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ABSTRACT

IZA DP No. 15862 JANUARY 2023

Understanding Sibling Correlations in 
Education: Molecular Genetics and Family 
Background*

Sibling correlations in socioeconomic status are one of the key measures of equality of 

opportunity and social mobility, providing an omnibus examination of the importance of 

family background. Typically, these correlations are interpreted as the combined effects of 

shared sibling background and experiences, including genetics and family environments. 

The UK Biobank allows us to specifically control for sibling and parental genetics (polygenic 

scores, PGS) in order to gauge their relative importance compared with broader family 

background effects. We use >17,000 sibling pairs from the UK Biobank in order to further 

decompose standard sibling correlations of educational attainment found in the literature. 

In general, we find modest (up to 20%) contributions of molecular genetics to the similarity 

of sibling outcomes, suggesting a large amount of the observed similarity in sibling 

educational outcomes are due to parents and environments of children.
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Introduction 

 The correlation in socioeconomic status among siblings provides an omnibus measure of 

the importance of family background in determining children’s outcomes by capturing factors 

shared in common by siblings such as parental involvement, schools, and neighborhoods (e.g. 

(Corcoran, Jencks, and Olneck 1976; Mazumder 2008; Solon, Page, and Duncan 2000; Bingley 

and Cappellari 2019; Björklund, Jäntti, and Lindquist 2009). By highlighting the overall role of 

family background, and not just one particular dimension of status (e.g. parent income), the sibling 

correlation is a particularly useful broad measure of relative intergenerational mobility and 

equality of opportunity (Deutscher and Mazumder). The sibling correlation in several economic 

outcomes in the US is estimated to be around 0.5 (Mazumder, 2008), suggesting that half of 

economic inequality could be attributed to family background and that, therefore, intergenerational 

economic mobility in the US is fairly modest. These figures are lower in many Nordic 

countries(Aaberge et al. 2002; Björklund et al. 2002).  In the UK, many studies estimate 

intergenerational persistence of educational of approximately 0.35-0.4 (Dearden, Machin, and 

Reed 1997; Björklund and Jäntti 2020). 

 While sibling correlations provide valuable information about social mobility patterns, 

taken on their own, they provide limited insight into mechanisms.  Broadly speaking, potential 

mechanisms are often indirectly explored by comparing differences in mobility across time and 

place2.  A few studies have also examined the extent to which sibling correlation estimates change 

as additional variables are added to the model—for example, adolescent test scores and related 

human capital measures have been shown to explain about 50% of the sibling correlation in 

earnings and wages (Mazumder 2008).   

Some observers have cited evidence that suggests that genetic inheritance explains much 

of the variation in economic outcomes in the US and that therefore genes can largely explain the 

observed degree of inequality in opportunity (Mankiw 2013). This perspective implies that there 

may be a “ceiling” on how much environmental changes could impact intergenerational mobility. 

 
2 A related literature is from genetics examines variation in heritability (i.e. the genetic contribution to an outcome, 
like education).   Branigan et al. (2013) showed both a wide variation in heritability estimates of education across 
time and place and an average value around 0.4—the datasets from the UK included in the meta-analysis have 
estimates of 0.24 and 0.39.    More recent analysis has been able to use measured molecular data to estimate a sub-
set of heritability, called SNP-heritability.  SNP-heritability can capture the subset of heritability that is produced by 
common (not rare) genetic variation in the population.  Lee et al. estimated a SNP-heritability for educational 
attainment for the UK Biobank sample of 0.23.   



Some work has used comparisons of different genetic “types” of siblings and relatives to suggest 

a large component of these correlations are related to genetics (Bjorklund, Jantti, and Solon 2005).  

Indeed, the rapid increase in genetic measurements available in large survey data now allows for 

consideration of this and related questions using more direct measures.   

