
Information
Band / Volume 82
ISBN 978-3-95806-641-0

Information
Band / Volume 82
ISBN 978-3-95806-641-0

Denoising with Quantum Machine Learning
Joséphine Pazem



Schriften des Forschungszentrums Jülich
Reihe Information / Information Band / Volume 82





Forschungszentrum Jülich GmbH
Peter Grünberg Institut (PGI)
Theoretische Nanoelektronik (PGI-2/IAS-3)

Denoising with Quantum Machine Learning

Joséphine Pazem

Schriften des Forschungszentrums Jülich
Reihe Information / Information Band / Volume 82

ISSN 1866-1777  ISBN 978-3-95806-641-0



Bibliografische Information der Deutschen Nationalbibliothek. 
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der 
Deutschen Nationalbibliografie; detaillierte Bibliografische Daten 
sind im Internet über http://dnb.d-nb.de abrufbar.

Herausgeber Forschungszentrum Jülich GmbH
und Vertrieb: Zentralbibliothek, Verlag
 52425 Jülich
 Tel.:  +49 2461 61-5368
 Fax:  +49 2461 61-6103
 zb-publikation@fz-juelich.de
 www.fz-juelich.de/zb
 
Umschlaggestaltung: Grafische Medien, Forschungszentrum Jülich GmbH

Druck: Grafische Medien, Forschungszentrum Jülich GmbH

Copyright: Forschungszentrum Jülich 2022

Schriften des Forschungszentrums Jülich
Reihe Information / Information, Band / Volume 82

D 82 (Master RWTH Aachen University, 2022)

ISSN 1866-1777
ISBN 978-3-95806-641-0

Vollständig frei verfügbar über das Publikationsportal des Forschungszentrums Jülich (JuSER)
unter www.fz-juelich.de/zb/openaccess.

 This is an Open Access publication distributed under the terms of the Creative Commons Attribution License 4.0,  
 which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://creativecommons.org/licenses/by/4.0/


Ich versichere, dass ich die Arbeit selbstständig verfasst und keine anderen als die
angegebenen Quellen und Hilfsmittel benutzt sowie Zitate kenntlich gemacht habe.

Aachen, den

f.heidbuechel
Durchstreichen





Aknowledgements

I would like to warmly thank my supervisor, Mohammad Ansari, for his kind guidance
and availability for regular, fruitful, and instructive discussions. His support throughout
my master?s project has fostered my growth and interest in completing this project.
He nurtured my curiosity by introducing me to the world of scientific research and
the physics community. My group members were also of great help during our weekly
group meetings and occasional get-togethers: thank you to Alwin, Xuexin, Arne, Manab,
Zhongyi, Tobias, Jennifer, and Jiaqi. Our former group member, Pia, also guided me
in my first steps in the project and taught me many of my skills in coding. Thanks to
exchanges with Polina Feldmann and Dmitri Bondarenko, Maria Schuld, and Nana Liu,
this project could also progress.

I am also grateful to my examiners for their interest and stimulating discussions in
my project.

This work would not have been possible without the care and support from my friends
and family. I would like to thank Leicai for always lending an ear and encouraging me
to gain confidence in my work, my parents for their loving care and attention in difficult
moments, and sharing my ups and downs in this project. I am incredibly grateful to my
sister, Tatiana, for reaching out to me and always providing unconditional support.

3



Abstract

This master thesis explores aspects of quantum machine learning in the light of an appli-
cation to dampen the effects of noise on NISQ processors. We investigate the possibility
of designing machine learning models that can be accommodated entirely on quantum
devices without the help of classical computers. With Dissipative Quantum Neural Net-
works, we simulate a quantum feed-forward neural network for denoising: the Quantum
Autoencoder. We assign it to correct bit-flip noise in states that can exist only quantum
mechanically, namely the highly entangled GHZ-states. The numerical simulations re-
port that the QAE can recover the target states up to some tolerance threshold on the
noise intensity. To understand the limitations, we investigate the mechanisms behind
the completion of the denoising task with quantum entropy measures. The observations
reveal that the latent representation is key to reconstructing the desired state in the out-
puts. Consequently, we propose an inexpensive modification of the original QAE: the
brain box-enhanced QAE. The addition of complexity in the intermediate layers of the
network maximizes the robustness of the QAE in a setting where only a finite-size train-
ing data set is available. We close the argument with a discussion on the generalization
properties of the network.

4



Contents

Introduction 7

1 From classical to quantum: Introduction to Quantum Machine Learn-
ing 10
1.1 What is machine learning? . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 A (very) short overview of classical machine learning . . . . . . . . 10
1.1.2 Deep Learning with neural networks . . . . . . . . . . . . . . . . . 11
1.1.3 Algorithmic meaning of learning: gradient descent . . . . . . . . . 13
1.1.4 Future challenges in machine learning . . . . . . . . . . . . . . . . 17

1.2 A model for quantum machine learning . . . . . . . . . . . . . . . . . . . 18
1.2.1 Bring quantum mechanics to machine learning . . . . . . . . . . . 18
1.2.2 Build a Quantum Neural Network . . . . . . . . . . . . . . . . . . 19

1.2.2.1 QNN with variational circuits . . . . . . . . . . . . . . . 20
1.2.2.2 Dissipative Quantum Neural Networks . . . . . . . . . . . 22

1.3 What are the promises of quantum machine learning? . . . . . . . . . . . 29

2 Automate denoising: the Quantum Autoencoder 32
2.1 Why is quantum denoising needed? . . . . . . . . . . . . . . . . . . . . . . 32

2.1.1 Noise on quantum computers . . . . . . . . . . . . . . . . . . . . . 32
2.1.2 Design protocols for noise . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.2.1 Noise characterization . . . . . . . . . . . . . . . . . . . . 34
2.1.2.2 Noise correction . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Apply machine learning to the concrete task of denoising quantum states 38
2.2.1 The autoencoder: FFNN for denoising . . . . . . . . . . . . . . . . 38
2.2.2 Build a Quantum Autoencoder (QAE) . . . . . . . . . . . . . . . . 41

2.2.2.1 The QAE architecture . . . . . . . . . . . . . . . . . . . . 41
2.2.2.2 Learn denoising with the QAE . . . . . . . . . . . . . . . 43
2.2.2.3 What is the training data? . . . . . . . . . . . . . . . . . 44
2.2.2.4 Numerical simulation of the QAE . . . . . . . . . . . . . 45

2.3 What does a denoising QAE learn? . . . . . . . . . . . . . . . . . . . . . . 46
2.3.1 Evolution of the training . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3.2 Reproducibility of the results . . . . . . . . . . . . . . . . . . . . . 48
2.3.3 Quantum characterization of the QAE: Entropy . . . . . . . . . . 51

5



CONTENTS 6

2.3.3.1 Introduction to quantum entropy . . . . . . . . . . . . . . 51
2.3.3.2 Entropy in the network . . . . . . . . . . . . . . . . . . . 54

3 Combat the limitations of the QAE 60
3.1 Scaling up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.2 Structural limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.1 Entropy flow and noise . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.2 QAE and brain boxes . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.2.1 Boost noise tolerance with brain boxes . . . . . . . . . . 67
3.2.2.2 Perspectives on the brain box . . . . . . . . . . . . . . . . 70

3.3 Training data and absolute upper bound on the tolerance . . . . . . . . . 75
3.4 Generalization performance . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Conclusion and outlook 84

Bibliography 87

A Adjoint channel 96

B Derivation of the learning rule for DQNN 98

C Entropy correlations 103

D Test results for the brain boxes 105



Introduction

”Quantum theory is the soul of theoretical physics. It is not just a theory of specific
physical systems but a new framework with universal applicability.”

G.M.D’Ariano, G.Chiribella, P.Perinotti [1]

One of the significant challenges in the quest for a universal quantum computer is
noise on the bit states. A reason for this is the essence of the information that is ma-
nipulated on these devices?namely, its quantum properties. Quantum theory offers new
ways to process information potentially advantageous to classical methods. It provides
a new framework for a compact representation of information in superposition states
and makes it possible to handle exponentially large data sets. These quantum prop-
erties are fundamental in accelerating algorithms on complex computational problems.
Nevertheless, quantum information has the downside of being short-lived and fragile: a
slight disturbance is mainly detrimental to its wave function. Due to its quantum na-
ture, the qubits that convey quantum information interact with spurious noise sources.
Unwanted entanglement and interactions with the environment lead to the drastic re-
duction of the lifetime of quantum states. When this issue represents a daunting task,
machine learning could be an efficient approach to automate perfecting qubit states. It
has proven helpful to find particular classical states in many-body problems. Similarly,
quantum states search can be automated by quantum machine learning. The gates on
NISQ (Noisy Intermediate-Scale Quantum) devices [2] are yet far from perfect, and such
algorithms must be implemented in a noise-tolerant way. Machine learning techniques
are sometimes referred to as the most promising invention in computer science. They
have evolved to handle problems of increasing complexity. Therefore, implementing ma-
chine learning with quantum computations could jointly harness the power of quantum
information and machine learning. After translating these techniques into the language
of quantum theory, the realization with fault-tolerant gates paves the way for the proof
of quantum advantage.

This thesis attempts to contribute to developing a programmable quantum computer.
It adopts a holistic view where the system performs better than when it is divided into
separated building blocks. When Feynman first revealed his idea of a quantum computer
in 1981 [3], he already recognized that the realization of such a quantum machine would
challenge research and science across disciplines. Quantum machine learning can be
seen as the fusion of outstanding thoughts formulated in the 20th century. The stepping

7



CONTENTS 8

stone of quantum mechanics was laid by physicists such as Max Planck and Einstein
to cope with the catastrophic mismatch between black body radiation and classical
theory. It was followed by a constant effort to improve, remodel and reformulate the
new paradigm, involving Schrödinger, Hilbert, Heisenberg, Born, von Neumann, and so
many more whose names are engraved in quantum theory. About twenty years later,
Shannon laid the foundation for a theory of information [4], giving the community the
tools for the analytical treatment of data. Another two decades later, the concept of
the perceptron emerged in the unexpected field of psychology [5]. Twenty years after
Feynman’s proposition, the first qubits were realized [6] and quantum algorithms with
an advantage over classical computers were invented.

We can now combine these beautiful advances into a unified approach to progress
toward fault-tolerant quantum hardware. Nowadays, quantum computations and sim-
ulations can work on platforms that accommodate and manipulate qubits. Running
actual algorithms on them, however, remains challenging. Even though the question of
real quantum advantage is still open, the rivalry between quantum and classical comput-
ers cannot be addressed equally. The noise impinging upon quantum systems makes it
impossible to run algorithms on large scales in current devices. By adding more qubits,
unexpected entanglement becomes stronger. The quantum nature of the hardware is to
be blamed for such imperfections. As time goes by, it distorts the information encoded
on qubits. The same superposition and entanglement expected to speed up the informa-
tion processing can be harmful. The qubits cannot be isolated from each other [7] and
from external noise [8]. Noise is caused by both spurious interactions in the physical
systems and imprecise controls. Overcoming the former requires a new system designed
to remove noise sources based on accurate identification. This way, qubit states become
more isolated from external environments and matter imperfections. Quantum control
theory elaborates techniques such as the Characterization, Verification, and Validation
(CVV) method to reduce systematic noise. It takes noisy circuits as inputs to an al-
gorithm that optimizes the controls without altering the underlying physics. Reducing
errors on the current quantum devices is a challenge since the fabrication of new plat-
forms is costly. While quantum error correction codes exist, the devices available do
not reach the suitable scales to accommodate them. Meanwhile, error mitigation and
noise cancellation protocols attenuate noise effects. They consist of both classical and
quantum techniques. They bring the NISQ devices closer to achieving fault-tolerant
quantum computing.

When most control theory techniques focus on reducing leakage and dephasing in
multi-qubit states, we employ a machine learning technique to address noise on more
extensive hardware. We take advantage of the data coming directly from the device to
train the model. Ultimately, the circuit learns how to produce some delicate target state
on a subset of its qubits. This hardware-friendly method is expected to perform despite
noise on qubits and control gates.

This thesis is structured as follows: the first chapter discusses the basis for classical
machine learning. We explain the concept of neural networks and give an algorithmic
meaning to the idea of learning. Moreover, we introduce two models that enable the



CONTENTS 9

implementation of neural networks on a quantum processor, namely the Variational
Quantum Algorithms (VQA) and the Dissipative Quantum Neural Networks (DQNN).
The second chapter applies quantum neural networks to denoise corrupted states with
the Quantum Autoencoder (QAE) architecture. Starting with a short overview of the
challenges of noise correction, we show that the QAE can filter noise out of its inputs,
thereby facilitating noise cancelation on quantum hardware. In addition, to move away
from the theory of classical machine learning, we propose an alternative, inherently quan-
tum measure to point out the role of quantum properties in the denoising process: the
quantum Rényi entropy. Finally, in a third and final chapter, we examine the limitations
of the Quantum Autoencoder and show the importance of its intermediate representa-
tion to recover desired states on its outputs. We show that an absolute tolerance to noise
stems from the amount of data available to train the system. This upper bound can
be saturated by choosing a suitable structure for the intermediate representation. As
a final argument, we discuss the meaning of generalization for Quantum Autoencoders
and propose a cross-testing approach.



Chapter 1

From classical to quantum:
Introduction to Quantum
Machine Learning

1.1 What is machine learning?

1.1.1 A (very) short overview of classical machine learning

Machine learning has become a tool used across disciplines with various applications. It
encompasses a large ensemble of computational and statistical methods and algorithms
to learn a task on unknown data. Arthur Samuel created the term in his 1959 paper
[9] on a program to play checkers: ”Lacking such knowledge [about machine learning
techniques], it is necessary to specify methods of problem-solving in a minute and exact
detail, a time-consuming and costly procedure. Programming computers to learn from
experience should eventually eliminate the need for much of this detailed programming
effort.”. One of the simplest examples is the recognition of handwritten patterns. For
example, the digits contained in the MNIST library [10] is a common benchmark for
machine learning models. Some algorithms can produce pictures of unknown people
[11]. More interestingly, for physics, they can generate some new optics experiments
based on the entanglement analysis of quantum states [12], and classify phases of matter
[13]. These techniques provide information about physical features inaccessible in the
current state of the art.

Machine learning is trained to solve two problems: 1) classification tasks assign
labels to unknown data based on its analysis. Such issues range from binary to multi-
label classification. 2) Regression finds the best fit for relations between variables and
makes predictions on new data sets. The interpretation of regression as classification
over continuous classes reconciles both problems [14]. In the following, we will mainly
explain machine learning from the classification angle for simplicity, but both are valid
approaches for the same task.

Machine learning is commonly separated into supervised, unsupervised, and rein-

10



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 11

forcement learning. Supervised learning trains an algorithm with pairs of data points.
One presents new examples, and the other its solution, for example, the corresponding
label in a classification task. Even though supervised learning is compelling and can
lead to significant advances in sciences, its training requires immense efforts to build
large data sets where each sample is carefully associated with its target. Unsupervised
learning attempts to circumvent this problem and identifies patterns in the data itself
to group points in a common category. Reinforcement learning is famous for its ability
to play complex games, such as Go or Chess. It elaborates strategies by adapting its
policy based on the rewards and penalties it gets from its actions.

1.1.2 Deep Learning with neural networks

In the collective imagination, machine learning is often merged with the concept of deep
learning and summons the picture of the so-called ”artificial neural networks”. It dates
back to 1957 when in his psychology research on artificial intelligence, Rosenblatt [5]
introduced the notion of perceptrons. It was defined as a functioning object that mimics
a neuron in the brain. A biological neuron processes the stimuli it receives. It reacts
with the ”firing response” corresponding to a signal emitted by a small voltage, or its
absence. Artificial neural networks of perceptrons translate this scheme in mathematical
terms and implement it algorithmically on a programmable computer.

Let us look at the perceptrons first, and then at the operations they enable in a neural
network. A perceptron is represented in figure 1.1. Its main goal is to output a signal
that encodes a solution to the task. The inputs of the perceptron are d-dimensional

vectors {−→xj = (xj1, · · · , xjd)} belonging to the set X. They correspond to the initial
stimuli in biological neurons. Formally, their components are combined as a single
input by a linear transformation z =

∑
iwix

j
i + b. The weights wi are real scalars

tuned to attain the optimal response. The weighted sum enters the processing unit, the
node. Mathematically, it is the input of a non-linear activation function f(z) = y. Its
output y stands for the firing response and is encoded on the output neuron. In such
perceptrons, the training optimizes the weights and biases to process the data according
to the task. When properly trained, the network should generalize well to unknown
data. The computational meaning of the training is explained in the next section 1.1.3.

Let us look at a classification task with two categories. The Heaviside step func-
tion is an ideal non-linear function to provide binary outputs for each neuron: θ(z) =
0 when z ≤ 0, θ(z) = 1 otherwise. This function corresponds to the integrate-and-fire
mechanism in biological neurons: it fires when the signal is larger than a given threshold.
The training modifies the weights in the linear transformation. In turn, the form of the
activation function f remains fixed. Once the learning phase ends, for a data vector −→x ,
the neuron is expected to output either 0 if it belongs to category A, and 1 otherwise:

f(−→x ) = θ(z =
∑
i

wixi + b) =

{
0 if −→x ∈ category A

1 if −→x ∈ category B
(1.1)



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 12

Figure 1.1: A perceptron is the building unit of a neural network: it simulates the action
of a biological neuron. It receives an input encoded in neuron units and processes it by
computing a biased linear combination of its components and feeding the result in the
activation function. In turn, the latter presents its output on a new neuron unit.

To implement complex tasks, multiple perceptrons are brought together to form a
neural network, as depicted in figure 1.2. They are generally organized in layers, with
various neurons (or perceptrons) each. In Feed-Forward Neural Networks (FFNN), only
neurons in two successive layers are linked. No connections are allowed within the same
layer or the earlier ones. The number of layers is called the depth of the network. The
width designates the number of neurons per layer and can vary from one layer to another.
In such a layout, the first layer, or “input layer?? is initialized with the data. It is then
processed through the successive layers of perceptrons. The final output is read out
on the last layer, or ”output layer”. For each neuron in the intermediate layers, the
inputs correspond to the previous layer’s outputs; similarly, a stimulus is propagated
from one neuron to another via neurotransmitters and receptors in the nervous system
and the brain. The intermediate layers whose outputs remain unknown are named the
hidden layers. A perceptron alone can only compute a limited set of functions since it
only entails a single non-linear function. However, the combination of neurons into a
network becomes a powerful algorithm. Indeed, a network with a single hidden layer
can approximate any function to arbitrary precision, provided enough perceptrons in the
hidden layer [15]. Therefore, neural networks can perform universal computations.



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 13

Figure 1.2: An FFNN is composed of L layers of perceptrons, one layer serving as the
input for the next by processing its inputs, except for the first and last layers, also known
as input and output layers. The hidden layers have unknown outputs. The depth in this
network is L, and the width of a layer l is dl, corresponding to the number of neuron
units in the layer.

1.1.3 Algorithmic meaning of learning: gradient descent

We explain the meaning of learning in an algorithmic setting. This section paves the
way for the translation of neural networks to the quantum framework. So far, learning
was formulated as tuning weights and biases. The update technique itself was omitted
and how the network understands the task. To fill these gaps, we introduce the cost
function C({−→wi, bi}, {−→x j}), also referred to as loss or objective function. The notation−→wi designates the vector of weights for the inputs of neuron i, while −→x j corresponds
to the j-th data point. The cost function encodes the task to complete in the form of
an optimization problem. The parameters {−→wi

∗} that solve the task minimize the cost
function: −→wi

∗ = argmin−→wi

C({−→wi}, {−→x j}) (1.2)

where the biases bi have been merged in the weight vector −→wi. This trick necessitates
the addition of a d+ 1-th component to the data vector −→x j , that is set to 1. The exact
form of the cost function is flexible: common choices are the quadratic and the sigmoid
functions. A smooth function of the weights and biases is desirable to implement iterative
learning techniques [16]. Indeed, the gradient descent method presented below relies on
continuous, differentiable cost functions. Steep gradients can accelerate the training and



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 14

avoid the vanishing gradient trap. Most importantly, the objective function must encode
the solutions to the problem in its minima.

To reconnect with the classification task in equation 1.1, a textbook example is the
mean squared distance between the predicted labels and the actual labels known from
the training data: C({−→wi, bi}, {−→x j}) = 1/N

∑N
j=1||−→y j − ŷj ||2, where −→y j is the label

given by the algorithm for a corresponding data point −→x j , and ŷj is the estimated

label. The distance is the Euclidian norm: ||−→v || =
√∑

i v
2
i . The cost function penalizes

erroneous outputs by making them more positive. The cost evaluation as a function of
parameters defines a cost landscape with hills and valleys. In this picture, the value
of the cost function during the optimization is equivalent to a ball rolling downhill:
the optimal combination of parameters lies at the bottom of a valley, where the cost
function is minimal. Gradients with respect to the parameters guide the exploration of
the landscape to find this solution.

This is the approach adopted by the gradient descent algorithm. The intuition behind
it is the following. For simplicity, we omit the arrows in the parameters −→wi. In the cost
landscape, the gradient ∇wiC points in the direction where the function increases when
wi increases by a small amount. Therefore, to land on smaller values, one must move
opposite to the gradient, that is along −∇wiC. More formally, at the training step t,
the update is given by:

wi,t+1 ← wi,t − η∇wi,tC (1.3)

where η is a positive real number that scales the update. This learning rate is a sensitive
hyperparameter. A small value of η reduces the update’s size and slows down the
convergence to a minimum. It may render the algorithm inefficient. In contrast, choosing
large values for η fosters the exploration of the landscape, but causes overshooting: the
update jumps over the minimum without reaching it. The learning rate is tuned by
hand for each network. The algorithm does not update it in 1.3. Still, it can be designed
to vary throughout the training according to a predefined schedule and adapt to the
training data.

Gradient descent is a powerful method and has shown convergence to a (local) min-
imum for (non-)convex landscapes in most applications, provided that the function is
differentiable. However, large data sets lead to computational difficulties. Calculating
gradients for each data point at each training step becomes an expensive task. The
vanilla gradient descent, also called batch or deterministic gradient descent [17], en-
tails unnecessary redundancy when the training data set possesses similar data points.
Therefore, alternative algorithms seek more efficient uses of the data. Stochastic gradi-
ent descent (SGD) computes the gradients based on a single data point at a time and
accelerates the learning process considerably. It comes at the expense of high variance in
the learning curve, which can cause overshooting. Mini-batch gradient descent emerges
from the compromise between the two methods. It uses a subset of data points for each
training step, thereby smoothing the learning curve while preserving the desired speed
up ([17], chapter 8).



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 15

To lay some foundations for the machine learning model we will introduce in chapters
2 and 3, some deeper insights on gradient descent algorithms are presented here. A
comprehensive and operational overview of them is provided in [18]. Indeed, despite
the notable gain in speed and precision in SGD or mini-batch gradient descent, the
algorithms can be improved by bringing two modifications. First, the method to tune the
hyperparameter η is still unclear: one must do a trade-off between speed and fluctuations,
and in 1.3 the learning rate remains constant at all times. At the same time, a training
schedule could make it more adaptive and ensure convergence to a minimum. Second,
the data properties are still under-exploited, for the learning rate is the same for all
weights. However, sparse data would require larger updates in the direction of rare
points, and damping in the most recurrent ones. This is the reason why we use the
NADAM gradient descent method [19, 18] to train the network in chapters 2 and 3.

We first attempt to provide some intuition on the NADAM algorithm. To make learn-
ing more efficient, it combines multiple techniques: momentum [20], ADAM (Adaptive
Moment estimation) gradient descent [21], as well as Nesterov accelerated gradient de-
scent [22]. It uses information on past gradients’ first and second moments for a given
parameter. It accelerates the updates in the direction of the minimum and tunes learning
rates independently for each weight. At the same time, it enables the implementation
of a learning schedule that modifies the learning rates adaptively. It exploits most of
the information at hand at step t to compute gradients based on estimating the future
parameter value at step t+1. If we label the parameter update Δwt at the training step
t, the NADAM rule gives:

wt+1 = wt +Δwt

Δwt = − η√
v̂t+ε

(β1m̂t +
(1−β1)gt
1−β1

t )
(1.4)

where η and β1 are hyperparameters, ε is a small constant to regularize division by zero.
The recommended values for them are η = 0.002 and β1 = 0.9. The hyperparameter
β2 hidden in the variance v̂t in equation 1.5c is generally set at β2 = 0.999. We now
decompose and explain the role of each component of the rule. The three important
terms are:

Gradient vector: gt = ∇wtC(wt) (1.5a)

Momentum (first moment): m̂t =
mt

1− β1
t

=
1

1− β1
t (β1mt−1 + (1− β1) · gt) (1.5b)

Variance (second moment): v̂t =
vt

1− β2
t

=
1

1− β2
t (β2vt−1 + (1− β2) · g2t ) (1.5c)



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 16

Let us go through these terms one by one. In equation 1.5a, we recognize the same
gradient as in the vanilla gradient descent 1.3. In the update rule 1.4, it appears weighted
by the usual learning rate η, as well as the variance term. The second term 1.5b is defined
recursively: at each step t in the training, the new momentum is a linear combination
of the past momenta and the gradient. It corresponds to a decaying running average of
the past gradients. It is designed to help optimize asymmetric slopes in the landscape,
such as ravines or saddle points, where the slope is steep in some directions, and shallow
in others. If the directions of the previous momentum and the new gradient are iden-
tical, the update step along this direction is larger, while opposite directions dampen
the amplitude of the update. Hence, the momentum term reduces fluctuations in the
optimization and adopts a more direct path to the minimum. Finally, the variance term
1.5c provides the algorithm with an adaptive learning rate. It is defined recursively as
well. Instead of accumulating gradient terms, it computes the decaying, running average
of the squared gradients, corresponding to the second moment. When the gradients are
far apart from one another, the variance becomes large and the next gradient is damped,
while when they tend to become too small, the variance boosts the future gradients to
prevent them from vanishing. The renormalization pre-factor in 1.5c depends explicitly
on the ”discrete time” t: as the training progresses and t increases, the denominator
comes closer to unity, canceling the amplifying effect it had in the early learning steps.
This automatic variance scaling implements a clear learning schedule without manual
programming. It builds upon the Adagrad method and solves the problem of vanishing
updates at the end of the training. The variance term can be understood as keeping only
squared gradients for a few training steps in the past and discarding the previous ones.
This adaptive rule cancels the biases due to the initialization at zero of the momentum
and variance. Note that the gradient and momentum are vectors: the update rule has
become different for each weight wi.

