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“Information is not knowledge. The only source of knowledge is

experience. You need experience to gain wisdom.”

commonly attributed to Albert Einstein (1879 - 1955)





Abstract

Solids consisting of periodic lattice structures exhibit vibrational modes of their atomic nuclei.

In the context of a quantum-mechanical description, the excitations of the collective lattice

vibrations are quantized and behave like particles. These quasiparticles are called phonons

and essential for describing a diverse spectrum of central solid properties and phenomena.

Density-Functional Theory (DFT) according to Kohn and Sham has established itself as a

very successful, state-of-the-art, material-specific, theoretical, and computational framework.

It enables us to calculate the phonon modes with very high predictive power from the first

principles of quantum mechanics for describing electrons and ions. Two different approaches

to obtaining phonon properties are employed: (i) the Finite Displacement (FD) ansatz, where

the second-order derivatives of the total energy with respect to atomic displacements are

approximated by difference quotients that involve the forces exerted on the atoms due to

their finite displacement, and (ii) the Density-Functional Perturbation Theory (DFPT), a

variational approach delivering the desired second-order derivatives from linear responses to

an infinitesimal displacement wave. The ambition of this dissertation is to pursue a DFPT

beyond the common frameworks with plane-wave basis functions. It is realized by means

of the Full-Potential Linearized Augmented Plane-Wave (FLAPW) method, an all-electron

electronic-structure method based on muffin-tin (MT) spheres circumscribing the atomic

nuclei. The FLAPW method is known for providing the density-functional answer to arbitrary

material systems, i.e., independent of which chemical element in the periodic table is chosen.

I report on the implementation and validation of the DFPT approach within the FLAPW

method in terms of the newly-developed computer program juPhon. Its algorithm describes
the properties of phonons in harmonic approximation and is based on the input of the FLEUR
code, which is a DFT implementation utilizing the aforementioned FLAPW ansatz. In detail, I

elucidate the numerical challenges and show how they have been surmounted enabling us to

reliably set up a dynamical matrix, the associated phonon energies of which are many orders

of magnitude smaller than the ground-state energy of a crystal. This covers (i) implementing

the self-consistent Sternheimer equation, which determines the first-order variations of the

charge density as well as the effective potential due to the presence of the displacement

wave, and (ii) accounting for the features of the LAPW basis-set. Owing to the displaced

atoms, the latter entails considering both Pulay basis-set corrections and discontinuities at

the MT-sphere surfaces in the section-wise defined LAPW basis and the potentials. While the

Pulay terms compensate for the representation of the wave functions outside the Hilbert space

spanned by the finite LAPW basis-set, the discontinuities require the introduction of surface

integral contributions. Decisive has amongst others been a sustainable programming paradigm,

making juPhon become a complex and sophisticated testing and application software. Within
this thesis, I finally benchmark the juPhon phonon dispersions of bulk fcc Cu, Au, Al, Ne, and
Ar as well as bcc Mo by comparing them with respective FD computations and experimental
reference data. These results show a good agreement.
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Kurzzusammenfassung

Festkörper mit periodischen Gitterstrukturen weisen Atomkern-Schwingungsmoden auf. Bei

einer quantenmechanischen Beschreibung sind die Anregungen der kollektiven Gitterschwin-

gungen quantisiert und verhalten sich wie Teilchen. Diese Quasi-Teilchen heißen Phononen

und sind wesentlich, um ein vielfältiges Spektrum zentraler Festkörpereigenschaften und

-phänomene zu beschreiben. Die Dichtefunktionaltheorie (DFT) nach Kohn und Sham hat sich

als sehr erfolgreiches, modernes, materialspezifisches, theoretisches und numerisches Konzept

etabliert. Sie ermöglicht die Berechnung der Phononenmoden mit sehr hoher Vorhersagekraft

aus den ersten Prinzipien der Quantenmechanik zur Beschreibung von Elektronen und Ionen.

Üblich sind zwei verschiedene Methoden, um Phononeneigenschaften zu berechnen: (i) der

Finite Displacement (FD)-Ansatz, der die zweiten Ableitungen der Gesamtenergie nach den

Atomverschiebungen durch Differenzenquotienten, die die Kräfte auf die Atome aufgrund ihrer

Verschiebungen beinhalten, nähert, und (ii) die Dichtefunktionalstörungstheorie (DFPT), ein

Variationsansatz, der die gewünschten zweiten Ableitungen mittels linearer Antwortgrößen

auf eine infinitesimale Verschiebungswelle liefert. Ziel dieser Dissertation ist es, eine DFPT jen-

seits der üblichen Herangehensweise mit ebenen Wellen als Basisfunktionen zu verfolgen. Es

wird mit der Full-Potential Linearized Augmented Plane-Wave (FLAPW)-Methode für eine voll-

ständige Elektronenstruktur realisiert, der Atomkerne umschreibende Muffin-tin (MT)-Kugeln

zugrunde liegen und die bekanntlich eine Dichtefunktionalantwort für beliebige Materialien,

also unabhängig vom gewählten chemischen Element im Periodensystem, liefert. Ich berichte

über die Implementierung und Validierung des DFPT-Ansatzes innerhalb der FLAPW-Methode

mithilfe der neu entwickelten Software juPhon. Deren Algorithmus beschreibt die Phononen-
eigenschaften in harmonischer Näherung und basiert auf dem Input des FLEUR-Codes, der
eine DFT-Implementierung mithilfe der FLAPW-Methodik ist. Ich beleuchte detailliert die nu-

merischen Herausforderungen inklusive deren Überwindung, was das verlässliche Aufsetzen

einer dynamischen Matrix erlaubt, deren zugehörige Phononenenergien um viele Größen-

ordnungen kleiner sind als die Grundzustandsenergie eines Kristalls. Dies umfasst (i) die

Implementierung der selbstkonsistenten Sternheimergleichung, die die ersten Variationen

der Ladungsdichte und des effektiven Potentials aufgrund der präsenten Verschiebungswelle

bestimmt und (ii) den Besonderheiten des LAPW-Basissatzes Rechnung zu tragen. Aufgrund

der verschobenen Atome birgt letzteres sowohl das Beachten von Pulay-Basiskorrekturen

als auch von Unstetigkeiten auf den MT-Kugeloberflächen in der abschnittsweise definierten

LAPW-Basis und in den Potentialen. Während die Pulay-Terme die Darstellung der Wellenfunk-

tionen außerhalb des durch den endlichen FLAPW-Basissatz aufgespannten Hilbert-Raums

kompensieren, erfordern die Unstetigkeiten Oberflächenintegrale. Entscheidend ist unter

anderem ein nachhaltiges Programmierparadigma gewesen, durch das juPhon zu einer kom-
plexen und anspruchsvollen Test- und Anwendungssoftware geworden ist. In dieser Thesis

benchmarke ich schließlich die mit juPhon berechneten Phononendispersionen von fcc Cu,
Au, Al, Ne und Ar, sowie bcc Mo, indem ich sie mit FD-Berechnungen oder experimentellen
Referenzdaten vergleiche. Die Ergebnisse zeigen eine gute Übereinstimmung.
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Chapter 1
Introduction

The Fundamental
many-body
Hamiltonian

fascinating richness of static, dynamic, thermodynamic, transport, and excitation phenom-

ena in solid-state physics is ultimately attributed to the properties of two different constituent

particles: electrons and nuclei. Both electrons and nuclei primarily interact via the well-known

Coulomb interaction and there are vast quantities of them in a solid [2]. Their kinetic ener-

gies and interactions are quantum-mechanically described by the famous and fundamental

many-body Hamiltonian operator of solid-state physics1:

ℋmb = −∑
𝔭

∆𝔭

2
−∑

𝛾

∆𝛾

2𝑀𝛾
+ 1

2
∑
𝔭,𝔭′|
𝔭≠𝔭′

1
∣𝒓𝔭 − 𝒓𝔭′∣

+ 1
2
∑
𝛾,𝛾′|
𝛾≠𝛾′

𝑍𝛾𝑍𝛾′

∣𝝉𝛾 − 𝝉𝛾′∣
−∑

𝔭,𝛾

𝑍𝛾

∣𝒓𝔭 − 𝝉𝛾∣
. (1.1)

Its first two terms are the kinetic energy operators of every electron 𝔭 at position 𝒓𝔭, and of
every nucleus 𝛾 with mass𝑀𝛾 expressed in the units of the electron mass located at 𝝉𝛾. In the
third and fourth terms, the mutually repulsive Coulomb interactions between (i) the electrons

and (ii) the nuclei of the chemical elements characterized by the nuclear numbers 𝑍𝛾 and 𝑍𝛾′

are taken into account, while excluding the self-interaction. The last term represents the

attractive Coulomb interaction between the electrons and the nuclei. Additional external

electromagnetic fields or relativistic effects, such as spin–orbit coupling are neglected for the

sake of brevity. It is fascinating to acknowledge that only two parameters, the relative mass of

the nuclei and the nuclear charge of the ions, are sufficient to describe all intricate properties

of all minerals, crystalline solids, as well as structural and functional materials in one, two, or

three spatial dimensions. [3]

The QuasiparticlesHamiltonian (1.1) and its appropriate many-body wave functions 𝛹({𝒓𝔭}, {𝝉𝛾})
describe apart from static (e.g. structural) properties likewise collective excitations of the

electrons and nuclei: examples are excitons, plasmons, magnons, or phonons, to name but a

few prominent ones. These excitations and the manner of modeling them bear a similarity

to particles, provided they are approached by quantum-field theory [4]. Therefore, these

1 This Hamiltonian is given in Hartree atomic units: me = 1, (4π𝜖0)−1 = 1, ~ = 1, e = 1 [3]. Furthermore,
the symbol | in the sum specifications is borrowed from the nomenclature of set theory and stands for “such
that” in the following.
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excitations are usually denoted as quasiparticles, specified by their crystal momentum2 𝒒 and
their energy transfer in quanta of ~𝜔 [4]. [5]

InPhonons this dissertation, the focus is on phonon3 quasiparticles, i.e., collective modes of

atomic nuclei, which vibrate around their equilibrium position in a crystal [7]. Each phonon

can be attributed a specific displacement pattern of the atoms with a particular displace-

ment direction along which the vibrations of the atoms take place [8]. In the history of

solid-state physics, investigations of phonons can be traced back to its beginnings roughly

one hundred years ago. The pioneer Igor Yevgenyevich Tamm is typically credited with

quantum-mechanically describing sound waves in elastic media, and publishing it in the

year 1932 [9, 10]. Since then, phonons have widely been studied in solid-state physics and

many findings are meanwhile textbook knowledge [4, 11, 12]. For instance, phonons are the

main contribution to the specific heat in a material, and pivotal ingredients for explaining

heat conductivity, thermal expansion, ohmic resistance (regarding electrical currents) due

to electron–phonon scattering, or BCS superconductivity (for which the electron-phonon

coupling is an important driving mechanism). Overall, phonons remain a central theme in

solid-state research. Among the much discussed scientific questions is the understanding

of the coupling of the lattice vibrations to the spin degree of freedom via the relativistic

spin–orbit interaction [13] or to the magnetic sublattice [14]. The former is responsible for

spin-relaxation processes, spin-flip lifetime, depolarization of spin-currents [15], or angular

momentum transfer in ultrafast magnetization processes [16]. The latter is a prerequisite for

dynamical Dzyaloshinskii–Moriya interactions in centro-symmetric solids [17]. In the context

of orbitronics [18], the coupling of the phonons to the orbital degrees of freedom is relevant.

Making progress along these lines requires describing the phonon properties of chemically,

structurally, and electronically complex solids in a materials-specific fashion.

ConsideringValence electrons
and ions

the overwhelming number of electrons and nuclei as well as their mutual

correlation in typical solid-state systems, it is practically impossible to study phonons and

their subsequent physics by a direct solution of equation (1.1) [2]. So, introducing a number

of approximations or practical reformulations are the key to success [2]. Firstly, one available

option in periodic solids is to reduce the electronic degrees of freedom to the so-called valence

electrons [19]. Since at least some of the electrons are so strongly bonded to the nuclei that

they are normally only marginally involved in the aforementioned solid-state phenomena,

their role is restricted to screen the charge of the atomic cores [19]. The entities of nuclei and

localized core electrons are denoted as ions, provided their screened charge differs from the

atomic number of the incorporated nuclei, and these ions are sometimes effectively considered

as “nuclei” [19]. The remaining negatively charged particles are known as valence electrons

and, e.g., responsible for chemical bonding. They rearrange, which enables the atoms or ions

to bond with each other, creating solid matter that is organized in a certain order (usually

in periodic lattices) [19]. In periodic systems with their translational symmetry, these spin-

carrying valence electrons induce an electronic structure. It manifests itself in the form of the

band structures, which are subject to certain symmetries and can be classified by topological

quantities. The electronic structure determines the total energy, the forces acting on atoms,

and also gives rise to interesting magnetic, optical, and electrical phenomena in materials to

name but a few examples. [3]

2 Given excitons, choosing the symbol 𝒌 instead of 𝒒 is more common.
3 The classical Greek word “φωνή” can be translated into “sound” [6].
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When Adiabatic
approximation

neglecting phenomena like the electron–phonon interaction, the adiabatic or

Born–Oppenheimer (BO) approximation [20] (see also reference [21]) can be invoked. This

further common yet powerful approximation is grounded on the assumption that electronic

and nuclear degrees of freedom can independently be considered, because it is based on the

large mass difference between electrons and nuclei4. This fact reflects itself in the definition of

the small perturbation parameter 𝜆 = 4√1/𝑀𝛾 . To lowest order, i.e., in the limit of an infinite

ion mass𝑀𝛾 (𝜆 → 0), the complete electron–ion wave-function uncorrelates. It thus factorizes
in (i) electron wave-functions, satisfying Schrödinger equations of the Hamiltonian (1.1)

with vanishing ion momenta (second term) and quasi-fixed ion-positions 𝝉𝛾 as parameters,
and (ii) nuclear wave-functions 𝛹({𝝉𝛾}), solving

⎛⎜
⎝
−∑

𝛾

∆2
𝛾

2𝑀𝛾
+𝐸BO({𝝉𝛾})⎞⎟

⎠
𝛹({𝝉𝛾}) = 𝐸𝛹({𝝉𝛾}) . (1.2)

The potential energy function 𝐸BO({𝝉𝛾}) of the interacting ions in this differential equation,
called the BO energy, is an energy surface over the coordinates {𝝉𝛾}, and the total ground-
state energy of the aforementioned Hamiltonian (1.1) for𝑀𝛾 → ∞ [22]. By using the BO

approximation, the account of the phonons will only focus on the nuclear degrees of freedom

(and just indirectly on the electronic ones). But averaging the BO energy over the BO surface

of typical phonon amplitudes, the resulting mean ̄𝐸BO is in practice many orders of magnitude
larger than the variation Δ𝐸BO = max{𝝉𝛾}∣𝐸BO({𝝉𝛾}) − ̄𝐸BO∣, i.e., Δ𝐸BO / ̄𝐸BO ≈ 𝒪(10−7).
Therefore, reliably determining the BO surface presents a formidable challenge. [3]

One Harmonic
approximation

typically assumes that the atomic displacements of phonons in the vicinity of the

equilibrium structure {𝝉 (0)
𝛾 } are small relative to the interatomic distances. This allows for

Taylor-expanding the BO surface in orders of the atomic displacements and dropping terms

above second order, known as the harmonic approximation. In the harmonic approximation,

the BO surface is replaced by a quadratic form,

𝐸BO({𝝉𝛾}) → ({𝝉𝛾} − {𝝉 (0)
𝛾 })

⊤
𝐷({𝝉 (0)

𝛾 }) ({𝝉𝛾} − {𝝉 (0)
𝛾 }) , (1.3)

(the first-order term vanishes for the optimized lattice structure) and equation (1.2) reduces to

a differential equation of coupled harmonic oscillators [3]. Its solution is analytical and usually

found by means of computers, i.e., quasi-analytically [3]. The remaining challenge to be faced

is determining the dynamical matrix 𝐷, which contains the Hessian matrix of second-order
derivatives, acting on𝐸BO with respect to the position of the ions from equation (1.1) [7]. [23]

Even Approximating
the system of
electrons

in the limit of𝑀 → ∞, the general solution of the Hamiltonian (1.1) is basically
not feasible [2]. This can be attributed to the Coulomb interaction between the electrons,

which correlates the electrons, and prohibits writing electron wave-functions as a product of

single-particle wave-functions describing non-interacting electrons [3]. For the last 100 years,

it has in fact been a general task and research field of condensed matter physics (i) to develop

an understanding of the phenomena underlying equation (1.1), (ii) to search for effective

approximations, (iii) to synthesize simplifying and effective models, or (iv) to establish new

theoretical concepts and algorithms [2, 3, 24–38].