 Thus far, there have only been a limited number of studies that use genetic measures to 

unpack patterns of social mobility.  A major question is how to measure “genetics”.  The 

convention in the literature is to use a genome-wide summary measure, called a polygenic score 

(PGS), that aggregates the effects of many (often > 100,000) genetic variants on the outcome of 

interest3.  One previous study found that adding parental and child polygenic scores did not change 

estimates of intergenerational education mobility, though the sample was small and from a single 

city in the US, and the specific polygenic scores were constructed from older genetics findings 

with high levels of measurement error (Conley et al. 2015).   

 We extend the literature that explores the mechanisms underlying sibling correlations in 

educational attainment by using a large sample of siblings (>17,000 pairs) from the UK Biobank 

(UKB).  We also use new methods that impute parental genetics from sibling genetics inputs for 

additional controls.  We follow typical practice in social science by examining random-effect 

models of educational attainment, adding polygenic scores for educational attainment of the 

siblings and the parents to explore changes to sibling correlation estimates. We find moderate 

sibling correlations in educational attainment (~0.32) that are reduced by only ~10% with 

polygenic scores.  We additionally correct for potential measurement error in the polygenic scores 

and find reductions of ~20%, or a residual sibling correlation of 0.25.  All our results point to 

modest impacts of molecular genetics on sibling correlations and thus suggest other aspects of the 

family and shared environments are more important in explaining the levels of sibling similarity 

in educational attainment.  While this is a useful contribution to the literature, we note that, from 

the perspective of policy makers, it may not matter so much whether genes or environment play a 

larger role in explaining sibling correlations, as policies can potentially be crafted to improve 

opportunity irrespective of the cause (Manski 2011; Goldberger 1979).  

 

 
3 These effect estimates are taken from large scale (often >1M) genome wide association studies (GWAS) that link 
each genetic location to the outcome using regression analysis, controlling for overall genetic effects (principal 
components) and limiting the sample to those of the same ancestral group.    



Data  
This section repeats some text from our other work using the same data(Fletcher et al. 2020).  We 

used data from the UKB project(Collins 2012). The participants, aged between 37 and 74 years, 

were originally recruited between 2006 and 2010. These data are restricted, but one can gain access 

by following the procedures described in www.ukbiobank.ac.uk/register-apply/. 

Although siblings are not identified in the survey, respondents’ genetics can be used to 

measure genetic relatedness among all pairs of respondents.  We first use the UKB-provided 

kinship file, listing all pairwise kinships among 100,000 pairs in the sample of nearly 500,000 

individuals.  We chose pairs with kinship >0.2, which reflects first degree biological relatives 

(parents/siblings).  We then chose remaining pairs who are <13 years apart in age, leaving ~22,000 

sibling dyads.  We then chose to keep only one dyad from any family with more one dyad, leaving 

~17,600 dyads.  We include only respondents of European ancestry in our analysis due to limited 

predictive power of PGS in non-European samples (Martin et al. 2017). 

We constructed PGS for two traits for which large genome wide association studies 

(GWAS) are publicly available and do not contain UKB samples:  height (Wood et al. 2014) and 

educational attainment(J. J. Lee, Wedow, Okbay, Kong, Maghzian, Zacher, Nguyen-Viet, et al. 

2018) with UKB samples removed.  We also constructed a second PGS within the UKB using 

four-fold cross-validation for some analysis (Song, Zheng, et al. 2022).  For each fold, we 

conducted GWAS on 75% of UKB samples while adjusting for sex, age, and genetic principal 

components, and produced PGS on the 25% holdout samples using the same protocol described 

below4.  For parental genetics, we used full sibling data and SNIPAR to impute “average” parental 

PGS (Young et al. 2020). 

We followed standard protocols in creating our PGS.  We removed single-nucleotide 

polymorphisms (SNPs) in strong linkage disequilibrium (LD). We LD-clumped the GWAS 

summary data by PLINK(Purcell et al. 2007), using 1000 Genomes Project Phase III European 

genotype data as reference. We used a LD window size of 1Mb and a pairwise r2 threshold of 0.1. 

