in each recording. In
some trials the recordings was then repeated after the application of synaptic block-
ers: glutamatergic blockers NBQX (10 µM) and DAP5 (50 µM), subsequently gluta-
matergic blockers together with GABA-ergic blockers SR-95531 (10 µM), CGP52432
(1 µM) and cholinergic blockers Atropin (10 µM), MLA (200nM).

2.5.5 Data analysis

For analysis, 19 slices without any synaptic blocker were used, 11 with NBQX,
D-AP5 and 11 slices with the blocker cocktail.

2.5.5.1 Software implementation

Data analysis was performed using custom-written scripts in Python v3.6.10, all are
available online: https://gin.g-node.org/kkorvasova/medial_septum_persistent_

activity. In particular, the following packages were used: Numpy v1.19.2, Scipy
v1.5.2, Neo v0.7.1, Elephant v0.6.2 and Matplotlib v3.3.2. Single units were isolated
from extracellular potentials using Mountainsort v3 (Barnett et al., 2016).

2.5.5.2 Speed calculation

The position was first differentiated to obtain speed, then down-sampled to 1 ms
(0.2 ms in Figures 2.1F, 2.2E, 2.9E and 2.8) and low-pass filtered at 20 Hz using
the Butterworth filter of order 5. Only recordings where the average speed of the
mouse within 3s prior to the stimulus onset did not exceed 3 cm/s were considered.
For testing the duration of movement, we considered intervals of minimal length 1s
where the speed of the mouse did not drop below 3 cm/s for more than 1 s.

2.5.5.3 Power spectrum analysis

Fourier transform with frequency resolution 2 Hz and 62.5 ms overlap of 500 ms
time intervals was used to compute all spectrograms. To obtain a higher temporal
resolution while keeping the frequency resolution of the spectrograms, the average
power in the theta frequency range was calculated as an average of wavelets centered
around frequencies 7, 7.5, 8, . . . , 12 Hz from a downsampled signal to 5000 Hz.
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2.5.5.4 Statistical tests

The two-sided Wilcoxon’s signed-rand test was used in cases where respective pairs
of tested quantities could be identified (e.g. pre- and post-stimulus value of the
mean firing rate). The two-sided Mann-Whitney U-test was used in other cases.

2.5.5.5 Analysis of MSDB spiking activity

Single-unit activity was extracted from the extracellular potentials using Mountain-
sort v3 (Barnett et al., 2016) with clip-size corresponding to a 2ms window, isolation
threshold for curation 0.85, noise overlap 0.03 and threshold 7. For multi-unit activ-
ity extraction, the signal was band-pass filtered between 300 Hz and 3000 Hz using
the Butterworth filter of order 5. Spike times were defined at waveform peaks and
extracted using Elephant v0.6.2 by thresholding with the threshold set to 3, resp. 4.5
times the standard deviation of the band-pass filtered signal in vivo, resp. in vitro.
Instantaneous firing rates were computed as histograms of spiking activity with bin
size 200 ms. Single units with less than 10 spikes during the whole recording were
not considered for analysis.

Persistent activity was defined as significantly (Wilcoxon’s signed-rank test) in-
creased firing rate 1–3 s after the stimulus offset (i.e. 2–4 s after the stimulus onset)
relative to baseline 2 s before the stimulus onset. The first second after the stim-
ulus offset was cut out for testing the persistence of elevated firing rate, because
some units showed extreme values of instantaneous firing rate in a short time period
after the stimulus offset that would distort the interpretation of mean firing rate
after the stimulus offset and create false positives. The mean firing rate pre- and
post-stimulus was calculated as the average firing rate over the respective intervals
(−2, 0)s and (2, 4)s relatively to the stimulus onset. In Figures 2.1, 2.2, 2.9, only
one channel per trial was considered and the minimum number of channels available
in every trial. In Figures 2.3F, 2.4E and 2.10E only the first stimulus realization
was analyzed because the firing rate before the stimulus in subsequent repetitions
still seemed to be elevated from the previous stimulation. The relative firing rate
response during (resp. before) the stimulus in Figure 2.5 was calculated as the
mean firing rate during the stimulus (resp. in the interval 1 − 3 seconds after the
stimulus offset) normalized by the mean firing rate 2 seconds prior to the stimulus.
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2.6 Supplementary materials

2.6.1 Supplementary figures

Figure 2.6: Examples of potential traces in vivo.
Representative traces of raw potentials from the MSDB in vivo. Stimu-
lus period is indicated with the grey region. Reproduced from (Korvasová et al.,
2021).

2.6.2 Additional information to figures

This section contains additional information to figures reproduced from figure cap-
tions in (Korvasová et al., 2021).

Figure 2.1 All recordings of 4 mice were used, for firing rates only one channel per
mouse was considered. Numbers of trials: 165 trials with one stimulus realization,
out of them 122 show persistent activity, 121 trials with voluntary running, out
of them 80 show persistent activity. Statistical significance: pre- vs post-stimulus
speed p = 2.6 · 10−28, post-stimulus vs voluntary running p = 0.94, LFP power
pre vs post 3 · 10−6, post-stimulus vs voluntary running p = 0.07, pre-stimulus vs
voluntary running p = 1.4 · 10−7, PA pre vs post p = 9 · 10−22, post-stimulus vs
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Figure 2.7: Examples of potential traces in vivo with blocked MS synapses.
Representative traces of raw potentials from the MSDB in vivo after the ap-
plication of the blocker cocktail. With the blocker cocktail cessation of activity
after the stimulus was observed more often than in the intact network, see also
Figures 2.3, 2.4. Stimulus period is indicated with the grey region. Reproduced
from (Korvasová et al., 2021).
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Figure 2.8: Comparison of results recorded on the spherical (left
subcolumn) and linear treadmill (right subcolumn)
pre-, post-stimulus and during voluntary running.
A. Running speed with intact MSDB network. B. Running speed with
blocked synaptic transmission in the MSDB. C. Mean CA1 power in the range
7–12 Hz in the intact MSDB network. D. Mean CA1 power in the range 7–12
Hz with blocked synaptic transmission in the MSDB. E. Mean firing rate in
MSDB channels with persistent activity in the intact MSDB network. F. Mean
firing rate in MSDB channels with persistent activity with blocked synaptic
transmission in the MSDB. Additional information is provided in Section 2.6.2.
Reproduced from (Korvasová et al., 2021).
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Figure 2.9: Stimulus response in vivo with blocked MSDB glutamatergic
synapses.
A. NBQX, D-AP5 was applied through a cannula in the MSDB. Pro-
duced using The Scalable Brain Atlas (Bezgin et al., 2009), based on The
Allen Reference Atlas (Lein et al., 2007). B. Types of synapses blocked
by NBQX, D-AP5. Excitatory synapses are marked by green arrows and
inhibitory by blue circles. C. Representative recordings of speed, CA1 LFP
with the corresponding spectrogram and MSDB extracellular potential. The
grey vertical band marks the continuous light stimulus (0–1s). The grey vertical
band marks the continuous light stimulus (0–1 s), the dotted lines mark the
time interval used to analyze post-stimulus activity (2–4 s). Same mouse as
in Figure 2.1D. D. Trial-averaged speed (upper panel), CA1 LFP power in
the frequency range 7–12 Hz (middle panel) and the average histogram of
multi-unit spiking activity of channels with persistent activity (PA) (lower
panel). Average across all recording sessions with 2 mice. For significance of a
single-channel positive response to one stimulus repetition, p < 0.05 from the
one-sided Mann-Whitney U-test applied on inter-spike intervals was required.
E. Distribution of time-averaged speed (upper panel), CA1 LFP power in the
range 7–12 Hz (middle panel) and mean firing rate of channels with PA (lower
panel) for time periods when the mouse was at rest, during voluntary running,
and within 2 seconds after the stimulus offset. Bar denotes the median, square
the mean and the box spans between the first and the third quartile. Additional
information is provided in Section 2.6.2. Reproduced from (Korvasová et al.,
2021).32
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Figure 2.10: Single-unit response to stimulus in vitro
with blocked MSDB glutamatergic synapses.
A. Application of NBQX, D-AP5 to the MSDB. Produced using The
Scalable Brain Atlas (Bezgin et al., 2009), based on the Allen Reference
Atlas (Lein et al., 2007). B. Types of synapses blocked by NBQX, D-AP5.
Excitatory synapses are marked by green arrows and inhibitory by blue circles.
C. Representative traces of the extracellular potential in the acute MSDB
slice preparation. The grey vertical bands mark the continuous light stimulus
(upper panel). Extracted single-unit activity for one representative slice
(lower panel). D. Percentages of units with significant increase (dark green),
significant decrease (yellow) and no significant change (light green) of firing
rate. For significance of a single-unit response to one stimulus repetition,
p < 0.05 from the one-sided Mann-Whitney U-test applied on inter-spike
intervals was required. E. Distribution of firing rates before and after the
stimulus (pre: (−2, 0) s, post: (2, 4) s). Only units with significantly elevated
post-stimulus firing rate were considered. Statistical significance of the
difference between pooled mean firing rates pre and post: p = 7.3 · 10−29 (171
trials, second stimulus repetition out of five). F. Trial-averaged time course of
single-unit spiking activity. G. Distribution of coefficients of variation (CV)
or inter-spike intervals (ISIs), pre stimulus ((−2, 0) s, blue) and post stimulus
((2, 4) s, red). H. Percentages of units that respond with given reliability
across five stimulus repetitions. (Two-sided Wilcoxon’s signed-rank test, 13
brain slices.) Reproduced from (Korvasová et al., 2021).
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Figure 2.11: Relationship between the single-unit firing
rate during and after the stimulus in vitro.
A. Single unit firing rate during the stimulus (horizontal axis) and in
the time interval (2, 4) s (vertical axis) in the acute MSDB slice preparation.
B. As A with blocked synaptic transmission in the MSDB. Reproduced from
(Korvasová et al., 2021).

voluntary running p = 0.0007, pre-stimulus vs voluntary running p = 7. · 10−6. The
difference between the speed before the stimulus and during voluntary running was
significant by construction. Statistical significance was calculated using the two-
sided Wilcoxon’s signed-rank test for pre- vs post-stimulus difference (black) and
the two-sided Mann-Whitney U-test in other cases (grey).

Figure 2.2 All recordings of 3 mice were used, for firing rates only one channel
per mouse was considered. Numbers of trials intact: 143 trials with one stimulus
realization, out of them 76 show persistent activity, 81 trials with voluntary running,
out of them 43 show persistent activity. Statistical significance: pre- vs post-stimulus
speed p = 9.6 · 10−24, post-stimulus vs voluntary running p = 0.89, LFP power pre
vs post 7.3 · 10−6, post-stimulus vs voluntary running p = 0.56, pre-stimulus vs
voluntary running p = 0.002, PA pre vs post p = 3.6 · 10−14, post-stimulus vs
voluntary running p = 0.52, pre-stimulus vs voluntary running p = 5.9 · 10−7. The
difference between the speed before the stimulus and during voluntary running was
significant by construction. Statistical significance was calculated using the two-
sided Wilcoxon’s signed-rank test for pre- vs post-stimulus difference (black) and
the two-sided Mann-Whitney U-test in other cases (grey).
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Figure 2.8 All recordings of 4 mice in intact and 3 mice in blocked condition
were used. For firing rates only one channel per mouse is considered. Statistical
significance was calculated using the two-sided Wilcoxon’s signed-rank test for pre-
vs post-stimulus difference (black) and the two-sided Mann-Whitney U-test in other
cases (grey). Numbers of trials intact on the spherical treadmill: 118 with stim-
ulus, 75 of them with persistent activity, 83 trials with voluntary running, 45 of
them with persistent activity; intact on the treadmill: 47 trials with stimulus, 44
of them with persistent activity, 38 trials with voluntary running, 34 of them with
persistent activity. Blocker cocktail on the spherical treadmill: 110 with stimulus,
60 of them with persistent activity, 60 with voluntary running, 31 of them with
persistent activity. Statistical significance, p-values calculated using the two-sided
Wilcoxon’s signed-rank test for pre- vs post-stimulus difference (black) and the two-
sided Mann-Whitney U-test in other cases (grey) in the order pre vs post, post vs
voluntary running, pre vs voluntary running:

intact spherical treadmill linear treadmill
speed ∼ 10−21, 0.0098, – ∼ 10−9, 0.002, –

CA1 power 7–12 Hz ∼ 10−5, 0.31, ∼ 10−7 0.02, 0.16, 0.007
firing rate MSDB multi-unit with PA ∼ 10−14, 0.006, 0.074 ∼ 10−9, 0.056, ∼ 10−6

blocker cocktail spherical treadmill linear treadmill
speed ∼ 10−19, 0.9, – ∼ 10−6, 0.6, –

CA1 power 7–12 Hz 0.0003, 0.6, 0.0002 0.0003, 0.05, 0.18
firing rate MSDB multi-unit with PA ∼ 10−11, 0.4, 0.0007 0.0004, 0.0002, ∼ 10−5

Figure 2.9 All recordings of 2 mice were used. Numbers of trials: 47 trials
with one stimulus realization, out of them 30 show persistent activity, 18 trials with
voluntary running, out of them 12 show persistent activity. Statistical significance:
pre- vs post-stimulus speed p = 2.4 · 10−9, post-stimulus vs voluntary running p =
0.48, LFP power pre vs post 0.72, post-stimulus vs voluntary running 0.88, pre-
stimulus vs voluntary running p = 0.92, PA pre vs post p = 1.7 ·10−6, post-stimulus
vs voluntary running p = 0.73, pre-stimulus vs voluntary running p = 0.03. The
difference between the speed before the stimulus and during voluntary running was
significant by construction. Statistical significance was calculated using the two-
sided Wilcoxon’s signed-rank test for pre- vs post-stimulus difference (black) and
the two-sided Mann-Whitney U-test in other cases (grey).
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∗ ∗ ∗

The author performed all data analysis and wrote this chapter. The work was su-
pervised by Tom Tetzlaff.