A final point is left to understand in the training rule: the inclusion of future esti-
mates for the parameters to improve the direction of the update. Nesterov accelerated
gradients aim at improving the Momentum method by building the update with an ap-
proximation of the next position of the weight. It is seen by comparing the formulas for
the ”plain” momentum and Nesterov accelerated gradient methods:

Momentum method: Δwt = mt = γmt−1 + η · ∇wtC(wt) (1.6)

Nesterov accelerated gradients: Δwt = γmt−1 + η · ∇wtC(wt − γmt−1) (1.7)

and the update: wt+1 = wt −Δwt (1.8)

In this case, mt−1 corresponds to the weighted accumulation of gradients up to step
t. In equations 1.6 and 1.7, the gradient is calculated at different positions of the
parameters. In Nesterov’s method, it is computed at the estimated position in the next
step, approximated by the difference of the last parameter with the momentum mt−1:
it only differs from the actual parameter at step t + 1 by the gradient term. One can
include this future prediction in the NADAM update rule by computing the gradient
at the predicted parameter instead of its actual value. This however requires one to
compute the momentum term twice, in equation 1.7, and Dozat [19] notices that one



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 17

can instead implement the following trick. Looking at the update rule 1.4 without the
prediction, (corresponding to the ‘ADAM” rule [21]):

m̂t =
1

1− β1
t (β1mt−1 + (1− β1)gt) (1.9)

Δwt = − η√
v̂t + ε

m̂t

= − η√
v̂t + ε

(
β1

mt−1

1− β1
t + (1− β1)

gt

1− β1
t

)
= − η√

v̂t + ε

(
β1 m̂t−1 + (1− β1)

gt

1− β1
t

)
(1.10)

Nadam−−−−→ − η√
v̂t + ε

(
β1 m̂t + (1− β1)

gt

1− β1
t

)
(1.11)

where in the last line 1.11, the renormalized momentum in step t− 1 has been swapped
for the updated one at step t to boost the ADAM update rule 1.10 with Nesterov
acceleration.

We make a short remark here. Even though the gradient descent algorithm should
ultimately converge towards a minimum or a good approximation of it after enough
update steps, it is expensive to implement in practice in a neural network. Indeed,
the cost function derivative concerning the weights is not trivial to compute. For this
reason, the idea of a neural network was partly forgotten by the community during the
”winter of machine learning”. It was only in 1986 that Rumelhart, Hinton, and Williams
revived the backpropagation algorithm [23] and made training possible. Based on the
chain rule for derivatives, this technique calculates gradients using only a single forward
pass through the network, keeping the outputs at each layer in memory, and deduces
the gradient with a single backward pass.

1.1.4 Future challenges in machine learning

So far, we have discussed one of the most famous machine learning techniques: neural
networks. In this framework, we have understood that gradient descent, combined with
the backpropagation algorithm, provides networks with the ability to learn. Their out-
come can be impressively close to the solutions inquired. However, machine learning is
not limited to neural networks and encompasses various algorithms, some free of gradi-
ents. Rather than optimizing parameters this way, some techniques keep the memory
of the training data and realize their task by comparing unknown data to their mem-
ory. For example, the k-nearest-neighbors algorithm [24] classifies new data according
to their proximity to an identified data point. Another approach simulates agents’ be-
havior, building policies to guide their actions. Indeed, in reinforcement learning, the
algorithm reacts to rewards it receives from implementing a particular set of policies [25].
Therefore, machine learning encompasses a wide range of algorithms whose applications
are up-and-coming.



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 18

However, machine learning tools are often implemented as black boxes despite this
effervescence and diversity and remain an enigma from many perspectives. Their success
in learning is often still obscure, especially when the models gain in complexity, some
models leveraging millions of parameters. Consequently, some authors [26] emphasize
the lack of understanding of the learning dynamics in neural networks. For example,
understanding the reason behind the presence of vanishing gradients in a general setting
would solve one of the pressing issues of gradient-based learning.

Phenomenological rules have been discovered for the dependence of the learning on
initial parameters and hyperparameters, but few general or analytical properties are
advertised. This slows down progress for the choice of initialization impacts the final
solution, different parameters generally resulting in very different solutions [27]. These
points are also related to a “good” data set. Complex models require large data sets,
making them expensive to train and implement. However, their amount alone is no
guarantee for successful training. The training set must provide the network with the
relevant features to identify to reach a satisfactory generalization. In other words, a
balance must be achieved. The set must entail enough diversity so that various patterns
while fluctuations must be limited to a specific range to let the algorithm recognize
similarities between points. Consequently, the scale and complexity of the models are
bottlenecks in the performance of machine learning techniques [27].

1.2 A model for quantum machine learning

1.2.1 Bring quantum mechanics to machine learning

As quantum computing and the theory of quantum information are improving, new
hopes are emerging to find more efficient ways to implement machine learning with
quantum devices. At first sight, the laws of quantum theory are not incompatible with
the framework of machine learning. For example, the execution of a machine learning
algorithm relies primarily on the cost function, the resulting parameters, and the training
data. The requirement in quantum theory to identify canonical conjugate variables
is, therefore, no impediment to its realization. Better than this, the description of
quantum states as wave functions implies the creation of superposition states. This
opens new possibilities to efficiently encode large amounts of data and process them
together. Similarly, entanglement can extend the action of one neuron to other neurons.
This delocalization of interactions brings information processing in a neural network
beyond classicality. Therefore, the fusion of quantum computing with machine learning,
or Quantum Machine Learning (QML) is expected to provide a “quantum speed up”, or
“quantum advantage” over its classical counterpart. So does Shor’s quantum algorithm
for factorization compared to all known classical methods [28]. In other words, the hope
is to reduce the number of resources required to realize the same task by exploiting
quantum phenomena. However, such claims of advantage are usually challenging to
prove rigorously. In many cases, one can only compare the complexity of the quantum
algorithm with the best known classical for the same task.



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 19

QML can fuse machine learning with quantum mechanics in three ways depending
on the type of data used and the hardware to process it [14]. Processing quantum
data with classical computers is often a difficult task due to the exponential scaling in
the dimensions of the data sets required to represent quantum states and the exotic
probability distributions that they can realize. In the opposite case, a prerequisite to
treating classical data with quantum algorithms is designing a suitable and efficient
encoding method to translate it to quantum states. Unfortunately, no such algorithm is
known to the author that realizes this conversion efficiently. In these conditions, data
encoding overtakes the speed-ups realized in the learning algorithms. Finally, processing
quantum data on quantum hardware skips the encoding phase and reunites with the first
intention of quantum computing to simulate quantum with quantum. From this point
of view, it is of particular interest for fundamental research. However, it is possible only
within the limit of large enough, fault-tolerant platforms. Note that quantum platforms
can process the data entirely on their own, some approaches even aiming at implementing
gradient descent-like algorithms directly at the scale of the physical system [29] to create
a self-learning machine, or perform subroutines only, working in pair with a classical
computer, as in [30] where only the complex task of kernel computation is delegated to
the quantum machine. The latter case is of particular interest for early benchmarking on
NISQ devices since such algorithms can work at smaller scales and make error mitigation
more accessible thanks to the possibility of implementing post-processing. The following
content will focus on the quantum-quantum setting and exploit quantum data directly
with a quantum circuit.

1.2.2 Build a Quantum Neural Network

Prepared with a bit of background on machine learning from section 1.1, and with a
concrete idea of what learning means in this setting, we attempt to transpose it to
the setting of quantum mechanics. The intention is to run such algorithms on quantum
computers, provided that a platform can accommodate it. For completeness, we mention
that many popular machine learning techniques apart from neural networks have been
successfully reformulated for quantum algorithms, the Principal Component Analysis
[31] being one example among many others. Here, we focus on creating a quantum
version of a feed-forward neural network or a Quantum Neural Network (QNN). To
realize the correspondence, we must find:

1. a system that encodes and conveys information in the same way a neuron enables
loading and reading data,

2. a non-linear activation function that manipulates information stored in qubits
according to a set of parameters,

3. a method for updating these variables based on an objective function.



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 20

Figure 1.3: The Variational Quantum Algorithm is a hybrid quantum-classical algorithm
capable of simulating QNN. The quantum part, depicted in red, acts on some inputs
with parametrized quantum gates. It acts on N qubits and applies L layers of unitaries,
selected according to some ansatz. The outputs are read out and used to compute the
cost function. The optimization takes place on a classical platform using a classical op-
timizer algorithm: it outputs parameters that minimize the cost function. The updated
angles are communicated to the quantum device to modify the gates. This quantum-
classical loop is repeated until a stopping criterion is reached. The outputs consist of a
trained circuit with optimized parameters or an approximation and a representation of
quantum states resulting from applying this circuit to some inputs. These inputs can be
purely quantum or correspond to classical data encoded in quantum states.

1.2.2.1 QNN with variational circuits

The ultimate goal is to run the final algorithm partially on a quantum computer. Most
quantum models for feed-forward neural networks embed it in a quantum circuit. This



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 21

representation of the algorithm facilitates the compilation into physical gate sequences
and possible implementations on NISQ devices. In addition, the circuit model for quan-
tum computation already satisfies the first requirement for a neural network: the qubits
are systems that can encode information and be manipulated. Measurements enable the
read-out of the outputs. Because of the nature of quantum mechanics, reading out the
outcomes requires building statistics on the states and running the algorithm multiple
times. The results can be represented as expected values of some measured observable or
quantum states reconstructed through state tomography. In the latter case, reading out
the outputs alone is already a complex task: without accelerating techniques, it scales
exponentially in the size of the output state.

To obtain a quantum perceptron and design a network, the gates must be defined
with tunable parameters. In their seminal 2018 paper [32], Farhi and Neven propose
to use quantum variational circuits to build a quantum FFNN for a classification task.
These circuits are also referred to as parametrized circuits. They apply a succession of
gates on N+1 qubits, where N qubits accommodate the inputs, while the last qubit is an
ancilla. The gates, in turn, are defined by unitary matrices, that can be represented using
parameters θ, such as rotation angles, for example. For this task, Farhi and Neven use
a single qubit to encode the outputs, thereby reducing the number of resources required
to calculate expectation values. This model, however, has been used in more flexible
forms within the broad family of Variational Quantum Algorithms (VQA) [33, 14]. It is
considered one of the most promising applications for fault-tolerant quantum computing.
The task is formulated in the cost function, whose minimum defines optimal parameters
in the cost landscape. Despite this similarity with classical learning in 1.1.3, the scope
of VQAs goes beyond machine learning: it is a popular method in quantum chemistry
to identify the ground states of molecules using the Variational Quantum Eigensolver
(VQE) [34, 35], or constitutes an approach to combinatorial optimization problems,
such as the Quantum Approximate Optimization Algorithm (QAOA) [36], among other
applications.

Due to the formulation of the task as the minimization of an objective function and
its versatility, the VQA constitutes an appealing candidate for realizing quantum neural
networks. As shown in figure 1.3, qubits play the role of neurons. They are connected
through parametrized unitaries U(θ) to be optimized. Compared with classical neural
networks, the layers are composed of the unitaries rather than neurons. Each layer
can have multiple unitaries, such that the operation applied at layer l composed of Nl

unitaries can be conveniently denoted as U l(θl) =
∏1

n=Nl
U l
n(
−→
θ l

n). As in the classical
case, learning is realized during the training phase with an iterative algorithm. The
parameters are updated according to the direction of the cost landscape that leads to
its minimum. VQA is particularly suitable for problems hosted on a few qubits because
it works in a hybrid fashion. The cost function is calculated quantum mechanically by
applying the quantum circuit to the inputs: it generally entails the expectation value of a
well-chosen observable. However, the updates of the parameters take place on a classical
computer using an optimization technique that matches the task’s requirements. Hence,
during the training, the VQA goes back and forth in a loop between the classical and



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 22

quantum computers. In the training round, the data is first encoded on the qubits.
Then the successive layers of parametrized unitaries act on the inputs. Once read-out,
the outputs are collected to calculate the cost as the parameters and inputs function.
The classical optimizer uses this classical information to update the parameters of the
unitaries. Moving back to the quantum circuit, the next round can start with the
modified unitaries.

In VQAs, the choice of the unitaries’ form determines the circuit’s expressivity or
universality. Good ansätze must be selected to match the cost function and the device
on which the QNN gets trained. An ansatz corresponds to a set of gates whose form is
constrained. They are organized according to some layout on the qubits in the network.
An ansatz can combine single- and multi-qubit gates and parametrized and fixed gates.
For efficiency and to reduce the cost of the simulations, most ansätze use repetition and
alternating layers of similar unitaries, with independent or identical parameters. For
example, the hardware-efficient ansatz is a popular choice: it resorts to native gates
only, thereby reducing the depth of the circuits to implement. In contrast, the vari-
ational Hamiltonian ansatz is problem-friendly but loses computational efficiency. It
aims to find the ground states of trotterized Hamiltonians: each evolution step is repre-
sented by a trained parametrized unitary. As such, it covers a wide variety of physical
problems. The hardware-efficient ansatz belongs to the hardware-aware type of ansätze,
while the variational Hamiltonian ansatz is problem-aware. A suitable ansatz should
enable the model to explore all the directions of the cost landscape to find its minimum.
Consequently, the selection of the ansatz is at the center of one of the most notorious
problems of quantum machine learning [37]: the gradients vanish in some areas of the
optimization landscape. This makes gradient-based optimization impossible and leaves
the system stuck in a sub-optimal local minimum. Such areas of the cost landscape
are called barren plateaus. Leveraging arguments from quantum control theory, some
authors [38] advocate the use of training-aware ansätze instead: they result from the
analysis of the coverage of dynamic Lie algebra underlying the model and the ansätze.

1.2.2.2 Dissipative Quantum Neural Networks

To explore the benefits of quantum properties for machine learning in their entirety, the
community seeks self-contained QNN models. Their implementation on quantum devices
at larger scales is a first step to looking for a quantum advantage. Throughout the
remaining chapters, we will focus mainly on the so-called Dissipative Quantum Neural
Networks (DQNN) [39, 40]. Even though they still leverage parametrized circuits, their
architecture has a straightforward comparison to the classical neural networks introduced
in figure 1.2. Qubits and their connections by unitaries still represent the neurons. As
shown in figure 1.4 (a), the axone corresponds to a unitary that connects the input
qubits in layer l to the single output qubit in layer l+ 1. Instead of describing layers as
a group of unitaries defined by some ansatz as in the VQAs, they are composed of the
neurons or qubits themselves. This way, the architecture of the network resembles that
of FFNN introduced in section 1.1.2 and can be qualified as a multi-layer perceptron.



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 23

(a)

(b)

Figure 1.4: Representation of a quantum perceptron for dissipative quantum neural net-
works. The structure (a) imitates that of a classical perceptron, where qubits represent
neurons, and the connections correspond to the application of unitary channels, followed
by a suitable trace over the inputs. The perceptron has an equivalent circuit represen-
tation shown in (b). Dissipation is caused by the action of discarding the input qubits
after applying the quantum channel U to propagate it forward to the output layer.

Equivalently, quantum circuits can represent the perceptrons in DQNNs as in figure 1.4
(b): such networks are suitable for circuit-based quantum computation. As depicted
in figure 1.5, the qubits on the input layer are initialized with the quantum data in
quantum states. To propagate the states forwards through the network, unitaries act on
the qubits in two successive layers l and l+1. More precisely, the layer of unitaries U l is
composed of a number Nl+1 of unitary perceptrons that act on all qubits in layer l, and
a single qubit in layer l+1: U l =

∏1
i=Nl

U l
i , where the unitaries U l

i have been implicitly



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 24

extended by identity operations on the remaining qubits in layer l+1. Subsequently, to
ensure that the states live on a single layer at a time, the qubits in layer l are discarded
by tracing them out, creating dissipation in the forward pass. Then, for an input ρx,
the propagated state at layer l + 1 takes the form:

ρl+1
x = Tr

q∈l

{
U l(ρlx ⊗ |0〉〈0|⊗Nl+1)U l†

}
(1.12)

where layer l + 1 has been initialized in the computational ground state, and all qubits
q in layer l are discarded. This ensures that the activation function produces more
non-linearity. In the case of VQAs, non-linearity emerged from the Hilbert spaces in
which the unitaries were living. Indeed, an individual Hilbert space Hi is associated
to each qubit i ∈ {1, · · · , N} entering the circuit. Even though quantum mechanics is
inherently formulated in terms of linear algebra, acting on multiple qubits with a single
operation brings Hilbert spaces together in a tensor product

⊗
i∈U Hi, thereby creating

non-linearity. The addition of dissipation in the DQNN accomplishes non-linearity in a
more evident way.

This quantum realization of a perceptron can be readily understood in terms of
parametrized circuits. In fact, [40] reconciles this new approach with the concept of
VQAs. To find a direct link, the perceptron is represented with a parametrized circuit
using one of the ansätze known from variational algorithms. This direct mapping to
multiple VQAs enables them to generalize the knowledge about VQAs. They propose
guides to design models that avoid barren plateaus [41]. In particular, DQNNs inherit the
expressivity of the hardware-efficient ansatz, opening the door to promising applications.
In contrast, the “parameter matrix multiplication” optimization [39] parts with the
parametrized circuits. It understands each entry of the unitary as a parameter. As the
unitary acts on the qubits, all parameters are applied simultaneously. Similarly, they
are updated together with single matrix multiplication. In this framework, the unitary
operations are not constrained to follow any fixed model: the update rule is free to
optimize the parameters in any direction compatible with the initialization choice. A
set of random unitaries is generally selected to initialize the perceptrons.

Since the network introduced in the following chapters utilizes the parameter matrix
multiplication approach for the perceptrons and training, we explain the learning rule of
such QNNs in more detail. The reader can refer to appendix B for a complete derivation
of the update formula. The challenge is to express the rule with two constraints: (1) like
in gradient descent in section 1.1.3, its computation should root in the cost function, (2)
the update must have a formulation that is compatible with quantum mechanics and
that can be applied efficiently. The most suitable form of the update is a Hamiltonian-
evolution term:

U l
j(t+ ε) ←− eiεK

l
j(t) U l

j(t) (1.13)

to optimize the unitary acting on qubits in layer l − 1 and qubit j in layer l, at the
training step t. In this expression, ε reflects a notion of discrete time and the parameter
matrix K l

j(t) provides information about the gradient, for each unitary U l
j(t). The latter

has a “built-in” learning rate η, as will be shown in the derivation of the update rule.



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 25

It depends on the channels {U l}Ll=1 at step t, as well as on the training data {ρinx }Nx=1 in
the training phase. The gradient of the cost function is defined as the time derivative of
the cost function:

dC(t)

dt
= lim

ε→ 0

C(t+ ε)− C(t)

ε
. (1.14)

The cost function is expressed as the expectation value of some Hermitian observable Ô
with respect to the density matrix ρoutx on the output layer, averaged over the training
data x ∈ {1, · · · , N}:

C({ρx}, {U l
j}) =

1

N

N∑
x=1

Cx

=
1

N

N∑
x=1

Tr
out

{
Ôρoutx

}
.

For supervised training, the observable Ô is taken to be the target state corresponding
to input x. In this setting, the data is indeed organized in training pairs

{
ρinx , ρ

∗
x

}
. The

target state ρ∗x must have the same dimension as the output layer of the DQNN, but
need not live in the same Hilbert space of the inputs ρinx . Since the density matrices
for the target states comply with the hermicity requirements of an observable, setting
Ô = ρ∗x is allowed and results in the cost function being the fidelity:

F̃ (ρoutx , ρ∗x) = Tr

{√√
ρ∗x ρoutx

√
ρ∗x

}
. (1.15)

For the task we intend to realize in chapter ??, we seek pure output states ρ∗x = |Ψ∗
x〉〈Ψ∗

x|.
In addition, equation 1.15 causes computational instabilities due to the application of
the square root to multiple matrices. Therefore, we simplify the expression of fidelity
to:

F (ρoutx , ρ∗x) = 〈Ψ∗
x|ρoutx |Ψ∗

x〉. (1.16)

In both expressions, fidelity is valued between 0 and 1 and is maximized for identical
states. Therefore, one can either maximize the fidelity during the training or equivalently
minimize the reconstruction error 1− F .

Finally, the missing element to express the learning rule is the dependence of the cost
function upon the parameters, namely the unitaries U l, which was implicit in the ρoutx .
In equation 1.12, the propagation as a whole constitutes a quantum map E l(•) made of
unitary gates, and traces over the qubits in the previous layer. The Hilbert space of the
inputs is different from the one of the outputs. As a result, the state on layer l for an
input x during the forward pass can be written as:

ρlx = Tr
1,··· ,l−1

{
1∏

k=l

Uk
(
ρinx ⊗ |0〉〈0|⊗

∑l
k=2 Nk

) l∏
k=1

Uk†
}

= E l
(
E l−1

(· · · (E1
(
ρinx )
)))



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 26

where we have combined the operations of adding new qubits, applying the unitaries
on the qubits in two successive layers and tracing out the previous layer in a single

operation: E l(ρl−1) = Trl−1

{
U l
(
ρl−1
x ⊗ |0〉〈0|⊗Nl

) U l†
}
. To access the target states for

the optimization of each unitary U l
j , a backward channel is also defined. Its derivation

is given in appendix A. It plays the role of a backpropagation algorithm: it enables one
to compute the all the gradients by running only one forward and one backward pass at
each iteration. This assumes the existence of a quantum memory. The adjoint channel
F l propagates backwards states on layer l + 1 to layer l. The output layer is initialized
with the target state ρ∗x. The resulting state σl

x on layer l reads:

σl
x = F l(· · · (FL(ρ∗x))) (1.17)

where F l(•) can be found analytically from the Kraus decomposition of the forward map
E l(•), as shown in Appendix A:

F l(ρlx) = Tr
l

{
Il−1 ⊗ |0〉〈0|⊗Nl U l†

(
Il−1 ⊗ σl

x

)
U l
}

(1.18)

The availability of a backpropagation method makes the training possible. The
discrepancy between the target states and the actual outputs guides the update of the
parameters. For each unitary U l

j , the difference corresponds to the mismatch between the
inputs propagated forwards up to qubit j in layer l on the one hand, and the target states
propagated backward until the same location. Such a discrepancy can be appreciated
with a non-zero commutator in quantum mechanics. When trained over a data set
{ρinx }Nx=1, the complete update rule is formulated as:

U l
j(t+ ε) = eiεK

l
j(t)U l

j(t) (1.19)

K l
j(t) = η

2Nl−1

N

N∑
x=1

Tr
q /∈U l

j

{
M l

j(t)
}

(1.20)

M l
j(t) =

⎡⎣ 1∏
q=j

U l
q(t)
(
ρl−1
x ⊗ |0〉〈0|⊗Nl

) j∏
i=1

U l
i
†
(t) ,

Nl∏
i=j+1

U l
i
†
(t)
(
Il−1 ⊗ σl

x

) j+1∏
i=Nl

U l
i (t)

⎤⎦
(1.21)

where in equation 1.20, q stands for all qubits that are not included in U l
j .

Together with 1.13, equations 1.20 and 1.21 complete the quantum formulation of
a gradient descent algorithm in DQNNs. A summary is shown in figure 1.5. As in the
classical case, the update matrix entails a learning rate η that determines the size of the
update step. It remains a hyperparameter to tune to control fluctuations and ensure
the convergence of the cost function. Furthermore, the matrices M l

j play the role of
the gradient in finding the direction of the update, given by the difference between the
current operation, and the ideal output it should provide. In equation (1.21), the first
term in the commutator is precisely the state propagated forwards up to the unitary to



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 27

Figure 1.5: Training process for the DQNN. The training takes place in Nrounds training
rounds. Each iteration has three steps. 1) The network is initialized with a training
sample. 2) The state is propagated forwards until the output layer by the successive
application of the layers of neurons. Steps 1) and 2) are repeated for each state in the
training set. The read-outs of the outputs are inputs to the cost function. In step 3),
the perceptrons are updated using the parameter matrix update rule. The modified
unitaries are used in the next training round.

update. Conversely, the second term reflects the ideal states transformed with the adjoint
channel up to the same point. In a loose interpretation, the commutator quantifies the
error generated by the map tuned by the parameters at step t.

Finally, we show that the quantum training algorithm can be improved in the same
fashion as in the NADAM rule in equation 1.11. For this purpose, equations ?? are
complemented with a Nesterov accelerated momentum and renormalization term for the
learning rate. Such a method is employed to train the model we present in the following
chapters and is based on the code in [42]. The quantum version of this algorithm
defines a momentum m̂t and variance v̂t based on the parameter matrix K l

j . These



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 28

three variables are initialized to be zero-matrices in the first training step. First, the
momentum term computes the vanishing running average of the past gradients, weighted
with hyperparameter β1, to avoid vanishing gradients:

mt+1 = β1

(∑
s<t

)
ms + (1− β1)K

l
j(t) (1.22)

m̂t+1 =
mt+1

1− β1
t . (1.23)

The momenta, renormalized or not, are matrices. The weighted average gives a more
significant role in the momenta closest to time step t, while the earliest momenta vanish
progressively. The renormalization in m̂t+1 in equation 1.23 regularizes the bias towards

the zero-matrix due to the initialization. Using the notation U l
j(t+ ε) = eiεΔW l

j (t)U l
j(t),

we can formulate a partial momentum parameter matrix:

Δ̃W l
j(t) = β1m̂t+1 +

1− β1

1− β1
tK

l
j(t). (1.24)

To complete the momentum term, a scalar standing for the variance must be incor-
porated to adapt the learning rate and control fluctuations. It is done by considering
the spectral range of the parameter matrix K l

j(t): it corresponds to the gap between the

absolute values of its most prominent and smallest eigenvalues ΔλK
l
j(t). This variance

is adjusted at each iteration by adding the vanishing running average of the variances of
the past steps, weighted with hyperparameter β2, as for the momentum:

vlj(t) = β2

(∑
s<t

vlj(s)

)
+ (1− β2)(ΔλK

l
j(t))

2 (1.25)

v̂lj(t) =
vlj(t)

1− β2
t (1.26)

Bringing all components of the update rule together, the quantum NADAM update
rule for DQNNs can be written as:

U l
j(t+ ε) = eiεΔW l

j (t)U l
j(t) (1.27)

ΔW l
j(t) =

Δ̃W l
j(t)√

v̂lj(t) + δ

=
1√

v̂lj(t) + δ

(
β1m̂t+1 +

1− β1

1− β1
tK

l
j(t)

)
(1.28)

where δ is a small scalar to regularize possible cases of division by zero. The direct
equivalence between the classical and quantum NADAM update rule in equations 1.4
and 1.28 respectively, is straightforward.