We did not apply any p-value thresholding to select SNPs. Final scores were produced using 

PRSice-2(Choi and O'Reilly 2019). The PGS were normalized to have mean zero and SD one and 

oriented so that each PGS was positively correlated with its corresponding outcome.  

 
4 We have also constructed a PGS using the non-siblings in the UKB for the GWAS inputs.  Results are quite similar 
to the cross-validation PGS. 



 

Empirical Model and Results 
 Our analysis begins with a typical sibling correlation/association examination for education 

attainment using a random-effect regression model.  We then add genetic measurements as control 

variables to explore changes in the rho (sibling similarity) parameter.  Table 1 shows descriptive 

statistics for the UKB and the sibling sub-sample, both only for those with European ancestry.  The 

average years of schooling is 13.55 and age at interview is 57.  The sample is 58% female.  The 

PGS are standardized on the full sample.  Appendix Table 1A shows that the sibling sample is 

quite similar to the full sample, though slightly older and less educated. 

Table 2 presents our first results of sibling correlations.  Column 1 controls for age, age-

squared, and gender and estimates rho as 0.3185.  We first add controls for parental polygenic 

scores for education in Column 2, which reduces rho by 7% to 0.296; Column 3, instead of parental 

PGS, controls for child PGS and shows a similar reduction of 8% to 0.294 from the baseline6.  

Column 4 adds 10 genetic principal components to explore “general” genetic effects that are not 

targeted to educational attainment and shows a minimal reduction of rho.  Column 5 then adds all 

these genetic measures into a single analysis and finds an overall 12% reduction of rho to 0.279 

and an overall incremental r2 of 5.2%.   

The results suggest a modest amount of sibling correlation is explained by including a 

broad set (i.e. both parent and child) of genetic measures that are trained to predict educational 

attainment.  However, there are several measurement and conceptual issues to note.  One key 

conceptual issue is that it is unclear whether to apportion parental PGS as “genetics” or “non-

genetics” because they include genetics not passed to the child (i.e. non-transmitted alleles).  A 

portion of parental PGS could just as well be added to “non-genetic” family factors.  Leaving this 

issue aside for now, we also need to consider measurement error in the polygenic scores.  While 

these polygenic scores are the most predictive measures available, the “child” PGS only explains 

3.5% of the overall variation.  We can benchmark this against what is termed the SNP-heritability 

of educational attainment in the UKB, which is the total variation explained by all common genetic 

 
5 To gauge the representativeness of the UKB data, we used representative UKHLS data to estimate sibling 
correlations in educational attainment to be 0.35. 
6 Recall that parental EA-PGS and child EA-PGS are correlated at 0.5.   



variants (single nucleotide polymorphisms, or SNPs), which is estimated to be 23% (James J Lee, 

Wedow, Okbay, Kong, Maghzian, Zacher, Johannesson, et al. 2018).  

To further pursue this issue, we use methods developed in other work to create a second 

PGS to be used as an instrument for the first PGS (DiPrete, Burik, and Koellinger 2018) and, 

separately, to include as a second measure of child genetics.  Table 3 reports results using two PGS 

for educational attainment.  As expected, once we correct for measurement error in the child’s 

PGS, our estimate or rho falls further, by 17%, from Column 1 (baseline, repeated from Table 2) 

to Column 2.  We achieve a larger reduction adding both PGS rather than using one to instrument 

the other—Column 3 reduces rho by 20%.  Adding parental PGS increases this by 3% in each 

case, so that the largest reduction we see, in Column 5, includes 2 children’s PGS, parental PGS, 

and PCs, reducing rho by 23% with an incremental r2 of 6.8%.7   

Table 4 presents estimates of sibling correlation in family income.  This measure is reported 

in five categories, so it is not ideal for a full parallel exploration with educational attainment but 

can be suggestive if it is consistent or inconsistent with our earlier results.  Recent work has 

estimated the SNP-heritability of income in the UKB sample to be 11%(Hill et al. 2019).  Our rho 

estimates start at 0.2 and fall by only ~13% when including molecular genetic controls as above.  