∗ ∗ ∗

Hippocampal theta oscillations belong to the most prominent brain rhythms, yet
their origin is, despite extensive investigation, still under debate. The hypothesis
that the complex of the medial septum and the diagonal band of Broca (MSDB)
drives the theta activity was formulated decades ago (Petsche et al., 1962, 1965;
Green and Arduini, 1954). Since then, many experiments have been performed
aiming at mechanistic understanding of the underlying circuits (for a review see
Colom 2006). Two types of theta oscillations have been identified: type 1 theta (7–14
Hz) present during locomotion and explorative behaviour (Whishaw and Vanderwolf,
1973; Oddie and Bland, 1998; Buzsáki, 2002; Fuhrmann et al., 2015), and type 2
(4–9 Hz) that appears during immobility, REM sleep and emotional states such
as anxiety (Kramis et al., 1975; Bland, 1986; Sainsbury et al., 1987). Both types
of hippocampal theta oscillation critically depend on the input from the MSDB
(Mizumori et al., 1989; Vinogradova, 1995; Green and Arduini, 1954). However, the
detailed mechanisms of their generation, particularly the dependence on the specific
projections from the thee different MSDB cell populations (cholinergic, GABAergic
and glutamatergic) differ.
Type 1 hippocampal theta oscillation is only present in active states and disap-

pears under anesthesia (Kramis et al., 1975). It is reliably triggered by optogenetic

37



3 Spontaneous synchronization of medial septal neurons in the theta frequency
range

stimulation of MSDB glutamatergic (VGluT2) cells (Chapter 2, Fuhrmann et al.,
2015; Robinson et al., 2016) or parvalbumin-expressing GABAergic cells (Zutshi
et al., 2018). Moreover, the synaptic connectivity within the MSDB appears to be
necessary (Chapter 2, Fuhrmann et al., 2015; Robinson et al., 2016). According
to the currently accepted view, the rhythmic firing in the theta frequency range is
produced by the GABAergic MSDB neurons upon tonic excitation from the MSDB
glutamatergic population (Robinson et al., 2016; Kocsis et al., 2021), and projected
to the CA1 interneurons. Along with providing rhythmic inhibition, the MSDB
further facilitates the hippocampal theta oscillation by disinhibiting hippocampal
CA1 pyramidal cells via an interneuron-interneuron circuit. MSDB glutamatergic
cells directly activate the hippocampal alveus/oriens interneurons (Fuhrmann et al.,
2015) that in turn inhibit another class of hippocampal interneurons, leading to
disinhibition of the excitatory input to CA1 pyramidal neurons from the hippocam-
pal area CA3 and the medial entorhinal cortex (Fuhrmann et al., 2015; Leão et al.,
2012). It is possible that MSDB VGluT2 cells further depolarize CA1 pyramidal
cells by direct septo-hippocampal projections (Fuhrmann et al., 2015), or via ac-
tivating MSDB cholinergic neurons that target the hippocampal oriens-lacunosum
moleculare interneurons with nicotinic receptors (Leao et al., 2015; Fuhrmann et al.,
2015).

Type 2 hippocampal theta oscillation occurs during immobility, sleep and anes-
thesia (Kramis et al., 1975) and can be induced by optogenetic activation of MSDB
cholinergic neurons (Vandecasteele et al., 2014; Mikulovic et al., 2018). Unlike type
1 theta, it is abolished by blocking cholinergic transmission in the MSDB by the
application of atropine (Kramis et al., 1975; Bland, 1986). The MSDB cholinergic
neurons provide excitation to the local MSDB network and to the CA1 pyramidal
cells via direct septo-hippocampal projections. Cholinergic neurons do not show
strong phase coupling to the theta rhythm measured in the dorsal hippocampus,
but increase their firing rate when the theta rhythm is present (Simon et al., 2006;
Zhang et al., 2010). However, it is unclear whether the cholinergic neurons phase-
lock to a theta oscillation measured at other locations such as the ventral hippocam-
pus, as oscillations with variable frequencies where detected along the hippocampal
dorso-ventral axis (Mikulovic et al., 2018; Zhang and Jacobs, 2015). The MSDB in-
terneurons exhibit strong phase coupling to either the peak or the trough of the theta
rhythm (Borhegyi et al., 2004) and their activity temporally precedes the emergence
of the hippocampal theta oscillation (Hangya et al., 2009). Moreover, Gangadharan
et al. (2016) showed that the MSDB GABAergic neurons control object exploration
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through modulating type 2 theta oscillation. Thus, the MSDB GABAergic pop-
ulation can be considered as a putative pacemaker of type 2 theta oscillation as
well.
Taken together, the MSDB GABAergic subpopulation is a candidate for the pace-

maker of both type 1 and type 2 hippocampal theta oscillation, although more ex-
periments will be needed to describe the mechanism. Under this hypothesis, MSDB
glutamatergic and cholinergic neurons provide excitatory drive to the network and
thereby possibly modulate the theta oscillation in a state-dependent manner, e.g.
during locomotion (Fuhrmann et al., 2015) or arousal (Sainsbury et al., 1987), re-
spectively. A recent study (Kocsis et al., 2021) proposed that the theta rhythm
is generated by MSDB PV cells that, upon tonic excitation provided by the gluta-
matergic cells, intrinsically produce regular firing in the theta frequency range. They
are then synchronized by the network, similarly to initially asynchronous clocks at-
tached to one wall. However, detailed understanding of the underlying cellular and
network mechanism is still missing. Theta rhythmicity among the MSDB interneu-
rons strongly correlates with the expression of hyperpolarization-activated cation
channels that promote membrane oscillations, but their activation is not necessary
for the existence of theta-rhythmic firing in the MSDB (Varga et al., 2008).
Several attempts have been performed to induce theta oscillation in a MSDB slice

preparation, with the help of activating specific receptors types. Theta oscillation in
the local field potential was recorded from a rat medial septal slice upon the appli-
cation of nicotine (Wen et al., 2013), kainate (Garner et al., 2005) or a metabotropic
glutamate receptor agonist (Lu et al., 2011). However, the application of the cholin-
ergic agonists nicotine (Lu and Henderson, 2010) or carbachol (Manseau et al., 2008)
induces theta oscillation also in a hippocampal slice preparation. These experiments
show the ability of both the septal and hippocampal local networks to support theta
oscillations, but specific external input substituted by specific receptor activation
may still be necessary. In this study, we investigated whether the MSDB network
generates rhythmic firing in the theta frequency range spontaneously in an acute
MSDB slice preparation without any additional activation of specific receptors. Fur-
thermore, we pharmacologically blocked synaptic transmission in the MSDB to test
whether the oscillation is generated by intrinsic mechanisms of the MSDB cells or
critically relies on synaptic connectivity.
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3 Spontaneous synchronization of medial septal neurons in the theta frequency
range

3.1 Medial septal cells spontaneously synchronize in
the theta frequency range

The same dataset as in Chapter 2 was analyzed. An acute coronal MSDB slice
preparation was placed inside an oxygenation chamber (Figure 3.1A) onto a 6x10
micro-electrode array (Figure 3.1B). To investigate the existence of spontaneous
spiking activity and synchronization in the theta frequency range, we extracted the
time intervals prior to the first optical stimulation in each trial, with length up
to 1 minute. For each slice, single unit activity was extracted and the population
activity was computed as a histogram of pooled single-unit activities of all units.
Experimental and analysis methods are described in detail in Sections 2.5 and 3.3,
respectively.
Spontaneous spiking activity was present but too sparse for the theta oscillation

to be detectable by eye in the population signal (Figure 3.1C). However, the au-
tocorrelation function of the population signal showed a clear rhythmicity in the
theta-frequency range (Figure 3.1D, black). The theta oscillation in the auto-
correlation function were not fully determined by single-unit autocorrelations, as
the average of single-unit autocorrelations (orange) was more flat, indicating syn-
chonization between different units. The power spectral density also showed a clear
peak in the theta frequency range (Figure 3.1E). To quantify the significance of
the theta oscillation and the importance of cross-correlations in its generation, we
performed surrogate analysis with two types of surrogate data: spike dither and
spike train dither (see Section 3.3 for details). With spike dither, each individual
spike is dithered by a random displacement, destroying the structure of both popula-
tion and single-unit autocorrelation functions. The significance threshold obtained
by this methods therefore tests significance of the theta oscillation per se. The
spike train dither only affects population autocorrelations and preserves single-unit
autocorrelations, thereby testing significance of pairwise cross-correlations between
different units. Both methods preserve the mean firing rate of each unit. The theta
peak in the power-spectral density was significant in 39 out of 86 trials according
to the spike dither surrogate method and the cross-correlations were significant in
37 trials according to the spike train dither surrogate method (Figure 3.1F). The
dominant frequency of the theta oscillation typically lay in the high theta band (8-14
Hz, Figure 3.1G).
To test whether the synchronization observed in the intact slice critically depends

on synaptic connectivity, we repeated the same analysis with recordings obtained
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MEA chamber

perfusion in 
(peristaltic pump)

perfusion out 
(vacuum)

35°C

MSDB

acute
coronal
slice

6x10 MEA

100
 µm

Figure 3.1: Synchronization of neurons in the MSDB acute slice preparation in
the theta frequency band. A. Sketch of the experimental setup. B. An
acute coronal slice is positioned on a 6x10 MEA with electrode distance 100 µm.
Produced using The Scalable Brain Atlas (Bezgin et al., 2009), based on the Allen
Reference Atlas (Lein et al., 2007). C. Examples of single-unit spiking activity
in 3 MSDB acute slices (lower panel). Instantaneous population firing rate (bin
size 20ms; upper panel, green). D. Normalized autocovariance function of the
population firing rate (black) and the average of the single-unit autocovariance
functions (orange), corresponding to the examples in A. Spikes were binned with
5 ms bin size. E. Power spectral density of the instantaneous population firing
rate (bin size 2 ms) (blue). The confidence threshold (red) was calculated using
surrogate analysis (spike dither, 1000 surrogate sets) with confidence threshold
α = 0.05. Significance was tested in the interval 4-14 Hz (yellow). F. Percentage
of slices with significant theta power based on two surrogate methods: spike
dither and spike train dither. G. Distribution of the dominant frequency in the
range 4-14 Hz across slices.
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from slices with blocked synaptic transmission (Figure 3.2A-C). We observed even
more pronounced peaks in the autocorrelation functions and power spectra (Figure
3.2D,E). Moreover, the theta power was significant in almost all trials 3.2E. The level
of theta-band interactions between neurons was not affected by the blocker, as the
proportion of significant trials with respect to spike-train dither was similar as in the
intact network (Figure 3.2E). On the contrary, the proportion of significant trials
with respect to spike dither was much higher compared to the intact network and also
compared to spike-train dither, indicating more regular spiking after the application
of the blocker. In many trials, the significant theta power in the population activity
therefore recflected periodic single-unit activity. The dominant frequency was even
more biased towards the high theta range than in the intact network (Figure 3.2G).

