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ABSTRACT

IZA DP No. 15815 DECEMBER 2022

Robust Dynamic Space-Time Panel Data 
Models Using ε-Contamination:  
An Application to Crop Yields and 
Climate Change*

This paper extends the Baltagi et al. (2018, 2021) static and dynamic ε-contamination 

papers to dynamic space-time models. We investigate the robustness of Bayesian panel 

data models to possible misspecification of the prior distribution. The proposed robust 

Bayesian approach departs from the standard Bayesian framework in two ways. First, we 

consider the ε-contamination class of prior distributions for the model parameters as well 

as for the individual effects. Second, both the base elicited priors and the ε-contamination 

priors use Zellner (1986)’s g-priors for the variance-covariance matrices. We propose a 

general “toolbox” for a wide range of specifications which includes the dynamic space-

time panel model with random effects, with cross-correlated effects à la Chamberlain, 

for the Hausman-Taylor world and for dynamic panel data models with homogeneous/

heterogeneous slopes and cross-sectional dependence. Using an extensive Monte Carlo 

simulation study, we compare the finite sample properties of our proposed estimator to 

those of standard classical estimators. We illustrate our robust Bayesian estimator using the 

same data as in Keane and Neal (2020). We obtain short run as well as long run effects of 

climate change on corn producers in the United States. 
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1. Introduction

The space-time panel data models provide a general structure which accommodates feedback

from lagged endogenous values, i.e., state dependence, along with the spatial spillovers, spatial

heterogeneity as well as interactive e↵ects. Yu et al. (2008) have introduced a dynamic space-

time panel specification with fixed e↵ects, where both N (number of spatial sites or individuals)

and T (number of time points) are large, and which allows one to treat spatial dependence in

the dependent variable vector (see also Lee and Yu (2015)). They propose a concentrated quasi-

maximum likelihood (QML) estimation and a bias correction for the estimators. They show that

when T grows faster than N1/3, the correction asymptotically eliminates the bias. Su and Yang

(2015) propose a QML estimation of dynamic panel models with spatial errors for short panels

(N large, T fixed), both for random e↵ects and fixed e↵ects worlds. They propose a residual-

based bootstrap method for estimating the standard errors. This approach yields good results

in finite samples only if the assumptions about the initial observations are satisfied.

As is well known, the ordinary least squares estimation of a spatial dynamic panel data model

generally yields inconsistent parameter estimates due to the potential correlation between the

spatially lagged dependent variables and the error term. Recently, Jin et al. (2020) proposed an

e�cient distribution-free least squares estimation method that utilizes the eigen decomposition

of a weight matrix. They also present a penalized model selection procedure based on the

proposed method. Their approach is very powerful compared to the well-known instrumental

variable techniques and its applicability is demonstrated via a high-dimensional data example.

Unfortunately, when N or T is small, their estimator is seriously biased even when using their

proposed bias-corrected estimator.1

Parent and LeSage (2010) considered a dynamic space-time panel specification with random

e↵ects and proposed a Bayesian Markov Chain Monte Carlo (MCMC) method. They used a

restriction on the parameter associated with spatial e↵ects from the previous period, � in equation

(1) below, and showed that the restriction allows one to separate the space and time dimensions.

This greatly simplifies the computation of the space-time covariance structure as well as the own-

and cross-partial derivatives of the model (see also Parent and LeSage (2011)). Debarsy et al.

(2012) considered in a dynamic space-time Durbin model with random e↵ects. They remove

the restriction on � and, following Parent and LeSage (2010), use the same MCMC method

where all parameters are a priori independent. LeSage et al. (2019) also proposed a dynamic

space-time panel data model without individual-specific e↵ects. Considering proper priors for the

parameters and assuming that the joint distribution of these parameters is uniformly distributed,

they adopt Metropolis Hastings steps and a reversible jump procedure for some number of initial

MCMC draws to produce proposal values for the vector of parameters.

The present paper develops a general framework for robust Bayesian analysis of dynamic

space-time panel data models using "-contamination class of prior distributions. Bayesian infer-

ence procedures based on a single base prior distribution ignore the fact that a prior distribution

in the neighborhood of this base prior may also represent the prior belief of the experimenter.

Robust Bayes inference procedures based on a class of prior distributions usually perform better

and are more robust in the sense that if the available base prior is irrelevant, the procedure

1We thank Yuehua Wu for the helpful discussions on this issue. Unfortunately, their bias correction method
is ine↵ective when T < 50 irrespective of N .
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articulately discards the base prior in favor of the sample information. The "-contamination

class of prior distributions, which is a mixture of a base prior and a contamination class of pri-

ors, is an attractive class of prior distributions. For a more authoritative discussion, one may

refer to Berger (1985), Berger and Berliner (1986), Chaturvedi (1996), Baltagi et al. (2018) and

the references cited therein. For selecting a specific prior distribution from the contamination

class of priors, Berger and Berliner (1986) considered the type-II maximum likelihood (ML-II)

procedure. ML-II was named and extensively studied in Good (1965), and it can be seen as a

particular instance of empirical Bayes which, in general, “estimates” the hyperparameters from

the data.2 Section 2 presents the robust dynamic space-time panel data models. Section 3

derives the Type-II maximum likelihood posterior mean and the variance-covariance matrix of

the coe�cients utilizing a two-stage hierarchy approach. The finite sample performance of the

proposed robust Bayes estimator is investigated in Section 4 using extensive Monte Carlo ex-

periments. In Section 5, we use the same data as in Keane and Neal (2020) to illustrate our

robust Bayesian estimator applied to a dynamic space-time mixed specification model of crop

yields and climate change. One of the main benefits of such dynamic space-time mixed model

is its ability to estimate short-run and long-run e↵ects through the impact multiplier (weather)

and the ⌧ -period-ahead dynamic multiplier (climate) of a permanent change in the temperature

or precipitations at time t. Finally, section 6 gives some concluding remarks.

2. A robust dynamic space-time panel data model

Let us start with the Gaussian dynamic space-time mixed model:

yti = �yt�1,i + ⇢
NX

j=1

wijytj + �
NX

j=1

wijyt�1,j +X 0
ti� +D0

tibi + uti , i = 1, ..., N , t = 2, ..., T,

= Z 0
ti✓ +D0

tibi + uti (1)

with Z 0
ti =

2

4yt�1,i,
NX

j=1

wijytj ,
NX

j=1

wijyt�1,j , X
0
ti

3

5 and ✓0 = [�, ⇢, �,�0]
0
,

where the data is ordered in matrix form such that i is a faster index than t, X 0
ti is a (1⇥Kx)

vector of explanatory variables including the intercept, and � is a (Kx ⇥ 1) vector of parameters.

Let D0
ti denote a (1⇥ k2) vector of covariates and bi a (k2 ⇥ 1) vector of parameters. The

subscript i of bi indicates that the model allows for heterogeneity on the D variables. uti is a

remainder term assumed to be normally distributed, i.e. uti ⇠ N
�
0, ⌧�1

�
. The distribution of uti

is parametrized in terms of its precision ⌧ rather than its variance �2

u (= 1/⌧). The WN = (wij)

is a (N ⇥N) spatial weights matrix whose diagonal elements are zero. Moreover, we also assume

that WN is row-normalized and that all eigenvalues are real and less than or equal to one.

Connectivity between the N individuals is represented by the WN spatial weights matrix. The

distance between individuals i and j may be based on geography or some measure of economic

distance, or defined as rook-style or queen-style contiguities, or as the k-nearest neighbors for

instance.

2“We consider the most commonly used method of selecting a hopefully robust prior in � (the "-contamination
class of prior distributions), namely choice of that prior ⇡ which maximizes the marginal likelihood m(y|⇡) over
�. This process is called Type II maximum likelihood by Good (1965)” (Berger and Berliner (1986) page 463).
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Pooling the N individuals for one time period, we can write

yt = �yt�1 + ⇢WNyt + �WNyt�1 +Xt� +Dtb+ ut , t = 2, ..., T, (2)

= Zt✓ +Dtb+ ut with Zt = [yt�1,WNyt,WNyt�1, Xt]

where yt is the N -dimensional vector of the dependent variable, yt�1 its lagged value, Xt the

(N ⇥Kx) matrix of covariates, Dt the (N ⇥K2) (with K2 = Nk2) matrix of other covariates,

Dt = diag (D0
ti)i=1,...,N and b = (b0

1
, b0

2
, . . . , b0N )

0
, (3)

� and b are (Kx⇥1) and (K2⇥1) vectors of coe�cients associated with the covariates Xt and Dt.

� is the autoregressive time dependence parameter, ⇢ is the spatial dependence parameter and

� is the spatio-temporal di↵usion parameter.3 In order to ensure stable dynamic estimation, Yu

et al. (2008), Parent and LeSage (2011) or LeSage et al. (2019) show that stationary conditions

are satisfied if:4

8
>>>><

>>>>:

�+ (⇢+ �)$max < 1 if ⇢+ � � 0

�+ (⇢+ �)$min < 1 if ⇢+ � < 0

�� (⇢� �)$max > �1 if ⇢� � � 0

�� (⇢� �)$min > �1 if ⇢� � < 0

(4)

where $min and $max are the minimum and maximum eigenvalues of the spatial weights matrix

WN . Pooling the T � 1 time periods, we get the dual form of the model:

y = �y�1 + ⇢y⇤ + �y⇤�1
+X� +Db+ u = Z✓ +Db+ u, (5)

where y�1 is the (T�1)N -dimensional vector of the lagged dependent variable, y⇤ is the (T�1)N -

dimensional vector of the spatially weighted dependent variable: y⇤ =
�
y⇤
2,1, ..., y

⇤
2,N , ..., y⇤T,1, ..., y

⇤
T,N

�0

with y⇤ti =
PN

j=1
wijytj . y⇤�1

is the (T � 1)N -dimensional vector of the spatially weighted lagged

dependent variable: y⇤�1
=

�
y⇤
1,1, ..., y

⇤
1,N , ..., y⇤T�1,1, ..., y

⇤
T�1,N

�0
with y⇤t�1,i =

PN
j=1

wijyt�1,i

and ✓ is a K1-vector of parameters with K1 = Kx + 3.

In a Bayesian framework, it is customary to constrain the priors of the space-time parameters

�, ⇢ and � over the stationary interval as in equation (4) and to use products of independent

uniform distributions or mixtures of uniform distributions (see section A of the supplementary

material for more discussion). In a non-spatial framework, much has been written about the

desirability of imposing stationarity conditions. The choice of particular prior distributions

that allow one to develop the posterior analysis of autoregressive models with (or without) the

stationarity has also been much discussed in the literature (Phillips, 1991). However, most papers

use uninformative (objective) priors and do not consider stationarity issues. As there is no clear

consensus on these topics in the literature, we do not impose any particular constraints on the

priors of the dependent parameters.

3Parent and LeSage (2010, 2011) use a restriction on �(= �⇢⇥ �) allowing space and time to be separable.
4Yu et al. (2008) observed that yt can have some nonstationary components if �+⇢+� = 1 but, as underlined

by Parent and LeSage (2011), stationarity does not require that |�| + |⇢| + |�| < 1. LeSage et al. (2019) recall
that the dependence parameters �, ⇢ and � associated with stable processes require �+ ⇢+ � < 1 and, for cases
where ⇢� � > 0, it requires that �� ⇢+ � > �1. See also Parent and LeSage (2011).
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Extending the Baltagi et al. (2018, 2021) non-spatial "-contamination papers to the dynamic

space-time model, we assume a Zellner g-prior, for the ✓
�
= [�, ⇢, �,�0]0

�
vector encompassing all

the coe�cients of the covariates Z. In other words, we propose a very general two-stage hierarchy

framework:

First stage : y = Z✓ +Db+ u, u ⇠ N(0,⌃),⌃ = ⌧�1I(T�1)N

Second stage : ✓ ⇠ N (✓0,⇤✓) and b ⇠ N (b0,⇤b) (6)

with p (⌧) / ⌧�1 , ⇤✓ = (⌧gZ 0Z)
�1

and ⇤b = (⌧hD0D)
�1

.

The second stage (also called fixed e↵ects model in the Bayesian literature) updates the distribu-

tion of the parameters. Rather than specifying a Wishart distribution for the variance-covariance

matrices as is customary, Zellner’s g-prior (⇤✓ = (⌧gZ 0Z)�1 for ✓ or ⇤b = (⌧hD0D)�1 for b) has

been widely adopted because of its computational e�ciency in evaluating marginal likelihoods

and because of its simple interpretation as arising from the design matrix of observables in the

sample. Since the calculation of marginal likelihoods using a mixture of g-priors (resp. h-priors)

involves only a one-dimensional integral, this approach provides an attractive computational so-

lution that made the original g-priors popular while insuring robustness to misspecification of g

(resp. h) (see Zellner (1986) and Fernández et al. (2001) to mention a few).5 Since the calculation

of marginal likelihoods using a mixture of g-priors involves only a one-dimensional integral, this

approach provides an attractive computational solution that made the original g-priors popular

while insuring robustness to misspecification of g (see Zellner (1986) and Fernández et al. (2001)

to mention a few).

To guard against misspecifying the distributions of the priors, many suggest considering

classes of priors (✓, b, ⌧) (see Berger (1985), Baltagi et al. (2018, 2021)). Here, we consider the

"-contamination class of prior distributions for (✓, b, ⌧):

� = {⇡ (✓, b, ⌧ |g0, h0) = (1� ")⇡0 (✓, b, ⌧ |g0, h0) + "q (✓, b, ⌧ |g0, h0)} . (7)

⇡0 (·) is the base elicited prior, q (·) is the contamination belonging to some suitable class Q of

prior distributions, 0  "  1 is given and reflects the amount of error in ⇡0 (·) . The precision ⌧

is assumed to have a vague prior, p (⌧) / ⌧�1, 0 < ⌧ < 1, and ⇡0 (✓, b, ⌧ |g0, h0) is the base prior

assumed to be a specific g-prior with

8
<

:
✓ ⇠ N

⇣
✓0◆K1 , (⌧g0⇤Z)

�1

⌘
with ⇤Z = Z 0Z

b ⇠ N
⇣
b0◆NK2 , (⌧h0⇤D)�1

⌘
with ⇤D = D0D,

(8)

where ◆K1 is a (K1 ⇥ 1) vector of ones. Furthermore, ✓0, b0, g0 and h0 are known scalar hyper-

parameters of the base prior ⇡0 (✓, b, ⌧ |g0, h0). The probability density function (henceforth pdf)

of the base prior ⇡0 (.) is given by:

⇡0 (✓, b, ⌧ |g0, h0) = p (✓|b, ⌧, ✓0, b0, g0, h0)⇥ p (b|⌧, b0, h0)⇥ p (⌧) . (9)

5The literature generally recommends using the unit information prior (UIP) to set the g-priors (see section
4.1).
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The possible class of contamination Q is defined as:

Q =

(
q (✓, b, ⌧ |g0, h0) = p (✓|b, ⌧, ✓q, bq, gq, hq)⇥ p (b|⌧, bq, hq)⇥ p (⌧)

with 0 < gq  g0, 0 < hq  h0

)
, (10)

with 8
<

:
✓ ⇠ N

⇣
✓q◆K1 , (⌧gq⇤Z)

�1

⌘

b ⇠ N
⇣
bq◆NK2 , (⌧hq⇤D)�1

⌘
,

(11)

where ✓q, bq, gq and hq are unknown. The restrictions gq  g0 and hq  h0 imply that the base

prior is the best possible so that the precision of the base prior is greater than any prior belonging

to the contamination class. The "-contamination class of prior distributions for (✓, b, ⌧) is then

conditional on known g0 and h0.

Following Baltagi et al. (2018, 2021), we use a two-step strategy because it simplifies the

derivation of the predictive densities (or marginal likelihoods):6

1. Let y⇤ = (y � Db). Derive the conditional ML-II posterior distribution of ✓ given the

specific e↵ects b.

2. Let ey = (y � Z✓). Derive the conditional ML-II posterior distribution of b given the

coe�cients ✓.

We condition the likelihood on the first period observation of y1 and consider the latter as

exogenous and known. As stressed above, and in line with most of the literature, we do not

impose stationarity constraints. Likewise, we adhere to the philosophy of the "-contamination

class approach and use data-driven priors.

3. The robust dynamic space-time model in the two-stage hierarchy

The marginal likelihoods (or predictive densities) corresponding to the base priors are:

m (y⇤|⇡0, b, g0) =

1Z

0

Z

RK1

⇡0 (✓, ⌧ |g0)⇥ p (y⇤|Z, b, ⌧) d✓ d⌧,

where K1 is the dimension of ✓. Further

m (ey|⇡0, ✓, h0) =

1Z

0

Z

RNK2

⇡0 (b, ⌧ |h0)⇥ p (ey|D, ✓, ⌧) db d⌧,

where K2 is the dimension of b and

⇡0 (✓, ⌧ |g0) =
⇣⌧g0
2⇡

⌘K1
2
⌧�1 |⇤Z |1/2 exp

⇣
�⌧g0

2
(✓ � ✓0◆K1)

0⇤Z(✓ � ✓0◆K1))
⌘
,

⇡0 (b, ⌧ |h0) =

✓
⌧h0

2⇡

◆NK2
2

⌧�1 |⇤D|1/2 exp
✓
�⌧h0

2
(b� b0◆NK2)

0⇤D(b� b0◆NK2)

◆
.

6A one-step estimation of the ML-II posterior distribution is possible but hardly feasible. This is because
the probability density functions of y and that of the base prior ⇡0 (✓, b, ⌧ |g0, h0) need to be combined to get the
predictive density. The resulting expression is highly complex and its integration with respect to (✓, b, ⌧) is quite
involved.
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Solving these equations is considerably easier than solving the equivalent expression correspond-

ing to a one-step approach.

For the first step of the robust Bayesian estimator (y⇤ = y�Db), combining the pdf of y⇤ and

the pdf of the base prior allows one to get the predictive density m (y⇤|⇡0, b, g0) corresponding

to the base prior.7 Likewise, we can obtain the predictive density m (y⇤|q, b, g0) corresponding

to the contaminated prior for the distribution q (✓, ⌧ |g0, h0) 2 Q from the class Q of possible

contamination distributions. As the "-contamination of the prior distributions for (✓, ⌧) is defined

by ⇡ (✓, ⌧ |g0) = (1� ")⇡0 (✓, ⌧ |g0)+"q (✓, ⌧ |g0), the corresponding predictive density is given by:

m (y⇤|⇡, b, g0) = (1� ")m (y⇤|⇡0, b, g0) + "m (y⇤|q, b, g0) .

Let ⇡⇤
0
(✓, ⌧ |g0) denote the posterior density of (✓, ⌧) based upon the prior ⇡0 (✓, ⌧ |g0). Let

q⇤ (✓, ⌧ |g0) denote the posterior density of (✓, ⌧) based upon the prior q (✓, ⌧ |g0). Then the ML-II

posterior density of (✓, ⌧) is given by

b⇡⇤ (✓, ⌧ |g0) =
p (y⇤|X, b, ⌧) b⇡ (✓, ⌧ | g0)

1R

0

R

RK1

p (y⇤|X, b, ⌧) b⇡ (✓, ⌧ |g0) d✓ d⌧

= b�✓

✓
p (y⇤|X, b, ⌧)⇡0 (✓, ⌧ |g0)

m (y⇤ | ⇡0, b, g0)

◆
+
⇣
1� b�✓

⌘✓
p (y⇤|X, b, ⌧) bq (✓, ⌧ |g0)

m (y⇤|bq, b, g0)

◆
,

with
b�✓,g0 =


1 +

"m (y⇤|bq, b, g0)
(1� ")m (y⇤|⇡0, b, g0)

�
.

and m (y⇤|bq, b, g0) = supq2Q m (y⇤|q, b, g0). Integration of b⇡⇤ (✓, ⌧ |g0) with respect to ⌧ leads to

the marginal ML-II posterior density of ✓ :

b⇡⇤ (✓|g0) =

1Z

0

b⇡⇤ (✓, ⌧ |g0) d⌧ = b�✓,g0

1Z

0

⇡⇤
0
(✓, ⌧ |g0) d⌧ +

⇣
1� b�✓,g0

⌘ 1Z

0

q⇤ (✓, ⌧ |g0) d⌧

= b�✓,g0⇡
⇤
0
(✓|g0) +

⇣
1� b�✓,g0

⌘
bq⇤ (✓|g0) , (12)

where ⇡⇤
0
(✓|g0) is the pdf of a multivariate t-distribution where the mean vector ✓⇤(b|g0) is the

Bayes estimate of ✓ for the prior distribution ⇡0 (✓, ⌧). bq⇤ (✓|g0) is the pdf of a multivariate

t-distribution where the mean vector b✓EB (b|g0) is the empirical Bayes estimator of ✓ for the

contaminated prior distribution q (✓, ⌧) (see section B of the supplementary material). The

mean of the ML-II posterior density of ✓ is then:

b✓ML�II = b�✓,g0E [⇡⇤
0
(✓|g0)] +

⇣
1� b�✓,g0

⌘
E [bq⇤ (✓|g0)] (13)

= b�✓,g0✓⇤(b|g0) +
⇣
1� b�✓,g0

⌘
b✓EB (b|g0) .

The ML-II posterior density of ✓, given b and g0 is a shrinkage estimator. It is a weighted average

of the Bayes estimator ✓⇤(b|g0) under the base prior g0 and the data-dependent empirical Bayes

estimator b✓EB (b|g0). If the base prior is consistent with the data, the weight b�✓,g0 ! 1 and the

ML-II posterior density of ✓ gives more weight to the posterior ⇡⇤
0
(✓|g0) derived from the elicited

7More information is given in section B of the supplementary material and in Baltagi et al. (2018, 2021).
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prior. In this case b✓ML�II is close to the Bayes estimator ✓⇤(b|g0). Conversely, if the base prior

is not consistent with the data, the weight b�✓,g0 ! 0 and the ML-II posterior density of ✓ is then

close to the posterior bq⇤ (✓|g0) and to the empirical Bayes estimator b✓EB (b|g0). The ability of

the "-contamination model to extract more information from the data is what makes it superior

to the classical Bayes estimator based on a single base prior.

