
Funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany´s Excellence Strategy – EXC 2126/1– 390838866 is gratefully acknowledged.

www.econtribute.de

ECONtribute
Discussion Paper No. 214

December 2022

Qianjun Lyu

Optimal Refund Mechanism

Funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under
Germany’s Excellence Strategy – EXC 2126/1-390838866 is gratefully acknowledged.



Optimal Refund Mechanism

Qianjun Lyu*

University of Bonn

December 21, 2022

Abstract

This paper studies the optimal refund mechanism when an uninformed buyer can

privately acquire information about his valuation over time. In principle, a refund

mechanism can specify the odds that the seller requires the product returned while

issuing a (partial) refund, which we call stochastic return. It guarantees the seller

a strictly positive minimum revenue and facilitates intermediate buyer learning. In

the benchmark model, stochastic return is sub-optimal. The optimal refund mecha-

nism takes simple forms: the seller either deters learning via a well-designed non-

refundable price or encourages full learning and escalates price discrimination via

free return. This result is robust to both good news and bad news framework.
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1 Introduction

The rise of the Internet clears the way for consumers to acquire product information.

Even before purchase, there are lots of information available on the Internet and social

media that can help the consumers to make better decisions. However, whether it is

necessary to acquire information; if yes, how much information the consumers should

acquire, clearly depend on the pricing and return policy. For example, if the seller does

not allow a return, then the consumer tends to make a more cautious purchase as he

will acquire all necessary information before purchase; conversely, if the seller offers a

free return, then there will be no regret for uninformed purchase. In this sense, a refund

mechanism determines the buyer’s value from learning. From the sellers’ perspective,

she can indirectly control the buyer’s endogenous learning by designing different refund

mechanisms, which will eventually affect the buyer’s learning outcomes and then affect

the seller’s expected sales revenue.

This paper studies the revenue-maximizing refund mechanism anticipating that the

buyer privately acquires information about his true valuation over time. A refund mech-

anism specifies a product’s price and its return policy. In general, the return policy could

take many different formats. Free return (return with a full refund) and no return are

commonly used in practice. Moreover, a seller can offer a partial refund while receiving a

return request. For example, airlines usually charge a fixed fee for a ticket refund. More

surprisingly, e-commerce retailers such as Amazon sometimes issue a refund without re-

quiring a product return.

Given the flexibility in designing return policies, in principle, the seller can allow the

buyer to keep the item with some probability while issuing a refund.1 This generates

a positive trading surplus upon a return. Moreover, this guarantees the seller a strictly

positive minimum revenue since the buyer is willing to accept a partial refund in exchange

for positive odds to keep the item. We call such a return policy stochastic return. Assuming

quasi-linear consumer preferences, we can represent a return policy as (1) the probability

that the seller requires the product returned and (2) the (expected) refund paid back to

the buyer. This characterization can capture all the above-mentioned return policies.

For concreteness, consider a seller (she) selling one unit of an indivisible good to

a buyer (he). The buyer’s valuation could be either high or low, vh > vl ≥ 0, and we

normalize the seller’s opportunity cost to be zero so that the first-best solution requires

1In terms of implementing such refund mechanisms, the seller who receives multiple return forms can
request only a proportion of buyers to return the product.
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immediate consumption without learning. The buyer is initially uninformed about his

true product valuation, and we interpret this uncertainty in product valuation as com-

ing from match-specific factors so that the seller is symmetrically uninformed ex-ante.

Therefore, the seller’s major concern is to design a mechanism to implement some ideal

amount of buyer learning.

The buyer can privately acquire information over time both before and after pur-

chase. One can interpret the before-purchase learning as the product exploration phase

and the after-purchase learning as the evaluation phase. Specifically, at each instant of

time, based on the information already collected, the buyer can decide whether to keep

acquiring information or stop learning and make a decision. In the main model, we study

the “no news is bad news" benchmark, i.e., by exerting costly effort, good news arrives

at some Poisson rate if buyer’s true valuation is high, otherwise no news arrives if his

true valuation is low. We assume the learning rate after purchase is weakly higher than

the learning rate before purchase. Moreover, letting the after-purchase learning rate go

to infinity, we can accommodate the case where the buyer immediately learns his true

valuation after purchase.

At the outset, the seller commits to a refund mechanism, after which, the buyer de-

cides how much information to acquire and makes his purchase and subsequent return

decision based on the information outcomes. With the dynamic feature of the buyer’s

learning process, the seller can implement more flexible information acquisition as the

buyer’s decision for stopping learning is endogenously determined by the refund mech-

anism. Essentially, a refund mechanism is an option contract as it offers the buyer two

options: either to consume the item and obtain the consumption utility, or to return it and

obtain the return payoff. The buyer optimally decides when to stop learning while com-

paring the continuation value from learning and the maximum payoff from consumption

and return.

With the exponential-bandit framework (Keller, Rady and Cripps (2005)), the buyer’s

non-degenerate posterior belief upon stopping determines the total amount of informa-

tion the buyer acquires. Yet, the buyer’s stopping belief is unobserved to the seller. We

study implementable refund mechanism—a mapping from the buyer’s posterior belief

into an allocation rule—such that (1) the buyer truthfully reports his private posterior

belief at stopping; and (2) the buyer optimally stops learning at the posterior belief re-

ported. Given this, we can transform a mechanism design problem into an information

design problem. In particular, we first characterize the set of posterior beliefs that are

implementable across different prices. Next, we specifying the refund mechanism that
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can implement each posterior belief. Finally, we let the seller maximizes over the set of

implementable posterior beliefs.

For each price, the set of inducible posterior beliefs can be segmented into three

groups, namely, full learning, partial learning, and no learning. Full learning refers to

the scenarios where the buyer stops learning when there is zero continuation value from

learning. It can be implemented by free return. Partial learning refers to the scenarios

where the buyer stops learning when there is still positive continuation value from learn-

ing. To implement it, the seller has to offer the buyer positive odds to keep the item

upon return to compensate the opportunity information rent that the buyer could have

enjoyed if he continued to learn. Finally, No learning refers to the case that the buyer

consumes the product immediately without learning. To put it differently, the seller pre-

vents the buyer from private learning. To achieve this, the seller sets a sufficiently low

non-refundable price just to make the buyer indifferent between consuming the item and

continuing to learn. In the last case, the first-best is achieved.

Our main result in the benchmark model suggests that the optimal stopping belief

that the seller aims to implement is located at the boundaries of the implementable set

of beliefs, given that the price is also optimally chosen. That is, inducing partial learn-

ing is sub-optimal, further implying the optimality of a deterministic mechanism:2 if the

seller allows a return, she requires the buyer to return the product with probability one;

otherwise, she does not allow a return. Intuitively, whenever the seller wants to extend

the buyer’s learning process–induce a lower stopping belief–in order to increase the odds

of a successful sale, she can further benefit by raising the price simultaneously. It rein-

forces her incentive to drive down the stopping belief. Conversely, when the seller tends

to increase the buyer’s stopping belief to guarantee a larger minimum revenue (the rev-

enue she obtains after issuing a refund), she can further raise this minimum revenue by

lowering the price, reinforcing her incentive to increase the stopping belief.

Hence, the revenue-maximizing mechanism either prevents the buyer from private

learning or encourages full learning via a free return. The optimality between them de-

pends on the buyer’s prior belief, which measures how much the buyer values information

ex-ante and how optimistic the buyer initially is. Specifically, if the buyer is well-informed

ex-ante, i.e., his prior belief is close to 0 or 1, then information is barely valuable to him.

By decreasing the price just a little, the seller can deter learning and induce immediate

consumption, thereby to capture a large fraction of the first-best allocation surplus. How-

2Note that in our problem, the seller’s objective function is not linear in the allocation probability upon
return as the buyer’s stopping belief endogenously depends on the allocation probability.
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ever, if the buyer’s prior belief becomes more uncertain, then information values a lot,

which makes deterring learning less profitable as it requires a significant price reduction

for the compensation of buyer’s opportunity information rent. On the other hand, en-

couraging learning becomes more appealing as it avoids such a compensation. In other

words, the seller can significantly raise the price to encourage learning while allowing

a free return. However, encouraging learning causes inefficient allocation as the buyer

would eventually return the product. Nevertheless, this event becomes rare when the

prior belief is more optimistic. As a result, the seller optimally allows a free return if the

buyer’s prior belief is less extreme but relatively more optimistic. The tension between

welfare maximization and profit maximization is mainly driven by the buyer’s option

value from information acquisition.

Interestingly, though the buyer enjoys a larger information rent if his prior belief

is less extreme, he can only benefit from it if the seller deters learning. In contrast,

free return causes a severe decline in the buyer’s trading surplus as the seller escalates

price discrimination. It means that the buyer takes the cost of learning and inefficient

allocation when the seller encourages him to learn.

If the learning rate after purchase becomes higher, then a cancellation fee (partial

refund) is involved if the seller allows a return. We characterize the optimal refund

mechanism when the learning rate after purchase converges to infinity so that the buyer

can almost learn his true valuation immediately. In the case that vl = 0, the optimal

refund mechanism either deters learning with a sufficiently low price or allows a return

but charges a cancellation fee. Both mechanisms are common in fashion online platform.

For example, the former one corresponds to “Final sales" and the latter one corresponds

to “Return with a fixed fee".

In another extension where we look at the “no news is good news" case. The optimal

refund mechanism turns out to have the same structure as in the benchmark model.

However, with this learning technology, if the seller allows a free return, she escalates

price discrimination to the extreme in the sense that she fully extracts the buyer’s ex-ante

surplus. In other words, the buyer receives zero surplus if the seller optimally allows a

free return.

Related literature. Our paper relates to the sequential screening literature. Courty

and Li (2000) study how refund contract price discriminates buyers who have asym-

metric ex-ante imperfect private information but can observe the true valuation after

contracting. In contrast, we consider symmetric ex-ante information and study how re-
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fund contract elicits buyer’s ex-post private information. Krähmer and Strausz (2015) im-

pose buyer’s ex-post participation constraints in the standard sequential screening model,

while in our paper, the availability of ex-post participation is the seller’s choice.

There is a growing literature on mechanism design incorporating the buyer’s endoge-

nous information acquisition. For example, Shi (2012) and Mensch (2020) study mecha-

nism design when the buyer can privately acquire costly information. Shi (2012) adopts

rotational-ordered information technology, and Mensch (2020) discusses flexible infor-

mation acquisition, with cost as the expected difference in a posterior-separable measure

of uncertainty. Mensch (2020) characterizes the set of implementable mechanisms to

screen the buyer with different interim information. We adopt a similar method; how-

ever, the Markov nature of our learning technology allows us to analyze how the seller’s

optimal mechanism varies with the buyer’s prior belief, which cannot otherwise be ac-

commodated in the flexible information cost framework.3 In terms of sequential buyer

learning,4 Lang (2019) and Pease (2020) investigate the seller’s pricing policy when the

buyer can acquire information over time.

From a robustness perspective, Johnson and Myatt (2006) introduce rotations of de-

mand curves to capture the dispersion of consumer valuations and discuss how seller

profits change with the level of dispersion. Roesler and Szentes (2017) studies the buyer’s

optimal information design anticipating its impact on the seller’s pricing decision. Ravid,

Roesler and Szentes (2019) consider the same scenario but let both seller and buyer move

simultaneously so as to discuss the equilibrium outcomes. Hinnosaar and Kawai (2020)

investigate robust refund mechanism to capture the situations where the seller is unsure

about the buyer’s private information prior to purchase. They characterize seller’s best

guaranteed profit.

The closest work to our study are Matthews and Persico (2007), Board (2007) and

Daley, Geelen and Green (2021), which analyse sequential mechanism with endogenous

buyer learning. Specifically, Matthews and Persico (2007) discuss the seller’s optimal

choice of price and refund, anticipating that the buyer can acquire perfect information at

a fixed cost before purchase. Therefore, stochastic mechanism does not have a bite since

the buyer either acquires perfect information or no information. We differ by discussing

imperfect learning so that the seller has much greater flexibility in manipulating the

3In our model, the cost of the same Blackwell experiment is the same for different prior beliefs, which
is not true for flexible information. There does not exist a unified measure of uncertainty, regardless of
the prior beliefs, that can represent the additive time cost of Poisson signals: see Appendix A of Mensch
(2020) and Pomatto, Strack and Tamuz (2019).

4See Bonatti (2011), Bergemann and Valimaki (2000) and Bergemann and Valimaki (1996).
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buyer’s learning behavior. Board (2007) and Daley, Geelen and Green (2021) investigate

option contracts where the winning bidder can choose whether to execute the option after

collecting new information. In Board (2007), a winning bidder can choose whether to use

the asset at a contingent fee or to give up the upfront payoff and quit the market. Daley,

Geelen and Green (2021) discuss due diligence in M&A, wherein after the acquirer agrees

on the price with the target firm, he has the option not to execute the contract. Both

papers focus on deterministic execution, while in contrast, we allow stochastic execution.

2 Model

A seller (female) sells one unit of indivisible goods to a risk-neutral buyer (male). The

buyer is initially uninformed about his true product valuation, either high or low, vh >

vl ≥ 0. The seller is symmetrically uninformed. Let µ0 = Pr(vh) be the common prior

belief that the product valuation is high. We use µ to represent the buyer’s posterior belief

and sometimes call this the buyer’s type. A type-µ buyer’s expected product valuation is

E[v|µ] := µvh + (1− µ)vl . The buyer’s type evolves over time; we use τ to denote time

and write µ(τ) when needed. We focus on the scenario where efficiency requires trade

with probability one, and therefore normalize the seller’s opportunity cost to 0. There is

no cost of production or return. We assume that neither party discounts over time.5

The seller commits to a refund mechanism, which specifies (1) a price tb ≥ 0, which

is the transfer made from the buyer to the seller at the time of purchase; and (2) a return

policy that describes the probability that the buyer is required to return the item and the

(expected) refund paid back to the buyer. Given that the buyer is risk-neutral, only the

expected refund matters. For the sake of exposition, we use (x r , t r) to denote a return

policy. Precisely, x r ∈ [0,1] is the probability that the buyer is allowed to keep the item

after requesting a return. The reader can interpret x r as the allocation probability at

return. t r ∈ [0, tb] is expected final payment made from buyer to seller if the buyer re-

quests a return. We call it the return transfer later on. Under a typical refund mechanism

{tb, (x r , t r)}, the buyer pays the price tb at the time of purchase. If the buyer requests

a return, then the seller applies to a public randomization device: with probability x r ,

she allows the buyer to keep the item, with the remaining probability, she requires the

buyer to return it. Meanwhile, the seller pays the (expected) refund tb− t r regardless of

whether the item eventually returns to her.