Next, we sought to understand the role of the different types of MSDB synaptic
connections in the generation of the theta activity by performing pharmacological
manipulations. We first applied NBQX, D-AP5 that block glutamatergic receptors
and then blocked all synaptic connections by the application of the blocker cocktail
(Figure 3.3A). The dominant theta frequency was higher in the blocked conditions
than in the intact network (Figure 3.3B) with the highest relative power (normal-
ized by mean power) after the application of the blocker cocktail (Figure 3.3C).
However, the coefficients of variation of the inter-spike intervals were lowest in the
fully blocked condition (Figure 3.3D), which is consistent with our previous ob-
servation that without synaptic transmission the theta power is mainly a result of
single-unit autocorrelations, rather than synchrony. On the contrary, the relatively
low dominant frequencies in the intact network (Figure 3.3B) seem to depend on
the MSDB network dynamics, as the firing rates were on average higher than in
the other two conditions (Figure 3.3E). Indeed, the units with most regular spiking
(lowest coefficient of variation of the inter-spike intervals) tend to have high firing
rates (typically above 10 spikes/s) compared to the less regular units in all three
conditions (Figure 3.3F).

To test how synchrony of neurons depends on their distance, we computed the
Pearson’s correlation coeficient and coherence for every pair of neurons. The Pea-
son’s correlation coefficient is phase-sensitive, whereas coherence describes the spec-
trum of the cross-correlation function and is therefore phase-independent. Syn-
chronous firing, as measured by the Peason’s coefficient of variation, was not affected
by the synaptic blockers and occured mostly between neurons recorded at the same
electrode (Figure 3.4B). The theta-band coherence between neurons was also high-
est between neighbouring neurons. In the intact network and after the application of
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Figure 3.2: Synchronization of neurons in the MSDB acute slice preparation with
blocked synaptic transmission. A. Application of the blocker cocktail to the
MSDB. Produced using The Scalable Brain Atlas (Bezgin et al., 2009), based
on The Allen Reference Atlas (Lein et al., 2007). B. Types of synapses blocked
by the blocker cocktail. Excitatory synapses are marked by green arrows and
inhibitory by blue circles. C-G. Same arrangement as in Figure 3.1 C-G.
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Figure 3.3: Effect of synaptic transmission on theta synchronization in the acute
MSDB slice. A. Sketches of MSDB connectivity in the intact slice, with glu-
tamatergic synapses blocked by NBQX, D-AP5 and with all synapses blocked
by the blocker cocktail. Excitatory synapses are marked by green arrows and
inhibitory by blue circles. B. Dominant frequencies in the range 4-14 Hz in the
intact MSDB slice preparation (grey), with blocked glutamatergic transmission
by NBQX, D-AP5 (orange) and with all synapses blocked (pink). Bar denotes the
median, square the mean. Mann-Whitney U-test, p-values top to bottom: 0.02,
0.44, 0.007. C. Relative power (power at dominant frequency normalized by the
mean power) in the three pharmacological conditions . Mann-Whitney U-test,
p-values top to bottom: 7.8 · 10−12, 4.6 · 10−7, 0.01. D. Coefficients of variation
(CV) of the inter-spike intervals (ISIs) in the three pharmacological conditions.
Mann-Whitney U-test, p-values top to bottom: 4.4 · 10−18, 0.0006, 4.7 · 10−6.
E. Distribution of the mean firing rate across slices in the three pharmacological
conditions. Mann-Whitney U-test, p-values top to bottom: 1.8 · 10−6, 0.0002,
1.6 · 10−16. F. The mean coefficient of variation of the inter-spike intervals vs.
the mean firing rate. One dot corresponds to one trial.
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3.2 Discussion

the blocker cocktail, somewhat elevated levels of coherence were observed at all dis-
tances (Figure 3.4D), indicating a tendency of MSDB neurons to fire at consistent
frequencies. The notably lower coherence across all frequencies with blocked gluta-
matergic transmission (Figure 3.4C) was possibly caused by a group of irregularly
firing neurons that generated the dominant peak in the distribution of coefficients
of variation of the inter-spike intervals around 1 (Figure 3.3, NBQX, D-AP5).

3.2 Discussion

We have shown that MSDB neurons in an acute slice preparation spontaneously
synchronize in the theta frequency band (Figure 3.1). These results support the view
of the MSDB as a pacemaker of the hippocampal theta oscillation and show for the
first time that the MSDB can generate theta oscillation intrinsically, independently
of any external input or specific receptor activation. In particular, the hippocampal
feedback to the MSDB is not necessary for generating the MSDB theta-rhythmic
activity.
Garner et al. (2005) demonstrated that a kainate-induced MSDB theta oscilla-

tion in vitro is abolished by pharmacological blockade of gap junctions. Our results
further support the hypothesis that gap junctions are involved in synchronizing the
MSDB cells, as we observed significant (Figure 3.2) and mostly local (Figure 3.4)
synchronization in the theta frequency band even in the presence of synaptic block-
ers. However, the theta oscillation in the hippocampal local field potential disap-
pears when MSDB recurrent synaptic connections are blocked (Chapter 2, Robinson
et al. (2016)). As opposed to the thalamic theta rhythm (Hughes et al., 2004), the
hippocampal theta rhythm is synchronized by a more complex mechanism than
by the gap junctions alone. In particular, GABAA signaling seems to be involved
(Garner et al., 2005). With blocked synapses we typically observed dominant theta
frequencies above 8 Hz (Figure 3.3). It is therefore possible that MSDB synap-
tic connections are necessary to achieve the low theta frequencies (4 − 7 Hz) often
detected in the hippocampus (Kramis et al., 1975; Sainsbury et al., 1987).
The relative theta power was highest with blocked synaptic transmission (Fig-

ure 3.3), where the theta peak in the power spectrum is largely (but not only)
determined by regular spiking of individual units. The mechanism how such regu-
lar spiking is generated is unknown, but might involve the metabotropic glutamate
receptors (mGluRs). In line with this hypothesis, Lu et al. (2011) induced theta
oscillations in the local field potential in a rat MSDB slice preparation by activating
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Figure 3.4: Dependence of cross-correlation and coherence of two units on their
distance. A. Histogram of Pearson’s correlation coefficients between binned
single unit activities (bin size 10 ms) within each slice for the three different
pharmacological conditions (intact MSDB slice, blocked glutamatergic trans-
mission with NBQX, D-AP5 and entirely blocked synaptic transmission by the
blocker cocktail). B. Two-dimensional histogram of Pearson’s correlation coef-
ficients between two units vs. their distance. Pooled data from different slices
for the each pharmacological condition. C. Trial-averaged coherence of binned
single-unit activities (bin size 10 ms) within each slice for each pharmacological
condition. Grey region marks the interval 4-14 Hz. Note that the y-axis does not
start from 0. D. Two-dimensional histogram of the maximal coherence in the
range 4-14 Hz between two units vs. their distance. Pooled data from different
slices for each pharmacological condition.
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3.3 Methods

the metabotropic glutamate receptors. As ionotropic glutamatergic receptors were
blocked by competitive blockers in our study, it is likely that mGluRs were more
strongly activated in the blocked condition, possibly leading to more regular spiking
and higher frequencies (Figure 3.3).

Our approach of studying the generation of theta oscillations in the MSDB by
analyzing single-unit spiking activity allowed us to detect synchrony that was not
exhibited in the local field potential, possibly due to the morphology of MSDB
cells. On the other hand, this method is obviously limited by undersampling. It
would therefore be of high value to confirm our results using modern micro-electrode
arrays with a high number of channels. Furthermore, repeating the experiment with
pharmacologically blocked gap junctions and mGluRs respectively would lead to a
better understanding of the underlying mechanisms.

3.3 Methods

3.3.1 Experimental procedure

The experimental procedure was described in detail in Section 2.5. For the analysis
presented in this section we extracted time intervals before the first optical stimula-
tion. Recordings with any type of stimulation were used, as the stimulus period did
not enter the analysis. In total we analyzed 19 intact slices, 11 slices with NBQX,
D-AP5 and 11 slices with the blocker cocktail.

3.3.2 Data analysis

3.3.2.1 Software

Data analysis was performed using custom-written scripts in Python v3.6.10, with
the packages Numpy v1.19.2, Scipy v1.5.2, Neo v0.7.1, Elephant v0.6.2 and Mat-
plotlib v3.3.2. Single units were isolated from extracellular potentials using Moun-
tainsort v3 (Barnett et al., 2016).

3.3.2.2 Data selection

The time interval before the first stimulus was extracted from recordings with any
stimulus paradigm. Only slices with at least 10 extracted units were considered.
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3.3.3 Instantaneous firing rate, correlations and spectral
analysis

The instantaneous firing rate is calculated as a histogram of spikes normalized by
the bin size. In the case of a population firing rate, the signal is normalized by the
number of neurons to account for different population sizes in different slices.
Normalized autocovariance function in Figures 3.1D and 3.2D was calculated from

the instantaneous firing rate (5 ms bin size) by taking a z-score, dividing by the eu-
clidean norm of the z-scored signal and computing the autocorrelation function using
scipy.signal.correlate. The black trace was calculated from the population in-
stantaneous firing rate. The yellow trace is an average of normalized autocovariances
of the single-unit instantaneous firing rates.
Power spectral density was calculated using Fourier analysis (scipy.signal.welch)

with minimal frequency resolution of 2 Hz.
The Pearson’s correlation coefficient of vectors x and y is defined as∑

i(xi − µ(x))(yi − µ(y))
σ(x)σ(y) ,

where µ denotes the mean and σ the standard deviation.
Coherence of vectors x and y, sometimes referred to as magnitude squared coher-

ence, is defined as |Pxy|2/(PxPy), where Px, resp. Py, are power spectral densities
of x, resp. y, and Pxy is the cross-spectral density of the two vectors.

3.3.3.1 Statistical testing

Surrogate data sets were generated by randomly dithering the spike times (spike
dither) or the whole single-unit spike trains (spike train dither) within ±200 ms.
A theta peak in the power spectral density was considered significant when the
maximum of the power-spectral density in the range 4-14 Hz was above the maximum
of the 95th percentile of surrogate power spectra in the same range.
Statistical significance in Figure 3.3 was calculated using the non-parametric

Mann-Whitney U-test.
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4 Framework for studying the
generation of periodic
travelling waves in spiking
neural networks

∗ ∗ ∗

This chapter is based on the publication (Senk et al., 2020a). The author performed
the initial linear stability analysis of the neural field model, wrote the simulation with
rate neurons, contributed to the parameter mapping between the two models and to
the writing of the manuscript. The work was done under supervision of Moritz Helias
and Markus Diesmann. Figures in this chapter were reproduced from (Senk et al.,
2020a) including the captions.

∗ ∗ ∗

Travelling waves of electrical activity in the brain have attracted attention for
decades, yet their functional role and origin are to date not well understood. They
occur both spontaneously and as a response to a stimulus, in awake and anesthetized
states, in vivo and in vitro (Muller and Destexhe, 2012; Muller et al., 2018). Their
characteristics, however, differ between the conditions (Muller et al., 2018).
Travelling waves have also been observed in neural network models with distance-

dependent connectivity (Mehring et al., 2003; Yger et al., 2011; Voges and Perrinet,
2012; Keane and Gong, 2015), where the probability of a connection between two
neurons decays with their distance, as reported by experimental studies (Hellwig,
2000; Perin et al., 2011; Schnepel et al., 2015). The origin of travelling waves and
other spatio-temporal patters was extensively studied in neural-field models (Wilson
and Cowan, 1972b, 1973b; Amari, 1977) that describe the evolution of the popula-
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Figure 4.1: Spatiotemporal patterns in a spiking neural network model. Spiking activity of
recurrently connected populations of excitatory (E, blue) and inhibitory (I, red)
leaky integrate-and-fire neurons. Each dot represents the spike-emission time
of a particular neuron. Neurons are positioned on a ring with a circumference
of 1 mm. Each neuron receives a fixed number of incoming connections from
its excitatory (inhibitory) neighbors uniformly and randomly drawn within a
distance of RE (RI). The spike-transmission delay d, the widths RE and RI of
the spatial connectivity profiles, and the relative inhibitory synaptic weight g
are varied. (a) Asynchronous-irregular activity (d = 1 ms, RE = RI = 0.4 mm,
g = 6). (b) Oscillations in space (d = 3 ms, RE = 0.1 mm, RI = 0.15 mm,
g = 5). (c) Oscillations in time (d = 6 ms, RE = RI = 0.4 mm, g = 7).
(d) Propagating waves (d = 3 ms, RE = 0.2 mm, RI = 0.07 mm, g = 5). For
remaining parameters, see Table 4.4. Reproduced from (Senk et al., 2020a).