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 29

1.3 What are the promises of quantum machine learning?

Before applying the QNN model to a concrete task, we discuss some questions underlying
their use and design, both from a computer scientist and physicist perspective. In the
collective imagination, machine learning is associated with the field of big data. This
is the greed of the current deep learning algorithms for vast data sets to learn faster
and better. For some computer scientists and industrial purposes, this is a challenge.
Applying models with up to millions of parameters to extensive data is equivalent to
implementing linear algebraic operations on high dimensional data vectors and param-
eter matrices. Therefore, even some simple models on paper are hard to implement at
large scales. They have a long training time, and entail a massive amount of computa-
tional power, as the “quantum” Netflix algorithm for content recommendations, based
on the well-known principal component algorithm that takes a whole day to update its
parameters [43].

Therefore, quantum computing and the perspectives it opens for machine learning,
trigger hopes in the community to bypass this scaling issue, by providing the so-called
quantum advantage. Though this concept is not limited, QML is listed among the
promising candidates to prove a hierarchy between classical and quantum information
processing techniques. This raises the question: what does it mean to be better for
algorithms or computing platforms? In the literature, authors often claim that “speed-
ups” are expected by using quantum processing for entire algorithms or their subroutines
[44]. The formalism of computational complexity is a reference to tackle these questions
that constitute the “benchmarking problem” in [45]. For this purpose, robust measures
must be developed to adequately compare quantum and classical models on an equal
footing, ideally in the most general way, or more realistically, with the best known
algorithms on both sides.

Thanks to the possibility in quantum mechanics to represent data in superposition
states, it is believed that QML models can deal with many data points simultaneously,
instead of looking at them one at a time [27]. This has already been shown, in theory,
with the help of the so-called qBLAS (quantum Basic Linear Algorithm Subroutines),
such as the Fourier transform mentioned earlier or the HHL (Harrow, Hassidim, Lloyd)
algorithm [46] to solve sparse linear systems. The native formulation of quantum me-
chanics with linear algebra makes it suitable to embed machine learning problems. When
provided with enough non-linearity, not only should the computation time be reduced,
but more complex patterns hidden in the data could also be discovered.

The latter aspect makes QML particularly attractive to the physics community. In-
deed, training quantum models on quantum data, as generated from experiments, can
help find more complex patterns underlying the outcomes and discover new features
of quantum mechanics. Fundamentally practical applications entail directly simulating
complex quantum systems with QML models. For instance, the Variational Quantum
Eigensolver (VQE) [34] has become a practice in condensed matter physics and quan-
tum chemistry, and builds upon the VQA approach of QML to analyze and discover
new molecules and their ground states. Moreover, the formalism of some QML models



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 30

makes them particularly suitable to implement on existing, special-purpose quantum
processors such as quantum annealers, that offer a large number of noisy qubits [45].
These experiments give a glimpse into the future abilities of QML.

Nevertheless, even though it has already become desirable for industrial and financial
applications [47], the bright future of QML is shadowed by the lack of knowledge about
these models. The implementations on imperfect hardware provide only limited insights
into their actual abilities. Some unexpected behaviors may occur when scaling up to more
significant instances that are out of reach with the current NISQ devices. Furthermore,
the theoretical formalism for QML is still in its early steps. For example, the precise
role of quantum properties such as coherence and entanglement remains unclear. The
analysis of quantum models lies at the core of elaborating powerful and relevant applica-
tions. Fundamental knowledge about QML models may result in a proof (or refutation)
of quantum advantage in machine learning. For example, even though linear algebra is
native to quantum mechanics, the non-linearity required to achieve QNN is non-trivial
and must be carefully included in the models. As in classical machine learning, the
tuning of hyperparameters often relies on experience and test-and-trial approaches. An-
other concern is the presence of barren plateaus in the cost landscape. They originate
from the vanishing gradients and cause the training to fail. The last years have seen the
rise of active research to determine their connections with the choice of ansätze in VQAs
and the properties of the cost function. Bounds on the generalization and trainabil-
ity of quantum models were derived using tools of optimal control theory: locality and
expressivity were pointed out as mechanisms reducing barren plateaus [40, 41, 38, 37].
The birth of this field of research represents an opportunity for discoveries in quantum
information theory and the development of new tools to describe quantum phenomena.

Some computer scientists argue that the scaling problem in classical methods can be
solved thanks to cloud computing and supercomputing. Instead, they pinpoint adversary
attacks as the weak point of machine learning models [48, 49, 50], to the extent that an
undetectable deviation from the original data distribution leads to drastically different
outcomes. For example, it can cause two almost indistinguishable points to be classified
under various labels in a classification task. The underlying problem lies in selecting and
filtering the valuable features to identify patterns within the data. The model should dis-
card those that are too sensitive to noisy distributions. For this purpose, the robustness
of quantum classification models has been analyzed using tools of quantum hypothesis
testing in [51], proving that an upper bound can be formulated in QML classification al-
gorithms regarding the achievability of robustness against adversary attacks. This result
would hint that quantum models suffer from the same shortcoming as classical models.

Until now, the absence of a quantum device with the correct scale and connectivity
represents the bottleneck to the blossom of QML and the proof of its superiority over
traditional methods. Moreover, fully quantum models such as the DQNN introduced
in 1.2.2 often require storing and accessing quantum information in memory, as for
the efficient implementation of the backpropagation algorithm, for example. For this



CHAPTER 1. FROM CLASSICAL TO QUANTUM: INTRODUCTION TO
QUANTUM MACHINE LEARNING 31

reason, the availability of a stable QRAM (Quantum Random Access Memory) is a
pre-requirement to reach the complexity bounds derived from the theory.

Furthermore, comparing classical and quantum machine learning reveals obstacles
inherent to the latter’s quantum nature. The input and output data must be expressed
explicitly and in the same language for a fair comparison. [45] discusses this question
and points out the so-called “input” and “output” problems. The former refers to the
necessity to efficiently embed classical data in a quantum object to apply QML methods.
According to the data, techniques exist that encode data in basis states and amplitudes
or tune angles in quantum circuits. Nevertheless, these methods scale poorly with the
size of the data sets, thereby canceling the speed-up expected from the QML algorithm.
Furthermore, it was found in [52] where a Fourier-inspired encoding is designed, that
despite the universality of the model chosen, the encoding can limit the expressivity of
the model to a small subset of functions. As its name suggests, the output problem
is related to the read-outs of the outcomes of the algorithm. Indeed, [53] warns about
the accessibility of the information contained in the outputs of QML algorithms. For
example, the collapse of the quantum states once measured erases part of its information.
Suppose the solution to a task is encoded in the amplitudes of a superposition state. In
that case, the algorithm must either be repeated many times, or the outputs must be
processed further, quantum-mechanically or classically, to reconstruct the information.
For example, if state tomography is required, the number of repetitions of the experiment
and measurements scales exponentially with the size of the data. Once more, read-out
cancels out the complexity reduction announced based on the QML algorithm only.



Chapter 2

Automate denoising: the
Quantum Autoencoder

2.1 Why is quantum denoising needed?

2.1.1 Noise on quantum computers

The concept of denoising originates in classical computing, and is a task many machine
learning models are designed for: it aims at cleaning some data from diverse sources
of noise. It is particularly developed in the realm of speech [54, 55, 56] and image [57]
recognition. However, it is also increasingly used outside computer science, to filter out
the noise in experimental data such as the data collected by the LIGO [58]. Indeed, these
data sets cannot escape the presence of a background that hides the properties probed
with the experiment. As a result, the goal of denoising is to remove the unwanted
features of a data set, without harming the important ones. This implies that the
machine learning algorithm can differentiate between the relevant and irrelevant parts
of the data. As a by-product, it may identify new parasitic elements that were not
included in hand-made denoising algorithms.

Moving to quantum computing, denoising techniques play a crucial role in better
available NISQ devices. The average error rate for two-qubit gates in state-of-the-art
is of order 10−1 for quantum processors. In contrast, classical computers reach lower
rates by 16 orders of magnitude, about 10−17 [59]. In the latter, despite some slight
noise affecting the information processing devices, computations are possible, and errors
are too rare to be significant. The errors per qubit accumulate when scaling up the
number of qubits in a quantum processor. Eventually, the outputs become too faulty.
In this respect, the high quantum error rates represent a critical obstacle to realizing
programmable quantum computers. The quantum error correction (QEC) codes known
to this date require a significant overhead of quantum and classical resources. To pro-
tect quantum information, it is encoded in logical qubits. The latter is composed of
multiple physical qubits and is a pre-requisite for many QEC codes [60, 61, 62, 63, 64].
Moreover, identifying the error demands building look-up tables whose size scales ex-

32



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 33

ponentially with the number of qubits involved. Operational challenges such as fast
classical-quantum communication are currently central in implementing such codes. It
enables real-time post-processing of the measurement outcomes to adapt the recovery
operations in error correction codes [65].

Noise in quantum processors can be manifested in two ways. First, as Shor explains
in [8], the quantumness of states is both a blessing and a curse. While superposition and
entanglement can lead to the superiority of ideal quantum devices over Turing computa-
tion models, they are both extraordinarily delicate and short-lived. Decoherence destroys
information stored in superpositions. This can be modeled by letting the qubits interact
with other parasitic quantum systems in the environment, which perform measurements
on the information units. In addition, quantum computing is connected to analog com-
putation models: the gates in a quantum circuit depend on continuous parameters such
as rotation angles. Consequently, their perfect implementation is almost impossible.
This situation is aggravated by the accumulation of such imprecisions that considerably
shortens the accessible circuits and computation times, and decreases the fidelity of the
output states. Quantum errors can also propagate and affect other qubits through gates.
For example, when noise impinges on the control qubit of a Controlled-NOT gate, it also
makes the target qubit’s state noisy.

Second, classical methods employed to handle noise generally rely on the duplication
of information. If the same features are encoded on multiple bits and an error deterio-
rates one of them, the ideal features can be recovered by a simple majority rule on the
copies. However, the no-cloning theorem [66] forbids such duplication in the quantum
framework, and a substitute encoding must be found to “replicate” quantum information
[60, 61, 62, 63, 64]. Furthermore, qubits have more degrees of freedom than classical bits
since both amplitudes and phases define the superpositions. This apparent flexibility to
store information can jeopardize the states, for noise affects them more diversely. It acts
on the two types of degrees of freedom cumulatively, triggering bit-flips and phase noise
simultaneously. Unfortunately, building a quantum error correction code that covers
multiple error schemes at the same time requires an overhead in quantum resources,
lower bounded by the quantum Hamming bound [67].

To summarize, noise sources affecting quantum hardware can stem from the imperfec-
tion of the control of the qubit, such as the physical processes underlying the realization
of a gate. Diverse spurious interactions with an environment can lead to faulty states,
including but not restricted to qubit-qubit interactions, connections with a thermal bath
causing thermal excitations, and imperfect modeling of qubits by ignoring excited states
out of the computational space. Even though error correction codes are already available
in theory, their implementation is intended for more evolved quantum hardware that en-
compasses more qubits and has smaller gate and measurement error rates. Meanwhile,
error mitigation and noise reduction techniques are constantly proposed to render the
hardware fault-tolerant.



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 34

2.1.2 Design protocols for noise

The conception of quantum denoising protocols is generally tricky because it relies on
two expensive steps. First, measures are employed to quantify as many noise sources
on the hardware as possible. We refer to this process as the characterization task.
Second, the measurement outcomes from the characterization are re-employed to find a
protocol, classical, quantum, or hybrid, able to dampen the effects of the experimental
noise to a significant extent. Both sides of the protocol are related to Characterization,
Verification, and Validation (CVV). A summary diagram is shown in figure 2.1. We now
take a look at both sub-tasks separately.

Figure 2.1: The design of denoising protocols is a challenging task on the current NISQ
devices. A non-exhaustive list of possible noise sources is shown in red and includes
noise due to the hardware control and to the physical system itself with the interactions
it permits. Because these noise sources are numerous and some of them are unknown,
noise correction and mitigation are difficult. Such techniques can be divided into two sub-
tasks: the device must be characterized to identify noise sources. Based on quantitative
and qualitative measures, algorithms and protocols can be found to dampen the observed
noise.

2.1.2.1 Noise characterization

In the characterization step, the challenge is to build a complete measure that will pro-
vide significant insights about and differentiate between various sources of noise, whether
they are systematic or not, coherent or incoherent. In addition, a desirable feature of



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 35

these measures is the generalization to all types of hardware. It can compare different
devices and conclude their technological evolution. In the NISQ era, the nature of noise
varies from one device to another, and some platforms are more suitable than others
for implementing certain tasks. Therefore, instead of seeking a general evaluation of
the hardware for universal programming, task-oriented benchmarking brings to light the
advantages of each device for a particular set of tasks. A bad score with the general
approach can hide uneven weights among noise sources that cause only a subset of gates
to be faulty. The device performs well for applications that use only the robust set of
gates. Hence, task-oriented benchmarking can open opportunities to experiment with
quantum algorithms despite the presence of noise on some gates [68, 69].

More general techniques have been developed that are transferable to any task.
They support the evolution of quantum computers in the direction of a universally
programmable device rather than a task-specific platform. The general intuition behind
such measures is to compare the results of a particular circuit run on quantum hard-
ware with the ideally expected ones. A corollary is that such perfect outputs must be
calculated outside the quantum device. Hence, the circuit must be simulatable classi-
cally. This consequence restricts the types of gates and the number of qubits that can be
leveraged and evaluated. In contrast, even though process tomography does not neces-
sarily require the classical outcome of some circuit, it scales exponentially in the number
of qubits, and it remains sensitive to State Preparation and Measurement Errors, also
known as SPAM.

Therefore, Clifford gates circuits play a significant role in implementing general
benchmarking scenarios. According to Gottesman-Knill theorem [70], Clifford gates
can be simulated using only classical resources. Hence, such circuits fulfill the primary
constraint explained above.

Randomized benchmarking [71, 72] employs this observation to derive a parameter α
that estimates some error probability resulting in the Error Per Clifford gate rate (EPC),
and makes it possible to evaluate the gates classically. A quantum circuit is designed
out of m + 1 randomized Clifford gates {Cij}mj=1, such that

∏m+1
j=1 Cij = I, where the

index i designates a gate in the Clifford group. The noiseless channel evolves the initial
state in m steps and returns it to its original state in the m + 1-th step. The noise is
modeled by applying a noise superoperator Λij , which can be different for each gate i
and step j. The noisy circuit is built out of the gates {Λij (Cij )}mj=1. Any noise affecting
a gate can be represented universally using the depolarizing channel [71] described by a
parameter α as:

ρout = (1− α)
I
2n

+ αρin (2.1)

with the same value of α for all m gates. I/2n stands for the maximally mixed state of n
qubits. After running the random circuits made by combining different gates, a POVM
measurement E|Ψ∗〉 is performed, ideally corresponding to the state obtained without
noise E|Ψ∗〉 = |Ψ∗〉〈Ψ∗|. This helps to define the process fidelity F:

F (m, |Ψ∗〉) = Tr
{
E|Ψ∗〉Sm(ρin)

}
= 〈Ψ|Sm(ρin)|Ψ∗〉 (2.2)



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 36

where the quantum map Sm corresponds to the random Clifford channel averaged over
the many realizations, and the right hand-side of Eq 2.2 is the fidelity with the ini-
tial state. By repeating these steps for different circuit depths m, the fidelity can be
extrapolated as a function of m and α:

F (m, |Ψ∗〉) = A0 · αm +B0. (2.3)

Thanks to the determination of α, the Error Per Clifford (EPC) is calculated for n
qubits:

EPC =
2n − 1

2n
(1− α). (2.4)

In comparison, quantum state tomography repeatedly projects states on a basis and
averages the outcomes over many trials. Therefore, it is sensitive to SPAM errors. RB
is robust to these errors thanks to the extra parameters A0 and B0 that capture them.
Because it is tractable and tolerates measurement and preparation errors, RB is an
adaptable industrial measure to characterize devices. However, it remains too limited
to understand larger systems. Firstly, its implementation is limited to 6-qubit circuits.
Secondly, it can only provide partial information about multi-qubit gates. For example,
it cannot reflect the noise accumulated in the idling time when some qubits wait for
the next round of gates while others are processed. Coherent and incoherent sources
of noise are not distinguishable. The coherent noise refers to the unitary noise sources
stemming, for example, from miscalibrations of control pulses on a superconducting chip.
At the same time, the latter describes stochastic noise events that lead to decoherence
[73]. Even though methods involving the classical simulation of circuits are inefficient
on large scales, they still catch the community’s interest in designing unified measures
for the current devices.

The Quantum Volume [74] uses randomly generated circuits as well. However, the
building blocks are alternating layers of two-qubit gates. This measure is particularly
attractive to the community because it bears a useful operational meaning with direct
consequences on the hardware and its evolution. It gives predictions on the algorithms
it can run. Namely, it describes the size of the largest square circuit that a device can
run fault-tolerantly: the size corresponds interchangeably to the number of qubits and
the depth of the circuit.

Recently, alternative benchmarking methods have been proposed [75] using hardware-
efficient gates. The outputs are binned according to their probability after performing
classical and quantum simulations of multiple circuits. The Binned Output Generation
(BOG) method can distinguish between coherent and incoherent types of errors. It can
also evaluate error rates on multi-qubit gates without having to break them down into
2-qubit gates [75]. This protocol has revealed the importance of new behaviors of errors
stemming from considering multiple qubits together. Therefore, it provides more de-
tailed information about the underlying noise mechanisms affecting the hardware during
a real quantum algorithm to improve future devices.



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 37

2.1.2.2 Noise correction

After estimating the noise impinging on a quantum device, protocols must be designed
to bring the outputs closer to the noiseless expected states. As mentioned in the opening
of this section, quantum error correction codes have been designed and can face both bit-
and phase-flip errors. However, they require many physical qubits to encode the logical
ones. They must operate with quick and clean gates to avoid decoherence. They should
still allow classical-quantum communication to process measurements and adapt their
gates accordingly. QEC codes are, therefore, often destined for the next era of quantum
computing with more qubits and better gates fidelities. Meanwhile, noise reduction
and error mitigation on the current NISQ devices are promising to prove a quantum
advantage on these early noisy machines. But they come along with their difficulties.

Error mitigation techniques can apprehend the problem from two angles. It can
attempt to modify a general circuit to minimize the recurrence of noisy processes in
the computation. For example, suitable compiling associated with machine learning
techniques can optimize the gates of a circuit [76, 77]. Such circuit optimization can
be realized directly on a quantum device using VQA to reduce the depth of the circuit
[33]. Indeed, the least gates in a circuit, the slightest noise is injected due to the noise
in gates themselves and unwanted interactions during the idling times.

From another point of view, noise cancelation can directly target the outputs of
circuits. The noiseless expectations values can be deduced via extrapolation based on
some data. Two popular methods are currently the zero-noise extrapolation (ZNE)
[78, 79] and the Clifford data regression (CDR)[80]. In the former, the data consists of
the same circuit with variable noise intensities controlled by some parameter ε. This
can be achieved by increasing the gate times, thereby extending exposure to unwanted
interactions for decoherence. The so-called fixed identity insertion method varies noise
by extending circuits with identity operations. They are formulated as two CNOT gates
applied one after another. While this extension leaves the states unchanged in the ideal
circuit, the CNOT gates corrupt them. The noise parameter is then controlled by adding
more or less of these identity blocks in the circuit. Using a Richardson extrapolation,
an estimate for the expectation value μ̂ of the observable of interest is deduced at zero
noise intensity. More concretely, to obtain the estimation of the expectation value μ in
the noise-free case, different noise levels {c0, · · · , cn} such that cj < cj+1 ∀j define the
noise amplification εcj implemented in the noisy device. For each run with noise level
cj , an estimate μ̂j is calculated. The extrapolation yields the approximate expectation
value in the noise-free scenario:

μ̂ =

n∑
j=0

γjμ̂j (2.5)

where the coefficients γj are constrained as follows:
∑n

j=0 γj = 1 and
∑n

j=0 γjc
k
j =

0, ∀k ∈ {1, · · · , n}. The downsides of this technique are that it entails running the
same circuit repeatedly to gather enough statistics on the outputs in order to build
the expectation values at each noise level. In addition, the form of the final result is
usually highly non-trivial and difficult to model with low-degree polynomials. Despite a



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 38

relatively good scaling, the accuracy of the estimations drops as the accessible levels of
noise rise far away from zero intensity.

Instead of varying the noise intensity in the same circuit, CDR generates Clifford
circuits that can be simulated classically, and that resemble the initial non-Clifford one.
A linear regression is then performed with a simple least-squares optimization on two
parameters a1, a2, such that the noise mitigated expectation value μ̂ takes the form:

μ̂ = f(μ̃) = a1μ̃+ a2 (2.6)

where μ̃ is the noisy estimate. In practice, each of the m Clifford is simulated twice,
classically and on the device, with ideal outputs {yi} and the noisy outputs {xi}. The
parameters for the estimation of found by minimizing the mean-squared error:

(a1, a2) = arg min
a1,a2

m∑
i=1

[yi − (a1xi + a2)]
2. (2.7)

As in the case of randomized benchmarking, the collection of data necessary to obtain
precise estimates becomes an obstacle to scaling this method to larger circuits. ZNE and
CDR have been combined in the so-called variable noise CDR (vnCDR) technique [81]
to extract the most advantageous features of the data used in each method separately.

This brief and incomplete overview of noise mitigation methods shows how machine
learning can improve the next generation of NISQ devices. All techniques mentioned
above rely on data to learn a better version of the circuits or their outputs to reach
noise-free estimates of outputs. Their implementation exclusively on quantum hardware
would eliminate potentially expensive post-processing and reduce decoherence during
the idling times it can cause. Therefore, we attempt to use the QML models introduced
in section 1.2.2 to realize such a noise cancellation protocol.

2.2 Apply machine learning to the concrete task of
denoising quantum states

One may argue that a computational model such as machine learning loses meaning if
it cannot contribute to finding the solution to any problem. Therefore, the main focus
of this work is the design of a QNN to facilitate the denoising of certain states on a
quantum device. As the previous section argues, this task is mainly demanded to scale
up and eliminate noise impinging on current NISQ devices. It may pave the road to the
next era of fault-tolerant quantum computing. We introduce a model that goes a step
closer to efficient noise cancellation: the Quantum Autoencoder.

2.2.1 The autoencoder: FFNN for denoising

QML algorithms often draw inspiration from classical models and make them compatible
with quantum platforms. The invention of quantum perceptrons, described in 1.2.2



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 39

Figure 2.2: The autoencoder is a feed-forward neural network, divided into two sub-
systems trained together. On the left, the encoder reads the data to extract patterns
that define it. On the left, the decoder can reconstruct the inputs in the output layer
from the information previously encoded. The intermediate representation of the data
is often called the latent vector and lives in the latent or code space. To guarantee that
the training results in non-trivial mappings, the undercomplete architecture is depicted
here: the dimension of the latent space is smaller than that of the actual inputs

supports this approach. Let us discuss the example of an FFNN which can be used in
an autoencoder to denoise quantum states.

The autoencoder is a well-studied model and has witnessed the emergence of deep
learning from its early steps onwards [82, 83, 84]. Figure 2.2 describes the autoencoder
as a feed-forward neural network that can be separated into two primary constituents:
the encoder and the decoder. Their role becomes clear when we look closer at the prob-
lem it solves: the network is trained to reproduce its inputs but must avoid learning an
identity map. In other words, the network must learn the essential components of the
training data to be able to reproduce it. For this purpose, the encoder has the mission
to find a suitable way to represent the inputs. It maps them to a different space, while
the decoder reads and translates them back to their original form. Several methods can
drive the network away from the trivial map, while processing the inputs until the out-



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 40

put layer, going through an intermediate representation [17]: the cost function can be
regularized to penalize such a scenario, perturbing the training data by a small amount
forces the network to extract the characteristic information for the unspoiled distribution
and dimension variations in the architecture can prevent leaving the inputs untouched
in the forward pass. Our study focuses on the latter technique, particularly when the
input space is larger than the intermediate representation space. This bottleneck lay-
out is referred to as the undercomplete autoencoder. In classical applications [85, 86],
many shallow autoencoders are often stacked and trained together. This accelerates the
training by pre-training the weights on smaller parts of the network, thereby initializing
them closer to their optimized value for the autoencoder itself.

The task the autoencoder is trained for is usually less desired than its by-product,
the feature extraction. Already in their early moments, autoencoders were shown to be
equivalent to Principal Component Algorithms [83, 87]. These techniques earned great
attention in the realm of data compression since they grasp the main axes of variations
within the data sets: the features extracted in the Dlatent-dimensional latent space are
similar to theDlatent first main singular vectors resulting from the PCA when the decoder
is set to be linear. The loss function is the mean square error. The introduction of non-
linearity in the encoder and decoder produces a generalization of the PCA. Still, it must
be constrained, so the network does not learn a simple memory and directly maps data
points from indices without processing characteristic features.

