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ABSTRACT
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The Identification of Time-Invariant 
Variables in Panel Data Model: Exploring 
the Role of Science in Firms’ Productivity
Recent literature has raised the attention on the estimation of time-invariant variables both 

in a static and a dynmamic framework. In this context, Hausman-Taylor type estimators 

have been applied, relying crucially on the distinction between exogenous and endogenous 

variables (in terms of correlation with the time-invariant error component). We show 

that this provision can be relaxed, and identification can be achieved by relying on the 

milder assumption that the correlation between the individual effect and the time-varying 

regressors is homogenous over time. The methodology is applied to identify the role of 

inputs from “Science” (firm-level publications’ stock) on firms’ labour productivity, showing 

that the effect is larger for those firms with higher level of R&D investments. The results 

further support the dual – direct and indirect – role of R&D. 
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1 Introduction

One of the main virtue of the availability of panel data is the possibility to control

for unobserved heterogeneity at the unit level. The fixed e↵ects (FE) model allows

to identify the slope coe�cient of time-variant variables even in case of omitted

variables that are correlated with the regressors of interest, provided that these

unobserved e↵ects are constant over time. A notable drawback of this approach is

that the specific e↵ect of time-invariant variable —such as individuals’ gender and

race or firms’ nationality— cannot be identified. However, the identification and

estimation of the slope coe�cients of such time-invariant variables are certainly of

interest in applied research.

Di↵erent approaches have been proposed in the literature, allowing for estima-

tion of the e↵ect of time-invariant variables at the cost of introducing additional

assumptions.

The pioneer work of Hausman and Taylor (1981, henceforth, HT81) allows

to identify the slope coe�cient of time-invariant variables imposing the assump-

tion that some regressors (both time-variant and time-invariant) are uncorrelated

with the individual component. Between variability of exogenous variables can

be used to build legitimate instruments of the endogenous variables. Amemiya

and MaCurdy (1986) and Breusch et al. (1989) extend the framework proposed by

HT81 by suggesting additional (legitimate) instrumental variables. See Ahn and

Schmidt (1995) and So Im et al. (1999) for an excellent review of these approaches.

Baltagi and Bresson (2012) have proposed a robust version of the HT81 estimator

in the presence of outliers.

Plümper and Troeger (2007) suggest an approach that is closely related to
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HT81. They propose a multi-stage approach, labelled ‘fixed e↵ects vector decom-

position’, which relies on an exogeneity assumption of the time-invariant variables

for the identification of their own e↵ect (Greene, 2011). More recently, Pesaran and

Zhou (2018) have proposed a two-stage approach, labelled ‘fixed e↵ect filtering’,

that can be applied when the time-invariant variables are exogenous. The author

also consider the case of endogenous time-invariant variables; hence identification

is achieved by relying on the existence of external instruments (Pesaran and Zhou,

2018; Chen et al., 2020).

The two-stage approach has also been applied in a dynamic framework, still the

distinction between exogenous and endogenous (i.e. correlated with the individual

e↵ect) variable is crucial for identification of the e↵ect of time-invariant variables,

as well as the availability of external instruments (Kripfganz and Schwarz, 2019).

In this paper, we show that, relying on the assumption that the correlation be-

tween (a subset of) time-varying variables and the individual e↵ect is homogenous

over time (originally suggested by Breusch et al. 1989), it is possible to achieve

identification of the e↵ect of time-invariant variables without the need to choose ex-

ogenous variables or relying on external instruments. This result has been largely

overlooked by the econometric literature and constitutes the main contribution of

this paper.

We apply the methodology to estimate the e↵ect of of study the relationship

between a firm’s publications’ stock and its productivity. We aim to gauge whether

and how much firm-level publications’ stock (proxy for“Science”) a↵ects labour

productivity. The results show that input from Science can be beneficial to those

firms with higher level of R&D investments already in place, further supporting

the dual role (direct and indirect) of R&D (Cohen and Levinthal, 1989; Leten
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et al., 2021).

The paper proceeds as follows. The next section introduces the model and

briefly reviews the existing literature studying the identification of the slope coef-

ficient of time-invariant variables in a fixed e↵ect framework. Section 3 presents

the proposed methodology and the assumptions needed for the identification of

the e↵ect of time-invariant variables. Section 4 reports the results of Monte Carlo

experiments. The empirical application is presented in Section 5 and Section 6

concludes.

2 Estimating the e↵ect of time-invariant vari-

ables

Consider the linear panel data model with fixed e↵ects (i = 1, ..., N ; t = 1, ..., T ):

yit = x0
it� + z0i� + "it = x0

it� + z0i� + ↵i + ⌧t + eit (1)

in which xit is a vector of k time-varying independent variables, zi contains ob-

servations on the g time-invariant variables that vary across individuals but are

constant over time; the error term "it is decomposed into three sources of variation

(Baltagi, 2021): an individual e↵ect ↵i that only varies across individuals and is

constant over time for each i, a time component ⌧t that only varies over time and

is constant across individuals, capturing economy-wide e↵ects, and eit, an idiosyn-

cratic error term. We consider the case of economic applications in which N is

“large” and T is “small” (fixed), so that the time e↵ect can be modelled by the

inclusion of a set of time dummy variables ⌧t.
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In a fixed e↵ects framework, correlation is unrestricted between ↵i and the

independent variables, whereas the strict exogeneity assumption requires lack of

correlation between xis and eit at any time period (s, t = 1, ..., T ). Despite the

ability to control for unobservable individual characteristics, the fixed e↵ects ap-

proach only allows identification of the parameter �, whereas the e↵ect of spe-

cific time-invariant variables (the parameter �) cannot be identified. The within-

group transformation is used in the estimation process, in which group-demeaned

variables are taken into account, that is for each variable in x: xj,it � x̄j,i with

x̄j,i =
P

t xj,it/T (j = 1, ..., k). In the case of the time-invariant variables zi, the

within-group transformation would be identically equal to zero. Identification of

� is not achieved, unless additional assumptions are imposed on model (1).