tion activity in a spatially-resolved manner by nonlinear integro-differential equa-
tions. These models are ideal for studying the existence and uniqueness of various
spatio-temporal patterns such as travelling waves, stationary patters or travelling
bumps (Ermentrout, 1998; Coombes, 2005; Wyller et al., 2007a; Coombes, 2010;
Bressloff, 2012, 2014; Coombes et al., 2014), as they are analytically tractable. Such
spatio-temporal patterns can either be directly constructed (Amari, 1977; Ermen-
trout, 1998; Bressloff, 2012) or their existence can be proven by linear stability
analysis (Ermentrout and Cowan, 1979b,a, 1980a,b; Hutt et al., 2003). The first,
constructive approach has the advantage of working directly with the nonlinear sys-
tem and therefore providing exact solutions. The latter approach, on the other hand,
leads to approximate results that are valid only locally, but offers a more general
understanding of the dynamical system.
In this chapter, we employ linear stability analysis to study bifurcations of a ho-

mogeneous steady state (Figure 4.1a, in neural networks also called asynchronous,
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irregular activity; Brunel, 2000) that give rise to spatial oscillations (constant in
time, oscillatory in space, often called "Turing patterns"1, Figure 4.1b), temporal
oscillations (constant in space, oscillatory in time Figure 4.1c) or wave trains (os-
cillatory both in time and space, also called periodic travelling waves, Figure 4.1d).
Our analysis builds on previous work of Veltz and Faugeras (2011) who proved the
principle of linearized stability for neural field models of the type considered in
this chapter. The existence and uniqueness of solutions, as well as conditions for
asymptotic stability of the trivial steady state were previously shown by (Faye and
Faugeras, 2010). Numerous other works investigated pattern formation in relation
to reach of excitation and inhibition (Ermentrout, 1998), in systems without trans-
mission delays (Wyller et al., 2007b; Folias and Ermentrout, 2012), with constant
delays (Roxin et al., 2005, 2006), distance-dependent delays (Jirsa and Kelso, 2000;
Hutt et al., 2003; Atay and Hutt, 2005, 2006; Coombes et al., 2007; Bressloff and
Kilpatrick, 2008; Hutt, 2008; Bojak and Liley, 2010; Hutt and Rougier, 2010) or
both (Veltz, 2011, 2013).
The goal of this chapter is to provide a link between the analytically obtained

conditions for the emergence of travelling waves in the neural-field model, and con-
ditions for parameters of a network of leaky-integrate-and-fire neurons that will lead
to the same behaviour at the macroscopic level. The latter model is a bottom-up
model described on the level of individual neurons (modelled as points in space) and
the connections between them. Its parameters are therefore more easily constrained
by electro-physiological experiments, but the resulting complexity of the model does
not allow for analytical investigation. So far, a quantitative link between the two
levels of description is missing.
Several studies have already attempted to create a link between spatio-temporal

patterns in models at different levels of description. To name a few, Roxin et al.
(Roxin et al., 2005, 2006) used bifurcation theory to compare spatio-temporal pat-
terns in a neural-field model and a network of Hodgkin-Huxley neurons. However,
the network simulation did not reveal travelling waves as predicted by the neural
field model. Crook et al. (1997) found travelling waves both in a network of coupled
oscillators and its mean-field description. An analytical reduction of dynamics of a
spiking neural network was performed in the limit of slow synaptic interactions (Er-
mentrout, 1994; Bressloff and Coombes, 1998, 2000), in spatially extended networks

1The term "Turing patterns" refers to the original work by Alan Turing (Turing, 1952) who studied
stationary spatial patterns that emerge due to diffusion in reaction-diffusion equations. The term
has later acquired a broader meaning of stationary spatial patterns of any origin (Coombes, 2005;
Coombes et al., 2007; Venkov et al., 2007).
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of leaky-integrate-and-fire (LIF) neurons without transmission delays (Rosenbaum
and Doiron, 2014; Rosenbaum et al., 2017) and with constant delays (Kriener et al.,
2014), but without the explicit spatial dependence in the mean-field description.

In this chapter, we present a quantitative link between a ring network of LIF
neurons with delays and the corresponding neural-field model. We derive an explicit
parameter mapping between the two models and apply it to find conditions for
parameters of both neural-field and LIF network models when wave trains (periodic
travelling waves) occur. We validate the results obtained by linear stability analysis
of the neural-field model by a simulations of networks of LIF or rate neurons.

4.1 Bifurcation analysis of a neural-field model

Let us first consider a one-dimensional domain R populated with one neural popu-
lation. Let u : R2 → R be the instantaneous firing rate of infinitely small neurons
described as a continuous field, ψ : R → R a translation-invariant gain function,
d > 0 the transmission delay and τ > 0 the effective time constant. Let m : R→ R
be a translation in variant, isotropic connectivity kernel that specifies the effective
strength of connection between two neurons at positions x ∈ R and y ∈ R,

m(r) := w p(r), (4.1)

where r = x − y is the displacement, w ∈ R is the strength of connection and
p : R→ (0,∞) a symmetric probability density function such that p(r) = p(−r) and∫∞
−∞ p(r) dr = 1. The temporal evolution of u is then described by the neural-field
model

τ
∂u

∂t
(x, t) + u(x, t) =

∫ ∞
−∞

m(x− y)ψ(u(y, t− d)) dy. (4.2)

In Section 4.3 we extend the analysis to a two-population model, with one exci-
tatory (w > 0) and one inhibitory (w < 0) population. We restrict our analysis to a
one-dimensional ring domain, i.e. n = 1. We consider a boxcar-shaped connectivity
kernel of width R (Figure 4.2(a)) ,

p(r) = 1
2RΘ(R− |r|), (4.3)

where Θ denotes the Heaviside function.
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4.1 Bifurcation analysis of a neural-field model

Figure 4.2: Effective profile yields conditions for wave trains. (a) Boxcar-shaped spatial
profile p of width R = 1 mm for a single population. (b) Effective profile c
(blue curve) denotes Fourier transform of spatial profile p̂ times positive weight
wE = 1. Gray crosses indicate maximum cmax and minimum cmin. Same spatial
profile but with negative weight (wI = −wE) yields mirrored curve (red, dashed
line). (c) Spatial profiles of different widths for two populations E (RE = 1 mm,
blue) and I (RI = 0.5 mm, red). (d) Effective profile: c(k) = wEp̂E(k) +wIp̂I(k).
(e) Transition curve ccrit

min(τ/dcrit) given by Equation 4.13 for Hopf bifurcation
indicating onset of delay-induced oscillations (appearing in purple region) with
time constant τ and delay d. (f) Transition curves for relative width ρ = RI/RE
and relative weight η = −wI/wE. Colored regions indicate which extremum,
the minimum cmin or the maximum cmax, has larger absolute value and if the
dominant one occurs at k = 0 or at k > 0. Purple (1): cmin appears at kmin > 0.
Light blue (2): cmin appears at kmin = 0. Dark gray (3): cmax appears at
kmax = 0. Green (4) cmax appears at kmax > 0. Reproduced from (Senk et al.,
2020a).
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To analyze stability of the stationary steady state u(x, t) = u0, we linearize the
system in the neighbourhood of the steady state u0: δu(t) = u(t) − u0. Without
loss of generality we assume ψ′(u0) = 1, as it can be compensated by rescaling the
coupling strength w. We apply the standard ansatz

δu(x, t) = eikxeλt, (4.4)

where the wave number k ∈ R is real and the temporal eigenvalue λ ∈ C is complex,
and arrive at the characteristic equation

(1 + τλ) eλd = c(k), (4.5)

with c(k) := m̂(k) := wp̂(k). For more details on the derivation see Equation 4.36.
The Fourier transform of the spatial profile p̂(k) is maximal at k = 0 with p̂(0) = 1
(see Eqs. 4.42 and 4.43). Figure 4.2(b) shows the effective profile derived from the
boxcar spatial profile for excitatory and inhibitory weights.
Next, we extend the model to a system of coupled excitatory (E) and inhibitory

(I) populations, assuming identical time constants τ and delays d. Then u becomes
a vector, u = (uE, uI)T , and the connectivity m(r) a matrix

M(r) =
(
wEE pEE(r) wEI pEI(r)
wIE pIE(r) wII pII(r)

)
. (4.6)

By applying the ansatz δu(x, t) = veikxeλt with a constant vector v, we arrive at an
auxiliary eigenvalue problem (see Equation 4.37) with the two solutions

c1,2(k) = 1
2
(
wEE p̂EE(k) + wII p̂II(k)±

√
D
)
, (4.7)

where the discriminant reads

D = (wEE p̂EE(k)− wII p̂II(k))2 + 4wEI p̂EI(k)wIE p̂IE(k). (4.8)

For further analysis we assume that the weights and the spatial profiles are inde-
pendent of the target population: wαE =: wE, wαI =: wI for α ∈ {E, I}. Equation 4.7
then reduces to c1(k) = wEp̂E(k) + wIp̂I(k) =: c(k) and c2 ≡ 0 for all k. Figure 4.2
illustrates the two spatial profiles of widths RE and RI (Figure 4.2(c)) and the
resulting effective profile (Figure 4.2(d)).
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To prove asymptotic stability of the homogeneous steady state u0, it is sufficient
to show that all eigenvalues λ determined by Equation 4.5 have negative real parts
(Veltz and Faugeras, 2011). The principle of linearized stability from (Veltz and
Faugeras, 2011) is applied rather heuristically in our work, as Veltz and Faugeras
(2011) performed their analysis rigorously on a ring (a bounded domain with pe-
riodic boundary conditions), while we consider an unbounded domain. The choice
of the unbounded domain leads to eigenvalues that depend continuously on the
wavenumber κ, while a system defined on a bounded domain has a discrete set of
eigenvalues. Since the eigenvalue λ varies only slowly with changing wave number
κ, this approximation will not influence the conditions for stability.
To solve the characteristic equation Equation 4.5, we employ the Lambert W

function defined implicitly by the equation z = W (z)eW (z) for z ∈ C (Corless et al.,
1996) as follows. The characteristic equation (Equation 4.5) can be transformed to
obtain

(1 + τλ)eλd = c(k) | · d
τ

e
d
τ(

dλ+ d

τ

)
edλ+ d

τ = c(k)d
τ

e
d
τ

dλ+ d

τ
= W

(
c(k)d

τ
e
d
τ

)
,

(4.9)

where in the last step the definition of the Lambert W function z = W (z)eW (z) with
z ∈ C was used. The Lambert W function has infinitely many branches, indexed
by b, that are equivalent (upon rescaling as demonstrated in Equation 4.9) to the
solutions of the characteristic equation Equation 4.5. The branch corresponding to
the eigenvalue with the largest real part is called the principle branch (b = 0), see
Eqs. 4.40–4.41 for a proof. To determine stability of the steady state u0, we thus
need to show whether the principle branch of the Lambert W function,

λb(k) = −1
τ

+ 1
d
Wb

(
c(k)d

τ
e
d
τ

)
. (4.10)

has a negative real part.
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4.2 Conditions for linearized stability in a
single-population model

As discussed in the previous section, the homogeneous steady state u0 is locally
asymptotically stable if all eigenvalues λb have negative real parts.

Re
[
Wb

(
c(k)d

τ
e
d
τ

)]
<
d

τ
, (4.11)

for all branches b of the Lambert W function. At the point where the real part
of the eigenvalue λ0 on the principle branch becomes positive, the system under-
goes a bifurcation. Let us denote the wavenumber corresponding to the bifurcation
point k = k∗, the maximum of c as cmax and the minimum as cmin occurring at
kmax and kmin, respectively, as indicated in Figure 4.2(b) and (d). For cmax = 1,
the homogeneous steady state becomes unstable by definition of the Lambert W
function,

W

(
d

τ
e
d
τ

)
= d

τ
,

as equality in Equation 4.11 then holds for any d > 0 and τ > 0. At this transition,
the imaginary part of λ0 is zero because the principal branch of the Lambert W
function has real values for positive real arguments. If the instability occurs at a
wavenumber k∗ = 0, then the transitions corresponds to the transition between the
asynchronous irregular (AI) state and the synchronous regular (SR) state without
any spatial structure. If this transition appears at a wavenumber k∗ > 0, it will give
rise to spatial patterns (Equation 4.4).