5This is not crucial to the analysis as the seller obtains an upfront payment even with a free return.
Nevertheless, we assume it away because the time between purchase and return is usually not very long.
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Given this notation, under a No Return mechanism, x r = 1, as the buyer cannot

return the item and therefore always has to keep it. Conversely, under a Free Return

mechanism, x r = 0 as the buyer can return the product for a refund. Stochastic Return

requires x r ∈ (0,1), so that the buyer can keep the item with strictly positive probability

even upon obtaining a refund. We capitalize the first letter of a return policy to represent

a refund mechanism and emphasize that the price can vary while fixing the return policy.

Without loss of generality, we assume vh−tb > vh x r−t r , i.e., a high-value buyer purchases

the item without requesting a return. The buyer’s outside option is normalized to zero.

A type-µ buyer’s payoff is realized when he consumes the item. If so, he cannot

request a return. In particular, a type-µ buyer obtains the consumption utility E[v|µ]− tb

if he purchases the item without requesting a return, or the return utility E[v|µ]x r − t r

if he requests a return. Let Bτ be the indicator function for whether a purchase has

occurred up to and including time τ. Hence, the time of purchase is τb =min{τ : Bτ = 1}.
Analogously, Rτ denotes the indicator function for whether a return has occurred up until

time τ, and the time that the buyer requests a return is τr =min{τ : Rτ = 1}. Naturally,

τr ≥ τb. The seller’s revenue Π is expressed as follows:

Π= E
�∫ ∞

0

tbdBτ − (tb − t r)dRτ

�

. (1)

The buyer can acquire information both before and after purchase. Specifically, we

adopt the exponential bandit framework, and in the main model, we consider the case

of “no news is bad news". If the buyer pays a fixed flow cost k to acquire information,

then good news arrives according to some Poisson rate if his true valuation is vh and

no news arrives if his true valuation is vl . We denote λB (λP) as the before-purchase

(post-purchase) learning rate.

We assume λP ≥ λB since the information attainable before purchase is still attainable

after purchase. However nowadays, with the spread of information on the Internet and

social media, the consumer can obtain more and more instructive information before

purchase, and the extra information generated by personal experience after purchase

becomes smaller. Besides, many retailers, such as Apple store, allow the consumer to

experience their products at the off-line store, therefore there is not a large difference

between the information attainable to the consumer before and after purchase. Thus, in

the benchmark model, we focus on the case where λP = λB = λ. In section 7, we discuss

the scenarios where λP > λB and let λP →∞ to capture the case where the buyer can
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learn his true valuation immediately.

Given λP = λB = λ, the buyer’s belief evolves according to the following law of

motion if no Poisson jump occurs:

µ′(τ) = −µ(τ)(1−µ(τ))λ < 0.

Otherwise, if good news arrives, his belief jumps to one. If the seller does not allow a

return, the buyer acquires information before purchase. Denote V 0(µ(τ); tb, 1, tb) as the

buyer’s value function given a No Return mechanism {tb, (1, tb)}. It is determined by the

Bellman equation below,

V 0(µ(τ);tb, 1, tb) =max{ 0 , E[v|µ(τ)]− tb,

− kdτ+µ(τ)λdτ(vh − tb) + (1−µ(τ)λdτ)V 0(µ(τ+ dτ); tb, 1, tb)}.
(2)

At time τ, the buyer can walk away or purchase the item. If he continues to learn for an

interval of time dτ then, with probability µ(τ)λdτ, good news arrives, and he purchases

the item; with the remaining probability, no news arrives, and his belief decreases to

µ(τ+dτ). The solution to (2) determines the buyer’s learning strategy under No Return

mechanisms.

Suppose that the seller allows a return with policy (x r , t r) and the buyer purchases

the item first and acquires information afterwards. Then the buyer’s value function for

purchase VP(µ(τ); tb, x r , t r) is determined by the Bellman equation,

VP(µ(τ);tb, x r , t r) =max{E[v|µ(τ)]− tb,E[v|µ(τ)]x r − t r ,

− kdτ+µ(τ)λdτ(vh − s) + (1−µ(τ)λdτ)VP(µ(τ+ dτ); tb, x r , t r)}.
(3)

Note that, while the buyer purchases the item, he instantaneously abandons his outside

option. In other words, upon stopping, he can either consume the item or return it

according to the pre-specified return policy. The solution to (3) determine the buyer’s

learning strategy after he purchases the item.

2.1 Implementable mechanism

Since the seller cannot observe the buyer’s posterior belief when the buyer stops learning,

then for a refund mechanism to implement some particular stopping belief, we require the

buyer to be willing to stop learning at the belief he reports to the seller. Specifically, the
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return policy, x r(µ) : [0,µ0]→ [0, 1] and t r(µ) : [0,µ0]→ [0, tb], assigns the allocation

rule conditional on the buyer’s report on his private stopping belief. On the other hand,

the price essentially describes an allocation rule for a report of belief 1 (after the arrival of

good news). To guarantee the optimality of a refund mechanism with non-trivial return

policies,

VP(µ0; tb, x r(µ), t r(µ))≥ V 0(µ0; tb, 1, tb). (IR)

Because if it fails, the buyer acquires all information before purchase and no return re-

quest can be realized. In other words, buyer’s value from learning under a No Return

mechanism imposes a lower bound on his expected trading surplus.

Call a refund mechanism {tb, (x r(µ), t r(µ))} implementable in terms of encouraging

learning if the following incentive constraints hold.

VP(µ0; tb, x r(µ), t r(µ))>max {E[v|µ0]− tb, E[v|µ0]x r(µ)− t r(µ)} . (IM-L1)

inf
�

µ′ ∈ [0,µ0] : VP(µ
′; tb, x r(µ), t r(µ))> E[v|µ′]x r(µ)− t r(µ)

	

= µ. (IM-L2)

E[v|µ]x r(µ)− t r(µ)≥ E[v|µ]− tb and vh − tb ≥ vh x r(µ)− t r(µ). (IC)

Constraint (IM-L1) means that the continuation value for learning at the prior belief is

higher than the maximum payoff from consumption and return, therefore the buyer is

willing to learn at the prior belief. Constraint (IM-L2) implies that the buyer is willing to

stop learning at the belief he reports to the seller. Notice that VP is implicitly determined

given buyer’s optimal learning strategy. We will elaborate more on how we derive it

later. At this stage, it is useful to notice that if learning is optimal at the prior belief, then

there exists an intermediate interval of beliefs such that learning is optimal. Constraints

(IC) is the incentive constraints for truth-telling such that a type-µ buyer prefers a return

rather than consumption and a type-1 buyer prefers consumption rather than a return.

Interestingly, (IM-L1) and (IM-L2) imply the incentive compatibility for truth-telling (IC)

because otherwise acquiring information is unnecessary.

Conversely, call a refund mechanism {tb, (x r(µ), t r(µ))} implementable in terms of

deterring learning if the following incentive constraints hold, i.e., the buyer weakly prefers

to consume the item rather than continuing to learn.

VP(µ0; tb, x r(µ), t r(µ)) = E[v|µ0]− tb. (IM-D)

The seller maximizes the expected revenue subject to the implementable constraints for
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encouraging learning or deterring learning. The left program considers encouraging

learning, while the right program considers deterring learning.

sup
tb ,xr (·),tr (·),µ

µ0 −µ
1−µ

tb +
1−µ0

1−µ
t r(µ)

s.t. (IR), (IM-L1), (IM-L2)
and

sup
tb ,xr (·),tr (·),µ

tb

s.t. (IR), (IM-D)

While encouraging the buyer to learn, seller’s expected revenue is a weighted average

between the price and the return transfer, where µ0−µ
1−µ is the ex-ante expected probability

that the buyer obtains good news before his belief falls below µ, and 1−µ0
1−µ is the expected

probability for the complementary event. Conversely, while preventing type-µ0 buyer

from private learning, the seller’s revenue equals the price. Note that the two objective

functions are not equal when µ= µ0.

Lemma 1. Constraint (IR) binds.

That is, under any optimal refund mechanism, the buyer obtains the same continua-

tion value as if the mechanism prohibited a return. To see this, for a fixed price, suppose

the seller wants to encourage learning and designs a benevolent return policy that pro-

vides the buyer with a continuation value strictly larger than V 0(µ0; tb, 1, tb). Suppose

the seller wants to implement a stopping belief µ. Then she can increase the return trans-

fer t r(µ) and adjust the return allocation probability x r(µ) properly such that the buyer’s

stopping belief remains the same. It implies a profitable deviation. If the seller deters

learning, then this Lemma holds trivially.

3 A No Return Benchmark

Given Lemma 1, the buyer’s learning strategy under a No Return mechanism serves as

a building block for subsequent results. Without a return, the seller’s only choice is the

price. It endogenously determines the net consumer surplus s ≡ vh − tb upon the arrival

of good news (e.g., endogenous “prize” for breakthrough), which further determines

the value of experimentation. For the sake of illustration and comparing results with the

experimentation literature, we abuse the notation a little and use V 0(µ(τ), s) to represent

the value function under no return, and rewrite (2) as below,

V 0(µ(τ), s) =max{ 0 , E(v|µ(τ))− (vh − s),

− kdτ+µ(τ)λdτs+ (1−µ(τ)λdτ)V 0(µ(τ+ dτ), s)}.
(4)
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Conditional on learning, the Bellman equation leads to this differential equation:

(1−µ)µλV1(µ, s) +µλV (µ, s) = µλs− k, (ODE)

where V1(µ, s) denotes the partial derivative with respect to the first argument. Conven-

tionally, for a fixed s, there exists two cutoff beliefs: the quitting belief q(s) and the trial

belief Q(s), with q(s)≤Q(s), that determine the buyer’s optimal learning strategy. Specif-

ically, he continues to learn when his belief falls between the two cutoffs; otherwise, he

does not learn. The quitting belief q(s) is determined by the standard value matching

and smooth pasting conditions,6 and it adopts a closed-form solution:

q(s) =
k
λs

.

The trial belief is the value of belief above which the buyer strictly prefers immediate

consumption to acquiring information:

Q(s) = {µ : V (µ, s) = E[v|µ]− (vh − s)}. (5)

With slight abuse of notation, in equation (5) and henceforth, we use V (µ, s) to denote

the solution of (ODE) with boundary point (q(s), 0).

The construction above involves one implicit assumption: when the buyer stops learn-

ing at q(s), he prefers to quit the market than to accept the price. Specifically,

E(v|q(s))− (vh − s)≤ 0. (6)

If this inequality fails, no learning can be induced because learning has no value when it

does not affect the purchase decision. Assumption 1 ensures that there exists a price in

[vl , vh] such that information acquisition is valuable for some prior belief. Without it, the

buyer does not learn regardless of the prior belief. Thus, the seller sets a non-refundable

price equal to buyer’s ex-ante expected valuation E[v|µ0] to capture the entire allocation

surplus.

Assumption 1. (vh − vl)λ > 4k.

To avoid trivial result, we make this assumption throughout the paper. It implies there

exist two distinct roots s < s such that if s ∈ [s, s], acquiring information is optimal for

some prior belief.
6q(s) = {µ : V1(µ, s) = 0 and V (µ, s) = 0}.
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Figure 1: Inducible learning outcomes

Proposition 1. If s /∈ [s, s], V 0(µ, s) =max{0,E[v|µ]− (vh − s)}; and if s ∈ [s, s],

V 0(µ, s) =











0, µ < q(s)
V (µ, s), q(s)≤ µ <Q(s)
E[v|µ]− (vh − s), µ≥Q(s)

.

Proposition 1 characterizes the buyer’s learning strategy under no return while vary-

ing the surplus s through the price. For sufficiently high or sufficiently low surplus s,

learning is sub-optimal regardless of the buyer’s belief. With moderate s ∈ [s, s], the

standard results of exponential bandit apply: When the buyer’s prior belief falls into

[q(s),Q(s)), he optimally learns until either good news arrives and he purchases the

item, or no news arrives for a sufficient amount of time and he walks away at belief

q(s). Figure 1 plots the quitting belief q(s) and trial belief Q(s) against s, which gives

a complete characterization of buyer’s learning strategy across different s. Both beliefs

are decreasing in s and coincide at the two boundaries.7 Denote µ = q(s̄) = Q(s̄) and

µ= q(s) =Q(s).

Given Proposition 1, if µ0 /∈ [µ,µ], the buyer is sufficiently informed upfront and

deems learning to be sub-optimal. Then the seller can extract the entire allocation surplus

by setting a non-refundable price equal to buyer’s ex-ante expected valuation, which

7The quitting belief is decreasing in s because the buyer optimally learn for a longer time if the benefit
from good news becomes larger. The trial belief is also decreasing in s. Because if the seller increases s by
one unit, then the consumption utility increases by one unit, but the increment of the buyer’s continuation
value is smaller than one unit. Therefore, the belief interval that the buyer finds consumption optimal
becomes larger. q(s) =Q(s) at the boundaries is implied by inequality (6).
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leaves the buyer zero trading surplus. No learning is induced on path.

Corollary 1. If µ0 /∈ [µ,µ], the optimal mechanism is No Return, with tb = E[v|µ0] and

(x r , t r) = (1, tb).