The reproduction task is mediated by encoding an internal representation of the
inputs in the so-called latent or code space. It empowers the autoencoder in various
applications, such as data compression or information retrieval. For example, autoen-
coders contribute to the implementation of generative models [17]. Instead of finding an
underlying distribution to understand the data, these models aim at generating a new
distribution that reproduces it. The characteristics of this distribution shine light on
the complex features hidden in the data. A popular generative model is the Generative
Adversarial Network (GAN) [11]. This technique has earned great attention in the last
years, and research in this field has been flourishing with some applications to physics
[12]. It is expected to identify complex natural phenomena that are not yet accessible to
the human mind, such as entanglement characteristics. The latent variable produced by
the autoencoder is an unknown intermediate vector of features and serves as a basis to
define probability distributions [17]. This example shows the importance of the latent
vector in the autoencoder. More generally, the encoding found by the autoencoder can
be leveraged to boost other techniques, such as classification or compression of data.

Thanks to the intermediate representation designed by the encoder, an algorithm
trained to classify data can do so while relying on sharper features. Reference [88] showed
that autoencoders tend to reorganize inputs in space: points that are semantically related
to each other are mapped in the same neighborhood with similar vectors. Consequently,
the allocation of latent vectors to different parts of code space already reflects their
similarity and labels. The optimized encoding facilitates the classification task. In
undercomplete autoencoders, this efficient compressed representation can be leveraged
to improve memories. For this purpose, deeper networks, despite potentially harder



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 41

training, can yield better data compression [89].

Figure 2.3: The denoising autoencoder is a variation of the standard autoencoder. Before
the training samples are read, a stochastic noise process represented by a function N(x)
of its inputs, or equivalently as a conditional probability distribution q(x̃|x). After
the corruption step, the autoencoder is trained by applying the encoder and decoder
functions E and D respectively, yielding successively the intermediate representation h
and the reconstruction x′. The training deviates from the traditional approach by using
both ideal and intact data sample to calculate the cost function C(x,D(E(x))).

However, to reduce noise on quantum devices, the so-called “denoising autoencoder”
[90, 86] is the most promising. As shown in figure 2.3, instead of learning to reproduce
exactly its input data x, a step is added before the input layer to let the training
samples undergo a stochastic corruption process, x̃ = N(x), such as complete erasure of
some vector components or Gaussian noise. From this imperfect training data set, it is
expected that the network will capture robust characteristics in the inputs. They remain
invariant under the application of noise to recover the noiseless states. The loss function
is expressed with respect to the noiseless inputs and the outputs recovered from the noisy
samples. The loss function, in turn, determines the gradients in the backpropagation
algorithm. This way, it educates the network about the elimination of noise. These
denoising autoencoders are a common practice in classical machine learning. Early
results showed that they can denoise MNIST data set successfully when it is polluted
by an erasure noise process [90]. In this implementation, the features retained in the
latent representation have a better quality than those obtained otherwise. This way, the
autoencoders improve the performance of subsequent networks in classification tasks.
Similarly, the same architecture is applied to sound recognition, where [85] filters noise
out of recorded phone conversations in Cantonese.

2.2.2 Build a Quantum Autoencoder (QAE)

2.2.2.1 The QAE architecture

The Dissipative Quantum Neural Networks in section 1.2 become the basis for the quan-
tum denoising model we propose. Indeed, the quantum autoencoder (QAE) has been
one of the first network architectures to be implemented using QNN [91]. However, in
this setting, the QAE was used for quantum data compression and to re-discover the



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 42

quantum teleportation protocol between two agents. The QAE is therefore not only
able to tackle classical tasks, but it can solve purely quantum problems. Feldmann and
Bondarenko first achieved the realization of denoising QAE with DQNNs in [42].

Figure 2.4: The quantum autoencoder is embedded in the dissipative QNN model. The
qubits represent the neurons and are organized in layers. We allow for full connectivity
between two successive layers, i.e. each layer of unitaries encompasses Nl+1 (Nl + 1)-
dimensional unitary couplings. To guarantee a non-trivial quantum map, the denoising
QAE is undercomplete, and the dimension of latent space is smaller than the inputs’
Hilbert space: 4-qubit states are compressed in a single qubit.

The denoising autoencoder is organized in layers of qubits whose width decreases until
the latent space and increases until the original dimension is recovered. This symmetric
layout simulates undercomplete autoencoders and guarantees that the network does
not learn a trivial map. The encoder, shown in red, implements a quantum map E(•)
that compresses the Nin-dimensional inputs onto the Nlatent-dimensional latent space.
The latent state is then converted back to its original format by the decoder in blue
with the map D(•). The QAE implements a reversible compression of the input data.
Compared to VQA formulations of the QAE where the decoder is often set to be the
adjoint of the encoder D(•) = E†(•) [92, 93, 94, 95], the encoder and decoder are trained
simultaneously. During the learning phase, the distinction between the two channels
provides more expressivity and resilience to the operations that can be reached through
optimization. In addition, maximal connectivity between successive layers is favored.
The unitary channel between two successive layers l and l + 1 contains Nl+1 unitaries
acting on Nl + 1 qubits. In simulations of the network, the maximum number of qubits
does not exceed maxl Nl+Nl+1, for l ∈ [1, L−1], as long as reinitialization of the qubits



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 43

is available on the device.

2.2.2.2 Learn denoising with the QAE

The application of the QAE takes place in 6 steps:

1. The input layer is initialized with the data. Let us consider such a state preparation
for both a quantum implementation and the classical simulation:

a) When the network is running on a quantum computer, the inputs ρin are
prepared on a quantum device to its best accuracy. As such, it already in-
cludes the effect of noise channels and the ideal state ρ∗ = |Ψ∗〉〈Ψ∗| cannot
be realized. We note ρin = ρ̃in, where ρ̃in is the altered state.

b) When the network is simulated numerically on a classical computer, the ideal
state ρ∗ is first prepared. It is then distorted by applying a noise channel,
whose intensity is tuned by a noise parameter p:

ρin = N (ρ∗, p) (2.8)

2. Subsequently, the quantum map corresponding to the encoder propagates inputs
forward until the latent space at layer k is reached:

ρlatent = E(ρin)
= Trl=1,··· ,k−1

{∏1
l=k−1 U l

(
ρin ⊗ |0〉〈0|⊗

∑k
l=2 Nl

)∏k−1
l=1 U l†

} (2.9)

In the first learning step, a random quantum map is applied.

3. From the information contained in the latent state only, the decoder reconstructs
an output that comes closer to the perfect state ρ∗ as the training progresses. The
output state is then:

ρout = D(E(ρin))
=

{
D(E(ρ̃in)) when implemented on a quantum computer

D(E(N (ρ∗, p))) when simulated numerically on a classical computer.

(2.10)

4. Repeat steps (1-3) for each state ρinx in the training set and collect the outputs for
the update of the parameters.

5. Implement the parameter update following the training rule in 1.2.2.2.

6. Repeat steps (1-4) until a convergence criterion is reached. It can be a fixed
number Nrounds of training rounds. Alternatively, the algorithm can stop when the
learning curve is stable enough, and the update does not decrease the cost function
anymore.



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 44

2.2.2.3 What is the training data?

In contrast to the QAE for data compression, the denoising QAE does not have access
to the ideal state in equation 2.10 for each training state. Recalling the initial clas-
sification of machine learning techniques shifts the QAE from the supervised type to
the unsupervised one. Even though we are still training the QAE with pairs of states,
one for the inputs and one to represent the desired states, target states become noisy
too and indicate partial directions for completing the task. This difference will become
important in section 3.3. Nevertheless, the training rule 1.19 is kept identical. The only
difference lies in the initialization of the output layer as an imperfect target state in the
definition of M l

j(t). Therefore, we implement an approximate version of the supervised
learning algorithm in equation 1.19 for an unsupervised task.

In addition, this approximation gives rise to subtleties when monitoring the network’s
learning process. For this reason, authors in [42] establish a distinction between two
different functions. The cost function is defined as the fidelity of the outputs with the

noisy target states σ̃out
x :

Fcost =
1

N

N∑
x=1

Tr
{
ρoutx σ̃out

x

}
. (2.11)

In contrast, to evaluate the performance of the QAE, a validation function is proposed
that compares the outputs with the ideal noiseless target state σ∗

x:

Fval =
1

N

N∑
x=1

Tr
{
ρoutx σ̃∗

x

}
. (2.12)

The former reflects the learning progress during the training phase where ideal states are
unavailable. The latter is computed in the testing phase and evaluates the generaliza-
tion of the map found by the network to different data sets. For numerical simulations,
both of them can be used interchangeably during the training: they possess the same
convergence behavior, but the saturation value will differ. When using the cost function
for finite noise parameters p, the best achievable fidelity is lower than 1 and decreases
with p. With the validation function, a successful training must tend to 1 at the end
of the training. For the denoising QAE, the update rule in equation 1.19 is derived
from the cost function Fcost with noisy target states. Thanks to its explicit formula-
tion in terms of layers of quantum channels, we need not compute the cost function
to obtain the parameter matrices. Therefore, the training progress can be followed by
both cost and validation functions interchangeably, without interfering with the updates.

After describing the core of the algorithm itself, we clarify the content of the data set.
For a quantum version of the denoising autoencoder, the training data is composed of
pure quantum states selected to solve the task. To reproduce and understand the results
of [42], the training set is made of Ndata Greenberger-Horne-Zeilinger (GHZ) states [96]
on Nin qubits:

|ΨGHZ〉 = |00 · · · 0〉+ |11 · · · 1〉√
2

. (2.13)



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 45

The preparation of these states on a quantum device is of particular interest from various
points of view. They constitute a generalization of Bell states and represent a quantum
resource for strong entanglement. Moreover, they maximize the quantum bound of the
Mermin polynomials1 [97, 98]. They are the perfect states to evaluate the possibility of
creating entanglement and quantify it on the quantum hardware available. It has been
done on 5-qubit, and 53-qubit superconducting chips [99, 100]. Their high entanglement
also makes them perfect resources for quantum algorithms such as quantum teleportation
and communication [101], quantum computing [102], quantum metrology [103], quantum
information [104]...

For the following numerical simulations, noise is modeled by a noise channel N (•, p).
In particular, we train the network to correct the bit-flip channel, whose intensity is
tuned by the probability p for each independent qubit to be flipped. The GHZ-states
ρGHZ = |ΨGHZ〉〈ΨGHZ| undergoing the effects of the bit-flip channel are then defined as:

ρin = NNin(· · · N1(ρGHZ, p))

where Ni(ρ, p) = (1− p) IiρIi + pXiρXi

(2.14)

According to this definition of the average effect of the bit-flip channel on the inputs, the
density matrices for the noise strengths p and 1− p are identical, due to the symmetry
of the GHZ states. Therefore, when controlling the generalization of denoising, it is
sufficient to test for noise parameters p ≤ 0.5.

2.2.2.4 Numerical simulation of the QAE

To understand the interest of the denoising QAE, the network has been simulated nu-
merically. The code was written in two languages. We used Python as in [105]. With
the implementation of real hardware in mind, the code has been developed with the
pyquil library offered by Rigetti. In this language, users can create gates and circuits
that can be directly sent to their devices to test quantum algorithms. Similar to the orig-
inal approach [42], the Qetlab package on Matlab considerably accelerates the classical
simulations by optimizing quantum matrix operations. This makes simulations of larger
networks more efficient in investigating the behavior of larger input states. Nevertheless,
it cannot be compiled into the native language of quantum devices. Due to the length
of the training for deep networks, most simulations were run on the Jülich cluster.

To enable the reader to reproduce our results, we provide a short summary of the
parameters in the program. Unless mentioned otherwise, the network was trained on
200 training pairs of noisy GHZ-states. To ensure convergence of the cost function, 200
rounds of parameter updates were simulated. For the gradient descent, the NADAM
update rule in 1.28 was chosen to accelerate and stabilize the training. The momentum

1Mermin polynomials generalize Bell’s inequalities to any arbitrary amount of qubits in a determin-
istic way. The gap between the values of the polynomials under quantum and local reality hypotheses
is maximized by the GHZ-states. Consequently, Mermin inequalities refute the existence of local hidden
variables to instrument communication between states. They are evidence of the non-locality of quantum
states.



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 46

hyperparameter β1 was set to 0.8, and the variance hyperparameter β2 to 0.999. The
inverse learning rate λ = 1/η was 0.0175 and had to be adapted according to the number
of states in the training set.

2.3 What does a denoising QAE learn?

The network can be simulated numerically by completing a model for denoising QAE
trained with the NADAM rule to denoise GHZ-states. First, we attempt to reproduce
the results provided in the main reference [42].

2.3.1 Evolution of the training

In this first simulation, we aim to train a [4, 2, 1, 2, 4] network. We describe the structure
of the network layer by layer with the notation [N1, · · · , NL] where Nl designates the
number of qubits in layer l, or equivalently its width. This network is challenged to
reproduce 4-qubit GHZ-states on its output layer. Its training inputs were affected by
the bit-flip channel with noise intensities p ∈ [0, 0.5] described in equation 2.14.

To understand the evolution of the training and its learning progress, we draw the
objective function throughout the learning phase. For this purpose, we choose to look at
the validation function defined in 2.12 for a more intuitive interpretation. We remember
from the introduction to machine learning that the cost function is minimized. More
rigorously, the task in the denoising QAE is to minimize the infidelity of the output
state with its desired state, C(ρout, ρ∗) = 1 − Fval(ρ

out, ρ∗). However, for a more intu-
itive but strictly equivalent formulation, the objective function can employ the fidelity
C(ρout, ρ∗) = Fval(ρ

out, ρ∗) directly and maximize it instead. Since Fval ∈ [0, 1], a fidelity
close to 1 is the indicator of successful training and the output state is expected to re-
cover the ideal state accurately. In contrast, the lower the fidelity, the further apart the
target and the output states are. The fidelity can therefore serve as a distance metric
for QNNs. This quantity is still needed and debated to compare quantum and classical
neural networks.

The learning curves are presented in figure 2.5 over the range of bit-flip probabilities
per qubit p ∈ [0, 0.5]. They agree with those found in [42]. The graph shows a typical
behavior across probabilities. After an initial phase with strong gradients, the behavior
of fidelity changes and it plateaus at some fixed value. All learning curves for noise
intensities below p = 0.35 are superposed and follow the same exponential growth pattern
during the first 50 iterations until they stagnate at high fidelity, typically above 0.999.
This is evidence that the denoising QAE can learn the nature of the ideal states even
when its training data is mixed with polluted inputs. In contrast, past 35% of bit-flip
probability, the fidelity lands on finite values far below 1 after a possibly long-awaited
exponential rise or does not converge altogether. In both cases, the network’s outputs
cannot be used since there is no certainty that they are approximations of the ideal



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 47

Figure 2.5: Learning curve for a [4,2,1,2,4] network, trained with Matlab. We represent
the fidelity Fval of the denoised states with the ideal states. The inputs of the QAE
were spoiled with the bit-flip channel tuned with the noise parameter p. During the
early training steps, the fidelity rises exponentially and converges to some fidelity. As
the noise intensity increases beyond 30%, the cost function stagnates at lower values,
indicating that the network is unable to recover the ideal state.

states. We refer to the last noise intensity for which the inputs can be denoised as the
“tolerance threshold” for the network.

Looking closely at the objective function, we realize that the fidelity can drop for two
reasons. First, the network produces an imperfect state for any input, noisy or ideal.
Alternatively, the network cannot recover the ideal state for only some noise realizations.
The inspection of the outputs of the network in the strong noise regime reveals that when
fidelity converges to intermediate values as for p = 0.4 in figure 2.5, most states are
denoised, and only a subset of the possible noise realization remains faulty. In contrast,
all the states are mapped to flawed states when the fidelity converges to zero, as we see
in later sections. In either case, the imperfect outputs are not any random state, but
they usually reproduce the symmetry of the noisy GHZ states and even particular noise
realizations found in the training set.



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 48

2.3.2 Reproducibility of the results

Even though we obtained learning curves in figure 2.5 that are consistent with the
literature [42], the reproduction of the tolerance threshold gives rise to variations. Indeed,
the network is sensitive to the initialization conditions. First, random unitaries are
selected to provide an initial proposition for the interaction parameters to update in the
network. As seen from the learning curve, where the same initial set of unitaries was
utilized for all probabilities, the initial fidelity is below 10%, indicating that the map
implemented initially is far from the solution. Training the network with various sets of
initial parameters should change the value of the fidelity after convergence in the strong
noise regime. However, we expect that the tolerance threshold is equal for all of them.
However, the initialization of the interactions does influence the network’s performance,
the leading cause for variations being the composition of the training set.

Algorithm 1 Generation of the training states

for x ∈ {1, . . . , Ndata} do
|Ψx〉 ← |GHZ〉
R = [r1, r2, . . . , rNin ] � Sample a random number out of U(0, 1) for each qubit
for q ∈ {1, . . . , Nin} do � Apply noise on each qubit

if rq ≤ p then
|Ψx〉 ← Xq |Ψx〉

else
|Ψx〉 ← Iq|Ψx〉

end if
end for

end for

Indeed, the translation of the equation for the bit-flip channel in 2.14 provides an
averaged appreciation of the effects of noise in the limit where an infinite amount of
states are considered. This description, however, is incompatible with the training data
set being composed of a finite number of discrete realizations of the channel, both in the
numerical simulations and on the hardware. Instead of states with amplitudes depending
on the noise parameter p, the training samples only reflect the effects of some qubits
being flipped or not. For example, the state X1|GHZ〉 = 1/

√
2(|1000〉+ |0111〉) can be

identified as noisy, but shows no indication of the noise intensity of the channel. Instead,
p is implemented in the statistics of the learning set. The pseudo-code formulation of
the input generation algorithm is shown in Algorithm 1. To build a training set of
Ndata states on Nin qubits with noise strength p, each state is determined by a vector−→
R = (r1, · · · , rNin). It samples Nin values between 0 and 1 out of a uniform distribution

U(0, 1). Noise is then applied to a qubit according to the corresponding entry in
−→
R in



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 49

comparison to the noise parameter:{
|ΨGHZ〉 → Xi|ΨGHZ〉, if ri ≤ p

|ΨGHZ〉 → Ii|ΨGHZ〉, if ri > p.
(2.15)

where Xi is the bit-flip operator acting on qubit i.

Figure 2.6: Average fidelity of the outputs of a [4,2,1,2,4] QAE during the training phase.
For low noise intensities, the fidelity is close to 1 and the ideal states are almost perfectly
recovered. Fidelity drops at high intensities. The definition of a clear threshold becomes
blurry due to the fluctuations in the probability distribution. The horizontal error bars
indicate the smallest and largest bit-flip probabilities implemented on the qubits of the
inputs in the training data following Algorithm (1)

When the size of the data set tends to infinity, it is then composed of a mixture of
noise realizations, each noise realization with n noisy qubits amounting for a proportion
pn(1 − p)Nin−n + pNin−n(1 − p)n in the set. The second member in the sum results
from the symmetry of the GHZ-state under the bit-flip channel, flipping a group of n
qubits yielding the same state as flipping the Nin − n qubits in its complement. This
algorithm generates an accurate data set when the amount of samples it contains is
large. However, the data set the network is trained with is limited in size, and variations
occur in the definition of the noise intensity. The precision achieved with this algorithm
may cause disturbances in the training results. In particular, two successive probabilities
can overlap. The definition of the tolerance threshold is then imprecise. The fidelity



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 50

displayed at the end of the training for some probability p differs strongly from one qubit
to the other. Such fluctuations are more visible for large noise parameters and become
critical around the tolerance threshold. For example, if the fluctuations bring p closer to
a higher value, the threshold is underestimated because the noise implemented is larger
than intended. As a result, the network is unable to denoise such noise intensities. We
show an example of the fidelity achieved in the testing phase on a [4,2,1,2,4] QAE in
figure 2.6 and indicate the error bars on the probability distribution of the training data
set. In this instance of the training, the probabilities around the threshold overlap. In
particular, the largest qubitwise bit-flip probability implemented for the target noise
strength at p = 0.30 comes close to the next one at p = 0.35, where the network was
expected to fail. Consequently, the QAE could not denoise all states accurately.

Algorithm 2 Modified approach for the generation of the training states

for x ∈ {1, . . . , Ndata} do
|Ψx〉 ← |GHZ〉
R = [r1, r2, . . . , rNin ]
F = [0, · · · , 0] � Record the frequency of noise for each qubit
for q ∈ {1, . . . , Nin} do

if rq ≤ p then
|Ψx〉 ← Xq |Ψx〉
fq ← fq + 1 � Increment on the counter for each bit-flip

else
|Ψx〉 ← Iq|Ψx〉

end if
end for

end for
F = [f1, · · · , fNin ]/Ndata

if ∀q ∈ {1, . . . , Nin}, fq ∈ [p− ε, p+ ε] then � Add a condition to keep the set
Keep the training set

else
Start again from the beginning

end if

To obtain robust tolerance thresholds, we must reduce the uncertainty of the noise
strength. A straightforward approach would be to increase the size of the training set.
However, this is not a desirable direction since letting the number of samples grow to the
thermodynamic limit increases the computational time exponentially. All training pairs
take part in calculations at each iteration of the training. Another solution could be to
implement stochastic gradient descent, such that only a subset of this more extensive
training set is used in computations at each iteration. The convergence behavior for this
learning rule is unknown.

We opt for a different approach in numerical simulations and add a verification step
to the Algorithm (1). As shown in Algorithm (2), we modify the original algorithm by



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 51

keeping the final training set only under the condition that all qubitwise probabilities
are accurate with precision ε. This constraint is applied to the bit-flip frequencies fq for
each qubit q ∈ [1, · · · , Nin]. The data set is retained if, for all input qubits, the noise
frequency falls into the interval [p− ε, p+ ε]. Otherwise, it is discarded, and the process
must start over. New random vectors R are generated for each state in the training
set. This trial-and-error augmented algorithm enables us to confine the fluctuations of
the probabilities within a small interval around the target noise strengths and thereby
guarantee the absence of overlap in the probabilities. Consequently, a tolerance threshold
can be defined univocally. We note, however, that this solution also has its limitations.
If ε is chosen too small, the probabilities cannot reach the right degree of accuracy with
a small number of samples, and the set is always discarded in the verification step.
Therefore, the algorithm runs indefinitely. For our purpose, it suffices to choose ε = 0.01
for the loop to end quickly. For the same reason, a minimum number of training states
must be present to enable the required precision on the probability. Finally, when the
noise channel allows for a larger variety of noise realizations, or when the number of
qubits increases, the condition becomes harder to fulfill, requiring longer runtime. A
more clever modification may be required in these cases, as the SGD mentioned above.
Since we mostly use the bit-flip channel and cannot go above inputs with 6 qubits, this
approach is enough for our simulations.

With a data set generated by the modified algorithm, we train the [4,2,1,2,4] QAE for
the same initial set of unitaries, as shown in figure 2.7. We confirm a tolerance threshold
of p = 0.3 for all initial conditions on unitaries and training samples generated this way.
In contrast, the non-modified algorithm limited the threshold to p = 0.25.

2.3.3 Quantum characterization of the QAE: Entropy

2.3.3.1 Introduction to quantum entropy

The previous section showed that a [4,2,1,2,4] QAE could recover 4-qubit GHZ states
from noisy versions spoiled with bit-flips. This QML technique works for noise intensities
up to 30% qubitwise probabilities. However, the reason these technique works is still
obscure, and the way the QNN can denoise the states is unknown. Therefore, we need a
relevant measure to shed light on how information and noise are processed in the network
and how they relate to the quantum nature of the QAE.

In Shannon’s classical theory of information, entropy is a central quantity to quantify
information: it determines how many bits are required to encode it. It defines the
capacity of communication channels that describes how fast and precise communication
can be [106]. Entropy is a relevant measure to probe classical neural networks and
understand how they process information.

Classically, Shannon entropy is defined for a random variable X with n possible
outcomes {xi}ni=1 occurring with respective probabilities {pi}ni=1:

SShannon =
n∑

i=1

pi log2(pi), (2.16)



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 52

Figure 2.7: Average fidelity of the outputs during the testing phase of the [4,2,1,2,4]
QAE with the same initial unitary set as in 2.6. Thanks to the modification of the
algorithm to generate the training states, the actual noise strengths are now confined
around their intended value and do not overlap anymore. In addition, the tolerance
threshold is confirmed at p = 0.3 for all initial conditions. The blue + represent the
theoretical fidelity without denoising using the definition of the input density matrix in
equation 2.14.

where the logarithm is taken in base 2 to reflect that the information is encoded in
bits. SShannon is often interpreted as a measure of disorder or surprise: it describes
the unexpectedness of the data. Physically, it is proportional to the thermodynamic
entropy Sthermodyn = kBSShannon. Hence, by the second law of thermodynamics, it can
only increase. Alfred Rényi’s approach to entropy aims to unify different definitions of
entropy. For this purpose, he defines Rényi entropy, associated with a degree M:

S(M) =
1

1−M
log2(

n∑
i=1

pi
M ). (2.17)

The constant prefactor is often dropped to simplify the expression [107]. The role of
this constant is to rescale the logarithm such that S(M) does not increase with the degree



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 53

M. From equation , the definition for Shannon’s entropy can be recovered by letting M
tend to 1: SShannon = limM→1 S

(M).
To analyze quantum information in QML, these definitions are adapted to quantum

states and their density matrices. In contrast to the bra-ket formulation of the quantum
states, density matrices provide the possibility to deal with states that are not pure.
They live inside the Bloch sphere for a single qubit state instead of on its surface. Von
Neumann entropy takes on the role of Shannon’s entropy in determining the number of
qubits to encode quantum information:

Svon Neumann(ρ) = −Tr {ρ ln(ρ)} . (2.18)

Its natural generalization into the quantum Rényi entropy is [108, 109]:

S(M)(ρ) = − ln
(
Tr
{
ρM
})

(2.19)

where ρM is the M-th power of the density matrix, and we have used the simplified
formulation without the constant. Neither von Neumann nor Rényi entropy are physical
observables [107]. Indeed, a physical observable should be measurable in real-time in
a lab. For this reason, it must depend linearly on the density matrix. Since neither
equation 2.18 nor 2.19 are linear in the density matrix, they cannot be observed. In this
sense, computing them reveals non-trivial characteristics of the states. For example,
second-order Rényi entropy is closely related to the purity of the states Tr{ρ2}, since the
argument of the monotone logarithm is precisely this quantity. Therefore, computing
Rényi entropy can provide information about dissipation in the same way purity does
[68, 110]. We also notice that using second-order entropy instead of von Neumann
entropy is computationally advantageous. Instead of taking the logarithm of a matrix
which entails many caveats and raises various exceptions, S(2) only relies on matrix
multiplication followed by a trace, such that the argument of the logarithm is scalar.