The second step of the robust Bayesian estimator focuses on ey = y � Z✓. Moving along the

lines of the first step, the ML-II posterior density of b is given by:

b⇡⇤ (b|h0) = b�b,h0⇡
⇤
0
(b|h0) +

⇣
1� b�b,h0

⌘
bq⇤ (b|h0) , (14)

where b�b,h0 is an estimated weight, ⇡⇤
0
(b|h0) is the pdf of a multivariate t-distribution where the

mean vector b⇤(✓|h0) is the Bayes estimate of b for the prior distribution ⇡0 (b, ⌧ |h0), q⇤ (b|h0)

is the pdf of a multivariate t-distribution where the mean vector bbEB (✓|h0) is the empirical

Bayes estimator of b for the contaminated prior distribution q (b, ⌧ |h0) (see section B of the

supplementary material). The mean of the ML-II posterior density of b is hence given by:

bbML�II = b�b,h0b⇤(✓|h0) +
⇣
1� b�b,h0

⌘
bbEB (✓|h0) . (15)

Many have raised concern about the unbiasedness of the posterior variance-covariance matrices

of b✓ML�II and bbML�II . Following Berger (1985), Baltagi et al. (2018) derived the analytical

ML-II posterior variance-covariance matrices of b✓ML�II and bbML�II . Unfortunately, both are

biased towards zero as b�✓,g0 and b�b,h0 ! 0 and converge to the empirical variance which is

known to underestimate the true variance (see e.g. Berger and Berliner (1986); Gilks et al.

(1997); Robert (2007)). Consequently, to approximate the true ML-II variances, Baltagi et al.

(2018, 2021) proposed two di↵erent strategies, each with di↵erent desirable properties: 1) MCMC

with multivariate t-distributions or 2) block resampling bootstrap. In addition, they proposed

a mixture of multivariate skewed (or non-skewed) t-distributions to decrease the computational

time (see section B of the supplementary material). In what follows, we will use block resampling

bootstrap and mixtures of multivariate t-distributions.

4. A Monte Carlo simulation study

4.1. The DGP of the Monte Carlo simulation study

We consider a number of distinct statistical worlds. These include the random e↵ects (RE)

world, the Chamberlain (1982)-type fixed e↵ects (FE) world and the Hausman and Taylor (1981)

(HT) world. We extend the DGPs used in Baltagi et al. (2018, 2021) to the dynamic space-time

case. For the dynamic space-time panel data model with common trends or with common

correlated e↵ects, we draw inspiration from the DGP of Chudik and Pesaran (2015a,b) and

Baltagi et al. (2021).

Consider the dynamic space-time panel data model:

yti = �yt�1,i + ⇢y⇤ti + �y⇤t�1,i + x1,ti�1 + x2,ti�2 + V1,i⌘1 + V2,i⌘2 + µi + uti, (16)

for i = 1, ..., N , t = 2, ..., T, with
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x1,ti = 0.7x1,t�1,i + ⇣i + {ti

uti ⇠ N
�
0, ⌧�1

�
, (⇣i,{ti) ⇠ U(�6, 6).

where y⇤ti =
PN

j=1
wijytj and y⇤t�1,i =

PN
j=1

wijyt�1,j .

1. For a dynamic space-time random e↵ects (RE) world, we assume that:

⌘1 = ⌘2 = 0

x2,ti = 0.7x2,t�1,i + i + #ti , (i,#ti) ⇠ U(�6, 6)

µi ⇠ N
�
0,�2

µ

�
, �2

µ = 4⌧�1.

Furthermore, x1,ti and x2,ti are assumed to be exogenous in that they are not correlated

with µi and uti.

2. For a dynamic space-time Chamberlain-type fixed e↵ects (FE) world, we assume that:

⌘1 = ⌘2 = 0;

x2,ti = �2,i + !2,ti , �2,i ⇠ N(m�2 ,�
2

�2), !2,ti ⇠ N(m!2 ,�
2

!2
);

m�2 = m!2 = 1, �2

�2 = 8, �2

!2
= 2;

µi = x2,1i⇡1 + x2,2i⇡2 + ...+ x2,T i⇡T + ⌫i, ⌫i ⇠ N(0,�2

⌫);

�2

⌫ = 1, ⇡t = (0.8)T�t for t = 1, ..., T.

x1,ti is assumed to be exogenous but x2,ti is correlated with µi and we assume an exponential

growth for the correlation coe�cient ⇡t.

3. For a dynamic space-time Hausman-Taylor (HT) world, we assume that:

⌘1 = ⌘2 = 1;

x2,ti = 0.7x2,t�1,i + µi + #ti , #ti ⇠ U(�6, 6);

V1,i = 1, 8i;

V2,i = µi + ⇣i + ✓i + ⇠i , (✓i, ⇠i) ⇠ U(�6, 6);

µi ⇠ N
�
0,�2

µ

�
and �2

µ = 4⌧�1.

x1,ti and V1,i are assumed to be exogenous while x2,ti and V2,i are endogenous because

they are correlated with µi but not with the uti.

4. For a dynamic space-time homogeneous panel data world with common trends, (see Chudik

and Pesaran (2015a,b)), we assume that

yti = �yt�1,i + ⇢y⇤t,i + �y⇤t�1,i + xti�1 + xt�1,i�2 + f 0
t�i + uti, (17)

for i = 1, ..., N , t = 2, ..., T,

with

xti = f 0
t�xi + !xti

!xti = %xi!xt�1,i + ⇣xti

�il = �l + ⌘i,�l , for l = 1, ...,m

�xil = �xl + ⌘i,�xl
, for l = 1, ...,m
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where

⇣xti ⇠ U(�3, 3) , ⌘i,�l ⇠ N(0,�2

�l
) , ⌘i,�xl

⇠ N(0,�2

�xl
)

�2

�l
= �2

�xl
= 0.22 , �l =

p
l ⇥ c� , �xl =

p
l ⇥ cx,l

c� = (1/m)� �2

�l
, cx,l =

2

m(m+1)
�

2�2
�xl

(m+1)
, and uti ⇠ N

�
0, ⌧�1

�
.

ft and �i are (m ⇥ 1) vectors. We consider m = 2 deterministic known common trends:

one linear trend ft,1 = t/T and one polynomial trend: ft,2 = t/T +1.4(t/T )2 � 3(t/T )3 for

t = 2, ..., T .

5. For a dynamic space-time homogeneous panel data world with correlated common e↵ects

(see Chudik and Pesaran (2015a,b), Yang (2021)), we assume that the m common trends

ft in the model (17), are replaced with unobserved common factors:

ftl = ⇢flft�1,l + ⇠ftl , ⇠ftl ⇠ U(�0.1, 0.1) , l = 1, ...,m

We suppose that the common factors are independent stationary AR(1) processes with

⇢fl = 0.5 for l = 1, ...,m.

6. For a dynamic space-time heterogeneous panel data world with correlated common e↵ects

(see Chudik and Pesaran (2015a,b)), we assume that, in the model (17), � (resp. ⇢, �

and �1) is replaced by individual coe�cients �i ⇠ U(0.6, 0.9) (resp. ⇢i ⇠ U(0.65, 0.95),

�i = ��i⇢i and �1i ⇠ U(0.5, 1)) for i = 1, ..., N and keep the m unobserved common factors

as defined as previously.

For each set-up, we vary the size of the sample and the duration of the panel. We choose

several (N,T ) pairs with N = 63, 120 and T = 10, 20 for cases 1 to 3 and N = (63, 120) and

T = (30, 50) for cases 4 to 6. Following Bivand et al. (2008), we use the census tract data set

for Central New York State counties featured in Waller and Gotway (2004). More precisely, we

work on two subsets of the map consisting of the N = 63 census tracts within Syracuse City and

the N = 120 census tracts within Syracuse City and its neighborhood. We use several weighting

matrices WN (= {wij}) which essentially di↵er in their degree of sparseness. First, we create

inverse distance weighting matrices with wij = 1/dist(i, j) where dist(i, j) is the distance (in

km) between two census tracts i and j. The matrix WN is full save for its diagonal elements

which are set to zero. Second, we create weighting matrices from the census tract rook-style

and queen-style contiguities, by analogy with movements on a chessboard. Lastly, we create

k-nearest neighbors weighting matrices with the k = 4 or 10 individuals (see Figures 1 to 3 in

section D in the supplementary material). All the weighting matrices are row normalized.

The autoregressive and spatial coe�cients take several values (0.75, 0.3) for � and (0.8, 0.4) for

⇢ while the spatio-temporal di↵usion parameter is fixed (� = ��⇢) in most cases and �1 = �2 = 1.

We set the initial values of yti, x1,1,ti, x1,2,ti and x2,ti, xti, ... to zero. Next, we generate all the

x1,ti, x2,ti, xti, yti, uti, ⇣ti, &ti, !2,ti, .... over T + T0 time periods and we drop the first T0(= 50)

observations to reduce the dependence on the initial values.

The robust Bayesian estimators for the two-stage hierarchy are estimated with " = 0.5,

though we also investigate their robustness to various values of ".8 We must set the hy-

8" = 0.5 is an arbitrary value. We implicitly assume that the amount of error in the base elicited prior is

9



perparameters values ✓0, b0, g0, h0, ⌧ for the initial distributions of ✓ ⇠ N
⇣
✓0◆K1 , (⌧g0⇤Z)

�1

⌘

and b ⇠ N
⇣
b0◆NK2 , (⌧h0⇤D)�1

⌘
where ✓ = [�, ⇢, �,�1,�2, ⌘1, ⌘2]

0 for the first three cases and

✓ = [�, ⇢, �,�1,�2]
0 for the last three cases. While we can choose arbitrary values for ✓0, b0 and ⌧ ,

the literature generally recommends using the unit information prior (UIP) to set the g-priors.9

In the normal regression case, and following Kass and Wasserman (1995), the UIP corresponds

to g0 = h0 = 1/((T � 1)N), leading to Bayes factors that behave like the Bayesian Information

Criterion (BIC).

For the 2S robust estimators, we use BR = 20 samples in the block resampling bootstrap.

For each experiment, we run R = 1, 000 replications and we compute the means, the standard

errors and the root mean squared errors (RMSEs) of the coe�cients, the variances of the specific

e↵ects and the residual variances. To save on space, we only include tables and comments for the

random e↵ects world, the Chamberlain-type fixed e↵ects world and the homogeneous panel data

world with common trends. Results for other statistical worlds (Hausman-Taylor, homogeneous

(resp. heterogeneous) panel data world with correlated common e↵ects) are reported in the

supplementary material.

4.2. Simulation results

4.2.1. The dynamic space-time random e↵ects world

Rewrite the general dynamic model (6) as follows:

y =Z✓ +Db+ u = Z✓ + Zµµ+ u

with Z 0
ti =

⇥
yt�1,i, y

⇤
ti, y

⇤
t�1,i, x1,ti, x2,ti

⇤
, ✓0 = [�, ⇢, �,�1,�2] ,

where u ⇠ N(0,⌃), ⌃ = ⌧�1I(T�1)N , Zµ = ◆(T�1) ⌦ IN is ((T � 1)N ⇥N), ⌦ is the Kronecker

product, ◆(T�1) is a ((T � 1)⇥ 1) vector of ones and µ(⌘ b) is an (N ⇥ 1) vector of idiosyncratic

parameters. When D ⌘ Zµ, the random e↵ects, µ ⇠ N
�
0,�2

µIN
�
, are associated with the error

term ⌫ = Zµµ+ u with Var (⌫) = �2

µ

�
J(T�1) ⌦ IN

�
+ �2

uI(T�1)N , where J(T�1) = ◆(T�1)◆
0
(T�1)

.

This model can also be estimated using MCMC Gibbs sampling and quasi-maximum likeli-

hood (QML) (see Yu et al. (2008), Kripfganz (2016), Bun et al. (2017), Hsiao and Zhou (2018),

Moral-Benito et al. (2019)). In what follows, we compare our Bayesian two-stage two-step esti-

mator (B2S2S) with the latter two estimators.10,11

Table 1 reports the results of fitting the Bayesian two-stage two-step model (B2S2S) along

with those from the QMLE and the MCMC Gibbs sampling, each in a separate panel respectively

for (N = 63, T = 10) and (N = 120, T = 20) using a row normalized inverse distance weighting

matrix, WN . The true parameter values appear in the first row of the Table. The last column

reports the computation time in seconds.12 Note that the computation time increases signifi-

cantly as we move from a small sample to a larger one. The B2S2S estimator with mixtures of

50%. In other words, " = 0.5 means that we elicit the ⇡0 prior but feel we could be as much as 50% o↵ (in terms
of implied probability sets).

9We chose: ✓0 = 0, b0 = 0 and ⌧ = 1.
10See section C in the supplementary material. For the MCMC Gibbs sampling, we explicitly introduce uniform

distributions for �, ⇢ and �. We use 1, 000 draws and a warmup of 500 burn-in draws.
11We use our own R codes for the Bayesian two-stage two-step model (B2S2S) and the MCMC Gibbs sampling

and the “xtdpdqml” Stata command for the QML estimator. We use the same DGP set under R and Stata
environments to compare the three methods.

12The simulations were conducted using R version 3.3.2 on a MacBook Pro, 2.8 GHz core i7 with 16Go 1600
MGz DDR3 ram.
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t-distributions for the standard errors (hereafter se mixt in the Tables) is the fastest, followed by

the B2S2S estimator with block resampling bootstrap for the standard errors (hereafter se boot

in the Tables), whereas the MCMC Gibbs sampling needs considerably more computation time

to get very similar estimates.13

The first noteworthy feature of the Table is that all the estimators yield parameter estimates,

standard errors and RMSEs that are very close.14 The B2S2S estimator yields a slightly under-

estimated �2

µ whereas the MCMC Gibbs sampling yields a very precise estimate. On the other

hand, the latter is obtained at a huge computational cost. The numerical standard errors (“nse”)

and the convergence diagnostic (“cd”) confirm the good mixing of the MCMC draws.15 We first

estimate the Bayesian two-stage two-step model (B2S2S) with block resampling bootstrap.16 It

is worth mentioning that only the estimates of the variance of the specific e↵ects are biased

when using the B2S2S and QMLE estimators. The biases are nevertheless relatively small (resp.

�3.25% and �2.75% for B2S2S and QMLE) and decrease as N and T increase (resp. �1.25%

and �0.25% for B2S2S and QMLE). The estimated values of the other parameters are virtually

unbiased (1% or less). Table 1 confirms that the base prior is not consistent with the data since

�̂✓,g0 is close to zero. The ML-II posterior density of ✓ is close to the posterior bq⇤ (✓|g0) and to

the empirical Bayes estimator b✓EB (b|g0). Conversely, b�µ is close to 0.5 so the Bayes estimator

b⇤(✓|h0) under the base prior h0 and the empirical Bayes estimator bbEB (✓|h0) each contributes

similarly to the random e↵ects bi(⌘ µi). Below the table we stress that the stationarity conditions

of the B2S2S estimator are satisfied. The QLME gives similar results but is computationally

considerably more demanding. It is important to note that the standard deviations of �, �1 and

�2 when using the B2S2S estimator with mixtures of t-distributions (B2S2S mixt) are slightly

underestimated relative to those of B2S2S boot, QMLE or the full Bayesian estimator. There is

thus a trade-o↵ between slightly biased standard deviations and exceedingly large computation

time.

We next simulate the model when the spatial dependence parameter (⇢) is decreased from

0.8 to 0.4. To save space, the results are reported in Table G.1 of the supplementary material.

As above, we consider the row normalized inverse distance weighting matrix WN . In a nut shell,

the B2S2S and QMLE estimators do just as well as the MCMC when N = 63 and T = 10 but in

considerably less computation time (we do not run MCMC for N = 120 and T = 20 due to the

excessive computation time). Once again, our B2S2S estimator satisfies the implicit stationarity

conditions of the dynamic space-time structure. We also simulate the model by setting � to 0.3

instead 0.75 while maintaining ⇢ at 0.8 (see Table G.2 in the supplementary material). We draw

the same conclusions as for Table G.1, namely that the B2S2S and QMLE estimators perform

13For the sake of brevity, we will henceforth write B2S2S mixt and B2S2S boot when referring to the B2S2S
estimators with mixtures of t-distributions and with block resampling bootstrap, respectively.

14Strictly speaking, we should mention “posterior means” and “posterior standard errors” whenever we refer
to Bayesian estimates and “coe�cients” and “standard errors” when discussing frequentist ones. For the sake of
brevity, we will use “coe�cients” and “standard errors” in both cases.

15The “nse”, often referred to as the Monte-Carlo error, is equal to the di↵erence between the mean of the
sampled values and the true posterior mean. As a rule of thumb, as many simulations as necessary should be
conducted so as to ensure that the Monte Carlo error of each parameter of interest is less than approximately
10% of the sample standard error. As shown in the Table, the estimated nse easily satisfy this criterion. The
“cd” compares means calculated from the first 10% and last 40% draws of the Markov chain. Under the null
hypothesis of no di↵erence between these means, cd ⇠ N(0, 1) and indicates that a su�ciently large number of
draws have been taken. See Koop (2003); Koop et al. (2007).

16Recall that we use only BR = 20 individual block bootstrap samples. Fortunately, the results are very
robust to the value of BR. For instance, increasing BR from 20 to 200 in the random e↵ects world increases the
computation time tenfold but yields practically the same results.
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as well as the MCMC when N = 63 and T = 10 and that their estimates are very close to one

another for N = 120 and T = 20, although the B2S2S estimator is considerably faster. Finally,

we report the results when setting � = 0.3 and ⇢ = 0.4 in Table G.3 of the supplementary

material. The same conclusions hold as those for Tables G.1 and G.2.

Next, we investigate the properties of our estimators when the autoregressive time dependence

parameter is close to the unit root, i.e. � = 0.98 for N = 63 and T = 10. The spatial

dependence parameter takes two values: ⇢ = (0.8; 0.4) (See Table G.4 of the supplementary

material). Interestingly, in such an environment the stationarity conditions are still satisfied

as confirmed by the 95% HPDI. It does not therefore seem necessary to impose a stationarity

constraint on the prior distribution of � (nor on ⇢ and consequently on �). Three features of

the simulation results are worth mentioning. First, the B2S2S and MCMC estimators yield a

bias of similar magnitude but in opposite direction for �2

µ (±5.4%). On the other hand, when

the spatial dependence parameter is reduced to ⇢ = 0.4, the bias of the MCMC estimator is

lower (�1.5%). Conversely, the bias of the QMLE is very large (�34.6%). Second, the Stata

procedure “xtdpdqml” which corresponds to the QML estimator yields an unrealistic estimate

of the variance �2

u of the remainder disturbance. Third, the other parameters of the model (�,

⇢, � and �) are not biased in any significant way, regardless of the estimation method.

We next investigate the sensitivity of our results to two di↵erent types of weighting matrices.

All the simulations are conducted by setting � = 0.75 and ⇢ = 0.8 for N = 63 and T = 10.

First, we use the census tracts of the City of Syracuse to compute rook-style and queen-style

contiguity weighting matrices. The non sparsity rates of both matrices are smaller than that of

the inverse distance weighting matrix (see Figures 1 and 2 in section D in the supplementary

material).17 Once again, the B2S2S and QMLE estimators perform as well as the MCMC but

are both considerably faster (See Table G.5). Second, we compute the 4-nearest and 10-nearest

neighbors weighting matrices using the same census tracks. The non-sparsity rates of these

weighting matrices are also smaller than that of the inverse distance weighting matrices (see

Figures 1 and 3 in section D in the supplementary material).18 We still conclude that the B2S2S

and QMLE estimators do as well as the MCMC but both exhibit more reasonable computation

times (See table G.6).

As a last exercise, we study the behavior of the estimators in the context of an explosive

process. We thus set � = 1.05 as in Tao and Yu (2020).19. Since ⇢ = 0.8 and � = ��⇢, we

are clearly outside the stationarity conditions.20 As reported in Table G.7 of the supplementary

material, the B2S2S and MCMC Gibbs sampling estimators give good results although the

variance of the specific e↵ects, �2

µ, of the B2S2S is once again slightly downward biased. The

17For the N = 63 census tract rook-style and queen-style contiguities within Syracuse city, the non sparsity
rates are respectively 8.72% and 7.76% while that of the inverse distance weighting matrix is 98.41%.

18The with 4-nearest and 10-nearest neighbors weighting matrices have non-sparsity rates of 6.35% and 15.87%,
respectively.

19In a time series: xt = �xt�1 + ut, t = 1, ..., T , xt is said to be local-to-unit-root from the explosive side
(LTUE) if � = 1 + 1/T . xt is said to be mildly explosive (ME) if � = 1 + (T↵)/T , with ↵ = 0.1 or 0.3 and xt

is said to be explosive (EX) if � > 1. When T is large, �LTUE < �ME < �EX which is not necessarily the case
when T is small (see for instance Phillips, 1987; Phillips and Magdalinos, 2007; Tao and Yu, 2020)

20As � = 1.05, ⇢ = 0.8, � = �0.84, $min = �0.0963 and $max = 1 where $min and $max are the minimum
and maximum eigenvalues of the spatial weights matrix WN , we cannot respect one of the two stationarity
conditions (4) in footnote 4:

⇢
�+ (⇢+ �)$min < 1 if ⇢+ � < 0 ! 1.0538 ⌅ 1,
�� (⇢� �)$max > �1 if ⇢� � � 0 ! �0.59 > �1.
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narrow 95% HPDI of � ([1.0499; 1.0502]) confirms the presence of an explosive root, rejecting the

hypothesis of a unit root or a stationary process. While the QMLE also yields similar results for

�, ⇢, �, �1 and �2, the estimates of �2

u and �2

µ are not only strongly biased but highly unlikely.