However, if the buyer has a less extreme prior belief, µ0 ∈ [µ,µ], learning becomes

a valuable option to him, which prevents the seller from capturing the entire allocation

surplus. Then the seller faces a non-trivial decision about the optimal amount of infor-

mation she wants the buyer to acquire.

To study this, we characterize the set of implementable buyer stopping beliefs across

s, and we call it the inducible learning outcomes. The shaded area in Figure 1 is the

inducible learning outcomes for a buyer with prior belief µ0. Specifically, an inducible

learning outcome is a pair of (s,µ) such that for a given s, there exists a return policy that

implements the stopping belief µ ∈ [q(s),Q(s)] in the sense that the buyer is willing to

stop learning at the belief he reports to the seller. We require s ∈ [q−1(µ0),Q−1(µ0)] so

that the type-µ0 buyer (weakly) prefers to acquire information at the prior belief, implied

by V 0(µ0, s) ≥ max{0,E[v|µ0]− (vh − s)}. Meanwhile, the stopping belief µ is bounded

by µ0 since no news is bad news.

In Section 4, we study the refund mechanisms that implement the boundaries of

the shaded area in Figure 1, while in Section 5, we study the refund mechanisms that

implement its interior part. Eventually, the seller maximizes her expected revenue over

the entire shaded area.

4 Learning Deterrence and Free Return

Now we characterize the refund mechanisms that can implement the boundaries of the

inducible learning outcomes. We are particularly interested in (1) the intersection of

the shaded area and the orange curve Q(s) (the orange dot in Figure 1); and (2) the

intersection of the shaded area and the blue curve q(s) in Figure 1.8

Learning Deterrence is a No Return mechanism with price tD(µ0) := vh −Q−1(µ0).9

It is the solution to the seller’s optimization for deterring learning. Under this mecha-

nism, the type-µ0 buyer is just indifferent between acquiring information and consuming

8We can easily verify other boundary points to be sup-optimal.
9Note that any non-refundable prices strictly lower than tD(µ0) can induce immediate consumption,

but the seller then has an incentive to increase the price.
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the item immediately (see the orange dot in Figure 1). We let the buyer break indif-

ference by purchasing the item immediately so that to achieve efficient allocation. No-

tice that to deter learning, the seller has to lower the price so as to give away part of

the allocation surplus for the buyer’s compensation until the value of information be-

comes non-positive.10 In other words, the buyer’s expected trading surplus, which is just

the consumption utility in this case, equals his continuation value from learning, i.e.,

E[v|µ0]− tD(µ0) = V (µ0,Q−1(µ0)). Furthermore, Learning Deterrence induces efficient

allocation and therefore achieves the first best solution. The seller obtains a revenue

ΠD(µ0) = tD(µ0).

Proposition 2. Under Learning Deterrence, the buyer’s trading surplus E[v|µ0]− tD(µ0) is

non monotone and single-peaked in µ0 ∈ [µ,µ]. Moreover, E[v|µ0]− tD
b (µ0) = 0 at the two

endpoints. The seller’s revenue ΠD(µ0) is increasing in µ0.

Learning Deterrence is different from the extreme case stated in Corollary 1, as the

buyer must be induced to give up his option to learn, and this option is valuable when

he is not very-well informed ex-ante, i.e., µ0 ∈ [µ,µ]. Therefore, to prevent the buyer

from private learning, the seller has to sufficiently lower the price so that accepting the

price is more attractive for the buyer than acquiring information. When the prior belief

moves to more intermediate region, the buyer enjoys larger benefits from learning and

thereby the seller must give away a larger amount of allocation surplus for the buyer’s

compensation if she wants to deter learning. This hints at the non-monotonicity of the

buyer’s trading surplus.

A Free Return mechanism {tb, (0, 0)}, with s ∈ [q−1(µ0),Q−1(µ0)], can implement the

boundaries that the shaded area intersects with q(s) and thereby encourage the buyer to

learn. Specifically, the type-µ0 buyer continues to learn until good news arrives or no

news arrives and his posterior belief falls to q(s). By varying s, the seller can implement

different quitting beliefs and thereby induce different amounts of information acquisition

which eventually affects the ex-ante expected probability of a successful sale. A common

feature of Free Return is that the buyer stops learning when the continuation value from

learning is 0. We call it as full learning since it is the largest amount of information

acquisition that the seller can implement when the price is fixed.

Suppose the seller allows a free return. The constrained optimization problem (F)

10The value of information refers to the difference between the value function and the maximum payoff
from purchasing and walking away.
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below determines the optimal price.

ΠF (µ0) := max
s∈[q−1(µ0),Q−1(µ0)]

µ0 − q(s)
1− q(s)

(vh − s) (F)

Optimization over Free Return mechanisms is mechanical. The unconstrained optimiza-

tion admits a closed-form solution. We denote the unconstrained maximizer as sF(µ0)
and the corresponding revenue as ΠF(µ0). We can verify that ΠF (µ0) = ΠF(µ0) if

ΠF (µ0)≥ ΠD(µ0).

Let Π∗(µ0) be the expected revenue from an optimal refund mechanism. Given that

both Learning Deterrence and Free Return are feasible mechanisms, if µ0 ∈ [µ,µ],

Π∗(µ0)≥max
�

ΠD(µ0),Π
F(µ0)
	

.

5 Stochastic Return

In this section, we study the interior region of the inducible learning outcomes. That

is, instead of encouraging the buyer to perform full learning or prevent the buyer from

private learning, the seller can induce the buyer to stop at any intermediate belief in

the shaded region in Figure 1. We call partial learning as the buyer stops learning when

there is still positive continuation value from learning. To achieve this, the seller must

provide the buyer with positive allocation probability at return in order to compensate

the buyer’s continuation value from learning. Therefore, Stochastic Return guarantees

a strictly positive minimum revenue as the buyer is willing to accept a partial refund in

exchange for a positive odds of keeping the item. However, in this section, we show that

Stochastic Return is sub-optimal.

We first derive the implementable mechanisms that can induce the interior points in

the shaded area.

Lemma 2. For fixed s ∈ [s, s], the return policy (x r(µ, s), t r(µ, s)) implements stopping

belief µ ∈ [q(s),Q(s)], where

x r(µ, s) =
V1(µ, s)
vh − vl

, (7)

t r(µ, s) = E[v|µ]x r(µ, s)− V (µ, s). (8)

Furthermore, the return transfer t r(µ, s) increases with both µ and s and with cross

derivative equal to 0; and x r(µ, s) increases with µ.
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Figure 2: Stochastic Return

The allocation probability at return x r is proportional to the slope of the buyer’s value

function. And t r equals the allocation surplus upon return minus the continuation value

from learning that the buyer holds when he decides to stop learning. A refund mechanism

with price vh− s and return policy (x r(µ, s), t r(µ, s)) implements the stopping belief µ as

the buyer stops learning at the belief he reports to the seller. Consider Figure 2(a). To

induce the buyer to stop learning earlier at a belief higher than q(s), the return policy

must generate a payoff weakly higher than the buyer’s continuation value from learning.

Meanwhile, to make stopping learning at such belief incentive compatible, the return

payoff is tangent to the continuation value from learning. In other words, equations (7)

and (8) come from the familiar smooth pasting and value matching conditions.

Figure 2(b) plots the return transfer for a fixed s. Interestingly, t r(µ, s) increases with

µ, meaning that the seller actually obtains a larger return transfer if she tries to force

the buyer to stop learning earlier when there is still a higher continuation value from

learning. This is because, the seller also use x r for the buyer compensation, and it turns

out the seller allows the buyer to keep the item with a larger probability when she tries

to implement a larger stopping belief. With similar reasoning, t r(µ, s) also increases with

s. It means that, for a fixed stopping belief, the seller obtains a larger return transfer by

charging a smaller selling price. From Figure 2, we observe that,

lim
µ→q(s)

x r(µ, s) = 0 and lim
µ→q(s)

t r(µ, s) = 0;

lim
µ→Q(s)

x r(µ, s)≪ 1 and lim
µ→Q(s)

t r(µ, s)≪ vh − s.
(9)

That is, for fixed s, Free Return is the left limit of Stochastic Return. In contrast, the right

limit of Stochastic Return is strictly dominated by Learning Deterrence in terms of seller
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revenue, because the return transfer t r(Q(s), s) is smaller than the price vh − s.

5.1 Bang-Bang solution

We rewrite seller’s optimization for encouraging learning as a maximization over the

inducible set of (s,µ).

max
s∈[q−1(µ0),Q−1(µ0)]

§

max
µ

Π(µ, s) :=
µ0 −µ
1−µ

(vh − s) +
1−µ0

1−µ
t r(µ, s)
ª

s.t. q(s)≤ µ ≤Q(s)

µ≤ µ0

(L)

Conditional on acquiring information is optimal for type-µ0 buyer, the inner maximiza-

tion derives the optimal stopping belief that maximizes the seller’s expected revenue for

every fixed s. The outer maximization derives the optimal s on the solution path of the

inner maximization.

Theorem 1. Under the optimal refund mechanism, x r ∈ {0, 1}.

That is, Π∗(µ0) = max
�

ΠD(µ0),ΠF(µ0)
	

. The idea of the proof is to show that the

solution locates on the boundary of the inducible learning outcomes, i.e., the boundary of

shaded area. Consider Figure 3 for an illustration. It gives an example that µ0 = 0.5. The

red curve (both dashed part and solid part) plots the solution to the inner maximization,

i.e., the optimal stopping belief as a function of s. There is a cutoff q−1(µ∗) such that

if s > q−1(µ∗), then the optimal stopping belief is an interior solution. Otherwise, if

s ≤ q−1(µ∗), the optimal stopping belief is bounded by the quitting belief. Notice that

the lower boundary of the solid red curve refers to a Free Return mechanism, while the

upper boundary of the solid red curve is strictly dominated by Learning Deterrence.11

Therefore, if the optimal refund mechanism induces interior outcome, then the outcome

induced must locate on the interior path of the solid red curve. However, we show that

the seller’s revenue is either quasi-convex along the solid red curve or it adopts an interior

local maximum which is dominated by Learning Deterrence. Thus, we establish the sub-

optimality of Stochastic Return. In other words, if the seller allows a return in the optimal

refund mechanism, she requires the buyer to return the product with probability one

while issuing a refund. Otherwise, she does not allow a return.

11Notice that we can use both Stochastic Return and Learning Deterrence to induce the orange dot.
However, the revenue from Learning Deterrence is strictly higher (implied by the second half of (9)).
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Figure 3: Stochastic Return and interior solutions

One more lesson from this exercise is that when the seller optimally allows a free

return, she escalates price discrimination. Recall from Figure 3, Free Return can be op-

timal only when s ≤ q−1(µ∗) ≪ Q−1(0.5). Therefore, the optimal price for Free Return

vh − sF(µ0) is much higher than the price for Learning Deterrence vh − Q−1(0.5). We

provide a detailed discussion of the proof in the remaining part of this section.

5.1.1 Inner Maximization

For fixed s, consider the inner maximization of (L) subject to µ ∈ [q(s),Q(s)],

max
µ∈[q(s),Q(s)]

Π(µ, s). (10)

Let µ∗(s) := {µ ∈ [q(s),Q(s)] : Π1(µ, s) = 0} be the interior maximizer of (10). Rearrang-

ing Π1(µ, s) = 0, we obtain12

Pr(return)
∂ t r(µ, s)
∂ µ

︸ ︷︷ ︸

larger return transfer

= [vh − s− t r(µ, s)]
dPr(return)

dµ
︸ ︷︷ ︸

more frequent return

. (11)

Thus, the seller faces a trade-off between increasing the buyer’s stopping belief so that to

gain a larger return transfer and decreasing the buyer’s stopping belief so that to decrease

the expected return rate. The first order condition derives a unique path of µ∗(s). We

can further obtain the monotonicity of µ∗(s). To see this, recall that Lemma 2 establishes

12Denote Pr(return)= 1−µ0
1−µ as the ex-ante probability of return.
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that the return transfer t r(µ, s) increases with s. Therefore, the refund vh − s − t r(µ, s)
becomes smaller when s is higher. The seller then cares less about the expected return

rate, and her incentive to gain a larger return transfer is relatively stronger. Thus, she

optimally adapts to implement a larger stopping belief, meaning that µ∗(s) increases

with s. Furthermore, if s becomes sufficiently high, the refund becomes sufficiently small

that gaining a larger return transfer becomes the seller’s dominant incentive. She then

prefers to implement the maximal stopping belief, rendering the upper boundary Q(s)
the optimal return belief. Conversely, if s is sufficiently small, the dominant incentive

is to reduce the expected return rate, and the seller implements the minimal stopping

belief, rendering the lower boundary q(s) the optimal stopping belief. We can further

verify that µ∗(s) is independent of the prior belief µ0.

Lemma 3. Let µ∗ be the solution of Π1(µ, q−1(µ)) = 0. Then µ∗ < 0.5.

(1) If s ≤ q−1(µ∗), the optimal stopping belief is q(s);
(2) If s ∈ (q−1(µ∗),Q−1(0.5)), the optimal stopping belief is µ∗(s);
(3) If s ≥Q−1(0.5), the optimal stopping belief is µ0.

Lemma 3 summarizes the optimal stopping belief as s varies.13 The second term of

this lemma indicates that partial learning can be optimal if the value of s is intermediate.

Inversely, given that µ∗(s) is strictly increasing in s, Stochastic Return can be optimal only

when the optimal stopping belief µ ∈ (µ∗, 0.5), shown as the solid red curve in Figure 3.

5.1.2 Outer Maximization

The seller’s profit along the solid red curve µ∗(s) equals:

Π(µ, s∗(µ)) = t r(µ, s∗(µ)) +
µ0 −µ
1−µ

�

vh − s∗(µ)− t r(µ, s∗(µ))
�

. (12)

where s∗(µ) represents the inverse of µ∗(·) for µ ∈ [µ∗, 0.5]. Note that the first term is

the seller’s minimum revenue, and the second term refers to the extra revenue she can

obtain conditional on that the buyer discovers good news.