For a negative argument of W of less than −1/e, a complex-conjugate pair of
eigenvalues Equation 4.10 crosses the imaginary axis when the condition

Re
[
W0

(
cmin

d

τ
e
d
τ

)]
= d

τ
(4.12)

is fulfilled with cmin < −1, corresponding to a Hopf bifurcation of the temporal
dynamics, giving rise to temporal oscillations. Equation 4.12 then, according to
(Helias et al., 2013, Eq. 10), reduces to

dcrit

τ
=
π − arctan

(√
ccrit2

min − 1
)

√
ccrit2

min − 1
, (4.13)
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4.2 Conditions for linearized stability in a single-population model

homogeneous spatial oscillations temporal oscillations wave trains
cmax < 1 1 < 1 < 1
cmin > ccrit

min > ccrit
min ccrit

min ccrit
min

d < dcrit < dcrit dcrit dcrit

k∗ - > 0 0 > 0

Table 4.1: Conditions for the onset of spatial and temporal oscillations, and wave trains.
Gray cells in each column indicate the conditions required for the instability
causing the bifurcation. White cells denote the conditions for the respective other
bifurcation not to occur. Last row indicates whether the bifurcation happens for
zero or nonzero wave number k∗. Here dcrit and ccrit

min, as defined in Equation 4.13
and shown in Figure 4.2E, denote the critical delay and the minimum of the
effective profile on the transition curve for a Hopf bifurcation.

where dcrit is the critical delay and ccrit
min a critical minimum of the effective profile

for points on the transition curve. The system is stable for cmin > −1 for all de-
lays. For larger absolute values of cmin, the bifurcation point is given by the critical
value of the ratio between the time constant and the delay (Figure 4.2(e)). For
transitions at k∗ = 0, temporal oscillations emerge in which all neurons of the pop-
ulation oscillate in phase, corresponding to the transition from the AI regime to the
‘synchronous irregular fast (SI fast)’ (Brunel and Hakim, 1999). At transitions with
k∗ > 0, spatial and temporal oscillations give rise to so called ‘wave trains’ (Ermen-
trout, 1998, Section 8) or equivalently periodic travelling waves. If the homogeneous
steady state becomes unstable due to cmax = 1, the transition curve in Figure 4.2E
also provides a lower bound ccrit

min(τ/dcrit) above which temporal oscillations do not
occur prior to the transition due to cmax. The analysis presented in this chapter does
not distinguish between the super- and subcritical Hopf bifurcations, and therefore
does not guarantee the existence of an asymptotically stable limit cycle. It was,
however, observed in the corresponding network simulations presented in the sub-
sequent chapters. Table 4.1 summarizes the (necessary) conditions for asymptotic
stability, spatial and temporal oscillations and wave trains.

Finally, we observe that the absolute value of p̂ is strictly maximal at k = 0 (see
Eqs. 4.42–4.43). For a purely excitatory population (w > 0) the critical minimum
ccrit

min(τ/dcrit) cannot be reached while keeping the maximum cmax in the region of
stability as cmax > |cmin|. For a purely inhibitory population (w < 0), the condition
kmin > 0 is not fulfilled because cmin occurs at k = 0 as p̂ has its global maximum at
the origin. As a consequence, wave trains cannot occur in a system with only one
neural population.
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4.3 Conditions for linearized stability in a
two-population model

In this section we derive conditions analogous to Table 4.1 for a model with an ex-
citatory and an inhibitory population, assuming the boxcar spatial profile described
in Section 4.1. The effective profile from Equation 4.7 then takes the form

c(k) = wE
sin(REk)
REk

+ wI
sin(RIk)
RIk

. (4.14)

Since the stability properties of the homogeneous steady state in the case of an
excitatory-inhibitory model depend on the relative magnitudes of the minima and
maxima of the effective profile (Equation 4.14), it is convenient to introduce the
relative width ρ := RI/RE > 0 and the relative weight η := −wI/wE > 0. For
the sake of simplicity, it is then possible to divide Equation 4.14 by wE, rescale the
wavenumber κ = REk and introduce the dimensionless effective profile

c̃(κ) = sin(κ)
κ
− η sin(ρκ)

ρκ
. (4.15)

Figure 4.2(a)-(d) shows the different dynamical states together with the bifurca-
tion diagrams (e)-(g) where the respective regions of the parameter space can be
identified. The curves separating those regions are derived in detail in 4.9.5. Above
the dashed transition curve ηt1(ρ) given by Equation 4.50), the following inequality
is satisfied, ‖c̃min‖ > c̃max (regions 1 and 2), and holds with the opposite sign be-
low the dashed curve (regions 3 and 4). The solid transition curve ηt2(ρ) given by
Equation 4.53) indicates whether the extreme value with the largest absolute value
occurs at k = 0 (regions 2 and 3) or at k > 0 (regions 1 and 4). Hence, a wave train
will occur when the effective profile has a minimum at k∗ 6= 0 and a maximum lower
than 1 (Table 4.1). It is necessary that ρ < 1, i.e. that the reach of excitation is
wider than inhibition. Concretely, parameters of the model need to lie within the
region 1 of Figure 4.2(f).

4.4 Validation in a network of nonlinear rate
neurons

To validate the theoretically obtained results in a network simulation, we first con-
sider a network of NE = 4, 000 excitatory (E) and NI = 1, 000 inhibitory (I) rate

58



4.4 Validation in a network of nonlinear rate neurons

Figure 4.3: Predictions from linear stability analysis lead to spatiotemporal patterns in sim-
ulated network of nonlinear rate neurons. Different parameter combinations,
selected according to stability conditions in Table 4.1, cause pattern formation
in rate-neuron network with tanh gain function. (a)–(d) Color-coded activity per
neuron over time. Neurons are shown at their position on the ring. (e)–(g) Phase
diagrams showing conditions and parameter choices indicated by corresponding
markers. Purple regions indicate the possibility for wave trains. (e) Color code
indicates stability based on minimum cmin and maximum cmax. Gray: Both cmin
and cmax stable. Dirty yellow: cmax unstable and cmin stable. Dirty green: cmax
unstable and cmin undetermined. Purple: cmax stable and cmin undetermined.
(a) Stable activity (square marker). (b) Spatial oscillations (diamond marker).
(c) Temporal oscillations (circular marker). (d) Wave trains (star marker). Pa-
rameters: d, RE and RI as in Figure 4.1(a)–(d), wE = 2.73 in all panels.
(a) wI = −4.10. (b) wI = −3.42. (c) wI = −4.79. (d) wI = −3.42. Reproduced
from (Senk et al., 2020a).
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neurons described by a discrete version of the neural-field equation Equation 4.2
(see Table 4.3 for details). The neurons are distributed on a ring with perimeter
L = 1 mm as described in 4.9.9. Every neuron receives KX incoming connections
per source population X ∈ {E, I}. Connections are selected according to the boxcar-
shaped spatial profile, i.e. uniformly distributed with within an interval of width
RX . In order to give p the interpretation of connection probability, we normalized
the weights by the in-degree, w′X = wX/KX . The parameters τ and d are chosen as
in the neural-field model.

The behaviour of the simulated system agrees well with the theoretical predictions
In Figure 4.3(a), the homogeneous steady state is stable. Its parameter values,
indicated by a square marker in Figure 4.3(e)-(g), satisfy cmax < 1 (Figure 4.3(e))
and the delay is small enough to ensure stability.

In Figure 4.3(b), the homogeneous steady state loses stability due to cmax > 1, as
indicated by the diamond marker in Figure 4.3(e). Since the Hopf bifurcation curve
in Figure 4.3(f) was not crossed and kmax > 0 (Figure 4.3(g)), this parameter
combination satisfies the conditions for a stationary spatial pattern. Indeed, we
observed spatial oscillations in the network simulation with 4 cycles across the spatial
domain, matching the theoretical prediction of L · kmax/(2π) ≈ 3.74 mm−1.

Figure 4.3(c) shows a network state with temporal oscillations. The corresponding
parameter combination, indicated by the circular marker, falls into the region with
cmax < 1 and cmin < −1 (Figure 4.3(e)). The delay was chosen on the left from the
Hopf bifurcation curve in Figure 4.3(f). As indicated in Figure 4.3(g), the state
will be spatially homogeneous due to kmin = 0. The theoretical prediction of the
temporal frequency of Im[λmin]/(2π) ≈ 66.68 Hz well agrees with the outcome of the
simulation.

Figure 4.3(d) shows the last dynamical state – the wave trains denoted by a
star. In this case, the homogeneous steady state lost stability due to cmin < ccrit

min
(Figure 4.3(f)) with kmin > 0 (Figure 4.3(g)), while cmax remains in the region
of stability (Figure 4.3(e)). The propagation speed of the wave train can again by
theoretically predicted, Im[λmin]/(kmin) ≈ 0.04 mm/ms, with the temporal frequency
Im[λmin]/(2π) ≈ 121.01 Hz and the spatial frequency kmin/(2π) ≈ 3.02 mm−1. Also
in the case of wave trains we observed a good agreement with the theoretically
predicted behaviour and the outcome of the network simulation.
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4.5 Conditions for linearized stability in the spiking network model

4.5 Conditions for linearized stability in the spiking
network model

In order to create a link between the linearized dynamics of the neural-field model
and the simulated network of leaky-integrate-and-fire (LIF) neurons, we need to
derive a linear mean-field model that describes the population dynamics of the LIF
network. To that end, we linearize the system defining the dynamics of a LIF neuron
with exponentially decaying synaptic currents,

τm
dVi
dt = −Vi + Ii(t),

τs
dIi
dt = −Ii + τm

∑
j

Jijsj(t− d),
(4.16)

with the membrane potential Vi and the synaptic current Ii. We adopt the con-
vention of (Fourcaud-Trocmé and Brunel, 2005) and formulate the system in terms
of rescaled quantities, as explained in Equation 4.59. We assume that the synaptic
time constant τs is much smaller than the membrane time constant τm = RmCm,
with the membrane resistance Rm and membrane capacitance Cm. A spike train of
neuron j is given by the equation sj(t) =

∑
k δ
(
t− tjk

)
, Jij is the strength of the

synapse from neuron j to neuron i and d the transmission delay. A spike is emitted
whenever the membrane potential Vi reaches the threshold Vθ and the membrane
potential is then reset to the resting potential Vr, where is stays for the refractory
period τref .
Next, we approximate the firing of each neuron by a Poisson process (Brunel and

Hakim, 1999, Section 3.5), assume that spike trains of different neurons are not
correlated and the amplitudes of post-synaptic potentials small. A second-order
expansion as in (Ricciardi et al., 1999; Risken, 1996) yields the expressions for the
first and second order moments

µi(t) = τm
∑
j

Jij νj(t− d),

σ2
i (t) = τm

∑
j

J2
ij νj(t− d).

(4.17)

Under the assumption that neurons are uniformly distributed on the ring domain
with density ρx, we consider a continuum limit such that an element of volume dx
contains ρxdx neurons. The probability of a neuron at a position y being connected
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4 Framework for studying the generation of periodic travelling waves in spiking
neural networks

to a neuron at a position x is given by the same probability density function p̃(x−y)
for any two positions x, y, independently between different pairs of points. Then the
moments from Equation 4.17 can be rewritten as

µ(x, t) = τmJ

∫ ∞
−∞

p̃(x− y) ν(y, t− d) ρxdy,

σ2(x, t) = τmJ
2
∫ ∞
−∞

p̃(x− y) ν(y, t− d) ρxdy.
(4.18)

For the sake of convenience, we rescale the density function

p(x− y) = p̃(x− y)∫
p̃(x′) dx′ , (4.19)

and denote the in-degree (the number of incoming connections to a neuron)

K :=
∫
p̃
(
x′
)
ρx dx′. (4.20)

Let us denote the firing rate of a LIF neuron at position x at time t by

ν(x, t) = F [µ(x, ◦), σ(x, ◦)](t) (4.21)

and assume that it is driven by a white noise with mean µ(x, t) and variance σ2(x, t).
Then [µ(◦), σ(◦))](t) := 〈δ(t− tk)〉ξ, where tk are the time-points of the threshold
crossings of Equation 4.16 and ξ denotes realizations of the white noise with mo-
ments Equation 4.18. By plugging Equation 4.18 into Equation 4.21, we obtain the
evolution equation

ν(x, t) = F

[
τmJK

∫ ∞
−∞

p(x− y)Dd ν(y) dy, τmJ
2K

∫ ∞
−∞

p(x− y)Dd ν(y) dy
]
(t),

(4.22)
where the delay operator Dd is defined as [Ddν(x)](t) = ν(x, t − d). In order to
perform linearized stability analysis, we consider ν of the form

ν(x, t) = ν0 + δν(x, t), δν � ν0. (4.23)
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and by a Taylor expansion obtain

ν0 + δν(x, t) = F
[
µ0, σ

2
0

]
+
∫ ∞
−∞

p(x− y)
∫ t

−∞
hν(µ0, σ0, t− s) δν(y, s− d) ds dy +O

(
δν2

)
,

with

hν(µ0, σ0, t− s) = τmJK
δF
[
µ0, σ

2
0
]
(t)

δµ(s) + τmJ
2K

δF
[
µ0, σ

2
0
]
(t)

δσ2(s) ,

(4.24)

where µ0 = τmJKν0 and σ2
0 = τmJ

2Kν0 and the first terms on both sides cancel
due to ν0 = F

[
µ0, σ

2
0
]
. The stationary firing rate ν0 in the limit of short synaptic

time constants (τs � τm) can be determined self-consistently from this condition
(Fourcaud and Brunel, 2002; Helias et al., 2013, Eq. A.1),

ν−1
0 = τr + τm

√
π(F (yθ)− F (yr))

f(y) = ey2(1 + erf(y)), F (y) =
∫ y

f(y)dy

with y{θ,r} =
V{θ,r} − µ

σ
+ β

2

√
τs
τm
, β =

√
2
∣∣∣∣ζ(1

2

)∣∣∣∣,
(4.25)

where ζ denotes the Riemann’s zeta function (Abramowitz and Stegun, 1974). We
denote the functional derivatives by

hµ(t− s) ≡ δF
[
µ0, σ

2
0
]
(t)

δµ(s) ,

hσ2(t− s) ≡ δF
[
µ0, σ

2
0
]
(t)

δσ2(s) ,

(4.26)

These function can be expressed analytically (Eqs. 4.55–4.56) under first order ap-
proximation in O(

√
τs/τm) (Schuecker et al., 2015) and are therefore valid for suffi-

ciently short synaptic time constants. The resulting convolution equation describing
the linearized dynamics in the vicinity of the stationary state reads

δν(x, t) =
∫ ∞
−∞

p(x− y)
∫ t

−∞
hν(t− s) δν(y, s− d) dy ds, (4.27)

and can be directly compared to the neural-field model presented in Section 4.1.