In a RE world, one can legitimately argue that the B2S2S yields as good results as the

MCMC Gibbs sampling, irrespective of the autoregressive time dependence parameter, �, the

spatial dependence parameter, ⇢, and the spatio-temporal di↵usion parameter, �, and whether

or not the stationarity conditions are satisfied. Conversely, the QMLE yields similar results to

those of the B2S2S and MCMC Gibbs sampling if we are not too close to (or do not exceed) the

stationarity conditions. In the majority of cases, the B2S2S and QMLE are similar to MCMC

Gibbs sampling but are both undoubtedly preferable from a computational point of view.21 Given

the above results, and for the sake of brevity, the other statistical worlds will be investigated

through the B2S2S and QMLE estimators only using a row-normalized inverse distance weighting

matrix.

4.2.2. The dynamic space-time Chamberlain-type fixed e↵ects world

For the Chamberlain (1982)-type specification, the individual e↵ects (Dtb ⌘ µ) are given by

µ = X⇧+⌫, where X is a (N ⇥ (T � 1)K1) matrix with Xi = (X 0
i2, ..., X

0
iT ) and ⇧ = (⇡0

2
, ...,⇡0

T )
0

is a ((T � 1)K1 ⇥ 1) vector. Here ⇡t is a (K1 ⇥ 1) vector of parameters to be estimated. We

compare the QML estimator to our B2S2S estimator. These are based on the transformed model:

yti = �yt�1,i + ⇢y⇤ti + �y⇤t�1,i + x1,ti�1 + x2,ti�2 +
PT

t=2
x2,ti⇡t + ⌫i + uti or y = Z⇤✓⇤ +Db+ u

where Z⇤ =
⇥
y�1, y⇤, y⇤�1

, x1, x2, x2

⇤
, ✓⇤

0
= (�, ⇢, �,�1,�2,⇧)0, D = ◆T ⌦ IN and b = ⌫.

Table 2 shows that once again the results of the B2S2S are very close to — or even better

than — those of the QML estimator.22 Our B2S2S estimator fits the variance parameter of the

specific e↵ects, �2

µ, better than the QML estimator does. Note that the computation times of

the QMLE are 46 (resp. 3) times greater than those of the B2S2S with the mixture approach

(resp. with bootstrap). Tables G.8 and G.9 in the supplementary material report the estimates

of the ⇡t coe�cients. Both estimators yield estimates that are close to the true values.

4.2.3. The dynamic space-time homogeneous panel data world with common trends

The dynamic homogeneous panel data world with common trends is defined as:

yti = �yt�1,i + ⇢y⇤ti + �y⇤t�1,i + xti�1 + xt�1,i�2 + f 0
t�i + uti

Since the m common trends ft are known, we can rewrite the model as follows:

y =Z✓ +Db+ u = Z✓ + F�+ u

with Z 0
ti =

⇥
yt�1,i, y

⇤
ti, y

⇤
t�1,i, X

0
ti

⇤
, ✓0 = [�, ⇢, �,�0]

0
and X 0

ti = [xti, xt�1,i] ,

21We only used 1, 000 draws and 500 burn-in draws for each replication, which is small for MCMC. Despite
this, 1, 000 replications with N = 63, T = 10 (resp. N = 120, T = 20) require more than one hour of CPU time
(resp. almost 5 hours). Had we used 10, 000 draws and 1, 000 burn-in draws, it would have taken 8 (resp. 34)
hours for N = 63, T = 10 (resp. N = 120, T = 20). The computation times of B2S2S and QMLE are considerably
shorter. For instance, in Table 1 the respective computation times are 3min and 7min for N = 63, T = 10 and
12 min and 20 min for N = 120, T = 20. When using mixtures of t-distributions, the B2S2S requires as little as
15 sec for N = 63, T = 10 and 52 sec for N = 120, T = 20.

22We do not provide simulations for other combinations of �, ⇢ and � for the sake of brevity.
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where u ⇠ N(0,⌃), ⌃ = ⌧�1IN . The ((T � 1)N ⇥ Nm) matrix F of the m common trends is

given by

F =
h
IN ⌦ f 0

t

i

t=2,··· ,T
=

0

B@
IN ⌦ f 0

2

. . .

IN ⌦ f 0
T

1

CA with f 0
t = (ft1, ft2, · · · , ftm)

and � is the (Nm⇥ 1) individual varying coe�cients vector:

� = vec

0

BBBB@

�11 �21 . . . �N1

�12 �22 . . . �N2

. . . . . . . . . . . .

�1m �2m . . . �Nm

1

CCCCA

The primal form of this model cannot be estimated as is using the dynamic common correlated

e↵ects pooled estimator (CCEP) (see Pesaran (2006) and Chudik and Pesaran (2015a,b)). The

introduction of spatial terms may bias the CCEP estimator. Bailey et al. (2016) have proposed a

two-stage approach to estimate dynamic space-time models with strong and weak cross-sectional

dependence but do not consider explanatory variables (e.g., yti = �yt�1,i + ⇢y⇤ti + �y⇤t�1,i +

f 0
t�i + uti). More recently, Yang (2021) proposed a two-stage least squares (2SLS) and a GMM

estimators for a spatial autoregressive model with common factors (e.g., yti = ⇢y⇤ti + xti� +

f 0
t�i + uti). Yang shows that 2SLS exhibits very small biases and declining RMSEs as N and/or

T increase. The IV matrix of instruments is defined as Qt =
�
xt,WNxt,W 2

Nxt

�
. Interestingly,

the GMM estimator provides similar results but does not clearly dominate the 2SLS estimator.23

We compare our B2S2S estimator with the 2SLS estimator extended to the dynamic space-

time case, but unlike Yang (2021) we do not use only q = 2 in our Monte Carlo simulation study

(e.g. Qt =
�
Xt,WNXt,W 2

NXt

�
, a (N ⇥ (q + 1)K1) matrix) since it leads to biased estimates

and large standard errors.24 We must use q = 7 (e.g. Qt =
�
Xt,WNXt,W 2

NXt, · · · ,W 7

NXt

�
) to

get good results. The larger the dimension (N ⇥ (q + 1)K1) of the IV matrix Qt, the better the

estimates, especially with respect to the standard errors. We chose samples in which the time

span is large T = 30 or T = 50 with N = 63 or N = 120 census tracts (in the spirit of Chudik

and Pesaran (2015a) and Yang (2021) in their simulations).

Table 3 shows that the results of the B2S2S estimator are close to those of the 2SLS estimator

and both yield very small bias. The computation time is greater with our estimator when using

the bootstrap procedure. On the other hand, when using the mixture approach the computation

time is drastically reduced and our estimator is computationally more e�cient as N and T

increase.25 Most importantly, our parameter estimates exhibit much smaller standard errors.

This is a major shortcoming of instrumental variable methods: The loss of e�ciency is the price

to pay when using these methods (not to mention the delicate choice of the instrument set).

23With Monte Carlo simulations for a SAR model with i.i.d errors, Yang (2021) shows that the biases (resp.
RMSEs) (⇥100) of ⇢(= 0.4) for 2SLS are smaller (resp. close) to those of GMM: 0.05 (resp. 1.58) for 2SLS and
�0.64 (resp. 1.52) for GMM when N = 50, T = 30 and 0.01 (resp. 0.81) for 2SLS and �0.31 (resp. 0.75) for
GMM when N = 100, T = 50. Similar results are obtained for the coe�cient �.

24See section E in the supplementary material for more details on the 2SLS estimator of Yang (2021) extended
to the dynamic space-time case. We use our own R codes for our Bayesian estimator and the 2SLS estimator.

25For N = 63, T = 30 (resp. T = 50), the gain factor is 1.4 (resp. 3.2) and for N = 120, T = 30 (resp.
T = 50), the gain factor is 3.3 (resp. 7.8).
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4.2.4. The dynamic space-time models for the other statistical worlds

For the Hausman-Taylor world, our Bayesian two-stage two-step (B2S2S) estimation method

is compared with the two-stage quasi-maximum likelihood (TSQML) sequential approach pro-

posed by Kripfganz and Schwarz (2019) and adapted to the dynamic space-time framework (see

section G.3 and Tables G.4 and G.5 of the supplementary material). The estimates are very close

to each other. Yet, the B2S2S has a RMSE of the coe�cient of the time-invariant variable of

about 50% to that of the TSQML. Interestingly, the standard error of that coe�cient is smaller

when using the Bayesian estimator as compared to the two-stage QMLE. We also reached the

same conclusion in non-spatial static and dynamic models (see Baltagi et al. (2018, 2021)). Fi-

nally, the computation times of the two-stage QML sequential approach are huge compared to

those of the B2S2S with mixtures of t-distributions or with bootstrap.

For the homogeneous (resp. heterogeneous) panel data world with correlated common ef-

fects, we compare our B2S2S estimator with the 2SLS estimator of Yang (2021) extended to

the dynamic space-time homogeneous (resp. heterogeneous) case (see sections G.4 and G.5 in

the supplementary material). For the homogeneous case, the results of B2S2S are very close to

those of the 2SLS of the extended Yang’s estimator and lead to better e�ciency properties, less

computation time, and absence of bias. Lastly, when we introduce a dynamic space-time het-

erogeneous panel data world with correlated common e↵ects, the results of the B2S2S estimator

are also close to those of the 2SLS estimator but the RMSEs of the B2S2S are generally smaller

than those of 2SLS.

5. Application to crop yields and climate change

Since the seminal work of Wallace (1920), agricultural economists have shown great interest

in estimating crop yield production functions. Most papers have focused on corn as it is the

largest crop in the U.S. in terms of tonnage. Annual yields have usually been regressed against

observed temperatures and precipitations during the growing season.26 As pointed out by Burke

and Emerick (2016), empirical studies have originally either exploited cross-sectional variations to

compare outcomes between warm and cool regions (e.g., Mendelsohn et al. (1994), Schlenker et al.

(2005)), or have used time series to contrast outcomes under warm and cool conditions within

a given area (e.g., Deschênes and Greenstone (2007, 2011), Schlenker and Roberts (2009), Dell

et al. (2012)). More recently, analysts have modeled crop yields within a panel data framework.

In addition, some have estimated the e↵ects of temperature on crop yields using the “degree

day” approach in order to control for spatial (e.g., soil quality) and common time e↵ects. This

specification acknowledges that too high temperatures may harm crop yields while moderate

temperatures are likely beneficial (see e.g., Schlenker and Roberts (2009), Lobell et al. (2013),

Butler and Huybers (2013), Burke and Emerick (2016)).

Given that climate change evolves on a time scale of several decades, the main empirical

challenge is to anticipate the ability of producers to adapt to these long-term trends.27 Depending

26The growing season is generally defined as ranging from April 1st to September 30th in the literature. More
specifically, it starts at sowing and lasts approximately 150 days.

27As pointed out by Keane and Neal (2020), this may involve the use of more heat-tolerant hybrids, improved
water retention in fields, irrigation, adjustment of sowing rates, etc. This adaptation includes all sources of
covariation between heat and heat sensitivity of agricultural yields. It implies the active adaptation of farmers to
temperature for growing techniques, as well as any other factors (not controlled by farmers) that make yields less
sensitive to heat in warmer conditions.
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on the speed of adjustment, the deleterious e↵ects of climate change may be minimal or sizeable.

While the literature provides mixed results on behavioral adjustments (see for instance Lobell

and Burke (2008), Schlenker and Roberts (2009), Butler and Huybers (2013), Porter et al.

(2014), Burke and Emerick (2016)), these are necessarily intrinsic within the spatial and temporal

components of the historical data which maps weather to crop yields.

A standard specification of the “degree-day” approach may be written as

log yti = �1gddti + �2kddti + �3precti + �4prec
2

ti + ci + �t + uti, (18)

where yti is the yield at year t for region (or county) i. The growing degree days, gddj,ti (resp.

the “killing degree days”, kddj,ti), is the total time over the growing season during which the

crops are exposed to temperatures up to a maximum threshold (resp. above the threshold).28

Total yield is customarily written as a quadratic function of cumulative precipitation during

the growing season, precti. The spatial (county) and time e↵ects are represented by ci and �t,

respectively, and aim to capture intercept heterogeneity (such as soil quality) and changes in

total factor productivity that are assumed common across space. The key parameter of interest

is �2 < 0, which captures the extent to which high temperatures reduce crop yields. To take

into account potential adaptation to high temperatures, the specification (18) may be extended

as follows:

log yti = �1gddti + �2,0kddti + �2,1 (log (kddti) kddti � kddti) + �3precti + �4prec
2

ti + ci + �t + uti, (19)

leading to a marginal e↵ect of yields with respect to kdd given by �2,0 + �2,1 log (kddit). This

specification incorporates the strong relationship between the sensitivity of the yields to the

climatology of the kdds (Butler and Huybers (2013), Keane and Neal (2020)). A priori, we

expect a positive e↵ect of gdd (�1 > 0), a concave e↵ect of precipitations (�3 > 0, �4 < 0) and a

positive coe�cient �2,1 leading to smaller kdd e↵ects in warmer regions since �2,0 < 0.

Keane and Neal (2020) have also considered adaptation across both regions and time. Since

variations in heat sensitivity can occur across space and over time, they estimate a model with

both spatial and temporal heterogeneity in the slope coe�cients:

log yti = �1,tigddti + �2,tikddti + �3,tiprecti + �4,tiprec
2

ti + ci + �t + uti. (20)

They allow the heterogeneous slopes to be correlated with the regressors as they focus on additive

heterogeneity across the county/time dimensions:

�k,ti = �k + �k,i + �k,t , k = 1, ..., 4 (21)

They propose a “mean observation OLS” (MO-OLS) method for models that contain both county

and time fixed e↵ects in the slope coe�cients. This novel static panel data method allows to

flexibly estimate the extent of historical adaptation to high temperatures. Their specification

implies that each county’s relative sensitivity to weather is fixed over time.

Our application uses the same data as in Keane and Neal (2020). Our model acknowledges

that crop yields are likely spatially correlated and that time e↵ects may be persistent at the

28The threshold for corn is 29�C.
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county level. These features argue in favor of a dynamic space-time model defined as

log yti = � log yt�1,i + ⇢
NP
j=1

wij log ytj + �
NP
j=1

wij log yt�1,j

+�1gddti + �2 (log (gddti) gddti � gddti) + �3kddti + �4 (log (kddti) kddti � kddti)

+�5precti + �6prec
2

ti + V 0
i ⌘ + f 0

t�i + uti , i = 1, ..., N , t = 2, ..., T, (22)

where the exogenous variables are as specified above. The row-normalized spatial weights, wij ,

correspond to the inverse of the squared distances (wij = 1/dist2(i, j), in km) between counties

i and j. Likewise, ft is a (m⇥1) vector of common trends defined as the time means of gdd, kdd

and prec. These trends capture the U.S.-wide trend changes in temperature and precipitation

observed over a long time period. Finally, Vi is (Kv⇥1) vector of time-invariant dummy variables

which correspond to the 1980-2016 U.S Köppen-Geiger climate classification (see section H in

the supplementary material).

Our specification accounts for potential adaptation to high temperatures via the non-linear

relationship between the climatology of kdds and the sensitivity of the yield to kdd as in Keane

and Neal (2020). In addition, it allows potential adaptation to gdd through the non-linear

relationship between the climatology of gdds and the sensitivity of the yield to gdd.29 According

to our specification, as the number of growing degree days increases, the need to adapt lessens

if �1 > 0 and �2 < 0. On the other hand, if global warming implies more killing degree days

increases, the need to adapt increases significantly if �3 < 0 and �4 > 0.

Specifications (20-21) and (22) are two di↵erent approaches to the same problem. The Keane

and Neal (2020) specification is static and non-spatial but with heterogeneous slope coe�cients,

the space/time heterogeneity being additive. Moreover, the estimated ⌧ -period-ahead forecasts

of the dependent variable also depend on the future values �k,t+⌧ . We must therefore make

assumptions about the dynamic time path of the �k,t+⌧ slope coe�cients. In contrast, the

specification we propose is dynamic, spatial and with constant slope coe�cients. In addition,

the specification can include time-invariant covariates as well as unobserved or known common

factors. This specification also allows one to discriminate between short-run and long-run e↵ects

and to take into account the spatial correlation of marginal e↵ects via the spatial matrix WN .

5.1. Data

The county-level crop yields, the temperature and the precipitation data are taken from the

supplementary material of Keane and Neal (2020) and cover the period 1950-2015.30 Annual

growing (resp. killing) degree days gddti (resp. kddti) are converted into total hours over

the growing season (see section H in the supplementary material for the description of data).

Likewise, precipitation corresponds to total inches of rain over the growing season. A number of

counties had missing values at di↵erent years. These were interpolated using the inverse distance

weighted method. Doing so yields a balanced panel of N = 2, 678 corn-growing counties over

29Indeed, the MO-OLS estimation on the static model

log yti = �1,tigddti + �2,tikddti + �3,tiprecti + �4,tiprec
2
ti + cti + uti , i = 1, ..., N , t = 1, ..., T,

implies a non-linear relation between �̂1,ti and log gddti and between �̂2,ti and log kddti (see Table H.4 and Figures
10 and 11 in the supplementary material).

30Their yield data came from the U.S. Department of Agriculture (USDA) National Agricultural Statistics
Service. Temperatures and precipitations data were drawn from Schlenker and Roberts (2009).

17



T = 66 years, i.e. as many as 176, 748 observations. The spatial weight matrix was computed

using the counties spatial polygon coordinates from an ESRI Shapefile downloaded from the US

Census (see section H of the supplementary material).

The spatial patterns of corn yields, growing and killing degree days and precipitations are

displayed in Figure 1.31 The maps exhibit considerable heterogeneity in crop yields ranging from

17 to 159 bushels per acre. They also underline the high productivity of the corn belt and that of

some southwestern and western states (west of the 100th meridian). Growing and killing degree

days show a marked separation between the southern and northern counties around the 35th

parallel. On the other hand, maximum precipitations occur east of the 100th meridian from

south to north.32

5.2. Estimation Results

Table 4 reports the robust parameter estimates of the "-contamination model in equation

(22) for years 1951 � 2015. Except for some Köppen-Geiger climate classification dummies,

all coe�cients are significantly di↵erent from zero. The estimated values of the autoregressive

time dependence parameter (�) (resp. the spatial dependence parameter (⇢) and the spatio-

temporal di↵usion parameter (�)) are 0.606 (resp. 0.912 and �0.537). The impact of the spatial

dependence is stronger than that of the time dependence and the estimated spatio-temporal

di↵usion parameter is very close to the product of �⇢ ⇥ � = �0.553. The parameter estimates

thus satisfy the stationarity conditions.

The adaptation to the e↵ect of the growing degree days on crop yields is statistically signifi-

cant. As the temperatures of the growing season approach the upper bound of 29�C from below,

the positive marginal e↵ect gets smaller. Likewise, the adaptation to the e↵ect of the killing

degree days is also statistically significant. Its negative marginal e↵ects also gets smaller as the

temperature rises above 29�C. Further, the relation between yields and precipitation is concave,

as expected. According to our estimates, only three classes of the Köppen-Geiger climate classi-

fication impact crop yields: Cfa , Cfb and Dwa. All three have a negative coe�cient and imply

lower corn yields of between 7% to 10% relative to other classes. Finally, note that the model

exhibits a very good fit (R2 = 0.9985 and �2

u = 0.0282).33 The right-hand side of Table 4 reports

the 5/95 percentile range of the �i parameters associated with common factors ft which includes

the time means of gdd, kdd and prec. These capture the country-wide trends in temperature

and precipitation observed over our 65-year sample window. The table shows that the counties

are impacted di↵erently by these common trends as there is considerable heterogeneity in the

parameters estimates.

As noted earlier, one of the advantages of the dynamic space-time mixed model is its ability

to estimate short-run (weather) and long-run (climate) e↵ects through impact multipliers, as

well as the ⌧ -period-ahead impact of a (permanent) change in temperature or precipitation at

time t. Specifically, it is readily seen from equation (22) that @ log yti/@Xk,ti represents the

contemporaneous direct e↵ect on county i’s yield growth rate arising from a change in the kth

explanatory variable in county i (see Debarsy et al. (2012), Elhorst (2014)). Furthermore, the

31Enlargements of these maps are reported in Figures 6 to 8 of the supplementary material.
32See the supplementary material for additional maps and descriptive statistics, as well as data on the distri-

bution of the Köppen-Geiger climate classification across counties.
33This estimation is significantly better than that obtained by MO-OLS using the static non-spatial model

which yields an R2 = 0.793 and a residual variance �2
u = 0.071. See Table H.4 in the supplementary material.
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cross-partial derivative @ log ytj/@Xk,ti measures the contemporaneous spatial spillover e↵ect on

county j, j 6= i. Finally, @ log yt+⌧,i/@Xk,tj gives the own (i = j) and cross (i 6= j) marginal

e↵ects on the yield growth rate in county i at time t+⌧ of an increase in the kth variable at time

t in a specific county. Written in matrix form, @ log yt+⌧/@X 0
k,t is a (N ⇥N) matrix of dynamic

multipliers. Following LeSage and Pace (2009), the cumulative direct e↵ect (i.e., cumulative

own-county impacts) is computed as the average of the diagonal elements, while the cumulative

indirect e↵ect (i.e., di↵usion over space and time) is computed as the average of the row sums of

the o↵-diagonal elements. The total cumulative e↵ect corresponds to the sum of the cumulative

direct and indirect e↵ects.34,35

Table 5 reports the direct, indirect and total impact multipliers as well as the 30-year-ahead

multipliers for growing and killing degree days and for precipitations. For the growing degree

days, the mean short-run (weather) direct, indirect and total e↵ects on yield growth are 0.008%,

0.05% and 0.06%, respectively. The mean 30-year impacts are estimated at 0.01%, 0.22% and

0.23%, respectively. As shown in the table, the indirect e↵ects (i.e., di↵usion over space and time)

clearly dominate. This follows from the fact that the value of the spatial dependence parameter,

⇢, is larger than that of the autoregressive time dependence parameter, �. Importantly, the

table shows that the short-run direct, indirect and total e↵ects as well as the long-run e↵ect vary

considerably across counties. Thus, an additional growing degree day leads to an increase in

overall corn yields of between 0.19% and 0.29% in the long-run and between 0.05% and 0.08%

in the short-run.