In Density-
Functional
Theory

this dissertation, we resort to Density-Functional Theory (DFT) [39] in the formu-

lation of Kohn and Sham [40], which has been developed in the mid-1960s. It is an exact

4 The proton mass is about 1.836 ⋅ 103× times larger than the electron mass [12].
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reformulation of the eigenvalue problem, given by the Hamiltonian (1.1), in terms of the

electron-charge density instead of many-electron wave functions. But, the solution of this

reformulation is subject to knowing the generally unknown quantum-mechanical exchange-

correlation (xc) energy inherent in DFT. The electron-charge density is not only a much simpler

mathematical and computational object than the many-electrons wave function [41, 42], but

equally important, experience has shown that rather simple yet powerful approximations to

the unknown xc energy, like the Local Density Approximation (LDA) [40] or the Generalized

Gradient Approximation (GGA) [43–45], provide excellent results. The predictive power of

these results becomes obvious for wide classes of materials and for many physical or chemi-

cal properties. Kohn–Sham DFT with its many developments in various directions, (i) like

Hedin’s formulation of many-body perturbation theory in terms of the 𝒢𝒲-approximation for
mastering excited states [46], (ii) such as the Time-Dependent Density-Functional Theory

(TDDFT) [47, 48], (iii) towards higher quantum mechanical precision, and (iv) towards the

description of strongly correlated electron systems by the development of hybrid functionals

or amending functionals by static or dynamic Coulomb interactions (e.g. LDA + U [49] or

LDA + DMFT [50]), is considered the computational standard model for the first-principles

calculation of electronic and structural properties in solid-state physics, materials science,

nanoscience, mineralogy, as well as parts of chemistry, and bio-chemistry. For a broader view

see for instance references [3, 51–54]. [3]

TheFull-Potential
Linearized

Augmented
Plane-Wave

method

DFT approach is realized in electronic-structure methods, which solve the Kohn–

Sham equations to obtain the ground-state electron density and subsequent electronic prop-

erties. Implementing these methods requires very advanced and complex state-of-the-art

computer algorithms (see e.g. Martin [3] for an overview). Typically, electronic-structure

methods are classified according to the type of basis functions into which the Kohn–Sham

orbitals are expanded. In the context of phonon calculations in crystalline solids, plane-

wave based methods are the first and foremost (see for instance ABINIT [55–57], VASP [58],
QUANTUM ESPRESSO [59–61], and the mixed basis method [62]). They are either based on
the pseudopotential approximation to describe the interaction of valence electrons at the

ion core or utilize the Projector-Augmented Plane Wave (PAW) method [3, 63]. Within this

dissertation, in contrast, I work with the Full-Potential Linearized Augmented Plane-Wave

(FLAPW) method [64–68], as implemented in the electronic-structure code FLEUR [69]. It is
an all-electron approach, treating core electrons on the same footing as valence electrons. But,

the nuclear charge produces a Coulomb singularity and thereby associated rapid variations of

the charge density in the vicinity of the nucleus. In order to deal with this singularity, the space

of the unit cell is partitioned into muffin-tin (MT) spheres, in which wave functions, charge

densities, as well as potentials are represented in real space, and an interstitial region (IR)

with a plane-wave representation of the aforesaid quantities. This ansatz is often considered

the gold standard among the electronic structure methods [70], applicable to solids with open-

and closed-packed structures, and to unit cells incorporating any naturally-occurring chemical

element of the periodic table. However, this approach bears likewise particular challenges

due to different definitions of basis functions in different regions of space, matching at the

MT sphere boundary. [3, 71]

InCalculating the
dynamical matrix

combination with DFT, two complementary computational approaches have been

developed to determine the dynamical matrix 𝐷: (i) the Finite Displacement (FD) method [3,
72–75] and (ii) the Density-Functional Perturbation Theory (DFPT) [3, 68, 76–87]. In the

FD method, the dynamic matrix or the second-order energy derivatives are replaced by

1 Introduction
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corresponding quotients of first-order differences, whose nominators contain differences of

forces acting on the atoms due to different displacement patterns. The dynamical matrix

is calculated for finite grids of wave vectors 𝒒 in the Brillouin zone, with a grid size that
depends on the size of the supercell, which must in turn be chosen adequate for the respective

displacement patterns (as for instance in reference [88]). According to the literature, this

direct ab-initio approach to determining the dynamical matrix, or especially the phonon-

dispersion and thermal properties, has become the standard [3]. This status-quo has mainly

be fostered by the advent of precise force calculations, especially those based on plane-wave

basis sets, as well as the increase of computational capacity in combination with numerical

efficiency regarding the electronic-structure methods, making the evaluation of larger unit

cells (super cells) feasible [3]. On the other hand, DFPT, pioneered by Zein [76], Baroni,

Giannozzi, and Testa [80], as well as Gonze et al. [81–85], allows for computing the dynamical

matrix and the phonon properties for any selected phonon wave-vector 𝒒, using only the
chemical unit cell [3, 68]. Analytically applying the Rayleigh–Schrödinger perturbation theory

to the Kohn–Sham Hamiltonian, the finite displacements are replaced by infinitesimal ones.

The Sternheimer equation can then be invoked to self-consistently determine the linear charge-

density response to the aforementioned infinitesimal displacement pattern [3]. Determining

phonon dispersion-relations from the DFPT, is conceptually and algorithmically much more

complex than from the FD method. Solving only the Sternheimer equation, is already (at

least) as complicated as the self-consistent solution of the Kohn–Sham equation, but allows a

fine-tracing of the phonon dispersion. For instance, this can be necessary for investigating

the interaction of phonons with other degrees of freedom, such as magnons [89], where the

dispersion relations show a crossing or anticrossing behavior within a finite region of wave

vectors 𝒒 [90, 91]. [22, 23, 87, 92]

In Achievements in
this dissertation

this dissertation I report on the successful realization of the DFPT for calculating the

dynamical matrix𝐷 in harmonic approximation by means of the all-electron FLAPW electronic-
structure method. The algorithm has been implemented from scratch in the open-source code

juPhon, which is compatible with the input data from the all-electron FLAPW code FLEUR
(see page 112 for details). Employing juPhon, I have computed phonon dispersion-relations
for a set of simple bulk systems: fcc Cu, fcc Au, fcc Al, bcc Mo, fcc Ne, and fcc Ar. These are
validated against computational benchmarks obtained from the FD ansatz and experimental

data, where the former are also based on the FLEUR code (cf. page 261). From a more
general perspective and in concert with the exciting [93], flair [94, 95], and Elk [96]
codes, this thesis extends the applicability of the DFPT, which can not only be applied to

phonons, but also magnons or electric fields [22], to the FLAPW method. Important ground-

work was done by Aaron Klüppelberg [88]. He refined the calculation of forces in FLEUR to
the necessary precision that enables us nowadays to generate versatile phonon dispersion-

relations from the FD approach. Learning from published linear-response formulations of

MT-based electronic-structure methods [93–95, 97–99], Klüppelberg [88] provides in his

doctoral thesis an analytical mathematical formulation of the DFPT approach for the FLAPW

method. We translated this to a functioning code, where the word translation also implies

reformulations to guarantee analytical cancellations of large terms. The FLAPW method

is also employed in alternative electronic-structure frameworks: WIEN2k [100], Elk [96],
flair [101], or exciting [102]. The corresponding DFPT implementations can be found
in the codes exciting [93], flair [94, 95], or Elk [96]. Overall, the results of these
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implementations are scarce and an evaluation of the accuracy and computational efficiency is

incomplete, if not lacking.

TheOutline of the
dissertation

thesis is organized in 9 chapters and 5 Appendices. The first six chapters can be

considered as introductory chapters introducing: the DFT (chapter 2); the standard theory

of harmonic phonons, the dynamical matrix, and the concept of the direct method for the

phonon dispersion (chapter 3); the DFPT including the 2𝑛 + 1 theorem (chapter 4); and the
FLAPW method (chapter 5). In chapter 6, an excerpt of the analytical DFPT formulation

for the FLAPW method by Klüppelberg [88] is given. In these chapters, the emphasis is on

the insights and quantities needed to implement the DFPT method and to calculate phonons

by using the FLAPW method in chapter 7. We briefly conclude in chapter 8 and provide a

potential outlook in chapter 9. Within the first two appendices, I address the installation

as well as the general usage of juPhon (appendix A), and list the input parameters used
for the results of this dissertation (appendix B). The three remaining appendices elucidate

the theoretical background of three relations referred to hereinafter, i.e., the gradient of a

function expanded in the MT spheres (appendix C), the analytical solution of the Sternheimer

equation for 𝒒 = 𝟎 (appendix D), and an outer-product extension of the divergence theorem
(appendix E).

TheSummary of
central chapter

essential part of this dissertation is chapter 7. Here, I describe juPhon, the success-
ful elaborate implementation of the DFPT, in detail and validate it by presenting successful

results, in particular the aforementioned phonon dispersion-relations. But, it likewise con-

tains intermediate outcomes of first- and second-order quantities, which I calculated with

juPhon and which are required for the dynamical matrices. I address our concepts for re-
solving the considerable difficulties encountered in such a complex project. The formidable

challenge of achieving a sufficient numerical accuracy within the implemented framework,

incorporating multitudinous Pulay [68, 103] and surface [88] terms due to the position-

dependent, incomplete and discontinuous LAPW basis, often required solutions surpassing

naive implementations. Some of these optimizations were already suggested by Klüppelberg

[88] concentrating on providing a comprehensive theoretical framework. But translating a

theoretical formalism of this complexity into a functioning numerical algorithm is a challeng-

ing task. Imponderable numerics require consistency checks of the equations, occasionally

rederivations or changes of formulations. In fact, the implementation of the dynamical matrix

has required radical reformulations, before an acceptable result could be generated. Only

indispensable terms have remained, further optimizations intend to exploit the principle of

analytical error cancelation. Still, the overall involved intricate programming effort has been

considerable. Central in this highly sophisticated framework has been the development of

test concepts, ensuring reliable intermediate results. Often this has turned out to be hard,

because cross-checking is only possible in very few cases. With the help of this comprehensive

test suite, new features can be added or approximations can be relaxed in a safe way. All

fundamental problems are solved now. Based on the presented results, there is a clear proof

of concept. This allows for enhancing the versatility of juPhon in a straight-forward and quick
way.

1 Introduction
6
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DFT Charge density
instead of wave
function

expresses the (ground-state) properties of a complicated many-body system as functionals

of its ground-state particle density 𝑛gs(𝒓). In solid-state physics, the many-body system is
described by the Hamiltonian in equation (1.1). Hence, the ground-state electron-charge

density 𝜌gs(𝒓) = 𝑞e𝑛gs(𝒓), with the charge of an electron 𝑞e, represents the aforementioned
particle density. By confining to the charge density, the formulation of DFT circumvents the

handling of the intractable many-body wave function [41]. Dealing with this wave function

is tough or impossible because it scales with the number of particles 𝑁, whose quantum state
is described (𝑁 ≥ 100 given small molecules and 𝑁 ≈ 1023 in a solid) [41]. Even though
the many-body wave function provides much more information compared to the charge

density, the latter offers access to plenty of calculable quantities which otherwise are hard to

obtain [104]. [3]

Moreover, Kohn–Sham
Density-
Functional
Theory

DFT (based on the concept of Kohn and Sham [40]) is in principle an exact ab-

initio method for tackling the interacting many-body system [3]. It is mapped to an auxiliary

non-interacting one-particle problem having the same ground-state density as the interacting

many-body system, while all many-body effects are put into an exchange–correlation (xc)

functional. However, the fact that a universal explicit form of this xc functional is not known,

constitutes a shortcoming decisive for the accuracy of the DFT method. Nevertheless, this has

sparked the development of various xc-functional approximations. Although treating notably

highly-correlated materials and band gaps proves challenging, even simple xc-functional

approximations convince by being impressively in line with experimental results. With the

awarding of half of the Nobel Prize in chemistry to Walter Kohn in 1998 [105, 52] “for his

development of the density-functional theory,” even greater significance was attached to DFT.

Today, DFT has established itself as a state-of-the-art method, predominantly, to calculate

the ground-state properties of the interacting many-body electronic system (forecasting of

stable structures, band structure, ground-state energy and the quantities deriving from it,

etc. [104]). Setting up databases for material design with DFT results and applying the

7



disruptive technology of machine learning to it [106], allows us to stay excited at the prospect

of DFT. [3]

ThroughoutReferences the history of DFT, certain publications appear as important milestones,

only a small selection of which can be discussed within the scope of this thesis. The overview

paper of Jones [54], for example, provides an in-depth analysis and the standard textbook of

Martin [3] contains a comprehensive discussion of the history and all aspects of DFT, including

further literature. Therefore, the latter book will serve as the main reference for the whole of

chapter 2.

Section 2.1Outline briefly summarizes the work of Hohenberg and Kohn [39]. They formulated

and proved two theorems providing the fundamentals of modern DFT, after the pioneering

work of Thomas [107], Fermi [108] and Dirac [109]. These theorems allow us to consider the

total energy of the aforementioned interacting many-body system as a functional of the charge

density that reaches its unique minimum by inserting the ground-state charge density. Despite

the fact that the publication of Hohenberg and Kohn [39] has been ranked seminal, it does not

provide an explicit how-to for calculating the total energy. The situation has changed with the

work of Kohn and Sham [40], who introduce the auxiliary non-interacting one-particle system

(Kohn–Sham system) which section 2.2 is devoted to. This major breakthrough, together with

the development of reliable xc functionals, enabled DFT to develop into a dominant method

for electronic-structure calculations. The increasing success of DFT is generating more and

more interest and has given rise to generalizations of which a small selection shall be listed in

section 2.3. [3]

2.1 Hohenberg–Kohn Theorems

Hohenberg and Kohn [39]Applicability have managed to provide a formulation of DFT that constitutes

an exact theory of any many-body problem with 𝑁 interacting particles, which react to the
influence of an arbitrary external potential. Without loss of generality, the focus here is

on the many-body Hamiltonian in equation (1.1) to which the approximation of Born and

Oppenheimer [20] has been applied (see chapter 1). Therefore, the movement of the electron

particles is governed by the Coulomb interaction among each other and with the ions, which

give rise to a static potential. [3]

PivotalCentral theorems in the paper of Hohenberg and Kohn are two theorems: The first theorem states

that for non-degenerate ground states, the ground-state particle density uniquely determines

the external potential apart from a constant. This entails the complete electronic many-body

Hamiltonian to be specified by the ground-state charge(-particle) density 𝜌gs. The same holds
true for the eigenfunctions and eigenvalues of this Hamiltonian [3, 41]. Therefore, the total

energy of the system, and any observable that is a functional of the external potential, are also

unique functionals of the ground-state charge density [3, 41]. Such a total energy functional

can be defined as

𝐸HK[𝜌gs(𝒓)] ≔ 𝐹[𝜌gs(𝒓)] +∫𝑉ext(𝒓)𝜌gs(𝒓) d3𝑟 + 𝐸ii . (2.1)

2 Density-Functional Theory
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While 𝑉ext is the external potential, the functional 𝐹 contains the internal1 contributions of
the total energy and is therefore called universal [104] (equal for all systems [41]). The

variable 𝐸ii represents the ion–ion interaction. The second theorem states that, in the case of
charge conservation [41] and with any external potential, the ground-state charge density

globally minimizes a general total energy functional as in equation (2.1). This results in

the exact ground-state total energy and ground-state density of the many-body system. The

textbook of Martin [3], for instance, provides proofs of the theorems and a detailed discussion

including further literature. Finally, it must be stressed that, although Hohenberg and Kohn

have provided the basis for many achievements in modern DFT, they do not instruct explicitly

how to calculate the functional 𝐹. [3]

The Extensions and
generalizations

theorems of Hohenberg and Kohn are generalized and reformulated by Levy et

al. [110–112] as well as by Lieb et al. [113–115], giving more insight into the functional

and also including degeneracy. Moreover, Mermin [116] has published an extension of the

Hohenberg–Kohn theory for canonical and grand canonical ensembles at finite temperature.

But, it has not led to many applications as they are harder to find. [3]

2.2 Kohn–Sham System

In Conceptthe quest for finding a method to determine the energy functional (2.1) of Hohenberg and

Kohn in the context of the aforesaidmany-body system, the publication of Kohn and Sham [40]

represents a major breakthrough. It has paved the way for the incredible success of modern

DFT. In a nutshell, Kohn and Sham substitute the complicated many-body problem with an

auxiliary non-interacting single-particle system, while restricting themselves to only reveal

the ground-state features of the real system. This auxiliary Kohn–Sham system is to exhibit

the same ground-state charge density 𝜌gs as the many-body problem. Moreover, they suggest
the total energy functional

𝐸KS[𝜌gs(𝒓)] = 𝑇ni[𝜌gs(𝒓)] +∫𝑉ext(𝒓)𝜌gs(𝒓) d3𝑟 + 𝐸Htr[𝜌gs(𝒓)] + 𝐸ii +𝐸xc[𝜌gs(𝒓)] , (2.2a)

where 𝑇ni is the kinetic energy of the auxiliary non-interacting electrons, 𝑉ext the external
potential resulting from the nuclei or other external fields, 𝐸Htr the Hartree contribution,
and 𝐸ii the interaction between the nuclei. The last functional 𝐸xc contains all remaining
contributions to the total energy that are attributed to many-body effects, such as exchange

and correlation. This leads to its name exchange–correlation energy. [3]

Section 2.2.1 Outlinepresents the details of the Kohn–Sham total energy (2.2a) and the Kohn–

Sham equations that can be derived from it. Typical categories of xc-functional approxi-

mations are sketched in section 2.2.2. Finally, the basic strategy to self-consistently solve

the independent-particle Kohn–Sham equations, including prominent classes of mathemat-

ical minimization procedures being employed in this context, are briefly described in sec-

tion 2.2.3. Overall, the discussion within this section 2.2 does not involve spin-polarization,

time-dependence, temperatures beyond zero, or any relativistic effects.