To the best of our knowledge, Hausman and Taylor (1981) was the first work to

propose a methodology for the identification of the e↵ect of time-invariant variables

in model (1). Their approach requires to partition the vectors xit and zi into two

sets of variables on the basis of the assumptions on the correlation between the

variables and the individual e↵ect ↵i:

xit = (x0
1it,x

0
2it)

0 and zi = (z01i, z
0
2i)

0

with x1it of dimension k1 ⇥ 1, x2it of dimension k2 ⇥ 1, z1i of dimension g1 ⇥ 1,

and z2i of dimension g2 ⇥ 1 (k1 + k2 = k and g1 + g2 = g). The individual e↵ect ↵i

is assumed to be uncorrelated with variables in x1it and z1i; whereas any pattern

of correlation is allowed with the variables in x2it and z2i.1 The model (1) can

1The assumption of strict exogeneity is maintained for all variables in xit and zi.
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therefore be written as:

yit = x0
1it�1 + x0

2it�2 + z01i�1 + z02i�2 + ↵i + ⌧t + eit (2)

Within this framework, an instrumental variable approach can be adopted for

estimating the parameters in (1) or, equivalently, (2). The assumption of lack of

correlation between variables in x1it and ↵i allows using transformation of these

variables as internal instruments for z2i. In particular, the set of instruments

proposed by HT81 includes x1it� x̄1i, x2it� x̄2i, x1it and z1i. A necessary condition

for the identification of � = (�0
1, �

0
2)

0 is that the number of variables in x1it is at

least as large as the number of variables in z2i (Hausman and Taylor, 1981).

This approach has been extended by augmenting the set of legitimate instru-

ments by Amemiya and MaCurdy (1986) and Breusch et al. (1989) (Ahn and

Schmidt, 1995; So Im et al., 1999).2 In order to increase e�ciency, Amemiya

and MaCurdy (1986) propose to replace the instrument x1it � x̄1i with the time-

invariant variables

x1i1 � x̄1i, x1i2 � x̄1i, ..., x1iT � x̄1i

Breusch et al. (1989, henceforth BMS89) propose to further expand the set of

instruments by also using as instruments the (endogenous) time-invariant variables

x2i1 � x̄2i, x2i2 � x̄2i, ...,x2iT � x̄2i

The validity of this approach would require the following additional assumption

2Baltagi and Bresson (2012) propose a robust version of the HT81 estimator.
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(see also Ahn and Schmidt, 1995):

For all i, E(x2it↵i) is the same for all t (3)

Note that this assumption is also required for the application of the system GMM

estimator in dynamic panel data models (Blundell and Bond, 1998; Blundell et al.,

2001).

Recently, some estimators have been proposed that relax the assumption on

the exogeneity of x1it but, on the other hand, they require either all the variables

in zi to be exogenous or, when endogeneity of zi is allowed, they require the

availability of external instrumental variables (Plümper and Troeger, 2007; Greene,

2011; Pesaran and Zhou, 2018; Chen et al., 2020), which may be problematic to

retrive.

Plümper and Troeger (2007) propose a three-stage procedure that allows iden-

tification of the e↵ect of time-invariant variables in the case they are orthogonal to

the individual e↵ects (Plümper and Troeger, 2007; Greene, 2011). More recently,

Pesaran and Zhou (2018) have proposed a two-stage procedure that:

(i) in the first step, computes the fixed e↵ects estimator of � in model (1) and

the associated residuals "̂it;

(ii) in the second step, considers a regression of the time average of the residuals

(¯̂"i =
P

t "̂it/T ) on the time-invariant variables (including an intercept).

The regression in (ii) can be based on a OLS estimator when the exogeneity of

all time-invariant variables is considered – in this case, the Pesaran and Zhou

(2018) procedure is equivalent to the three-stage approach by Plümper and Troeger
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(2007). The case of endogenous time-invariant variables can be taken into account,

and in that case the regression in (ii) is based on an instrumental variable approach

but the availability of valid external instrumental variables is required for the

identification of �.

The econometric literature has so far overlooked the implication of the BMS89

assumption (3) in a static framework. Indeed, homogenous-correlation variables

(i.e. variables that satisfies condition in (3)) can be exploited to identify the

parameter �, without the need to rely on an exogeneity assumption, i.e. without

the need to partition the variables in the model into an endogenous and exogenous

group. We further elaborate on this insight in the next section.

3 Taking full advantage of BMS89 homogeneity

assumption

Consider the model in (1) where, for simplicity, we focus on the case k = 1,

g = 1 and ⌧t = 0, as the inclusion of a full set of time dummy variables in

the model would not change the validity of our approach. The attention will be

focused on taking into account the issue of correlation between the regressors (xit,

zi) and the individual e↵ect ↵i. Within a fixed e↵ects framework, correlation is

unrestricted between the variables on the right hand side and the individual fixed

e↵ect. The model is estimated by considering the within-group transformation,

that is individual-demeaned variables are considered in the estimating equation:

yit � ȳi = (xit � x̄i)� + (zi � zi)� + (↵i � ↵i) + eit � ēi = (xit � x̄i)� + eit � ēi
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This approach allows consistent estimation even when arbitrary correlation with

↵i is present, as the individual e↵ect is removed from the estimating equation

by the within-group transformation. However, the within-group transformation

also remove the time-invariant variables zi, so that the parameter � is not identi-

fied/identifiable.