For the subsequent analysis we assume that the contribution of the term hσ2 is
negligible.
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4.6 Parameter mapping between the models

To create a link between the linearized systems of the neural-field model and the
spiking model, we express the deviations from the steady state,

δo(x, t) =

δu(x, t) neural field

δν(x, t) spiking
(4.28)

as a convolution equation

δo(x, t) = [h ∗ δi](x, t)

δi(x, t) =
∫ ∞
−∞

p(x− y) δo(y, t− d) dy,
(4.29)

where the two models only differ in the convolution kernel,

h(t) :=

h
nf(t) := Θ(t) wτ e−

t
τ neural field

hs(t) := τmJK hµ(t) spiking.
(4.30)

Then also the characteristic equations for both systems can be derived simultane-
ously by plugging in the ansatz δo(x, t) = eikxeλt and take the form

H(λ) · e−λd · p̂(k) = 1. (4.31)

The effective transfer function H can be obtained as a Laplace transform of Equa-
tion 4.30 and in the case of a neural field model read

Hnf(λ) = 1
1 + λτ

w. (4.32)

The effective transfer function for the spiking model is given by Equations 4.55–4.56.

Despite having the same form, the characteristic equations of the two models
specified by Equation 4.31 with the respective transfer functions H may produce
qualitatively different sets of eigenvalues. To show that this is not the case, we follow
(Brunel et al., 2001; Lindner and Schimansky-Geier, 2001; Brunel et al., 2001; Helias
et al., 2013) and approximate the transfer function corresponding to the spiking
model by a low-pass filter with effective parameters H0 and τ ,

Hµ(λ) ≈ HLP(λ) = H0
1 + λτ

, (4.33)
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where Hµ is the Fourier transform of hµ defined in Equation 4.26 and the effective
parameters H0 and τ can be obtained numerically. This approximation creates a
mapping between the phenomenological parameters w and τ of the neural field model
and the lower-level parameters of the spiking model,

w = H0τmJK, (4.34)

which follows from the fact that
∫
hµ(t) = Hµ(0) ≈ H0.

4.7 Validation in a network of leaky-integrate and
fire neurons

To practically test our results, we simulate a network of LIF neurons with parameters
corresponding to those of the rate network presented earlier (Figure 4.3) via the
parameter mapping from Section 4.6. This results in a connectivity matrix

M(r) = τmJEKE

(
pE(r) −γg pI(r)
pE(r) −γg pI(r)

)
. (4.35)

with the relative in-degree γ = KI/KE and the relative synaptic strength g =
−JI/JE. The stability of the stationary state is again determined by the rela-
tive magnitudes of the minimum and the maximum of the effective profile c(k)
(Equation 4.14), this time with wE = H0τmJEKE and wI = −H0τmgJEγKE (Equa-
tion 4.34). The critical delay can also be derived from Equation 4.13.

Figure 4.4 illustrates different types of bifurcations in the spiking network. Figure
4.4(a) shows a transition from a stable (so called asynchronous irregular) state to
a spatial oscillation caused by an amplitude increase of the excitatory postsynaptic
current J ′E, where J

′ = CmJ/τs (see Equation 4.59 for an explanation of the rescal-
ing). The working point was kept fixed via increasing the amplitude of the external
Poisson drive. An increasing synaptic delay d may either lead to a transition to
temporal oscillation (Figure 4.4(b)) if instability occurs at k = 0, or to a wave train
(Figure 4.4(c)) for k > 0. The gradual shift across a wave train with a higher spatial
frequency to a wave train with a lower spatial frequency is caused by the competing
minimum and maximum of the effective profile, cmax and cmin. Panels (d)-(f) show
the respective states in different projections of the parameter space, with arrows
indicating an increase of the bifurcation parameter. Some markers in panels (d) and
(f) have fixed positions because they have no impact on the effective spatial profile.
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Figure 4.4: Transitions from theoretically stable states to spatiotemporal patterns in spiking
network simulation. (a)–(c) Spike rasters showing transition to network states in
Figure 4.1(b)–(d) (same markers, same parameter combinations). The changed
parameter value is given on top of each raster plot. (a) Increasing recurrent
weight J ′

E leads to onset of spatial oscillations. (b) Increasing synaptic delay d
leads to onset of temporal oscillations at k = 0. (c) Increasing delay d leads to
onset of temporal oscillations at k > 0, i.e., wave trains. (d)–(e) Gray shaded
markers and white arrows labeled according to respective panel (a)-(c) in phase
diagrams indicate sequences of parameter combinations and breakdown of sta-
bility at cmax = 1 or at cmin = ccrit

min. For each sequence in panels (a)–(c),
delay d, excitatory profile width RE, inhibitory profile width RI, and the rel-
ative synaptic strength g correspond to the values given in Figure 4.1(b)–(d)
with corresponding markers. Reproduced from (Senk et al., 2020a).
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4.8 Discussion

In this chapter we presented a method that can be used to transfer knowledge about
pattern formation in high-level neural field models to a simulation of a spiking neural
network and vice versa. Such a link between models at different levels of description
is important for testing generality of results and for understanding the mechanisms
that underlie them.

Moreover, we derived conditions for the emergence of wave trains in both models.
Using linear stability analysis, we found regions in the parameter space where the
dynamical systems converge to solutions of the same topological nature: a stationary
state (in the context of neural networks corresponding to an asynchronous irregular
regime), temporal oscillations, spatial oscillations or wave trains (periodic travelling
waves) of activity. The propagation speed of the waves trains in the example model
(0.04 mm/ms) was comparable to experimentally observed speeds on the mesoscopic
scale (Girard et al., 2001; Muller et al., 2018). Our analysis also showed that, under
the assumptions of the model, the emergence of wave trains requires a two-population
model and broader excitation than inhibition, observed for instance in the primary
auditory cortex (Sun et al., 2013). The resulting criteria for parameters of the
dynamical system, particularly the delay and the characteristics of the effective
spatial connectivity profile, can be applied both in the neural field model and the
spiking neural network thanks to the established mapping.

The presented mapping between two models of neural activity at different levels of
description facilitates transfer of knowledge between two subfields of computational
neuroscience: neural field models, extensively studied by mathematically inclined
neuroscientists, and simulations of spiking networks, used more often to reproduce
results of concrete electrophysiological experiments. In particular, the framework
offers a dimensionality reduction that can assist mathematical analysis of network
models on one hand, and data integration into high-level mathematical models on
the other. The analysis presented in this chapter could be extended in several
ways, e.g. to a two-dimensional spatial domain, spatial profiles with different shapes
or a distance-dependent delay representing the axonal delay. Extensions to other
neuron models are possible, provided the transfer function resembles a first-order
low-pass filter, such as the exponential leaky-integrate-and-fire neuron (Fermani and
Richardson, 2015), leaky-integrate-and-fire neurons with alpha-shaped synaptic cur-
rents (Nordlie et al., 2010) or models with conductance-based synapses (Heiberg
et al., 2013).
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Neural field models are often defined using the effective spatial profile as a start-
ing point (Hutt et al., 2003; Atay and Hutt, 2005; Coombes, 2005; Roxin et al.,
2005). Typical examples of such effective spatial profiles are the Mexican hat or
the inverse Mexican hat connectivity. Due to not separating the excitatory and
inhibitory populations explicitly, certain biological features such as the Dale’s law
(Eccles et al., 1954) cannot be accounted for and the underlying assumptions on
the corresponding neural network are not apparent. As an example, several neural
field models describing a single homogeneous population defined using the effective
spatial profile produce wave trains (Roxin et al., 2005; Atay and Hutt, 2006; Venkov
et al., 2007). We have shown in this chapter that wave-train generation in a model
with only one neural population requires the synaptic weight to depend on distance.
Neural activity, whether spontaneous or evoked, typically varies over time and

changes on a faster time scale than anatomical connectivity. It is therefore impor-
tant for biological relevance of our results that wave trains can emerge without any
changes in the network structure. This property is achieved due to the dependence
of the transfer function on the working point, particularly on the mean and the
variance of its input. Hence, changes in the network activity, e.g. due to external
input, may bring the network to a different dynamical regime and potentially give
rise to wave trains or other spatio-temporal patterns. Furthermore, spatially local-
ized external input may act as a gating mechanism controlling the spatial spread of
the waves.
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4.9 Methods

In this section we collect detailed calculations that were omitted in the main text
for brevity.

4.9.1 Derivation of the characteristic equation

The characteristic equation in Equation 4.5 is derived by linearizing Equation 4.2
and plugging in the ansatz δu(x, t) = eikxeλt. Then

τλ eikxeλt = −eikxeλt +
∫ ∞
−∞

wp(x− y)eikyeλ(t−d) dy

τλ = −1 + we−λd
∫ ∞
−∞

p(x− y)e−ik(x−y) dy

= −1− we−λd
∫ −∞
∞

p(r)e−ikr dr, r = x− y

= −1 + we−λd
∫ ∞
−∞

p(r)e−ikr dr︸ ︷︷ ︸
≡p̂(k)

,

(4.36)

where p̂ is the Fourier transform of the spatial profile p.

4.9.2 Effective connectivity profile for a two-population
model

In the case of a two-population model, the characteristic equation is derived analo-
gously to the one population case. The ansatz δu(x, t) = veikxeλt, with v denoting
a vector, leads to

c(k) v = M̂(k) v, (4.37)

with an eigenvalue c and an auxiliary matrix M̂ derived from the connectivity matrix
M by the Fourier transform,

M̂(k) =
(
wEE p̂EE(k) wEI p̂EI(k)
wIE p̂IE(k) wII p̂II(k)

)
. (4.38)

There exists a non-trivial solution v of Equation 4.37 if and only if

det
(
M̂(k)− c(k)I

)
= 0.
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The resulting eigenvalues c1,2, given by Equation 4.7, define the effective profile in
the characteristic equation in Equation 4.5.

4.9.3 The principle branch of Lambert W function determines
stability

To be able to practically use the Lambert W function to determine stability of the
stationary state, one has to show that the eigenvalue with the largest real part is
given by its particular branch. The function x(W ) = W eW has a minimum at
W = −1, no real solution for x < −e−1, one real solution for x > 0, and two
solutions for x ∈ [−e−1, 0). The branch defined on the interval [−e−1,∞) is called
the principle branch (for negative arguments the largest solution is considered). The
definition of the principle branch is then extended to the real line by the maximal
real part and positive imaginary part of the complex eigenvalues on (−∞,−e−1).
Here we show that the branch of the Lambert W function with the largest real

part is the principal branch. Assuming x ∈ R, we write W (x) = |W (x)|eiϕ = α+ iβ

and

W (x)eW (x) = |W (x)| eα ei(ϕ+β) = x ∈ R (4.39)

→ ei(ϕ+β) = ±1, (4.40)

where ϕ ∈ [−π, π] is the principal value. The branches are indexed by q ∈ Z
according to the number of half-cycles of the exponential in Equation 4.40: ϕ+β =
q · π. The branch number can be written as b =

⌊ q
2
⌋
with the floor function b·c.