We note that while our genetic measurements are targeted at predicting educational attainment 

rather than income, research has shown that the genetic correlation between income and education 

is 0.94 (Hill et al. 2019).   

 Table 5 presents estimates for sibling correlations in height that adds child/parent polygenic 

scores for height to benchmark the results for education against an outcome that we expect will 

have much stronger genetic contributions.  The main takeaway is that shared genetic factors 

contribute a modest (~10%) amount of the sibling correlation in height.   

 
Discussion 

This paper presents new evidence on the sources of sibling correlation in educational 

attainment using national data on ~17K sibling pairs from the UK.  While some researchers suggest 

that genetic transmission may place a ceiling on mobility patterns, or “lock in” advantages, our 

 
7 New work in biostatistics has used a method of moments approach to decompose variance in educational 
attainment into genetic and (residual) environmental correlation.  Using the sibling data in the UKB, (Song, Zou, et 
al. 2022) estimated sibling correlations (net of genetics) of 0.21.   



results suggest the ceiling is quite high.  Indeed, we find that adding measured genetic predictors 

of educational attainment at both the parent and child levels explain a modest amount of the overall 

sibling correlation in educational attainment in our UK sample.  These results add to an emerging 

literature showing an often-surprising lack of measured genetic effects on key social processes that 

are thought to have moderate or higher genetic heritability based on earlier work without the 

benefit of measured genetics.  The results indirectly point to the importance of environmental 

effects on educational attainment that are shared by siblings, such as schools, neighborhoods, etc.  

Future research should expand these results in additional cohorts and for additional domains.   

  



Tables 
Table 1 

Descriptive Statistics 
UKB Sibling Sample 

Variable Obs Mean Std Dev Min Max 
Education (years) 34,232 13.55 5.10 7 20 
Height (cm) 34,456 168.06 9.18 126 204 
Age 34,516 57.13 7.29 40 70 
Year of Birth 34,516 1950.89 7.29 1937 1970 
Female 34,516 0.58 0.49 0 1 
Parent EA-PGS (std) 33,073 0.01 0.99 -3.80 4.73 
EA-PGS, CV (std) 34,232 -0.01 1.03 -4.10 3.13 
EA-PGS (std) 34,516 0.05 1.01 -4.52 3.99 
EA-PGS, 2 (std) 34,232 0.00 0.20 -0.78 0.60 
Height PGS 34,516 0.00 1.00 -3.98 4.18 

 PGS: Polygenic Score;  CV: Cross-Validated; EA: Educational Attainment 
 
  



Table 2 
Sibling Correlations in Education Attainment in the UK Biobank 
Contribution from Polygenic Scores for Educational Attainment 

Outcome Education Education Education Education Education 
Age.  0.426*** 0.461*** 0.411*** 0.412*** 0.448*** 
  (0.055) (0.057) (0.054) (0.054) (0.056) 
Age-sq -0.005*** -0.005*** -0.004*** -0.004*** -0.005*** 
  (0.000) (0.001) (0.000) (0.000) (0.001) 
Female -0.802*** -0.812*** -0.794*** -0.794*** -0.806*** 
  (0.053) (0.054) (0.053) (0.053) (0.053) 
EA PGS (std)   0.865*** 0.888*** 0.765*** 
    (0.028) (0.028) (0.029) 
Parent EA PGS (std)  0.835***   0.667*** 
   (0.031)   (0.031) 
Constant 4.670*** 3.737** 5.100*** 5.195*** 4.213*** 
  (1.529) (1.579) (1.505) (1.519) (1.577) 
       
Observations 34,232 32,802 34,232 34,232 32,802 
Number of famid 17,687 16,557 17,687 17,687 16,557 
withinr2 0.0123 0.0124 0.0163 0.0163 0.0171 
betweenr2 0.0257 0.0668 0.0781 0.0820 0.104 
overallr2 0.0215 0.0481 0.0563 0.0586 0.0736 
sigma_u 2.843 2.704 2.681 2.669 2.589 
sigma_e 4.164 4.173 4.153 4.153 4.162 
rho 0.318 0.296 0.294 0.292 0.279 
 % Reduction  -7% -8% -8% -12% 
Incremental R2   0.0266 0.0348 0.0371 0.0521 