As noticed by Verbeek (2008, pag. 354), the within-group estimator can also be

obtained by an instrumental variable regression in which the within-group trans-

formed xit (i.e., xit � x̄i) is used as instrument in the level equation (1) (see also

So Im et al. 1999). Still, only the parameter � can be identified as there is no

information (internal instrumental variable) for the estimation of �.

Rooted in the HT81 approach, BMS89 noticed that, by assuming homogeneity

over time in the correlation structure between time-varying (endogenous, i.e. cor-

related with ↵i) regressors and the individual component, further valid instruments

for the level equation could be defined, and it is possible to write

E[(xis � x̄i)(↵i + eit)] = 0 for all t and s (4)

The set of T instruments only exploits the within variability of xit, but by

increasing the number of instruments also o↵ers the possibility to identify �, with-

out the need to distinguish endogeous and exogenous regressors as in the original

HT81 framework. What the literature has, so far, failed to recognize is that the

additional moment conditions can be e↵ectively employed for the identification of

�.

The estimation approach we propose in this paper builds on the BMS89 insight

and suggest exploiting the T�1 additional instruments spanning from the assump-
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tion of homogenous correlation in order to identify the e↵ect of time-invariant

variable(s):3

xi2 � x̄i, ..., xiT � x̄i (5)

Overall, the following set of moment conditions/instruments can be exploited

in estimation:

E[(xit � x̄i)(↵i + eit)] = E[(xit � x̄i)(yit � �xit � �zi)] = 0 (6)

E[(xi2 � x̄i)(↵i + eit)] = E[(xi2 � x̄i)(yit � �xit � �zi)] = 0 (7)

...

E[(xiT � x̄i)(↵i + eit)] = E[(xiT � x̄i)(yit � �xit � �zi)] = 0 (8)

with condition (6) spanning from within-group/fixed-e↵ect estimation, that allows

estimation of �; and the additional T � 1 moment conditions in (7)-(8), spanning

from the homogeneity assumption (3) that can be exploited for the identification

of �.

Of course, besides exogeneity, the proposed set of instruments should also be

“strong”, such that weak instrument issues do not emerge in estimation. For that

we require zi to be related to within-deviations of xit, that is the within-evolution

of xit should be related to zi. To better understand this requirement, consider a

linear combination of the full set of instruments:

xit � xi1, xit � xi2, ..., xit � xiT (9)

3xi1� x̄i is omitted from the set of instrument to avoid multicollinearity in the full instrument
set that also includes xit � x̄i as instrument for xit.
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for t = 1, ..., T .4 All in all, correlation between zi and xit should be driven by

correlation with its growth rate, and di↵erent evolution of xit is associated with

di↵erent values of zi.

Summing up, the following conditions are needed for a consistent estimation:

(A1) Homogeneity: For all i, E(xit↵i) is the same for all t, as in (3)

(A2) When k = g = 1, T � 2

(A3) zi is related to the within evolution of xit: E(zi(xit�x̄i)) 6= 0 (or, equivalently,

E(zi(xit � xis)) 6= 0, s, t = 1, ..., T )

Condition (A1) is needed for consistent estimation of � and �: if the condi-

tion does not hold, the set of instrumental variables in (5) does not satisfy the

exogeneity requirement. Note that this assumption is customarily exploited when

estimating dynamic panel data model with endogenous or predetermined variables

using the system-GMM estimator (Blundell and Bond, 1998; Blundell et al., 2001).

Condition (A2) is the order condition for identification. As we are estimating

two parameters (�, �) associated to two endogenous variables, we need at least

two instrumental variables. In the more general case of k > 1 and g > 1, condition

(A2) would be generalized to (T � 1)k � g. Condition (A1) needs not to hold for

all the variables included in the model, it should nonetheless holds for a subset of

variables, k(A1), satisfying condition (A1). In this case, condition (A2) would be

written as (T � 1)k(A1) � g.

Condition (A3) requires that instruments are relevant for z: the parameter �

could only be identified when z is correlated with the instruments in (5), that is,

4Note that the linear combination of the these instruments reproduces the within-group trans-
formation as: (xit � xi1 + xit � xi2 + ...+ xit � xiT )/T = xit � x̄i.
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to the within evolution of x (Stock and Yogo, 2005).

Standard theory of instrumental variables and GMM applies for estimation

(Hansen, 1982). As an advantage, the proposed framework easily allows resid-

ual serial correlation and/or heteroskedasticity. Extension to unbalanced panel

datasets is straightforward too.

The ‘fixed e↵ect filtering’ (FEF) method proposed by Pesaran and Zhou (2018)

can also be applied for estimation (Newey, 1984). In the first step, the fixed-e↵ect

estimator of � is computed, and, relatedly, the fixed e↵ect residuals. Then, the

group mean of the fixed e↵ect residuals is taken as the dependent variable and

regressed on a constant term and the time-invariant variable zi. This step is

performed using a two-stage least squares estimator with variables in (5) used as

instruments for zi, therefore without reliance on external instruments.

4 Monte Carlo experiments

Our Monte Carlo set up is based on the experiments of Pesaran and Zhou (2018),

henceforth referred to as PZ18. The data generating process is nonetheless sim-

plified as we only generate one endogenous time-variying variable xit and one

endogenous time-invariant variable zi (i = 1, ..., N ; t = 1, ..., T ):

yit = 1 + ↵i + �xit + �zi + "it (10)

with � = � = 1. Focus will be on the estimation of �. The fixed e↵ects ↵i are

generated as 0.5(�2
2 � 2) for i = 1, ..., N . As for "it, we follow PZ18, and consider

three di↵erent designs:
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Homoskedastic "it:

"it ⇠ IIDN(0, 1), i = 1, ..., N ; t = 1, ..., T

Heteroskedastic "it:

"it ⇠ IIDN(0, �2
i ), i = 1, ..., N ; t = 1, ..., T

with �2
i ⇠ 0.5(1 + 0.5�2

2) for all i.