Then the principle branch has the index q = 0 for x ≥ 0 and q = 1 for x < 0.
Taking the absolute square of Equation 4.39, we obtain

x2 e−2α = α2 + β2. (4.41)

Without loss of generality, we assume β ≥ 0; this assumption holds for the real
solutions with β = 0 and for one of the complex solutions. Complex solutions come
in conjugate pairs due to the symmetry (ϕ, β)→ (−ϕ,−β) and we consider the one
with positive imaginary part β > 0, as only the real part determines the stability
properties.
To prove that the real part α of W is maximal for b = 0, we first show that α is a

decreasing function of β along the solutions of Equation 4.39. The left hand-side of
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Equation 4.41 is a decaying function of α with the intercept x2. The right hand-side
is a parabola with the offset β2. For x ∈ (−∞,−e−1) ∪ [0,∞), an intersection can
be attained either at a positive real part α ≥ 0 if x2 ≥ β2, or at a negative real part
α < 0 if x2 < β2. If we increase β, the parabola defined by the right hand-side moves
the up and the intersection to the left, meaning that α decreases with increasing β.
For x ∈ [−e−1, 0), either β = 0 or β > 0, but in both cases the solutions have

negative real parts α < 0. There are in total three intersections: two correspond
to the real solutions (q = ±1) and the third intersection is created by taking the
square of Equation 4.41, but does not solve Equation 4.39. The intersection with a
larger real part corresponds to the principal branch (q = 1). Moreover, the complex
solutions are indexed by odd numbers q with |q| > 1. Taking into account the
interval where ϕ is defined, the imaginary part is bounded from below such that
β ≥ 2π for non-principal branches. Analogically, there exists only one intersection
between the exponential function and the parabola for large values of β for which α
decreases with increasing β.
In summary, the eigenvalues with the maximal real part are determined by the

principle branch of the Lambert W function.

4.9.4 Properties of the spatial profile

The spatial profile p is defined as a symmetric probability density function. Then it
follows that its Fourier transform p̂ is real valued and even, p̂ ∈ (−1, 1] and p̂ attains
1 only at the origin:

• |p̂(k)| ≤ 1 for all k ∈ R:

|p̂(k)| =
∣∣∣∣∫ ∞
−∞

p(r)e−ikr dr
∣∣∣∣ ≤ ∫ ∞

−∞

∣∣∣p(r)e−ikr∣∣∣ dr
=
∫ ∞
−∞

p(r) dr = 1 for all k ∈ R,
(4.42)

• |p̂(k)| < 1 for all k 6= 0:

∣∣∣∣∫ ∞
−∞

p(r)e−ikrdr
∣∣∣∣ ≤ ∫ ∞

−∞
p(r)|cos(kr)| dr

<

∫ ∞
−∞

p(r) dr = 1 for all k 6= 0,
(4.43)

because |cos(kr)| < 1 almost everywhere (except for a set of measure zero in r if
k 6= 0) which has no effect on the value of the integral.
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Figure 4.5: Graphical analysis for extrema of reduced profile for derivation of transition
curves. (a) The condition for the extremum (Equation 4.45) amounts to the
addition of two vectors in the complex plane whose sum is purely imaginary. The
vectors have lengths a1 and a2 and angles φ1 and φ2, defined in Equation 4.46.
(b) Diagram of Figure 4.2(f) with indicated parameter combinations (ρ, η) as
used in panels (c) and (d). (c)–(d) Reduced profile c̃ (top) and φ1 and φ±

1 from
Equation 4.47 vs. κ (bottom) for two different combinations of (ρ, η) with line
colors corresponding to regions in panel (b). (c) |c̃min| > c̃max in purple and
vice versa in dark gray. (d) c̃min at κ = 0 in light blue and at κ > 0 in purple.
Reproduced from (Senk et al., 2020a).
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4.9.5 Bifurcation diagram for the reduced spatial profile

Using a graphical approach, we derive the transition curves from the bifurcation
diagram in Figure 4.2(f). Equation 4.15 for the reduced profile c̃(κ) at κ∗ yields

∂
∂κ c̃(κ)|κ∗ = 0. ,

where the derivative can be written as

∂

∂κ
c̃(κ) = cos(κ)

κ
− sin(κ)

κ2 − η cos(ρκ)
κ

+ η
sin(ρκ)
ρκ2 . (4.44)

Hence, we obtain

0 = Re
[
(κ+ i)eiκ − η

r
(ρκ+ i)eiρκ

]
= Re

[
a1eiφ1 + a2eiφ2

]
= a1 cos(φ1) + a2 cos(φ2),

(4.45)

where a1 and a2 are the absolute values of the complex numbers and φ1 and φ2 their
phases, given by

a1(κ) =
√

1 + κ2,

φ1(κ) = κ+ π

2 − arctan(κ),

a2(κ; ρ, γ) = η

ρ

√
1 + ρ2κ2,

φ2(κ; ρ) = ρκ+ 3π
2 − arctan(ρκ).

(4.46)

Figure 4.5(a) shows an example solution for the case a1 < a2 in the complex plane.
As illustrated in Figure 4.5(a), we express φ1 as

φ±1 = π ± arccos
(
a2
a1

cos(φ2)
)
. (4.47)

The extrema are then determined by the intersections of φ±1 with κ+π/2−arctan(κ)
(see Equation 4.46) and φ2 is determined from Equation 4.45.
The calculation is illustrated in Figure 4.5(a). Figure 4.5(b) essentially repro-

duces Figure 4.2(f), with the white bars connecting points given by parameter
combinations (ρ, η) on both sides of the transition curves, and the parameters are
specified in panels (c) and (d). The first transition curve ηt1(ρ) (dashed line in Figure
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4.5(b)) is given by c̃max(κmax) = |c̃min(κmin)|. In other words, the first transition
curve is determined by such a combination (ρ, η) for which the absolute values of the
positive and the negative extremum of the profile coincide. The top panel of Figure
4.5(c) compares two reduced profiles with a fixed ρ and two values of η (the cross
indicates the maximum absolute value of the profile). At the transition either κmax

or κmin vanishes. From Equation 4.15 we then deduce |c̃(κ0)| = |c̃(κ1)| = |1− η|.
From the condition ∂

∂κ c̃(κ)|κ1 = 0 and Equation 4.44 we obtain two equations for
κ = κ1:

1− η = sin(κ)
κ
− η sin(ρκ)

ρκ

1− η = cos(κ)− η cos(ρκ).
(4.48)

Consequently,

1
κ

sin(κ)[1 + cos(ρκ)]− 1
ρκ

sin(ρκ)[1 + cos(κ)] + cos(ρκ)− cos(κ) = 0, (4.49)

which defines κ(ρ) for each fixed ρ. The bottom panel of Figure 4.5(c) shows φ1

from Equation 4.46 as a black line and φ±1 from Equation 4.47 for the parameters
of the two effective profiles. This results in an interval for κ in which Equation 4.49
is solved at an extreme value of the profile, κ ∈ (0, 4.49341), with the lower limit
corresponding to φ1 = π

2 and the upper limit to φ1 = 3π
2 . The transition curve is

then given by
ηt1(ρ) = 1 + cos(κ(ρ))

1 + cos(ρκ(ρ)) , (4.50)

where κ(ρ) is determined by Equation 4.49.

The solid transition curve ηt2(ρ) in Figure 4.5(b) separates the region in the
parameter space where the extremum with the largest absolute value is attained at
κ = 0 and κ > 0. In Figure 4.5(d) the profiles for two different values of ρ and fixed
η are shown. The bottom panel of Figure 4.5(d) indicates that this transition occurs
when φ−1 at κ & 0 crosses φ1 (black) from above (light blue) to below (purple).

In the neighbourhood of the bifurcation, φ1 as a function of κ can be expanded,

φ1(κ) ≈ π

2 + κ3

3 +O
(
κ5
)

(4.51)

φ−1 (κ; ρ, η) ≈ π

2 + ηρκ3

3 +O
(
(ρκ)5

)
. (4.52)
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By comparing the coefficients of the third-order polynomials we obtain the transition
curve

ηt2(ρ) = 1
ρ2 . (4.53)

4.9.6 The transfer function of the spiking model

The linearization of the spiking model requires a transfer function Hµ that describes
the linear response of the firing rate δν(ω) to changes in the input statistics, partic-
ularly the mean δµ(ω),

δν(ω) = Hµ(ω) δµ(ω) + o(δµ2).

In this chapter we present the results derived originally in (Schuecker et al., 2015,
Eq. 29). The transfer function reads

Hµ(ω) = HG(ω) 1
1 + iωτs

. (4.54)

with

HG(ω) =
ν0
√

2
σ

1 + iωτm

Φ′ω|xr
xθ

Φω|xr
xθ

, (4.55)

for the oscillation frequency ω and the boundaries x{r,θ} =
√

2y{θ,r}. The first order
low-pass filter on the right hand-side of Equation 4.54 comes from the exponential
time course of the current-based synapses. The function Φω(x) = e

1
4x

2
U
(
iωτm − 1

2 , x
)

is defined by parabolic cylinder functions U (Abramowitz and Stegun, 1974; Lindner
and Schimansky-Geier, 2001) and Φ′ω = ∂xΦω. Φω|xr

xθ is a short-hand notation for
Φω(xr) − Φω(xθ). The function hµ from (Schuecker et al., 2015, Eq. 29) is then
obtained as an inverse Fourier transform of Hµ,

hµ(t) = F−1[Hµ](t)

Hµ(λ) = L[hµ](λ).
(4.56)

Equation 4.56 implies iω → λ in Equation 4.55. The transfer function can also
depend on the variance of the input,

Hσ2(ω) = 1
σ2

ν0
2 + iω

Φ′′ω|xr
xθ

Φω|xr
xθ

.

In the current work we assumed that the contribution of Hσ2 is small and can be
neglected.
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4.9.7 Fixing the working point

Linearized stability analysis can only be done in the vicinity of a given steady state.
To fix the working point of the spiking model, we assume a constant mean µ∗ and
variance σ∗ of the input. Moreover, external excitatory and inhibitory input with
Poisson-distributed interspike intervals is added to the recurrent input,

µ∗ = µ+ τmJ(νE,ext − gνI,ext)

σ∗ = σ + τmJ
2
(
νE,ext + g2νI,ext

)
.

(4.57)

with the excitatory and inhibitory connection strengths J and −gJ , respectively,
and

νE,ext = σ̃2 + gµ̃

1 + g
and νI,ext

σ̃2 − µ̃
g(1 + g) (4.58)

with µ̃ = µ∗ − µ
τmJ

and σ̃2 = (σ∗)2 − σ2

τmJ2 .

4.9.8 Physical units

In order to simplify the calculations, we rescaled the equations that describe the
sub-threshold dynamics of the LIF neuron (Equation 4.16), where the quantities V ,
J and I all have the unit Volt. Let us denote the original electric currents in the unit
Ampere by I ′ and J ′ . Then the relation between the original and rescaled quantities
is given by

τm
∂V

′
i

∂t
= −

(
V
′
i − EL

)
+RmI

′
i(t)

τs
∂I
′
i

∂t
= −I ′i + τs

∑
j

J
′
ijsj(t− d).

(4.59)

The threshold and reset potential are then expressed as V ′θ = Vθ + EL and V ′r =
Vr +EL, respectively, with the reversal potential EL. The membrane time constant
is defined using the membrane resistance Rm and capacitance Cm, τm = RmCm The
total current input reads I ′ = I/Rm and the synaptic weight amplitude J ′ = CmJ/τs.