The next panel of the table focuses on the killing degree days. Unfortunately, the short-run

direct, indirect and total e↵ects on corn yields are larger in absolute value than those of growing

degree days. In the long run, an additional kdd today is expected to decrease corn yields by as

much as �3.31%. Once again, the spatio-temporal di↵usion e↵ects dominate the time dependence

e↵ect as evidence by a comparison of the direct, indirect and total e↵ects. Thus, an additional

degree-day above 29�C leads to a decrease in overall corn yields between �6.63% and �0.70%

in the long-run (the climate e↵ect) while the instantaneous e↵ect (the weather e↵ect) is between

�1.95% and �0.16%.

The last panel of the table focuses on precipitations. All short-run e↵ects are positive. The

mean total impact corresponds to an increase of 0.021% in corn yield. In the long-run, the

mean total impact is estimated to be 0.077%. As with gdd and kdd, the spatio-temporal e↵ects

dominate the temporal dependence e↵ect. According to the parameter estimates, an additional

inch of precipitation would lead to a mean increase in corn yield of 0.08% in the long-run and to

an instantaneous mean increase of 0.02%.

To add to the discussion of Table 5, Figure 2 maps the geographic patterns of the long-run

total e↵ects associated with the growing and killing degree days and with precipitations. These

figures are very instructive as they unearth interesting spatial patterns.36 Thus a unit increase in

any of the covariates at time t (i.e., in 2015) leads to specific waves of spatial long-term e↵ects.

Thus, 30 years hence (i.e., in 2045), Figure 2a shows that the marginal impact of an addition

growing degree day will be spread northwesterly with increasing intensity. States that will benefit

most include Washington, Montana, Wyoming, Utah, North and South Dakota, Minnesota and

34We note that it is not possible to separate out the time from space and space-time di↵usion e↵ects in this
model except if we constrain � to be equal to � = ��⇢.

35The derivation of the dynamic multipliers is given in section H.2 in the supplementary material.
36Enlargements of these maps are reported in Figures 12 to 14 of the supplementary material.
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Wisconsin. Corn yields are expected to increase between [0.26%, 0.29%) per year. States located

further south will not gain as much while the southernmost states located east of Texas will

benefit very little.

Surprisingly, the long-term e↵ect of an additional killing degree day spreads into parallel

waves with increasing intensity from southwest to northeast states, as depicted in Figure 2b.

Producers located in North Dakota, Minnesota, Wisconsin, Michigan, Ohio, New York and the

central Appalachians states will be hurt the most. Yields are expected to decrease between

[�6.63%,�4.82%) per year. On the other hand, the least impacted states will be those from

Florida to Texas and Oklahoma.

Lastly, Figure 2c depicts the long-run marginal impacts of an additional unit of precipitation.

The vertical line that stretches more or less from North Dakota to West Texas delineate states

that will benefit most from those who will not benefit much, if at all. To the west, the long-run

total marginal e↵ects are estimated to range between [0.15%, 0.42%) per year. To the east, the

gains in productivity are modest and vary between [0.07%, 0.015%) per year.

A comparison between Figures 1 and 2 helps understand the adaptation mechanisms the are

likely to occur in the face of long term climate changes. Focusing first on the growing degree

days, it is readily apparent that states that have numerous growing hours will benefit little from

an addition gdd and vice versa (Figures 1b and 2a). On the other hand, northwestern states

who benefit most from an additional gdd are also the most vulnerable to an additional killing

degree day. Yet, these states face much fewer kdd during the growing season than the southern

states who also appear to be less vulnerable to an additional kdd. This suggests that the crop

yields in the northwestern states are much more sensitive to climate changes than the other corn

producing states.

6. Conclusion

The dynamic space-time panel data models considered in the paper allow one to account for

feedback from lagged endogenous values, state dependence, spatial spillovers, spatial heterogene-

ity and the interactive e↵ects. The models are based upon an "-contamination class of priors and

are cast within a two-stage hierarchical approach. This setup can potentially extract more in-

formation from the data than the classical Bayes estimator with a single base prior. In addition,

we show that our approach encompasses a variety of classical or frequentist specifications. The

Type-II maximum likelihood procedure leads to posterior distributions of the slope coe�cients

and the individual e↵ects that are convex combinations of the conditional posterior densities

derived from the elicited prior and the "-contaminated prior. The estimator assigns more weight

to the conditional posterior density derived from the former if the base prior is consistent with

the data and to the latter otherwise. The finite sample performance of the two-stage hierarchical

models is investigated using extensive Monte Carlo experiments. With such a unified toolbox,

our estimators are shown to be at least as good as the alternative classical estimators for the

statistical worlds we consider.

We use our estimator to investigate the ability of corn producers in the United States to

adapt to climate change using the same data as in Keane and Neal (2020). Our robust Bayesian

two-stage two-step approach provides a very good fit to the data. As stressed in the paper, one

of the advantages of this dynamic space-time mixed model is its ability to decompose the short-

run (weather) and long-run (climate) e↵ects into their direct and indirect components through
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impact multipliers and ⌧ -period-ahead impacts of a (permanent) change in the temperature or

precipitation at time t. Our results show that the spatial dependence largely dominates that of

the time dependence, and that the estimated spatio-temporal di↵usion parameter is very close

to their product. An additional growing degree day has a statistically significant positive but

decreasing marginal impact on crop yields. The converse holds for an additional killing degree

day. The impact of increased precipitations on crop yield is found to be concave. Finally, the

estimates suggest that corn production in the northwestern states is more sensitive to climate

changes than elsewhere.
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Table 4: Robust estimation using "-contamination of the impacts of temperatures and precipitations on U.S. corn
yields for the N = 2, 678 counties and the T = 65 years (1951-2015), (NT = 174, 070 observations).

B2S2S coef se mixt �i1 (gdd) �i2 (kdd) �i3 (prec)

� 0.605913 0.001483 5% -0.000244 -0.002851 -0.000958
⇢ 0.912530 0.001730 10% -0.000189 -0.001913 -0.000658
� -0.537365 0.002188 25% -0.000117 -0.000797 -0.000322
Growing Degree Days mean -0.000057 0.000159 -0.000004

gdd 0.000399 0.000090 75% 0.000006 0.001114 0.000309
log(gdd)gdd� gdd -0.000042 0.000011 90% 0.000073 0.002361 0.000679

Killing Degree Days 95% 0.000126 0.003161 0.000965
kdd -0.002084 0.000078
log(kdd)kdd� kdd 0.000347 0.000015

Precipitation
prect 0.000112 0.000010
prec2 -0.000083 0.000008

Köppen-Geiger climate classification
KG Aw -0.037331 0.040117
KG BSh -0.023433 0.038771
KG BSk -0.020882 0.037975
KG BWh 0.060343 0.040854
KG BWk -0.015472 0.040647
KG Cfa -0.065704 0.038188
KG Cfb -0.069362 0.038221
KG Csa 0.006116 0.038678
KG Csb -0.032743 0.037914
KG Dfa -0.053815 0.038257
KG Dfb -0.049014 0.037479
KG Dfc 0.017874 0.037555
KG Dsb -0.035670 0.037555
KG Dsc 0.019681 0.043040
KG Dwa -0.106968 0.040369
KG Dwb -0.046474 0.039083

�2
u 0.028204

�✓ < 10�6

�µ 0.328997
R2 0.998539

B2S2S: Bayesian two-stage two-step estimation.
se mixt: standard errors of the parameters ✓ computed with mixture of

t-distributions of ✓⇤(b|g0) and b✓EB (b|g0).
f 0
t =

⇣
gdd, kdd, prec

⌘
.

Stationarity conditions for B2S2S :
�+ (⇢+ �)$max = 0.981(< 1) as ⇢+ � = 0.375(� 0) and
�� (⇢� �)$max = �0.844(> �1) as ⇢� � = 1.449(� 0).

KG: Köppen-Geiger climate classification dummies.

Aw Tropical wet and dry climate BSh Warm semi-arid climate

BSk Cold semi-arid climate BWh Warm desert climate

BWk Cold desert climate Cfa Warm oceanic climate/Humid subtropical climate

Cfb Temperate oceanic climate Csa Warm Mediterranean climate

Csb Temperate Mediterranean climate Dfa Warm/Humid continental climate

Dfb Temperate/Humid continental climate Dfc Cool continental climate/Subarctic climate

Dsb Warm/Humid continental climate Dsc Temperate/Humid continental climate

Dwa Cool continental climate/Subarctic climate Dwb Temperate/Mediterranean continental climate
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Table 5: Short-run (weather) and long-run (climate) direct, indirect and total e↵ects of growing and killing degree
days and precipitations on growth rates of corn yields for the N = 2, 678 counties (in percent).

Growing Degree Days ⌧ min 10% 25% mean 75% 90% max

short-run ⌧ = 0 direct 0.0051 0.0072 0.0077 0.0089 0.0095 0.0108 0.0212
(weather) indirect 0.0419 0.0492 0.0522 0.0567 0.0610 0.0649 0.0717

total 0.0524 0.0567 0.0602 0.0656 0.0706 0.0752 0.0821

long-run ⌧ = 30 direct 0.0080 0.0128 0.0140 0.0168 0.0183 0.0217 0.0570
(climate) indirect 0.1690 0.1918 0.2039 0.2202 0.2361 0.2503 0.2726

total 0.1914 0.2059 0.2188 0.2370 0.2544 0.2704 0.2931

Killing Degree Days ⌧ min 10% 25% mean 75% 90% max

short-run ⌧ = 0 direct -0.4706 -0.2102 -0.1635 -0.1250 -0.0733 -0.0563 0.0266
(weather) indirect -1.7299 -1.2820 -1.0459 -0.7936 -0.4886 -0.3999 -0.1457

total -1.9490 -1.4889 -1.2124 -0.9186 -0.5613 -0.4609 -0.1585

long-run ⌧ = 30 direct -1.2686 -0.4055 -0.3097 -0.2377 -0.1368 -0.1024 0.0509
(climate) indirect -6.2462 -4.8440 -4.0157 -3.0725 -1.9397 -1.5779 -0.6740

total -6.6329 -5.2439 -4.3283 -3.3102 -2.0752 -1.6989 -0.7014

Precipitations ⌧ min 10% 25% mean 75% 90% max

short-run ⌧ = 0 direct -0.0097 -0.0004 0.0006 0.0031 0.0043 0.0090 0.0303
(weather) indirect -0.0362 -0.0004 0.0046 0.0186 0.0265 0.0541 0.1027

total -0.0446 -0.0005 0.0052 0.0216 0.0308 0.0637 0.1183

long-run ⌧ = 30 direct -0.0226 -0.0008 0.0012 0.0061 0.0082 0.0169 0.0873
(climate) indirect -0.1202 0.0004 0.0186 0.0710 0.0987 0.2032 0.3942

total -0.1337 0.0002 0.0199 0.0770 0.1065 0.2223 0.4224
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Bushels per acre

[17 to 55)

[55 to 66)

[66 to 76)

[76 to 86)

[86 to 96)

[96 to 109)

[109 to 159]

NA

       County means 1950−2015

      Corn yields

(a)

Total hours

[2,266 to 2,981)

[2,981 to 3,257)

[3,257 to 3,522)

[3,522 to 3,744)

[3,744 to 3,980)

[3,980 to 4,264)

[4,264 to 4,811]

NA

       County means 1950−2015

      Growing degree days

(b)

Total hours

[1 to 15)

[15 to 27)

[27 to 44)

[44 to 64)

[64 to 96)

[96 to 131)

[131 to 630]

NA

       County means 1950−2015

      Killing degree days

(c)

Cumulated inches

[25 to 386)

[386 to 526)

[526 to 588)

[588 to 615)

[615 to 641)

[641 to 674)

[674 to 1,110]

NA

       County means 1950−2015

      Precipitations

(d)

Figure 1: US county means over 1950-2015. (a) Corn yields. (b) Growing degree days. (c) Killing degree days.
(d) Precipitations.
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marginal effect ( 10−2
 )

[0.191 to 0.213)

[0.213 to 0.226)

[0.226 to 0.236)

[0.236 to 0.248)

[0.248 to 0.265)

[0.265 to 0.293]

NA

    30−years−ahead impact

   Long−run total effects
   of growing degree days on corn yields

(a)

marginal effect ( 10−2
 )

[−6.630 to −4.818)

[−4.820 to −3.898)

[−3.900 to −3.184)

[−3.180 to −2.519)

[−2.52 to −1.82)

[−1.820 to −0.701]

NA

    30−years−ahead impact

   Long−run total effects
   of killing degree days on corn yields

(b)

marginal effect ( 10−2
 )

[−0.134 to 0.012)

[0.012 to 0.029)

[0.029 to 0.047)

[0.047 to 0.072)

[0.072 to 0.151)

[0.151 to 0.422]

NA

    30−years−ahead impact

   Long−run total effects
   of precipitation on corn yields

(c)

Figure 2: Long-run total e↵ects on corn yields. (a) Growing degree days. (b) Killing degree days. (c) Precipita-
tions.
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A. Some comments related to the debate on stationarity conditions and priors in

spatial Bayesian models

For Bayesian estimation, the spatial literature tells us that the priors for the space-time parame-
ters �, ⇢ and � should be defined over the stationary interval (eq.(4) in the main text). As a uniform
joint prior distribution over this interval does not produce vague marginal priors, and following Par-
ent and LeSage (2010), a prior can be constructed that takes the form of a product of probability
density functions: p(�, ⇢, �) = p(⇢)p(�|⇢)p(�|⇢, �). If the parameter space for ⇢ is assumed to be a
compact subset of (�1, 1), then the conditional prior p(�|⇢, �) ⇠ U(�1+ |⇢� �|, 1� |⇢+ �|) and the
conditional prior p(�|⇢) ⇠ U(�1 + |⇢|, 1 � |⇢|). The last prior is therefore p(⇢) ⇠ U(�1, 1). Then,
the joint prior is a uniform distribution and equal to 1/2 over the parameter space defined by the
stationary interval (eq.(4) in the main text). But Parent and LeSage (2010) adopt independent
uniform priors for �, ⇢ and � over the interval (�1, 1) and, in a very standard way, the use Normal
distribution for the prior of � and the inverse-Gamma distributions for the priors of the specific
e↵ects variance and the remainder variance. They follow the block sampling method proposed by
Chib and Carlin (1999) who suggest first sampling � marginalized b and then sampling b condi-
tioned on �. Posterior distributions are standard and can be found in Koop (2003), LeSage and
Pace (2009) or Chan et al. (2019). Parent and LeSage (2010), Parent and LeSage (2011) use a
restriction on �(= �⇢⇥ �) allowing space and time to be separable.

In a non-spatial framework, the pros and cons of imposing a stationarity hypothesis in a Bayesian
setup have focused on the implementation of di↵erent prior distributions to develop the posterior
analysis of autoregressive models with (or without) the stationarity assumption (see for instance
Phillips (1991)).1 Ghosh and Heo (2003) introduced a comparative study to some selected unin-
formative (objective) priors for the AR(1) model. Ibazizen and Fellag (2003), assumed a unin-
formative prior for the autoregressive parameter without considering the stationarity assumption
for the AR(1) model. However, most literature considers a uninformative (objective) prior for
the Bayesian analysis of AR(1) model without considering the stationarity assumption. See for
example, DeJong and Whiteman (1991), Schotman and Van Dijk (1991), Sims and Uhlig (1991).
For dynamic random coe�cients panel data models, Hsiao and Pesaran (2008) do not impose any
constraint on the coe�cient of the lag dependent variable, �i. But, following Liu and Tiao (1980),
they suggest that one way to impose the stability condition on individual units would be to as-
sume that �i follows a rescaled Beta distribution on (0, 1). In the time series framework, and for
an AR(1) models, Karakani et al. (2016) have performed a posterior sensitivity analysis based on
Gibbs sampling with four di↵erent priors: natural conjugate prior, Je↵reys’ prior, truncated nor-
mal prior and g-prior. Their respective performances are compared in terms of highest posterior
density region criterion. They show that truncated normal distribution outperforms slightly the
g-prior and more strongly the other priors especially when the time dimension is small. On the
other hand, for a larger time span, there is no significant di↵erence between truncated normal dis-
tribution and g-prior. Nevertheless introducing a truncated normal distribution for � poses very
complex integration problems due to the presence of the normal cdf function as integrand in the
marginal likelihoods with "-contamination class of prior distributions.2

1This debate may apply to the stationarity constraints on the spatial coe�cients.
2In a dynamic panel data framework with "-contamination class of prior distributions, Baltagi et al. (2021) have

shown that, to avoid these problems of integration, one could assume that � is U (�1, 1). In this case, the mean is
(0) and the variance is (1/3), so we do not need to introduce an "-contamination class of prior distributions for �.
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These various debates on the introduction of more or less strong constraints on the priors make
us think of some alerts emitted by eminent statisticians. We think of Gelman et al. (2013), Simpson
et al. (2017) or Gelman and Yao (2020). Indeed, constraining a prior to follow a U(�1, 1) or an even
more constraining distribution like that of p(�|⇢, �) ⇠ U(�1 + |⇢ � �|, 1 � |⇢ + �|) in LeSage et al.
(2019) leads to relatively heavier procedures. As underlined by Lemoine (2019), uniform priors
o↵er no regularization whatsoever even though it is one of the main advantages of going Bayesian.
Even worse, if one chooses e.g. a U(0, 10) prior then one is placing 0 mass outside of this interval
and the Bernstein-von Mises theorem does not hold. In other words, even if one had infinite data,
one can still be terribly wrong with such priors. As Gelman and Yao (2020) point out, Bayesian
statisticians are in resounding agreement that uniform priors are silly and Andrew Gelman, in the
Stan documentation.3, discourages uniform priors.

B. The robust dynamic space-time model in the two-stage hierarchy

The marginal likelihoods (or predictive densities) corresponding to the base priors are:

m (y⇤|⇡0, b, g0) =
1Z

0

Z

RK1

⇡0 (✓, ⌧ |g0)⇥ p (y⇤|Z, b, ⌧) d✓ d⌧

where K1 is the dimension of ✓. Further

m (ey|⇡0, ✓, h0) =

1Z

0

Z

RNK2

⇡0 (b, ⌧ |h0)⇥ p (ey|D, ✓, ⌧) db d⌧,

where K2 is the dimension of b and

⇡0 (✓, ⌧ |g0) =
⇣
⌧g0

2⇡

⌘K1
2
⌧
�1 |⇤Z |1/2 exp

⇣
�⌧g0

2
(✓ � ✓0◆K1)

0⇤Z(✓ � ✓0◆K1))
⌘
,

⇡0 (b, ⌧ |h0) =

✓
⌧h0

2⇡

◆NK2
2

⌧
�1 |⇤D|1/2 exp

✓
�⌧h0

2
(b� b0◆NK2)

0⇤D(b� b0◆NK2)

◆
.

Solving these equations is considerably easier than solving the equivalent expression in the one-step
approach.

Unfortunately, the results obtained using Monte Carlo simulations result in biased estimates of �, � and the residual
variances.

3Prior choice recommendations by Andrew Gelman in https://github.com/stan-dev/stan/wiki
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B.1. The first step of the robust Bayesian estimator

Let y⇤ = y �Db. Combining the pdf of y⇤ and the pdf of the base prior, we get the predictive
density corresponding to the base prior4:

m (y⇤|⇡0, b, g0) =

1Z

0

Z

RK1

⇡0 (✓, ⌧ |g0)⇥ p (y⇤|Z, b, ⌧) d✓ d⌧ (B.1)

= eH
✓

g0

g0 + 1

◆K1/2
 
1 +

✓
g0

g0 + 1

◆ 
R

2
✓0

1�R
2
✓0

!!� (T�1)N
2

with eH =
�( (T�1)N

2 )

⇡(
(T�1)N

2 )v(b)(
(T�1)N

2 )
, R

2
✓0

=
(b✓(b)�✓0◆K1 )

0⇤Z(b✓(b)�✓0◆K1 )

(b✓(b)�✓0◆K1 )
0⇤Z(b✓(b)�✓0◆K1 )+v(b)

, b✓ (b) = ⇤�1
Z Z

0
y
⇤ and v (b) =

(y⇤ � Zb✓ (b))0(y⇤ � Zb✓ (b)), and where � (·) is the Gamma function.

Likewise, we can obtain the predictive density corresponding to the contaminated prior for the
distribution q (✓, ⌧ |g0, h0) 2 Q from the class Q of possible contamination distributions:

m (y⇤|q, b, g0) = eH
✓

gq

gq + 1

◆K1
2

 
1 +

✓
gq

gq + 1

◆ 
R

2
✓q

1�R
2
✓q

!!� (T�1)N
2

, (B.2)

where

R
2
✓q =

(b✓ (b)� ✓q◆K1)
0⇤Z(b✓ (b)� ✓q◆K1)

(b✓ (b)� ✓q◆K1)
0⇤Z(b✓ (b)� ✓q◆K1) + v (b)

.

As the "-contamination of the prior distributions for (✓, ⌧) is defined by ⇡ (✓, ⌧ |g0) = (1� ")⇡0 (✓, ⌧ |g0)+
"q (✓, ⌧ |g0), the corresponding predictive density is given by:

m (y⇤|⇡, b, g0) = (1� ")m (y⇤|⇡0, b, g0) + "m (y⇤|q, b, g0)

and
sup
⇡2�

m (y⇤|⇡, b, g0) = (1� ")m (y⇤|⇡0, b, g0) + " sup
q2Q

m (y⇤|q, b, g0) .