Serially correlated and heteroskedastic "it:

"it = ⇢",i"it�1 +
q

1� ⇢2",iuit

for t = �49,�48, ..., T (the first value of "it is set to 0 for all i), uit ⇠

IIDN(0, �2
ui) for all i and t, �2

ui ⇠ 0.5(1+0.5IID�2
2), and ⇢",i ⇠ IIDU(0, 0.98)

for all i. We discard the first 50 observations, using the remaining T obser-

vations in the experiments.

We consider N = 100, 500 and T = 4, 8. In all experiments, xit is correlated

with ↵i, but uncorrelated with "is at all time periods (s = 1, ..., T ) so that the

strict exogeneity assumption is satisfied and the fixed-e↵ect estimation (within-

group transformation) provides consistent estimation of �. In particular, xit is

generated as:

xit = ↵igt + wit
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with the time e↵ects gt generated as U(1, 2) and kept fixed across all replications.

For assumption (A1) to hold, we set gt = g1 for all t.

We follow PZ18 in generating the stochastic component of xit, wit, as an het-

erogenous stationary AR(1) process:

wit = µi(1� ⇢w,i) + ⇢w,iwit�1 +
q

1� ⇢2w,i✏it

with ✏it ⇠ IIDN(0, �2
✏,i) for all i, �

2
✏,i ⇠ 0.5(1 + 0.5IID�2

2), wi0 ⇠ IIDN(µi, �2
✏,i),

⇢w,i ⇠ IIDU(0, 0.98), µi ⇠ IIDN(0, 2).

As for the time-invariant variable zi, PZ18 consider the following data gener-

ating process:

zi = 1 + w̄i + ↵i + ⇠i (11)

that we change to

zi = 1 + (wiT � wi1) + ↵i + ⇠i (12)

with ⇠i ⇠ IIDN(0, 1). When zi is generated according to (12), condition (A3) is

satisfied, i.e. within-variability of xit is relevant for zi, and the proposed method-

ology allows identification of �. We will also consider equation (11) to evaluate

the e↵ect of irrelevant instruments in the estimation process. In all experiments,

zi is endogenous, i.e. correlated with ↵i.

No external instrument (denoted as ri in PZ18) is generated, and identification

of � can be achieved by exploiting the homogeneity assumption (A1) and the

correlation of zi and the growth rate (“within evolution”) of xit.
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Results of Monte Carlo experiments, based on 1000 replications, are in Ta-

bles 1-3, that report Monte Carlo mean and standard deviation of the FEF-IV

estimator, and joint GMM estimation (first and second step) of � and � (inter-

cept is estimated but not reported). In order to compute FEF-IV estimates, the

fixed-e↵ect estimator is first obtained. Residuals of the within-group estimation

are then computed and their group-average is considered as the dependent vari-

able in the second stage. This entails an IV estimation with dependent variable zi

(and the intercept) and the BMS variables (5) used as instruments.5 The tables

also report, in the GMM framework, the 5% rejection rate of the Hansen J test

of overidentifying restriction,6 and the Kleibergen-Paap (KP) F test for assessing

instrument strength.

Table 1 is our baseline estimation framework, in which all the assumptions

needed for the application of the proposed methodology are satisfied, i.e. correla-

tion between ↵i and xit is homogenous over time (i.e. A1 satisfied: when generating

xit, gt = g1 for all t), and zi is related to within deviations of xit (A3 satisfied, eq.

12 used to generate zi). As T > 2 in all experiments, and we consider the case

of one endogenous time-varying variable xit and one endogenous time-invariant

variable zi, condition (A2) is always satisfied.

Results in Table 1 shows that identification of � is achieved, and similar results

emerge with IV and GMM joint estimation as compared to the FEF-IV estimation

(Pesaran and Zhou, 2018). The J-test of overidentified restrictions has generally

the correct size (being oversized in the smaller sample of N = 100). The KP F

5Estimates are obtained using Stata. FEF-IV estimates are obtained using the xtfef com-
mand available at https://qiankunzhou.weebly.com/research.html. IV and GMM estimators are
obtained with the ivreg2 command (Baum et al., 2010).

6Being the number of replication 1,000, the 95% confidence interval for the test size at that
5% level is 3.65%-6.35% (Morris et al., 2019).
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test is large, pointing to instruments’ strenght.

*** TABLE 1 ABOUT HERE ***

In Table 2, xit is generated such that the homogeneity condition (A1) is not

satisfied, i.e. the parameter gt varies over time. In this case, FEF-IV has the

advantage of providing a consistent estimator of �, whereas the estimate of � is

biased. However, the J-test of overidentifying restriction has power in detecting

departures from the homogeneity assumption.

*** TABLE 2 ABOUT HERE ***

Finally, Table 3 reports the result in the case when (A3) is not satisfied, i.e. zi

is generated according to (11): within-evolution of xit is not dependent upon zi,

so that the BMS instruments are irrelevant. Again, a consistent estimate of � is

obtained with FEF-IV, and the estimate of � is biased. In this context, the KP

statistics is small, pointing to a problem related to instruments’ strength in this

setting.

*** TABLE 3 ABOUT HERE ***

5 Science and productivity at the firm level: an

application

The methodology presented in the previous sections is particularly suitable for

empirical applications in which one or more independent variables are invariant

over time, and the traditional FE model does not allow for the identification of
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such variables. Precious information on the impact of such fixed components

could be lost in a catch-all black box. There are many empirical models in which

such occurrences appear: for example in longitudinal household survey containing

individual as unit where the gender/race are hidden in the FE; firm level panels

where the location/sector e↵ect cannot be identified; macro-panels where fixed

e↵ects capture geographical or time invariant features (such as membership to

alliances or blocks, language, legal origin, etc.). Examples could be extended in

diverse empirical contexts.