Apart from its interpretation as a measure for surprise and disorder, Rényi entropy
bears a second important meaning in quantum physics. One of its characteristics is that
it is a conserved quantity for a closed system evolving unitarily: dS(M)(ρ)/dt = 0 in
this case. Similarly, for a bipartite system where the two subsystems are not allowed to
interact, the entropy of each individual system is conserved as well. However, when they
exchange interactions, for example, when a qubit interacts with an environment or a
heat bath as in [107], the entropy of the subsystem of interest is not conserved anymore.
The following inequality holds for bipartite systems with subsystems A and B:

S(2)(ρA) = S(2)(ρB) ≥ S(2)(ρAB), (2.20)

where ρA = TrB{ρAB} is the reduced density matrix for subsystem A. The equality
follows from the Schmidt decomposition of the global state ρAB: the two reduced repre-
sentations share the same Schmidt coefficients. Since the entropy of the reduced density
is at most that of the entire system, Rényi entropy can also be understood to quantify
entanglement between a subsystem and the rest of the system. In particular, in the
case of the QAE, since no environment is considered, the quantum network as a whole



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 54

preserves its purity, and S(2)(ρnet) = 0, indicating that the network is in a pure state
and does not share entanglement with any other system. In contrast, the entropy of each
individual neuron or layer must be larger than or equal to that of the whole network:
S(2)(ρl) ≥ S(2)(ρnet). Similarly, the summation of distinct entropies for multiple layers
of a multipartite system is non-trivial since entangling mechanisms may be shared and
repeated between many subsystems. Since the entropy of the whole network is null,
a finite Rényi entropy for one layer reflects the presence of entanglement between this
layer and the rest of the network.

2.3.3.2 Entropy in the network

Thanks to the Rényi entropy, we possess a measure for the evolution of information
and entanglement in the network. We apply it to the QAE, starting by measuring it
on the outputs. Indeed, the purpose of the autoencoder is to recover the ideal states
such that it can be employed in further computations. This implies that the output
states must be pure and have zero entropy. Figure 2.8 shows the average entropy of the
output layer with respect to the rest of the network when the optimized unitaries are
implemented. For relevant comparison, the initial conditions are the same as in figure
2.5, with tolerance to up to 30% of bit-flip noise.

At first sight, the range of noise intensities can be divided into two regions. For
p ≤ 0.20, the entropy lies at zero, and the standard deviation is also null. This indicates
that the network can reach a high fidelity for any noise realization, and the output state
is pure. It guarantees that no entanglement is left with the ancilla qubits in the hid-
den layers. In contrast, for p > 0.20, the entropy takes finite values, and entanglement
is shared with the network. The finite values of entropies at p = {0.25, 0.30} are of
particular concern because, despite seemingly high fidelity, output states preserve some
spurious entanglement with the network. This causes noise in the evolution of the states
in further applications: states may escape the control of the users to the advantage of
dissipation to this environment. The hidden layers would become a source of noise in
subsequent usages.

These observations revive the discussion on the expression of a robust distance value
in the realm of QML and quantum computing [111] since it proves that fidelity is not
sufficient to report the similarity between quantum states fully. An alternative distance
measure must have two properties. First, it should reflect the similarity between the
density matrices. For this purpose, a common quantity found in classical machine learn-
ing can be the Kullback-Leibler distance. It provides an estimate of the distance between
two discrete probability distributions with n outcomes with finite probabilities, {pi}ni=1

and {qi}ni=1 in the following way:

DKL(P ||Q) =

n∑
i=1

pi log
pi
qi
. (2.21)



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 55

Figure 2.8: Averaged second-order Rényi entropy in the outputs of the [4,2,1,2,4] QAE
against the bit-flip probabilities, during the test phase. The error bars represent the
standard deviation across the 200 testing pairs that were used. The entropy in the
outputs grows in a non-trivial way with the noise intensity. Its behavior changes around
the tolerance threshold, defining zero and finite noise regions. In particular, even though
the tolerance threshold for this network lies at p = 30%, entropy becomes non-negligible
at lower noise values, namely at p = 0.25. Therefore, even though the network was
seemingly able to denoise the GHZ-states perfectly at these values when looking solely
at the fidelity, recovered states at this intensity lead to noisy computations.

Second, it is desirable to include the effects of entanglement and dissipation in the
measure, in the same fashion as in the Rényi entropy. Therefore we introduce the Rényi
divergence between two density matrices ρ and σ, depending on an order α [112]:

Dα(ρ||σ) =

⎧⎪⎪⎨⎪⎪⎩
1

α−1 log
(
Tr
{
σ(1−α)/(2α)ρσ(1−α)/(2α)

}α)
if α ∈ (0, 1) ∪ (1,∞)

Tr {ρ(log ρ− log σ)} if α = 1

log ||σ−1/2ρσ−1/2||∞ if α = ∞,

(2.22)

where ρ is such that Tr ρ = 1, i.e. it is a valid quantum density matrix. We evaluate the
outputs for the same [4,2,1,2,4] network with this newly introduced measure in figure 2.9,
where α = 2. The numerical accuracy of the simulation may be the cause of the fluctu-



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 56

Figure 2.9: Renyi divergence at the output of the [4,2,1,2,4] in the test phase, with α = 2.
The Renyi divergence efficiently combines the high similarity and purity requirements
for the output states. It increases steadily with the noise intensity, culminates at high
values in the high noise regime, and is non-negligible around the tolerance threshold. As
a result, it predicts that outputs in the intermediate noise regime remain fragile.

ations in the low noise regime, where it may be difficult for the computer to express and
distinguish such low values with high precision. Therefore, under a threshold of 10−4,
we consider the divergence negligible and very close to 0. In contrast, the divergence is
constant for high noise intensities and stagnates at values close to the unity. It indicates
that states are different from the desired outputs and possess high entanglement with
the network. In the intermediate range of noise, around the tolerance threshold, though
the divergence is low, it remains finite: it reflects a high fidelity regime with spurious
entanglement.

To go one step further, it is also possible to compute the evolution of Rényi entropy
at each step of the training for each layer with respect to the rest of the network. In
this approach, we expect (1) to understand how the map redistributes noise within the
ancilla qubits in the hidden layers and uses dissipation to cancel it out on the output



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 57

layer at each iteration; (2) to witness the role of entanglement to analyze and correct the
inputs. For this purpose, second-order Rényi entropy is calculated for each layer l of the
network after applying the channel that propagates it to layer l + 1. In the simulation,
the state of the two successive layers is kept. The two reduced density matrices are
deduced: the one on layer l is used for the entropy calculation, and the one on layer l+1
represents the state of being forwarded to the next layer.



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 58

(a)

(b)

Figure 2.10: Evolution of the second-order Rényi entropy for each layer at each step of the
learning phase. Figure (a) represents an example in the weak noise regime, at p = 0.1 and
(b) in the strong noise region, at p = 0.4. In both cases, the entropy of the output layer
starts by increasing drastically in the early iterations and is exponentially suppressed
throughout the training. The other layers imitate this behavior with a smaller amplitude.
A notable difference across layers is the convergence value: While the encoder’s layer,
i.e., layers 1 and 2 maintain a high entanglement, noise is suppressed in layers 4 and 5
of the decoder. The insets zoom on the last 5 iterations and give a clear view of the
last values. In particular, the gap between the latent and the output layers distinguishes
successful or failed trainings.

We represent the evolution of S(2)(ρl) for each layer l in the network throughout the
training in figure 2.10. Looking first at the weak noise regime at p = 0.1, in (2.10 a),
we note that the evolution can be divided into two phases, similar to the corresponding
learning curves in figure 2.5. It undergoes large variations in the first 40 steps, followed
by stagnation as the number of rounds increases. In the first part, all layers gain entropy,
the output layer (layer 5) at most and the latent layer (layer 3) at least. After this steep



CHAPTER 2. AUTOMATE DENOISING: THE QUANTUM AUTOENCODER 59

rise, an exponential decay occurs. The entropy of the output layer is heavily suppressed,
indicating that noise is disappearing from the recovered states. A softer decline is visible
in the latent layer that ultimately possesses higher entanglement than the two layers of
the decoder, i.e., layers 4 and 5. In contrast, the entropy of layers 1 and 2, constituting
the encoder, is only mildly reduced. In the event of strong noise intensities, as in figure
2.10(b) where p = 0.4, the evolution follows the same steps with two exceptions. First,
the decay rate of the entropy in all layers is smaller, and the first part of the training
stretches over more than 80 rounds instead of 40. Stronger noise is, therefore, harder to
apprehend for the QAE. Larger input variations slow down gradient descent since the
direct path to the solution is less straightforward. Second, the training cannot reduce
the noise of the output layer to 0 as in (a). In the last rounds, it converges to a finite
value, while the entropy of the bottleneck has completely vanished. This will become
important in the next chapter.

These typical evolutions can lead to a tentative interpretation of the mechanisms
at play to implement denoising with a QAE. In the first phase, noise in the inputs is
magnified by the random unitaries that were initially selected. It flows to the output
layer. At this stage, the outputs have low fidelity. As the training progresses, entropy
is reorganized between the layers, and entanglement is used as an aid to complete the
task. It vanishes from the decoder, whose mission is to produce pure states. As such,
entanglement in this part of the network would be detrimental, and the interpretation
of entropy as a measure of disorder becomes relevant. In contrast, entropy remains high
in the first half of the network. Since the encoder must extract the useful information
hidden in the inputs to find the essential features of the target states, entanglement
between layers can magnify its analytical power. Acting like successive filters, it extracts
the noisy parts of the inputs and propagates only the relevant ones to the latent space.
In this sense, entropy is beneficial in the encoder and can be treated as a measure for
entanglement. This highlights the role of quantum properties in boosting noise tolerance.
In the middle, the third layer corresponding to the latent space is the turning point of
the network: it coordinates desirable and spurious entropies by blocking entropy in the
encoder. This insulating wall against the disorder protects the decoder and guarantees
the quality of the outputs.



Chapter 3

Combat the limitations of the
QAE

3.1 Scaling up

The precedent chapter shows that the denoising autoencoder could be successfully con-
verted into a quantum version. In simulations, using ideal gates trained within the
network, it was possible to teach a [4,2,1,2,4] network to extract the noise from GHZ-
states spoiled with the bit-flip channel. These results are auspicious to the extent that
an inherently quantum network can denoise and reproduce a highly entangled state.

However, one of the main challenges of noise cancellation and error correction is the
implementation at larger scales on the available quantum processors. The model should
consider noise within the network and denoise states on more significant amounts of
qubits. Propositions have been made to cope with the former. The authors of [113]
propose to integrate noise directly in the model to train. In other words, they introduce
the VQA and the noise correction algorithm simultaneously. To achieve this, they add
parameters to the ansatz in the VQA. They do not interfere with the task but contribute
to noise cancellation only. In this manner, the machine learning algorithm adapts to the
presence of noisy gates by anticipating noise in the parameters that minimize the cost
function. A suitable ansatz is needed to model the noise impinging on the hardware.
This brings the problem down to the characterization issue introduced in section 2.1.2.1.
We set this important question aside to focus on the scaling issues in the following.

To investigate the ability to denoise larger states, we simulate a [6,2,1,2,6] network
with 6-qubit input states disturbed by the bit-flip channel as in section 2.2.2.3. We
measure the fidelity of the recovered GHZ states. For consistency with the existing
literature on denoising QAE [42, 105], we keep the fidelity measure to evaluate the
performance of the QAE. The robustness of the QAE decreases when the size of the
inputs increases. Figure 3.1 shows that while the weak noise regime for a [4,2,1,2,4]
network stretched from p ∈ [0, 0.3], it has been reduced to p ∈ [0, 0.2] for the [6,2,1,2,6]
network. This indicates that it becomes harder for the network to learn the denoising

60



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 61

Figure 3.1: Average fidelity with the ideal GHZ-state on 4 and 6 qubits, in blue and
orange respectively, measured during the testing phase. The vertical error bars represent
the standard deviation across states in the testing set. When scaling up, the noise
tolerance of the network drops from 0.3 to 0.2.

task on larger states. The growth of the size of the inputs results in larger diversity
in the training set: there exist more noise realizations that are different than for small
states. The proportion for each of them in the data set is smaller, and the generalization
from patterns observed in the data becomes more difficult. Unfortunately, it was not
possible to go beyond the limit of 6 qubits during the classical simulations because the
training would become too expensive: we would expect a duration in the order of a
week for larger scales. Despite this computational issue, it has already become clear
that understanding the mechanisms underlying the tolerance of the network is crucial
to scaling this technique for denoising purposes.



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 62

3.2 Structural limitation

3.2.1 Entropy flow and noise

To understand the limitations of the denoising QAE, we use the entropy measures em-
ployed in section 2.3.3. In figure 2.8, the entropy evolutions were understood as measures
for the flow of noise in the network, entropy remaining high in the encoder, and vanish-
ing in the decoder. In the middle, the latent layer possesses an intermediate value that
draws a border between the two entropy regimes. The single-qubit layer is an insulating
wall against the heat, which remains confined in the encoder. The latent space reduces
the “temperature” of the decoder, or in other words, it makes it less disordered.

Figure 3.2: Entropy gap, evaluating the difference in the Rényi entropies between the
latent layer (layer 3) and the output layer (layer 5) in a [4,2,1,2,4] network. The dif-
ferences are plotted against the bit-flip probabilities p. The entropy difference remains
positive in the weak noise regime, below 30%, and the sign is flipped when entering the
strong noise regime. Consequently, this entropy gap is predictive of the success of the
training of the denoising QAE.

Following this logic and going beyond the fidelity, an indicator of the success of the
training can be the difference between entropies in the output and latent layers. We
refer to the quantity as the entropy gap.

In figure 3.2, the entropy gap is positive in the weak noise regime. It culminates at
a sweet spot by p = 0.1. In contrast, as the noise intensity reaches the threshold, the



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 63

gap closes progressively, almost becoming null at the point itself. The transition to the
intense noise regime is reflected by the sign change of the entropy gap. Its negative value
indicates that noise in the outputs has become more significant than that in the latent
state. In the light of QAE for data compression, a possible interpretation for such results
is that the compressed form is less noisy than the outputs, and the decoding operation
injects more noise in the recovered state.

We propose a second measure to refine the description of the connection between
the latent and output states given by the entropy gap. We construct a training set with
random, pure states during the test phase. The reason for this approach and its success
will become clearer in section 3.4 where a generalization test is proposed, the “cross-
testing” technique, based on an idea in [105]. We apply the QAE maps obtained with
different training probabilities ptrain ∈ [0, 0.5]. The training probabilities describe the
noise strength of the bit-flip channel, as in the previous sections. At each application of
the quantum map, we record the second-order Rényi entropy of the latent and output
states.

Figure 3.3 shows that both before (a) and after (b) the tolerance threshold, the
entropy of the output states is linear in the entropy of the latent states, where each
point in the plots corresponds to a different input state. These linear relations vary
with the noise intensity encountered during the training. At ptrain = 0.10, the entropy
of the latent state can grow arbitrarily large, enabling it to absorb noise and prevent
perturbations from flowing to the output layer. The entropy of the outputs is “locked”
at zero, as desired to obtain an output that is separable from the network. The relation
is reversed in the strong noise regime: the latent state retransmits noise that flows to
the output state, where entropy can grow as large as possible. An overview of the
correlations for all training probabilities is provided in the appendix C. This entropy
correlation follows an interesting pattern across noise probabilities, as shown in figure
(3.3 c). We perform a simple linear regression based on the mean-square error on the
entropies:

S(2)(ρ5) = αS(2)(ρ3) + β, (3.1)

with α and β two scalars. The linear coefficient α between the output and latent en-
tropies for different states is null in the weak noise regime. But its behavior changes
abruptly as soon as it crosses the threshold, where it takes on finite values and culmi-
nates at p = 0.4. The reason for this behavior of the linear coefficient in the strong noise
regime is unknown. In a loose sense, this sudden variation resembles a second-order
phase transition. Until a critical noise parameter, the correlation remains zero, and it
continuously changes its course past the tolerance threshold to take on finite values.

The entropy gap and the phase transition in the entropy correlations provide rea-
sonable predictions for the success of the denoising since the threshold they indicate
coincides with the tolerance defined with fidelity. Furthermore, they emphasize the
importance of the latent representation for proper recovery from noise. In particular,
robustness to noise of the single-qubit layer determines the success of the denoising algo-
rithm. These results are supported by the emphasis on the latent representation in the



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 64

(a) (b)

(c)

Figure 3.3: Correlations between the second-order Rényi entropies of the latent and
output states in the testing stage. The test states are random, pure quantum states.
The [4,2,1,2,4] denoising QAE was trained with bit-flip probabilities of p = 0.10 in (a)
and p = 0.40 in (b). The color scale represents the outputs’ reconstruction error 1?F .
The linear correlations are inverted before and past the threshold: in the weak noise
regime, the latent state absorbs noise and ensures that the entropy of the outputs stays
at zero, while the reverse happens in the strong noise regime. In (c), we represent the
linear coefficient α obtained from a linear fit on the plots above: the linear factor is zero
until the threshold. It takes finite values afterward, indicating that noise can flow to the
outputs.

context of classical neural networks. We mentioned in section 2.2.1 that the intermediate
vector at the center of the double bottleneck structure is comparable to the result of
generalized principal component analysis.



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 65

Similar results have been found for the QAE based on the VQA model used for data
compression. First, the authors of [93] showed that the cost function could be calculated
interchangeably at the output layer or in the latent space, where it relies on the so-
called trash state, i.e., the state that is discarded before obtaining the compressed state.
They train a quantum autoencoder with an ensemble of pure states {pi, |φi〉AB} living
on a system AB with a classical learning rule. Their goal is to compress these states
reversibly in subsystem A, by learning a unitary U

−→p depending on parameters −→p , that
encodes the states in latent space, and whose adjoint recovers the original state. In the
latent representation, system B has been discarded and is reinitialized for the decoding.
Equivalently, the action of discarding B is replaced by swapping it with a clean system B’
initialized with state |a〉B’ that is the starting point for complete decoding. The output
of their QAE for an input |φi〉AB is:

ρouti = (U
−→p
AB’)

†
(
Tr
B
{U−→p

AB ρAB (U
−→p
AB)

†} ⊗ |a〉〈a|B′

)
U

−→p
AB’. (3.2)

The cost function is then the average fidelity for all states of the ensemble:

Cout =
∑
i

piF (|φi〉AB, ρ
out
i ) (3.3)

where F is the fidelity in equation 1.16. It amounts to comparing the two states
TrB’{U−→p |φi〉〈φi|AB(U

−→p )†⊗ |a〉〈a|B’} and TrB’{(U−→p )†|φi〉〈φi|AB’U
−→p ⊗ |a〉〈a|B}. The for-

mer state is the state on system AB at the end of the encoder, while the latter is the state
on AB, resulting from the propagation backwards from the output layer to the input
layer of the decoder, starting from the target state. The authors show that instead of
evaluating the cost function in the output layer, the fidelity of the trash system B’ can
be equivalently considered, and system AB can be discarded in the cost function instead
of B’ as in the states above. The alternative cost function becomes:

Ctrash =
∑
i

piF

(
Tr
A

[
U

−→p |φi〉〈φi|AB(U
−→p )†
]
, |a〉B

)
(3.4)

Therefore, the comparison of the states at the end of the encoder and the input
of the decoder can implement the same task as the natural cost function in equation
2.11, but with fewer resources to read out the states. This property highlights that
the intermediate latent representation is key to the success of the training and the full
recovery of the state because it selects the relevant features for the task, or equivalently,
discards the ones that it judges irrelevant. Therefore, the task is equivalently to identify
the main component of the data or discard the insignificant ones. The compressed states
are composed of the information that was retained.

The authors in Ref. [92] show that the purity of the latent representation sets an
upper bound on the fidelity in the outputs. They implement a similar circuit for the same
task, except they allow more flexibility in the decoder by training it independently of
the encoder unitary. It is shown that the reversibility of the compressed state depends



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 66

on the rank of the inputs and the dimension of the latent space. Namely, a proof is
provided to show that for inputs with spectral decomposition ρAB =

∑k
j=1 pj |ψj〉〈ψj |,

such that the probabilities {pj} are in decreasing order and
∑

j pj = 1, the upper bound
on the final fidelity is given by :

F ≤
dA∑
j=1

pj , (3.5)

where dA is the dimension of the latent space. This bound can be achieved when the
rank of the input is smaller than the dimension of the latent space, k ≤ dA, but has a
zero probability of being attained otherwise. Therefore, the flatter the spectrum of the
input, the more qubits are required in the latent space, and the worse the representation
when the code space is too small. These results imply that the size of the latent space
in relation to the spectral characteristics of the inputs is key to the success of the QAE.
Nevertheless, this approach becomes ill-defined when looking at the denoising QAE, to
the extent that the inputs and outputs do not have the same rank: the ideal GHZ-states
have rank 1, while the rank of the density matrices defined in equation 2.14 vary with
the probability, as shown in figure 3.4. In particular, the finite noise intensities have
rank 2Nin−1, for a 4-qubit GHZ-state with bit-flips. The uniformity of the spectrum
must also be accounted for: the larger the noise becomes in the GHZ-states, the more
uniform the spectrum, and the larger the error when the latent space is too small. Since
the rank of the density matrix is related to its purity, a pure state corresponding to a
rank one density matrix, the reversibility of the compression depends on the purity of
the compressed state in latent space. More precisely, the QAE studied in this paper can
reproduce only as much purity in the outputs as has been encoded in code space. In
the DQNN-based QAE, this phenomenon is visible with the rise of second-order Rényi
entropy past the tolerance threshold. As a result, the loss of purity in the compressed
state in latent space can be responsible for the fall of fidelity in the output layer.

Finally, the authors in [95] go one step further in the spectral analysis, in the same
setting as above, with a VQA-based QAE for data compression, with the constraint that
the decoder is the adjoint of the encoder. They show that for such a network, the optimal
unitaries obtained with singular value decomposition exactly encode the eigenvalues of
the inputs in the compressed state, given that the latent space is large enough. Formally,
for an input with spectral decomposition ρAB =

∑k
j=1 pj |ψj〉〈ψj |, the ideally compressed

state σ∗ in its diagonal representation is:

σ∗ =
k∑

i=1

pi|ωi〉〈ωi| (3.6)

where k is the rank of both ρAB and σ∗ with spectrum {pi}ki=1. The set {|ωi〉}ki=1 is an
orthonormal basis of the latent space. If this statement still holds for denoising QAE
based on DQNN, we expect the latent representation to be composed of the eigenvalues
of either the ideal or the noisy state at the input of the decoder.



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 67

Figure 3.4: Eigenvalues of the density matrices ρin resulting from the application of
the bit-flip channel on a 4-qubit GHZ-state. The eigenvalue of the ideal GHZ-state,
depicted in blue, is non-degenerate. The noisy eigenvalues, in orange and yellow, are
degenerate. The rank of the density matrix increases from 1 to 2Nin−1 when the noise
intensities become finite. In addition, the spectrum becomes more uniform when the bit-
flip probabilities increase. Therefore, we expect the upper bound on the output fidelity
to drop in the strong noise regime, when the size of latent space is smaller than 2Nin−1.

This section shows that the intermediate representation of the denoising QAE is key
to understanding its limitations. Its entropy acts as a wall against noise, and its fail-
ure is an obstacle to the training by letting noise propagate to the output layer. This
phenomenon is embodied by a second-order phase transition at the tolerance thresh-
old, in the linear coefficient relating entropies of latent and output states. In addition,
the selection and discarding of the appropriate pieces of information make the state’s
recovery reversible. The network can be trained equivalently with the discarded infor-
mation or the state recovered on the output layer. The reversibility of the compression
is essentially related to the spectral properties of the inputs and latent representations:
the latent space must be large enough to encode all eigenvalues of the inputs, and the
optimal unitaries encode precisely those in the compressed state.

3.2.2 QAE and brain boxes

3.2.2.1 Boost noise tolerance with brain boxes

The observations in the previous section 3.2.1 shed light on the importance of the latent
state to improve the robustness of the QAE to strong noise. Improving its architecture
by creating a wider and deeper code space could increase tolerance to noise.

We propose a modification of the internal representation: the brain boxes. The
underlying idea is to allow for more complex structures at the intersection of the two
wings of the QAE. On the one hand, we allow the latent states to live on a more
extensive system with more qubits. Following the arguments in [92, 95], this should
provide sufficient degrees of freedom to encode the different eigenvalues of the average
noisy state. We expect a space with N qubits to faithfully encode 2N − 1 eigenvalues,



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 68

where the 2N -th degree of freedom is constrained by the normalization requirement for
valid quantum states. Four qubits must match the rank criterion for complete encoding
of the noisy states without information loss. On the other hand, we aim to improve the
purity of the inputs of the decoder to compute pure denoised states. Since each new
layer is initialized in a well-defined pure state, the addition of intermediate layers could
boost purity in the compressed representations, and ultimately in the recovered states.

Figure 3.5: To boost the noise tolerance of the QAE, we introduce the brain box in latent
space. By adding more qubits, and increasing the depth of the latent space, it is possible
to encode more information and increase the purity of the intermediate representation.