1 They are not dependent on the external potential 𝑉ext [3].

2.2 Kohn–Sham System
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2.2.1 Kohn–Sham Equations

TheKohn–Sham
energy functional

idea to map the complex many-body problem, with a given ground-state density, to

an auxiliary system with non-interacting particles, featuring exactly the same ground-state

density2, leads to a set of 𝑁 single-particle equations3. These Kohn–Sham equations are
significantly easier to solve than those resulting from the Hamiltonian of the many-body

problem. Aiming for this set of Kohn–Sham equations, the general Kohn–Sham version of

the total energy (2.1) shall now be discussed more explicitly, using Hartree atomic units (see

footnote on page 1). The kinetic energy [68, 117] of the non-interacting particles is given by

𝑇ni[𝜌gs(𝒓)] = −1
2
∑
𝜊

∫𝛹 ∗
𝜊(𝒓)

←
∇

→
∇𝛹𝜊(𝒓) d3𝑟 = −1

2
∑
𝜊

∫∣∇𝛹𝜊(𝒓)∣
2 d3𝑟 , (2.2b)

where 𝛹𝜊(𝒓) are the one-particle wave functions of an occupied4 orbital 𝜊, and the arrows
above the gradients indicate the application direction of the derivative operators [3]. Although

the kinetic energy in equation (2.2b) is a functional of the ground-state density (cf. section 2.1),

this dependence does not explicitly appear in the proposal of Kohn and Sham [40]. Nonethe-

less, choosing such a representation of the single-particle kinetic energy as one term in the

Kohn–Sham total energy (2.2a) gives one reason why the Kohn–Sham DFT has been applied

successfully so many times. Furthermore, the Hartree energy in the Kohn–Sham total en-

ergy (2.2a) is given by the classical Coulomb interaction between the ground-state charge

densities evaluated at different locations 𝒓 and 𝒓′

𝐸Htr[𝜌gs(𝒓)] = 1
2
∫

𝜌gs(𝒓)𝜌gs(𝒓′)
|𝒓 − 𝒓′|

d3𝑟′ d3𝑟 . (2.2c)

The potential due to the Coulomb-like interaction between the ions, located at 𝝉 and 𝝉 ′ with

respective proton numbers 𝑍 and 𝑍′, reads

𝐸ii =
1
2
∑
𝝉𝝉′

𝑍𝑍′

|𝝉 − 𝝉 ′|
. (2.2d)

Kohn and Sham also do not give an explicit formulation5 for the xc functional in the Kohn–

Sham total energy (2.2a), nevertheless they have simplified searching for approximations.

Although the task of developing good approximations that live up to the variety and subtleties

of real systems in some cases poses a challenge, fortunately, this can often be achieved fairly

accurately. This discussion is postponed until section 2.2.2. [3]

TheProperties of
Kohn–Sham

equations

orthogonal one-particle wave functions of orbital 𝜊 appearing in equation (2.2b)
are called the Kohn–Sham eigenfunctions of the single-particle Kohn–Sham equation

(−∆
2

+ 𝑉eff(𝒓))𝛹𝜊(𝒓) = 𝜀𝜊𝛹𝜊(𝒓) . (2.3a)

2 This mapping is exactly fulfilled for the homogeneous gas, however, no hard evidence has been provided

that such an auxiliary system with the same ground-state density as the real system can be found in general.

Still, the success of DFT is beyond dispute. [3]
3 Consider additional factor of two for degenerate spin.
4 According to the Pauli principle, every orbital is fully occupied with one spin-up and one spin-down electron,

starting from the orbital with lowest energy up to the Fermi energy. However, we suppress the spin-index

within the current section, keep in mind a spin-degeneracy factor of 2, and refer to section 2.3 for the

integration of the spin-polarization into the Kohn–Sham DFT formalism.
5 If the exact form of the xc functional were known, the ground-state density and the ground-state total energy

would be exact.

2 Density-Functional Theory
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While the corresponding Kohn–Sham eigenenergies are denoted by 𝜀𝜊, 𝑉eff(𝒓) is an effective
local potential acting on one electron located at 𝒓. As the Kohn–Sham equation can be
derived from the Kohn–Sham total energy in a variational approach (2.2a), the Kohn–Sham

eigenenergies are the Lagrange parameters of the condition for the Kohn–Shamwave functions

to be orthonormal. Moreover, the effective potential is defined as

𝑉eff[𝜌gs(𝒓); 𝒓] ≔ 𝑉ext(𝒓) +∫
𝜌gs(𝒓′)
|𝒓 − 𝒓′|

d3𝑟′ + 𝑉xc[𝜌gs(𝒓)] . (2.3b)

The first term is the external potential. The second term is the Hartree potential, which is the

functional derivative of the Hartree energy in equation (2.2c) with respect to the ground-state

density. The last term is the so-called xc potential, which is also defined as the functional

derivative of the xc energy with respect to the ground-state density. This xc potential requires

approximations of which the most common ones are given an overview of in section 2.2.2 and

further classes are mentioned in section 2.3. In principle, the effective potential is chosen so

that the ground-state density of the non-interacting Kohn–Sham system actually corresponds

to the ground-state density of the interacting many-body problem. One is able to adjust this,

as well as possible, only by the choice of the xc-potential approximation. Having determined

the Kohn–Sham eigenfunctions 𝛹𝜊(𝒓) by using the Kohn–Sham equations, the ground-state
charge density can easily be gained

𝜌gs(𝒓) = ∑
𝜊
∣𝛹𝜊(𝒓)∣

2 . (2.4)

Both the effective potential and the ground-state charge density stem from a minimization

procedure and are stationary as far as slight deviations are concerned [3, 118]. It must be

clear that such a variational solution is only in line with an exact pointwise solution of an

analytically solvable system on average [119]. Important consequences shall be elaborated

in further chapters of this dissertation. Finally, it must be stressed that the Kohn–Sham

eigenvalues are, strictly speaking, purely auxiliary quantities without any physical relevance.

An exception is the highest eigenvalue approximating the negative ionization energy [120] as

accurately as the approximation to the xc energy. Still, employing the Kohn–Sham eigenvalues

in general allows for calculating trustworthy physical quantities (an overview is for instance

provided by Martin [3]). [3]

The Self-consistent
solution

Kohn–Sham equations require a self-consistent approach to be solved due to the

fact that the effective potential (2.3b) is not known in the beginning. It depends on the

ground-state density (2.4) which in turn depends on the Kohn–Sham wave functions (2.3a).

In order to calculate the Kohn–Sham wave functions, one requires the calculated effective

potential which sets up the self-consistency cycle. Section 2.2.3 is concerned with shedding

more light on this aspect. [3]

2.2.2 Common Approximations for the Exchange-Correlation Potential

The Theoretical
background

xc energy is governed by the xc hole, expressing the extent to which the Pauli exclusion

principle and correlation due to the Coulomb interaction lower the probability of one electron

being located in the vicinity of another. This circumstance leads to more sophisticated

properties than, for instance, those known from the Hartree potential. Setting the Hohenberg–

Kohn total energy formulation in equation (2.1) equal to the total energy expression of Kohn

2.2 Kohn–Sham System
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and Sham in equation (2.2a) yields

𝐸xc[𝜌gs(𝒓)] = ⟨𝑇 ⟩ − 𝑇ni[𝜌gs(𝒓)] + ⟨𝑉int⟩ − 𝐸Htr , (2.5)

where ⟨𝑇 ⟩ and ⟨𝑉int⟩ are the expectation values of the kinetic energy and the internal potential
energy6 in the real many-body system, respectively. Furthermore, 𝑇ni[𝜌gs(𝒓)] is the single-
particle kinetic energy of the auxiliary system and 𝐸Htr is the Hartree energy. Equation (2.5)
elucidates the energy difference between the real many-body system and the auxiliary system,

and exposes the challenges to find a general form for this xc energy. Thus in practice,

approximations are decisive. Meanwhile, there exists a plethora of it also covering the xc

potential

𝑉xc[𝜌gs(𝒓)] =
δ𝐸xc [𝜌gs(𝒓)]

δ𝜌gs(𝒓)
, (2.6)

which has been defined in section 2.2.1. Their success, among others, is due to the xc energy

constituting a significantly smaller contribution of the total energy to be approximated relative

to the Hohenberg–Kohn energy functional 𝐹[𝜌gs(𝒓)] in equation (2.1) [104]. This draws from
the fact that especially the kinetic energy of the auxiliary non-interacting electrons has been

split off [104]. [3]

WhileLocal Density
Approximation

the functionals occurring in the Hohenberg–Kohn theorems (see section 2.1)

depend non-locally on the ground-state density, Kohn and Sham [40] mention that for solids

the xc functional can, often in a good approximation, be written as

𝐸LDAxc [𝜌gs(𝒓)] = ∫𝜌gs(𝒓)𝜀LDAxc (𝜌gs(𝒓)) d3𝑟 , (2.7)

with an xc energy density 𝜀LDAxc (𝜌gs(𝒓)) (it is equal to the xc energy density of the homogeneous
gas and is therefore a function instead of a density functional) [3, 41]. In the so-called Local

Density Approximation (LDA), the xc energy-density is usually composed of an analytical

exchange part of the homogeneous gas and a correlation part [3, 41]. The latter has been

determined by Monte Carlo methods [121] or, as in the references [43, 122], has been

parameterized [3, 41]. Vital for the justification of LDA, which is exact for a homogeneous

gas, is comparison with experiment. Although a rather simple construction, the correspon-

dence of LDA with experiment is astonishing. For example, lattice constants differ between

experimental and theoretical results not more than a few percent. [3]

WithinX𝛼
approximation

the scope of this thesis the X𝛼 approximation becomes relevant due to its simple
derivative of the respective xc potential, which is needed for the gradient or the first-order

variation of the xc potential (see section 6.3.3 for an explicit form). Its origin dates back to

the publication of Slater [123], who proposed an exchange potential for the homogeneous gas

which features the same 𝜌1/3 behavior, but a prefactor differing from the suggestion of Kohn

and Sham. The prefactor of the exchange (X) potential is usually called 𝛼7 and typically ranges
between 1 and 4/3. Varying 𝛼 can compensate for contributions which have been neglected, if
only the exchange potential of the homogeneous gas without correlation corrections has been

used. A thorough discussion of the X𝛼 method can for example be found in the publication of
Connolly [125]. [3]

6 This includes all potential contributions not stemming from an external potential [3].
7 The historical development of this parameter is pointed out, for example, by Zope and Dunlap [124].

2 Density-Functional Theory
12



An Gradient
approximations

improvement to the LDA represents the class of xc potentials which additionally

include the charge density gradient

𝐸GGAxc [𝜌gs(𝒓)] = ∫𝜌gs(𝒓)𝜀GGAxc (𝜌gs(𝒓),𝛁𝜌gs(𝒓)) d3𝑟 , (2.8)

and is called the Generalized Gradient Approximation (GGA). In comparison to the Gradient

Expansion Approximation (GEA) proposed by Kohn and Sham [40] which can fail, for example

in fulfilling sum rules, and is all in all not better than the LDA [126], the representatives of the

GGA have more control over the gradients of the density. Particularly in real materials, these

gradients become hard to handle. Prominent GGA representatives are the PBE functional [43],

the PW91 functional [44], or the B88 functional [45]. In many situations GGA functionals can

be more accurate than LDA functionals when compared to experiments and enable reliable

calculations for even more material classes. [3]

Although More elaborate
approximations

LDA and GGA functionals are the default in today’s DFT calculations, they fail

in some cases, such as in materials with strong correlation or van der Waals interaction [3].

Two chapters in the textbook of Martin [3] are devoted to LDA, GGA or more advanced xc

functionals. There, further (overview) literature is also provided introducing new functionals

or ranking and comparing them with respect to different material classes. A quick overview

of what exists beyond LDA and GGA is the subject of section 2.3.

2.2.3 Self-Consistency and Mixing of the Charge Density

From Abstractionan abstract point of view, finding the self-consistent solution of the Kohn–Sham equa-

tions8 is in line with a numerical minimization procedure for either the effective potential or

the charge density. As far as the FLEUR code [69] is concerned, the change of the density is
minimized [127]. So, no additional constant must be accounted for, which would have been

present for the minimization of the potential. From another point of view, one can interpret

the minimization as a fixed-point problem obeying

𝔉[𝜌gs(𝒓)] − 𝜌gs(𝒓) ≕ ℱ[𝜌gs(𝒓)] = 0 , (2.9a)

where

𝔉[𝜌𝔦(𝒓)] = 𝜌𝔦+1(𝒓) (2.9b)

is a map between two sequential iterations 𝔦 and 𝔦 + 1 of the self-consistency cycle [128].
Furthermore, the ground-state density represents the fixed-point [128]. [3]

The Conceptscheme for the Kohn–Sham self-consistency cycle is depicted in figure 2.1. It starts

with a well-educated guess of the input ground-state density. For solids, the density resulting

from an overlap of all atomic densities (see also section 5.5.1) often corresponds quite well to

the actual density. Therefore, such a density construction represents a good starting point

for the minimization procedure. This input charge density gives a related effective input

potential, which sets up a Hamiltonian. The Hamiltonian is diagonalized resulting in output

Kohn–Sham eigenfunctions and Kohn–Sham eigenenergies which can be used to set up an

output potential and an output charge density. The change of the output density compared to

8 This means the effective potential results from the ground-state density and vice versa.

2.2 Kohn–Sham System
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Educated guess of initial charge density 𝜌(𝒓) so that
it is as close as possible to the ground-state density

Set up Kohn–Sham Hamiltonian 𝑇 + 𝑉eff[𝜌(𝒓)]

Kohn–Sham wave functions and eigenvalues

from solving Kohn–Sham equations

Determine Fermi energy and

set up output charge density

Converged?Mix charge density

Done!

Further quantities involving self-consistent results

of Kohn–Sham SCC can be calculated

Yes

No

Figure 2.1: Flowchart of the Kohn–Sham self-consistency cycle (based on reference [128, fig-

ure 4]). Starting with an educated guess of the input charge density, the Kohn–Sham

Hamiltonian is set up and diagonalized giving the Kohn–Sham eigenfunctions and

eigenvalues. The latter can be used to find the Fermi energy and calculate the output

charge density. If the output charge density differs from the input charge density of the

iteration the output charge density resulted from, input and output charge densities

will be mixed to determine a new input charge density and initiate a new iteration

step. If, up to some numerical threshold, the charge density is self-consistent with the

effective potential, the Kohn–Sham self-consistency cycle (SCC) has converged and is

terminated. This state sets the stage for further calculations employing the resulting

quantities of the Kohn–Sham SCC.

2 Density-Functional Theory
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the input density, due to an input effective potential, can also be interpreted as the Kohn–

Sham susceptibility [119]. Further discussion of the latter is delayed until section 4.2.1. The

difference [128] between the output and input charge-density can be defined as

∥ℱ[𝜌𝔦(𝒓)]∥ . (2.10)

Equation (2.10) is a measure for the self-consistency of the Kohn–Sham system. Thus, reaching

the minimum is equal to a vanishing distance between the output and input charge-density. It

is the way, that the output density contributes to the new input density, which categorizes the

mathematical minimization (mixing) procedures [41]. They differ in how fast they converge

or how successful they are in damping emerging oscillations [41]. Setting the output density

as the new input density without any mixing procedure lets the fixed-point problem diverge

in general [128]. [3]

The Linear mixingconcept of linear mixing [128] is summarized by

𝜌𝔦+1
in

= 𝛼𝜌𝔦out + (1 − 𝛼)𝜌𝔦
in
= 𝜌𝔦

in
+ 𝛼(𝜌𝔦out − 𝜌𝔦

in
) = 𝜌𝔦

in
+ 𝛼ℱ[𝜌𝔦

in
] . (2.11)

In equation (2.11), the difference of the output and input charge density related to the same

iteration is sort of a first derivative and enters with a certain percentage determined by 𝛼 into
the new input charge density (can approximately be seen as the steepest descent). Linear

mixing does not need much information except for the input and output quantities. This

might be an advantage, but can also be interpreted as a disadvantage as far as the speed of

convergence is concerned. Linear mixing counts as the slowest-converging mixing method.

Also, increasing 𝛼, i.e., adding more information to the new input density about the steepest
descent, does not work well in every case. Nevertheless, when setting a small 𝛼, the iteration
mostly converges, but slowly and linearly [128]. [3]

More Newton–Raphson
mixing

optimal are Newton–Raphson methods, where the first-order of the expansion

ℱ[𝜌(𝒓)] = ℱ[𝜌𝔦(𝒓)] + 𝒥[𝜌𝔦(𝒓)](𝜌(𝒓) − 𝜌𝔦(𝒓)) (2.12a)

is used and the Jacobian is defined as

𝒥[𝜌𝔦(𝒓)] =
∂ℱ[𝜌(𝒓)]
∂𝜌(𝒓′)

∣
𝜌𝔦(𝒓)

. (2.12b)

Setting 𝜌(𝒓) = 𝜌𝔦+1(𝒓) and ℱ[𝜌𝔦+1(𝒓)] = 0 in equation (2.12a) leads to the condition

𝜌𝔦+1
in

= 𝜌𝔦
in
− 𝒥 −1[𝜌𝔦

in
]ℱ[𝜌𝔦

in
] . (2.12c)

The high computational costs of evaluating or inverting the large matrix representation of the

Jacobian and the small convergence radius of this method outweigh its quadratic convergence

behavior and have led to the development of quasi-Newton methods, which try to overcome

the aforementioned disadvantages. [128]

The Quasi-Newton
mixing

quasi-Newton methods circumvent fully determining the Jacobian in every iteration.

This is beneficial for situations in which the Jacobian has large dimensions or cannot totally

be set up. All representatives of this mixing category have the quasi-Newton condition

Δ𝜌𝔦
in

= 𝒥 −1[𝜌𝔦
in
]Δℱ [𝜌𝔦

in
] (2.13a)

2.2 Kohn–Sham System
15



with

Δ𝜌𝔦
in
≔ 𝜌𝔦

in
− 𝜌𝔦−1

in
(2.13b)

and

Δℱ [𝜌𝔦
in
] ≔ ℱ[𝜌𝔦

in
] − ℱ[𝜌𝔦−1

in
] (2.13c)

in common. However, it is an underdetermined set of equations which is coped with dif-

ferently by the procedures counting among the quasi-Newton methods. While the charge

density approaches its minimum super-linearly in sequential iterations, the inverse Jacobian

is evaluated stepwise and is constantly improving after every iteration [3]. This results in a

history of previous mixing steps. If some of these steps have been less effective in reaching

the minimum, the convergence behavior might be worsened [128, 129]. This is due to the

fact that quasi-Newton mixing-step suggestions correlate more with their history than they

do in the Newton–Raphson method, where only the last iteration step is used [128, 129].