We exploit the proposed methodology to gauge whether and how much publi-

cations’ stock at the firm level (proxy for “Science”) might a↵ect its labour pro-

ductivity. The data for the analysis have been compiled by matching firm level

data from three di↵erent data sources: R&D Scoreboard, Orbis (Bureau van Dijk),

and the JRC-OCED COR&DIP database (v.2, 2019).

Our baseline regression builds on the model by Hall and Mairesse (1995):

ln

✓
V Ait

Lit

◆
= �1 ln

✓
Kit

Lit

◆
+ �2 ln

✓
RDit

Lit

◆
+ �3 ln(Lit) +

+�4Si + �5 ln

✓
RDit

Lit

◆
⇥ Si + ↵i + ⌧t + eit (13)

where the dependent variable is firm’s i labour productivity at time t, defined as

the (natural log) ratio of value added, V Ait, over employees, Lit. The regressors

include physical capital stock,Kit, the stock of R&D expenditureR&Dit (both over

employees). The perpetual inventory method has been applied for computation

of the stock.7 and the (natural log) number of employees, Lit. These variables

7For physical capital we follow Gal (2013), whereas in the case of R&D we consider a 5%
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are extracted from Orbis (V A, K) and the R&D Scoreboard (RD, L) and are

available over the period 2007-2016.

The baseline regression is augmented by including a proxy of the firm’s en-

gagement in basic research via links with the scientific community Si, as well as

its interaction with R&D stock. In order to measure firms’ linkages to the sci-

entific community, we rely on the count of a firm’ publications (Cockburn and

Henderson, 2000; Leten et al., 2021). The number of publications is drawn from

the COR&DIP dataset and it is only available over the time period 2014-2016.

In order to compute Si, we pool the total number of publication at the firm level

over the available time span (stock). There is a clear sectoral pattern in the aver-

age number of publications, from ‘Aerospace & Defence’ having on average 774.8

publications per firm over the observed time span to ‘Industrials’ with 188.1. To

mitigate this erratic pattern, Si is defined as a firm-specific dummy variable equal

to 1 to identify firms with “above-sector-average” number of publications. This

variable is time-invariant over the observed time span, and we extend its value

over the whole time period analysed.8 We argue that the propensity of the firm

to publish to be an “open science” structural characteristic of the firm unlikely to

change substantially over time. In other words, a firm could be changing the over-

all number of publications, but it is unlikely to change its relative position above or

below the sector-average. We motivate the use of such proxy based on the exten-

sive literature analysing the role of firms’ interaction with “Science” and science

e↵ect on innovation (see e.g., Mansfield, 1991, 1998, Cockburn and Henderson,

pre-sample growth rate and a rate of obsolescence of knowledge equal to 15%.
8The sectors considered are from the R&D Scoreboard data: Aerospace & Defence, Automo-

biles & other transport, Chemicals, Health industries, ICT producers, ICT services, Industrials,
and a residual sector Others.
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2000, Leten et al., 2021).

Descriptive statistics of the variables included in the equation are reported in

Table 4. Results of the fixed-e↵ect (FE) estimation of (13) are reported in Table 5.

Column (1) reports the baseline estimation as in Hall and Mairesse (1995) where

there is no assumption of constant return to scale (the coe�cient of ln(L) is not

statistically di↵erent from zero, though).

*** TABLE 4 ABOUT HERE ***

*** TABLE 5 ABOUT HERE ***

Column (2) includes S and its interaction term with R&D stock (being time-

invariant, the coe�cient of S, �4, cannot be identified). Column (3)-(5) add the

interaction between sector dummies and time FE, as well as the interaction be-

tween regional and time FE. Finally, column (6) imposes constant return to scale

by omitting ln(L). Tangible capital and R&D stocks have significant coe�cients

of an order of magnitude similar to other studies.

As the failure of the strict exogeneity assumption may be a concern in this set-

ting, the bottom of Table 5 includes the p-value of a simple test of strict exogeneity

based on the augmented regression that also include the forward values of ln(K/L) ,

ln(RD/L), and ln(L) (when included among the regressors; see Wooldridge, 2002).

The reported p-value is related to the null hypothesis that the coe�cients of the

variables in t+ 1 are equal to zero.

The regression coe�cient �4 is not estimated with the traditional FE approach

as it would be treated just like the unobserved time-invariant individual e↵ect ↵i,

whereas the interaction between Si and R&D stock can be identified. The interac-

tion term is positive, so that firms that have “above-sector-average” publications
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(i.e., a pro-publication behaviour) have higher returns from R&D expenditures in

terms of larger productivity.

It would be extremely important to identify �4 in this context. It can be ar-

gued that closer interaction with the Science domain can be beneficial to firms’

productivity, by gathering quicker access to and better understanding of new sci-

entific knowledge (Griliches, 1986; Rosenberg, 1990; Leten et al., 2021). However,

di↵erent values of �4 would have di↵erent implications. On the one side, were �4

positive, pro-publication behaviour would be always beneficial to firms’ productiv-

ity. On the contrary, a negative �4 would provide support to the idea that R&D

expenditures play a dual role within the firm: at low level of R&D the generation

of scientific knowledge does not accrue benefits to firms, which fail to absorb and

exploit external knowledge (Cohen and Levinthal, 1989). If we are unable to esti-

mate �4, we are not addressing such important dimension on the role of science in

firms’ productivity. That is the reason we move to our proposed methodology.

In Table 6, the model is estimated using the methodology proposed in this

paper, allowing the estimation of the e↵ect of the time-invariant variable S. Both

the two-step version of the proposed procedure (FEF-IV) and joint estimation

using GMM are considered.9 The number of observations is reduced because we

omitted some sector-region with few observations that were causing problems for

computation.