We show that seller’s profit is either quasi-convex along the path of µ∗(s), or there

is a local maximizer on µ∗(s) which is dominated by Learning Deterrence. Interestingly,

under the case that vl = 0, the former case is always true.14 Intuitively, suppose that

13The value 0.5 comes from the observation that the first-order equation, Π1(µ,Q−1(µ)) = 0, has a
unique solution at µ= 0.5.

14For vl > 0, if the learning cost is not very low, then seller’s profit is still quasi-convex along µ∗(s).
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the seller tends to lower the buyer’s stopping belief to induce more extended learning

process, thereby increasing the odds of a successful sale. She can further benefit as the

optimal price vh − s∗(µ) increases simultaneously. In addition, as the seller adjusts the

mechanism to implement a lower stopping belief, the minimum revenue t r(µ, s∗(µ)) also

decreases,15 causing the extra revenue gain from a successful sale even more substantial,

which reinforces the seller’s motive to decrease the buyer’s stopping belief. It gives rise

to a corner solution at the lower boundary of µ∗(s). Conversely, suppose the seller tends

to implement a higher stopping belief to raise her minimum revenue t r(µ, s∗(µ)). She

further benefits as the optimal price vh − s∗(µ) decreases simultaneously, reinforcing her

incentive to increase the stopping belief and raise the minimum revenue. It produces

a corner solution at the upper boundary of some feasible regions. When µ0 = 0.5, the

upper boundary is just µ0 (see the upper boundary of the solid red curve in Figure 3).

Therefore, Stochastic Return is sub-optimal.

6 Optimal Refund Mechanism

Recall that Theorem 1 implies Π∗(µ0) = max
�

ΠD(µ0),ΠF(µ0)
	

. Denote the set of prior

beliefs that the seller weakly prefers Free Return as F :=
¦

µ0 ∈ [µ,µ] : ΠF(µ0)≥ ΠD(µ0)
©

.

Theorem 2. There exists a γ∗ such that if k
λ ≤ γ

∗, then F is a closed interval and F ⊂
(vl/vh, µ̄); if k

λ > γ
∗, F =∅. The optimal mechanism takes following form:

1. No Return with a price E[v|µ0] if µ0 /∈ [µ,µ];

2. Learning Deterrence (no return) with a price tD(µ0) if µ0 ∈ [µ,µ] and µ0 /∈ F;

3. Free Return with a ;price vh − sF(µ0) if µ0 ∈ F.

We can interpret k
λ as the effective learning cost. Figure 4 depicts the expected rev-

enue/price of Learning Deterrence (green curve) and the revenue-maximizing Free Re-

turn mechanism (red curve) when k
λ < γ

∗. These two curves cross twice as shown in the

graph. That is, there exist two cutoff beliefs such that the seller optimally chooses Free

Return when the prior belief lies in between. Otherwise, the seller optimally chooses

Learning Deterrence.

To interpret this result, note that the gray dotted curve plots the first best allocation

surplus E[v|µ0]. Recall that if the buyer is very-well informed ex-ante, e.g., µ0 = µ, µ̄, the

15Because t r(µ, s) increases with both arguments and s∗(µ) increases with µ.
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Figure 4: Learning Deterrence and Free Return revenue for small learning cost

buyer considers learning sub-optimal, therefore the seller can set a non-refundable price

equal to the buyer’s ex-ante expected valuation to capture the full allocation surplus. In

other words, the green curve coincides with the gray dotted curve at the two end points.

When the buyer’s prior belief becomes less extreme, information becomes valuable. To

deter learning, the seller must lower the price to compensate for the buyer’s opportunity

information rent, which is the difference between the gray dotted line and the green

curve. The less extreme the buyer’s prior belief, the larger this opportunity information

rent. Therefore, as µ0 moves from either µ or µ toward a more intermediate belief, the

seller has to significantly reduce the price to prevent learning, rendering Learning Deter-

rence less profitable. However, if the seller switches to Free Return to encourage learning,

she can avoid compensating the buyer’s opportunity information rent. That is, instead

of significantly decreasing the price to deter learning, she can significantly increase the

price to encourage learning. Nevertheless, Free Return might induce inefficient trading

ex-post, therefore the seller only favors Free Return when the buyer’s prior belief is also

more optimistic, as it can guarantee a high probability of a successful sale.

Essentially, the buyer’s prior belief measures (1) how much the buyer values informa-

tion ex-ante; and (2) how optimistic the buyer initially is. Thus, Free Return is optimal

when the buyer’s prior belief is less extreme but also more optimistic. The value of vl/vh

is a measure of optimism as the left boundary of the red interval F can never go below

this ratio.

The left panel of Figure 5 plots the buyer’s expected trading surplus against the prior

belief under the optimal mechanism. There is a severe decline when the seller optimally

allows Free Return, which is driven by price discrimination under Free Return (see the

right panel for the price of the optimal refund mechanism).
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Figure 5: Buyer’s surplus and selling price

When the effective learning cost is large, k
λ > γ

∗, the buyer obtains little value from

learning. Therefore, the price reduction the seller has to offer to deter learning is insignif-

icant regardless of his prior belief. Hence, Learning Deterrence becomes more appealing

to the seller. Meanwhile, Free Return becomes less profitable as the buyer optimally

quits learning earlier, which reduces the ex-ante probability of a successful sale. There-

fore, when learning becomes more costly, the set of prior beliefs F that supports Free

Return as the optimal mechanism shrinks; and eventually becomes an empty set when
k
λ > γ

∗. See the bottom row in Figure 6.

Figure 6: Optimal refund mechanism

Conversely, when learning becomes less costly, the set of prior beliefs F that supports

Free Return expands. As the effective learning cost converges to zero, the buyer can

learn almost perfect information. Therefore, to deter learning, the seller has to set a price

arbitrarily close to vl , because otherwise, the buyer always has an incentive to learn to
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avoid consuming the item when his true valuation is low. It relates to the mass market

strategy. With Free Return, the seller optimally sets the price arbitrarily close to vh and

lets go of buyers who are almost sure to have a low valuation, which corresponds to the

niche market strategy. The ratio vl
vh

determines the cutoff prior belief at which the seller

is indifferent between Free Return and Learning Deterrence. It converges to standard

screening result when the buyer privately knows his true valuation (see the first row in

Figure 6).

Proposition 3. ΠF(µ0) is decreasing in the effective learning cost, whileΠD(µ0) is increasing

in the effective learning cost. The set of prior belief supporting Free Return as the optimal

mechanism expands if the effective learning cost goes down. When the effective learning

cost converges to zero, the solution converges to standard screening solution with perfectly

informed buyer.

Figure 7: Comparative statics

Figure 7 depicts the seller’s revenue, the optimal selling price and the buyer’s expected

trading surplus while the effective learning cost k
λ goes down. Consider the second row

from the left to the right. The information cost has a non-monotone effect in terms of the

23



buyer’s expected trading surplus. This is because the buyer can only benefit from lower

information cost if the seller deters learning. However, if the information cost becomes

sufficiently low, the seller switches to Free Return and escalates price discrimination,

which eventually hurts the buyer.

7 More Efficient Post-purchase Learning

If the learning process is more efficient after a transaction, i.e., λP > λB, then the trans-

action itself generates extra information rent. However, the seller can fully extract this

extra information rent by charging a cancellation fee to make the buyer just indifferent

between acquiring information before and after purchase. Note that charging a cancella-

tion fee is equivalent to issuing a partial refund, therefore the mechanism space remains

the same. Nevertheless, we consider the cancellation fee as a complementary instrument

as it is used to extract the additional information rent.

Denote tu as the cancellation fee. We can then represent the refund mechanism with

a cancellation fee as {tb, (x r , t r + tu)}. Specifically, if the buyer eventually requests a

return, the seller obtains a net return revenue t r + tu. If the refund mechanism does not

allow a return, we let t r = tb and tu = 0.

Proposition 4. If the optimal mechanism allows a return, the cancellation fee tu is the

solution to the following equation,

V (µ0, s+ tu;λP)− tu = V 0(µ0, s;λB).16 (13)

The left hand side is the buyer’s continuation value for purchasing under the optimal

refund mechanism, while the right hand side is the continuation value if a return is

not allowed. Proposition 4 implies that, for any optimal refund mechanism, the buyer

obtains the same continuation value as if the mechanism prohibited return. If λP = λB,

then tu = 0. Proposition 4 generalizes Lemma 1.

If the optimal mechanism deters buyer learning, then it takes the same form as Learn-

ing Deterrence, no return with price tb = tD(µ0;λB), regardless of the post-purchase

learning rate. If the optimal mechanism encourages learning, then the return policy de-

signed to induce some particular stopping belief µ is obtained in the same way as in

16V (µ0, s + tu;λP) is the solution to (ODE) where we substitute λ by λP and impose a boundary point
(q(s+ tu;λP), 0).
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Lemma 2. In particular,

x r(µ, s) =
V1(µ, s+ tu;λP)

vh − vl
,

t r(µ, s) = E[v|µ]x r(µ, s)− V (µ, s+ tu;λP).

where the allocation probability at return is proportional to the slope of buyer’s value

function for post-purchase learning, and the return transfer equals the allocation surplus

at return minus the continuation value from learning. Thus, to encourage learning, the

seller’s optimization problem is the following.

max
s∈[q−1(µ0;λP ),Q−1(µ0;λB)]

§

max
µ

µ0 −µ
1−µ

(vh − s) +
1−µ0

1−µ
(t r(µ, s) + tu)
ª

(14)

s.t. q(s+ tu;λP)≤ µ≤Q(s;λB)

µ≤ µ0

If λP is close to λB, deterministic mechanism is still optimal, i.e., x r ∈ {0, 1}, since the

cancellation fee is not very large. However, x r = 0 implies that there is zero allocation

surplus if the seller matches with a low valuation buyer, which is inefficient because even

the low valuation buyer values the product more than the seller. The seller can mitigate

this issue if λP is sufficiently large.

Proposition 5. If λP →∞ and µ0 ∈ [µ,µ], the optimal refund mechanism takes one of

the two forms below:

1. Learning Deterrence:

tb = tD(µ0;λB), tu = 0, and (x r , t r) = (1, tb);

2. Stochastic Return:

tb = vh −
k(vh − vl)
λB(µ0vh − vl)

, and tu =
k

λB(1−µ0)

�

1+ (1−µ0) log
�

µ0vh

µ0vh − vl

��

,

xr =
k
�

vh − vl − (1−µ0)
�

vl + (µ0vh − vl) log
�

µ0vh
µ0vh−vl

���

λB(1−µ0)(vh − vl)(µ0vh − vl)
, and tr = xr vl .

This proposition discusses the scenario where the buyer can almost learn his true

valuation immediately after purchase. Therefore, the buyer consumes the item when

his true valuation is high and requests a return if his true valuation is low. In this case,

the seller sets a positive x r and sets t r = x r vl to extract the return allocation surplus
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if matching with a low valuation buyer. Furthermore, she charges a cancellation fee to

extract buyer’s extra information rent from post-purchase learning.

In Figure 8, the left panel plots the buyer’s ex-ante trading surplus against µ0 under

the optimal refund mechanism for the case λP →∞, while the right panel plots the price

and the net return revenue t r+ tu of the optimal refund mechanism. Note that the buyer

is still worse off if the seller encourages him to learn due to price discrimination.

Figure 8: Buyer’s surplus and optimal selling price if λP →∞

As the seller uses Stochastic Return to mitigate the efficiency loss when matching with

a low valuation buyer, such incentive is gone if vl = 0 and deterministic mechanism is

still optimal.

Corollary 2. If λP →∞ and vl = 0, then one of the mechanisms below is optimal:

1. Learning Deterrence: no return with a price tD(µ0;λB);

2. Return with a cancellation fee: tb = vh −
k
λBµ0

, x r = 0, t r = 0 and tu =
k

λB(1−µ0)
.

8 No News is Good News

In this section, we consider the opposite learning technology—no news is good news—

such that bad news arrives at rate ρ if buyer’s true valuation is low (see Keller and Rady

(2015)). In this case, the buyer’s posterior belief goes up if no news arrives. We call

this learning technology negative learning. Conversely, we call the good news model as

positive learning. For simplicity, we assume the learning rate is the same before and after

purchase, and let the learning cost k remain the same.
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The key difference between positive learning and negative learning is that, under

positive learning, the buyer returns the product when he becomes sufficiently pessimistic,

while under negative learning, the buyer returns the product if he receives bad news

which indicates a sure low valuation. Therefore, the seller cannot manipulate the buyer’s

stopping belief by varying the return policy (x r , t r) in this case. Moreover, if we denote

η≡ x r vl − t r as the buyer’s surplus while requesting a return upon observing bad news,

then under every optimal mechanism,

η≡ x r vl − t r = 0=⇒ x r =
t r

vl
.

Hence, under negative learning, the seller can only affect the buyer’s stopping belief

through the selling price tb, which then determines the buyer’s continuation value from

learning, V N (µ, tb). For a fixed price, there exists two cutoff beliefs, g(tb) ≤ G(tb),
that determine the buyer’s learning behavior. Nevertheless, the lower cutoff g(tb) is

determined by the indifference between returning the product and continuing to learn,

g(tb) = {µ : E[v|µ]
t r

vl
− t r = V N (µ, tb)}.

The upper stopping belief G(tb) becomes the consuming belief at which the buyer stops

learning and consumes the product. G(tb) adopts a close form solution,

G(tb) = 1+
k

ρ(vl − tb)
.

While varying the selling price, the seller can implement different upper stopping beliefs.

A higher price implements a higher consuming belief which implies a smaller probability

of successful sale.