Although the convergence radius is larger relative to the Newton–Raphson methods, the

starting density might still be too far away from the fixed-point. Provided this situation or

when numerical parameters are altered during the minimization procedure, the convergence

slows down and the quasi-Newton method should be started from the beginning. The speed

of convergence can even be increased more with generalized Newton methods involving

preconditioning [130–132]. [128]

ANumerics comprehensive discussion about mixing procedures and further literature can be

found in [3, 129]. When calculating derived quantities from the results of the Kohn–Sham

self-consistency cycle, one must keep in mind that, due to numerical noise, the self-consistency

can be achieved only up to a certain accuracy. As a consequence, the effective potential and

the ground-state density are not exactly self-consistent. In the case of the total energy, for

example, it proved convenient to use the input ground-state density and the effective potential

which result from it together with the Kohn–Sham eigenfunctions and eigenvalues that result

from the diagonalization of the Hamiltonian (see section 5.9 and section 7.1.6). [3]

2.3 Brief Overview of DFT Generalizations

UpSpin Density-
Functional

Theory

to now, the spin degree of freedom has been neglected in the current chapter, as within

the scope of the thesis only spin-degenerated systems are treated. Here, it is sufficient to

just multiply by a factor of 2 in the end to account for the spin-up or spin-down character of
the electrons. For magnetic materials, admittedly, the ground-state density can, in principle,

be determined using the formalism introduced above in the current chapter. However, the

magnetization, a functional of the ground-state density according to the Hohenberg–Kohn

theorems (see section 2.1), is unknown. In order to shed light on it, one can resort to Spin

Density-Functional Theory that is based on a generalization of the aforementioned Hohenberg–

Kohn theorems. Within this theory, for example, the effective potential and the ground-state

density become spin-dependent, a magnetization density of which can be formed to enable

research in magnetic phenomena. An introduction in the treatment of magnetism is, for

example, given by Blügel [133] or Bihlmayer [134]. [3]

2 Density-Functional Theory
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A Superconducting
Density-
Functional
Theory

generalization that appears interesting in the context of phonons is the DFT of

superconductivity or alternatively called the Superconducting Density-Functional Theory

(SCDFT) [135–137], in which e.g. Sanna [138] provides an introduction. This theory is

characterized by integrating an anomalous pair density (consistent with the spin density that

was mentioned in the previous paragraph) and bases its formulation on the electron–phonon

interaction. [3]

…

Functionals of occupied / unoccupied states

Random Phase Approximation (RPA), …

Functionals of occupied states

Hybrids, SIC, DFT+U, …

Meta-GGA

General Gradient Approximation (GGA)

Local Density Approximation (LDA)

Figure 2.2: Jacob’s ladder of xc-functional approximations (based on reference [3, figure 9.1]).

The categories of xc functionals are ranked by complexity, starting with the simplest

approximation, the LDA, at the lowest rung of the ladder. The increased complexity

of the functionals is justified by their power and accuracy [3].

Beyond Jacob’s ladderthe popular local density and general gradient approximations that have been

discussed in section 2.2.2, many other functionals have been proposed. They try to overcome

the disadvantages of LDA or GGA approaches for cases in which the local approximation

is insufficient, examples are van der Waals interactions or polarizability. In addition to the

ground-state density and the gradient of the ground-state density, functionals can also be

dependent on wave functions as well as on kinetic-energy densities, formed by wave function

derivatives. The density can likewise be averaged or weighted. A popular categorization is

achieved by Jacob’s ladder, which can be found in figure 2.2. It ranks the functionals according

to the information used and their accuracy compared to the real xc functional. After LDA, the

GGA follows, as it also contains the gradient of the ground-state density. Going up the ladder,

there are meta-GGA with an additional kinetic energy density. Hybrid functionals, SIC, and

2.3 Brief Overview of DFT Generalizations
17



DFT+U ensue, using wave functions of occupied states or, such as in RPA, wave functions of

occupied and unoccupied states. [3]

ItDevelopment of
new functionals

is hard to stay updated among all the functionals that have been developed [53, 139]

and there is not a single functional that is best for all situations. Otherwise, a general form

for the xc functional defined in section 2.2 would have been found. Instead, each situation,

phenomenon, or material has one or a set of functionals that are well-suited. In order to find

new functionals that are not derived from theoretical considerations, chemical databases have

been fitted and one applies artificial intelligence [140, 141]. Artificial intelligence recognizes

patterns and relations that might be nonobvious or are extremely tricky to understand. On

the one hand, this can lead to powerful functionals, but on the other hand, one cannot explain

why they are working so well. [3]

TheBeyond the
ground state

Hohenberg–Kohn theorems do not exclude the description of excitations as the

ground-state density sets up the full Hamiltonian (see section 2.1). For that reason, many-body

calculations such as Configuration Interaction (CI), Monte Carlo, 𝒢𝒲, or the Bethe–Salpeter
Equation (BSE) are based on the Kohn–Sham eigenfunctions. [3]

2 Density-Functional Theory
18



Chapter 3
Phonons

3.1 Basic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Direct Ab-Initio Approach to Phonon Physics . . . . . . . . . . . . . . . . . . . 23

After Setting the stagehaving discussed how to use DFT to cope with interacting electrons in the static potential

of the ions, this chapter deals with the vibrating ions moving in the Born–Oppenheimer (BO)

potential, given a fixed electronic configuration. Thereby, the adiabatic approximation of the

many-body Hamiltonian in equation (1.1) is applied (cf. chapter 1). Furthermore, the focus

is again on bulk solids with a periodic lattice structure. Lattice vibrations, which can, for

example, be excited by a compressional wave such as sound or by electromagnetic waves in

the infrared spectrum [7, 142], are usually referred to as phonon quasiparticles in the context

of quantum mechanics [5].

The Relevanceimportance of (quantized) lattice dynamics becomes obvious in a huge class of

material-specific phenomena. Among them are the transport of heat and sound, elastic proper-

ties, or the interaction and scattering of neutrons or electromagnetic waves in solids (the latter

waves exhibit frequencies in the visible or X-ray spectrum) [4, 5, 7]. Furthermore, vibrating

ions interact with spin-carrying electrons and hence e.g. play a role in electrical resistance,

heat capacity, or can give rise to superconductivity at low temperatures by enabling an effective

electron–electron attraction [4]. Such interactions of phonons with photons or spin-carrying

electrons underlie the definitions of quasiparticles like polaritons or polarons [5]. Moreover,

phonons govern dielectric and piezoelectric material properties [87]. In addition, phenomena

such as those described by thermal expansion coefficients, as well as phase transitions from

solid to liquid or between lattice structures (martensitic transitions) [4] involve phonons [8].

However, all phenomena in the previous sentence, and the functional dependences of the

electrical resistance or the phonon frequencies on temperature or other parameters require the-

ories beyond the harmonic approximation (see section 3.1 for a definition) [8]. The subjects

of current research are also exotic acoustic metamaterials, so-called phononic crystals [143,

144]. Within these metamaterials sound waves can be directed, filtered due to band gaps

in the phonon dispersions, or manipulated in a certain way similar to light or electrons in

crystals [143, 144]. All in all, research on phonons promises new and innovative high-tech

applications in the future.
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TheMeasuring
dispersion
relations

central phonon dispersion relations inform about the phonon frequencies as func-

tions of the phonon wave vector. Usually, these phonon frequencies are within an interval

from 0 to 10–30 THz. Experimental methods to measure them partially or completely range
from inelastic incoherent neutron scattering [145–147], or X-ray diffraction and Brillouin

light scattering [148–150], to infrared absorptions or Raman spectroscopy [151, 152] [3,

7]. An overview of experimental techniques notably focusing on surface phonons is given by

Fritsch and Schröder [153] [23]. [142]

TheoreticalTheoretical
methods

approaches to understanding how phonons contribute to physical effects

include, for example, semiclassical theories or operator techniques in models and perturbative

approaches, such as those using Feynman diagrams [5, 8]. Particularly for finite temperatures,

the physics of phonons can be investigated with molecular dynamics simulations [154–157].

Section 3.1Outline is devoted to summarizing the basic parts of phonon theory, relevant within

the scope of this thesis, to clarify the associated terminology and to describe the assumptions

this dissertation rests on. In addition to analytical methods, numerical methods have also been

established and augment the access to regimes beyond the cut-offs of analytical calculations.

Within section 3.2, the class of so-called direct ab-initio methods is presented. They offer

an alternative to the class of perturbative methods, such as Density-Functional Perturbation

Theory (DFPT), in order to calculate phonon frequencies.

3.1 Basic Theory

TheLiterature equations of lattice dynamics are part of standard textbooks about solid-state physics

today. This section mainly refers to the textbooks of Galsin [7] and Mahan [5], and also to

the concise lecture notes of Heid [23]. One of the first standard textbooks in the context of

lattice dynamics has been published by Born and Huang [21].

TheMinimal Born–
Oppenheimer

energy

definition of the BO energy 𝐸BO({𝝉}) (1.3) sets the stage for outlining the cen-
tral points in the theory of lattice dynamics. Starting with a common DFT calculation (as

discussed in chapter 2), it is feasible to calculate the minimum 𝐸BO of the BO energy [22].
This minimum is characterized by the equilibrium configuration {𝝉 (0)} of the ions at tempera-
ture 𝑇 = 0K. [23]

InTaylor-expanding
the Born–

Oppenheimer
energy

a next step, the ensemble of coupled ions might undergo a set of small1 displacements,

described individually for an atom (ion) 𝛾 by𝒘𝛾. Thus, the new locations {𝝉} = {𝝉 (0)} + {𝒘}
of the nuclei (ions) are in the close vicinity of the equilibrium configuration {𝝉 (0)}. In this
particular case, the expansion of the BO energy

𝐸BO({𝝉}) = 𝐸BO({𝝉 (0)}) +∑
𝛾

𝜱⊤
𝛾𝒘𝛾 + 1

2
∑
𝛾𝛾′

𝒘⊤
𝛾𝛷𝛾𝛾′𝒘𝛾′ +… (3.1a)

reveals dynamic features of the underlying system. Cutting off third- or higher-order terms,

which is acceptable whenever the displacements are small enough, is known as the harmonic

approximation, and shall be adhered to henceforth. Within equation (3.1a), the 𝑖th component

1 This means small relative to the distances between the ions [7].

3 Phonons
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of the vector

𝛷𝛾,𝑖 ≔
∂𝐸BO
∂𝜏𝛾,𝑖

∣
𝒘𝛾=𝟎

≕ −𝐹 (1)
𝛾,𝑖 (3.1b)

represents minus the 𝑖th coordinate of the first-order interatomic force 𝐹 (1)
𝛾,𝑖 . This force acts on

atom 𝛾 in a direction given by the cartesian unit vector ̂𝒆𝑖, and results from the effective BO

energy in the case of a displacement given by the vector components𝑤𝛾,𝑖. Since the equilibrium

configuration of the ions ({𝒘} = 𝟎) minimizes the effective BO energy in equation (3.1a),
its first derivative with respect to each 𝝉𝛾 is zero, and so is every force2 𝐹

(1)
𝛾,𝑖 in this case. In

contrast

[𝛷𝛾𝛾′]
𝑖𝑗
≔

∂2𝐸BO
∂𝜏𝛾,𝑖 ∂𝜏𝛾′,𝑗

∣
𝒘𝛾=𝒘𝛾′=𝟎

(3.1c)

does not vanish in general in this context and is named the harmonic force-constant matrix.

One can use it, to harmonic order, to approximate the force in direction 𝑖 on an ion 𝛾, which
is held fixed, provided an ion 𝛾′ is displaced by 𝑤𝛾′,𝑗 in direction 𝑗

𝐹 (2)
𝛾,𝑖 = −∑

𝛾′,𝑗
[𝛷𝛾𝛾′]

𝑖𝑗
𝑤𝛾′,𝑗 . (3.2)

With equation (3.2), the analogy of the harmonic force-constant matrix to a spring constant

(Hooke’s law) becomes obvious. [23]

Furthermore, Sum rulesif every atom is displaced by the same amount𝒘const in the same direction,
i.e., 𝒘𝛾′ = 𝒘const, the whole crystal will be shifted without varying interatomic distances.
Therefore, the ions will remain in their equilibrium configuration causing the BO energy to

be minimal, which can only be fulfilled for

∑
𝛾

𝜱𝛾 = 𝟎 ∧ ∑
𝛾𝛾′

𝛷𝛾𝛾′ = 0𝛾 (3.3a)

in harmonic order. By making the same argument for equation (3.2),

∑
𝛾′

𝛷𝛾𝛾′ = 0𝛾 (3.3b)

follows. [7]

In Harmonic
dynamics

order to cast light on the dynamics of the ions, in the sense of classical mechanics,

the force in equation (3.2) is inserted into the second fundamental law of Newton

𝑀𝛾
∂2𝑤𝛾,𝑖(𝑡)

∂𝑡2
= 𝐹 (2)

𝛾,𝑖 (𝑡) = −∑
𝛾′,𝑗

[𝛷𝛾𝛾′]
𝑖𝑗
𝑤𝛾′𝑗(𝑡) . (3.4)

In this expression, 𝑀𝛾 is the mass of an nucleus 𝛾, vibrating periodically in time around
its equilibrium position with the amplitude ∣𝒘𝛾′∣. Given a crystal with a periodic lattice
2 This circumstance forms the basis of algorithms for relaxing material structures, using forces based on DFT

calculations [3]. The challenges presented by actual numerical calculations, especially when choosing the

FLAPW method, are the subject of section 5.10, section 5.11, and section 5.12.

3.1 Basic Theory
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structure fulfilling translational symmetry, the Bloch theorem [20] can be exploited in order to

circumvent dealing with an infinite set of coupled differential equations in equation (3.4). As

a consequence, the displacements𝒘𝛾𝑹
of every atom 𝛾, which now is located in and attributed

to a unit cell addressed by 𝑹, fall into categories labeled by the vector 𝒒

𝒘𝒒
𝛾𝑹

(𝑡) = 𝑸𝛾𝑹
(𝒒, 𝑡)ei𝒒⋅𝑹 +𝑸∗

𝛾𝑹
(𝒒, 𝑡)e−i𝒒⋅𝑹 (3.5a)

≕ 𝒘𝒒+

𝛾𝑹
(𝑡) + 𝒘𝒒−

𝛾𝑹
(𝑡) , (3.5b)

decoupling the infinitely large set of differential equations (3.4) into 3𝑁𝛾𝑹
equations of

independent one-dimensional (harmonic) oscillators (𝑁𝛾𝑹
is the number of atoms attributed

to the unit cell 𝑹) [3, 88]. Therefore,Modes the ansatz [8] is made that the polarization vector

𝑸𝛾𝑹
(𝒒, 𝑡) = 1

√𝑀𝛾

𝑸𝛾𝑹
(𝒒)ei𝜔𝜄(𝒒)𝑡 (3.6a)

⇔ 𝑄𝜄(𝒒, 𝑡) =
1

√𝑀𝛾

𝑄𝜄(𝒒)ei𝜔𝜄(𝒒)𝑡 (3.6b)

is periodic in time with 𝜄 ∈ [1, 3𝑁] indexing the branches ormodes, which are called longitudinal
for 𝒒 ∥ 𝑸𝛾𝑹

(𝒒) and transversal given 𝒒 ⊥𝑸𝛾𝑹
(𝒒). ThisDynamical matrix completes the picture of a wave with

wave vector 𝒒 propagating through the lattice and fulfills the eigenvalue equation

𝐷𝛾𝛾′(𝒒)𝑸𝛾′(𝒒) = 𝜔2
𝜄 (𝒒)𝑸𝛾(𝒒) , (3.7a)

or after replacing the atom index and displacement direction by the branch index

𝐷(𝒒)𝑸𝜄(𝒒) = 𝜔2
𝜄 (𝒒)𝑸𝜄(𝒒) , (3.7b)

for the dynamical matrix

[𝐷𝛾𝛾′(𝒒)]
𝑖𝑗
≕ 1

√𝑀𝛾𝑀𝛾′

∑
𝑹′

[𝛷𝛾
𝟎
𝛾′
𝑹′
]
𝑖𝑗
ei𝒒𝑹′ . (3.8a)

In the previous definition the periodicity of the lattice has been used (𝑹 = 𝟎 and𝑹′−𝑹 = 𝑹′).