We explore the results obtained by changing the variable treated as homoge-

neous, i.e. the variable(s) assumed to satisfy (A1). Evidence of weak instruments,

violating assumption (A3), emerges when ln(K/L), ln(L), and ln(RD/L) .10 In

9Time FE, and its interaction with sector and region FE are treated as exogenous variables
when the model is estimated using GMM, as customary.

10Full table of results is available from the authors upon request.
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these model, the value of the KP F statistic is extremely low. As our preferred

specification, reported in Table 6, both ln(RD/L) and the interaction term between

S and ln(RD/L) are treated as homogeneous. In this case, the weak instrument

problem is mitigated: the KP-F turns into 17.70, and 34.87 when constant re-

turn to scale are imposed. As for the validity of the homogeneity assumption,

the Hansen-J statistics does not allow rejecting the null of instrument validity.

The coe�cients of the time-invariant variables are coherent with FE estimation,

and the interaction term ln(RD/L) ⇥ S is positive, pointing to the fact that the

e↵ect of S is increasing with increasing R&D expenditure. The direct e↵ect of S

is negative and statistically significant, though.

*** TABLE 6 ABOUT HERE ***

In order to better interpret the results, Figure 1 shows the predicted productiv-

ity, ln(V A/L), as a function of ln(RD/L) in the two cases S = 1 and S = 0. The

first, second and third quartile of the distribution of ln(RD/L) are also reported

in the graph. Coherently with the interpretation of the coe�cients of the vari-

ables involved, there seems to be an advantage in being linked to science for those

firms that also exhibits larger R&D expenditures, otherwise the e↵ect is negative.

Results further provide support to the view that previous knowledge (absorptive

capacity, Cohen and Levinthal, 1989) is required to better exploit inputs from

basic science, so that publication stock at the firm level should be complemented

by investments in ‘absorptive capacity’ (Rosenberg, 1990; Cohen and Levinthal,

1989).

*** FIGURE 1 ABOUT HERE ***
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Finally, Table 7 reports some robustness checks, that use alternative measures

for the variable S. Concerns may arise as the total number of publications may be

linked to the size of the firm. As we are including top R&D spenders worldwide,

we claim that this is a minor concern; however, we also compute the variable S by

taking into account the “above-average” number of publications weighted by the

number of employees (Model 11, 12), and by R&D expenditures (Model 13, 14).

The variable ln(L) is omitted from the equation because never statistically di↵erent

from zero, and better statistics related to instruments’ strength are obtained (i.e.,

larger KP F ). When the number of publications is weighted by the number of

employees, the sign of the e↵ects is broadly coherent but no longer statistically

significant. Weighting the number of publications by R&D expenditures, on the

contrary, does confirm the results of our main specification.

*** TABLE 7 ABOUT HERE ***

6 Discussion

This paper exploits an homogeneity assumption in a fixed e↵ects framework to

achieve identification of the slope of time-invariant variables. The assumption is

not without content, and it would not be necessary for identification of the e↵ect

of time-variant variables using the fixed e↵ect approach. If satisfied, the additional

moment conditions spanning from this assumption allow to identify the e↵ects of

time-invariant variables, that is unfeasible in the fixed e↵ects framework. To the

best of our knowledge, our proposal is the first to suggest to exploit this assumption

in a static framework, without requiring the distinction between variables that are

related/unrelated to the individual e↵ect. However, the assumption is analogous to
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the mean stationarity assumption customarily exploited in a dynamic framework.

Monte Carlo experiments show that the proposed approach can allow to es-

timate the coe�cients of time-invariant variables. Estimation can rely on the

FEF-IV estimator proposed by Pesaran and Zhou (2018) or by jointly estimating

all parameters via IV or GMM.

The proposed methodology is applied to the identification of the role of scien-

tific knowledge at the level of the firm on its productivity. Due to data constraints,

the main variable of interest (firm’s publications stock) is invariant over time; how-

ever, we argue that this way of treating the variable can be supported by the fact

that this firm characteristic is likely to be substantially stable over time. The

results show that scientific knowledge at the firm level can be beneficial in terms

of productivity if associated to larger R&D expenditure, supporting the dual role

(direct and indirect) of R&D at the firm level (Cohen and Levinthal, 1989).
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Table 1: Results of Monte Carlo experiments: mean of �̂ and �̂, standard
deviation in parenthesis. DGP with (A1) homogenous xit; and (A3) zi related to
within deviation of xit – order condition (A2) satisfied in all experiments.

T = 4 T = 8
FEF-IV GMM1 GMM2 FEF-IV GMM1 GMM2
Homoskedastic "it

N = 100 �̂ 1.004 1.043 1.019 1.002 1.082 1.027
(0.075) (0.086) (0.077) (0.044) (0.067) (0.048)

�̂ 1.015 1.015 1.014 1.031 1.028 1.026
(0.091) (0.088) (0.089) (0.081) (0.074) (0.076)

5% rej J 5.9% 9.1%
avg. KP 1022.5 452.8

N = 500 �̂ 0.999 1.008 1.001 1.001 1.023 1.005
(0.033) (0.036) (0.034) (0.020) (0.026) (0.020)

�̂ 1.001 1.001 1.001 1.007 1.006 1.007
(0.040) (0.040) (0.040) (0.036) (0.035) (0.036)

5% rej J 5.0% 6.7%
avg. KP 437.3 247.2

Heteroskedastic (uncorrelated) "it
N = 100 �̂ 1.003 1.044 1.018 1.003 1.080 1.027

(0.076) (0.089) (0.079) (0.045) (0.070) (0.050)
�̂ 1.005 1.005 1.007 1.027 1.024 1.022

(0.091) (0.088) (0.089) (0.078) (0.072) (0.073)
5% rej J 6.4% 9.3%
avg. KP 1109.4 209.0