We show the QAE architecture enhanced with the brain boxes (BB) in figure 3.5.
To minimize the overhead of computational resources, both in time and quantum bits
and gates, we limit the number of qubits in the brain box to four. They offer a flexible
layout: the qubits can be organized in many or a single layer(s), symmetrically or asym-
metrically. We simulated the brain boxes shown in table 3.1, resulting in [4,2,BB,2,4]
and [6,2,BB,2,6] architectures. Though the initialization of the rest of the network is left
unchanged, we combine the addition of complexity with another constraint. We leave
the qubits independent of one another. This is equivalent to setting the interactions
between qubits of successive layers within the brain box to the identity. Indeed, when
looking at the compressed states, one finds that some regions of latent space act as faulty
attractors during the training. If the latent state falls in these regions, it stays trapped,
and the learning fails. Since the user chooses the initial unitaries, we let the unitaries
in the brain boxes start from the identity to cancel any bias towards the noise sinks.
Then, the learning rule updates the interactions and single-qubit rotations to find proper
operations and good representations for the reconstruction. Since the parameter matrix
multiplication technique in the learning rule (cf section 1.2.2.2) does not constrain the
form of the unitaries, in contrast to the parametrized circuit approach, where the up-
dates are confined within the selected ansatz, the training can still bring the parameters



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 69

closer to these sinks.

1 qubit 2 qubits 3 qubits 4 qubits

[1] [1,1] [1,1,1] [1,1,1,1]
[2] [1,2] [1,2,1]

[2,1] [2,1,1]
[3] [1,1,2]

Table 3.1: Brain boxes implemented to boost the noise tolerance of the QAE. The rest
of the network is unchanged, and the resulting architecture is [Nin, 2, BB, 2, Nin].

Figure 3.6: Record of the tolerance thresholds for the QAE augmented with the brain
boxes shown in table 3.1 when trained with 200 states for 200 iterations. Adding com-
plexity in the box increases the noise tolerance for both input sizes of 4 and 6 qubits.
Not only the number of qubits but also their layout matters to maximize the tolerance.
The computation of the data limit is explained in section 3.3. The addition of the brain
boxes maximizes the noise tolerance given the data it was trained with.

Figure 3.6 summarizes the tolerance thresholds we obtained. The graphs for the
testing results are presented in appendix D. The same training sets were used as in
figure 3.1 except for the addition of identity operations in the brain boxes to make a
direct comparison possible. The tolerance threshold is determined by selecting the most
significant noise parameter to recover the GHZ-states with more than 99% of fidelity.
For 4- and 6-qubit inputs, using a brain box instead of the single-qubit layer improves the
tolerance. Thanks to this modification, the threshold gained ten percentage points for



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 70

both input sizes. Despite the addition of parameters and qubits, this improvement only
comes at the cost of a limited overhead in resources. No apparent scaling with the size of
the inputs appears in your results for four and six qubits. Indeed, looking closely at the
training algorithm, one realizes that the maximal number of qubits required to simulate
it is the largest cumulated amount in two successive layers, namely maxl Nl +Nl+1, for
l = 1, · · · , L − 1. Therefore, the brain boxes do not induce any overhead in quantum
resources, because their width does not exceed the size of the inputs. In addition, the
results of the [4,2,BB,2,4] network in figure 3.6 suggest that for the same amount of
qubits, different thresholds can be realized. In particular, two qubits in a linear chain
fail to saturate the data upper bound, while stacking them in a single layer maximizes
the achievable robustness.

Another essential property to consider when implementing an algorithm, especially
when simulated classically, is the time resources it involves. For this reason, we provide
an overview of the time required to train the network, both in the number of iterations it
takes to converge to high fidelities and in real-time. In the latter quantity, we divide time
by the number of layers in the network, to make it possible to compare different layouts.
Figure 3.7 hints that almost all brain boxes reduce the time required for the training,
except for the configuration [3]. The simpler the operations, i.e. the more linear the
layout, the least time the training takes. In particular, when the brain box ends with a
single qubit layer, the unitaries that connect the brain to the decoder are smaller and
easier to update. Hence, the number of iterations to converge to a high fidelity is smaller.
From another perspective, one can think that the sole degree of freedom of the single-
qubit layer can only capture the single eigenvalue relevant to the pure, ideal GHZ-state,
thereby making the reconstruction easier. These properties on the time resources may
vary when the network is run quantum mechanically.

3.2.2.2 Perspectives on the brain box

Without providing a definite answer as to why the brain box-enhanced QAE improves
the tolerance threshold, we propose two possible directions to approach the question.
First, the addition of parameters thanks to the brain boxes can improve under some
conditions. In particular, the change of behavior for different brain boxes can be con-
nected to overparametrization, a well-known topic in the recent research in machine
learning. Overparametrization corresponds to a regime where the number of parame-
ters is huge [114]. The model can precisely capture all training data features thanks to
their fine-tuning. In the classical interpretation, the overparametrized model is expected
to overfit the training data. In other words, the model should perform by memorizing
the learning data instead of extracting the relevant features for the task. A low error
detects overfitting during the training, i.e. low values of the cost function to minimize,
contrasted with a high validation error in the testing phase.

This view on overparameterization is broken by the so-called double-descent phe-
nomenon [115]: when the number of parameters keeps increasing, the model ceases to
overfit. The generalization error is considered from the perspective of the variance-bias



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 71

Figure 3.7: Time required for the training of brain box enhanced QAE with 6-qubit
inputs. Time is measured by the number of training rounds to converge to high fidelity
states, and seconds per layer.

trade-off. It takes the squared bias, variance, and some noise contributions. The bias
corresponds to the distance between the estimates and the targets and therefore accounts
for the training error. The variance evaluates the sensitivity of the results to variations
in the data set [24, 17]. As such, it is equivalent to a testing error. The traditional ap-
proach is to choose the number of parameters that balances these two sources of error.
As the number of parameters increases, the bias drops because the model captures more
details about the data. At the same time, the variance increases, and the model starts
to overfit. Consequently, the classical perspective defines a sweet spot to balance the
two contributions and minimize the generalization error. Nevertheless, this picture is
incomplete. As the number of parameters increases, a new “phase” emerges. The gener-
alization error drops again and undergoes a second descent. In contrast to the classical
regime, the so-called “modern interpolating regime” [115] avoids overfitting despite the
expressivity of the model.

The number of parameters in our brain-box enhanced QAE has increased, possibly
bringing the model to the overparameterization regime. The identification of the param-
eter regime depends on the demands on generalization for the QAE, as discussed later
in section 3.4. The most demanding definition of generalization requires the network
to perform denoising on many inputs affected by various noise sources. According to
this approach, the performance of the QAE is poor on new data and worse with the



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 72

brain boxes. This is a signature of the detrimental overparameterization regime: the
model overfits its training states. The number of parameters is too small to reach the
second descent. In this case, the network can correct GHZ-states only and does not
help any other state. In an alternative perspective on generalization, the QAE copes
with any type of noise occurring in the inputs and recovers the desired flawless GHZ-
state. The brain box is sufficient to reach the second descent region, i.e., the modern
interpolating regime. In addition, the study of overparametrization in the context of
VQA-based QAE [116] suggested that the bound on the number of parameters to reach
the second descent is not tight. For an unexplained reason, the QAE goes to the current
interpolating regime earlier than expected, when other types of networks come close
to the bound. Therefore, only a few parameters are required for the computational
phase transition. This is facilitated by the exponential scaling of the number of param-
eters with the number of qubits in the brain boxes, and ultimately, in the whole network.

We present a second argument besides overparameterization to explain improvements
in the robustness thanks to the brain boxes. We look in detail at the states in the
latent space that serve as inputs to the decoder. To represent it in three dimensions,
we compare the brain boxes [1] corresponding to the original QAE, with a [1,2,1] box,
providing a maximal noise tolerance in a minimum of time, and ending with a single-
qubit layer. We plot the density matrix in a 3D plot to show the correlations between
the (classical) populations on the diagonal entries, and the (quantum) coherences on the
off-diagonal terms. For the real diagonal components, a single entry suffices thanks to
the normalization of the quantum state. The two complex off-diagonal coherences are
adjoints with one another. Therefore, three dimensions give a complete representation
of the state.

In figure 3.8, we represent such latent states for the two networks when the input data
are random quantum states. The simplification of the representation is striking. While
the latent states in the original QAE build a fuzzy cloud around some approximate linear
correlation between the populations and coherences, the linear mapping is impressively
well-defined in the [4,2,1,2,1,2,4] network. This remapping of the input data into a
different space can be related to the feature space encoding in classical machine learning.
In this framework, some data is mapped to some different space to visualize some inner
structure it may possess. For example, data that is not linearly separable can sometimes
become separable. Similarly, one can consider that in the case of the QAE, the network
must decide whether the state is noisy or not, or which noise realization occurred. In this
case, a linear mapping as in 3.8(b) reduces the dimension of the decision boundary from
3-dimensional to 1-dimensional, and thereby facilitates the distinction and recovery.

The question of the distinguishability between the state in the context of the QAE
can be confusing though. Indeed, while one wants to distinguish between the noisy and
ideal states in the inputs to denoise only the former, the ultimate task given to the
QAE is to recover the ideal state only. The question of distinguishability is hence two-
sided. To reconcile these two perspectives on the distinction between states, we appeal



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 73

(a) (b)

Figure 3.8: Latent states in the [4,2,1,2,4] (a) and last layer of the brain box of the
[4,2,1,2,1,2,4] (b) network. Each point corresponds to a different, random input in the
network, that is recovered with a fidelity larger than 99.9%. The addition of the brain
box enables the network to find a more suitable intermediate representation of the inputs,
that concentrates them on a line.

to Quantum Hypothesis Testing (QHT) as in [51]. Indeed, the authors of this paper use
QHT tools to prove the robustness of QML algorithms for classification tasks subject
to adversarial attacks. To tolerate such attacks, a minor change in the inputs must not
be able to change the output label for the corresponding noiseless input. Therefore, the
noisy state must be mistaken for the ideal one. In contrast, QHT is concerned with
classifying a state as some desired state and telling two states apart in the most optimal
way relying on the suitable Helstrom measurement. QHT and the QAE can meet when
looking at table 3.2 where the possible outcome of QHT are summarized. When the
outcome of the measurement and the actual state coincide, no error happens. However,
two types of errors can happen: type I error occurs when the target state is mistaken for
a noisy one, and conversely, type II occurs when the noisy state is labeled as ideal. A
robustness bound can be determined according to the distance between two states, such
that type II error takes place for this state, and the state is treated as the ideal one.

In order to use a QHT argument, we plot the latent states on the Bloch sphere for
both [4,2,1,2,4] and [4,2,1,2,1,2,4] networks in figure 3.9. This visualization emphasizes
the region of the qubit Hilbert space occupied by the latent states. While they spread
in a relatively large region in the southern hemisphere in the original network (3.9 a),
they concentrate in a tight region for the [4,2,1,2,1,2,4] network (3.9 b). In this case,
no matter what the inputs are, they are all redirected to a point-like area. Therefore,
in terms of robustness and QHT, the states become less distinguishable, and the latent
representation creates a bias towards the desired type-II error. In turn, it leads to



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 74

Verdict
Ideal Noisy

Reality
Ideal no error type I
Noisy type II no error

Table 3.2: Outcomes of a QHT protocol. The columns represent the verdict based on
the measurements, and the rows the actual nature of the states. On the diagonals, the
classification of the state coincides with their true nature, while the off-diagonal cells
reflect faulty judgement.

the reconstruction of the ideal GHZ-state in the outputs. As a result, by shrinking
the space where the inputs are mapped in the latent space to a tiny region, the noisy
states are mistaken for the ideal ones and the network reconstructs only the ideal states.
In addition, we note that the point corresponds exactly to the diagonal matrix with
eigenvalues 0 and 1, as predicted in the ideal cases [92, 95].

(a) (b)

Figure 3.9: Comparison of the latent states on the Bloch sphere, for the [4,2,1,2,4] (a)
and [4,2,1,2,1,2,4] QAE (b). The states in the original network occupy a larger region
of the Hilbert space of the latent representation, while the brain box-enhanced QAE
concentrates around the maximally mixed state.



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 75

3.3 Training data and absolute upper bound on the
tolerance

In the previous section 3.2.2.1, we successfully improved the robustness to noise of the
QAE by complementing the architecture with brain boxes. However, these results justify
the following question: Why does not increasing the complexity of brain boxes increase
the noise tolerance beyond some limit? The uniformity of the upper bound on the toler-
ance is striking because it falls when the inputs grow in size. Therefore, identifying this
limitation could further contribute to understanding the denoising QAE and perfecting
it.

To answer this question, we draw inspiration from classical machine learning, where
the amount and quality of the data available for the training are critical to the success
of the algorithms [27]. The training algorithm for DQNN was initially formulated for
supervised learning. We expect that the approximation of the learning rule with unsu-
pervised learning leads to limitations in completing the task due to missing information
in the training dataset. In our implementation of the QAE, the training data is best
described by the proportion of each noise realization in the set. Therefore, when the cost
function “teaches” the network, the only information it can provide to steer the training
to the desired state is encoded in the data set itself.

We start the investigation by visualizing the training data in two limits in figure
3.10. For each noise realization with n bit-flips occurring on Nn samples among the
Ndata states in the data set, we define the recurrence fn = Nn/Ndata. We check in figure
(3.10 a) what an ideal training set would look like, in the limit where infinitely many
states would be available. We denote this regime as the thermodynamic limit. It is
obtained from the equation of the bit-flip noise channel in equation 2.14. For states with
Nin qubits, we cumulate the recurrences for those with n and Nin−n bit-flips due to the
symmetry of the GHZ-states under the bit-flip channel: states with n flipped qubits can
be obtained by flipping the Nin −n qubits in the rest of the state. Hence, the analytical
form of the frequencies for the noise parameter p is:

f∗
n = pn (1− p)(Nin−n) + p(Nin−n) (1− p)n , such that (3.7)


Nin/2�∑
n=0

(
Nin

n

)
(pn (1− p)(Nin−n)) +

(
Nin

Nin − n

)
(p(Nin−n) (1− p)n) = 1. (3.8)

By observing the results in figure 3.10 (a) and (c), we notice that over the whole range
of noise intensities, the ideal GHZ-state amounts for the most significant proportion in
the training set compared to the other noise realizations, for both input sizes of 4 and
6 qubits, in (a) and (c). Its dominance vanishes only at p = 0.5 where the second
most frequent noise realization represents the same proportions as the ideal state. In
contrast, limiting the size of the training set to 200 states as in 3.10 (b) and (d) introduces
fluctuations around the frequencies defined in the thermodynamic limit. These variations



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 76

(a) Thermodynamic limit for 4-qubit inputs (b) Training set with 200 states on 4 qubits

(c) Thermodynamic limit for 6-qubit inputs (d) Training set with 200 states on 6 qubits

Figure 3.10: Frequencies of the noise realizations with n qubits flipped, in the thermo-
dynamic limit ((a) and (c)), and frequencies for the two dominant noise realizations in
training set with 200 training pairs in (b) and (d). While the ideal GHZ-state remains
dominant until p = 0.5 in the case of an infinitely large data set for both input sizes
namely 4 in the first, and six qubits in the second row, it is outnumbered earlier at
p = 0.45 and p = 0.35 for the set with finite size, for 4- and 6-qubit inputs respectively.

become essential in the strong noise regime because the frequencies of the ideal and most
probable noise realizations are very close to one another; minor variations can reverse
the dominance: the noisy state is more frequent than the perfect state. To the extent
that no other hint is given to the network to point out the desired output of the network,
the fluctuations play an important role and can cause the failure of the training.

We check whether this concurrence between noisy and ideal state is indeed at the
origin of the absolute bound seen in the threshold in figure 3.6. For this purpose, we
artificially compose a training set of 200 states with proportions close to those of the
thermodynamic limit, such that the crossing takes place only at p = 0.5. This approach
is necessary to the extent that sets with more than 1000 training samples would be
required to limit the variations to a minimum. However, such a network is very time-



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 77

Figure 3.11: Average fidelity during the testing phase, measure for a network optimized
with a training data set of 200 training pairs manually engineered to be a good ap-
proximation of the thermodynamic limit. The error bars correspond to the standard
deviation over data samples. The inset displays the recurrences of the perfect GHZ and
the most frequent noise realization in the data set. When the data set is close to the
thermodynamic limit, the tolerance threshold amounts to 50% and the original and brain
box-enhanced QAE are equivalent in performance.

consuming to train. Therefore, we keep the finite size of the set and adjust the frequencies
manually. The distribution we obtain, shown in figure 3.11 (a), is smooth and displays
only minor variations around the thermodynamic limit. In particular, as intended, no
crossing takes place between the ideal GHZ-state and the possible noise realizations,
except at 50% bit-flip probability.

We show the results of the trainings for three networks in figure 3.11 (b): the original
[4,2,1,2,4] QAE, and two different brain boxes, [4,2,1,1,2,4] and [4,2,2,2,4]. In the three
cases, the tolerance thresholds are extended to 45%, and the strongest noise parameter
p = 0.5 is the only intensity the QAE cannot correct. To allow for comparison with the
previous results in figure 3.6, the network was initialized with the same unitaries and
trained for the same duration. We conclude from this simulation that the training set
imposes an absolute bound on the noise tolerance of the QAE. When the frequency of



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 78

the ideal GHZ-state does not dominate the training set, and some other state is more
recurrent, the QAE identifies the most recurrent state as the target state. Indeed, in the
approximate supervised learning rule that we implement, the outputs have been replaced
by noisy states as well, and the network has no other resource to understand the task it
is given.

We check the consistency of our interpretation against results in the literature. The
authors of [13] derive a scaling between the generalization error in VQA-based QML
algorithms and the size of the training data sets. They consider a model that includes
T trainable local gates parametrized by a variable α and that can be combined in GT

different configurations. Each gate is repeated at most M times in the circuit, and the t-
th gate changes at most by an amount Δt during the learning phase, with Ndata training
samples. It holds that with high probability, the generalization error scales as follows:

gen(α) ∈ O
(

min
K=0,··· ,T

f(K) +

√
logGT

Ndata

)
(3.9)

where f(K) :=

√
K log(MT )

Ndata
+

T∑
k=K+1

MΔk, (3.10)

where K ≤ T reflects the number of gates that have undergone a significant change
Δt during the training. This means that the generalization error is proportional to√

1/Ndata and decreases when more samples are added to the data set. Therefore, the
scaling of the generalization error in our network seemz consistent with these results.

Furthermore, we note in figure 3.11 (b) that the tolerance of the original QAE is as
good as the brain box-enhanced QAE, and the variations between different inputs vanish
as well for the denoised states. It indicates that if the training data is inexpensive to
produce and the computational resources for the training do not grow exponentially
with its size, the addition of the brain boxes becomes irrelevant, to the extent that it
only adds overhead quantum resources and time, without changing the quality of the
output over the valid noise range. Nevertheless, since up to this day, producing these
vast data sets is costly, and finite-size training sets are more advantageous, the brain
box can compensate for this lack of data and saturate the maximum bound on the noise
tolerance. In this case, the original QAE would underperform.

3.4 Generalization performance

The amount of noise tolerated by the network depends on the data set it was trained
with can raise some concerns. Indeed, this can be addressed with the decomposition of
the generalization error [24, 17] into the sum of the squared bias, the variance, and some
additional noise term as in section 3.2.2.2:

generalization error = (bias)2 + variance + noise. (3.11)

The second term is directly connected to the sensitivity to variations in the inputs:
the QAE yields different fidelities in its outputs according to the data samples it acts



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 79

on after the training. In particular, it would enable the recovery of a subset of states
only. However, an explicit criterion for generalization seems difficult to formulate for
QAEs since its primary task is precisely to reproduce the inputs, and in the case of the
denoising QAE, to recover some target state. Consequently, the question arises: what is
a desirable generalization for the denoising QAE?

This interrogation goes alongside the formulation of the task. Indeed, as seen in
section 3.3, the training lands on different results in the weak and strong noise regimes
because the target state is no longer dominant in the training set in the latter. Conse-
quently, since the cost function in equation 2.11 that gave rise to the update rule is based
mainly on noisy states, the task of the QAE has been changed unwittingly. Instead of
asking to reproduce the ideal GHZ-state, the cost function designates a noisy state as the
desired output, because it weighs more in the sum over states ρinx in the cost function.
Therefore, a univocal reformulation of the cost function might be a way to improve noise
tolerance and generalization. This new task expression should perform well despite the
ideal states not accessible on noisy quantum hardware.

The definition of the cost function might instead seek a balance between the informa-
tion that must be kept or discarded. Similar to generative adversarial models, the cost
function could be composed of two competing terms: one to tell states apart from one
another, and a second to generate accurate copies of the inputs. The network is aware
of the features that make two states distinguishable, e.g. a bit-flip, while the generative
term embraces diversity in the targeted states. This approach could be investigated
with the Quantum Generative Adversarial Networks (QGAN) architecture, as proposed
in [117, 118, 119, 120], or find a formulation in terms of optimal measurement as in
Quantum Hypothesis Testing in an adversarial setting, as shown in section 3.2.2.2. The
information bottleneck framework would also penalize memory effects on the training
data while rewarding the selection of proper features to reach the desired outputs [121].

In addition, refining the formulation of the learning task requires, first and foremost
clarity on the type of generalization sought with the QAE. Namely, does generalization
mean (1) that the network can handle any noise channel acting on the desired state?
(2) can it filter bit-flips out of a wide diversity of states? (3) can it remove any kind of
noise in any state? This ill-defined definition of generalization is a well-known problem
for generative models and becomes particularly important when comparing classical and
quantum algorithms. To address this issue, Ref. [47] proposes a quantitative evaluation
of generalization based on three criteria. First, the model’s pre-generalization ability
characterizes the network’s capacity to explore the space outside its training samples
and produce novel outputs. The second criterion looks at the validity of the generated
samples. After passing the pre-generalization test, the outputs produced by the network
must belong to the solution space. Thirdly, the quality of the solution is appreciated
by its ability to minimize some cost functions. For example, if the network is asked to
output touristic destinations as cities, the pre-generalization step would require that the
network can output locations on a map that it did not see during the training. A valid
output would have to be an existing city. Finally, a quality output should be attractive
to tourists and minimize the cost function associated with their dissatisfaction.



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 80

Since the autoencoders have been shown to work as generative models [90], such
criteria can be used to evaluate the generalization in denoising QAE as well. However, in
the first stage, the QAE fails to explore states out of the data set it has been trained with.
This requirement would correspond to option (3) above: all states could be completely
denoised. However, this is not possible to the extent that if it can work with all states,
a state and its noisy version would be valid target states, and the network must be
given additional clues to determine whether noise occurred or not. Ideally, noise must
map target states in a subspace orthogonal to the desired states. We therefore eliminate
option (3) as a valid way of understanding generalization for the denoising QAE in our
approach.

The second view of generalization is investigated in Ref. [42]. The authors trained
a [3,1,3] QAE to denoise bit-flips on 3-qubit states. During the training, the inputs are
φ-GHZ states (|000〉+eiφ|000〉)/√2 with three different phases. In contrast, a continuous
range of phases is implemented during the testing. Their results indicate that the QAE
can still recover the desired states accurately. Nevertheless, the fidelity drops close to
0.8 when the noise parameter increases, even below the tolerance threshold. Therefore,
the denoising QAE trained with a small variety of samples can recover diverse targets
when they are all impacted by the same noise channel. As a result, the second view on
generalization we proposed is fulfilled to some extent by denoising QAE.

Finally, we examine option (1) for generalization in the QAE, namely whether the
network can filter noise from various noise channels for the same target state. For this
purpose, we introduce a new test, the “cross-test”. As in a usual test, or “symmetric
test”, we apply the trained map onto a new set of unseen data and measure the average
fidelity of the outputs. However, we construct asymmetric the data sets, similar to [105],
where the map is trained with a bit-flip probability of ptrain = 0.2, but the fidelities during
the testing are reported for test probabilities in the range ptest ∈ [0, 0.5] for the bit-flip
channel. We generalize this approach beyond the bit-flip channel and design testing
data with noisy GHZ-states perturbed with (1) the bit-flip channel in equation 2.14
with different noise intensities as explained above, (2) the depolarizing channel (cf eq.
3.12 below) and (3) an approximation for the erasure channel. We provide the results
for two different brain boxes, [1] and [2] in table 3.3.

Starting with the bit-flip channel in the first row, a shared feature for both networks
is the insensitivity of the trained map to the noise intensity, as suggested by the nearly
horizontal reconstruction error. Once the quantum channel has been trained, it handles
different bit-flip probabilities similarly and produces the same outputs. This can be
related to the fact that the noise parameter in the training set represents frequencies
in the set, but the states themselves are the same. Therefore, the network has been
familiarized with all the states that can be reached with the bit-flip channel starting
from the GHZ-state. The comparison of the two architectures reveals that the tolerance
thresholds are maintained respectively at 20% and 30% for the original and brain box
enhanced-QAE. However, the reconstruction error in the latter becomes non-negligible,
since fidelities take values between 99.99% and 99% close to the tolerance threshold.



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 81

Noise [6,2,1,2,6] [6,2,2,2,6]

bit-flip
channel

depolarizing
channel

erasure
channel

Table 3.3: Reconstruction error for the cross-testing simulations of two QAE architec-
tures with 6-qubit inputs: the original one in the first column, and the one enhanced
with a brain box [2]. Three types of noise are investigated, the bit-flip channel, the
depolarizing channel and the erasure channel. Once trained with the bit-flip channel
with a noise parameter below the tolerance threshold, the QAE can denoise any noise
intensity in the same channel, as shown by the linearity of the results.



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 82

Despite a seemingly small drop, the 1% of fidelity that is missing may cause damage in
the evolution of the outputs when employed in other computations. The accumulation
of such error rates in an algorithm would lead to erroneous results.

We also implement different noise channels that can lead to a wider variety of states,
particularly those not present in the training set. Firstly, we simulate the depolarizing
channel with noise parameter p on qubit i in the state ρ as follows:

N depol
i (ρ, p) =

1− 3p

4
Iiρ Ii +

∑
k={x,y,z}

p

4
σk
i ρ σ

k
i (3.12)

where the σk
i correspond to the Pauli matrices {σx, σy, σz} acting on qubit i and Ii

to the identity operation. As in equation 2.14, the channels for individual qubits are
concatenated to provide the final state. To implement this channel in the code, we
ensure the accuracy of the noise parameter as in Algorithm (2). The checks apply solely
on the proportion of noisy states in the set and no trial-and-error is used to balance
the three possible noise types, despite the use of a second random number to sample
them. The second row in table 3.3 reveals that the QAE generalizes astonishingly well
to the depolarizing channel: despite the exponential increase in the variety of states in
the inputs, the reconstruction error remains equal to that in the bit-flip case.