Inserting equation (3.1c) yields

[𝐷𝛾𝛾′(𝒒)]
𝑖𝑗
≕ 1

√𝑀𝜅𝑀𝜅′

∑
𝑹′

∂2𝐸BO
∂𝜏𝛾

𝟎
,𝑖 ∂𝜏𝛾′

𝑹′,𝑗
∣
𝒘𝛾

𝟎
=𝒘𝛾′

𝑹′
=𝟎

ei𝒒𝑹′ . (3.8b)

Equations (3.7) result from inserting the first term of equation (3.5a) with either equa-

tion (3.6a) or equation (3.6b) into equation (3.4) (inserting the second term of equation (3.5a)

in the aforementioned way, results in the complex conjugate of equations (3.7)). Equa-

tions (3.7) mirror the polarization vectors to be the eigenvectors or normal vectors of the

dynamical matrix (3.8). As a consequence, the modes 𝜄 are also called normal modes. Further-
more,Dispersion

relation
equations (3.7) define the dispersion relations 𝜔𝜄(𝒒) to be the eigenvalues of the 3𝑁×3𝑁

dynamical matrix. In polyatomic systems, i.e., the unit cell contains more than one atom, the

3 Phonons
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normal modes subdivide into 3 acoustic3 and 3𝑁 − 3 optical4 modes, whereas only 3 acoustic
branches emerge for systems with only one atom per unit cell (monoatomic). Moreover, the

Hermitian character of the dynamical matrix ensures real squares of frequencies as eigen-

values. Usually, the latter are positive. Negative squares of frequencies result in imaginary

dispersion relations, indicating instabilities in the underlying structure. The Time Reversal

Symmetry (TRS) holds for the dynamical matrix, hence also for the polarizations and disper-

sion relations. Thereby, the latter fulfill 𝜔𝜄(−𝒒) = 𝜔∗
𝜄(𝒒) (for stable structures 𝜔∗

𝜄(𝒒) = 𝜔𝜄(𝒒)
holds in addition due to real frequencies). [7]

When Quantum-
mechanical
description

discussing displacements and momenta in atomic orders of magnitude, quantum

mechanical effects come into play, governed by the fundamental commutator

⎡⎢
⎣
𝒘𝛾

𝑹
,𝑖,𝑀𝛾′

𝑹′

∂𝒘𝛾′
𝑹′,𝑗

∂𝑡
⎤⎥
⎦

= i~δ𝑖𝑗δ𝛾
𝑹
𝛾′
𝑹′

. (3.9)

Introducing the second quantization, as the Coulomb interaction underlies the exchange

of quantized photons, the quantized lattice vibrations are integrated into a quasiparticle

concept of quantum field theory [4]. They satisfy the Bose–Einstein statistics, and are named

phonons for which bosonic ladder operators are defined. These operators enable creation or

annihilation of a phonon quasiparticle, i.e., in the wave picture to add quanta to or subtract

quanta from the quantized amplitude of the lattice vibration. However, the frequencies remain

equivalent compared to classical mechanics and define the energy of a phonon quasiparticle

as ~𝜔𝜄(𝒒) [8]. Against the background of ab-initio DFT calculations, quantum-mechanical
effects are inherent in the xc energy and xc potential (cf. chapter 2). [5]

The Goldstone modesacoustic normal modes of phonons with a wave vector 𝒒 = 𝟎 are named Goldstone
modes [158, 159], denoting the phonons to be in the limit of an infinite wavelength [4, 160].

This is consistent with the whole crystal shifted without a change of interatomic distances, as

already stated above in the current section [4, 160]. It entails the dynamical matrix at the

Γ-point to be zero and to possess vanishing eigenvalues5 [4, 160]. Consistently for 𝒒 = 𝟎, the
sum rule in equation (3.3b) can only be fulfilled for the dynamical matrix (3.8), provided

its diagonal features vanishing entries [8]. Moreover, close to the Γ-point, acoustic modes
show a linear behavior, while optical modes usually tend to a constant value there [5]. The

textbook of Grosso and Parravicini [8] offers an overview of typical dispersion relations for

some important material classes.

3.2 Direct Ab-Initio Approach to Phonon Physics

Basically, Principleall direct methods to calculate the phonon dispersion or the dynamical matrix,

respectively, use changes of quantities obtained by standard DFT calculations with a displaced

or the equilibrium configuration of the ions. Keeping the ions fixed to determine the total

3 These modes are responsible for the transport of sound in a medium [4]. For long wavelengths, the speed of

sound is the proportionality constant between the dispersion and the wave-vector 𝒒 [4].
4 Optical branches couple with electric fields, which can be understood from the optical mode of a diatomic-

chain model with the first and second atom having charges and amplitudes with opposite sign, effectively

forming a dipole [4, 8].
5 This can also be derived from the sum rule in equation (3.3b) (see reference [8]).

3.2 Direct Ab-Initio Approach to Phonon Physics
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energy is why such algorithms are also known as frozen phonon methods [3]. Throughout the

last decades, many papers have been published, presenting dispersion relations from ab-initio

based direct-methods. A good overview can, for example, be found in the paper of Fritsch

and Schröder [153]. [23]

OnePioneering
approaches

of the early works by Yin and Cohen [161] presents phonon frequencies at the Γ-
andX-points for which the normal modes, mirroring the respective displaced ion configuration,
have been determined by group theoretical considerations based on the underlying symmetry.

Given known normal modes, the related frequencies can be extracted from equations (3.7).

Another approach [162, 163] is to extract frequencies from curvatures of calculated total

energies as a function of displacement [3]. However, an educated guess cannot always be

made in advance. In general, the normal modes result from a diagonalization of the dynamical

matrix. [23]

InFinite
Displacement

method

the Finite Displacement (FD) method [72–75] an improvement is made by using

equation (3.2), one requires only the force on one atom while displacing another atom

and no longer the normal modes [3]. According to the intrinsic symmetry of the examined

system, a set of displacements is chosen to determine the whole force-constant matrix via

difference quotients (3.1c) (each of these displacements determines one row of this matrix) [3].

That means without symmetry optimizations and for a unit cell of 𝑁 atoms, one needs 3𝑁
independent self-consistency calculations that can completely independently be executed in

parallel. Each of these calculations scales proportional to𝑁3 regarding the computational time.

The displacement contains one free parameter which is the amplitude of the displacement.

Depending on the amplitude, one remains in the harmonic regime or is already in the

anharmonic one. This can be tested as a function of the amplitude or in comparison with the

DFPT results, which we derive explicitly and discuss later. After a Fourier transform of the

force-constant matrix into the dynamical matrix (see equations (3.8)), the frequencies and all

normal modes can be determined by its diagonalization [88]. Ideally, the force calculation

is based on the Hellmann–Feynman theorem, which shall be introduced in section 4.1.1. In

practice, one needs corrections terms to the Hellmann–Feynman force, whose computational

effort is in general much larger than the Hellmann–Feynman forces themselves. Also, more

accurate methods such as the FLAPW approach entail a more sophisticated calculation of the

forces (see section 5.12). [23]

OnAdvantages the one hand, the actual theoretical concept and the effort of implementation

to obtain phonon dispersions from direct ab-initio methods are easier than perturbative

techniques such as DFPT (apart from the aforementioned challenges concerning accurate

forces) [3]. This especially holds true for third- or higher-order derivatives of the BO energy

in equation (3.1a). [23]

OnDisadvantages the other hand, when compiling the complete dynamical matrix, it is essential to

include one complete phonon wave period into the DFT calculations beyond the Goldstone

modes. So for instance for the wave-vector (0, 0.25, 0.5)⊤, without loss of generality, one
period expands through one unit cell in the 𝑥-direction, four unit cells in the 𝑦-direction, and
two unit cells in the 𝑧-direction, which increases the time to self-consistency by a factor 512
compared to the 𝒒 = 𝟎-modes. Such a phonon is called commensurate to a 1×4×2 supercell
and this scenario is illustrated in figure 3.1. It becomes obvious that the computational effort

to calculate certain wave-vectors (for example with small coordinates) immensely grows or can

even exceed available computer resources. The prerequisite of phonons being commensurate

3 Phonons
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𝑦

𝑧

𝑥

Figure 3.1: For a phonon wave vector 𝒒 = (0, 0.25, 0.5)⊤2π/𝑎lat with lattice constant 𝑎lat, a commen-
surate supercell of one unit cell in the 𝑥-direction, four unit cells in the 𝑦-direction,
and two unit cells in the 𝑧-direction is required to enclose the complete period of the
related phonon modes (based on reference [88, figure 5.1]). The periods in the 𝑦-
and 𝑧-directions are illustrated by the grayish sine waves. The red arrows indicate
the directions of the infinitesimal displacements from the equilibrium position.

with the supercell setup restricts the application of this method to phonon wave-vectors,

the components of which must be rational numbers. A further problem of a large supercell

consists in the fact that the number of 𝒌-sampling points must be inversely proportional to
the size of the supercell to ensure comparable 𝒌-sets for different phonon vectors 𝒒. Finally,
a problem occurs at some point when the effective range of lattice interactions becomes

smaller than the size of the supercell [23]. Today, the FD approach is applied by many first-

principles programs and sophisticated tools have been developed to suggest an irreducible set

of displacement patterns in conjunction with the crystal symmetry of the lattice. Well-known

is the phonopy tool [164], which we base on the first-principle implementation FLEUR [69] in
order to generate benchmark data that is contrasted with my results in section 7.7. [87, 88]

3.2 Direct Ab-Initio Approach to Phonon Physics
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Chapter 4
Density-Functional Perturbation Theory

4.1 Response Functions and Total Energy Derivatives . . . . . . . . . . . . . . . . 28
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4.3 Viable Types of Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

DFT Motivationhas established itself as a reliable and effective method, in particular to determine the

ground-state charge density and the ground-state total energy of the interacting many-particle

problem for various systems (see chapter 2). Consequently, it appears worthwhile to place a

method for investigating responses of the many-body system to perturbations on a similar

footing. But at first glance, dealing with perturbations might not connote seeking inspiration

in a framework for electronic ground-state quantities. Nevertheless a perturbation which

has a strength so small as to leave the electronic system almost in its ground state, suggests

basing the method, which analyzes many-body system responses to such a perturbation, on

the convincing Density-Functional Theory. Hence, it seems reasonable to name it Density-

Functional Perturbation Theory (DFPT). [22]

DFPT Originis usually1 attributed to Baroni, Giannozzi, and Testa [80], who utilize Green

functions in their method [68], an alternative but equal formulation [3] is given by Gonze

et al. [81–85]. So DFPT can either be derived in the former way by applying Rayleigh–

Schrödinger perturbation theory to a perturbed Kohn–Sham Hamiltonian, while the perturba-

tion is normally expressed by the external potential (this approach guides the discussion in this

chapter). Alternatively, it is deducible in the latter manner by applying a variational ansatz2

to the total energy, which is expanded to a respective order (involving the Euler–Lagrange

equations) [68]. [22]

Thus, Purpose and
success story

DFPT integrates organically into DFT and delivers any order of total energy

derivatives with respect to characteristic perturbation parameters (cf. the methods in sec-

tion 3.2 resorting to difference quotients or accurate forces). Both pure derivatives and mixed

derivatives are feasible [3]. Nowadays, numerous papers report on the good agreement of

1 Even before, there has been a publication of DFPT by Zein [76] in the Soviet Union [87].
2 One historically important application of the variational ansatz already took place in 1930 when Hylleraas

[165] calculated the two-electron problem [3].
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DFPT calculations with experimental data, and evince a broad spectrum of different calculated

response quantities as well as materials [3, 87]. This substantiates the significance and

efficiency of DFPT [23]. Among others, one reason for the success of DFPT is that total energy

variations are usually easier to calculate than the total energy itself [3]. A comprehensive

overview is given by the review papers of Baroni et al. [87] as well as Gonze, Rignanese,

and Caracas [92]. Moreover, a list of established DFPT implementations is already given in

chapter 1. [22]

Section 4.1Outline is concerned with summarizing central aspects of Rayleigh–Schrödinger

perturbation theory and response functions, especially regarding linear response. Furthermore,

it presents a second-order derivative of the total energy with respect to a general perturbation

parameter, as well as a fundamental connection between the order of response quantities and

the order of total energy derivatives. This sets the stage for section 4.2. Confined to insulators,

an introduction to the main concepts of DFPT is combined there with a comparison to an

alternative response method, building upon the dielectric matrix. Throughout this section,

technical implementation details are not given. Finally, section 4.3 illustrates the versatility

of DFPT by addressing various perturbations it can be applied to. Due to its formulation,

DFPT constitutes a highly efficient and powerful method to calculate phonon quantities,

in particular, compared to the methods discussed in section 3.2. At this point however, it

must be underlined that phonon response is separately addressed in chapter 6 and chapter 7.

Therefore, it is not the main focus of the current chapter.

4.1 Response Functions and Total Energy Derivatives

VariousMotivation exciting phenomena we experience when carrying out experiments can be interpreted

as a reaction or response to an applied perturbation. This perturbation might be a mechanical

stimulus, or the application of electric or magnetic fields, to name but a few. From another

perspective, the design of high-tech materials incorporates the selection of samples whose

response fits best to the desired response properties. In physics, understanding a new system by

perturbing it and examining its response is actually rather intuitive and quantified by so-called

response functions. Focusing on condensed matter systems, it turns out that many of these

response functions are connected to first- or higher-order derivatives of the ground-state total

energy with respect to one or more perturbations. To list a few: with first-order derivatives

one can examine dipole moments [166] or forces; research on phonon dynamical matrices,

piezoelectricity and elastic constants can be carried out from second-order derivatives; third-

order derivatives are related to phonon–phonon interaction [167], Grüneisen parameters and

anharmonic force constants (see also Baroni et al. [87] and references therein). The extent to

which the respective orders of total energy derivatives are relevant correlates both with the

intensity or amplitude of the perturbations (categorizing them as first, second or higher order3)

and with the phenomenon intended to be explored (e.g. thermal expansion [168]). [22]

Section 4.1.1Outline contains the essentials of Rayleigh–Schrödinger perturbation theory, which

are required hereinafter. In this context, parallels to the Hellmann–Feynman theorem [169,

170] are drawn, the orthogonality relations between wave-function variations are discussed,

and the connections to the total energy derivatives with respect to an arbitrary parameter are

3 It is also common to subdivide into linear, harmonic, and anharmonic effects.

4 Density-Functional Perturbation Theory
28



established. The discussion of further aspects, that can result from the introduction of basis

sets, is postponed to section 5.10, section 5.11, and section 5.12 as well as chapter 6 and

chapter 7. Section 4.1.2 presents the second-order derivative of the total energy with respect

to a general perturbation parameter, motivating the calculation of the first-order charge-

density variation. In fact, only the first order of the charge-density variation is required for

the third-order total energy variation. This is a direct consequence of the fundamental 2𝑛 + 1
theorem which shall be elucidated, but not proven, in section 4.1.3.

4.1.1 Perturbation Theory and Hellmann–Feynman Theorem

The Literaturebasics of perturbation theory can be found within every standard quantum mechanics

textbook. Nonetheless, e.g. Verstraete and Zanolli [22] have published a comprehensive

discussion of this topic in the context of DFPT, which is referred to within this subsection

unless cited differently.

Perturbation Rayleigh–
Schrödinger
perturbation
theory

theory postulates that the perturbation, whose strength is expressed by a

parameter 𝜆, is small enough for an arbitrary perturbed quantity 𝑔(𝜆) to be expandable in a
rapidly enough converging Taylor series

𝑔(𝜆) =
∞

∑
𝔬=0

𝜆𝔬𝑔(𝔬)(𝜆) , (4.1a)

in which

𝑔(𝔬)(𝜆) = 1
𝔬!

d𝔬𝑔(𝜆)
d𝜆𝔬 ∣

𝜆=0

(4.1b)

and 𝔬 indicates the order of perturbation. Perturbations (considered static in the following)
are usually applied to an unperturbed system with diagonalized Hamiltonian ℋ (0) and or-

thonormal eigenfunctions. Formally, perturbations are described by an external potential as a

function of a perturbation strength 𝜆, so that the Hamiltonian of the perturbed system reads

ℋ(𝜆) = ℋ (0) +𝒱ext(𝜆) . (4.2)

This Hamiltonian satisfies the Schrödinger equation

(ℋ(𝜆) − 𝜖𝔭(𝜆))∣𝛹𝔭(𝜆)⟩ = 0 , (4.3a)

where 𝔭 enumerates the perturbed but unknown eigenfunctions ∣𝛹𝔭(𝜆)⟩ and eigenener-
gies 𝜖𝔭(𝜆). Expanding all functions of 𝜆 according to equations (4.1) yields

(
∞

∑
𝔬″=0

𝜆
𝔬″

ℋ
(𝔬″)

(𝜆) −
∞

∑
𝔬″=0

𝜆
𝔬″

𝜖
(𝔬″)
𝔭 (𝜆))

∞

∑
𝔬‴=0

𝜆
𝔬‴

∣𝛹
(𝔬‴)
𝔭 (𝜆)⟩ = 0 , (4.3b)

or reordered according to the orders of perturbation indicated by 𝔬

∞

∑
𝔬=0

𝜆
𝔬
(

𝔬

∑
𝔬′=0

(ℋ
(𝔬′)

− 𝜖
(𝔬′)
𝔭 )∣𝛹

(𝔬−𝔬′)
𝔭 ⟩) = 0 . (4.3c)

4.1 Response Functions and Total Energy Derivatives
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The zeroth order (𝔬 = 0) of this expression is trivially fulfilled. ForSternheimer
equation

the linear response theory,

focusing on the first order 𝔬 = 1 of the Schrödinger equation is sufficient and results in

(ℋ (0) − 𝜖(0)𝔭 )∣𝛹 (1)
𝔭 ⟩ = −(ℋ (1) − 𝜖(1)𝔭 )∣𝛹 (0)

𝔭 ⟩ . (4.4)

Equation (4.4) is called the Sternheimer equation according to Sternheimer [171], who

published it first in the context of ion polarizabilities. If one desires to determine the first-

order variation of the wave function, the Sternheimer equation can be rewritten to exclude

singularities (see reference [22]). Projecting equation (4.4) onto a normalized unperturbed

eigenfunction 𝛹 (0)
𝔭 lets the left-hand side of the Sternheimer equation vanish if the self-adjoint

Hamiltonian ℋ (0) acts on the left and results in the relation for the first-order eigenenergy

change

𝜖(1)𝔭 = ⟨𝛹 (0)
𝔭 ∣ℋ (1)∣𝛹 (0)

𝔭 ⟩
𝛺
. (4.5)

The variable 𝛺 indicates the volume of the perturbed system. ExploitingHellmann–
Feynman theorem

equation (4.1b)

in (4.5) reveals the consistency with the Hellmann–Feynman theorem [169, 170] given

normalized eigenfunctions 𝛹 (0)
𝔭 of eigenvalue 𝜖𝔭 for a Hamiltonian ℋ

d𝜖𝔭(𝜆)
d𝜆

= ∫
𝛺
𝛹 (0)
𝔭

∗
(𝒓)

dℋ(𝜆)
d𝜆

𝛹 (0)
𝔭 (𝒓) d3𝑟 = ⟨𝛹 (0)

𝔭 ∣
dℋ(𝜆)
d𝜆

∣𝛹 (0)
𝔭 ⟩

𝛺

(4.6a)

= ⟨𝛹 (0)
𝔭 ∣

d𝒱(𝜆)
d𝜆

∣𝛹 (0)
𝔭 ⟩

𝛺

. (4.6b)

The equivalence of equations (4.6a) and (4.6b) holds if ℋ(𝜆) = 𝒯+𝒱(𝜆) can be subdivided
into a kinetic energy operator𝒯 and a potential operator𝒱(𝜆). A simple proof of the Hellmann–
Feynman theorem [170] uses the product rule, the orthonormality of the eigenfunctions and

the self-adjointness of the Hamiltonian operator. The Hamiltonian operator is not self-adjoint

in general, especially if the basis is section-wise defined [88], which is often the case in

numerical calculations. Similar to the first-order eigenenergies (4.5), for the second-order

eigenenergies, the second-order terms in (4.3c) are extracted and projected onto 𝛹 (0)
𝔭 leading

to

𝜖(2)𝔭 = ⟨𝛹 (0)
𝔭 ∣ℋ (2)∣𝛹 (0)

𝔭 ⟩
𝛺
+ ⟨𝛹 (0)

𝔭 ∣ℋ (1) − 𝜖(1)𝔭 ∣𝛹 (1)
𝔭 ⟩

𝛺
. (4.7)

This equation displays that the second-order eigenenergy is only dependent on the first-order

(variation) and the zeroth-order wave functions, which is the result of the fundamental 2𝑛+1-
theorem discussed in section 4.1.3.