4.9.9 Network simulation

The network simulation was written using the simulator NEST (Gewaltig and Dies-
mann, 2007; Hahne et al., 2017). The parameters for both neuron models and
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Model summary
Populations Excitatory (E), inhibitory (I)
Topology Ring network: Neurons positioned equally spaced on one-

dimensional domain of length L; periodic boundary con-
ditions

Connectivity Random convergent connections with fixed in-degree,
distance-dependent boxcar-shaped spatial profiles real-
ized with cut-off masks

Spiking model
Neuron model Leaky integrate-and-fire (LIF), fixed threshold, absolute

refractory time
Synapse model Static weights and delays, exponentially shaped postsy-

naptic currents
Input Independent fixed-rate Poisson spike trains to all neurons

(excitatory and inhibitory Poisson sources)
Measurement Spike activity

Rate model
Neuron model Rate neuron with tanh gain function
Synapse model Delayed rate connection
Input -
Measurement Activity

Table 4.2: Summary of network models following the guidelines of Nordlie et al. (Nordlie
et al., 2009). Separation between nonlinear spiking and rate neurons as used in
NEST simulations. Reproduced from (Senk et al., 2020a).
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Network models
Distance-
dependent
connectivity

Neural units j ∈ X at location xj and i ∈ Y at xi in pre-
and postsynaptic populations X and Y , respectively.
Displacement between units i and j:

rij = xi − xj

Boxcar-shaped spatial profile with width R and Heaviside
function Θ:

p(rij) = 1
2RΘ(R− |rij |)

Spiking model
Subthreshold
dynamics

If t > t∗ + τref

dV
dt = −V−EL

τm
+ Isyn(t)

Cm

Isyn(t) =
∑
j JjIPSC

(
t− t∗j − d

)
with connection strength Jj , presynaptic spike time
t∗j and conduction delay d

IPSC(t) = e−t/τsΘ(t) with Heaviside function Θ

else

V (t) = Vr

Spiking If V (t−) < Vθ ∧ V (t+) ≥ Vθ

1. set t∗ = t

2. emit spike with timestamp t∗

3. reset V (t) = Vr

Rate model
Differential
equation

τ ∂u∂t (t) = −u(t) +
∑
j=1wjψ(uj(t− d)) with the nonlin-

earity ψ(u) = tanh(u)

Table 4.3: Description of network models. Separation between nonlinear spiking and rate
neurons as used in NEST simulations. Reproduced from (Senk et al., 2020a).
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A: Global simulation parameters
Symbol Value Description
Tsim 450 ms Simulation duration
Ttrans 250 ms Start-up transient
dt 0.1 ms Temporal resolution
B: Populations and external input
Symbol Value Description
NE 4, 000 Population size of excitatory neurons
NI 1, 000 Population size of inhibitory neurons
L 1 mm Domain length

Spiking model
µ∗ 10 mV Mean input relative to resting potential
σ∗ 10 mV Variance of input relative to resting potential
νE,ext 96, 463 Hz � Excitatory external rate (by fixing working

point)
νI,ext 15, 958 Hz � Inhibitory external rate (by fixing working

point)
C: Connection parameters
Symbol Value Description
RE 0.2 mm � Profile width of excitatory neurons
RI 0.07 mm � Profile width of inhibitory neurons
d 3 ms � Delay

Spiking model
KE 400 In-degree from excitatory neurons
γ 0.25 Relative in-degree, γ = KI/KE
J
′
E 87.8 pA � Reference synaptic strength
g 5 � Relative synaptic strength, g = −JI/JE

Rate model
wE 2.73 � Excitatory weight (by parameter mapping)
wI −3.42 � Inhibitory weight (by parameter mapping)
D: Neuron model
Symbol Value Description

Spiking model
Cm 250 pF Membrane capacitance
τm 5 ms Membrane time constant
EL −65 mV Resting potential
Vθ −50 mV Firing threshold
Vr −65 mV Reset potential
τref 0 ms Absolute refractory period
τs 0.5 ms Postsynaptic current time constant

Rate model
τ 1.94 ms Time constant (by parameter mapping)

Table 4.4: Simulation and network parameters. Parameters according to setting for wave
trains as shown in Figure 4.1(d), Figure 4.3(d) and Figure 4.4(c) (black star
marker). Deviant parameters are given in the captions of the respective figures
and indicated by different markers. Reproduced from (Senk et al., 2020a). 79
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network connectivity are given in Tables 4.2 and 4.3. The specific parameters used
to generate wave trains in the simulations are presented in Table 4.4. Other network
states were obtained with parameters marked by � in Table 4.4 and specified in
the figure captions.
Neurons were positioned on a ring with perimeter L and spacing ∆x = L/NI.

The excitatory and inhibitory population sizes NE and NI were related as NE = 4NI

(Braitenberg, 2001), so on each position on the grid there is one inhibitory neuron
and four excitatory neurons. The activity in Figs. 4.1, 4.3 and 4.4 was plotted
for all inhibitory neurons and one excitatory neuron at each position. Connec-
tions between neurons were created using the NEST Topology module as random,
distance-dependent and periodic at the boundary. The probability that two neurons
are connected was 0.1 and the number of incoming connections to a neuron was fixed
to K{E,I} = 0.1 · (NE +NI). The spatial profile R{E,I} is defined for each presynaptic
population as a distance-dependent boxcar function, leading to a uniform connection
probability within R{E,I} from the postsynaptic neuron. A neuron can be connected
to another one multiple times, but not to oneself. In each realization, a neuron may
be connected to more neurons on the left than on the right or vice versa, leading
to small drifts in the spatial pattern visible in Figure 4.3(b). Such drifts disappear
when symmetric connectivity scheme is required (Senk et al., 2020a).
For the spiking neuron model, the leaky integrate-and-fire model with exponen-

tial postsynaptic currents was chosen (called iaf_psc_exp in the NEST simulator).
Neurons receive both excitatory and inhibitory external input created by a Pois-
son generator with rates ν{E,I},ext determined based on Equation 4.58 for fixing the
working point (µ, σ). The rate neuron model was chosen as the NEST tanh_ipn

with a hyperbolic gain function and the variance of the input set to zero. Simulation
plots omit the initial period of Ttrans.

4.9.10 Software and implementation

All simulations were implemented in the NEST simulator v2.18.0 (Jordan et al.,
2019) with Python v3.6.9. Analysis of the results was written in Python, using
the packages NumPy v1.16.4, SciPy v1.2.1, and Matplotlib v3.0.2. The python
code that was used to produce the results and figures contained in the manuscript
is available at Zenodo (Senk et al., 2020b). The core functions are also avail-
able as part of the Python package LIF Meanfield Tools (https://github.com/INM-
6/lif_meanfield_tools), v0.2 and higher (Layer et al., 2020).
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5 Discussion

In Chapter 2, we demonstrated that a brief continuous optical stimulation of MSDB
VGluT2 neurons initiated locomotion accompanied by the hippocampal theta oscil-
lation. The role of the VGluT2 neurons was previously attributed to providing tonic
excitatory input to the MSDB PV subpopulation that in turn generates the theta
rhythm (Robinson et al., 2016; Kocsis et al., 2021). Our results are in agreement
with this hypothesis and identify a possible mechanism how the tonic excitation is
generated. In particular, we observed robust persistent firing in a MSDB subpop-
ulation upon a brief continuous light stimulation of MSDB VGluT2 neurons, that
might be necessary for the theta generation. We provided evidence supporting the
hypothesis that the persistent firing is generated intrinsically by the MSDB VG-
luT2 neurons. Furthermore, we showed that optogenetic activation of the MSDB
VGluT2 neurons by a brief continuous pulse is sufficient to induce locomotion, in-
dependently of the synaptic connectivity within the MSDB. As the hippocampal
theta oscillation was abolished by blocking synaptic transmission within the MSDB,
the motor-generating circuit is distinct from the theta generating circuit and, in
particular the hippocampal theta oscillation is not a prerequisite for locomotion.
However, many questions still remain to be answered. Firstly, our results support
the hypothesis that the observed persistent firing is generated intrinsically by the
MSDB VGluT2 neurons, but the exact mechanism still remains to be identified. In
particular, we could not completely exclude the possibility that other cell types than
VGluT2 take part in the persistent firing due to the activation of metabotropic glu-
tamate receptors. Secondly, identifying the septo-fugal axonal projections of MSDB
cells that produce persistent firing would yield better understanding of the func-
tional role that the persistent firing plays for both the hippocampal theta oscillation
and locomotion.
The analysis of MSDB neural activity in relation to locomotion resulted in an

additional prospective direction of research. We noticed a pronounced beta power
(15-30 Hz) in the MSDB extracellular potential that was strongly temporally cor-
related with locomotion (Figure 5.1A). The beta power was also triggered by a
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brief continuous optical stimulation (Figure 5.1B). This effect was strongest in the
first recording session and faded away in the following sessions (Figure 5.1C). In
the first recording session, the difference between the average beta power at rest
versus locomotion, both voluntary and stimulus-induced, was very prominent (Fig-
ures 5.1D,E). We didn’t observe any locomotion-related modulation of the MSDB
beta power after blocking synaptic transmission (Figures 5.1F-H). Furthermore, in
1 out of 19 acute MSDB slice preparations, a clear beta power increase was detected
in the local-field potential in response to a brief continuous optical stimulation of
the MSDB VGluT2 neurons (Figure 5.2). Our results are consistent with the
previously observed learning-dependent modulation of the beta power in the basal
forebrain (Quinn et al., 2010). Tingley et al. (2018) related beta power modulation
in the basal forebrain to variations in experience and performance-related cognitive
processing. Additional experiments will be necessary to assess the mechanism of
generation and the functional role of the MSDB beta power modulation.

In Chapter 3 we further explored the possible mechanisms of MSDB theta genera-
tion by analyzing spontaneous spiking activity in an acute MSDB slice preparation.
We found significant cross-correlations between MSDB units in the theta frequency
range, irrespective of their distance. Blocking synaptic transmission led to even
more regular spiking of individual units and although less prominent, theta-band
cross-correlations between units even at long distances were still present. These re-
sults provide further support for the view formulated by Kocsis et al. (2021) that the
MSDB neurons intrinsically produce regular firing in the theta frequency range, and
the main role of the synaptic network is to synchronize them. Moreover, our results
suggest that other mechanisms such as gap junctions further support the synchro-
nization. An additional experiment will be needed to confirm this hypothesis and
to describe how the theta-rhythmic firing is generated on the cellular level.

Another open question is how the spatio-temporal organization of the hippocam-
pal theta activity emerges. To better understand the role of the MSDB in the gen-
eration of the hippocampal wave train, it would be neccessary to map the MSDB
input to the hippocampus, e.g. by two-photon imaging of the septo-hippocampal
axons. Possible mechanisms how the MSDB might contribute to a phase-offset of
the theta oscillation between different hippocampal sites include localized input to a
certain hippocampal site from which the wave train spreads, or spatially organized
projections from different MSDB subpopulations with a phase offset (Borhegyi et al.,
2004).
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Figure 5.1: MSDB beta power modulation during locomotion. A. Single-trial exam-
ple of locomotion speed (upper panel), average beta power in the MSDB local-
field potential (middle panel) and the corresponding spectrogram (lower panel).
B. Trial-averaged power in the beta frequency band. Gray region marks the
period of continuous light stimulation of the MSDB VGluT2 neurons. C. Beta
power averaged across trials within each recording session. Traces correspond
to rest, spontaneous running and stimulus-induced running. D. Trial-averaged
power-spectral density with 2 seconds before (pre) and 2 seconds after (post)
the stimulus. E. Mean beta power across trials during rest, spontaneous and
stimulus-induced running. F.-H. As A,D,E respectively with blocked synaptic
transmission in the MSDB.
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5 Discussion

Figure 5.2: Stimulus-induced beta oscillation in a MSDB slice preparation. Single
trial example of stimulus-induced beta oscillations in two representative channels
recorded from an acute MSDB slice preparation. MSDB VGluT2 neurons were
stimulated with a 1s continuous light pulse (see Section 2.5 for details). Stimulus
period is marked by the gray region, resp. dashed line. Mean beta power in
the interval 15-35 Hz (upper row), single-unit instantaneous firing rate (middle
row, bin size 200ms) and a spectrogram of the local-field potential (bottom row,
frequency resolution 2 Hz).
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In Chapter 4, a systematic mapping between a spatially-resolved model of a spik-
ing neural network and the corresponding population neural field model was derived.
This parameter mapping constitutes a tool for the transfer of results obtained from
the population neural field model to a spiking neural network model. Concretely,
we provided conditions for parameters of the spiking neural network that produce
temporal oscillations, spatial patterns or travelling waves. Conversely, the mapping
can be used to define the parameters of the neural field model based on experi-
mental results. The presented method also has an important didactical value, as it
intuitively explains the meaning of the parameters in the neural field model. The
practical value of the parameter mapping is limited by the underlying assumptions
such as homogeneity of the network and the leaky-integrate-and-fire neuron model
with exponential synapses. Extending the framework to existing more complex mod-
els of cortical processing, for instance by including other neuron and synapse types,
would be of great value. Relatively straightforward extensions of the framework are
the generalization to a two-dimensional spatial domain, including more realistic con-
nectivity profiles or multiple neural populations. Last but not least, the framework
will only gain its full value when it is applied to a concrete biological problem and
generates predictions that can be experimentally tested.
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