Denote G−1(µ) := vl+
k

ρ(1−µ) as the inverse function of G(tb). Thus, the seller can im-

plement a stopping belief µ if she sets a price equal G−1(µ). For example, if tb = G−1(µ0),
then the seller deters buyer learning. Moreover, let Ḡ(µ0) := {µ : V N (µ0, G−1(µ)) = 0}
be the largest (upper) stopping belief that is implementable given the prior belief µ0. We

can then formulate the seller’s optimization problem (N) as following.

max
µ

ΠN (µ) :=
µ0

µ
G−1(µ) +

µ−µ0

µ
t r

s.t V N (µ0,G−1(µ)) = E[v|µ0]
t r

vl
− t r ,

µ0 ≤ µ≤ Ḡ(µ0).

(N)
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Figure 9: Optimal refund mechanism with bad news

Similarly, the seller’s expected revenue is a weighted average between the selling

price and the return transfer. Notice that g(tb) does not affect the ex-ante probability of

a successful sale or a return. Therefore, for any fixed price, the seller can always obtain a

higher return transfer by increasing allocation probability at return, which then induces

a higher g(tb). It implies that the lower stopping belief equals the prior belief under

the optimal refund mechanism, which is the first constraint. The second constraint char-

acterizes the implementable consumption belief. Note that unlike the program under

positive learning, the objective function is continuous at µ = µ0 if we switch from en-

couraging learning to deterring learning. Therefore, we no longer require two programs

to study encouraging learning and deterring learning respectively. Denote µN ,µN as the

two beliefs at which the lower and the upper stopping beliefs coincide. Let µF be the

prior belief at which the seller is indifferent between deterring learning and inducing the

longest learning,

µF =min{µ0 ∈ (µN ,µN] : ΠN (µ0) = Π
N (Ḡ(µ0))}.

Proposition 6. Assume 4k < (vh − vl)ρ. There exists a γ∗∗ such that if k/ρ < γ∗∗, then

µF < µ
N and the optimal mechanism takes following form:

1. No Return with a price E[v|µ0] if µ0 /∈ [µN ,µN];

2. Learning Deterrence (no return) with a price G−1(µ0) if µ0 ∈ [µN ,µF];

3. Free Return with a price G−1(Ḡ(µ0)) if µ0 ∈ (µF ,µN].

Otherwise, if k/ρ ≥ γ∗∗, then µF = µN and the optimal mechanism induces no learning for

all prior belief and takes the form of No Return and Learning Deterrence.

The optimal mechanism under negative learning (described in Proposition 6) takes

a similar form as under positive learning (described in Theorem 2). However, the right

cutoff prior belief that the seller optimally chooses Free Return equals µN , shown as the
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second case in Figure 9. Intuitively, if µ0 = µ
N , the largest inducible stopping belief is

just Ḡ(µN ) = µN . Thus the seller’s expected revenue from Learning Deterrence is the

same as that from Free Return, i.e, ΠN (µ0) = ΠN (Ḡ(µ0)) at µ0 = µ
N .

Note that the optimal Free Return mechanism induces the longest stopping belief

Ḡ(µ0) so that the type-µ0 buyer obtains zero participation value given the definition of

Ḡ(µ0). In other words, Free Return further hurts the buyer under negative learning. This

is driven by the nature of the learning technology. Specifically, under negative learning,

the buyer becomes more optimistic if no news arrives and his continuation value even-

tually goes up, therefore the seller can keep raising the price until fully capturing the

buyer’s ex-ante trading surplus. However, under positive learning, the buyer becomes

more pessimistic if no news arrives and his continuation value eventually decreases to

zero so that he requests a return. Therefore, the seller has to provide the buyer with pos-

itive ex-ante surplus to fulfill his participation. Figure 10 gives a comparison of buyer’s

ex-ante surplus under positive learning and negative learning respectively. In the right

panel, under negative learning, the buyer can only obtain positive participation value if

the mechanism deters learning.

Figure 10: The buyer’s ex-ante surplus

9 Discussion

There is an alternative interpretation of the refund mechanism we study in this paper.

Consider a start-up company offering an option contract to one acquirer. The option

contract contains a baseline allocation and an option. The baseline allocation specifies

the price t r for a share x r of the company. On top of it, the acquirer has an option to

purchase the remaining share (1 − x r) of the company at a strike price (tb − t r). The
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timeline is the following. At the beginning, the start-up offers this mechanism to the

acquirer. The acquirer can then evaluate this contract before contracting with the start-

up. If the acquirer decides to contract with the start-up, then based on the information

arrives afterwards, he can decide whether to purchase the remaining share. Notice that if

the baseline allocation specifies the price for the entire share, i.e., x r = 1 and tb− t r = 0,

then the contract does not involve any real option.

With this interpretation, in the benchmark model under “no news is bad news”, the

buyer purchases the remaining share only if he obtains a conclusive good news before he

stops learning, e.g., some ongoing innovation of the start-up is proved to be success. An-

ticipating this, the start-up designs the baseline allocation to control the buyer’s learning

decision, as the buyer decides to stop learning comparing the expected payoff from the

baseline allocation and the continuation value from learning which also depends on the

strike price. Given Theorem 1, the optimal baseline allocation either ensures the buyer

an option to freely opt out, or specifies a price for the entire share. Moreover, in the

former case, the start-up designs a sufficiently high strike price such that the buyer is

willing to learn for a relatively long time, while in the latter case, the price is sufficiently

low so that the buyer is willing to purchase the entire company immediately. The optimal

contract has a similar structure under “no news is good news” framework.

Regulations on buyer’s right for free opt-out are designed presumably for the sake of

buyer’s surplus. However, it actually diminishes the buyer’s expected surplus as it triggers

price discrimination. Specifically, when learning is inevitable on the buyer side, the seller

then has a strong incentive to give up those buyers receiving bad news but enhances price

discrimination to those buyers receiving good news. One possible solution is to impose

a price cap, which then limits the room for price discrimination. Conditional on Lemma

3, a price cap might eventually make the seller optimally choose the deterring learning

price (much lower than the price cap) and create efficient allocation.
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Appendix

Proof of Lemma 1. Suppose (IR) holds with strict inequality. That is, the seller offers

a benevolent return policy {x r(·), t r(·)} such that if the buyer reports a belief µ and op-

timally stops post-purchase learning at belief µ and requests a return, he gets a payoff

VP(µ; tb, x r(µ), t r(µ)) > V 0(µ; tb, 1, tb). Given (IM-L2)—the optimality to stop learning

at µ, we can then calculate the return transfer t r(µ) which equals the allocation surplus

at return minus the buyer’s continuation value:17

t r(µ) = E[v|µ]x r(µ)− VP(µ; tb, x r(µ), t r(µ))

= E[v|µ]
V ′P(µ; tb, x r(µ), t r(µ))

vh − vl
− VP(µ; tb, x r(µ), t r(µ)).

(15)

Note that VP(µ; tb, x r(µ), t r(µ)) must satisfy the differential equation,

(1−µ)µλV ′P(µ; tb, x r(µ), t r(µ)) +µλVP(µ; tb, x r(µ), t r(µ)) = µλ(vh − tb)− k,

derived from the Bellman equation for post-purchase learning (3). Slope V ′P and magni-

tude VP of the buyer’s continuation value are the substitutes that the seller can adjust to

implement the same stopping belief. For the purpose of maximizing profit, the seller can

reduce VP(µ; tb, x r(µ), t r(µ)) and raise V ′P(µ; tb, x r(µ), t r(µ))without violating the above

differential equation, which increases the return transfer and in the meantime preserve

the same buyer’s optimal stopping rule. Moreover, by implementing the same stopping

beliefs, the ex-ante probabilities of return and successful sale are the same. This implies

a profitable deviation.

Proof of Proposition 1. We prove this proposition by verifying Q(s) ≥ q(s) if s ∈ [s, s̄],
while the equality holds at s and s̄. Recall that Q(s) = {µ : V (µ, s) = E[v|µ]−(vh−s)}. By

setting s = D(µ) := Q−1(µ), the type-µ buyer is indifferent between accepting the price

and exerting learning. Let µ̃(µ) := q(D(µ)) be the quitting belief if s = D(µ).

Claim 1. The domain of µ̃(µ) is [µ,µ]. µ̃(µ) ≤ µ and the equality holds only at the two

end points. µ̃(µ) is increasing and symmetric about the line 1-µ. µ− µ̃(µ) increases first

and then decreases in µ.
17This is implied by the optimality (known by smooth-pasting and value matching conditions) to stop

learning at µ.
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Proof. Recall the definition of D(µ),

V (µ, D(µ)) = E[v|µ]− (vh − D(µ)). (16)

By implicit differentiation w.r.t. µ, we have,

dD(µ)
dµ

=
k(k−λD(µ))
λ2(1−µ)2µD(µ)

=
k[µ̃− 1]
λ(1−µ)2µ

< 0. (17)

Besides,
dµ̃
dµ
=

d[k/λD(µ)]
dµ

=
k2(λD(µ)− k)
λ3(1−µ)2µD(µ)3

=
µ̃2(1− µ̃)
(1−µ)2µ

.

Thus, µ̃(µ) is a differential equation with initial point (µ,µ),18 and its solution is,19

−
1
µ̃
− log[1− µ̃] + log[µ̃] =

1
1−µ

− log[1−µ] + log[µ]−
λ(vh − vl)

k
. (18)

Denote the LHS as f (µ̃) and the RHS as g(µ). The domain of both functions is [µ,µ]
and f (·) = g(·) at the two end points. Note that f ′(·) > g ′(·) when the both arguments

are smaller then 0.5 and f ′(·)< g ′(·) when both arguments are larger then 0.5.20 There-

fore f (·) and g(·) cross only at the two boundary points and therefore µ̃(µ) < µ for all

µ ∈ (µ,µ). For µ̃(µ) to be symmetric about 1−µ, note that the reflection point of (µ, µ̃)
over line 1−µ is (1− µ̃, 1−µ). It is easy to verify that, if equation (18) holds at a point

(µ, µ̃), then equation (18) still holds at the reflection point (1− µ̃, 1−µ). Now, we want

to show that µ− µ̃(µ) is single-peaked, increasing first and then decreasing in µ. Note

that µ̃′(µ) < 1 and µ̃′(µ) > 1; therefore, if µ̃′(µ) = 1 has a unique solution, then we are

done. To show this, dµ̃
dµ =

µ̃2(1−µ̃)
(1−µ)2µ = 1 implies µ̃(µ) = 1− µ.21 As µ̃(µ) is increasing in µ

and symmetric about 1−µ, it follows that µ̃′(µ) = 1 has a unique interior solution.

When s /∈ [s, s̄], as constraint (6) fails, no learning is optimal. If s ∈ [s, s̄], note that

Q(D(µ))−q(D(µ)) = µ−µ̃(µ). Taking the derivative with respect to µ yields (Q′−q′)D′ =
1 − µ̃′. Because D′(µ) < 0, Q′(s) − q′(s) is positive for small s and then negative for

18To verify (µ,µ) is an initial point. Recall µ = q(s̄) and the binding (6) implying E(v|µ)− (vh − s̄) = 0.
Meanwhile V (q(s̄), s̄) = V (µ, s̄) = 0. Given equation (16), D(µ) = s̄. Thus, µ̃(µ) = q(D(µ)) = µ.

19The general solution is − 1
µ̃ − log[1− µ̃] + log[µ̃] = 1

1−µ − log[1−µ] + log[µ] + C . Conditional on the

initial point, (µ,µ), we can solve C = −λ(vh−vl )
k . Same result holds if we take (µ,µ) as the initial point.

20 f ′ = 1
µ̃2−µ̃3 and g ′ = 1

(1−µ)2µ .
21µ̃2(1− µ̃) = (1− µ)2µ could have three solutions: µ̃ = µ = 0, µ̃ = µ = 1 or µ̃ = 1− µ. The previous

two cannot be true when µ ∈ [µ,µ].
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large s, and Q(s) = q(s) at s and s̄.22 The difference, Q(s) − q(s), is single-peaked in

s. That is, for all s ∈ [s, s̄], Q(s) ≥ q(s) with equality holding at the two end points.

Then it is easy to verify V (µ, s) ≥ max{0,E[v|µ] − (vh − s)} if µ ∈ [q(s),Q(s)]. Then

the construction of Proposition 1 is optimal based on the standard arguments in the

exponential experimentation.

Proof of Proposition 2. First, we prove the first term. Proposition 1 and the constraint

(6) imply V (µ, D(µ)) = 0 at µ and µ̄. Rearranging equation (16) gives:

V (µ, D(µ)) = D(µ)− (1−µ)(vh − vl).

Taking derivative w.r.t µ and plugging in equation (17) gives:

dV (µ, D(µ))
dµ

= (vh − vl)
�

−A
(1− µ̃)
(1−µ)2µ

+ 1
�

,

where A = k
λ(vh−vl )

= (1− µ)µ ∈ (0, 1
4).

23 It is easy to verify dV (µ,D(µ))
dµ = 0 at µ or µ. To

prove that V (µ, D(µ)) is single-peaked in µ, we only need to show that dV (µ,D(µ))
dµ = 0 has

a unique solution when µ ∈ (µ,µ), as V (µ, D(µ)) > 0 when µ ∈ (µ,µ). That is, the two

equations below have a unique solution when µ ∈ (µ,µ), as µ̃ is the implicit solution of

(18).

−A
(1− µ̃)
(1−µ)2µ

+ 1= 0 (19)

−
1
µ̃
+ log
�

µ̃

1− µ̃

�

=
1

1−µ
+ log
�

µ

1−µ

�

−
1
A

(20)

Substituting equation (19) into (20), we have,

−
A

A− (1−µ)2µ
+ log

�

A− (1−µ)2µ
(1−µ)2µ

�

−
�

1
1−µ

+ log
�

µ

1−µ

�

−
1
A

�

= 0.