The maximization of m (y⇤|⇡, b, g0) requires the maximization of m (y⇤|q, b, g0) with respect to ✓q
and gq. The first-order conditions lead to

b✓q =
�
◆
0
K1
⇤Z◆K1

��1
◆
0
K1
⇤Z

b✓ (b) (B.3)

and

bgq = min (g0, g
⇤) , (B.4)

with g
⇤ = max

2

4
 
((T � 1)N �K1)

K1

(b✓ (b)� b✓q◆K1)
0⇤Z(b✓ (b)� b✓q◆K1)

v (b)
� 1

!�1

, 0

3

5

= max

2

4
 
((T � 1)N �K1)

K1

 
R

2
b✓q

1�R
2
b✓q

!
� 1

!�1

, 0

3

5 .

4Derivation of all the following expressions can be found in the supplementary appendix of Baltagi et al. (2018).
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Denote supq2Q m (y⇤|q, b, g0) = m (y⇤|bq, b, g0). Then

m (y⇤|bq, b, g0) = eH
✓

bgq
bgq + 1

◆K1
2

 
1 +

✓
bgq

bgq + 1

◆ 
R

2
b✓q

1�R
2
b✓q

!!� (T�1)N
2

.

If ⇡⇤
0 (✓, ⌧ | g0) denotes the posterior density of (✓, ⌧) for the prior ⇡0 (✓, ⌧) and if q⇤ (✓, ⌧ | g0)

denotes the posterior density of (✓, ⌧) for the prior q (✓, ⌧), then the ML-II posterior density of (✓, ⌧)
is given by

b⇡⇤ (✓, ⌧ | g0) =
p (y⇤ | X, b, ⌧) b⇡ (✓, ⌧ | g0)

1R

0

R

RK1

p (y⇤ | X, b, ⌧) b⇡ (✓, ⌧ | g0) d✓ d⌧

=
p (y⇤ | X, b, ⌧) {(1� ")⇡0 (✓, ⌧ | g0) + "bq (✓, ⌧ | g0)}

1R

0

R

RK1

p (y⇤ | X, b, ⌧) {(1� ")⇡0 (✓, ⌧ | g0) + "bq (✓, ⌧ | g0)} d✓ d⌧

=
(1� ") p (y⇤ | X, b, ⌧)⇡0 (✓, ⌧ | g0) + "p (y⇤ | X, b, ⌧) bq (✓, ⌧ | g0)0

BB@

(1� ")
1R

0

R

RK1

p (y⇤ | X, b, ⌧)⇡0 (✓, ⌧ | g0) d✓d⌧

+"
1R

0

R

RK1

p (y⇤ | X, b, ⌧) bq (✓, ⌧ | g0) d✓d⌧

1

CCA

.

Since

b⇡⇤ (✓, ⌧ | g0) =
(1� ") p (y⇤ | X, b, ⌧)⇡0 (✓, ⌧ | g0) + "p (y⇤ | X, b, ⌧) bq (✓, ⌧ | g0)

(1� ")m (y⇤ | ⇡0, b, g0) + "m (y⇤ | bq, b, g0)

= b�✓
✓
p (y⇤ | X, b, ⌧)⇡0 (✓, ⌧ | g0)

m (y⇤ | ⇡0, b, g0)

◆
+
⇣
1� b�✓

⌘✓
p (y⇤ | X, b, ⌧) bq (✓, ⌧ | g0)

m (y⇤ | bq, b, g0)

◆
,

then
b⇡⇤ (✓, ⌧ | g0) = b�✓,g0⇡⇤

0 (✓, ⌧ | g0) +
⇣
1� b�✓,g0

⌘
q
⇤ (✓, ⌧ | g0)

with
b�✓,g0 =

(1� ")m (y⇤ | ⇡0, b, g0)
(1� ")m (y⇤ | ⇡0, b, g0) + "m (y⇤ | bq, b, g0)

.

b�✓,g0 =


1 +

"m (y⇤ | bq, b, g0)
(1� ")m (y⇤ | ⇡0, b, g0)

�

=

2

6641 +
"

1� "

 bg
bg+1
g0

g0+1

!K1/2
0

B@
1 +

⇣
g0

g0+1

⌘
(b✓(b)�✓0◆K1 )

0⇤X(b✓(b)�✓0◆K1 )
v(b)

1 +
⇣

bg
bg+1

⌘
(b✓(b)�b✓q◆K1 )

0⇤X(b✓(b)�b✓q◆K1 )
v(b)

1

CA

N(T�1)
2

3

775

�1

=

2

66664
1 +

"

1� "

 bg
bg+1
g0

g0+1

!K1/2

0

BB@

1 +
⇣

g0
g0+1

⌘✓
R2

✓0

1�R2
✓0

◆

1 +
⇣

bg
bg+1

⌘✓ R2
✓q

1�R2
✓q

◆

1

CCA

N(T�1)
2

3

77775

�1
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Integration of b⇡⇤ (✓, ⌧ | g0) with respect to ⌧ leads to the marginal ML-II posterior density of ✓ :

b⇡⇤ (✓ | g0) =
1Z

0

b⇡⇤ (✓, ⌧ | g0) d⌧ = b�✓,g0

1Z

0

⇡
⇤
0 (✓, ⌧ | g0) d⌧ +

⇣
1� b�✓,g0

⌘ 1Z

0

q
⇤ (✓, ⌧ | g0) d⌧.

We must first define ⇡⇤
0 (✓, ⌧ | g0) and q

⇤ (✓, ⌧ | g0). As

⇡
⇤
0 (✓, ⌧ | g0) =

p (y⇤ | X, b, ⌧)⇡0 (✓, ⌧ | g0)
m (y⇤ | ⇡0, b, g0)

=
p (y⇤ | X, b, ⌧)⇡0 (✓, ⌧ | g0)

1R

0

R

RK1

p (y⇤ | X, b, ⌧)⇡0 (✓, ⌧ | g0) d✓d⌧

,

where

m (y⇤ | ⇡0, b) =
�
⇣

N(T�1)
2

⌘

⇡
(N(T�1)

2 )
v (b)(

N(T�1)
2 )

✓
g0

g0 + 1

◆K1/2

⇥
 
1 +

✓
g0

g0 + 1

◆
(b✓ (b)� ✓0◆K1)

0⇤X(b✓ (b)� ✓0◆K1)

v (b)

!�N(T�1)
2

,

and where

p (y⇤ | X, b, ⌧)⇡0 (✓, ⌧ | g0) =

0

BB@

�
⌧
2⇡

�N(T�1)
2

� ⌧g0
2⇡

�K1
2
⌧
�1 |⇤X |1/2

⇥ exp
�
� ⌧g0

2 (✓ � ✓0◆K1)
0⇤X(✓ � ✓0◆K1)

�

⇥ exp
⇣
� ⌧

2

n
v (b) + (✓ � b✓ (b))0⇤X(✓ � b✓ (b)

o⌘

1

CCA

= ⌧

⇣
N(T�1)+K1

2 �1
⌘

|⇤X |1/2
✓

1

2⇡

◆N(T�1)+K1
2

g

K1
2

0 ⇥ exp
⇣
�⌧
2
'⇡0,✓

⌘
,

with

'⇡0,✓ = v (✓) + (g0 + 1) (✓ � ✓⇤(b))
0 ⇤X (✓ � ✓⇤(b))

+

✓
g0

g0 + 1

◆⇣
b✓(b)� ✓0◆K1

⌘0
⇤X

⇣
b✓(b)� ✓0◆K1

⌘
,

then

⇡
⇤
0 (✓, ⌧ | g0) = L0 (b)⇥ ⌧

⇣
N(T�1)+K1

2 �1
⌘

⇥ exp
⇣
�⌧
2
'⇡0,✓

⌘
,

where

L0 (b) =
2
�
⇣

N(T�1)+K1
2

⌘

�
⇣

N(T�1)
2

⌘
.⇡K1/2

. (g0 + 1)
K1
2 .v (b)

N(T�1)
2 . |⇤X |1/2

⇥

2

664

0

B@1 +

✓
g0

g0 + 1

◆
⇣
b✓(b)� ✓0◆K1

⌘0
⇤X

⇣
b✓(b)� ✓0◆K1

⌘

v (b)

1

CA

(N(T�1)
2 )

3

775 .
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Similarly, the expression of q⇤ (✓, ⌧ | g0) is defined as:

q
⇤ (✓, ⌧ | g0) =

p (y⇤ | X, b, ⌧) bq (✓, ⌧ | g0)
m (y⇤ | bq, b, g0)

=
p (y⇤ | X, b, ⌧) bq (✓, ⌧ | g0)

1R

0

R

RK1

p (y⇤ | X, b, ⌧) bq (✓, ⌧ | g0) d✓ d⌧

= Lbq (b)⇥ ⌧

⇣
N(T�1)+K1

2 �1
⌘

⇥ exp
⇣
�⌧
2
'bq,✓

⌘
,

with

'bq,✓ = v (✓) + (bg + 1)
⇣
✓ � b✓EB (b | g0)

⌘0
⇤X

⇣
✓ � b✓EB (b | g0)

⌘

+

✓
bg

bg + 1

◆⇣
b✓(b)� b✓q◆K1

⌘0
⇤X

⇣
b✓(b)� b✓q◆K1

⌘

and

Lbq (b) =
2�(K1)

�
⇣

N(T�1)
2

⌘
⇡K1/2

(bg + 1)
K1
2 v (b)(

N(T�1)
2 ) |⇤X |1/2

⇥

2

664

0

B@1 +

✓
bg

bg + 1

◆
⇣
b✓(b)� b✓q◆K1

⌘0
⇤X

⇣
b✓(b)� b✓q◆K1

⌘

v (✓)

1

CA

(N(T�1)
2 )

3

775 ,

and where b✓EB (b | g0) is the empirical Bayes estimator of ✓ for the contaminated prior distribution
q (✓, ⌧) (see the derivation below):

b✓EB (b | g0) =
b✓ (b) + bgqb✓q◆K1

bgq + 1
.

Integration of b⇡⇤ (✓, ⌧ | g0) with respect to ⌧ leads to the marginal ML-II posterior density of ✓ :

b⇡⇤ (✓ | g0) =

1Z

0

b⇡⇤ (✓, ⌧ | g0) d⌧

= b�✓,g0

1Z

0

⇡
⇤
0 (✓, ⌧ | g0) d⌧ +

⇣
1� b�✓,g0

⌘ 1Z

0

q
⇤ (✓, ⌧ | g0) d⌧

= b�✓,g0⇡⇤
0 (✓ | g0) +

⇣
1� b�✓,g0

⌘
bq⇤ (✓ | g0) (B.5)

So,

⇡
⇤
0 (✓ | g0) =

1Z

0

⇡
⇤
0 (✓, ⌧ | g0) d⌧

= L0 (b)

1Z

0

⌧

⇣
N(T�1)+K1

2 �1
⌘

⇥ exp
⇣
�⌧
2
'⇡0,✓

⌘
d⌧

= L0 (b)⇥ 2

⇣
N(T�1)+K1

2

⌘

'

⇣
�N(T�1)+K1

2

⌘

⇡0,✓
�

✓
N(T � 1) +K1

2

◆
.
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Then ⇡⇤
0 (✓ | g0) is given by

⇡
⇤
0 (✓ | g0) =

�
⇣

N(T�1)+K1

2

⌘

�
⇣

N(T�1)
2

⌘
⇡

K1
2

|⇤X |1/2 (g0 + 1)
K
2 v (b)(

N(T�1)
2 ) ⇥ '

⇣
�N(T�1)+K1

2

⌘

⇡0,✓

⇥

0

B@1 +

✓
g0

g0 + 1

◆
⇣
b✓(b)� ✓0◆K1

⌘0
⇤X

⇣
b✓(µ)� ✓0◆K1

⌘

v (b)

1

CA

(N(T�1)
2 )

.

We therefore get

⇡
⇤
0 (✓ | g0) = eH⇡0

(g0 + 1)K1/2

✓
(g0 + 1) (✓�✓⇤(b))

0⇤X(✓�✓⇤(b))
v(b) +

⇣
g0

g0+1

⌘
(b✓(b)�✓0◆K1)

0
⇤X(b✓(b)�✓0◆K1)
v(b) + 1

◆N(T�1)+K1
2

,

with

eH⇡0 =
�
⇣

N(T�1)+K1

2

⌘
|⇤X |1/2

⇡K/2�
⇣

N(T�1)
2

⌘
v (✓)K1/2

⇥

0

B@1 +

✓
g0

g0 + 1

◆
⇣
b✓(b)� ✓0◆K1

⌘0
⇤X

⇣
b✓(b)� ✓0◆K1

⌘

v (b)

1

CA

N(T�1)
2

.

If we suppose that M0,✓ =
(g0+1)
v(b) ⇤X , then |M0,✓|1/2 =

⇣
g0+1
v(b)

⌘K1/2
|⇤X |1/2 and

⇡
⇤
0 (✓ | g0) =

�
⇣

N(T�1)+K1

2

⌘
|M0,✓|1/2

⇡K1/2�
⇣

N(T�1)
2

⌘ (⇠0,✓)
N(T�1)/2 [(✓ � ✓⇤(b))

0
M0,✓(✓ � ✓⇤(b)) + ⇠0,✓]

�N(T�1)+K1
2 ,

with ⇠0,✓ = 1 +

✓
g0

g0 + 1

◆
⇣
b✓(b)� ✓0◆K1

⌘0
⇤X

⇣
b✓(b)� ✓0◆K1

⌘

v (b)
. (B.6)

and where ✓⇤(b) is the Bayes estimate of ✓ for the prior distribution ⇡0 (✓, ⌧) :

✓⇤ (b) =
b✓ (b) + g0✓0◆K1

g0 + 1
. (B.7)

So ⇡⇤
0 (✓ | g0) is the pdf of a multivariate t-distribution with mean vector ✓⇤(b), variance-covariance

matrix

✓
⇠0,✓M

�1
0,✓

NT�2

◆
and degrees of freedom (N(T � 1)) (see Bauwens et al. (2005)). q

⇤ (✓ | g0) is

defined equivalently by:

bq⇤ (✓ | g0) =
1Z

0

bq⇤ (✓, ⌧ | g0) d⌧ = Lbq (b)

1Z

0

⌧

⇣
N(T�1)+K1

2 �1
⌘

⇥ exp
⇣
�⌧
2
'bq,✓

⌘
d⌧.
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Then q
⇤ (✓) is given by

q
⇤ (✓ | g0) = eHq

(bg + 1)K1/2

⇢
(bg + 1)

(✓�b✓EB(b))0⇤X(✓�b✓EB(b))
v(b) +

⇣
bg

bg+1

⌘
(b✓(b)�b✓q◆K1)

0
⇤X(b✓(µ)�b✓q◆K1)
v(b) + 1

�N(T�1)+K1
2

,

with

eHq =
�
⇣

N(T�1)+K1

2

⌘
|⇤X |1/2

⇡K1/2�
⇣

N(T�1)
2

⌘
v (b)K1/2

⇥

0

B@1 +

✓
bg

bg + 1

◆
⇣
b✓(b)� b✓q◆K1

⌘0
⇤X

⇣
b✓(b)� b✓q◆K1

⌘

v (b)

1

CA

N(T�1)
2

.

Notice that q⇤ (✓ | g0) is the pdf of a multivariate t-distribution with mean vector b✓EB (b), variance-

covariance matrix

✓
⇠q,✓M

�1
q,✓

N(T�1)�2

◆
and degrees of freedom (N(T � 1)) with

⇠q,✓ = 1 +

✓
bg

bg + 1

◆
⇣
b✓(b)� b✓q◆K1

⌘0
⇤X

⇣
b✓(b)� b✓q◆K1

⌘

v (b)
and Mq,✓ =

✓
(bg + 1)

v (✓)

◆
⇤X . (B.8)

The mean of the ML-II posterior density of ✓ is then:

b✓ML�II = E [b⇡⇤ (✓|g0)] (B.9)

= b�✓,g0E [⇡⇤
0 (✓|g0)] +

⇣
1� b�✓,g0

⌘
E [bq⇤ (✓|g0)]

= b�✓,g0✓⇤(b|g0) +
⇣
1� b�✓,g0

⌘
b✓EB (b|g0) .

The ML-II posterior density of ✓, given b and g0 is a shrinkage estimator. It is a weighted average of
the Bayes estimator ✓⇤(b|g0) under base prior g0 and the data-dependent empirical Bayes estimator
b✓EB (b|g0). If the base prior is consistent with the data, the weight b�✓,g0 ! 1 and the ML-II
posterior density of ✓ gives more weight to the posterior ⇡⇤

0 (✓|g0) derived from the elicited prior.

In this case b✓ML�II is close to the Bayes estimator ✓⇤(b|g0). Conversely, if the base prior is not

consistent with the data, the weight b�✓,g0 ! 0 and the ML-II posterior density of ✓ is then close

to the posterior bq⇤ (✓|g0) and to the empirical Bayes estimator b✓EB (b|g0). The ability of the "-
contamination model to extract more information from the data is what makes it superior to the
classical Bayes estimator based on a single base prior.5

B.2. The second step of the robust Bayesian estimator

Let ey = y�Z✓. Moving along the lines of the first step, the ML-II posterior density of b is given
by:

b⇡⇤ (b|h0) = b�b,h0⇡
⇤
0 (b|h0) +

⇣
1� b�b,h0

⌘
bq⇤ (b|h0) (B.10)

5Following Berger (1985), Baltagi et al. (2018) have derived the analytical ML-II posterior variance-covariance
matrix of ✓ (see the supplementary appendix of Baltagi et al. (2018)).
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with

b�b,h0 =

2

66664
1 +

"

1� "

0

@
bh

bh+1
h0

h0+1

1

A
NK2/2

0

BB@

1 +
⇣

h0
h0+1

⌘✓
R2

b0

1�R2
b0

◆

1 +
⇣

bh
bh+1

⌘✓ R2
bbq

1�R2
bbq

◆

1

CCA

(T�1)N
2

3

77775

�1

,

where

R
2
b0 =

(bb (✓)� b0◆NK2)
0⇤D(bb (✓)� b0◆NK2)

(bb (✓)� b0◆NK2)
0⇤D(bb (✓)� b0◆NK2) + v (✓)

,

R
2
bbq

=
(bb (✓)�bbq◆NK2)

0⇤D(bb (✓)�bbq◆NK2)

(bb (✓)�bbq◆NK2)
0⇤D(bb (✓)�bbq◆NK2) + v (✓)

,

with bb (✓) = ⇤�1
D D

0ey and v (✓) = (ey �Dbb (✓))0(ey �Dbb (✓)),

bbq =
�
◆
0
NK2

⇤D◆NK2

��1
◆
0
NK2

⇤D
bb (✓) (B.11)

and

bhq = min (h0, h
⇤)

with h
⇤ = max

2

4
 
((T � 1)N �NK2)

NK2

(bb (✓)�bbq◆NK2)
0⇤D(bb (✓)�bbq◆NK2)

v (✓)
� 1

!�1

, 0

3

5

= max

2

4
 
((T � 1)N �NK2)

NK2

 
R

2
bbq

1�R
2
bbq

!
� 1

!�1

, 0

3

5 .

⇡
⇤
0 (b|h0) is the pdf of a multivariate t-distribution with mean vector b⇤(✓|h0), variance-covariance

matrix

✓
⇠0,bM

�1
0,b

(T�1)N�2

◆
and degrees of freedom ((T � 1)N) with

M0,b =
(h0 + 1)

v (✓)
⇤D and ⇠0,b = 1 +

✓
h0

h0 + 1

◆
(bb (✓)� b0◆NK2)

0⇤D(bb (✓)� b0◆NK2)

v (✓)
. (B.12)

b⇤(✓|h0) is the Bayes estimate of b for the prior distribution ⇡0 (b, ⌧ |h0) :

b⇤(✓|h0) =
bb (✓) + h0b0◆NK2

h0 + 1
. (B.13)

q
⇤ (b|h0) is the pdf of a multivariate t-distribution with mean vector bbEB (✓|h0), variance-covariance

matrix

✓
⇠1,bM

�1
1,b

(T�1)N�2

◆
and degrees of freedom ((T � 1)N) with

⇠1,b = 1 +

 
bhq

bhq + 1

!
(bb (✓)�bbq◆NK2)

0⇤D(bb (✓)�bbq◆NK2)

v (✓)
and M1,b =

 
bh+ 1

v (✓)

!
⇤D
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and where bbEB (✓|h0) is the empirical Bayes estimator of b for the contaminated prior distribution
q (b, ⌧ |h0) :

bbEB (✓|h0) =
b✓(b) + bhq

bbq◆NK2

bhq + 1
. (B.14)

The mean of the ML-II posterior density of b is hence given by:

bbML�II = b�b,h0b⇤(✓|h0) +
⇣
1� b�b,h0

⌘
bbEB (✓|h0) . (B.15)

The ML-II posterior variance-covariance matrix of b can be derived in a similar fashion6 to that of
✓̂ML�II .

B.3. Estimating the ML-II posterior variance-covariance matrix

Many have raised concerns about the unbiasedness of the posterior variance-covariance matrices
of b✓ML�II and bbML�II . Indeed, they will both be biased towards zero as b�✓,g0 and b�b,h0 ! 0
and converge to the empirical variance which is known to underestimate the true variance (see
e.g. Berger and Berliner (1986); Gilks et al. (1997); Robert (2007)). Consequently, the assessment

of the performance of either b✓ML�II or bbML�II using standard quadratic loss functions cannot be
conducted using the analytical expressions. What is needed is an unbiased estimator of the true ML-
II variances. Baltagi et al. (2018) have proposed two di↵erent strategies to approximate these, each
with di↵erent desirable properties: MCMC with multivariate t-distributions or block resampling
bootstrap. They have shown that fortunately, one needs as few as 20 bootstrap samples to achieve
acceptable results7. Here, as in Baltagi et al. (2018, 2021), we will use the same individual block
resampling bootstrap method. Following Bellman et al. (1989); Andersson and Karlsson (2001);
Kapetanios (2008), and for an (N ⇥ (T � 1)) matrix Y , individual block resampling consists in
drawing an (N ⇥ (T � 1)) matrix Y

BR whose rows are obtained by resampling those of Y with
replacement. Conditionally on Y , the rows of Y BR are independent and identically distributed.
The following algorithm is used to approximate the variance matrices:

1. Loop over BR samples
2. In the first step, compute the mean of the ML-II posterior density of ✓ using our initial

shrinkage procedure

b✓ML�II,br = E [b⇡⇤ (✓|g0)]

= b�✓,g0✓⇤(b|g0) +
⇣
1� b�✓,g0

⌘
b✓EB (b|g0) .