N = 500 �̂ 1.002 1.011 1.004 1.000 1.022 1.004
(0.034) (0.036) (0.034) (0.020) (0.025) (0.021)

�̂ 1.001 1.001 1.002 1.004 1.004 1.004
(0.039) (0.039) (0.039) (0.035) (0.034) (0.034)

5% rej J 4.2% 6.0%
avg. KP 432.4 244.0

Heteroskedasticity and serial correlation in "it
N = 100 �̂ 0.998 1.039 1.008 1.002 1.083 1.023

(0.061) (0.081) (0.063) (0.044) (0.073) (0.048)
�̂ 1.009 1.009 1.009 1.028 1.025 1.023

(0.104) (0.100) (0.103) (0.083) (0.077) (0.082)
5% rej J 6.4% 7.9%
avg. KP 902.1 273.1

N = 500 �̂ 1.000 1.010 1.001 1.001 1.023 1.003
(0.027) (0.032) (0.027) (0.020) (0.026) (0.020)

�̂ 1.004 1.004 1.004 1.004 1.004 1.004
(0.045) (0.044) (0.045) (0.039) (0.038) (0.039)

5% rej J 6.0% 5.4%
avg. KP 442.0 244.4
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Table 2: Results of Monte Carlo experiments: mean of �̂ and �̂, standard
deviation in parenthesis. DGP with non-homogenous xit: (A1) not satisfied.

T = 4 T = 8
FEF-IV GMM1 GMM2 FEF-IV GMM1 GMM2
Homoskedastic "it

N = 100 �̂ 1.003 1.307 1.199 1.002 1.267 1.146
(0.072) (0.101) (0.095) (0.044) (0.086) (0.071)

�̂ 1.061 1.072 1.130 1.148 1.089 1.094
(0.074) (0.083) (0.110) (0.092) (0.062) (0.072)

5% rej J 94.3% 92.9%
avg. KP 28630 7564850

N = 500 �̂ 0.998 1.331 1.195 1.001 1.281 1.124
(0.032) (0.044) (0.046) (0.020) (0.041) (0.034)

�̂ 1.117 1.053 1.063 1.130 1.079 1.082
(0.049) (0.034) (0.037) (0.041) (0.028) (0.034)

5% rej J 100% 100%
avg. KP 773.8 660.3

Heteroskedastic (uncorrelated) "it
N = 100 �̂ 1.003 1.310 1.196 1.003 1.262 1.141

(0.072) (0.099) (0.097) (0.044) (0.088) (0.073)
�̂ 1.120 1.053 1.067 1.139 1.084 1.089

(0.108) (0.075) (0.082) (0.086) (0.060) (0.067)
5% rej J 94.0% 92.9%
avg. KP 49813 6298.8

N = 500 �̂ 1.002 1.333 1.198 1.000 1.281 1.123
(0.032) (0.044) (0.044) (0.020) (0.042) (0.034)

�̂ 1.117 1.053 1.063 1.128 1.077 1.079
(0.048) (0.033) (0.038) (0.041) (0.027) (0.033)

5% rej J 100% 100%
avg. KP 8837.0 670.6

Heteroskedasticity and serial correlation in "it
N = 100 �̂ 0.997 1.306 1.146 1.001 1.266 1.123

(0.057) (0.102) (0.089) (0.043) (0.090) (0.071)
�̂ 1.122 1.058 1.080 1.144 1.087 1.100

(0.117) (0.087) (0.098) (0.091) (0.068) (0.076)
5% rej J 92.1% 85.7%
avg. KP 41355 283630

N = 500 �̂ 1.000 1.331 1.144 1.001 1.281 1.101
(0.025) (0.047) (0.043) (0.019) (0.045) (0.033)

�̂ 1.117 1.054 1.076 1.128 1.077 1.088
(0.052) (0.038) (0.045) (0.042) (0.031) (0.038)

5% rej J 100% 100%
avg. KP 791.4 676.2
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Table 3: Results of Monte Carlo experiments: mean of �̂ and �̂, standard
deviation in parenthesis. DGP with lack of association between zi and within
deviation in xit: condition (A3) not satisfied.

T = 4 T = 8
FEF-IV GMM1 GMM2 FEF-IV GMM1 GMM2
Homoskedastic "it

N = 100 �̂ 1.004 1.019 1.008 1.002 1.040 1.011
(0.075) (0.078) (0.076) (0.044) (0.055) (0.046)

�̂ 1.207 1.210 1.221 1.233 1.201 1.211
(0.437) (0.452) (0.441) (0.212) (0.209) (0.218)

5% rej J 3.1% 2.7%
avg. KP 0.949 1.251

N = 500 �̂ 0.999 1.002 0.999 1.001 1.009 1.002
(0.033) (0.034) (0.033) (0.020) (0.021) (0.020)

�̂ 1.135 1.132 1.134 1.207 1.200 1.200
(0.378) (0.378) (0.384) (0.195) (0.194) (0.197)

5% rej J 4.0% 3.9%
avg. KP 1.074 1.083

Heteroskedastic (uncorrelated) "it
N = 100 �̂ 1.003 1.021 1.008 1.003 1.039 1.012

(0.076) (0.080) (0.078) (0.045) (0.056) (0.047)
�̂ 1.198 1.183 1.193 1.221 1.190 1.199

(0.448) (0.443) (0.461) (0.213) (0.209) (0.218)
5% rej J 2.5% 3.7%
avg. KP 0.951 1.234

N = 500 �̂ 1.002 1.005 1.002 1.000 1.009 1.002
(0.034) (0.034) (0.034) (0.020) (0.022) (0.021)

�̂ 1.160 1.157 1.157 1.192 1.185 1.188
(0.470) (0.468) (0.478) (0.206) (0.205) (0.204)