Denote the LHS as h(µ). Now, we want to show that h(µ) = 0 has a unique solution for

µ ∈ (µ,µ). In particular, as we can verify that h(µ) = 0 at µ and µ, we want to show that

h(µ) first decreases and then increases and then decreases again on [µ,µ]. Taking the

22Recall that D(µ) = s̄ and D(µ̄) = s by (6).
23From the binding (6), we can get k

λ(vh−vl )
= (1 − µ)µ = (1 − µ)µ. Therefore, µ = 1 − µ ∈ (0,0.5).

Hence, A∈ (0, 1
4 ).
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derivative of h(µ) w.r.t µ gives:

h′(µ) =
1

(1−µ)2µ

�

y(µ)
z(µ)
− 1
�

,

where y(µ) := A2(3µ− 1)(1− µ) and z(µ) := [A− (1− µ)2µ]2. y(µ) is a second-order

polynomial function that is negative when µ < 1/3, increases on µ if µ < 2/3, and

decreases on µ if µ > 2/3. z(µ) is a high-order polynomial function and z′(µ) = 0 has at

most 4 roots: 1/3,1, and at most two roots from (1−µ)2µ− A= 0.24 We can show that

z(µ) crosses y(µ) twice in the support [µ,µ], first from above and then from below.25

Next, the monotonicity ofΠD(µ0) = tD(µ0) = vh−D(µ0) can be directly obtained from

(17). Moreover, tD(µ0) = E[v|µ0] − V (µ0, D(µ0)) and V (µ, D(µ)) = V (µ, D(µ)) = 0,

therefore, tD(µ) = E(v|µ) and tD(µ) = E(v|µ).

Proof of Lemma 2. Given Lemma 1, to induce the buyer to stop learning at a belief

µ different from q(s), the buyer’s expected payoff from requesting return E(v|·)x r − t r

should smoothly pass V 0(·, s) at µ. Besides, the induced stopping belief µ must belong

to the set [q(s),Q(s)], in which V 0(µ, s) = V (µ, s). That is,

value matching: E[v|µ]x r − t r = V (µ, s),

smooth pasting:
d[E[v|µ]x r − t r]

dµ
= V1(µ, s).

We then obtain the expression of x r and t r in (7) and (8). Specifically,

t r(µ, s) = −
kvl −λµvls− kµvh

�

log
�

µ

1−µ

�

− log
�

k
λs−k

�

�

λµ(vh − vl)
. (21)

24z′(µ) = 2[(1− µ)2µ− A](3µ− 1)(µ− 1). The derivative of (1− µ)2µ− A is (3µ− 1)(µ− 1). Hence
(1− µ)2µ− A is increasing if µ < 1/3 and decreasing afterwards. When A< 4/27, (1− µ)2µ− A= 0 has
two distinct roots, r1 < 1/3< r2. When A= 4/27, there is a unique root 1/3. When A> 4/27, there is no
root. Regardless of A, (1−µ)2µ− A< 0 when µ= µ,µ.

25(1) Suppose A < 4/27, then z(µ) > y(µ) for µ ≤ 1/3, z(r2) = 0 < y(r2) and z(µ) > y(µ). There-
fore, z(µ) double crosses y(µ). (2) Suppose A = 4/27, then z(µ) > y(µ) for µ < 1/3, z(1/3) =
y(1/3), z′(1/3) = 0 < y ′(1/3), and z(µ) > y(µ). Therefore, z(µ) double crosses y(µ). (3) Suppose
A ∈ (4/27, 1/4), then z′(µ) < 0 when µ < 1/3, and z′(µ) ≥ 0 when µ ≥ 1/3. We can check that
z(1/2) < y(1/2) for A ∈ (4/27, 1/4), and hence we have the same double crossing given y(µ) < z(µ)
and y(µ)< z(µ).

34



Taking partial derivative w.r.t µ and s separately gives:

∂ t r(µ, s)
∂ µ

=
kE[v|µ]

λ(1−µ)µ2(vh − vl)
> 0,

∂ t r(µ, s)
∂ s

=
E(v|q(s))

(1− q(s))(vh − vl)
> 0,

and the cross derivative is 0. Moreover, as V (·, s) is convex in µ, x r(·, s)—proportional to

V1(·, s)—is therefore increasing in µ.

Proof of Lemma 3. First, we discuss the first-order condition. Explicitly,

Π1(µ, s) =
(1−µ0)

(1−µ)2(vh − vl)



vh(−vh + s+ vl) +
k(µ(vh − 2vl) + vl)

λµ2
+

kvh(log[ µ1−µ ]− log[ k
λs−k ])

λ





︸ ︷︷ ︸

≡Υ (µ)

.

Since µ ∈ [µ, µ̄], Π1(µ, s) = 0 has the same solution with Υ (µ) = 0.

Υ ′(µ) =
k(1− 2µ)µvh + 2k(1−µ)2vl

λ(µ− 1)µ3
.

The numerator of Υ ′(µ) is a well-behaved second-order polynomial, which is verified to

have a unique root between 0 and 1, and is larger than 0 at µ = 0, and smaller than

0 at µ = 1. Thus, Υ ′(µ) crosses 0 only once and from below, which implies Υ (µ) is

initially decreasing and then increasing. Therefore, Υ (µ) has at most two roots in [0,1],
denoted as µ∗−(s) ≤ µ

∗
+(s). Furthermore, Υ (µ) is increasing in s. Therefore, the smaller

root is the local maximizer of Π(µ, s) which is increasing in s, while the larger root is

the local minimizer of Π(µ, s) which is decreasing in s, and if the two roots coincide,

µ∗−(s) = µ
∗
+(s)> 0.5.26 Thus, if there exists a µ∗+(s), it is larger than 0.5.

Let s∗(µ) = {s : Π1(µ, s) = 0}.27 Given the above argument, it is a single-valued

continuous function, which is initially increasing and then decreasing in µ. Furthermore,

it is clear that when µ ≤ 0.5, s∗(µ) is increasing. To introduce one more notation, let

t̄ r(µ) := t r(µ,Q−1(µ)). It is the envelope of all inducible return transfers. Formally,

t r(µ, s) ∈ [0, t̄ r(µ)]⇐⇒ µ ∈ [q(s),Q(s)].
26To see this, note that Υ ′(0.5) < 0. Suppose µ∗−(s) = µ

∗
+(s) = 0.5, then Υ ′(0.5) = 0. Contradiction.

Suppose µ∗−(s) = µ
∗
+(s)< 0.5, then Υ ′(0.5)> 0. Contradiction.

27Sorry to abuse the notation. We can verify that if µ ∈ [µ∗, 0, 5], s∗(µ) is the inverse function of µ∗(·)
after we prove this lemma.
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To see this, consider the direction from the right to the left first. Recall that t r(µ, s) is

increasing in both arguments. If µ≥ q(s), then t r(µ, s)≥ t r(q(s), s) = 0; and if µ≤Q(s),
then s ≤ Q−1(µ) as Q(s) decreases in s, which then implies t r(µ, s) ≤ t r(µ,Q−1(µ)). The

opposite direction is trivial.

To prove Lemma 3, we want to show that Π(µ, s) is quasi-concave on µ ∈ [q(s),Q(s)].
Specifically, we show t r(µ∗+(s), s) > t̄ r(µ∗+(s)),

28 which then implies µ∗+(s) > Q(s). The

following claim pins down the set of µ such that t r(µ, s∗(µ)) ∈ [0, t̄ r(µ)].

Claim 2. t̄ r(µ) with domain [µ,µ] first increases and then decreases in µ. t r(µ, s∗(µ))
single crosses t̄ r(µ) at 0.5 from below, and {µ : t r(µ, s∗(µ)) ∈ [0, t̄ r(µ)]}= [µ∗, 0.5].

Proof. It is obvious that t̄ r(µ) ≥ 0 when µ ∈ [µ,µ], with equality hold at the two end

points. Recall that D(µ) :=Q−1(µ). Taking derivative of t r(µ) w.r.t µ gives

d t r(µ)
dµ

=
∂ t r(µ, D(µ))

∂ µ
+
∂ t r(µ, D(µ))

∂ s
dD(µ)

dµ
=
(1−µ)µ

(1−µ)µ

�

E[v|µ]
µ
−
E(v|µ̃(µ))

1−µ

�

.

The term in square brackets is decreasing. It’s positive when µ= µ̃(µ) = µ, and negative

when µ= µ̃(µ) = µ. Hence, t̄ r(µ) is increasing first and then decreasing. Next, we show

that t r(µ, s∗(µ)) = t̄ r(µ) has a unique solution of 0.5. Since t r(µ, s) is increasing in s, to

find the solution of t r(µ, s∗(µ)) = t r(µ,Q−1(µ)) is equivalent to find the solution to the

system of equations below,











Π1(µ, s) = 0,

V (µ,Q−1(µ)) = E[v|µ]− (vh −Q−1(µ)),
s =Q−1(µ),

which can be verified to have a unique non-negative solution µ= 0.5. This suggests that

Π1(µ,Q−1(µ)) = 0 has a unique solution at 0.5. Moreover,

d t r(µ, D(µ))
dµ

=
∂ t r(µ, D)
∂ µ

+
∂ t r(µ, D)
∂ s

dD
dµ

,

d t r(µ, s∗(µ))
dµ

=
∂ t r(µ, s∗)
∂ µ

+
∂ t r(µ, s∗)
∂ s

ds∗

dµ
.

Since ∂ tr (µ,s)
∂ µ is independent of s, the first term of the two derivatives are the same. Be-

sides, dD
dµ < 0 and ds∗

dµ > 0 if µ ≤ 0.5. Hence, the slope of t r is smaller than t r(µ, s∗(µ)).

28Note that equation (21), the exact expression of t r(µ, s), is valid for all µ ∈ [0, 1].
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That is, if we reduce µ from 0.5, t r(µ, s∗(µ)) decreases faster than t r(µ). Let µ∗ be the so-

lution of t r(µ, s∗(µ)) = 0. Obviously, µ∗ ∈ (µ, 0.5). To pin down µ∗, note that t r(µ, s) = 0

implies s = q−1(µ). Thus, µ∗ is the solution that Π1(µ, q−1(µ)) = 0. Explicitly,

Π1(µ, q−1(µ)) =
(µ0 − 1)(λµ2vh(vh − vl)− k(2µ(vh − vl) + vl))

λ(1−µ)2µ2(vh − vl)
= 0,

which also has a unique solution that µ∗ = k
λvh
+ ( k

λvh
( k
λvh
+ vl

vh−vl
))

1
2 .29 Therefore, we pin

down the set [µ∗, 0.5] on which t r(µ, s∗(µ)) ∈ [0, t̄ r(µ)].

From this claim, we can see that t r(µ, s∗(µ)) > t̄ r(µ) if µ > 0.5. Moreover, given

that µ∗+(s)> 0.5, if there exists a local minimizer µ∗+(s), it is larger than Q(s). Therefore,

Π(µ, s) is quasi-concave on [q(s),Q(s)].

Denote t∗r(µ) := t r(µ, s∗(µ)) for the domain [µ∗, 0.5]. Given the monotonicity of

s∗(µ) when µ≤ 0.5, we can conclude that if s ∈ (q−1(µ∗),Q−1(0.5)), the local maximizer

µ∗−(s) ∈ (q(s),Q(s)) hence µ∗(s) = µ∗−(s) is the global maximizer. Besides, if s ≥Q−1(0.5),
then Q(s) ≤ 0.5 ≤ µ∗−(s), where the first inequality comes from Q(s) being decreasing

in s and the second inequality comes from µ∗−(Q
−1(0.5)) = 0.5. The inequality holds

with equality only at s = Q−1(0.5). It is optimal to implement a return belief Q(s). If

s ≤ q−1(µ∗), q(s) ≥ µ∗ and then Π1(q(s), s) ≤ 0.30 Since Π1(µ, s) is quasi-concave in

[q(s),Q(s)], thus ifΠ1(µ, s)≤ 0 at q(s),Π1(µ, s)≤ 0 for all [q(s),Q(s)]. Still the inequality

holds with equality only at s = q−1(µ∗). It is optimal to implement return belief q(s).

Proof of Theorem 1. Substituting the first-order condition (11) into the seller’s expected

revenue (12),

Π(µ, s∗(µ)) = t∗r(µ) +
∂ t r(µ, s∗(µ))

∂ µ
(µ0 −µ). (22)

Taking the derivative w.r.t µ gives

dΠ(µ, s∗(µ))
dµ

=
d t∗r
dµ
−
∂ t∗r
∂ µ
+ (µ0 −µ)

∂ 2 t∗r
∂ µ2

=
∂ t∗r
∂ s

ds∗

dµ
+ (µ0 −µ)

∂ 2 t∗r
∂ µ2

=





∂ t∗r
∂ s

ds∗

dµ

∂ 2 t∗r
∂ µ2

+µ0 −µ





∂ 2 t∗r
∂ µ2

=
�

−
(1−µ)

vh
E[v|q(s∗(µ))] +µ0 −µ

�

∂ 2 t∗r
∂ µ2

.

29Since λµ2vh(vh−vl)−k(2µ(vh−vl)+vl) is increasing on µ > 0 (its derivative is −2(k−λvhµ)(vh−vl)>
0), it is negative when µ is small and positive when µ is large. Hence, Π1(µ, q−1(µ)) single crosses 0 from
above and µ∗ is unique.

30See footnote 29.
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Note that ∂ tr (µ,s∗(µ))
∂ µ is independent of s and we can verify

∂ 2 t∗r
∂ µ2 < 0.31

Let φ(µ) := (1−µ)
vh
E[v|q(s∗(µ))]. The monotonicity of Π(µ, s∗(µ)) can be pinned down

by the sign of µ0−µ−φ(µ). In particular, if µ0−µ > φ(µ), Π(µ, s∗(µ)) is decreasing in

µ, otherwise, it is increasing in µ.

Claim 3. φ(µ) with domain [µ∗, 0.5] is decreasing and convex on µ. If k
λ ≥

vh(
p

vh−
p

vl )
p

vl
2vh+(

p
vh−
p

vl )
p

vl
,

φ′(µ∗)≥ −1, otherwise, φ′(µ∗)< −1. Moreover, φ′(0.5)> −1 for all k
λ ∈ [0, vh−vl

4 ].