InFirst-order wave
function

order to evaluate this first-order wave function correction, it is expanded4 using the

orthonormal and complete basis5 of the unperturbed wave function

∣𝛹 (1)
𝔭 ⟩ = ∑

𝔭′

𝑐(1)𝔭𝔭′∣𝛹
(0)
𝔭′ ⟩ . (4.8a)

4 Apart from this variational ansatz, some scenarios allow for formulating differential equations that deliver

the pointwise first-order wave-function correction.
5 This is possible because the first-order wave function lies completely within the Hilbert space spanned by the

unperturbed wave functions. However, chapter 6 addresses an example where the first-order wave function

cannot be described by the Hilbert space of the unperturbed wave functions anymore. [88]

4 Density-Functional Perturbation Theory
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The coefficients 𝑐(1)𝔭𝔭′ which satisfy 𝔭 = 𝔭′ are zero and subsequently discussed to the case 𝔭 ≠ 𝔭′.
Putting equation (4.8a) into the Sternheimer equation (4.4), enables one to evaluate the

action of the Hamiltonian and delivers

∑
𝔭′|𝔭′∈P⊥

(𝜖(0)𝔭′ − 𝜖(0)𝔭 )𝑐(1)𝔭𝔭′∣𝛹
(0)
𝔭′ ⟩ = −(ℋ (1) − 𝜖(1)𝔭 )∣𝛹 (0)

𝔭 ⟩ . (4.8b)

In this equation, P⊥ is the subspace of all occupied and unoccupied states orthogonal to the

set of wave functions belonging to the eigenvalue 𝜖𝔭. Hence excluding the complementary
subspace P, prevents the difference of energies on the left-hand side from becoming zero.
Inserting a completeness relation on both sides results in

∣𝛹 (1)
𝔭 ⟩ = ∑

𝔭′|𝔭′∈P⊥

∣𝛹 (0)
𝔭′ ⟩

⟨𝛹 (0)
𝔭′ ∣ℋ (1)∣𝛹 (0)

𝔭 ⟩
𝛺

𝜖(0)𝔭 − 𝜖(0)𝔭′

, (4.8c)

the well-known relation for the first-order perturbation of the wave function from Rayleigh–

Schrödinger perturbation theory. The General-order
orthogonality

wave functions as part of the Schrödinger equation for

the perturbed system (4.3a) are demanded to fulfill

⟨𝛹𝔭(𝜆)∣𝛹𝔭(𝜆)⟩𝛺 = 1 . (4.9a)

Using equations (4.1) and subtracting

⟨𝛹 (0)
𝔭 (0)∣𝛹 (0)

𝔭 (0)⟩
𝛺
= 1 (4.9b)

yields the orthogonality of the wave-function variations to any order 𝔬 > 0 of the perturbation
parameter 𝜆

𝔬

∑
𝔬′=0

⟨𝛹
(𝔬′)
𝔭 (𝜆)∣𝛹

(𝔬−𝔬′)
𝔭 (𝜆)⟩

𝛺
= 0 . (4.9c)

Due to the gauge freedom of the wave function phase, Im 𝑐𝔭𝔭 = 0 holds so that equation (4.8c)
remains valid. The variable 𝛺 for the volume is suppressed in the following sections of this
chapter.

4.1.2 General Second-Order Derivative of the Total Energy

The Literaturetotal energy (2.1) shall now be differentiated twice with respect to general perturbation

parameters. A more detailed discussion can be found in the lecture notes of Heid [23], which

section 4.1.2 adheres to.

First, Generalizationthe external potential (4.2) is further generalized, so that it is a function of a set

of 𝔟 adiabatic perturbation parameters 𝕃 = {𝜆𝑏 ∶ 𝑏 ∈ [1, 𝔟]}. Such an external potential 𝑉 𝕃
ext(𝒓)

leads to a ground-state density 𝜌𝕃gs(𝒓), minimizing a total energy

𝐸𝕃
tot = 𝐹[𝜌𝕃gs] +∫𝜌𝕃gs(𝒓)𝑉 𝕃

ext(𝒓) d3𝑟 + 𝐸𝕃
ii
, (4.10)

4.1 Response Functions and Total Energy Derivatives
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which incorporates the universal functional 𝐹[𝜌𝕃gs] and the ion–ion interaction 𝐸𝕃
ii
. In equa-

tion (4.10) the perturbation comes into play directly through the external potential and

implicitly through the ground-state density from the self-consistent DFT calculation. Differen-

tiatingFirst-order
derivative

with respect to a perturbation parameter 𝜆𝑏 (𝑏 ∈ 𝕃) therefore results in

∂𝐸𝕃
tot

∂𝜆𝑏

= ∫
δ𝐸𝕃

tot

δ𝜌𝕃gs(𝒓)
∂𝜌𝕃gs(𝒓)
∂𝜆𝑏

d3𝑟
⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

+∫𝜌𝕃gs(𝒓)
∂𝑉 𝕃

ext(𝒓)
∂𝜆𝑏

d3𝑟 +
∂𝐸𝕃

ii

∂𝜆𝑏

. (4.11)

As 𝜌𝕃gs(𝒓) minimizes 𝐸𝕃
tot, the first functional derivative vanishes so that equation (4.11) is

consistent with the Hellmann–Feynman theorem (4.6). DifferentiatingSecond-order
derivative

again with respect

to 𝜆𝑏′ (𝑏′ ∈ 𝕃) yields

∂2𝐸𝕃
tot

∂𝜆𝑏′∂𝜆𝑏
= ∫𝜌𝕃gs(𝒓)

∂2𝑉 𝕃
ext(𝒓)

∂𝜆𝑏′∂𝜆𝑏
d3𝑟 +∫

∂𝜌𝕃gs(𝒓)
∂𝜆𝑏′

∂𝑉 𝕃
ext(𝒓)
∂𝜆𝑏

d3𝑟 +
∂2𝐸𝕃

ii

∂𝜆𝑏′ ∂𝜆𝑏
(4.12a)

in which, by means of the chain rule, the second term can be symmetrized [79, 172]

=∫𝜌𝕃gs(𝒓)
∂2𝑉 𝕃

ext(𝒓)
∂𝜆𝑏′∂𝜆𝑏

d3𝑟 +∫
∂𝑉 𝕃

ext(𝒓)
∂𝜆𝑏′

∫
δ𝜌𝕃gs(𝒓)
δ𝑉 𝕃
ext(𝒓′)⏟

𝜒𝕃
ext(𝒓,𝒓′)

∂𝑉 𝕃
ext(𝒓)
∂𝜆𝑏

d3𝑟′ d3𝑟 +
∂2𝐸𝕃

ii

∂𝜆𝑏′ ∂𝜆𝑏

, (4.12b)

revealing theSusceptibility susceptibility 𝜒ext(𝒓, 𝒓′). From the definition [88]

≕ ∫𝜌(0)𝕃gs (𝒓)𝑉 (2)𝕃
ext (𝒓) d3𝑟 +∫𝑉 (1)𝕃

ext (𝒓)𝜌(1)𝕃(𝒓) d3𝑟 + 𝐸(2)𝕃
ii

, (4.12c)

the relation between this susceptibility and the first-order response of the charge density to

an external field

𝜌(1)𝕃(𝒓) = ∫𝜒𝕃
ext(𝒓, 𝒓′)𝑉 (1)𝕃

ext (𝒓′) d3𝑟′ (4.13a)

becomes obvious [172]. The experienced external field stems from the first-order variation

of the external potential 𝑉 (1)𝕃
ext with respect to the general perturbation parameters. Equa-

tion (4.12c) also includes the second-order variation of the external potential 𝑉 (2)𝕃
ext (𝒓) and the

second-order variation of the ion–ion interaction 𝐸(2)𝕃
ii
. Moreover, the susceptibility 𝜒𝕃

ext(𝒓, 𝒓′)
must not be confused with the Kohn–Sham susceptibility 𝜒KS(𝒓, 𝒓′) [3]. The latter relates to
the former and allows for another expression of the first-order charge density variation, involv-

ing the dielectric matrix 𝜖−1 [3]. This discussion is delayed until section 4.2.1. Alternatively,
Relevant

definition of
first-order density

variation

it is feasible to express the first-order variation of the charge density as

𝜌(1)𝕃(𝒓) = ∑
𝔭

𝑓 (0)
𝔭 [𝛹 ∗(0)𝕃

𝔭 (𝒓)𝛹 (1)𝕃
𝔭 (𝒓) + 𝛹 ∗(1)𝕃

𝔭 (𝒓)𝛹 (0)𝕃
𝔭 (𝒓)] , (4.13b)

by applying the product rule to the unperturbed density in equation (2.4), while 𝑓 (0)
𝔭 indicates

the occupation of the state 𝔭. The first-order variation of the wave functions and its complex
conjugate can be obtained from perturbation theory (see equation (4.8c)).

AllResume in all, equation (4.11) thus exhibits that the first-order derivative (variation) of the

total ground-state energy is a functional of the unperturbed ground-state density. Moreover,

equation (4.12) displays the second-order derivative (variation) of the total energy to be a

functional of the first-order variation of the electronic density. Both observations underlie the

fundamental 2𝑛 + 1 theorem outlined in the following.

4 Density-Functional Perturbation Theory
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4.1.3 𝟐𝒏 + 𝟏 Theorem

The 2𝑛 + 1 theorem is an implication of the variational principle [22] ensuring that the wave
functions from 0-th up to 𝑛-th order give access to quantities related to the 2𝑛-th and (2𝑛 + 1)-
th derivatives of the total energy with respect to one or more adiabatic perturbation parameters.

Consequently, given e.g. the first derivative of the wave function, the third-order derivative of

the total energy (including its related response functions) is also available, avoiding significant

additional effort. A general proof will not be given here but can be found in reference [81]

making use of the fact that the energy functional is variational with respect to the wave

functions and their variations. [22, 23]

4.2 Development of Density-Functional Perturbation Theory

An Outline and
literature

important example for the second-order derivative of the total energy, on which this

dissertation focuses, is determining the harmonic phonon frequencies, given the perturbation

parameter is an ion displacement. Section 4.2.1, in which the central ideas of the dielectric

approach [79, 173] are presented, describes the first application of linear response calculations

in the context of phonons [87]. The name of the approach suggests employing the dielectric

matrix as a quantity for calculating the desired first-order charge-density response. As the use

of the dielectric matrix, however, has proven impracticable, progress has been made with the

DFPT, also known as the Green function method [23]. DFPT circumvents vital employment

of the dielectric matrix [23]. An introduction to its key aspects and a comparison with the

dielectric approach is the subject of section 4.2.2. Section 4.2 mainly refers to Heid [23] if

not cited differently.

4.2.1 Dielectric Approach

The Conceptdielectric approach exploits the fact that the first-order response of the electron density

is characterized by a shift of the electrons screening the external potential. This effect

is quantified by the dielectric matrix 𝜖 and the external potential variation represents the
perturbation. Consequently, the first-order variation of the effective potential reads

𝑉 (1)
eff

(𝒓) = 𝑉 (1)
ext

(𝒓) + 𝑉 (1)
Hxc

(𝒓) (4.14a)

= 𝑉 (1)
ext

(𝒓) +∫⎛⎜⎜
⎝

δ𝑉 (0)
Htr (𝒓)

δ𝜌(0)(𝒓′)
+

δ𝑉 (0)
xc

(𝒓)
δ𝜌(0)(𝒓′)

⎞⎟⎟
⎠
𝜌(1)(𝒓′) d3𝑟′ (4.14b)

= 𝑉 (1)
ext

(𝒓) +∫⎛⎜
⎝

1
|𝒓 − 𝒓′|

+
δ2𝐸(0)

xc (𝒓)
δ𝜌(0)(𝒓′)δ𝜌(0)(𝒓)

⎞⎟
⎠
𝜌(1)(𝒓′) d3𝑟′ (4.14c)

and is a functional of the ground-state density in the context of DFT (the index gs is suppressed

hereinafter). Usually, the Hartree and xc kernel 𝐾Hxc(𝒓, 𝒓′) is introduced [119]

𝑉 (1)
eff

(𝒓) ≕ 𝑉 (1)
ext

(𝒓) +∫𝐾Hxc(𝒓, 𝒓′)𝜌(1)(𝒓′) d3𝑟′ . (4.14d)
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The first-order variation of the density (4.13a) can be further reformulated here. For factoring

out, the indices 𝔭 and 𝔭′ in its second term are interchanged resulting in

𝜌(1)(𝒓) = ∑
𝔭′|𝔭′∈P⊥

𝑓 (0)
𝔭 − 𝑓 (0)

𝔭′

𝜖(0)𝔭 − 𝜖(0)𝔭′

⟨𝛹 (0)
𝔭′ ∣𝑉 (1)

eff
∣𝛹 (0)

𝔭 ⟩𝛹 ∗(0)
𝔭 (𝒓)𝛹 (0)

𝔭′ (𝒓) , (4.14e)

which connects the first-order variations of the effective potential and of the electron density.

Finally,Kohn–Sham
susceptibility

one can also rewrite the first-order variation of the density into

𝜌(1)(𝒓) = ∫𝜒KS(𝒓, 𝒓′)𝑉 (1)
eff

(𝒓′) d3𝑟′ , (4.14f)

incorporating the non-interacting charge-density susceptibility [172], also known as the

Kohn–Sham susceptibility [119]

𝜒KS(𝒓, 𝒓′) ≔
δ𝜌(0)(𝒓)

δ𝑉 (0)
eff

(𝒓′)
. (4.15a)

Its representation in terms of wave functions can be identified in equation (4.14e)

≕ ∑
𝔭′|𝔭′∈P⊥

𝑓 (0)
𝔭 − 𝑓 (0)

𝔭′

𝜖(0)𝔭 − 𝜖(0)𝔭′

𝛹 ∗(0)
𝔭 (𝒓)𝛹 (0)

𝔭′ (𝒓)𝛹 ∗(0)
𝔭′ (𝒓′)𝛹 (0)

𝔭 (𝒓′) (4.15b)

and contains the independent-particle Green function [3]

𝒢ni(0)𝔭 (𝒓, 𝒓′) =
∞

∑
𝔭′|𝔭′∈P⊥

𝛹 (0)
𝔭′ (𝒓)𝛹 ∗(0)

𝔭′ (𝒓′)

𝜖(0)𝔭 − 𝜖(0)𝔭′

. (4.16)

The Kohn–Sham susceptibility describes the modification of the Kohn–Sham charge density

given an altering effective Kohn–Sham potential [3]. In the context of DFT, Hybertsen and

Louie [174] first published this perturbative derivation of the charge susceptibility. Its form

itself had been developed earlier by Adler [175] and Wiser [176] for periodic systems to

calculate dielectric constants in the context of band theory. In the DFT framework, the Kohn–

Sham charge susceptibility (4.15) only incorporates ground-state Kohn–Sham wave functions

describing the non-interacting Kohn–Sham system and is therefore an exact quantity. The

dielectric matrixDielectric matrix results from pasting (4.14f) into (4.14d) so that

𝑉 (1)
eff

(𝒓) = 𝑉 (1)
ext (𝒓) +∫𝐾Hxc(𝒓, 𝒓′)∫𝜒KS(𝒓′, 𝒓″)𝑉 (1)

eff
(𝒓″) d3𝑟″ d3𝑟′ . (4.17a)

Expressed in a matrix-vector-component notation, in which equal indices are contracted

(Einstein notation), the first-order effective potential variation reads

[𝑉 (1)
eff

]
𝒓
= [𝑉 (1)

ext ]𝒓
+ [𝐼]

𝒓𝒓′
[𝜒0]𝒓′𝒓″

[𝑉 (1)
eff

]
𝒓″

, (4.17b)

equivalent to

[𝑉 (1)
eff

]
𝒓
= [1 − 𝐼𝜒0]

−1

𝒓𝒓′
[𝑉 (1)
ext ]𝒓′

≕ [𝜖]
−1

𝒓𝒓′
[𝑉 (1)
ext ]𝒓′

. (4.17c)
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In Algorithmequation (4.17c), one identifies the inverse of the dielectric matrix 𝜖−1. Switching back to

the integral notation and inserting equation (4.17c) into equation (4.14f) yields

𝜌(1)(𝒓) = ∫𝜒KS(𝒓, 𝒓′)(1 − 𝐾Hxc(𝒓, 𝒓′))−1𝑉 (0)
ext (𝒓′) d3𝑟′ . (4.18)

By comparing equation (4.18) with equation (4.13a) (and suppressing 𝕃 because of only one
perturbation parameter), the relation

𝜒ext(𝒓, 𝒓′) = 𝜒KS(𝒓, 𝒓′)(1 − 𝐾Hxc(𝒓, 𝒓′))−1 (4.19)

becomes apparent [3, 5, 177, 178]. Thus, calculating the first-order charge-density variation

in this way [79, 173] involves determining the dielectric matrix, inverting it, calculating

the first-order response of the effective potential (see equation (4.17c)), and then using

the charge susceptibility (4.15) for calculating the first-order density variation (4.14f). This

first-order variation of the density can then be used for the second- or third-order variation of

the total energy, e.g. in order to calculate phonon properties [87]. Sometimes, Pros and consit works well

to simplify the dielectric matrix by approximations such as the scalar and analytic Lindhard

dielectric function [172]. In general, however, for practical purposes this method has an

unfavorable computational performance since the setup of the dielectric matrix is rather

costly6 [3]. Furthermore, the inversion of the matrix is frequently impossible, irrespective

of the choice of basis set, i.e., whether the basis set is in Fourier space or in real space using

Wannier functions [3]. Since equation (4.15) assumes the availability of unoccupied orbitals,

pursuing the dielectric approach requires advanced concepts to determine the unoccupied

states for methods with very efficient basis sets (for instance LMTO).