Notes: Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
  



Table 3 
Sibling Correlations in Education Attainment in the UK Biobank 
Contribution from Polygenic Scores for Educational Attainment 

Measurement Error Adjustments 
Outcome Education Education Education Education Education 
     2Step PGS 2 Kid PGS 
   2Step PGS 2 Kid PGS Parent PGS Parent PGS 
Model   PCs PCs PCs PCs 
        
Age.  0.426*** 0.408*** 0.399*** 0.445*** 0.436*** 
  (0.055) (0.054) (0.054) (0.056) (0.056) 
Age-sq -0.005*** -0.004*** -0.004*** -0.005*** -0.005*** 
  (0.000) (0.000) (0.000) (0.001) (0.000) 
Female -0.802*** -0.798*** -0.791*** -0.808*** -0.803*** 
  (0.053) (0.053) (0.052) (0.054) (0.053) 
EA PGS (std)   0.775***  0.697*** 
    (0.028)  (0.029) 
Parent EA PGS (std)    0.648*** 0.526*** 
     (0.032) (0.032) 
Two Step EA-PGS  3.789***  3.021***   
   (0.136)  (0.144)   
EA-PGS CV (std)   0.588***  0.484*** 
    (0.026)  (0.028) 
Constant 4.670*** 5.196*** 5.588*** 4.171*** 4.560*** 
  (1.529) (1.522) (1.504) (1.581) (1.567) 
        
Observations 34,232 34,232 34,232 32,802 32,802 
Number of famid 17,687 17,687 17,687 16,557 16,557 
withinr2 0.0123 0.000597 0.00482 0.00164 0.00640 
betweenr2 0.0257 0.118 0.140 0.122 0.145 
overallr2 0.0215 0.0607 0.0832 0.0716 0.0899 
sigma_u 2.843 2.487 2.415 2.435 2.374 
sigma_e 4.164 4.156 4.143 4.165 4.152 
rho 0.318 0.264 0.254 0.255 0.246 
 % Reduction  -17% -20% -20% -23% 
Incremental R2   0.0392 0.0617 0.0501 0.0684 

Notes: Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
  

  



Table 4 
Sibling Correlations in Income 

Contribution from Polygenic Scores for Educational Attainment 

 
Notes: Income categories imputed to pounds as 1=15000 2=25000 3=45000 4=75000 5=125000   

Outcome Income Income Income Income Income Income Income Income Income 
PGS 2Step PGS 2 Kid PGS

PGS Parent PGS 2Step PGS 2 Kid PGS Parent PGS Parent PGS
Model  Parent PGS PGS PCs PCs PCs PCs PCs PCs

Age. 4,419.296*** 4,536.627*** 4,385.263*** 4,393.059*** 4,507.135*** 4,384.647*** 4,363.741*** 4,485.991*** 4,464.833***
(304.750) (316.665) (302.810) (302.277) (314.837) (301.923) (300.949) (315.246) (314.322)

Age-sq -49.746*** -50.902*** -49.518*** -49.606*** -50.693*** -49.556*** -49.428*** -50.501*** -50.362***
(2.731) (2.829) (2.714) (2.709) (2.813) (2.706) (2.698) (2.817) (2.809)

Female -5,648.960*** -5,820.271*** -5,640.510*** -5,638.337*** -5,810.324*** -5,697.072*** -5,684.747*** -5,868.545*** -5,854.406***
(300.618) (305.984) (299.132) (298.749) (304.607) (298.618) (297.848) (304.997) (304.287)

EA PGS (std) 2,787.771*** 2,921.422*** 2,528.553*** 2,085.066*** 2,009.424***
(152.433) (154.210) (160.927) (160.265) (164.889)

Parent EA PGS (std) 2,668.688*** 2,079.879*** 1,395.234*** 1,166.945***
(165.290) (167.692) (179.393) (179.590)