3. In the second step, compute the mean of the ML-II posterior density of b:

bbML�II,br = b�b,h0b⇤(✓|h0) +
⇣
1� b�b,h0

⌘
bbEB (✓|h0)

6See the supplementary appendix of Baltagi et al. (2018).
7For convenience, the number of bootstrap samples BR is relatively small compared to the sample size N . Increas-

ing the number of bootstrap samples does not change the results but increases the computation time considerably.
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4. Once the BR bootstraps are completed, use the (K1 ⇥ BR) matrix of coe�cients ✓(BR) and
the (N ⇥BR) matrix of coe�cients b(BR) to compute:

b✓ML�II = E

h
✓
(BR)

i
, b�✓ML�II =

q
diag

�
V ar

⇥
✓(BR)

⇤�

bbML�II = E

h
b
(BR)

i
, b�bML�II =

q
diag

�
V ar

⇥
b(BR)

⇤�

We can also use a mixture of multivariate skewed (or non-skewed) t-distributions (see Baltagi
et al. (2021)). The ML-II posterior density of ✓ in (B.17) is a two-component finite mixture of
multivariate t-distributions whose location parameters and scale matrices are given in (B.7) and in
(B.8). Following McLachlan and Lee (2013) and Baltagi et al. (2021), one can generate mixture
of multivariate skewed (or non-skewed) t-distributions via an EM Algorithm approach. Thus,
generating 1000 (or more) random samples of K1 (or NK2)-dimensional multivariate t observations
with location parameters, scale matrices given in (B.7) and in (B.8) and degrees of freedomN(T�1),
allows to sample a mixture of the two components to get 1000 (or more) random vectors of ✓ML�II .
The latter can then be used to compute the variances of the K1 (or NK2) parameters.8 Using this
device reduces the computation time by at least 90% in all cases, although small discrepancies with
the bootstrapped standard errors may occur in specific cases.

B.4. A simple and e�cient way to drastically reduce the computation time of our Bayesian two-

stage two-step estimator.

The first stage of the Gaussian dynamic linear mixed model (eq.(6) in the main text) is given
by

y = Z✓ +Db+ u , u ⇠ N(0, ⌧�1
IN(T�1)) (B.16)

where y is (N(T � 1)⇥ 1). Z is (N(T � 1)⇥K1), D is (N(T � 1)⇥K2) and u is (N(T � 1)⇥ 1).
The mean of the ML-II posterior density of ✓ is:

b✓ML�II = E [b⇡⇤ (✓|g0)] = b�✓,g0E [⇡⇤
0 (✓|g0)] +

⇣
1� b�✓,g0

⌘
E [bq⇤ (✓|g0)] (B.17)

= b�✓,g0✓⇤(b|g0) +
⇣
1� b�✓,g0

⌘
b✓EB (b|g0) .

Baltagi et al. (2018) have shown that the ML-II posterior variance-covariance matrix of ✓ is given
by

V ar

⇣
b✓ML�II

⌘
= b�✓,g0V ar [⇡⇤

0 (✓ | g0)] +
⇣
1� b�✓,g0

⌘
V ar [bq⇤ (✓ | g0)] (B.18)

+ b�✓,g0
⇣
1� b�✓,g0

⌘⇣
✓⇤(b | g0)� b✓EB (b | g0)

⌘⇣
✓⇤(b | g0)� b✓EB (b | g0)

⌘0

Since this expression underestimates the true variance, Baltagi et al. (2018, 2021) have proposed
two di↵erent strategies to approximate it, each with di↵erent desirable properties: MCMC with
multivariate t-distributions or individual block resampling bootstrap. They have shown that fortu-
nately, one needs as few as 20 bootstrap samples to achieve acceptable results. They also showed

8See section C in the supplementary material for more details.
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that the bootstrap method had some advantages over the MCMC method, especially in terms of
computation time.

Computation times can be improved by using the Choleski decomposition for matrices inversion9

for all the tested worlds (RE, Chamberlain, Hausman-Taylor, CCE). Additionally, multivariate
normal random vectors in the common correlated e↵ects (CCE) models could make use of the sparse
matrices.10 Yet, the e�ciency gains would be relatively modest given the number of bootstrap draws
that need to be generated.

An alternative approach arises if we exploit the intrinsic features of the distributions of the Bayes
estimate ✓⇤(b|g0) for the prior distribution ⇡0 (✓, ⌧) and the empirical Bayes estimate b✓EB (b|g0) for
the contaminated prior distribution q (✓, ⌧).

We have shown that ⇡⇤
0 (✓|g0) is the pdf of a multivariate t-distribution tK1

�
✓⇤(b|g0),⌃✓⇤(b|g0), N(T � 1)

�

and bq⇤ (✓) is the pdf of a multivariate t-distribution tK1

⇣
b✓EB (b|g0) ,⌃b✓EB(b|g0), N(T � 1)

⌘
where

the mean vectors ✓⇤(b|g0) and b✓EB (b|g0) are given by

✓⇤ (b|g0) =
b✓ (b) + g0✓0◆K1

g0 + 1
, b✓EB (b|g0) =

b✓ (b) + bgqb✓q◆K1

bgq + 1
.

and the variance-covariance matrices ⌃✓⇤(b|g0) and ⌃b✓EB(b|g0) are given by

⌃✓⇤(b|g0) =

 
⇠0,✓M

�1
0,✓

N(T � 1)� 2

!
with M0,✓ =

(g0 + 1)

v (b)
⇤Z and ⇠0,✓ = 1 +

✓
g0

g0 + 1

◆ 
R

2
✓0

1�R
2
✓0

!
.

⌃b✓EB(b|g0) =

 
⇠q,✓M

�1
q,✓

N(T � 1)� 2

!
with Mq,✓ =

✓
(bgq + 1)

v (b)

◆
⇤Z and ⇠q,✓ = 1 +

✓
bgq

bgq + 1

◆ 
R

2
b✓q

1�R
2
b✓q

!
.

Thus the ML-II posterior density of ✓ in (B.17) is a two-component finite mixture of multivariate
t-distributions. Its pdf is given by

⇡

⇣
✓̃ML�II

⌘
=

2X

h=1

%h⇡h

⇣
b✓ML�II ,mh,⌃h, ⌫h

⌘
. (B.19)

where ⇡h
⇣
b✓ML�II ,mh,⌃h, ⌫h

⌘
denotes the h-th pdf of the mixture model with location parameter

mh, scale matrix ⌃h and degrees of freedom ⌫h. The mixing proportions satisfy %h � 0 (h = 1, 2)

and
P2

h=1 %h = 1. In our case, ⌫h = N(T � 1), 8h, m1 = ✓⇤(b|g0), m2 = b✓EB (b|g0), ⌃1 = ⌃✓⇤(b|g0),

⌃2 = ⌃b✓EB(b|g0), %1 = b�✓,g0 and %2 = 1� b�✓,g0 .
Derivations of the location parameter and the scale matrix of a mixture of multivariate t-

distributions is a very di�cult task (see for instance Walker and Saw (1978), Peel and McLachlan
(2000), Kotz and Nadarajah (2004), McLachlan and Peel (2004), Mengersen et al. (2011) among
others). Parameter estimates of the mixture of t-distributions is generally obtained via an EM
algorithm. McLachlan and Lee (2013) have proposed a EMMIXuskew R package for generating and

9The R function chol2inv(chol(X)) instead of the standard function solve(X) for a definite symmetric positive
X matrix.

10Using the rmvn.sparse command in the sparseMVN R package.
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fitting mixture of multivariate skewed (and non-skewed) t distributions via the EM Algorithm.
Based on the command rfmmst of this package, and given the parameters of the two components
defined above, one can generate 1000 (or more) random samples of K1-dimensional multivariate t

observations with location parameter mh, scale matrix ⌃h and degrees of freedom ⌫h for h = 1, 2,
and hence sample from the mixture of these two components to generate as many random vectors
of ✓̃ML�II . The variances of the K1 parameters can then be computed over these 1000 (or more)
random samples (see also Baltagi et al. (2021)).

After extensive experimentation, it was found that the estimated variances were slightly under-
estimated compared to those obtained with the bootstrap method. We therefore propose to correct

the variances with the following multiplicative factor:
p
k2

⇣
1 +

p
r̂

⌘2
. In the RE, Chamberlain

and Hausman-Taylor worlds, r̂ = �̂
2
µ/
�
�̂
2
µ + �̂

2
u

�
is the fraction of the variance

�
�̂
2
µ + �̂

2
u

�
due to the

specific e↵ects µi, with �̂
2
u = ⌧̂

�1 and k2 is the number of covariates in D in eq.(B.16).11 In the
correlated common e↵ects worlds (CCE) worlds,12 �̂2

µ = V ar [�] and the correction factor needs to

be modified slightly as
p
mk2

⇣
1 +

p
r̂

⌘2
.

In the case of the dynamic heterogeneous panel data world with common correlated unobserved
e↵ects, the correction factor needs to be modified slightly to take into account the average over all
individuals. The corrected variance of ✓̃ML�II is computed as:13

V ar

h
✓̃ML�II

i
=

1

N

NX

i=1

V ar

h
✓̃i,ML�II

i

cor

with V ar

h
✓̃i,ML�II

i

cor
= V ar

h
✓̃i,ML�II

ip
mN

⇣
1 +

p
r̂i

⌘2

and r̂i = V ar [�̂i] /(V ar [�̂i] + V ar [ûi]) .

This additional correction factor,
p
N , is somewhat reminiscent of the results from Theorem 3 of

Chudik and Pesaran (2015a), which shows that the convergence rate of the CCEMG estimator
✓̂CCEMG of ✓ is

p
N due to the heterogeneity of the coe�cients. Moreover, Chudik and Pesaran

(2015a) show that the ratio N/T ! 1, for some constant 0 < 1 < 1, is required for the derivation
of the asymptotic distribution of ✓̂CCEMG due to the time-series bias and that it is unsuitable for
panels with T being small relative to N .14

The di↵erences between the estimates for the Bayesian two-step (B2S2S) estimator with se boot,
or with se mixt, and those obtained with QMLE, two-step QMLE, CCEP or CCEMG are marginal
when the sample size is significantly increased. The di↵erence in computation times is impressive.
The advantage of our Bayesian two-stage estimator is pretty obvious. And because it has little
computing time, it should be valuable for applied econometricians.

11In other words, k2 = 1 for the RE, Chamberlain and Hausman-Taylor worlds. k2 = m for the common trends
world and the common correlated e↵ects world.

12� is given in section 4.1.3 in the main text.
13�i is given in section 4.1.3 in the main text.
14In their simulation study, Chudik and Pesaran (2015a) use 0.2  N/T  5. They also use a jackknife bias

correction and a recursive mean adjustment correction of the CCEMG estimator.
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C. Full Bayesian estimator for the random e↵ects world

We also derive the full Bayesian estimator for RE world.

C.1. Gibbs sampling for the RE world

We run full Bayesian estimates (Gibbs sampling) on the RE world following the works of Chib
and Carlin (1999), Koop (2003), Chib (2008), Greenberg (2008) and Chan et al. (2019) to mention
a few. They have proposed algorithms for the three-stage hierarchical models in a standard RE
world and we extend this specification to the dynamic space-time case. Pooling the N individuals
for one time period, our initial specification is

yt = �yt�1 + ⇢y
⇤
t + �y

⇤
t�1 +Xt� +Dtb+ ut , t = 2, ..., T, (C.20)

where yt is the N -dimensional vector of the dependent variable, y⇤t = WNyt and y
⇤
t�1 = WNyt�1, Xt

is (N ⇥K1) and ut is (N ⇥ 1). In the RE world, the (N ⇥K2) matrix Dt is an identity matrix IN

and the (K2 ⇥ 1) vector b is replaced by the (N ⇥ 1) vector µ = (µ1, µ2, ..., µN )0 of time-invariant
e↵ects. It can be written as the following three-stage hierarchy:

8
>>>><

>>>>:

First stage : yt = �yt�1 + ⇢y
⇤
t + �y

⇤
t�1 +Xt� + µ+ ut

with ut ⇠ NN (0,⌃ut) and ⌃ut = ⌧
�1

IN

Second stage : � ⇠ U(�1, 1), ⇢ ⇠ U(�1, 1), � ⇠ U(�1, 1), � ⇠ NK1 (�0, B0)
and µ ⇠ NN (0,⌃µ) with ⌃µ = �

2
µIN

Third stage : ⌧ ⇠ G
�
↵0
2 ,

�0
2

�
and ��2

µ ⇠ G
��0

2 ,
⌘0
2

�
.

According to Parent and LeSage (2010) and Debarsy et al. (2012), the dependent parameters �,
⇢ and � follow independent uniform distributions U(�1, 1). NK1(.) is the multivariate normal
distribution and G(.) is the Gamma distribution.
We can define the conditional posterior distributions within the Gibbs sampler of the previous
model for the RE world.15

1. We choose di↵use priors with the following hyperparameters �0 = 0K1 , B0 = 102IK1 , ↵0 = 2,
�0 = 200, �0 = 2, ⌘0 = 200 such that the means of the precision ⌧ and �

�2
µ are E [⌧ ] =

E
⇥
�
�2
µ

⇤
= 10�2 and their variances16 are V ar [⌧ ] = V ar

⇥
�
�2
µ

⇤
= 10�4.

2. We draw initial values of:

�
(0) ⇠ NK1 (�0, B0) , ⌧ (0) ⇠ G

�
↵0
2 ,

�0
2

�

�
�2
µ

(0) ⇠ G
��0

2 ,
⌘0
2

�
, µ(0) ⇠ NN

⇣
0,�2(0)

µ IN

⌘

15See section (C.2) for the derivations.
16A random variable x follows a Gamma distribution G(↵,�) with shape ↵ and scale � if its pdf can be written as

p(x | ↵,�) =
�↵

�(↵)
x↵�1 exp(��x).

Its mean and variance are given by E [x] = ↵
� and V ar [x] = ↵

�2 .
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3. At the d
th (for d = 1, ...,�) draw, we sample:

⌧
(d) ⇠ G

 
↵1

2
,
�1

(d)

2

!

�
�2
µ

(d) ⇠ G

✓
�1

2
,
⌘1

(d)

2

◆

µ
(d) ⇠ NN

⇣
µ̄
(d)

, B
(d)
µ

⌘

�
(d) ⇠ NK1

⇣
�̄
(d)

, B
(d)
�

⌘

�
(d) ⇠ N

⇣
�̄
(d)

, B
(d)
�

⌘

⇢
(d) ⇠ N

⇣
⇢̄
(d)

, B
(d)
⇢

⌘

�
(d) ⇠ N

⇣
�̄
(d)

, B
(d)
�

⌘

where

�1
(d) = �0 +

TX

t=2

⇣
yt � Zt✓

(d�1) � µ
(d�1)

⌘0
⇥
⇣
yi � Zt✓

(d�1) � µ
(d�1)

⌘

with Zt =
⇥
yt�1, y

⇤
t , y

⇤
t�1, Xt

⇤
and ✓(d�1) =

⇣
�
(d�1)

, ⇢
(d�1)

, �
(d�1)
y ,�

(d�1)0
⌘0

⌘
(d)
1 = ⌘0 + µ

0(d�1)

µ
(d�1)

B
(d)
µ =

h⇣
(T � 1)⌧ (d) + �

�2
µ

(d)
⌘
IN

i�1

µ
(d) = B

(d)
µ

"
⌧
(d)

TX

t=2

˜̃y(d�1)
t

#

where ˜̃y(d�1)
t = yt � �

(d�1)
yt�1 � ⇢

(d�1)
y
⇤
t � �

(d�1)
y y

⇤
t�1 �Xt�

(d�1)

B
(d)
� =

"
TX

t=2

⇣
X

0
tB

�1(d)

 Xt

⌘
+B

�1
0

#�1

where B
(d)
 = (�2(d)

µ + ⌧
�1(d))IN

�
(d)

= B
(d)
�

"
TX

t=2

⇣
X

0
tB

�1(d)

 ỹt

⌘
+B

�1
0 �0

#

B
(d)
� =

"
⌧
�1(d)

TX

t=2

y
0
t�1yt�1

#�1

�
(d)

= B
(d)
�

"
⌧
�1(d)

TX

t=2

y
0
t�1y

(�)(d)

t

#

where y
(�)(d)

t = yt � ⇢
(d�1)

y
⇤
t � �

(d�1)
y
⇤
t�1 �Xt�

(d) � µ
(d)
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B
(d)
⇢ =

"
⌧
�1(d)

TX

t=2

y
⇤0

t y
⇤
t

#�1

⇢
(d) = B

(d)
⇢

"
⌧
�1(d)

TX

t=2

y
⇤0

t y
(⇢)(d)

t

#

where y
(⇢)(d)

t = yt � �
(d)

yt�1 � �
(d�1)
y y

⇤
t�1 �Xt�

(d) � µ
(d)

B
(d)
� =

"
⌧
�1(d)

TX

t=2

y
⇤0

t�1y
⇤
t�1

#�1

�
(d)
y = B

(d)
�

"
⌧
�1(d)

TX

t=2

y
⇤0

t�1y
(�)(d)

t

#

where y
(�)(d)

t = yt � �
(d)

yt�1 � ⇢
(d)

y
⇤
t �Xt�

(d) � µ
(d)

↵1 = ↵0 +N(T � 1)

�1 = �0 +N

For the Gibbs sampling, we run � = 1, 000 draws and we burn the �burn = 500 first draws. We
store all the vectors �, µ and the scalars �, ⇢, �, �2

✏ and �2
µ for the �⇤(= ���burn) draws. When

the � draws are completed, we compute their posterior means, their posterior standard errors, their
RMSEs, their 95% HPDIs, their numerical standard errors (nse) and convergence diagnostics (cd)
on the �⇤ last draws.

C.2. Derivation of the posterior densities of the Gibbs sampling for the RE world

Since the three-stage hierarchy is written as
8
>>>><

>>>>:

First stage : yt = �yt�1 + ⇢y
⇤
t + �y

⇤
t�1 +Xt� + µ+ ut

with ut ⇠ NN (0,⌃ut) and ⌃ut = ⌧
�1

IN

Second stage : � ⇠ U(�1, 1), ⇢ ⇠ U(�1, 1), � ⇠ U(�1, 1), � ⇠ NK1 (�0, B0)
and µ ⇠ NN (0,⌃µ) with ⌃µ = �

2
µIN

Third stage : ⌧ ⇠ G
�
↵0
2 ,

�0
2

�
and ��2

µ ⇠ G
��0

2 ,
⌘0
2

�
.

and as the known hyperparameters are: �0, B0, ↵0, �0, �0 and ⌘0, then the posterior distribution
is proportional to:17

⇡
�
�, ⇢, �,�, µ, ⌧,�

2
µ | y, y⇤, y⇤�1, X

�
_ |⌃ut |�
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#

⇥ exp


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0
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0 (� � �0)
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⇥ ⌧
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⇥ �

�2N
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�
�2
µ µ

0
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#
⇥ �

�2[ �02 �1]
µ exp

"
�
�
�2
µ ⌘0

2

#

17Since the pdf of the dependent parameters are: p(�) = p(⇢) = p(�) = 1/2.
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where Zt✓ = �yt�1 + ⇢y
⇤
t + �y

⇤
t�1 +Xt�.

The posterior distribution of the precision ⌧ is given by:

|⌃ut |�
(T�1)

2 exp

"
�1

2
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(yt � Zt✓ � µ)0 ⌃�1
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(yt � Zt✓ � µ)

#

⇥ ⌧
↵0
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(
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)#

then

⌧ ⇠ G

✓
↵1

2
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◆
(C.21)

with ↵1 = ↵0 +N(T � 1)

and �1 = �0 +
TX

t=2

(yt � Zt✓ � µ)0 (yt � Zt✓ � µ)

The posterior distribution of the precision ��2
µ is given by:
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⌘
(C.22)

with �1 = �0 +N

and ⌘1 = ⌘0 + µ
0
µ

Following Chib and Carlin (1999) and Greenberg (2008), it is preferable to sample � and µ in one
block as ⇡

�
�, µ | y, y⇤, y⇤�1, X,�, ⇢, �, ⌧,�

2
µ

�
rather than in two blocks ⇡

�
� | y, y⇤�1, X, µ, ⌧,�, ⇢, �,�

2
µ

�

and ⇡
�
µ | y, y⇤�1, X,�,�, ⇢, �, ⌧,�

2
µ

�
, because of potential correlation between the two. This is done

by using:

⇡
�
�, µ | y, y⇤, y⇤�1, X,�, ⇢, �, ⌧,�

2
µ

�
= ⇡

�
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2
µ

�
⇥ ⇡

�
µ | y, y⇤�1, X,�,�, ⇢, �, ⌧,�

2
µ

�

The first terms on the right-hand side is obtained by integrating out the µ from ⇡
�
�, µ | y, y⇤, y⇤�1, X,�, ⇢, �, ⌧,�

2
µ

�
.

For the second term, set ˜̃yt = ỹt�Xt� where ỹt = yt��yt�1�⇢y⇤t ��y⇤t�1 and complete the square
in µ.