4.2.2 Framework of the Green Function Method

DFPT, Advantagesalso known as the Green function method, avoids calculating the dielectric matrix and

only requires summing over occupied states. Therefore, this method accomplishes a better

numerical performance than the procedure presented in section 4.2.1 [3]. Furthermore, DFPT

can be adjusted to deliver a desired response function to a certain type of perturbation [3].

In this sense, DFPT is more specific relative to a dielectric matrix method which might have

several contributions in general [3]. To Formalism
(non-metallic)

set up the DFPT formalism with restriction to non-

metallic systems7, one can start from equation (4.14e). In this case, the density variations

become zero if both summation indices 𝔭 and 𝔭′ label either a conduction state with index 𝑢
(the occupation numbers vanish) or a valence state with index 𝑜 (the difference of both
occupation numbers being 1 is 0). Therefore, equation (4.14e) simplifies to

𝜌(1)(𝒓) = ∑
𝑜𝑢

𝑓 (0)
𝑜

𝜖(0)𝑜 − 𝜖(0)𝑢

⟨𝛹 (0)
𝑢 ∣𝑉 (1)

eff
∣𝛹 (0)

𝑜 ⟩𝛹 ∗(0)
𝑢 (𝒓)𝛹 (0)

𝑜 (𝒓) (4.20a)

+∑
𝑜𝑢

−𝑓 (0)
𝑜

𝜖(0)𝑢 − 𝜖(0)𝑜

⟨𝛹 (0)
𝑜 ∣𝑉 (1)

eff
∣𝛹 (0)

𝑢 ⟩𝛹 ∗(0)
𝑜 (𝒓)𝛹 (0)

𝑢 (𝒓) .

6 This can, for example, also be done [179] with ab-initio direct supercell methods similar to the methods

described for phonons in section 3.2 [3].
7 In metallic systems the occupation numbers are generally affected by the perturbation [22, 86].
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TRS allows for exploiting 𝛹 = 𝛹 ∗ [180] so that

𝜌(1)(𝒓) = 2∑
𝑜𝑢

𝑓 (0)
𝑜

𝜖(0)𝑜 − 𝜖(0)𝑢

⟨𝛹 (0)
𝑢 ∣𝑉 (1)

eff
∣𝛹 (0)

𝑜 ⟩𝛹 ∗(0)
𝑜 (𝒓)𝛹 (0)

𝑢 (𝒓) . (4.20b)

Separating the sum over the conduction bands defines

𝛹 (1)
𝑜 (𝒓) ≔ ∑

𝑢

1
𝜖(0)𝑜 − 𝜖(0)𝑢

𝛹 (0)
𝑢 (𝒓)⟨𝛹 (0)

𝑢 ∣𝑉 (1)
eff

∣𝛹 (0)
𝑜 ⟩ , (4.20c)

in which the Green function from equation (4.16) can be identified

𝛹 (1)
𝑜 (𝒓) ≔ ∫𝒢ni(0)𝑜 (𝒓, 𝒓′)𝑉 (1)

eff
(𝒓′)𝛹 (0)

𝑜 (𝒓′) d3𝑟′ . (4.20d)

This definition leads to a simplified form of the first-order density variation

𝜌(1)(𝒓) = 2∑
𝑜

𝛹 ∗(0)
𝑜 (𝒓)𝛹 (1)

𝑜 (𝒓) , (4.20e)

which for TRS is consistent with combining equation (4.13b) (for one perturbation param-

eter, suppressing 𝕃) with equation (4.8c). The first-order variation of the wave function is
determined by solving the Sternheimer equation (see section 4.1.1)

(ℋ (0) − 𝜖(0)𝑜 )∣𝛹 (1)
𝑜 ⟩ = −∑

𝑢
∣𝛹 (0)

𝑢 ⟩⟨𝛹 (0)
𝑢 ∣𝑉 (1)

eff
(𝒓)∣𝛹 (0)

𝑜 ⟩ = −𝒫
u
𝑉 (1)
eff

∣𝛹 (0)
𝑜 ⟩ (4.21a)

= (𝒫
o
− 1)𝑉 (1)

eff
∣𝛹 (0)

𝑜 ⟩ (4.21b)

in which 𝒫
u
is the projector to the unoccupied subspace and 𝒫

o
projects onto the occupied

subspace. It should be emphasized again that only summing over the occupied valence state

and not over all conduction bands is sufficient, significantly increasing computer performance.

In order to obtain the first-order variation of the Kohn–Sham wave functions, the Hamilto-

nian ℋ (0) in the Sternheimer equation (4.4) must be the Kohn–Sham Hamiltonian [22].

AnotherAlternative
derivation

way [81, 82, 85], likewise resulting in the Sternheimer equation, illustrates

the variational character of the first-order Kohn–Sham wave functions. By using the Euler–

Lagrange equations, the second variation of the electronic total energy (the total energy

without ionic degrees of freedom) is minimized with regard to the set of first-order wave

functions so that the unperturbed wave functions are orthogonal to the first-order variation

of the wave functions (see equation (4.9c)). [22]

TheVariational
character

variational character of the first-order wave functions is consistent with the vari-

ational character of the unperturbed Kohn–Sham wave functions. The latter result from

the self-consistent solution of the Kohn–Sham equations and are only on average, and not

pointwise, equal to the real wave functions of the Kohn–Sham system (see chapter 2) [119].

Due to its variational background, DFPT is a stable method, so small errors cannot induce

large variations of the results [97]. Furthermore, analogously to the Kohn–Sham equations,

the Sternheimer equation can be solved by a minimization procedure (see section 2.2.3). This

is based on the idea that the internal degrees of freedom, determining the static response

of the charge density to the perturbation, are to arrange in such a way that the second
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variation of the electronic total energy becomes minimal [3]. Finally, Theory cutoffthe prerequisite [22]

to employing DFPT is that the external perturbation is small relative to excitations of the

electrons. According to equation (4.1), this means [22]

∣𝛹 (0)
𝔭 ⟩ ≫ 𝜆∣𝛹 (1)

𝔭 ⟩ (4.22a)

or as an implication of equation (4.8c)

⟨𝛹 (0)
𝔭′ ∣ℋ (1)∣𝛹 (0)

𝔭 ⟩ ≪ (𝜖(0)𝔭 − 𝜖(0)𝔭′ ) . (4.22b)

4.3 Viable Types of Perturbations

DFPT Literatureopens up the opportunity to conduct research into systems responding to manifold pertur-

bations. An overview is for example given in the lecture notes of Verstraete and Zanolli [22],

serving as the main reference for section 4.3 unless cited differently. Even broader overviews

are, for instance, offered in the publications of Baroni et al. [87] and Gonze, Rignanese, and

Caracas [92].

Prominent Phononsin the literature [87] is the application of DFPT to a phonon perturbation

intending to shed light on the respective charge density response, phonon dispersion relations,

and normal modes resulting from the dynamical matrix in the harmonic approximation (see

section 3.1). The induced variation of the charge density can guide one through developing a

well-educated initial guess for starting densities in an ab-initio structure-optimization algo-

rithm (see section 5.12), significantly enhancing its computational performance [119]. But,

the comprehensive discussion of setting up the dynamical matrix by means of DFPT is deferred

to chapter 6 and chapter 7 in order to firstly introduce the Full-Potential Linearized Augmented

Plane-Wave (FLAPW) method in chapter 5. Apart from the theoretical understanding of ma-

terial instabilities (see section 3.1) and of experiments such as inelastic incoherent neutron

scattering, infrared absorption, or other experiments listed in the introduction of chapter 3,

phonon dispersion relations also enable one to determine phonon densities of states. The

latter provide insight into thermodynamical quantities like, for example, entropy, free energy,

and specific heat at constant volume (see [92, 181] and references therein). Furthermore,

equipped with the self-consistent effective Kohn–Sham potential, utilizing phonon dispersions,

and the related phonon displacements, Savrasov and Savrasov [182] have succeeded in

calculating a matrix element for the electron–phonon interaction [183, 184] from DFPT. This

matrix element in combination with Fermi’s Golden Rule can be used to calculate lifetimes

for phonons and electrons, or to determine the Eliashberg [185] function for forecasting

superconducting critical temperatures (for example as in [186] or [187]) [3]. Moreover, the

matrix element serves as a basis for calculations [182] concerning electron transport using

the Boltzmann transport equation [188–190].

A Electrical fieldssecond noteworthy type of perturbation that DFPT can be used for is given by a

macroscopic electric field 𝑬 (in the following the discussion is limited to static electric fields
which some insulator is exposed to). Its response to such a field is called the electrical dipole

moment or polarization, and is implicitly contained in a variation of the Kohn–Sham wave

function as well as in a variation of the charge density. In addition, an explicit function of the

electric field describing its thermodynamical coupling to a polarization must be added to the
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Born–Oppenheimer Hamiltonian reading 𝒱ext(𝓻) = 𝑞𝑬 ⋅ 𝓻, with the position operator 𝓻 [87].
It turns out that the position operator conflicts with the periodic Born–von-Kármán boundary

conditions, and the external potential has no lower boundary, so matrix elements involving

the problematic position operator disagree likewise [87]. At the same time, wave functions

fulfilling these periodic boundary conditions are also not well-defined [87]. In linear response,

however, a well-defined self-consistent scheme to calculate the polarization 𝑷 can be set
up [87, 191]. Another ansatz works with finite-wavelength responses [79, 192] before

executing 𝒒 → 𝟎 analytically [3]. The polarization is caused by a shift of the ions from their
equilibrium position due to a force which, in linear approximation, is proportional to the

electric field [92]. Alternatively, polarization can be induced by phonon displacements and,

in linear order, polarization is proportional to the displacement [92]. The proportionality is

governed by the Born effective charge tensor

𝑍∗𝛾
𝑖𝑗 = 𝛺

∂𝑃𝑖

∂𝑤𝛾𝑗(𝒒 = 𝟎)
=

∂𝐹𝛾𝑗

∂𝐸𝑖
= −

∂2𝐸BO
∂𝐸𝑖 ∂𝑤𝛾𝑗(𝒒 = 𝟎)

, (4.23)

which is a mixed second-order derivative of the Born–Oppenheimer energy 𝐸BO (1.3) with
added electric field dependence, while 𝛺 is the unit cell volume [92]. The displacement 𝒘𝛾
and the force 𝑭𝛾 are addressed in section 3.1. By using the partial derivative of the polarization

with respect to the electric field, the electronic part of the dielectric permittivity tensor

𝜖∞𝑖𝑗 = δ𝑖𝑗 + 4π
∂𝑃𝑖
∂𝐸𝑗

(4.24)

can be defined. For displacements parallel to the phonon vector 𝒒 in ionic materials, a
frequency shift, which is a function of the Born effective charges and the dielectric permittivity,

occurs due to the formation of a macroscopic polarization. This leads to the so-called LO-

TO splitting8 in dispersion relations as far as optical branches at the Γ-point are concerned.
Born and Huang [21] published a theory for cubic and tetrahedral lattices consisting of

two atoms, which was later generalized by Böttger [193] and is concisely summarized by

Baroni et al. [87].

IfHomogeneous
mechanical
deformation

the perturbation consists in a macroscopic homogeneous mechanical deformation,

DFPT can be applied to evaluate piezoelectric tensors or certain elastic constants. But in an

infinite crystal, the macroscopic deformation leads to different boundary conditions between

the Hamiltonians of the perturbed and unperturbed case [87]. The unit cell angles, the

cell parameters, and therefore the basis set, are influenced by the strain. In section 4.1.1,

it was shown that there must be one common basis set for the perturbed and unperturbed

cases. Therefore, one idea [194] is to apply a unitary transformation to the unperturbed

Hamiltonian, so that the resulting auxiliary Hamiltonian describes its energy difference to the

unperturbed system, but not yet the correct energy difference between the unperturbed and

real physical perturbed cases [87]. However, as the boundary conditions are the same for the

real and the auxiliary perturbed Hamiltonian, DFPT can be used to determine the remaining

energy difference between the auxiliary and real perturbed systems [87]. This method does

not account for an individual rearrangement (phonon modes) of the atoms in their unit cell

to minimize their total energy if a strain is applied [87]. Still, this phenomenon can also

be described using DFPT [87]. The discussed work-around becomes obsolete with a more

8 The abbreviation LO means longitudinal optical whereas TO denotes transversal optical.
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general formulation by Hamann et al. [195]. Another application area of DFPT is piezoelectric

tensors, which express the change of the macroscopic electric polarization resulting from a

homogeneous strain without a macroscopic field [87]. A more modern way to systematically

evaluate responses to displacements, strains, or electric fields, or their combinations, using

DFPT is given in the publication of Wu, Vanderbilt, and Hamann [196] [22].

In Magnetic fieldswhich way a system responds to a magnetic field is expressed by the magnetic

susceptibility. However, its calculation for diamagnetic materials proves to be a formidable

challenge, whereas the calculation of (anti)ferromagnetic response, manifesting itself in

magnon quasiparticles which are basically spin waves, has been worked out by Savrasov [197].

In addition, for magnon dispersions, there are more performant and established methods

suggested in the literature. A more detailed discussion related to this topic and about the

relativistic effect of spin–orbit coupling can be found in the lecture notes of Verstraete and

Zanolli [22].

The Third-order
quantities

2𝑛 + 1 theorem (see section 4.1.3) takes considerable effort out of handling third-
order quantities such as Raman intensity tensors, electro-optic coefficients, thermal expansion,

heat transport, or anharmonic inter-atomic force constants. A comprehensive overview of

quantities related to the third variation of the total energy is given by Baroni et al. [87] or by

Verstraete and Zanolli [22].
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For Motivation of
basis-sets

obtaining self-consistency in the variational Kohn–Sham equations, their numerical solu-

tion is central to every iteration step (cf. section 2.2). The search for the most efficient way

to determine the eigenenergies and eigenstates of these Kohn–Sham equations has sparked

the development of many fruitful electronic-structure methods. Hereby, different kinds of

(material) systems, phenomena or computational infrastructures impose various challenging

requirements. Provided such a method utilizes a basis set for expanding the Kohn–Sham wave

functions, this basis set can often be adapted to keep up with the aforementioned demands

and the choice of the basis set constitutes one criterion for classifying electronic structure

methods [68]. Martin [3] provides a comprehensive categorization and discussion of this

topic. [71]
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PeriodicGeneralized
eigenvalue
problem in

periodic systems

bulk systems suggest expanding the unperturbed1 Kohn–Sham wave functions

𝛹 (0)
𝒌,𝑛(𝒓) =

𝑁

∑
𝔧=1

𝑧(0)𝔧 (𝒌, 𝑛)𝜙(0)
𝒌,𝔧(𝒓) (5.1)

for the band 𝑛 as Bloch functions [198] with a Bloch vector 𝒌, using a set of 𝑁 unperturbed
basis functions 𝜙(0)

𝒌,𝔧(𝒓) at position 𝒓, and unperturbed expansion coefficients 𝑧(0)𝔧 (𝒌, 𝑛) [3].
This expansion employing a basis set ensures the variational character of the Kohn–Sham

wave functions. Therewith, the Kohn–Sham equation (2.3a) with its effective potential (2.3b),

reads

(−∆
2

+ 𝑉 (0)
Htr (𝒓) + 𝑉 (0)

ext (𝒓) + 𝑉 (0)
xc (𝒓))𝛹 (0)

𝒌,𝑛(𝒓) = 𝜀(0)𝒌,𝑛𝛹
(0)
𝒌,𝑛(𝒓) . (5.2a)

Inserting and projecting onto equation (5.1) leads to a generalized eigenvalue problem

𝒛†(0)(𝒌, 𝑛)(𝐻(0)(𝒌) − 𝜖(0)𝒌,𝑛𝑆
(0)(𝒌))𝒛(0)(𝒌, 𝑛) = 0 , (5.2b)

with the Hamiltonian matrix elements in the Brillouin zone 𝛺 given by

𝐻(0)
𝔧′,𝔧(𝒌) = ∫

𝛺
𝜙∗(0)
𝒌,𝔧′(𝒓)(−

∆
2

+ 𝑉 (0)
Htr (𝒓) + 𝑉 (0)

ext (𝒓) + 𝑉 (0)
xc (𝒓))𝜙(0)

𝒌,𝔧(𝒓) d
3𝑟 , (5.2c)

and consequently the overlap matrix elements defined as

𝑆(0)
𝔧′,𝔧(𝒌) = ∫

𝛺
𝜙∗(0)
𝒌,𝔧′(𝒓)𝜙

(0)
𝒌,𝔧(𝒓) d

3𝑟 . (5.2d)

Both the Hamiltonian and the overlap matrix are Hermitian (or symmetric if real). The 𝒌-
vectors are generally discretized on a mesh spreading across the Brillouin zone. When further

specifying the generic basis functions in equation (5.1), reaching a decision on its explicit form

is guided by the requirements that the basis set should be tractable on the one hand [132].