5% rej J 3.4% 3.7%
avg. KP 1.041 1.072

Heteroskedasticity and serial correlation in "it
N = 100 �̂ 0.998 1.015 1.001 1.002 1.040 1.010

(0.061) (0.068) (0.062) (0.044) (0.056) (0.046)
�̂ 1.208 1.193 1.202 1.217 1.184 1.198

(0.492) (0.489) (0.520) (0.233) (0.231) (0.245)
5% rej J 2.3% 3.3%
avg. KP 0.962 1.260

N = 500 �̂ 1.000 1.003 1.000 1.001 1.009 1.002
(0.027) (0.028) (0.027) (0.020) (0.021) (0.020)

�̂ 1.153 1.150 1.150 1.197 1.190 1.192
(0.453) (0.452) (0.459) (0.221) (0.220) (0.220)

5% rej J 2.8% 2.7%
avg. KP 1.005 1.086
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Table 4: Descriptive statistics of the variables included in the regression
(N = 6, 681)

Variable mean std. dev. min. max.
ln(V A/L) 10.66 1.913 -0.397 19.51
ln(K/L) 10.34 2.324 -9.711 21.244
ln(RD/L) 10.75 1.465 4.785 17.15
ln(L) 9.219 1.625 1.386 13.35
S 0.286 0.452 0 1

Table 5: Fixed e↵ects estimator of the productivity-Science relationship.

Variable (1) (2) (3) (4) (5) (6)
ln(K/L) 0.578⇤⇤⇤ 0.579⇤⇤⇤ 0.579⇤⇤⇤ 0.570⇤⇤⇤ 0.570⇤⇤⇤ 0.570⇤⇤⇤

(0.030) (0.030) (0.029) (0.030) (0.030) (0.030)
ln(RD/L) 0.334⇤⇤⇤ 0.265⇤⇤⇤ 0.285⇤⇤⇤ 0.231⇤⇤ 0.247⇤⇤ 0.288⇤⇤⇤

(0.101) (0.101) (0.102) (0.108) (0.110) (0.085)
ln(L) -0.027 -0.022 -0.039 -0.059 -0.076 –

(0.092) (0.091) (0.09) (0.101) (0.102)
S (omitted) (omitted) (omitted) (omitted) (omitted)

ln(RD/L)⇥ S 0.350⇤ 0.361⇤ 0.363⇤ 0.369⇤⇤ 0.373⇤⇤

(0.198) (0.195) (0.191) (0.188) (0.186)
Firm FE yes yes yes yes yes yes
Time FE yes yes yes yes yes yes
Sector⇥Year FE no no yes no yes yes
Region⇥Year FE no no no yes yes yes
N 6,681 6,681 6,681 6,681 6,681 6,681
p strict exo. 0.874 0.859 0.923 0.832 0.863 0.663
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Table 6: IV estimate of the e↵ect of the time-invariant variable Si; homogenous
variables: ln(RD/L) and ln(RD/L)⇥ S.

Variable (7) (8) (9) (10)
FEF-IV GMM FEF-IV GMM

ln(K/L) 0.572⇤⇤⇤ 0.564⇤⇤⇤ 0.572⇤⇤⇤ 0.564⇤⇤⇤

(0.029) (0.028) (0.029) (0.028)
ln(RD/L) 0.229⇤⇤ 0.276⇤⇤⇤ 0.270⇤⇤⇤ 0.306⇤⇤⇤

(0.085) (0.087) (0.069)
ln(L) -0.076 -0.060

(0.102) (0.076)
S -3.354⇤ -2.312⇤⇤ -3.378⇤ -2.440⇤⇤

(1.902) (1.137) (1.874) (1.121)
ln(RD/L)⇥ S 0.355⇤ 0.229⇤⇤ 0.359⇤ 0.236⇤⇤

(0.186) (0.109) (0.185) (0.109)
Firm FE yes yes yes yes
Time FE yes yes yes yes
Sector⇥Year FE yes yes yes yes
Region⇥Year FE yes yes yes yes
N 6467 6467 6467 6467
Hansen-J 9.168 9.403
J p-value 0.935 0.923
KP F 17.70 34.87
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Table 7: Alternative mesures for S based on the ratio between the number of
publications and, respectively, the number of employees (Publ/Emp) and R&D
expenditures (Publ./RD); IV estimate of the e↵ect of the time-invariant variable
Si; homogenous variables: ln(RD/L) and ln(RD/L)⇥ S.

Variable (11) (12) (13) (14)
FEF-IV GMM FEF-IV GMM

Measure for S Publ/Emp Publ/Emp Publ/RD Publ/RD
ln(K/L) 0.572⇤⇤⇤ 0.572⇤⇤⇤ 0.571⇤⇤⇤ 0.573⇤⇤⇤

(0.029) (0.028) (0.029) (0.028)
ln(RD/L) 0.272⇤⇤⇤ 0.289⇤⇤⇤ 0.196⇤⇤⇤ 0.291⇤⇤⇤

(0.090) (0.076) (0.076) (0.062)
S -2.670 -0.807 -3.705⇤⇤ -1.961⇤⇤

(1.701) (1.052) (1.493) (1.701)
ln(RD/L)⇥ S 0.259 0.082 0.398⇤⇤⇤ 0.216⇤⇤

(0.163) (0.101) (0.154) (0.098)
Firm FE yes yes yes yes
Time FE yes yes yes yes
Sector⇥Year FE yes yes yes yes
Region⇥Year FE yes yes yes yes
N 6467 6467 6467 6467
Hansen-J 14.79 12.77
J p-value 0.611 0.752
KP F 34.86 41.17
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Figure 1: Predicted productivity (from Model 10 in Table 6) as a function of
R&D, S = 0 and S = 1; vertical lines identify Q25, median, and Q75 in the
distribution of ln(RD/L)
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