Two Step EA-PGS 12,314.920*** 10,264.283*** 2,417.121***
(541.334) (605.878) (175.301)

EA-PGS CV (std) 2,884.052***
(159.259)

Constant -43,109.087***-45,854.663***-42,098.959***-39,791.551***-42,502.558***-40,203.664***-39,187.122***-42,460.399***-41,465.759***
(8,399.430) (8,758.850) (8,345.160) (8,417.112) (8,800.539) (8,409.838) (8,382.506) (8,815.333) (8,789.284)

Observations 29,811 28,548 29,811 29,811 28,548 29,735 29,735 28,473 28,473
Number of famid 17,099 16,087 17,099 17,099 16,087 17,084 17,084 16,073 16,073
withinr2 0.0432 0.0442 0.0436 0.0436 0.0452 0.0428 0.0435 0.0449 0.0455
betweenr2 0.132 0.147 0.148 0.153 0.162 0.162 0.170 0.165 0.172
overallr2 0.106 0.116 0.118 0.121 0.127 0.127 0.132 0.128 0.133
sigma_u 11339 11070 10961 10845 10723 10575 10397 10610 10437
sigma_e 23177 23199 23160 23162 23185 23186 23176 23209 23199
rho 0.193 0.185 0.183 0.180 0.176 0.172 0.168 0.173 0.168
Standard errors in parentheses% Change 4% 5% 7% 9% 11% 13% 10% 13%



Table 5 
Sibling Correlations in Height (CM) in the UK Biobank 

Contribution from Polygenic Scores for Height 
  Height Height Height Height 
      PGS 
    PGS Parent PGS 
VARIABLES  Parent PGS PCs PCs 
          
Age  0.041 0.021 0.036 0.029 
  (0.065) (0.066) (0.061) (0.062) 
Age-sq -0.002*** -0.001** -0.002*** -0.002*** 
  (0.001) (0.001) (0.001) (0.001) 
Female -13.405*** -13.400*** -13.379*** -13.382*** 
  (0.060) (0.060) (0.056) (0.057) 
Parent Height PGS  2.015***  1.230*** 
   (0.041)  (0.041) 
Height PGS (std)   2.433*** 2.115*** 
    (0.033) (0.035) 
Constant 178.935*** 179.559*** 181.283*** 181.287*** 
  (1.809) (1.826) (1.700) (1.750) 
       
Observations 34,456 33,015 34,456 33,015 
Number of famid 17,699 16,560 17,699 16,560 
withinr2 0.686 0.686 0.718 0.719 
betweenr2 0.439 0.506 0.536 0.555 
overallr2 0.522 0.570 0.598 0.613 
sigma_u 4.646 4.178 4.137 3.969 
sigma_e 4.325 4.340 4.093 4.108 
rho 0.536 0.481 0.505 0.483 
 % Reduction  -10% -6% -10% 
Incremental R2   0.048 0.076 0.091 

Notes: Standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1 
 

  



Appendix Tables 
Appendix Table 1 

Comparison of Full UK Biobank Sample with Sibling Sub-Sample 
European Ancestry Respondents 

Variable Obs Mean Std Dev Obs Mean Std Dev 
Education (years) 404,436 13.77 5.12 34,232 13.55 5.10 
Height (cm) 407,384 168.72 9.25 34,456 168.06 9.18 
Age 408,248 56.91 8.00 34,516 57.13 7.29 
Year of Birth 408,248 1951.14 8.01 34,516 1950.89 7.29 
Female 408,248 0.54 0.50 34,516 0.58 0.49 
EA-PGS, CV (std) 404,436 0.00 1.00 34,232 -0.01 1.03 
EA-PGS (std) 408,248 0.00 1.00 34,516 0.05 1.01 
EA-PGS, 2 (std) 404,436 0.00 0.19 34,232 0.00 0.20 
Height PGS 408,248 0.00 1.00 34,516 0.00 1.00 
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