⇡
�
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�
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Let us consider the expressions in the exponentiations, ignoring the
�
� 1

2

�
terms:
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⇤
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TX

t=2

˜̃yt + ⌧

TX

t=2
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Since we are only concerned with the distribution of µ, and as ⌃u(= ⌧
�1

IN ) is assumed to be
known, terms that do not involve µ are all absorbed into the proportionality constant. Applying
this idea to the expressions between brackets, then, the posterior distribution of the time-invariant
specific e↵ect µ is given by:

µ ⇠ NN (µ,Bµ) (C.23)

with Bµ =
⇥
((T � 1)⌧ + �

�2
µ )IN

⇤�1

and µ = Bµ

"
⌧

TX

t=2

˜̃yt

#

To find the posterior distribution of �, we write:

ỹt = Xt� + (µ+ ut) = Xt� +  t

and integrate out µ and ut. Then

E [ t 
0
t] = E

⇥
(µ+ ut) (µ+ ut)

0⇤ = E [µµ0] + E [utu
0
t]

As ut ⇠ N(0,⌃ut) with ⌃ut = ⌧
�1

IN and µ ⇠ N (0,⌃µ) with ⌃µ = �
2
µIN , then

E [ t 
0
t] = ⌃µ + ⌃u = (�2

µ + ⌧
�1)IN = B 

which implies ỹt ⇠ N (Xt�, B ). It follows that
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(ỹt �Xt�)
0
B

�1
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Completing the expressions between brackets, we get:
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 (ỹt �Xt�) + (� � �0)

0
B

�1
0 (� � �0)

= �
0

"
TX

t=2

⇣
X

0
tB

�1
 Xt

⌘
+B

�1
0

#
� � 2�0

"
TX

t=2

⇣
X

0
tB

�1
 yt

⌘
+B

�1
0 �0

#

+
TX

t=2

ỹ
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from which we have
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(C.24)

with B� =
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The posterior distribution of the autoregressive time dependence parameter � is proportional to:
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with B� =
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In the same way, the posterior distribution of the spatial dependence parameter ⇢ is given by:

⇢ ⇠ N (⇢, B⇢) (C.26)

with B⇢ =

"
⌧
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So too, the posterior distribution of the spatio-temporal di↵usion parameter � is given by:

� ⇠ N
�
�y, B�

�
(C.27)

with B� =
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⇤
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D. The spatial weighting matrices

We use the census tract data set for Central New York State counties featured in Waller and
Gotway (2004) and we work on two subsets of the map consisting of the N = 63 census tracts within
Syracuse City and the N = 120 census tracts within Syracuse City and its neighborhood. We use
several weighting matrices WN (= {wij}) which essentially di↵er in their degree of sparseness. First,
we create inverse distance weighting matrices with wij = 1/dist(i, j) where dist(i, j) is the distance
(in km) between two census tracts i and j. The whole matrix WN is filled with the diagonal
elements being zero. Second, we create contiguity neighbors weighting matrices from the census
tract rook-style and queen-style contiguities, by analogy with movements on a chessboard. Last, we
create k-nearest neighbors weighting matrices with the k = 4 or 10 nearest neighbors (see Figures 1,
2, 3). Figure 1 shows the sparsity structure of the row-normalized inverse distance weight matrices
for the N = 63 and N = 120 census tracts within Syracuse City and its neighborhourd. The non-
sparsity rate is 98.4% (resp. 99.1%) for the N = 63 (resp. N = 120) census tracts since the weight
matrix is completely filled except its first diagonal. Figure 2 shows the rook-style and queen-style
for the N = 63 and N = 120 census tracts contiguities within Syracuse City and its neighborhourd.
But this time, the non-sparsity rates are much lower: 8.7% and 7.7% (resp. 4.9% and 4.5%) for
the rook-style and queen-style for the census tracts contiguities within Syracuse City (resp. within
Syracuse City and its neighborhood). Figure 3 shows the k-nearest neighbors (k = 4, k = 10) for
the N = 63 and N = 120 census tracts contiguities within Syracuse City and its neighborhourd.
Again, the non-sparsity rates are small: 6.3% and 15.8% (resp. 3.3% and 8.3%) for the 4-nearest
neighbors and the 10-nearest neighbors for the census tracts contiguities within Syracuse City (resp.
within Syracuse City and its neighborhood). The minimum eigenvalues $min of the spatial weights
matrices WN change depending on the type and the sparsity of the spatial weights matrices (see
Table D.1) while the maximum eigenvalues $max are always unity. These values allow to check
the stationarity conditions given in eq.(4) in the main text. We have generated Monte Carlo DGP
which always respect these stationarity conditions except for the explosive case in the random e↵ects
world.

Table D.1: Minimum eigenvalues of the spatial weights matrices WN

Inverse distance rook queen 4 neighbors 10 neighbors
N = 63 -0.0963 -0.5906 -0.6556 -0.6471 -0.2793
N = 120 -0.0779 -0.6090 -0.6123 -0.6414 -0.2810
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0.02

0.04

0.06

0.08

 3906 non−zero elements ,  non sparsity = 98.413 %

63 Census tracts within Syracuse city

0.01

0.02

0.03

0.04

0.05

0.06

0.07

14280 non−zero elements ,  non sparsity = 99.167 %

120 Census tracts
 within Syracuse city and its neighborhourd (NY)

Sparsity structure of the spatial weight matrix 
 63 and 120 Census tracts within Syracuse city and its neighborhourd (NY) 

 row−normalized inverse distance matrix

Figure 1: Sparsity structure of the spatial inverse distance weight matrix.
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(a) Rook−style census tract contiguities
within Syracuse city (N=63)

 346 non−zero elements ,  non sparsity = 8.718 %

(b) Queen−style census tract contiguities
within Syracuse city (N=63)

 308 non−zero elements ,  non sparsity = 7.76 %

 (c) Rook−style census tract contiguities
within Syracuse and its neighborhourd (N=120)

 708 non−zero elements ,  non sparsity = 4.917 %

 (d) Queen−style census tract contiguities
within Syracuse and its neighborhourd (N=120)

 654 non−zero elements ,  non sparsity = 4.542 %

Rook−style and queen−style for 63 and 120 census tracts contiguities
within Syracuse city and its neighborhourd (NY)

Figure 2: Rook-style and queen-style for the census tracts contiguities.
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(a) 4 neighbors contiguities
within Syracuse city (N=63)

 252 non−zero elements ,  non sparsity = 6.349 %

(b) 10 neighbors contiguities
within Syracuse city (N=63)

 630 non−zero elements ,  non sparsity = 15.873 %

(c) 4 neighbors contiguities
within Syracuse and its neighborhourd (N=120)

 480 non−zero elements ,  non sparsity = 3.333 %

(d) 10 neighbors contiguities
within Syracuse and its neighborhourd (N=120)

 1200 non−zero elements ,  non sparsity = 8.333 %

k−nearest neighbors for 63 and 120 census tracts contiguities
within Syracuse county and its neighborhourd (NY)

Figure 3: k-nearest neighbors for the census tracts contiguities.
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E. A two-stage least squares (2SLS) estimator for the dynamic space-time homoge-

neous panel data world with correlated common factors.

We propose an extension of the two-stage least squares (2SLS) estimator of Yang (2021) to the
case of a dynamic space-time homogeneous panel data world with correlated common factors. Our
specification is given by:

yti = �yt�1,i + ⇢y
⇤
ti + �y

⇤
t�1,i + xti�1 + xt�1,i�2 + �

0
ift + uti, t = 2, ..., T , i = 1, ..., N

= �yt�1,i + ⇢y
⇤
ti + �y

⇤
t�1,i +X

0
it� + �

0
ift + uti (E.28)

or for the pooled N individuals18

yt = �yt�1 + ⇢y
⇤
t + �y

⇤
t�1 +Xt� + �ft + ut, t = 2, ..., T (E.29)

with ft = (ft1, ft2, · · · , ftm)0, �i = (�i1, · · · , �im)0 and � = (�1, · · · , �N )0 for m known common
trends or m unobserved correlated common factors.
ft (resp. �i, �) is of dimension (m ⇥ 1) (resp. (m ⇥ 1), (N ⇥m)). X

0
it = (xti, xt�1,i) is (1 ⇥K1),

Xt = (X1t, · · · , XNt)
0 is (N ⇥K1) and � = (�1,�2)

0 is (K1 ⇥ 1) with K1 = 2.

Let Y = (y02, · · · , y0T )
0, Y�1 =

�
y
0
1, · · · , y0T�1
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⇤ =
⇣
y
⇤0
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⌘0
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⇤
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1 , · · · , y⇤0
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⌘0
,

((T � 1)N ⇥ 1) vectors, X = (X 0
2, · · · , X 0

T )
0 a ((T � 1)N ⇥K1) matrix.

Let L =
�
Y�1, Y

⇤
, Y

⇤
�1, X

�
= (L0

2, · · · , L0
T )

0 denotes the full set of regressors where Lt = (lt1, · · · , ltN )0

with lti =
�
yt�1,i, y

⇤
ti, y

⇤
t�1,i, X

0
ti

�0
. lti is of dimension ((3 +K1)⇥ 1), Lt is (N ⇥ (3 +K1)) and L is

((T � 1)N ⇥ (3 +K1)). Last, let F = (f 0
2, · · · , f 0

T )
0 the ((T � 1)⇥m) matrix of correlated common

factors.
Following Yang (2021), the de-factoring matrices are defined as:

Mf = IT � F (F 0
F )

�
F

0 and M
b
f = Mf ⌦ IN (E.30)

where (F 0
F )� is the generalized inverse of F 0

F and the 2SLS estimator of ✓ = (�, ⇢, �,�1,�2)
0) is

defined as

✓̂2SLS = (L0
PQL)

0
L
0
PQY (E.31)

where
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b
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��1
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f (E.32)

with the IV matrix Q = (Q0
2, . · · · , Q0

T )
0 with Qt =

�
Xt,WNXt,W

2
NXt, · · · ,W q

NXt

�
. Qt is of

dimension (N ⇥ (q+ 1)K1) and Q is ((T � 1)N ⇥ (q+ 1)K1). In this 2SLS estimator, M b
fQ can be

viewed as instruments.
Yang (2021) (p.15, eq(9)) shows that

p
N(T � 1)

⇣
✓̂2SLS � ✓

⌘
d�!

h
N (0,⌃✓,2SLS) + bias term

i
as (N,T ) ! 1 (E.33)

18We use the notation of Yang (2021) for �0
ift and �ft.
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and, if T/N ! 0 when (N,T ) ! 1, the bias term vanishes and then the distribution of ✓̂2SLS

becomes
p
N(T � 1)

⇣
✓̂2SLS � ✓

⌘
⇠ N (0,⌃✓,2SLS). A consistent estimator for the asymptotic

variance matrix ⌃✓,2SLS of ✓ is given by19

⌃̂✓,2SLS =  ̂�1⌦̂ ̂�1 (E.34)
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L
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where L̂ = PQL =
⇣
L̂
0
2, · · · , L̂0

T
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, l̂ti is the i-th row of L̂t, ûti is the i-th row of ût and û =

M
b
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⇣
Y � L✓̂2SLS

⌘
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2, · · · , û0
T )

0.

If ft are m known common trends , we use the de-factoring matrices as in (E.30). On the
contrary, for m unobservable common factors, we use observable counterparts of (E.30). We can
approximate the (m⇥1) ft vector with a ((3+K1)⇥1) f⇤

t vector of the within time transformation20

of the covariates:

f
⇤
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⇣ �
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�
,
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,
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,
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,
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(E.36)

with xt = (1/N)
NX

i=1

xti, x = (1/N(T � 1))
NX

i=1

TX

t=2

xti

or inspired by Chudik and Pesaran (2015a,b), we can approximate the (m ⇥ 1) ft vector by the
((4 +K1)⇥ 1)) ft vector of the time means of the dependent and explanatory variables:

f
⇤
t =

�
yt, y�1,t, y

⇤
t , y

⇤
�1,t, xt, x�1,t

�0
(E.37)

Then, F in (E.30) is replaced by F = (f⇤0
2 , · · · , f⇤0

T )0 of dimension ((T�1)⇥m) with m = (3+K1) or
m = (4+K1). We will test the two approaches of the within time transformation of the explanatory
variables and of the time means of the dependent and explanatory variables.

Contrarily to Yang (2021), we do not use only q = 2 in our Monte Carlo simulation study (e.g.
Qt =

�
Xt,WNXt,W

2
NXt

�
) since it leads to biased estimates and large standard errors. We need to

use q = 7 (e.g. Qt =
�
Xt,WNXt,W

2
NXt, · · · ,W 7

NXt

�
) to get good results. The larger the dimension

((T �1)N ⇥ (q+1)K1) of the IV matrix Q, the better the estimates, especially in terms of standard
errors.

F. A two-stage least squares (2SLS) estimator for the dynamic space-time heteroge-

neous panel data world with correlated common factors.

We propose an extension of the two-stage least squares (2SLS) estimator of Yang (2021) to the
case of a dynamic space-time heterogeneous panel data world with correlated common factors. For

19We do not use the Newey-West type robust estimator (see Pesaran (2006), Yang (2021)) since our specification
has i.i.d errors.

20i.e., the demeaned time means.
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an easier formalization, our specification is written in primal form:

yit = �iyi,t�1 + ⇢iy
⇤
i,t + �iy

⇤
i,t�1 + xit�1,i + xi,t�1�2,i + f

0
t�i + uit, t = 2, ..., T , i = 1, ..., N

= �iyi,t�1 + ⇢iy
⇤
i,t + �iy

⇤
i,t�1 +X

0
it�i + f

0
t�i + uit (F.38)

where X
0
it = (xit, xi,t�1) and �i = (�1,i,�2,i)

0. The pooled (T � 1) time periods specification is
given by

Yi = �iYi,�1 + ⇢iY
⇤
i + �iY

⇤
i,�1 +Xi�i + F�i + ui, i = 1, ..., N (F.39)

where21 Yi = (yi,2 · · · , yi,T )0, Yi,�1 = (yi,1 · · · , yi,1)0, Y ⇤
i =

�
y
⇤
i,2 · · · , y⇤i,T

�0
, Y ⇤

i,�1 =
�
y
⇤
i,1 · · · , y⇤i,T�1

�0
,

Xi = (Xi,2 · · · , Xi,T )
0. As previously, the de-factoring matrix is defined as:

Mf = IT � F (F 0
F )

�
F

0 (F.40)

By following Yang (2021) and being inspired by Pesaran (2006) and Chudik and Pesaran (2015a,b),
the individual 2SLS estimator of ✓i = (�i, ⇢i, �i,�1,i,�2,i)

0) is defined as

✓̂2SLS,i = (L0
iPQiLi)

0
L
0
iPQiYi (F.41)

where Li =
�
Yi,�1, Y

⇤
i , Y

⇤
i,�1, Xi

�
denotes the full set of regressors for individual i and

PQi = MfQ
(p)
i

⇣
Q

(p)0

i MfQ
(p)
i

⌘�1
Q

(p)0

i Mf (F.42)

where Q
(p)
i is the (T ⇥ (q+1)K1) submatrix of the primal form Q

(p) of the IV matrix Q defined in
section E. More precisely,

Q =

0

BBBBBBBBBBBBBBBBBBBBBBBB@

q21,1 · · · q21,r

q22,1 · · · q22,r
...

...
...

q2N,1 · · · q2N,r

q31,1 · · · q31,r

q32,1 · · · q32,r
...

...
...

q3N,1 · · · q3N,r
...

...
...

qT1,1 · · · qT1,r

qT2,1 · · · qT2,r
...

...
...

qTN,1 · · · qTN,r

1

CCCCCCCCCCCCCCCCCCCCCCCCA

, Q(p) =

0

BBBBBBBBBBBBBBBBBBBBBBBB@

q21,1 · · · q21,r

q31,1 · · · q31,r
...

...
...

qT1,1 · · · qT1,r

q22,1 · · · q22,r

q32,1 · · · q32,r
...

...
...

qT2,1 · · · qT2,r
...

...
...

q2N,1 · · · q2N,r

q3N,1 · · · q3N,r
...

...
...

qTN,1 · · · qTN,r

1

CCCCCCCCCCCCCCCCCCCCCCCCA

=

0

BBBB@

Q
(p)
1

Q
(p)
2
...

Q
(p)
N

1

CCCCA
(F.43)

21ft, �i and F are defined as in section E.
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where r = (q + 1)K1. Inspired by Pesaran (2006) and Chudik and Pesaran (2015a,b), the 2SLS
mean group estimator is a simple average of the individual 2SLS estimators ✓̂2SLS,i,

✓̂2SLS,MG =
1

N

NX

i=1

✓̂2SLS,i (F.44)

The distribution of ✓̂2SLS,MG is

p
N

⇣
✓̂2SLS,MG � ✓

⌘
d�! N

�
0,⌃✓2SLS,MG

�
as (N,T ) ! 1 (F.45)

and ⌃✓2SLS,MG can be consistently estimated non-parametrically by

⌃✓2SLS,MG =
1

N

NX

i=1

⇣
✓̂2SLS,i � ✓̂2SLS,MG

⌘⇣
✓̂2SLS,i � ✓̂2SLS,MG

⌘0
(F.46)
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G. Some Monte Carlo simulation results.

G.1. Some results for the dynamic space-time random e↵ects world
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G.2. Some results for the dynamic space-time Chamberlain-type fixed e↵ects world
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G.3. The dynamic space-time Hausman-Taylor world: results of the Monte Carlo simulation study

The static Hausman-Taylor model (henceforth HT, see Hausman and Taylor (1981)) posits that
y = X�+V ⌘+Zµµ+u, where V is a vector of time-invariant variables, and that subsets of X (e.g.,
X

0
2,i) and V (e.g., V 0

2i) may be correlated with the individual e↵ects µ, but leave the correlations
unspecified. Hausman and Taylor (1981) proposed a two-step IV estimator.

For our dynamic space-time model: y = Z✓+V b+u = �y�1+⇢y⇤+�y⇤�1+X�+V ⌘+Zµµ+u,

we assume that (X 0
2,i, V

0
2i and µi) are jointly normally distributed:

0

@
µi✓
X

0
2,i

V
0
2i

◆
1

A ⇠ N

0

@

0

@
0✓

EX0
2

EV 0
2

◆
1

A ,

✓
⌃11 ⌃12

⌃21 ⌃22

◆1

A ,

where X
0
2,i (resp. EX0

2
) is the individual mean (resp. general mean) of X 0

2,ti (resp. of X 0
2). EV 0

2
is

the mean of V 0
2 . The conditional distribution of µi | X 0

2,i, V
0
2i is given by:

µi | X 0
2,i, V

0
2i ⇠ N

 
⌃12⌃

�1
22 .

 
X

0
2,i � EX0

2

V
0
2i � EV 0

2

!
,⌃11 � ⌃12⌃

�1
22 ⌃21

!
.

Since we do not know the elements of the variance-covariance matrix ⌃jk, we can write:

µi =
⇣
X

0
2,i � EX0

2

⌘
✓X +

�
V

0
2i � EV 0

2

�
✓V + !i,

where !i ⇠ N
�
0,⌃11 � ⌃12⌃

�1
22 ⌃21

�
is uncorrelated with uit, and where ✓X and ✓V are vectors of

parameters to be estimated. In order to identify the coe�cient vector of V 0
2i and to avoid possible

collinearity problems, we assume that the individual e↵ects are given by:

µi =
⇣
X

0
2,i � EX0

2

⌘
✓X + f

h⇣
X

0
2,i � EX0

2

⌘
�
�
V

0
2i � EV 0

2

�i
✓V + !i, (G.47)

where � is the Hadamard product and f

h⇣
X

0
2,i � EX0

2

⌘
�
�
V

0
2i � EV 0

2

�i
can be a nonlinear function

of
⇣
X

0
2,i � EX0

2

⌘
�
�
V

0
2i � EV 0

2

�
. The first term on the right-hand side of equation (G.47) corresponds

to the Mundlak (1978) transformation while the middle term captures the correlation between V
0
2i

and µi. The individual e↵ects, µ, are a function of PX
(p) and

�
f
⇥
PX

(p) � V
⇤�
, i.e., a function of

the column-by-column Hadamard product of PX
(p) and V where P = (IN ⌦ JN/N) is the between

transformation, X(p) is the primal form of the X matrix (i.e., with now i (resp. t) being the slower
(resp. faster) index)22 and JN is a (N ⇥N) matrix of ones.

We can once again concatenate
h
y�1, y

⇤
, y

⇤
�1, X,

�
PX

(p)
 (d)

, f

h�
PX

(p)
 (d) � V

ii
into a single

matrix of observables Z̃ where
�
PX

(p)
 (d)

is the dual form of PX
(p) and then the model becomes:

y = Z̃✓ +D$ + u with D = ◆T ⌦ IN . As we have assumed that

µi = (x2,i � Ex2) ✓X + f [(x2,i � Ex2)� (V2i � EV2)] ✓V + !i. (G.48)

22From the dual form of X, each column k of the (N(T �1)⇥Kx) matrix X is rewritten as a (N ⇥ (T �1)) matrix
AXk

and the primal form of each column k of X is given as: vec(A0
Xk

). We can also use commutation matrices.
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We propose adopting the following strategy: If the correlation between µi and V2i is quite large
(> 0.2), use f [.] = (x2,i � Ex2)

2 � (V2i � EV2)
s with s = 1. If the correlation is weak, set s = 2. In

real-world applications, we do not know the correlation between µi and V2i a priori. We can use a
proxy of µi defined by the OLS estimation of µ: bµ = (D0

D)�1
D

0by where by are the fitted values of
the pooling regression y = �y�1 + ⇢y

⇤ + �y
⇤
�1 + x1�1 + x2�2 + V1⌘1 + V2⌘2 + ⇣. Then, we compute

the correlation between bµ and V2. In our simulation study, it turns out the correlations between µ

and V2 are large: 0.53 (resp. 0.67) when � = 0.75 and ⇢ = 0.8 for N = 63 (resp. N = 120). Hence,
we choose s = 1.