The proof of this claim can be found subsequent to this theorem. Recall Lemma 3,

µ∗(s) is an optimal solution only for the interval s ∈ [q−1(µ∗),Q−1(0.5)]. Consider the

original problem (L) and reimpose the two constraints: q−1(µ0) ≤ s ≤ Q−1(µ0) and

µ≤ µ0, then µ∗(s) is the optimal solution only if

[q−1(µ∗),Q−1(0.5)]∩ [q−1(µ0),Q
−1(µ0)] ̸=∅ and µ0 ≥ µ∗,

which is equivalent to

µ0 ∈ [µ∗,Q(q−1(µ∗))].

Figure 11 depicts this region. Note that when µ0 ̸= 0.5, the upper boundary of µ∗(s),
subject to the two constraints, is not 0.5. In particular, if µ0 ∈ [µ∗, 0.5], then the optimal

stopping belief µ ≤ µ0 (see Figure 11 (a)); if µ0 ∈ (0.5,Q(q−1(µ∗))], then the optimal

stopping belief µ ≤ µ∗(Q−1(µ0)) (see Figure 11 (b)), The lower boundary µ∗ can always

be achieved when µ0 ∈ [µ∗,Q(q−1(µ∗))].

Figure 11: Feasible range of interior solutions

31 ∂
2 t∗r
∂ µ2 =

k[(2µ−1)E[v|µ]−(1−µ)vl ]
λ(1−µ)2µ3(vh−vl )

< 0.
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Figure 12: Illustration of the two cases

We distinguish two cases. First, φ′(µ∗)≥ −1 implies that Π(µ, s∗(µ)) is quasi-convex

in µ. Second, φ′(µ∗)< −1 implies there exists a local maximum ofΠ(µ, s∗(µ)), which we

can verify to be strictly worse than the revenue from Learning Deterrence. We establish

the proof case by case. Notice that if vl = 0, only case one is possible.

Case 1: φ′(µ∗)≥ −1. DenoteΦ(µ) = µ+φ(µ). Therefore when µ0 ∈ [Φ(µ∗),Φ(0.5)],
µ0 −µ single-crosses φ(µ) from above, as depicted in Figure 12(a).

Case 1(a), ifµ0 < Φ(µ∗), thenΠ(µ, s∗(µ)) is increasing inµ. This implies that inducing

the upper boundary of µ∗(s), subject to the two constraints, is optimal, which further

implies the optimality of Learning Deterrence. To see this, when µ0 ≤ 0.5, the optimal

return belief is µ0 and inducing no learning via Stochastic Return is strictly dominated by

Learning Deterrence. When µ0 > 0.5, the optimal return belief is µ∗(Q−1(µ0)) < 0.5 <

µ0. However, the seller’s revenue in this case is a weighted average between the deterring

learning price vh − Q−1(µ0) and the return transfer t r(µ∗(Q−1(µ0)),Q−1(µ0)), which is

smaller than the deterring learning price. Case 1(b), if µ0 ∈ [Φ(µ∗),Φ(0.5)), Π(µ, s∗(µ))
is quasi-convex in µ. When µ0 ≤ 0.5, the optimal return belief is either µ∗ or µ0, which

implies the optimality between Free Return and Learning Deterrence. When µ0 > 0.5, we

can still obtain the optimality between Free Return and Learning Deterrence by applying

the same reasoning as above. Case 1(c), if µ0 ≥ Φ(0.5), Π(µ, s∗(µ)) is decreasing in µ.

Hence, Free Return is optimal.

Case two: When φ′(µ∗) < −1, there exists a local maximizer of Π(µ, s∗(µ)). Denote
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r = {µ ∈ [µ∗, 0.5] : φ′(µ) = −1}. If µ0 ∈ [Φ(r),Φ(µ∗)], there exists a unique local max-

imizer r1(µ0) = {µ ∈ [µ∗, r] : φ(µ) = µ0 − µ} (see Figure 12(b)). If µ0 /∈ [Φ(r),Φ(µ∗)],
then the expected revenue is quasi-convex and the argument in case one validates. If

µ0 ∈ [Φ(r),Φ(µ∗)], we want to show that

Π(r1(µ0), s∗(r1(µ0)))< tD(µ0).

That is, the local maximum is not a global solution as it is worse than Learning deterrence.

With slight abuse of notation, we write Π(µ, s∗(µ);µ0) instead of Π(µ, s∗(µ)). Note that

Π(r1(µ0), s∗(r1(µ0));µ0)< Π(r1(µ0), s∗(r1(µ0));Φ(µ
∗))< Π(µ∗, s∗(µ∗);Φ(µ∗)).

The first inequality comes from Π increasing in µ0. The second inequality is due to

µ∗ = r1(Φ(µ∗)), which is the local maximizer of Π when µ0 = Φ(µ∗). Recall equation

(22) and plug in the expression of µ∗,

Π(µ∗, s∗(µ∗);Φ(µ∗)) = 0+ (Φ(µ∗)−µ∗)
∂ t r(µ, s∗(µ))

∂ µ

�

�

�

µ=µ∗
= E(v|

k
λvh
).

It is obvious that s < vh whenever learning is feasible. Thus,

E(v|
k
λvh
)< E(v|µ) = tD(µ)< tD(µ0),

where the equality and the second inequality come from Proposition 2.

Proof of Claim 3. Denote w(µ) := E[v|q(s∗(µ))], then φ(µ) = 1−µ
vh

w(µ). Note that w(µ)
is decreasing in µ, as q(s) decreases in s and s∗(µ) increases in µ. Besides, we can verify

that s∗(µ) is concave for µ ∈ [µ∗, 0.5],32 hence w(µ) is convex. Note that,

φ′(µ) = −
1
vh

�

w(µ)− (1−µ)w′(µ)
�

= −
1
vh



w(µ∗) +

∫ µ

µ∗

w′(µ)dµ− (1−µ)w′(µ)



 .

Since w′ < 0 and w′′ > 0, then
∫ µ

µ∗
w′(µ)dµ−(1−µ)w′(µ) is decreasing in µ and therefore

φ′(µ) is increasing in µ. That is, φ(µ) is convex.

32We can verify that d2s∗

dµ2 is proportional to q(s∗(µ))2M+µ2N , where M ≡ (µ(vh−4vl)−2µ2(vh−vl)+2vl)2

and N ≡ (−2+(5−4µ)µ)µv2
h +2(1−µ)2(−3+2µ)vl vh. We can verify that M > 0, N < 0, and M +N < 0.

Meanwhile q(s∗(µ))< µ. Therefore d2s∗

dµ2 < 0.
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Denote q∗(µ) := q(s∗(µ)). Simplifying φ′(µ∗)< −1 implies,

(µ∗)2(vh − vl) + 2µ∗vl − vl < 0.

Therefore, if µ∗ ∈ [0,
p

vlp
vh+
p

vl
), then φ′(µ∗) < −1. Otherwise if µ∗ ∈ [

p
vlp

vh+
p

vl
, 0.5), then

φ′(µ∗) ≥ −1. Recall that µ∗ = k
λvh
+ ( k

λvh
( k
λvh
+ vl

vh−vl
))

1
2 which is increasing in k

λ , where

µ∗ → 0 if k
λ → 0 and µ∗ → 0.5 if k

λ →
vh−vl

4 . Thus, letting µ∗ =
p

vlp
vh+
p

vl
implies a unique

cutoff of k
λ such that if k

λ <
vh(
p

vh−
p

vl )
p

vl
2vh+(

p
vh−
p

vl )
p

vl
, φ′(µ∗)< −1.

Moreover, simplifying φ′(0.5) gives:

φ′(0.5) = −
�

4(vh − vl)vlq
∗(0.5)2

v2
h

(1− q∗(0.5)) +
1
vh
E[v|q∗(0.5)]

�

.

We can verify that φ′(0.5)> −1 given that q∗(0.5)< 0.5.

Proof of Theorem 2. Recall (F), the objective function is verified to be concave in s.33

We solve the explicit solution for the unconstrained maximizer sF(µ0) and the uncon-

strained maximum ΠF(µ0):

sF(µ0) =
k
λ
+

p

k(µ0 − 1)µ0(k−λvh)
λµ0

,

ΠF(µ0) =
−2
p

k(µ0 − 1)µ0(k−λvh) + k− 2kµ0 +λµ0vh

λ
.

We first verify that, the constrained maximum ΠF (µ0) = ΠF(µ0) if ΠF (µ0) ≥ ΠD(µ0) =
tD(µ0). It is equivalent to show that if ΠF (µ0) ≥ tD(µ0), then q−1(µ0) ≤ sF(µ0) ≤
Q−1(µ0). Obviously, ΠF (µ0) ≥ tD(µ0) implies vh − sF(µ0) > tD(µ0) = vh − Q−1(µ0),
as the expected probability of a successful sale is less than one with Free Return. Hence,

sF(µ0)≤Q−1(µ0) holds trivially. To show q−1(µ0)≤ sF(µ0), we want to show q(sF(µ0))<
µ0, which can be simplified to

q

µ0
1−µ0

>
Ç

k/(λvh)
1−k/(λvh)

. It is true because k
λvh
< µ < µ0.

Second, we want to show that F is either an empty set or a closed interval. Note that

tD(µ) > ΠF(µ) and tD(µ) > ΠF(µ). Hence, it is equivalent to show ΠF(µ0) intersects

tD(µ0) = vh −Q−1(µ) at most twice. That is,

Q−1(µ) = vh −ΠF(µ) (23)

33The second order derivative w.r.t s is 2kλ(µ0−1)(k−λvh)
(k−λs)3 < 0.
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has at most two roots when µ ∈ [µ,µ]. Substituting (23) into equation (18), we obtain

g(µ)− f (θ (µ)) = 0, (24)

where θ (µ) := γ

(vh−ΠF (µ)) and γ≡ k
λ . The first order derivative of the left hand side is

g ′ − f ′θ ′ =
1

1−µ

�

1
1−µ

+
1
µ

�

+

�

1
p
µ
−

r
p

1−µ

�

(pµ+ r
p

1−µ)3

(pµ+ r
p

1−µ)2 − 1
,

where r =
p

vh/γ− 1 >
p

3 given the assumption that vh > 4γ + vl . Let x ≡
q

µ

1−µ ∈
(0,∞), which is a monotone transformation of µ. Rearranging g ′ − f ′θ ′ = 0, we have

m(x) :=
x(x + r)3(1− x r)

(1+ x2)3(−1+ 2x r + r2)
= −1,

where m(x) is a rational function. The degree of the numerator is smaller than that of

the denominator, thus it has a horizontal asymptote m = 0. Note that the denominator

is positive due to θ (µ) ∈ [0,1], hence it does not have a vertical asymptote. Meanwhile

limx→0 m(x) = 0, limµ→∞m(x) = 0, m(x = 1) < 0, and m(x) = 0 has a unique root

x = 1/r < 1. Therefore, the graph of m(x) is the following.

Then, m(x) = −1 has at most two roots. That is, if µ ∈ [µ,µ], g ′(µ)− f ′θ ′(µ) has

at most two roots and g ′(µ)− f ′θ ′(µ) < 0 when µ is between the two roots. Given that

g(µ)− f (θ (µ)) is strictly positive at µ and µ, we can verify (24) has at most two roots.

Proposition 3 then implies the existence of γ∗ and the left endpoint of F is larger than
vl
vh

. The exact form of optimal refund mechanism is an immediate result of Corollary 1

and Theorem 1.

Proof of Proposition 3. Recall that Π(q(s), s) = µ0−γ/s
1−γ/s (vh−s). By the envelope theorem,

we have:
dΠF

dγ
=

vh − sF

(sF − γ)2
(µ0 − 1)sF < 0.
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To show that tD(µ0) = vh −Q−1(µ0) is increasing in γ, we want to show Q−1(µ0) is

decreasing in γ. Recall that µ̃(µ) := q(Q−1(µ)). Taking the derivative w.r.t γ for both

sides of E[v|µ0]− (vh −Q−1(µ0)) = V (µ0,Q−1(µ0)), we obtain:

1−µ0

1− µ̃(µ0)
dQ−1

dγ
=

1−µ0

1− µ̃(µ0)
− 1− (1−µ0) log

�

µ0/1−µ0

µ̃(µ0)/1− µ̃(µ0)

�

< 0.

Given that F is either empty or a closed interval, it is immediate that if γ1 < γ2, then

F(γ2) ⊆ F(γ1). Note that µ is the smaller root for E[v|µ]− (vh − q−1(µ)) = 0 (from 6).

By implicit differentiation,
dµ

dγ
(
γ

1−µ
−
γ

µ
) = −1.

Hence,
dµ

dγ > 0. Meanwhile, µ= 1−µ, then [µ(γ2),µ(γ2)] ⊂ [µ(γ1),µ(γ1)].

Now we want to show,

lim
γ→0

max{ΠD(µ0),Π
F(µ0)}=







vl , µ0 <
vl
vh

µ0vh, µ0 ≥
vl
vh

.

First we calculate the limit of tD(µ0) when γ → 0. Plugging Q−1(µ0) =
γ

µ̃(µ0)
into

equation (18) and multiplying by γ gives:

−Q−1(µ0) + γ log
γ

Q−1(µ0)− γ
=

γ

1−µ0
+ γ log

µ0

1−µ0
− (vh − vl).

If γ → 0 and µ0 does not converge to 0 or 1, the above equation converges to vh −
Q−1(µ0) = vl .

34 Hence, lim
γ→0

tD(µ0)→ vl . For the expected revenue from Free Return,

lim
γ→0
ΠF(µ0) = µ0vh + γ(1− 2µ0)− 2

Æ

γ(1−µ0)µ0(vh − γ)→ µ0vh.