This observation is confirmed by the application of a third noise channel, inspired
by the quantum erasure channel [106, 122]. This noise model can represent the sponta-
neous emission in an atom. It divides the Hilbert space of a quantum system into the
computational space, and a Hilbert space that is orthogonal to it:

Hsyst = Hcomp

⊕
H⊥

comp. (3.13)

In the ideal case without noise, the state remains in the computation Hilbert space
Hcomp with a probability 1− p. In contrast, noise arises when leakage to the orthogonal
Hilbert space H⊥

comp happens. Therefore, the information in the computational basis is
erased, but a signal notifies about this event. For example, the emitted photon in the
previous example can be detected with suitable methods. The addition of the orthogonal
Hilbert space is not available in our model, since the unitaries have been trained on the
computational space only. Since no interaction with non-computational levels has been
included, they cannot bring the evaded state back to its original space. To mimic the
quantum erasure channel, we replace the ideal GHZ-states with random states, that can
differ at each noise realization. It is created by normalizing a vector of valid complex
amplitudes. The noise parameter p represents the proportion of random states in the
testing set and could stand for a decay rate in the example mentioned above. This
simulation is a confirmation of the previous observations. Since the probability of two
identical noisy states is low, the variance in the testing set is maximal. Even in these
conditions, high fidelity in the outputs is maintained for both architectures. As long
as the quantum channel has been trained successfully, the QAE can recover the desired
GHZ-state in its outputs with high fidelity.



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 83

Therefore, even though the QAE cannot correct any noise channel in any state, it
can generalize its denoising effect in two senses. First, it can correct bit-flips on φ-GHZ-
states, for any value of φ while seeing only three of them during the training. Second, the
cross-testing approach reveals that it can recover the GHZ-state from any noise channel
with high fidelity when trained in the weak-to-intermediate noise regime of the bit-flip
channel. While this result may hint at overfitting, in the sense that the network can
only create GHZ-states starting from any quantum state, it is also attractive for some
applications. First, it presents the operational advantage of being device-independent.
Indeed, regardless of the nature of the noise and its intensity, the QAE can produce
valid GHZ-states in its outputs as long as the quantum map can be trained. Therefore,
no knowledge about noise sources on the device is required to generate high-quality
GHZ-states. This can also be advantageous for devices that must produce entangled
states, such as repeaters to build a quantum internet, and whose calibration is expensive
but necessary: by being insensitive to noise variations in time, the QAE adapts to such
devices. Finally, this generalization ability is of theoretical interest. Indeed, the training
of the QAE finds a universal quantum map from any quantum state to the GHZ-state.
We note that this is possible because the GHZ-state has rank one and thereby majorizes
any other quantum state [123]. The elaboration of such a map is known to be complex
to find.



Conclusion and outlook

In this thesis, we explore the tools of quantum machine learning in light of its application
to revert the effects of noise on quantum computers. The QML technique is elaborated
to improve the quantum processor that accommodates it. Starting from the basics of
machine learning, we progressively move from quantum machine learning to the con-
struction of a Quantum Autoencoder model that can learn denoising. By simulating
it numerically, we investigate its performance, capacities, and limitations by borrowing
methods at the intersection between computer science and quantum theory.

We have introduced two possible ways to implement QML on quantum hardware,
among many other attempts. Even though both methods rely on the circuit representa-
tion of quantum computations, they understand the notion of parameters from different
points of view. The Variational Quantum Algorithms tune quantum gates with trained
and updated parameters in a hybrid, quantum-classical manner. Widely studied and
already realizing some of its promises in some disciplines such as quantum chemistry
or condensed matter physics, the success of the VQA lies in the suitable choice of an
ansatz to train and parametrize. Despite potentially limiting the operations the model
can express, this model can take advantage of the device’s strengths to be more robust
against noise and scale better. In contrast, the Dissipative Quantum Neural Networks
model was recently introduced in the community and offered a fully quantum algorithm
that mimics classical feed-forward neural networks. The parameters are envisioned as
unitaries applied between network layers, and dissipation enhances the non-linearity
achievable in the activation functions. Thanks to its structure, some areas of the knowl-
edge developed in classical machine learning can be transferred to these networks. The
direct comparison with classical networks is a requirement to investigate the question
of quantum advantage in QML. Despite being potentially expensive to implement, its
quantum learning rule makes it possible to reach desired quantum maps.

We employ the latter model for the practical application of denoising. We connect
QML and quantum computing to design a quantum algorithm capable of mitigating
the effects of noise on quantum hardware, thereby connecting knowledge of both fields.
The study of the Quantum Autoencoder uncovers the challenges its implementation
represents. It emphasizes the need for a quantum reformulation of functional properties
of artificial neural networks and the investigation of the apparition of some well-known
phenomena in quantum neural networks. Indeed, the notion of distance between two
states must be redefined in the quantum setting to enable a precise formulation of the

84



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 85

task in the cost function. The effects of initialization are questioned, and the importance
of the quality and quantity of the training data is brought to light. The data quality
is shown to be a primary bottleneck in realizing a DQNN for denoising to the extent
that it guides the network towards the desired state in an unsupervised setting. Finally,
we open the discussion of the concept of generalization, which is essential to benchmark
the performance of a QML algorithm against other quantum algorithms and classical
machine learning methods.

Studying the denoising Quantum Autoencoder, these insights are gained to correct
bit-flips on GHZ-states. The DQNN is given a task that can only succeed if the quantum
properties of the states are understood. We show in numerical simulations that the QAE
can recover the desired states with high fidelity until some noise tolerance threshold, after
which fidelity drops, and the similarity with the target states is lost. Our results are
consistent with the existing literature and are invariant in the random initialization
of the parameters. To understand the apparition of these limitations, we use tools of
quantum information and quantum theory. We compute second-order Rényi entropy to
measure noise and entanglement in the outputs, and, more generally, in the network. We
show that Rényi divergence is a suitable measure of the distance between the output and
target states, including quantum effects such as purity loss. Moreover, Rényi entropy is
crucial to understanding the network dynamics during the training. The network learns
to confine entropy in the encoder to perform the denoising task, while entanglement
vanishes in the decoder that delivers the outputs. In the process, the latent space appears
as the key ingredient to the success of the training. The tolerance threshold arises when
the intermediate layer no longer blocks noise in the first half of the network, thereby
inducing a behavior comparable to a second-order phase transition in the correlations
between the entropies of the latent and output states.

With these insights, we attempt to improve the noise tolerance of the QAE by mod-
ifying it with brain boxes. Introducing more complex and potentially more significant
latent spaces makes the intermediate layer robust against noise. Our numerical simu-
lations show that the tolerance upper bound imposed by the training data is saturated
thanks to the addition of the brain boxes. Not only is the size of the latent space impor-
tant, but its layout also plays a role in the improvement of robustness. We relate this
increased tolerance to the phenomenon of overparametrization and the field of represen-
tation learning. The latent state selects features that are more favorable to the recovery
of the target state. However, we question its ability to generalize its performance to new
data and propose three perspectives. The literature has shown that QAE can denoise
bit-flips on some novel states that are remarkably similar to the training data. We im-
plement the cross-testing approach to probe for the robustness of the trained map to
various noise mechanisms. Our numerical results reveal the denoising effect of the QAE
beyond the bit-flip channel: it can denoise states affected by the depolarizing channel
and an approximate quantum erasure channel. Nevertheless, the QAE fails to fulfill
broader generalization criteria.

The model of the QAE has shown promising results in numerical simulations. How-
ever, its transferability to a quantum processor remains unknown. Running this algo-



CHAPTER 3. COMBAT THE LIMITATIONS OF THE QAE 86

rithm would require modifications in the training rule to constrain the operations accord-
ing to the possibilities offered by the device. First, it requires operating multi-qubit gates
on large numbers of qubits. It would be helpful to investigate how to implement this
technique on devices with minor connectivity. Second, the trained and learned unitaries
are complex and probably unsuitable for compiling in a finite-sized, efficient quantum
circuit. Adapting the training rule to this constraint and allowing only specific terms
to appear in the final unitaries could prevent overheads in resources and computational
time. In addition, we have shown that the formulation of the problem in an unsupervised
way led to some dependence of the training on the data. The main obstacle to improv-
ing noise tolerance is access to good data sets. Therefore, one could take advantage of
the existing quantum tools in quantum information and computer science to root the
expression of the task in selecting relevant information to obtain robust representations
in the latent states instead of evaluating the dominant form in the data set. This refor-
mulation of the job goes hand in hand with the discussion of generalization to provide
more precise insights into the goal to reach in the task. The ideal design of the QAE
would be able to cope with various noise channels affecting a large diversity of quantum
states.



Bibliography

[1] G. M. D’Ariano, G. Chiribella, and P. Perinotti, Quantum Theory from First Prin-
ciples: An Informational Approach. Cambridge, England: Cambridge University
Press, 2017.

[2] J. Preskill, “Quantum Computing in the NISQ era and beyond” Quantum, vol. 2,
p. 79, 2018.

[3] R. P. Feynman, “Simulating physics with computers”, Int. J. Theor. Phys., vol. 21,
no. 6-7, pp. 467–488, 1982.

[4] C. E. Shannon, “A mathematical theory of communication”, Bell Syst. Tech. J.,
vol. 27, no. 3, pp. 379–423, 1948.

[5] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and
organization in the brain”, Psychological review, vol. 65, no. 6, pp. 386–408, 1958.

[6] I. L. Chuang, N. Gershenfeld, and M. Kubinec, “Experimental implementation of
fast quantum searching”, Phys. Rev. Lett., vol. 80, no. 15, pp. 3408–3411, 1998.

[7] J. Ku, X. Xu, M. Brink, D. C. McKay, J. B. Hertzberg, M. H. Ansari, and B. L. T.
Plourde, “Suppression of unwanted zz interactions in a hybrid two-qubit system”,
Physical review letters, vol. 125, no. 20, p. 200504, 2020.

[8] P. W. Shor, “Fault-tolerant quantum computation”, in Proceedings of 37th Con-
ference on Foundations of Computer Science, IEEE Comput. Soc. Press, 2002.

[9] A. L. Samuel,“Some studies in machine learning using the game of checkers”, IBM
journal of research and development, vol. 3, no. 3, pp. 210–229, 1959.

[10] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition”, Proc. IEEE Inst. Electr. Electron. Eng., vol. 86, no. 11,
pp. 2278–2324, 1998.

[11] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks”, in Advances in
Neural Information Processing Systems, vol. 27, 2014.

87



BIBLIOGRAPHY 88

[12] D. Flam-Shepherd, T. Wu, X. Gu, A. Cervera-Lierta, M. Krenn, and A. Aspuru-
Guzik, “Learning interpretable representations of entanglement in quantum optics
experiments using deep generative models.”, arXiv 2109.02490, 2021.

[13] M. C. Caro, H.-Y. Huang, M. Cerezo, K. Sharma, A. Sornborger, L. Cincio, and
P. J. Coles, “Generalization in quantum machine learning from few training data.”,
arXiv 2111.05292, 2021.

[14] M. Schuld and F. Petruccione, Machine learning with quantum computers. Springer
Nature, 2 ed., 2021.

[15] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators”, Neural Netw., vol. 2, no. 5, pp. 359–366, 1989.

[16] M. Nielsen, Neural Networks and Deep Learning. Determination Press, 2015.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. London, England:
MIT Press, 2016.

[18] S. Ruder, “An overview of gradient descent optimization algorithms.”, arXiv
1609.04747, 2016.

[19] T. Dozat, “Incorporating Nesterov Momentum into ADAM.”, ICLRWorkshop,
2016.

[20] B. T. Polyak, “Some methods of speeding up the convergence of iteration methods”,
U.S.S.R. comput. math. math. phys., vol. 4, no. 5, pp. 1–17, 1964.

[21] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization”, Inter-
national Conference on Learning Representations, 2015.

[22] Y. Nesterov, “A method of solving a convex programming problem with convergence
rate o(1/k2)”, Proceedings of the USSR Academy of Sciences, vol. 269, pp. 543–
547, 1983.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors”, Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[24] C. M. Bishop, Pattern Recognition and Machine learning. New York, NY: Springer,
2006.

[25] X.-M. Zhang, Z. Wei, R.Asad, X.-C Yang, X. Wang, When does reinforcement
learning stand out in quantum control? A comparative study on state preparation”,
Npj Quantum Inf., vol. 5, no. 1, 2019.

[26] F. Marquardt, Machine learning and quantum devices”, SciPost Phys. Lect. Notes,
no. 29, 2021.



BIBLIOGRAPHY 89

[27] M. Schuld, I. Sinayskiy, and F. Petruccione, “An introduction to quantum machine
learning”, Contemp. Phys., vol. 56, no. 2, pp. 172–185, 2015.

[28] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and fac-
toring”, in Proceedings 35th Annual Symposium on Foundations of Computer
Science, IEEE Comput. Soc. Press, 2002.

[29] V. Lopez-Pastor and F. Marquardt, “Self-learning machines based on hamiltonian
echo backpropagation.”, arXiv 2103.04992, 2021.

[30] P. Rebentrost, M. Mohseni, and S. Lloyd, “Quantum support vector machine for
big data classification”, Physical review letters, vol. 113, no. 13, p. 130503, 2014.

[31] S. Lloyd, M. Mohseni, and P. Rebentrost, “Quantum principal component analy-
sis”, Nature physics, vol. 10, no. 9, pp. 631–633, 2014.

[32] E. Farhi and H. Neven, “Classification with quantum neural networks on near term
processors.”, arXiv 1802.06002, 2018.

[33] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R.
McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles, “Variational quantum
algorithms”, Nature Reviews Physics, vol. 3, pp. 625–644, 2021.

[34] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love,
A. Aspuru-Guzik, and J. L. O’Brien, “A variational eigenvalue solver on a quan-
tum processor”, Nature, vol. Communications, pp. 5:4213,, 2014.

[35] P. Döring, “Aspects in quantum machine learning for chemistry and neural net-
works”, Master’s thesis, RWTH Aachen, 2020.

[36] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization
algorithm.”, arXiv 1411.4028, 2014.

[37] Z. Holmes, K. Sharma, M. Cerezo, and P. J. Coles, “Connecting ansatz express-
ibility to gradient magnitudes and barren plateaus”, PRX Quantum, vol. 3, no. 1,
2022.

[38] M. Larocca, P. Czarnik, K. Sharma, G. Muraleedharan, P. J. Coles, and M. Cerezo,
“Diagnosing barren plateaus with tools from quantum optimal control.”, arXiv
2105.14377, 2021.

[39] K. Beer, D. Bondarenko, T. Farrelly, T. J. Osborne, R. Salzmann, D. Scheiermann,
and R. Wolf, “Training deep quantum neural networks”, Nat. Commun., vol. 11,
no. 1, 2020.

[40] K. Sharma, M. Cerezo, L. Cincio, and P. J. Coles, “Trainability of dissipative
perceptron-based quantum neural networks.”, arXiv 2005.12458, 2020.



BIBLIOGRAPHY 90

[41] M. Cerezo, A. Sone, T. Volkoff, L. Cincio, and P. J. Coles, “Cost function dependent
barren plateaus in shallow parametrized quantum circuits”, Nature communica-
tions, vol. 12, no. 1, p. 1791, 2021.

[42] D. Bondarenko and P. Feldmann, “Quantum autoencoders to denoise quantum
data”, Phys. Rev. Lett., vol. 124, no. 13, p. 130502, 2020.

[43] S. Lloyd, “Quantum machine learning.”, Lecture at Keio University, June 2016.

[44] T. F. Rønnow, Z. Wang, J. Job, S. Boixo, S. V. Isakov, D. Wecker, J. M. Martinis,
D. A. Lidar, and M. Troyer, “Defining and detecting quantum speedup”, Science,
vol. 345, no. 6195, pp. 420–424, 2014.

[45] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd,
“Quantum machine learning”, Nature, vol. 549, no. 7671, pp. 195–202, 2017.

[46] A. W. Harrow, A. Hassidim, and S. Lloyd, “Quantum algorithm for linear systems
of equations”, Physical Review Letters, vol. 103, no. 15, p. 150502, 2009.

[47] K. Gili, M. Mauri, and A. Perdomo-Ortiz, “Evaluating generalization in classical
and quantum generative models.”, arXiv 2201.08770, 2022.

[48] P. Bashivan, R. Bayat, A. Ibrahim, K. Ahuja, M. Faramarzi, T. Laleh, B. A.
Richards, and I. Rish, “Adversarial feature desensitization.”, arXiv 2006.04621,
2020.

[49] S. Lu, L.-M. Duan, and D.-L. Deng, “Quantum adversarial machine learning”,
Physical Review Research, vol. 2, no. 3, 2020.

[50] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning at scale.”,
arXiv 1611.01236, 2016.

[51] M. Weber, N. Liu, B. Li, C. Zhang, and Z. Zhao, “Optimal provable robustness of
quantum classification via quantum hypothesis testing”, npj Quantum Informa-
tion, vol. 7, no. 1, 2021.

[52] M. Schuld, R. Sweke, and J. J. Meyer, “Effect of data encoding on the expres-
sive power of variational quantum-machine-learning models”, Physical Review.
A, vol. 103, no. 3, 2021.

[53] S. Aaronson, “Read the fine print”, Nature physics, vol. 11, no. 4, pp. 291–293,
2015.

[54] X. Lu, S. Matsuda, C. Hori, and H. Kashioka, “Speech restoration based on deep
learning autoencoder with layer-wised pretraining”, in INTERSPEECH, 2012.

[55] M. Kim, “Collaborative deep learning for speech enhancement: A run-time model
selection method using autoencoders”, in 2017 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2017.



BIBLIOGRAPHY 91

[56] R. Sinha and P. Rajan, “A deep autoencoder approach to bird call enhancement”, in
2018 IEEE 13th International Conference on Industrial and Information Systems
(ICIIS), pp. 22–26, 2018.

[57] L. Gondara, “Medical image denoising using convolutional denoising autoen-
coders”, in 2016 IEEE 16th international conference on data mining workshops
(ICDMW), pp. 241–246, IEEE, 2016.

[58] Y. Sakai, Y. Itoh, P. Jung, K. Kokeyama, C. Kozakai, K. T. Nakahira, S. Oshino,
Y. Shikano, H. Takahashi, T. Uchiyama, G. Ueshima, T. Washimi, T. Yamamoto,
and T. Yokozawa, “Unsupervised learning architecture for classifying the transient
noise of interferometric gravitational-wave detectors.”, arXiv 2111.10053, 2021.

[59] K. Hartnett, “Quantum supremacy is coming: Here’s what you should know.”,
www.quantamagazine.org, July 2019.

[60] A. Peres, “Reversible logic and quantum computers”, Physical Review A: General
physics, vol. 32, no. 6, pp. 3266–3276, 1985.

[61] P. W. Shor, “Scheme for reducing decoherence in quantum computer memory”,
Physical Review. A, vol. 52, no. 4, pp. R2493–R2496, 1995.

[62] A. Steane, “Multiple-particle interference and quantum error correction”, Pro-
ceedings of the Royal Society of London. Series A: Mathematical, Physical and
Engineering Sciences, vol. 452, no. 1954, pp. 2551–2577, 1996.

[63] D. Gottesman, Stabilizer Codes and Quantum Error Correction, PhD thesis, Cal-
ifornia Institute of Technology, 1997.

[64] A. Kitaev, “Fault-tolerant quantum computation by anyons”, Annals of Physics,
vol. 303, no. 1, pp. 2–30, 2003.

[65] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin, J. P. Gaebler,
D. Francois, A. Chernoguzov, D. Lucchetti, N. C. Brown, T. M. Gatterman, S. K.
Halit, K. Gilmore, J. Gerber, B. Neyenhuis, D. Hayes, and R. P. Stutz, “Realization
of real-time fault-tolerant quantum error correction”, Physical Review. X, vol. 11,
no. 4, 2021.

[66] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned”, Nature,
vol. 299, no. 5886, pp. 802–803, 1982.

[67] A. Ekert and C. Macchiavello, “Quantum error correction for communication”,
Physical Review Letters, vol. 77, no. 12, pp. 2585–2588, 1996.

[68] R. Uzdin, “Methods for measuring noise, purity changes, and entanglement entropy
in quantum devices and systems.”, arXiv 2112.00546, 2021.



BIBLIOGRAPHY 92

[69] T. Lubinski, S. Johri, P. Varosy, J. Coleman, L. Zhao, J. Necaise, C. H. Bald-
win, K. Mayer, and T. Proctor, “Application-oriented performance benchmarks
for quantum computing.”, arXiv 2110.03137, 2021.

[70] D. Gottesman, “The Heisenberg representation of quantum computers.”, arXiv
9807006, 1998.

[71] E. Magesan, J. M. Gambetta, and J. Emerson, “Robust randomized benchmarking
of quantum processes.”, arXiv 1009.3639, 2018.

[72] “Qiskit textbook: Randomized benchmarking.” https://qiskit.org/textbook/ch-
quantum-hardware/randomized-benchmarking.html, April 2022.

[73] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D.
Oliver, “A quantum engineer's guide to superconducting qubits”, Applied Physics
Reviews, vol. 6, no. 2, p. 021318, 2019.

[74] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta, “Val-
idating quantum computers using randomized model circuits”, Physical Review.
A, vol. 100, no. 3, 2019.

[75] J.-S. Kim, L. S. Bishop, A. D. Corcoles, S. Merkel, J. A. Smolin, and S. Shel-
don, “Hardware-efficient random circuits to classify noise in a multi-qubit system”,
Phys. Rev. A, vol. 104, p. 022609, 2021.

[76] L. Cincio, Y. Subaşı, A. T. Sornborger, and P. J. Coles, “Learning the quantum
algorithm for state overlap”, New J. Phys., vol. 20, p. 113022, 2018.

[77] L. Cincio, K. Rudinger, M. Sarovar, and P. J. Coles, “Machine learning of noise-
resilient quantum circuits”, PRX Quantum, vol. 2, no. 1, 2021.

[78] K. Temme, S. Bravyi, and J. M. Gambetta,“Error mitigation for short-depth quan-
tum circuits”, Physical Review Letters, vol. 119, no. 18, 2017.

[79] Y. Kim, C. J. Wood, T. J. Yoder, S. T. Merkel, J. M. Gambetta, K. Temme,
and A. Kandala, “Scalable error mitigation for noisy quantum circuits produces
competitive expectation values.”, arXiv 2108.09197, 2021.

[80] P. Czarnik, A. Arrasmith, P. J. Coles, and L. Cincio, “Error mitigation with clifford
quantum-circuit data”, Quantum, vol. 5, no. 592, p. 592, 2021.

[81] A. Lowe, M. H. Gordon, P. Czarnik, A. Arrasmith, P. J. Coles, and L. Cincio,
“Unified approach to data-driven quantum error mitigation”, Physical Review
Research, vol. 3, no. 3, 2021.

[82] Y. Lecun, Modeles connexionnistes de l’apprentissage (connectionist learning mod-
els), PhD thesis, Universite Pierre et Marie Curie (Paris VI), June 1987.



BIBLIOGRAPHY 93

[83] H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons and sin-
gular value decomposition”, Biological cybernetics, vol. 59, no. 4–5, pp. 291–294,
1988.

[84] G. E. Hinton and R. S. Zemel, “Autoencoders, minimum description length and
Helmholtz free energy”, in Proceedings of the 6th International Conference on Neu-
ral Information Processing Systems, NIPS’93, (San Francisco, CA, USA), pp. 3–10,
Morgan Kaufmann Publishers Inc., 1993.

[85] J. Gehring, Y. Miao, F. Metze, and A. Waibel, “Extracting deep bottleneck features
using stacked auto-encoders”, in 2013 IEEE International Conference on Acoustics,
Speech and Signal Processing, IEEE, 2013.

[86] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked
denoising autoencoders: Learning useful representations in a deep network with a
local denoising criterion”, Journal of Machine Learning Research, vol. 11, no. 110,
pp. 3371–3408, 2010.

[87] P. Baldi and K. Hornik, “Neural networks and principal component analysis:
Learning from examples without local minima”, Neural networks: the official jour-
nal of the International Neural Network Society, vol. 2, no. 1, pp. 53–58, 1989.

[88] R. Salakhutdinov and G. Hinton, “Semantic hashing”, International journal of ap-
proximate reasoning: official publication of the North American Fuzzy Information
Processing Society, vol. 50, no. 7, pp. 969–978, 2009.

[89] G. E. Hinton and R. R. Salakhutdinov,“Reducing the dimensionality of data with
neural networks”, Science (New York, N.Y.), vol. 313, no. 5786, pp. 504–507,
2006.

[90] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and com-
posing robust features with denoising autoencoders”, in Proceedings of the 25th
international conference on Machine learning - ICML ’08, (New York, New York,
USA), ACM Press, 2008.

[91] K. H. Wan, O. Dahlsten, H. Kristjánsson, R. Gardner, and M. S. Kim, “Quantum
generalisation of feedforward neural networks”, npj Quantum Information, vol. 3,
no. 1, 2017.

[92] C. Cao and X. Wang, “Noise-assisted quantum autoencoder”, Phys. Rev. Applied,
vol. 15, no. 5, p. 054012, 2020.

[93] J. Romero, J. P. Olson, and A. Aspuru-Guzik, “Quantum autoencoders for efficient
compression of quantum data”, Quantum Sci. Technol., vol. 2, no. 4, p. 045001,
2017.

[94] C. Bravo-Prieto, “Quantum autoencoders with enhanced data encoding”, Machine
Learning: Science and Technology, vol. 2, no. 3, p. 035028, 2021.



BIBLIOGRAPHY 94

[95] Y. Du and D. Tao, “On exploring practical potentials of quantum auto-encoder
with advantages.”, arXiv 2106.15432, 2021.

[96] D. M. Greenberger, M. A. Horne, and A. Zeilinger, Going beyond bell’s theorem,
pp. 69–72. Springer Netherlands, 1989.