Our B2S2S estimation method is compared with the two-stage quasi-maximum likelihood se-
quential approach proposed by Kripfganz and Schwarz (2019) and adapted here to the dynamic
space-time framework. In the first stage, the coe�cients of the time-varying regressors are estimated
without relying on coe�cient estimates for the time-invariant regressors using the quasi-maximum
likelihood (QML) estimator of Hsiao et al. (2002) with the “xtdpdqml” Stata command. Sub-
sequently, the first-stage residuals are regressed on the time-invariant regressors. Identification
is achieved by using instrumental variables in the spirit of Hausman and Taylor (1981), and the
second-stage standard errors are adjusted to account for the first-stage estimation error.23 Kripf-
ganz and Schwarz (2019) have proposed a new “xtseqreg” Stata command which implements the
standard error correction for two-stage dynamic linear panel data models.24

Table G.10 compares results of the B2S2S estimator to those of the two-stage QML sequential
approach (TSQML). Once again, the estimates are very close to one another. As soon as N and T

increase, the very slight biases observed on the parameters tend to disappear. For the B2S2S, the
estimates of the variance of the specific e↵ects, as well as that of the remainder disturbances, do
not appear to be biased. If the RMSE of B2S2S and TSQML for �, ⇢, �, �1 and �2 are close each
other, it is not the same for the coe�cient ⌘2 associated with the time-invariant variable Z2,i which
is itself correlated with µi. The RMSE of the coe�cient ⌘2 for B2S2S is half the size of TSQML and
this ratio remains the same when going from N = 63, T = 10 to N = 120, T = 20. Interestingly,
the standard errors of that same coe�cient ⌘2 are smaller when using the Bayesian estimator as
compared to the two-stage QMLE. Even with a slight bias, the 95% confidence intervals of the
Bayesian estimator of ⌘2 are narrower and entirely nested within those obtained with the two-stage
QML sequential approach. We also reached the same conclusion in non-spatial static and dynamic
models (see Baltagi et al. (2018, 2021)). Finally, note that the computation times of the two-stage
QML sequential approach are 34 (resp. 1.8) times longer than those of the B2S2S with mixture of
t-distributions) (resp. with bootstrap).

23For the following specification written in primal form: yit = �yi,t�1 + ⇢y⇤it + �y⇤i,t�1 + x0
it�+V 0

i ⌘+µi +uit, the

first stage model is yit = �yi,t�1+⇢y⇤it+�y⇤i,t�1+x0
it�++eit, where eit = i�+uit, i = V 0

i ⌘+µi,  = E[i] and
is estimated in first di↵erences. In the second stage, one estimates the coe�cients ⌘ based on the level relationship:
yit�b�yi,t�1�b⇢y⇤it�b�yy⇤i,t�1�x0

it
b� = V 0

i ⌘+#it where #it = µi+uit+(b���)yi,t�1�(b⇢�⇢)y⇤it�(b�y��)y⇤i,t�1�x0
it(

b���)

and computes proper standard errors with an analytical correction term (see Kripfganz and Schwarz (2019)).
24Following Kripfganz and Schwarz (2019), we use successively these two Stata commands (“xtdpdqml” and

“xtseqreg”). Unfortunately, these Stata commands do not give the residual variance of specific e↵ects �2
µ but only

�2
u.
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G.4. The dynamic space-time homogeneous panel data world with correlated common e↵ects: results

of the Monte Carlo simulation study

Since the m common correlated e↵ects ft are now unknown, we need to rewrite the general
dynamic space-time model as follows:

y =Z✓ +Db+ u = Z✓ + F�+ u

with Z
0
ti =

⇥
yt�1,i, y

⇤
ti, y

⇤
t�1,i, X

0
ti

⇤
, ✓0 = [�, ⇢, �,�0]

0
and X

0
ti = [xti, xt�1,i] ,

where in the (TN⇥Nm) matrix F of them unobserved factors, f should be approximated by known
variables. Similar to the Hausman-Taylor case (see eq(G.47)), we can approximate the (T ⇥m) f
matrix with a (T ⇥K1) f⇤ matrix of the within time transformation25 of Zti:

f
⇤ =

0

@
f
⇤
1

. . .

f
⇤
T

1

A where f
⇤
t =

⇥�
y�1,t � y�1

�
,
�
y
⇤
t � y

⇤�
,
�
y
⇤
�1,t � y

⇤
�1

�
,
�
xt � x

�
,
�
x�1,t � x�1

�⇤

with xt = (1/N)
NX

i=1

xti, x = (1/NT )
NX

i=1

TX

t=1

xti

Then, the product F� is approximated with the product F
⇤�⇤ where the factor loadings �⇤ is a

(NK1 ⇥ 1) vector and F
⇤ is a (TN ⇥ NK1) matrix of the within time transformations of Z. As

Chudik and Pesaran (2015a), we can approximate the (T ⇥m) f matrix by the time means of the
dependent and explanatory variables. We follow the method of Chudik and Pesaran (2015a,b) by
introducing the time means of the dependent and explanatory variables instead of introducing only
the within time transformation of the explanatory variables Z 0

ti. We compare our B2S2S estimator
with the 2SLS estimator of Yang (2021) extended to the dynamic space-time case.26

Table G.11 shows that the results of B2S2S are very close to those of 2SLS. As for the previous
case, we find the same qualities of our estimator (e�ciency, computation time saving, absence of
bias, ....) as compared to the 2SLS estimator.

25i.e., the demeaned time means.
26See section E of the supplementary material for more details on the 2SLS estimator of Yang (2021) extended

to the dynamic space-time homogeneous case. We use our own R codes for our Bayesian estimator and the 2SLS
estimator.
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G.5. The dynamic space-time heterogeneous panel data world with correlated common e↵ects: re-

sults of the Monte Carlo simulation study

The dynamic space-time heterogeneous panel data world with common factors is defined as:

yti = �iyt�1,i + ⇢iy
⇤
ti + �iy

⇤
t�1,i + xti�1i + xt�1,i�2 + f

0
t�i + uti

This model cannot be estimated using the common correlated e↵ects mean group estimator (CCEMG)
(see Pesaran (2006) and Chudik and Pesaran (2015a,b)). But, we propose an extension of the 2SLS
estimator of Yang (2021) to the case of a dynamic space-time heterogeneous panel data world with

correlated common factors.27 So we compare the mean coe�cients b✓ = (1/N)
PN

i=1
b✓i of our B2S2S

estimator with the 2SLS estimator. While the bottom panel of Table G.12 gives insights on the
distribution of �i , ⇢i, �i and �1i for di↵erent sample sizes, the top panel of Table G.12 gives the
estimated values of the mean coe�cients �, ⇢, � and �1, the estimated values of �2 and �2

u, their
standard deviations and their RMSE’s. Table G.12 shows that the results of the B2S2S estimator
are close to those of the 2SLS estimator but the RMSEs results of B2S2S are generally smaller than
those of 2SLS. Once again, as the computation time of B2S2S with bootstrap is longer, we give only
results for B2S2S with mixture of t-distributions whose computation times are very close to those
of 2SLS, this time. But the undeniable advantage of our estimator is its better e�ciency relative
to that of the IV estimator.

27See section F of the supplementary material for more details on the 2SLS estimator of Yang (2021) extended
to the dynamic space-time heterogeneous case. We use our own R codes for our Bayesian estimator and the 2SLS
estimator.
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H. Application on crop yields and climate change

H.1. The dataset

Keane and Neal (2020) use weather and crop yield data for U.S. counties from 1950 to 2015.
They have excluded counties west of the 100th Meridian28 and counties with less than 30 years of
data. This gives N = 2, 209 corn-growing counties with 30% of unbalanced data for corn yields.
Keane and Neal (2020) defined the annual growing (resp. killing) degree days gddti (resp. kddti)
values by summing the daily degree days measures. The hours each day a crop is exposed to
one-degree C

� temperature intervals is approximated using a sinusoidal function:

ddC =

8
<

:

0 if C > Tmax,

Tavg � C if C < Tmin,

⇡
⇥
(Tavg � C) cos�1 (S) + (Tmax � Tmin) sin (S) /2

⇤
otherwise,

where C is the temperature in Celsius, Tmax, Tmin are the daily max/min temperatures, Tavg =

(Tmax + Tmin) /2 and S = cos�1
⇣

2C�Tmax�Tmin
Tmax�Tmin

⌘
. Then, the daily growing (resp. killing) degree

day is gddid = dd0 � dd29 (resp. kddid > dd29) for each county i and each day d. These values
are summing over around 150 days from April 1st to September 30th (see Keane and Neal (2020)
p.1406). They are expressed in total hours over the growing season. Precipitation is measured as
total inches of rain over the growing season.

Since some values of corn yields are missing for counties, we interpolated these missing values
using the inverse distance weighted method. This method uses a weighted average of non-missing
values, the weights being reciprocals of the powered distance between values, the power being zero
or positive (see Fisher et al. (1993)). We set the power equal to 2. Thus with power 2, values
at distance 1 from a point with unknown values have weight 1, values at distance 2 from a point
have weight 1/4, distance 3 weight 1/9, and so forth. Missing data concern only the corn yield
variable. This variable with missing data was processed using inverse distance weighted method
to obtain satisfactory imputations, close to those obtained with cubic B-splines. We also tried
multiple imputation, using Bootstrap-based expectation-maximization (EM) algorithms proposed
by Honaker and King (2010) and Honaker et al. (2011) but we got implausible values, mainly for
the oldest or most recent years. Our choice of using inverse distance weighted smoothing rather
than a multiple imputation method (like MICE (multiple imputation by chained equations) or EM,
(see White et al. (2011)) is reinforced by the results of Yoon et al. (2017). Many modern missing
data methods (e.g., multiple imputation, FIML, EM, ...) assume missing at random. Yoon et al.
(2017) have compared the most familiar methods for estimating missing data. They show that
recurrent neural networks (RNN), just followed by cubic splines, give the best results (i.e., smallest
rmse) as compared to imputation (MICE or EM) (see also Baltagi et al. (2019)). This gives us a
balanced dataset of N = 2, 678 corn-growing counties over T = 66 years (1950-2015), i.e., 176, 748
observations per variable.

To define the spatial weight matrix, the counties coordinates are taken from an ESRI Shapefile
downloaded from the US Census.29 Using the 2, 678 county spatial polygons read from the ESRI
Shapefile mentioned above, we first created the county distance matrix. The county distances

28The 100th Meridian separates the Great Plains to the east from the semi-arid lands to the west. The western
counties are much more reliant on irrigation.

29US Census ftp://ftp2.census.gov/geo/tiger/TIGER2008/tl 2008 us county00.zip.
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are great-circle distances calculated using the Haversine formula based on internal points in the
geographic area. The Haversine formula is given by

d = 2r arcsin

 s

sin2
✓
�2 � �1

2

◆
+ cos�1 cos�2 sin

2

✓
⇤2 � ⇤1

2

◆!

d is the distance between the two points along a great circle of the sphere (Earth). It is the spherical
distance (i.e., the shortest distance between two points on the surface of a sphere). r is the radius
of the sphere (637.8137 km for Earth). �1 and �2 are the latitudes of point 1 and of point 2 (in
radians). ⇤1 and ⇤2 are the longitudes of point 1 and of point 2 (in radians).

For the 2, 678 counties, the minimum distance is 11.59 km between Lancaster County (Virginia)
and Middlesex County (Virginia) and the maximum distance is 4, 390 km between Lane County
(Oregon) and Su↵olk County (New York state).30 From this county distances matrix, we created a
row-normalized inverse square distance spatial weight matrix using the 5 nearest neighbors.31,32 In
the dataset, the missing (continental) states are Alaska, Connecticut, District of Columbia, Maine,
Massachusetts, Nevada, New Hampshire, Rhode Island and Vermont.

The specific climatology of each county is defined according to the Köppen climate classification
(see below) (see also Kottek et al. (2006) and Aparicio-Ruiz et al. (2018)).33 Approximately, to
the east of the 100th meridian, the climate ranges from humid continental in the north to humid
subtropical in the south. The Great Plains west of the 100th meridian is semi-arid. Much of the
Western mountains have an alpine climate. The climate is arid in the Great Basin, desert in the
Southwest, Mediterranean in coastal California, and oceanic in coastal Oregon and Washington and
southern Alaska. Most of Alaska is subarctic or polar. Hawaii and the southern tip of Florida are
tropical, as being the populated territories in the Caribbean and the Pacific.

30The percentiles (min, 5%, 25%, mean, 75%, 95%, max) of all the county distances (in km) are the following :
11.59, 282.93, 694.73, 1218.29, 1601.30, 2606.24, 4390.60.

31The choice of such a number of nearest neighbors is defined to be consistent with Global Climate Models
(GCMs) projections. Indeed, these GCMs, used for climate studies and climate projections, are typically run at
spatial resolutions of the order of 150 to 200 km (Flato et al. (2014)). But the Keane and Neal (2020) dataset we use,
has been converted to county-level projections using the interpolation procedure called “bias-correction and spatial
disaggregation” for an appropriate scale of assessing impacts (see Wood et al. (2004), Piani et al. (2010), Li et al.
(2015)).

32The percentiles (min, 5%, 25%, mean, 75%, 95%, max) of the 5 nearest county distances (in km) are the following:
11.59, 25.82, 34.32, 46.47, 50.30, 89.27, 300.27.

33The Köppen-Geiger climate classification for U.S. states and counties has been downloaded from
http://koeppen-geiger.vu-wien.ac.at/data/KoeppenGeiger.UScounty.txt.
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Table H.1: Koppen-Geiger Climate Classification

Climate class Climate name

Af Tropical rainforest climate

Am Tropical monsoon climate

Aw Tropical wet and dry

Bwh Warm desert climate

BSh Warm semi-arid climate

BWk Cold desert climate

BSk Cold semi-arid climate

Csa Warm Mediterranean climate

Csb Temperate Mediterranean climate

Cfa Warm oceanic climate/Humid subtropical climate

Cfb Temperate oceanic climate

Cfc Subpolar oceanic climate

Cwa Monsoon-influenced humid subtropical climate

Cwb Monsoon-influenced temperate oceanic climate

Dfa Warm/Humid continental climate

Dfb Temperate/Humid continental climate

Dfc Cool continental climate/Subarctic climate

Dwa Warm/Humid continental climate

Dwb Temperate/Humid continental climate

Dwc Cool continental climate/Subarctic climate

Dsa Warm/Mediterranean continental climate

Dsb Temperate/Mediterranean continental climate

Dsc Mediterranean-influenced subarctic climate

ET Tundra climate
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Figure 4: U.S Köppen-Geiger climate classification (source: Aparicio-Ruiz et al. (2018) pp. 164.)
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State corn yield in 2015
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Figure 9: (a) State means of corn yield for 2015. (b) Time means of corn yield over 2,678 counties. (c) Time means
of growing and killing degree days over 2,678 counties. (d) Time means of precipitation over 2,678 counties.
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Table H.2: Descriptive statistics of corn yield, growing and killing degree days and precipitations for the N = 2, 678
counties and the T = 66 years (1950-2015), (NT = 176, 748 observations).

mean std.dev min max

corn yield overall 80.58 40.76 12 254.44
between 24.27 16.65 159.37
within 32.75 -34.60 233.62

growing degree days overall 3613.76 548.84 2038.88 4931.37
between 536.88 2265.88 4810.52
within 114.42 3060.46 4030.19

killing degree days overall 68.83 67.77 0.4 735.25
between 60.85 0.5232 629.68
within 29.85 -86.57 333.87

precipitations overall 557.17 201.51 5.04 1693.67
between 159.41 25.29 1110.43
within 123.29 91.87 1248.43

Table H.3: Köppen-Geiger climate classification dummies (frequency in percent).

Aw Tropical wet and dry climate 0.07
BSh Warm semi-arid climate 0.37
BSk Cold semi-arid climate 8.25
BWh Warm desert climate 0.18
BWk Cold desert climate 0.11
Cfa Warm oceanic climate/Humid subtropical climate 54.29
Cfb Temperate oceanic climate 1.68
Csa Warm Mediterranean climate 0.71
Csb Temperate Mediterranean climate 1.45
Dfa Warm/Humid continental climate 18.37
Dfb Temperate/Humid continental climate 13.51
Dfc Cool continental climate/Subarctic climate 0.37
Dsb Warm/Humid continental climate 0.37
Dsc Temperate/Humid continental climate 0.03
Dwa Cool continental climate/Subarctic climate 0.01
Dwb Temperate/Mediterranean continental climate 0.11
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MO-OLS estimation of the model

log yti = �1,tigddti + �2,tikddti + �3,tiprecti + �4,tiprec
2
ti + cti + uti , i = 1, ..., N , t = 1, ..., T

Table H.4: MO-OLS estimates of the impacts of temperatures and precipitations on U.S. corn yields for theN = 2, 678
counties and the T = 65 years (1951-2015), (NT = 174, 070 observations).

mean se min 10th 25th 75th 90th max

gdd 0.00032 0.00002 -0.00514 -0.00054 0.00005 0.00073 0.00110 0.00285
kdd -0.00655 0.00014 -0.05383 -0.01279 -0.00970 -0.00252 0.00036 0.01154
prec 0.00084 0.00011 -0.01984 -0.00221 -0.00075 0.00231 0.00415 0.04115
prec

2(÷103) -0.00066 0.00017 -0.15584 -0.00396 -0.00199 0.00055 0.00183 0.10422
intercept 3.20889 0.07280 -0.80934 1.73755 4.26773 6.21678 7.92130 25.48345
R

2 0.79367
�
2
u 0.07153
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file with 100% of the sample. The figure with the full sample is available on request.
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scatter plot of a random 20% subsample of �̂1,ti against gddti in order to reduce the too large size of the postscript
file with 100% of the sample. The figure with the full sample is available on request.
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H.2. Direct e↵ects, spatial spillover e↵ects and total e↵ects

Pooling the N counties, we can rewrite the estimated specification as

log yt = � log yt�1 + ⇢WN log yt + �WN log yt�1 +Xt� + (IN ⌦ f
0
t)�+ ut, (H.49)

where � = (�1, ...,�6)
0 and � = (�11, · · · , �1m, · · · , �N1, · · · , �Nm)0 with m = 3.

X is defined as X =
�
gddt, Adapt gddt, kddt, Adapt kddt, prect, prec

2
t , V

�
where Adapt gddt =

log (gddt) gddt � gddt, Adapt kddt = log (kddt) kddt � kddt and where V are the Köppen-Geiger
climate classification dummies. Then,

log yt = [IN � ⇢WN ]�1
n
(�IN + �WN ) log yt�1 +Xt� + (IN ⌦ f

0
t)�+ ut

o
, (H.50)

Recursively, we get

log yt+⌧ =
�
B

�1
A
�
log yt�1 +

⌧X

s=0

Ds

n
Xt+⌧�s� +

�
IN ⌦ f

0
t+⌧�s

�
�+ ut+⌧�s

o
, (H.51)

where

B = [IN � ⇢WN ]

A = (�IN + �WN )

Ds =
�
B

�1
A
�s

B
�1

Then, leaving out the dummy variables, the ⌧ -period-ahead (cumulative) multipliers of gdd, kdd
and prec are given by

@ log yt+⌧
@gdd

0
t

=
⌧X

s=0

Ds

h
IN�1 + �2diag

⇣
log(gdd)i

⌘

i=1,...,N
+

1

N
diag (�1i)i=1,...,N

i
, (H.52)

@ log yt+⌧
@kdd

0
t

=
⌧X

s=0

Ds

h
IN�3 + �4diag

⇣
log(kdd)i

⌘

i=1,...,N
+

1

N
diag (�2i)i=1,...,N

i
,

@ log yt+⌧
@prec

0
t

=
⌧X

s=0

Ds

h
IN�5 + 2�6diag

�
preci/10

3
�
i=1,...,N

+
1

N
diag (�3i)i=1,...,N

i
,

where diag

⇣
log(gdd)i

⌘

i=1,...,N
is a (N ⇥ N) diagonal matrix of individual means34 of log(gdd)

(gddi = 1/(T � 1)
PT

t=2 log(gdd)ti) (idem for diag
⇣
log(kdd)i

⌘

i=1,...,N
and diag (preci)i=1,...,N ). As

(1/N)diag (�1i)i=1,...,N ! 0 as N is large and as the �1i are small values (idem for �2i and �3i), the

34We compute these multipliers at the midpoint of the sample, but we could have selected observations from the
last year of the sample (2015).
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⌧ -period-ahead (cumulative) multipliers of gdd, kdd and prec are approximately

@ log yt+⌧
@gdd

0
t

'
⌧X

s=0

Ds

h
IN�1 + �2diag

⇣
log(gdd)i

⌘

i=1,...,N

i
, (H.53)

@ log yt+⌧
@kdd

0
t

'
⌧X

s=0

Ds

h
IN�3 + �4diag

⇣
log(kdd)i

⌘

i=1,...,N

i
,

@ log yt+⌧
@prec

0
t

'
⌧X

s=0

Ds

h
IN�5 + 2�6diag

�
preci/10

3
�
i=1,...,N

i
,

and the impact multiplier (⌧ = 0) is

@ log yt
@gdd

0
t

' B
�1
h
IN�1 + �2diag

�
gddi

�
i=1,...,N

i
, (H.54)

@ log yt
@kdd

0
t

' B
�1
h
IN�3 + �4diag

�
kddi

�
i=1,...,N

i
,

@ log yt
@prec

0
t

' B
�1
h
IN�5 + 2�6diag

�
preci/10

3
�
i=1,...,N

i
.

Since these (impact and cumulative) multipliers are (N ⇥N) matrices, the (impact or cumulative)
direct e↵ect is the (N ⇥ 1) vector of the diagonal elements of these matrices. The (impact or
cumulative) indirect e↵ect is the (N ⇥ 1) vector of the row sums of the non-diagonal elements of
these matrices. And the (impact or cumulative) total e↵ect is the (N ⇥ 1) vector of the row sums
of these matrices. The average direct, indirect and total e↵ects are the averages of these (N ⇥ 1)
vectors.
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