Therefore when γ → 0, the seller is indifferent between Learning Deterrence and Free

Return at µ0 =
vl
vh

.

Second, since the above limit of tD(µ0) may fail when µ0→ 0 or µ0→ 1, we have to

verify the extreme case that lim
γ→0
[µ,µ]→ [0,1]. Plugging µ= 1

2

�

1−
p

1− 4γ/(vh − vl)
�

,

34 lim
γ→0
γ log γ

Q−1(µ0)−γ
= 0
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we have

lim
γ→0
γ log

µ

1−µ
= γ log

1−
p

1− 4γ/(vh − vl)

1+
p

1− 4γ/(vh − vl)
→ 0.

Hence, lim
γ→0

tD(µ) → vl . Thus, when µ0 <
vl
vh

, the seller’s expected revenue from the

optimal mechanism converges to vl .

Plugging µ= 1
2

�

1+
p

1− 4γ/(vh − vl)
�

, we have

lim
γ→0
γ log

µ

1−µ
= γ log

1+
p

1− 4γ/(vh − vl)

1−
p

1− 4γ/(vh − vl)
→ 0,

lim
γ→0

γ

1−µ
=

γ

1−
p

1− 4γ/(vh − vl)
→ vh − vl .

Hence, lim
γ→0
µ → 1, lim

γ→0
tD(µ) → vh, and lim

γ→0
ΠF(µ) = vh. If vl

vh
≤ µ0 ≪ 1, lim

γ→0
ΠF(µ0) >

lim
γ→0

tD(µ0). Then, when µ0 ≥
vl
vh

, the seller’s expected revenue converges to µ0vh.

Proof of Proposition 4. Given λP > λB, we can rewrite the buyer’s (IR) constraint,

VP(µ0, s, x r , t r + tu;λP)≥ V 0(µ0, s;λB), (IR-P)

where s ≡ vh − tb. Similar as Lemma 1, we want to show that (IR-P) binds. Suppose

(IR-P) holds strictly. Rewrite the buyer’s Bellman equation for purchase,

VP(µ(τ), s, x r , t r + tu;λP) =max
�

E[v|µ(τ)]− (vh − s),E[v|µ(τ)]x r − (t r + tu),

− kdτ+µ(τ)λP dτs+ (1−µ(τ)λP dτ)VP(µ(τ+ dτ), s, x r , t r + tu;λP)
	

.
(25)

This leads to a differential equation conditional on learning,

UP(µ, s;λP) = s−
k
µλP
− (1−µ)U ′P(µ, s;λP), (26)

where U ′P represents the partial derivative w.r.t to µ. Suppose the buyer stops learning

at belief µ given the mechanism. Then by standard smooth pasting and value matching

condition, the return revenue satisfies,

t r + tu = E[v|µ]
V ′P(µ, s, x r , t r + tu;λP)

vh − vl
− VP(µ, s, x r , t r + tu;λP)

=
vh

vh − vl
V ′P − s+

k
µλP

.
(27)
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The second equality comes from the fact that VP also satisfies the differential equation

(26). Thus, a lower VP implies a higher V ′P , which implies a higher return revenue. Hence,

if (IR-P) holds strictly, the seller can gain larger expected revenue by decreasing VP while

letting the buyer preserve the same stopping belief.

Since (IR-P) binds, under the optimal refund mechanism, VP(µ0, s, x r , t r + tu;λP) =
V 0(µ0, s;λB). Thus, imposing the boundary point (µ0, V 0(µ0, s;λB)) to the solution of

UP , we pin down the buyer’s value function VP conditional on learning. Let tu ≡ −VP(µ̂)
where µ̂ is the belief at which V ′P = 0. Then normalizing the Bellman equation (25) by

adding tu at both sides, we obtain,

VP(µ(τ), s, x r , t r + tu;λP) + tu =max
�

E[v|µ(τ)]− (vh − (s+ tu)),E[v|µ(τ)]x r − t r ,

− kdτ+µ(τ)λP dτ(s+ tu) + (1−µ(τ)λP dτ)(VP(µ(τ+ dτ), s, x r , t r + tu;λP) + tu)
	

.

By normalization,

VP(µ, s, x r , t r + tu;λP) + tu = V (µ, s+ tu;λP), (28)

which implies,

V (µ0, s+ tu;λP)− tu = VP(µ0, s, x r , t r + tu;λP) = V 0(µ0, s;λB).

Proof of Proposition 5. Let q−1
B (µ0) := k

λBµ0
be the inverse of quitting belief for before-

transaction learning. Similarly, let q−1
P (µ0) := k

λPµ0
and Q−1

B (µ0) =Q−1(µ0;λB). There are

two cases. (1) If s ∈ [q−1
P (µ0), q−1

B (µ0)), V (µ0, s + tu;λP)− tu = V 0(µ0, s;λB) = 0. (2) If

s > q−1
B (µ0), V (µ0, s+ tu;λP)− tu = V 0(µ0, s;λB)> 0. We discuss them separately.

Case (1). s ∈ [q−1
P (µ0), q−1

B (µ0)). Substituting V (µ0, s+ tu;λP)− tu = 0 and equation

(28) into equation (27), we obtain:35

t r(µ, s) + tu(s,µ0) =
1

λPµ(vh − vl)

�

µ(k−λPsµ0)vh

µ0 − 1
− kvl +λPsµvl + kµvh

�

log
�

µ

1−µ

�

− log
�

µ0

1−µ0

���

.

Obviously,

lim
λP→∞

t r(µ, s) + tu(s,µ0) =
�

vh

(1−µ0)(vh − vl)
− 1
�

s,

35With our construction of tu, t r only depends on the stopping belief and s.
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and the seller’s expected revenue,

lim
λP→∞

µ0(vh − s) + (1−µ0)[t r(µ, s) + tu(s,µ0)] = µ0vh +
vls

vh − vl

is increasing in s when λP →∞. Therefore the seller optimally sets an s = q−1
B (µ0) in

this case.

Case (2). s ∈ [q−1
B (µ0)),Q−1

B (µ0)). With a similar approach, we obtain:

t r(µ, s) + tu(s,µ0) = −
kvh log
�

k
λBs−k

�

λB(vh − vl)
+
−kvl +λPsµvl + kµvh log

�

µ
1−µ

�

λPµ(vh − vl)
+

k(λP −λB)vh(1+ (1−µ0) log
�

µ0
1−µ0

�

)

λBλP(1−µ0)(vh − vl)
.

Observe that

lim
λP→∞

t r(µ, s) + tu(s,µ0) =
kvh +λBs(1−µ0)vl + k(1−µ0)vh

�

log[ µ0
1−µ0
]− log[ k

λBs−k]
�

λB(1−µ0)(vh − vl)

Then take the first order derivative of limλP→∞µ0(vh − s) + (1− µ0)[t r(µ, s) + tu(s,µ0)]
w.r.t s, we obtain,

λB(1−µ0)vhs
(λBs− k)(vh − vl)

− 1,

which is decreasing in s. Therefore, the seller’s revenue is increasing in s if s ≤ k(vh−vl )
λB(µ0vh−vl )

,

otherwise, it is decreasing in s if s > k(vh−vl )
λB(µ0vh−vl )

.

Case (2a). If µ0 ≤ vl/vh, then s > 0 > k(vh−vl )
λB(µ0vh−vl )

and the seller’s revenue is always

decreasing in s, which renders s = q−1
B (µ0) the locally optimal solution. Case (2b). If

µ0 ∈ (vl/vh,µ], then k(vh−vl )
λB(µ0vh−vl )

> q−1
B (µ0). We can verify that there exists µ′0 and µ′′0 such

that vl/vh < µ
′
0 < µ

′′
0 < µ, and if µ0 ∈ [µ′0,µ′′0], then q−1

B (µ0) <
k(vh−vl )
λB(µ0vh−vl )

≤ Q−1
B (µ0),

rendering the optimal solution s = k(vh−vl )
λB(µ0vh−vl )

, which leads to the Stochastic Return in

Proposition 5. Otherwise, if µ0 /∈ [µ′0,µ′′0], the optimal solution is s =Q−1
B (µ0).

Summarizing the above cases, if q−1
B (µ0) is the globally optimal s, then µ0 ≤ vl/vh.

Notice that at µ0 = µ′0, the deterring learning revenue with s = Q−1
B (µ0) is higher than

the optimal Stochastic Return with s = k(vh−vl )
λB(µ0vh−vl )

, which is higher than the revenue for

s = q−1
B (µ0) given that the return policy is optimally chosen. Notice that the seller’s

expected revenue is continuous in µ0 conditional on each case. Moreover, since the

revenue for s = q−1
B (µ0) crosses the revenue for deterring learning at most three times

on µ0 ∈ [µ0
,µ0] (cross from above at the first time at µ

0
and from below the last time at

µ0). Therefore if µ0 < µ
′
0, then setting s equal q−1

B (µ0) is sub-optimal.

Proof of Proposition 6. If 4k < (vh− vl)ρ, let µN and µN be the two roots such that the
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inequality,

E[v|µ]− G−1(µ)≥ 0,

is binding. That is, if the buyer stops learning at belief µ, consuming the item is weakly

better than than walking away. This determines the interval of beliefs such that learning

might be valuable.

Lemma 4. ΠN (µ) is quasi-convex in µ for µ0 ∈ [µN ,µN].

Proof. With standard analysis, we obtain the expression of buyer’s value function given

an upper stopping belief µ,

V N (µ0, G−1(µ)) = −
k(1−µ+µ0)
ρ(1−µ)

+µ0(vh − vl) +
kµ0

ρ

�

log
�

1−µ
µ

�

− log
�

1−µ0

µ0

��

.

With which, we can back out the return transfer t r by the first constraint of program (N).

Substituting it back to the objective function, we obtain,

ΠN (µ) :=
µ0

µ
G−1(µ) +

µ−µ0

µ

vl

µ0(vh − vl)
V N (µ0,µ).

Take first order derivative of ΠN w.r.t µ,

dΠN (µ)
dµ

= R
§

(2µ− 1)µ0l + (µ0 − 1−µ(µ+µ0 − 1)) + (1−µ)2µ0

�

log
�

1−µ
µ

�

− log
�

1−µ0

µ0

��ª

︸ ︷︷ ︸

H(µ)

,

where R = kvl
ρ(1−µ)2µ2(vh−vl )

> 0 and l = vh
vl

. Thus, if H(µ) > 0, then ΠN (µ) is increasing in

µ. Otherwise, ΠN (µ) is decreasing in µ.

Case 1, µ < 1/2. We can verify that H(µ) < 0 under this case. That is, if the upper

stopping belief is smaller than 1/2, then ΠN (µ) is decreasing in µ, rendering µ0 the

optimal stopping belief.

Case 2, µ > 1/2. Notice that,

dH
dµ
= 1− 2µ+ 2µ0l −

µ0

µ
+ 2(µ− 1)µ0

�

log
�

1−µ
µ

�

− log
�

1−µ0

µ0

��

.

Denote J(µ) := µ−2µ2−µ0+2µµ0 l
2µµ0−2µ2µ0

as the solution to 1−2µ+2µ0l−µ0
µ +2(µ−1)µ0J(µ) = 0. We

can verify that J(µ)> log
�

1−µ
µ

�

− log
�

1−µ0
µ0

�

if µ= 1
2 , while J(µ)< log

�

1−µ
µ

�

− log
�

1−µ0
µ0

�

if µ → 0. Note that, J ′(µ) = µ0−2µµ0+µ2(2µ0 l−1)
2(1−µ)2µ2µ0

. Let J ′ = 0, we obtain two roots, µ1 =
µ0−
p
µ0(1+µ0−2µ0 l)
2µ0 l−1 and µ2 =

µ0+
p
µ0(1+µ0−2µ0 l)
2µ0 l−1 .
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Case (2a), suppose 1+µ0 − 2µ0l < 0. Then there is no real solutions. We can verify

that under this case, J ′ > 0. Thus, J is increasing and it can only cross log
�

1−µ
µ

�

−

log
�

1−µ0
µ0

�

once from below (the crossing belief is smaller than 1/2). It implies that

J(µ) > log
�

1−µ
µ

�

− log
�

1−µ0
µ0

�

when µ ≥ 1/2, which further implies that H ′ > 0. Thus,

H(µ) can only cross 0 once from below. This means that ΠN is quasi-convex in µ for

µ ≥ 1/2. Case (2b), suppose 1+ µ0 − 2µ0l ≥ 0. Then two roots exist. However, under

this case, H(µ)< 0, therefore ΠN is decreasing in µ.

The above Lemma implies that either Free Return that inducing upper stopping belief

G(µ0) or Learning Deterrence that inducing µ0 is optimal. Now we prove Proposition 6.

Note that the revenue from Free Return is µ0

G(µ0)
G−1(G(µ0)) while Learning Deterrence is

G−1(µ0).

Let Λ(µ0) = {µ ̸= µ0 : G−1(µ0) =
µ0
µ G−1(µ)}. Thus,

Λ(µ0) =
(1−µ0)(k+ρvl)
k+ρ(1−µ0)vl

.

We can verify that Λ(µ0) is decreasing in µ0. Recall that G(µ0) is the solution such that

V N (µ0, G−1(µ)) = 0. Take total differentiation we can verify that

G
′
(µ0) =

(1− G(µ0))2G(µ0)
µ2

0(1−µ0)
> 0.

Therefore, Λ(µ0) can cross G(µ0) at most once from above when µ0 ∈ [µN ,µN].This

implies that either there is an interval of beliefs such that the sender optimally chooses

Free Return, or deterring learning is optimal for all µ0 ∈ [µN ,µN]. The existence of γ∗∗

is driven by that G(µN ) − Λ(µN ) is decreasing in k
ρ . Moreover, if k

ρ → 0 and µN → 1,

Λ(1) = 0< G(1) and if k
ρ →

vh−vl
4 and µN → 1

2 , Λ(1
2) =

vh+3vl
2(vh+vl )

> G(1
2) =

1
2 .
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