[97] N. D. Mermin, “Extreme quantum entanglement in a superposition of macroscop-
ically distinct states”, Physical Review Letters, vol. 65, pp. 1838–1840, October
1990.

[98] N. D. Mermin, “Quantum mysteries revisited”, American journal of physics,
vol. 58, no. 8, pp. 731–734, 1990.

[99] D. Alsina and J. I. Latorre, “Experimental test of Mermin inequalities on a five-
qubit quantum computer”, Physical Review. A, vol. 94, no. 1, 2016.

[100] W.-J. Huang, W.-C. Chien, C.-H. Cho, C.-C. Huang, T.-W. Huang, and C.-R.
Chang, “Mermin’s inequalities of multiple qubits with orthogonal measurements on
ibm q 53-qubit system”, Quantum Engineering, vol. 2, no. 2, p. e45, 2020.

[101] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters,
“Teleporting an unknown quantum state via dual classical and einstein-podolsky-
rosen channels”, Physical Review Letters, vol. 70, no. 13, p. 1895, 1993.

[102] R. Raussendorf, D. E. Browne, and H. J. Briegel, “Measurement-based quantum
computation on cluster states”, Physical Review. A, vol. 68, no. 2, 2003.

[103] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and P. Treutlein, “Quan-
tum metrology with nonclassical states of atomic ensembles”, Reviews of Modern
Physics, vol. 90, sep 2018.

[104] W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequiv-
alent ways”, Phys. Rev. A, vol. 62, p. 062314, 2000.

[105] T. Achache, L. Horesh, and J. Smolin, “Denoising quantum states with quantum
autoencoders – theory and applications”, arXiv 2012.14714, 2020.

[106] C. H. Bennett, D. P. DiVincenzo, and J. A. Smolin, “Capacities of quantum erasure
channels”, Phys. Rev. Lett., vol. 78, no. 16, pp. 3217–3220, 1997.

[107] M. H. Ansari, A. van Steensel, and Y. V. Nazarov, “Entropy production in quantum
is different”, Entropy, vol. 21, p. 854, aug 2019.

[108] M. H. Ansari and Y. V. Nazarov, “Rényi entropy flows from quantum heat en-
gines”, Phys. Rev. B, vol. 91, p. 104303, Mar 2015.

[109] M. H. Ansari and Y. V. Nazarov, “Exact correspondence between Renyi entropy
flows and physical flows”, Phys. Rev. B, vol. 91, p. 174307, May 2015.



BIBLIOGRAPHY 95

[110] T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B. P. Lanyon, P. Zoller,
R. Blatt, and C. F. Roos, “Probing Rényi entanglement entropy via randomized
measurements”, Science, vol. 364, no. 6437, pp. 260–263, 2019.

[111] A. Gilchrist, N. K. Langford, and M. A. Nielsen, “Distance measures to compare
real and ideal quantum processes”, Physical Review. A, vol. 71, no. 6, 2005.

[112] R. L. Frank and E. H. Lieb, “Monotonicity of a relative Rényi entropy”, Journal
of mathematical physics, vol. 54, no. 12, p. 122201, 2013.

[113] J. Rogers, G. Bhattacharyya, M. S. Frank, T. Jiang, O. Christiansen, Y.-X. Yao,
and N. Lanatà, “Error mitigation in variational quantum eigensolvers using prob-
abilistic machine learning.”, arXiv 2111.08814, 2021.

[114] J. W. Rocks and P. Mehta, “Bias-variance decomposition of overparameterized
regression with random linear features.”, arXiv 2203.05443, 2022.

[115] M. Belkin, D. Hsu, S. Ma, and S. Mandal, “Reconciling modern machine learning
practice and the bias-variance trade-off.”, arXiv 1812.11118, 2018.

[116] M. Larocca, N. Ju, D. Garćıa-Mart́ın, P. J. Coles, and M. Cerezo, “Theory of
overparametrization in quantum neural networks”, arXiv 2109.11676, 2021.

[117] M. Y. Niu, A. Zlokapa, M. Broughton, S. Boixo, M. Mohseni, V. Smelyanskyi,
and H. Neven, “Entangling quantum generative adversarial networks”, arXiv
2105.00080, 2021.

[118] S. Lloyd and C. Weedbrook, “Quantum generative adversarial learning”, Physical
Review Letters, vol. 121, no. 4, 2018.

[119] P.-L. Dallaire-Demers and N. Killoran, “Quantum generative adversarial net-
works”, Physical review. A, vol. 98, no. 1, 2018.

[120] K. Beer and G. Müller, “Dissipative quantum generative adversarial networks”,
arXiv 2112.06088, 12 2021.

[121] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck method.”,
arXiv 0004057, 2000.

[122] M. Grassl, T. Beth, and T. Pellizzari, “Codes for the quantum erasure channel”,
Physical Review. A, vol. 56, no. 1, pp. 33–38, 1997.

[123] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Informa-
tion: 10Th Anniversary Edition. Cambridge, England: Cambridge University
Press, 2012.



Appendix A

Adjoint channel

In section 1.2.2.2, we explained that the training rule relies on measuring the difference
between an input state that has been propagated forwards through the network until
some layer l of interest, and the corresponding desired output state propagated back-
wards until the same layer. Therefore, we derive a formula for the backward propagation
in terms of the quantum map of the forward pass. This derivation is taken from [39] and
is provided for completeness. The map F l(ρlx) is the adjoint of E l(ρl−1

x ). A completely
positive quantum map can be written in the Kraus formalism [123] with:

E l(ρl−1
x ) =

∑
αA

l
αρ

l−1
x Al

α
†

where
∑

αA
l
α
†
Al

α = I.

(A.1)

Taking the adjoint channel, a general form for F l(ρlx) is then simply:

F l(ρlx) =
∑
α

Al
α
†
ρlxA

l
α. (A.2)

To obtain an explicit form of the channel, we must precise the Kraus operators.
For this purpose, let {|m〉}, {|n〉} be two sets of orthogonal states for layer l − 1, and
{|i〉}, {|j〉} for layer l. In addition, {|α〉} is an orthonormal basis for the Hilbert space
of layer l − 1. With these bases, we can find each element of the Kraus operators:

〈i|E l(ρl−1
x )|j〉 = 〈i| Tr

l−1

{
U l
(
ρl−1 ⊗ |0〉〈0|⊗Nl

)
U l†
}
|j〉

=
∑
α

〈α, i| U l
(
ρl−1 ⊗ |0〉〈0|⊗Nl

)
U l† |α, j〉 (A.3)

Looking at the results of the channel for a component of the density matrix on layer
l, |m〉〈n|:

96



APPENDIX A. ADJOINT CHANNEL 97

〈i|E l(|m〉〈n|)|j〉 =
∑
α

〈α, i| U l
(|m〉〈n| ⊗ |0〉〈0|⊗Nl

)U l† |α, j〉

=
∑
α

〈α, i| U l (|m, 0 · · · 0〉〈n, 0 · · · 0|)U l† |α, j〉

=
∑
α

(
〈α, i| U l|m, 0 · · · 0〉

) (
〈n, 0 · · · 0|U l† |α, j〉

)
(A.4)

Finally, the Kraus operators are defined by their matrix components:

〈i|Al
α|m〉 = 〈α, i| U l|m, 0 · · · 0〉 (A.5)

This equation enables us to find the explicit formula for the adjoint channel by using
the Kraus operators above, and applying them on a component |i〉〈j| of the density
matrix on layer l:

〈m|F l(|i〉〈j|)|n〉 = 〈m|
∑
α

Al
α
†|i〉〈j|Al

α|n〉

=
∑
α

〈m, 0 · · · 0|U l† |α, i〉 〈α, j| U l|n, 0 · · · 0〉

= 〈m, 0 · · · 0|U l†
(
Il−1 ⊗ |i〉〈j|

)
U l|n, 0 · · · 0〉

= 〈m|Tr
l

{(
Il−1 ⊗ |0〉〈0|⊗Nl

)
U l†
(
Il−1 ⊗ |i〉〈j|

)
U l
}
|n〉. (A.6)

Finally, a general state on layer l is propagated backwards to layer l−1 by the application
of the adjoint channel:

F l(ρlx) = Tr
l

{(
Il−1 ⊗ |0〉〈0|⊗Nl

)
U l†
(
Il−1 ⊗ ρlx

)
U l
}

(A.7)



Appendix B

Derivation of the learning rule for
DQNN

For completeness and to show more explicitly that the update rule for DQNN is derived
completely from the cost function in a way that is compatible with quantum mechanics,
we report here its derivation, as shown by [39]. It can also be useful if one aims at using
a distance measure that is different from the fidelity: the Rényi divergence introduced
in 2.3.3.2 could be a more complete cost function. It would, however, require additional
terms, such as a regularizer, to introduce a bias towards the solution due to its symmetry
in the probabilities.

To derive an explicit formula for the gradient of the cost function dC/dt where C is
the cost function and t is a training round, we impose the constraint:

U l
j(t+ ε) = eiεK

l
j(t)U l

j(t) (B.1)

to define the form of the updates in a quantum mechanical way. The matrix K l
j(t) is

the parameter matrix. To make the training efficient, K l
j(t) must be the fastest update

possible.
We take the cost function to be the fidelity of the output state ρoutx with a pure target

state ρ∗x = |φ∗〉〈φ∗|:

C =
1

N

∑
x

Tr
{
ρ∗xρ

out
x

}
=

1

N

∑
x

〈φ∗|ρoutx |φ∗〉. (B.2)

Since it is a smooth function of the variable t, its derivative can be written as:

dC

dt
= lim

ε→0

C(t+ ε)− C(t)

ε
, (B.3)

for an infinitesimal update.
By equations B.1 and B.2, the first term of the difference can be calculated. In

particular, it requires the state at step t+ ε:

98



APPENDIX B. DERIVATION OF THE LEARNING RULE FOR DQNN 99

ρoutx (t+ε) = Tr
in, hid

⎧⎨⎩
⎛⎝ 1∏

l=L

1∏
j=NL

eiεK
l
j(t)U l

j(t)

⎞⎠(ρinx ⊗ |0〉〈0|⊗hid, out
)⎛⎝ L∏

l=1

NL∏
j=1

U l
j(t)

†
e−iεKl

j(t)

⎞⎠⎫⎬⎭ .

(B.4)

We perform the Taylor expansion to first order in ε of the update eiεK
l
j(t) ≈ 1 +

iεK l
j(t) +O(ε2):

ρoutx (t+ ε)

= Tr
in, hid

⎧⎨⎩
⎛⎝ 1∏

l=L

1∏
j=NL

(1 + iεKl
j(t))U

l
j(t)

⎞⎠(ρinx ⊗ |0〉〈0|⊗hid, out
)⎛⎝ L∏

l=1

NL∏
j=1

U l
j(t)

†
(1− iεKl

j(t))

⎞⎠⎫⎬⎭+O(ε2)

= Tr
in, hid

⎧⎨⎩
1∏

l=L

1∏
j=NL

U l
j(t)
(
ρinx ⊗ |0〉〈0|⊗hid, out

) L∏
l=1

NL∏
j=1

U l
j(t)

†
⎫⎬⎭

+ iε Tr
in, hid

{
KL

NL
UL
NL

(UL
NL−1 · · ·U1

1 )
(
ρinx ⊗ |0〉〈0|⊗hid, out

)
(U1

1
† · · ·UL

NL

†
)
}

− iε Tr
in, hid

{
(UL

NL
· · ·U1

1 )
(
ρinx ⊗ |0〉〈0|⊗hid, out

)
(U1

1
† · · ·UL

NL−1

†
)UL

NL

†
KL

NL

}
+ · · · − · · ·
+ iε Tr

in, hid

{
(UL

NL
· · ·Kl

jU
l
j · · ·U1

1 )
(
ρinx ⊗ |0〉〈0|⊗hid, out

)
(U1

1
† · · ·UL

NL

†
)
}

− iε Tr
in, hid

{
(UL

NL
· · ·U1

1 )
(
ρinx ⊗ |0〉〈0|⊗in, hid

)
(U1

1
† · · ·U l

j

†
Kl

j · · ·UL
NL

†
)
}

+ · · · − · · ·+O(ε2)

= ρoutx (t) + iε Tr
in, hid

⎧⎨⎩
⎡⎣KL

NL
,

⎛⎝ 1∏
l=L

1∏
j=NL

U l
j(t)

⎞⎠(ρinx ⊗ |0〉〈0|⊗ hid, out
)⎛⎝ L∏

l=1

NL∏
j=1

U l
j(t)

†
⎞⎠⎤⎦⎫⎬⎭

+ · · ·

+ iε Tr
in, hid

⎧⎨⎩
⎛⎝ k∏

l=L

←−ql∏
j=Nl

U l
j(t)

⎞⎠⎡⎣Kk
q ,

⎛⎝ 1∏
l=k

1∏
j=−→ql

U l
j(t)

⎞⎠(ρinx ⊗ |0〉〈0|⊗hid, out
)⎛⎝ k∏

l=1

−→ql∏
j=1

U l
j(t)

†
⎞⎠⎤⎦⎛⎝ L∏

l=k

Nl∏
j=←−ql

U l
j(t)

†
⎞⎠⎫⎬⎭

+ · · ·
+O(ε2)

= ρoutx (t) + iεΔρoutx (t) (B.5)

where we simplify the notation with ←−ql = 1 when l �= k and ←−ql = q + 1 when l = k and
similarly, −→ql = Nl when l �= k and −→ql = q when l = k. We can now turn back to the cost
function, and use equation B.5 in the first term of the difference.



APPENDIX B. DERIVATION OF THE LEARNING RULE FOR DQNN 100

dC

dt
= lim

ε→0

C(t+ ε)− C(t)

ε

= lim
ε→0

1

Nε

∑
x

(〈φ∗
x|ρoutx (t+ ε)|φ∗

x〉 − 〈φ∗
x|ρoutx (t)|φ∗

x〉)

= lim
ε→0

iε

Nε

∑
x

〈φ∗
x|Δρoutx (t)|φ∗

x〉

=
i

N

∑
x

Tr
out

{|φ∗
x〉〈φ∗

x|Δρoutx (t)
}

=
i

N

∑
x

Tr
out

{|φ∗
x〉〈φ∗

x|
L∑

k=1

Nl∑
q=1

Tr
in, hid

{
⎛⎝ k∏

l=L

←−ql∏
j=Nl

U l
j(t)

⎞⎠
⎡⎣Kk

q ,

⎛⎝ 1∏
l=k

1∏
j=−→ql

U l
j(t)

⎞⎠(ρinx ⊗ |0〉〈0|⊗hid, out
)⎛⎝ k∏

l=1

−→ql∏
j=1

U l
j(t)

†
⎞⎠⎤⎦⎛⎝ L∏

l=k

Nl∏
j=←−ql

U l
j(t)

†
⎞⎠}}

=
1

N
Tr
all
{
∑
x

∑
k

∑
q

(
Iin, hid ⊗ |φ∗

x〉〈φ∗
x|
)⎛⎝ k∏

l=L

←−ql∏
j=Nl

U l
j(t)

⎞⎠
⎡⎣iKk

q ,

⎛⎝ 1∏
l=k

1∏
j=−→ql

U l
j(t)

⎞⎠(ρinx ⊗ |0〉〈0|⊗hid, out
)⎛⎝ k∏

l=1

−→ql∏
j=1

U l
j(t)

†
⎞⎠⎤⎦⎛⎝ L∏

l=k

Nl∏
j=←−ql

U l
j(t)

†
⎞⎠} (B.6)

Two simple identities can help rewriting equation B.6. They result from the invariance of
the trace under cyclic permutations, for three square matrices A,B,C, and a unitary matrix U
with the same dimensions:

Tr{A[B,C]} = Tr{[C,A]B} = Tr{[A,B]C} (B.7)

Tr{A (U [B,C]U†)} = Tr{(U†AU)[B,C]} = Tr{[C, (U†AU)]B}. (B.8)

Applying B.8 to the cost derivative, we can isolate the parameter matrix Kl
j out of the

commutator:

dC

dt
=

1

N
Tr
all
{
∑
x

∑
k

∑
q

[

⎛⎝ 1∏
l=k

1∏
j=−→ql

U l
j(t)

⎞⎠(ρinx ⊗ |0〉〈0|⊗hid, out
)⎛⎝ k∏

l=1

−→ql∏
j=1

U l
j(t)

†
⎞⎠ ,

⎛⎝ L∏
l=k

Nl∏
j=←−ql

U l
j(t)

†
⎞⎠(Iin, hid ⊗ |φ∗

x〉〈φ∗
x|
)⎛⎝ k∏

l=L

←−ql∏
j=Nl

U l
j(t)

⎞⎠] .iKk
q (t)}

=
i

N
Tr
all

{∑
x

∑
k

∑
q

Mk
q (t).K

k
q (t)

}
(B.9)

Equation B.9 shows that the gradients of the cost function can be implemented in the form
of a quantum unitary evolution, as the exponential of a Hermitian matrix. Therefore, the fidelity



APPENDIX B. DERIVATION OF THE LEARNING RULE FOR DQNN 101

as a cost function facilitates the elaboration of a quantum learning rule. To apply this learning
rule in an algorithm, an explicit form must be derived for the parameter matrices Kl

j(t). We
drop the iteration indices t for simplicity. Each parameter matrix can be decomposed in a basis
{σα1 ⊗ · · · ⊗ σαNl ⊗ σβ}, where σαi and σβ act on qubits in layer l − 1 and l respectively:

Kl
j =

∑
αi,β

Kl
j,αi,β(σ

α1 ⊗ · · · ⊗ σαNl ⊗ σβ). (B.10)

For example, the Pauli matrices complemented with the identity are a valid basis. We choose
Kl

j such that it maximizes the gradient dC
dt in equation B.9. Since the cost derivative is linear in

Kl
j , its extrema are realized for infinite values. To avoid this issue, a Lagrangian multiplier λ is

introduced as a regularizer to ensure finite updates. We optimize the resulting gradient:

max
Kl

j,αi,β

⎧⎨⎩dC

dt
− λ

∑
αi,β

Kl
j,αi,β

2

⎫⎬⎭
= max

Kl
j,αi,β

⎧⎨⎩ i

N
Tr
all

{∑
x

∑
k

∑
q

Mk
q K

k
q

}
− λ

∑
αi,β

Kl
j,αi,β

2

⎫⎬⎭
= max

Kl
j,αi,β

i

N
Tr

γ∈Kl
j

{∑
x

∑
k

∑
q

Tr
γ̄ /∈Kl

j

{
Mk

q K
k
q

}}− λ
∑
αi,β

Kl
j,αi,β

2
(B.11)

where γ stands for all qubits U l
j acts on, and γ̄ all the remaining qubits in the network. As usual,

to maximize the update, the derivative of equation B.11 with respect to Kl
j,αi,β

is calculated and
set to 0:

i

N
Tr

γ∈Kl
j

{∑
x

Tr
γ̄ /∈Kl

j

{
M l

j

} (
σα1 ⊗ · · · ⊗ σαNl ⊗ σβ

)}− 2λKl
j,αi,β = 0, (B.12)

from which we find the coefficients for the parameter matrix:

Kl
j,αi,β =

i

2λN

∑
x

Tr
γ∈Kl

j

{
Tr

γ̄ /∈Kl
j

{
M l

k

}
.
(
σα1 ⊗ · · · ⊗ σαNl ⊗ σβ

)}
. (B.13)

Coming back to the expression for the parameter matrix in equation B.10 and writing the
explicit formula for its coefficients, the explicit form of the parameter matrix results in:

Kl
j =

∑
αi,β

Kl
j,αi,β(σ

α1 ⊗ · · · ⊗ σβ)

=
i

2λN

∑
x

∑
αi,β

Tr
γ∈Kl

j

{
Tr

γ̄ /∈Kl
j

{
M l

k

}
.
(
σα1 ⊗ · · · ⊗ σαNl ⊗ σβ

)}
(σα1 ⊗ · · · ⊗ σβ)

=
i

2λN

∑
x

2Nl−1+1 Tr
γ∈Kl

j

{
M l

k

}
=

i2Nl−1+1

2λN

∑
x

Tr
γ∈Kl

j

{
M l

k

}
(B.14)

where



APPENDIX B. DERIVATION OF THE LEARNING RULE FOR DQNN 102

M l
j(t) = [

⎛⎝ 1∏
l=k

1∏
j=−→ql

U l
j(t)

⎞⎠(ρinx ⊗ |0〉〈0|⊗hid, out
)⎛⎝ k∏

l=1

−→ql∏
j=1

U l
j(t)

†
⎞⎠ ,

⎛⎝ L∏
l=k

Nl∏
j=←−ql

U l
j(t)

†
⎞⎠(Iin, hid ⊗ |φ∗

x〉〈φ∗
x|
)⎛⎝ k∏

l=L

←−ql∏
j=Nl

U l
j(t)

⎞⎠].

(B.15)



Appendix C

Entropy correlations

103



APPENDIX C. ENTROPY CORRELATIONS 104

Figure C.1: View of the correlation between the output and latent state’s entropies,
when the network is trained with the bit-flip channel with probability p and tested
with random pure states. These two quantities are linked by linear relations, and an
abrupt change of behavior occurs past the tolerance threshold of p = 0.3, where the
proportionality coefficient becomes suddenly finite. The linear fit for the proportionality
factors is shown in figure (3.3 c)



Appendix D

Test results for the brain boxes

For completeness, we provide the results for the testings for the networks completed with the
brain boxes in section 3.2.2, for 2, 3, and 4 qubits in the brain box. For 2-qubit brain boxes, a
difference is notable between the [1,1] and [2] qubit-brain boxes: the single-layer box has improved
tolerance to noise, and the variations between the different states are canceled, as shown by the
vanishing standard deviations. For the other brain boxes, the testing results do not vary: they all
saturate at the same tolerance threshold and can complete the denoising perfectly for all states
in the data set below the threshold. In addition, the fidelity in the strong noise regime vanishes
completely: even the noiseless GHZ-state cannot be recovered.

(a) (b)

Figure D.1: Testing results for brain box-enhanced QAE. The 4- and 6-qubits inputs are
considered in (a) and (b) respectively. The brain boxes have no more than 2 qubits.

105



APPENDIX D. TEST RESULTS FOR THE BRAIN BOXES 106

(a) (b)

Figure D.2: Testing results for brain box-enhanced QAE. The 4- and 6-qubits inputs are
considered in (a) and (b) respectively. The brain boxes have no more than 3 qubits.

(a) (b)

Figure D.3: Testing results for brain box-enhanced QAE. The 4- and 6-qubits inputs are
considered in (a) and (b) respectively. The brain boxes have no more than 4 qubits.



Schriften des Forschungszentrums Jülich  
Reihe Information  

 
Band / Volume 69 
Disentangling parallel conduction channels by  
charge transport measurements on surfaces with a  
multi-tip scanning tunneling microscope 
S. Just (2021), xii, 225 pp 
ISBN: 978-3-95806-574-1 

Band / Volume 70 
Nanoscale four-point charge transport measurements  
in topological insulator thin films 
A. Leis (2021), ix, 153 pp 
ISBN: 978-3-95806-580-2 
 
Band / Volume 71 
Investigating the Interaction between π-Conjugated Organic 
Molecules and Metal Surfaces with Photoemission Tomography 
X. Yang (2021), xviii, 173 pp 
ISBN: 978-3-95806-584-0 

Band / Volume 72 
Three-Dimensional Polymeric Topographies for Neural Interfaces 
F. Milos (2021), 133 pp 
ISBN: 978-3-95806-586-4 

Band / Volume 73 
Development, characterization, and application of compliantintracortical 
implants 
K. Srikantharajah (2021), xiv, 155, xv-xvii pp 
ISBN: 978-3-95806-587-1 
 
Band / Volume 74 
Modelling, implementation and characterization of a Bias-DAC in CMOS as 
a building block for scalable cryogenic control electronics for future 
quantum computers 
P. N. Vliex (2021), xiv, 107, xv-xxviii pp 
ISBN: 978-3-95806-588-8 
 
Band / Volume 75 
Development of Electrochemical Aptasensors for the Highly Sensitive, 
Selective, and Discriminatory Detection of Malaria Biomarkers 
G. Figueroa Miranda (2021), XI, 135 pp 
ISBN: 978-3-95806-589-5 
 
 

 



Schriften des Forschungszentrums Jülich  
Reihe Information  

 
Band / Volume 76 
Nanostraw- Nanocavity MEAs as a new tool for long-term  
and high sensitive recording of neuronal signals 
P. Shokoohimehr (2021), xi, 136 pp 
ISBN: 978-3-95806-593-2 

Band / Volume 77 
Surface plasmon-enhanced molecular switching  
for optoelectronic applications 
B. Lenyk (2021), x, 129 pp 
ISBN: 978-3-95806-595-6 
 
Band / Volume 78 
Engineering neuronal networks in vitro: From single cells to 
population connectivity 
I. Tihaa (2021), viii, 242 pp 
ISBN: 978-3-95806-597-0 
 
Band / Volume 79 
Spectromicroscopic investigation of local redox 
processes in resistive switching transition metal oxides 
T. Heisig (2022), vi, 186 pp 
ISBN: 978-3-95806-609-0 
 
Band / Volume 80 
Integrated Control Electronics for Qubits at Ultra Low Temperature 
D. Nielinger (2022), xviii, 94, xix-xxvi 
ISBN: 978-3-95806-631-1 
 
Band / Volume 81 
Higher-order correlation analysis in massively parallel recordings  
in behaving monkey 
A. Stella (2022), xiv, 184 pp 
ISBN: 978-3-95806-640-3 
 
Band / Volume 82 
Denoising with Quantum Machine Learning 
J. Pazem (2022), 106 pp 
ISBN: 978-3-95806-641-0 
 
 
Weitere Schriften des Verlags im Forschungszentrum Jülich unter 
http://wwwzb1.fz-juelich.de/verlagextern1/index.asp 





Information
Band / Volume 82
ISBN 978-3-95806-641-0

Information
Band / Volume 82
ISBN 978-3-95806-641-0

Denoising with Quantum Machine Learning
Joséphine Pazem


	Leere Seite
	Leere Seite
	Leere Seite