On the other hand, it should efficiently enable the expanded variational wave function to

behave as similarly as possible relative to the exact pointwise solution [132]. [71]

APlane-wave basis popular choice in this context are the orthonormal plane waves

𝛹 (0)
𝒌,𝑛(𝒓) =

1√
𝛺

∑
𝑮

𝑧(0)𝑮 (𝒌, 𝑛)ei(𝒌+𝑮)⋅𝒓 , (5.3)

for which the overlapmatrix, equation (5.2d), becomes the unity matrix 1. They are indexed by
the reciprocal lattice vectors𝑮, up to a particular cutoff. Furthermore, they are eigenfunctions
of a Hamiltonian incorporating the kinetic energy and a constant potential. As a consequence,

the first term in equation (5.2c) forms a diagonal matrix and in general such a plane-wave

basis is easy to implement. [132]

HoweverOverview of
chapter

close to the nuclei, the singular 1/𝑟 -potential behavior induces a rapid wave-
function change, although the position 𝒓 varies only slightly. Hence, the efficiency of the
plane-waves basis set in equation (5.3) drastically declines, due to the number of plane waves

1 Henceforth, the index for the order of perturbation is attached for sake of consistency, after introducing it in

chapter 4.
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required for a reasonably accurate description2 of the aforementioned singularity. Slater [201]

has resolved this issue by introducing the Augmented Plane-Wave (APW) method [3, 202–205]

to which section 5.1 is devoted. In spheres around the atoms, this method implements atomic

solutions (substituting the radial Bessel functions of a plane-wave expansion in spherical

harmonics), while outside the spheres the plane-wave basis remains untouched. By exploiting

these solutions of the radial Schrödinger equation with a spherical potential inside the spheres,

a more efficient basis set results. But, this is at the expense of solving non-linear equations

in order to match the wave functions expanded in both partitions of the basis set. The

development has proceeded [206] with introducing linearization [207–210], leading to the

Linearized Augmented Plane-Wave (LAPW) method which is presented in section 5.2. Especially

for systems incorporating heavy chemical elements or whenever relativistic effects are of

interest, the LAPW method can be extended to employ solutions of the relativistic Pauli–Dirac

equation [127, 211], organically including the spin and its coupling to the orbital angular

momentum (spin–orbit coupling or SOC) [68, 212]. Within the FLEUR program [69], the
Scalar-Relativistic Approximation (SRA) [213–217] is implemented to simplify the evaluation

of the sophisticated Pauli–Dirac equation if possible. Elucidating the integration of relativistic

corrections finalizes section 5.2. The LAPW framework makes calculations feasible that

take all electrons [67] of the atom into account and handle the full potential without shape

approximations [64, 218]. This has paved the way for the all-electron Full-potential Linearized

Augmented Plane-Wave (FLAPW) calculations [65, 66] which are specified in section 5.3.

Accounting for every electron can lead to scenarios in which the LAPW basis cannot ensure

an adequate description of all states [68]. For coping with many of these scenarios, the

concept of introducing “Local Orbitals” (LOs) [219] has prevailed in the electronic-structure

community. LOs, which shall be set up in section 5.4, can extend the APW concept (APW

+ LO [220]), effectively implying less basis functions, or its linearized version (LAPW +

LO [219]) [68]. In general, the FLAPW method relies on an accurate all-electron charge

density, which is introduced in equation (2.4) as an integral constituent of the self-consistent

Kohn–Sham system. A guide for implementing this full density is outlined in section 5.5. In

addition, a precise calculation of the effective potential, addressed in section 5.6, represents

the premise that the LAPW method delivers accurate results [3]. This section summarizes

the decisive method of Weinert [64], which delivers the Coulomb potential and provides

an alternative to the well-known Ewald summation. Also, this section deals with the setup

of the exchange-correlation potential. The efficiency of describing systems with significant

and sophisticated non-spherical contributions to the charge density and the potential can

be increased, depending on how much symmetry underlies the investigated system. Such

symmetry optimizations, inhering in the FLEUR code [69] results, are presented in section 5.7.
The remaining part of a self-consistent iteration step (see section 2.2) consists in the setup

of the Hamiltonian matrix elements, defined in equation (5.2c), and the overlap matrix

elements, given by equation (5.2d). Section 5.8 is concerned with it. One reason why the

FLAPWmethod has successfully established itself is the accuracy of total energy calculations [3,

66, 70]. Therefore, the usual setup of the total energy in the FLAPW framework is briefly

presented in section 5.9. In order to set the stage for chapter 6 and chapter 7, as well

as to provide the background to section 5.12, section 5.10 gives an introduction into the

principles and subtleties of varying the Kohn–Sham wave functions expanded in the LAPW

2 Still, plane-wave basis sets are common in codes substituting the real potential by a pseudopotential,

permitting at least a precise mimicking among the atoms [71, 199, 200].
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basis, especially due to a displacement of the nuclei. This section predominantly puts forward

the Pulay [103] corrections, emerging from the incompleteness of the LAPW basis and drawing

from the fact that the Kohn–Sham wave functions are variational (see equation (5.1)) [68,

88]. Moreover in practice, numerical discontinuities in the position-dependent LAPW basis

arise, propagating to the charge density and to the effective potential [68, 88]. Section 5.11

expands upon implications for spatial derivatives of integrals over the unit cell, involving

the latter discontinuous quantities, in particular against the background of phonons and

forces [88]. Furthermore, a reformulation of the kinetic Laplace operator into a symmetric

form is discussed, which is already applied in the APW method (see e.g. [68, 220, 221]).

Finally, section 5.12 summarizes the central concepts for the implementation of ab-initio

forces, mainly having been brought to the fore by Soler and Williams [222, 223] as well

as Yu, Singh, and Krakauer [224]. Based upon the latter publication, Klüppelberg [88] has

significantly refined the force formalism improving the numerical results for FLAPW ab-initio

forces, especially for complex materials. Grasping ab-initio forces, whose relation to phonons

has already been anticipated in section 3.1, elucidates analogous ideas entering into the

DFPT realization of phonons within the FLAPW framework, on which chapter 6 and chapter 7

elaborate. [71]

ToRelevance and
literature

put it in a nutshell, applications employing any kind of APW-basis sets (especially the

FLAPW framework) are manifold and exhibit in the multitude of strategies having been devel-

oped to master sophisticated phenomena such as non-collinear magnetism [225] or transport

and scattering [226–228]. Likewise, quasiparticle self-energies are for instance determined

within the 𝒢𝑊 approximation [229, 230] or lower-dimensional geometries (e.g. [231, 232])

are investigated. In principle, almost any material comprising of chemical elements with arbi-

trary atomic numbers less than 138 [127] is tractable. But particularly for systems containing

rare earths or transition metals, the (F)LAPW (or alternatively the LMTO [206]) method is well

suited [68]. The efficiency and accuracy the FLAPW method exhibits, excel in particular for

nuclear quantities [67] (relative to approximating methods employing pseudopotentials [199,

200]) and have made it the benchmark [70] among electronic structure methods [3, 68]. A

comprehensive overview of the FLAPW method and its implementation is given by Blügel and

Bihlmayer [71] or Singh and Nordström [68], further subtleties of the FLEUR [69] program
can for instance be found in Kurz [233, 234]. Finally, the textbook of Martin [3] provides a

comprehensive overview and categorization of further electronic structure methods. [71]

5.1 Augmented Plane-Wave Concept

BasisMotivation and
literature

sets should on the one hand allow for a satisfying approximation to the actual eigen-

functions, and on the other hand enable a maximum of computational performance, which

usually mirrors in a minimal amount of required basis functions [132]. Although in general

this can be hard to realize, it stands to reason that those basis sets perform best, which include

the intrinsic physical properties of the system under investigation [132]. In the context of

solid state physics, Slater [201, 204] has introduced the APW concept which is concisely

summarized in the textbook of Singh and Nordström [68], serving as main reference for the

current section unless cited differently. Further progress in the APW method was made by

Slater and Saffren [3, 202, 203]. Also, the textbook of Loucks [205] is a standard reference

for the APW method.
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In Partioning
concept

order to live up to the inherently inhomogeneous potential landscape in periodic

solids, the APW method basically subdivides it into two regions: (i) spheres, called muffin-

tins (MTs), centrally incorporating the ions as well as their immediate surroundings, and (ii)

the remaining interstitial region (IR). Figure 5.1 depicts the aforementioned division of the

unit cell. The radii of the MTs are to be set so that the spheres do not overlap. But at the same

time, the MT spheres should nearly3 take up all the available space of the unit cell [71].

𝛾′

𝛾′

𝛾′

𝛾′

𝛾

𝛾

𝛾

𝛾

IR

Figure 5.1: Partitioning of a unit cell within the FLAPW method into different muffin-tin (MT)

spheres 𝛾 and 𝛾′, as well as the interstitial region (IR). The MT-sphere radii are

chosen so that the spheres do not overlap and there remains a little space between

them to make a relaxation of the lattice structure possible. This scheme is based on

reference [71, figure 7].

While Deduction of
basis set

the IR features a rather smooth potential, the potential becomes stronger the

smaller the distance is to the ions. Therefore, the wave function rapidly changes its value as a

function of the position, especially in the central region of the MT spheres, while it behaves

significantly steadier in the IR. Based on the fact that plane waves form the solution of a

Schrödinger equation with a constant potential, Slater proposes them as the basis set for the

IR [3]. The linear combination of plane waves must describe the IR wave function fairly well,

in particular its additional variation as a result of the matching to the MT wave function [3].

In the MT spheres, Slater particularly exploits the predominantly spherical behavior of the

potential in the vicinity of the nuclei. It justifies his ansatz of the radial Schrödinger equation

for a local, spherical atomic problem (in Hartree units [234]) with energy 𝐸𝛾
𝑙 and orbital

quantum number 𝑙

[−1
2

∂2

∂𝑟2𝛾
+ 1

2
𝑙(𝑙 + 1)

𝑟2𝛾
+ 𝑉 (0)

eff, sph
(𝑟𝛾) − 𝐸𝛾

𝑙 ]𝑟𝛾𝑢
𝛾
𝑙1(𝑟𝛾) = 0 . (5.4)

Its solutions 𝑢𝛾
𝑙1(𝑟𝛾) mimic the radial behavior of the MT wave function in the MT sphere 𝛾.

However, their index 1 can be ignored in the remaining section, because it is actually not
required in the context of APW. Instead, the index simplifies referring to the previous equa-

tion in the following discussion and anticipates a distinction that must be made within the

3 Leaving some narrow space between the MT spheres, one can optimize the atomic space in a relaxation

procedure aiming to get rid of intra-atomic forces (see section 3.1 and section 5.12)[128].
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LAPW method4. As far as equation (5.4) is concerned within the APW method, the energy

parameter 𝐸𝛾
𝑙 in general differs from the Kohn–Sham eigenenergy. Furthermore, an intrinsic

orthogonality exists between the 𝑢𝛾
𝑙1(𝑟𝛾) and arbitrary eigenstates of the Hamiltonian in equa-

tion (5.4), which are zero at the MT sphere boundary [206]. The eigenenergies of the latter

are typically so low (core states) that the probability density of these electrons features its

significant contribution close to and around the core of the atoms. Their wave functions thus

ideally vanish when approaching the boundary to the IR. The isotropic potential 𝑉 (0)
eff, sph

(𝑟𝛾)
is represented by the spherical part of the unperturbed Kohn–Sham effective potential. Both

assumptions, the constant potential in the IR and the spherical potential in the MT spheres,

are known as shape approximations or MT potential [3] and are practiced in many APW

implementations [71]. Several publications utilizing shape approximations concern transition

metals or transition metal compounds and particularly systems featuring a close packing (hcp,

whose lattice-parameter ratio reads 𝑐/𝑎 = √8/3, or fcc) deliver the best results. Often, other
configurations can still be handled with an acceptable outcome, which, however, worsens

when less symmetry is available.

TheDefinition of
basis functions

name “Augmented Plane-Wave” owes its origins to the plane-wave expansion

ei𝑮⋅𝒓 = 4πei𝑮⋅𝝉𝛾 ∑
𝑙𝑚

i𝑙j𝑙(𝐺𝑟𝛾)Y∗
𝑙𝑚(�̂�)Y𝑙𝑚( ̂𝒓𝛾) (5.5)

in spherical harmonics Y𝑙𝑚 (also known as Rayleigh decomposition [71]), in which 𝑚 is the

magnetic quantum number. Herein, the transformation 𝒓𝛾 = 𝒓−𝝉𝛾 from the global coordinate
system of the unit cell into a spherical coordinate system of the MT sphere, surrounding

atom 𝛾 located at 𝝉𝛾, is used. Therewith, equation (5.5) delivers the value of the plane waves
given ∣𝒓𝛾∣ equals the MT radius 𝑅𝛾 [71]. By substituting the Bessel function j𝑙(𝐺𝑟𝛾) in this
equation with the radial solution 𝑢𝛾

𝑙1(𝑟𝛾) from equation (5.4), and matching the value of
the latter to that of the former at ∣𝒓𝛾∣ = 𝑅𝛾

MT, the plane wave is augmented into the MT

sphere [71]. So, all in all the APW basis set is defined as [71]

𝜙APW𝒌,𝑮 (𝒓) ≔

⎧{{
⎨{{⎩

1√
𝛺
ei(𝒌+𝑮)⋅𝒓, IR

∑
𝑙𝑚

𝑎𝑮𝒌𝛾
𝑙𝑚1 𝑢

𝛾
𝑙1(𝑟𝜈𝛾)Y𝑙𝑚( ̂𝒓𝛾), MT𝛾

. (5.6)

Normally, the MT basis function is set up on a logarithmic mesh with mesh points 𝜈𝛾, indi-

vidually adjustable for each MT sphere 𝛾, so that the behavior of the MT wave function is
optimally accounted for in integrals or differential equations. It is of paramount importance

to choose the matching coefficients 𝑎𝑮𝒌𝛾
𝑙𝑚1 such that the basis functions are continuous on the

surface of the spheres, in order to ensure that the kinetic energy (see also section 5.11) is

correctly defined. In the APW framework, this prerequisite is satisfied by the choice [71]

𝑎𝑮𝒌𝛾
𝑙𝑚1 = 4πi𝑙√

𝛺
ei(𝒌+𝑮)⋅𝝉𝛾Y∗

𝑙𝑚(𝒌 +𝑮
⋀

)
j𝑙(|𝒌 +𝑮|𝑅𝛾)

𝑢𝛾
𝑙1(𝑅𝛾)

. (5.7)

TheNon-linearity workflow of the APW method requires adjusting the energy parameter 𝐸𝑙 in

equation (5.4) to the initially unknown band energy as accurately as possible [71]. However,

4 In the LAPW method, solutions from a differentiated version of equation (5.4) also become relevant and

shall be indicated with the index 2.

5 All-Electron Full-Potential Linearized Augmented Plane-Wave Method
46



since the radial functions also depend on the energy and the matching conditions must be

fulfilled for every eigenenergy, the solution of the eigenvalue problem turns into a nonlinear

problem, rather than a simple diagonalization [71]. A detailed discussion of this aspect is

provided in the textbook of Martin [3].

Including Further
drawbacks

the full effective potential into the formalism (instead of resorting to shape ap-

proximations) presents a tough challenge, still, it is in principle possible [235, 236]. Nonethe-

less concerning this aspect, linearized methods work better and are more established [3]. Fur-

thermore, for some combinations of the energy parameters𝐸𝑙 and the MT sphere radii𝑅𝛾 [88],

the radial functions 𝑢𝛾
𝑙1 become zero on the MT sphere surfaces. Thus, the plane waves in the

IR decouple from the MT basis functions and numerical issues occur, known as the asymptote

problem. Finally by construction, the discontinuous slope of the wave functions at the MT

sphere boundary implies additional surface integrals (5.77), because of the Laplace operator

in the kinetic energy [71].

5.2 Linearized Augmented Plane-Wave Basis

Determined Principle and
literature

efforts to overcome the problems of the APW concept had been taken early on

(see reference [68] for details). Eventually and apart from matching the radial solution

at 𝐸𝑙, Andersen [206] has introduced an additional first-order energy derivative of the radial

solution into the basis set, calculated at the energy parameter 𝐸𝑙 (cf. also reference [208]).

Assuring the continuity for both of the radial solutions gives rise to the Linearized Augmented

Plane-Wave (LAPW) method, the setup of which in this section adheres to the discussion in

the textbook of Singh and Nordström [68] unless differently quoted.

The Linearized basis
functions

LAPW method underlies the Taylor expansion at 𝐸𝑙 of the energy-dependent radial

function in equation (5.6)5

𝑢𝛾
𝑙1(𝜖; 𝑟𝛾) = 𝑢𝛾

𝑙1(𝐸
𝛾
𝑙 ; 𝑟𝛾) + (𝜖 − 𝐸𝛾

𝑙 )
∂𝑢𝛾

𝑙1(𝜖; 𝑟𝛾)
∂𝜖

∣
𝜖=𝐸𝛾

𝑙

+ 𝒪((𝜖 − 𝐸𝛾
𝑙 )

2) (5.8a)

≕ 𝑢𝛾
𝑙1(𝐸

𝛾
𝑙 ; 𝑟𝛾) + (𝜖 − 𝐸𝛾

𝑙 )𝑢
𝛾
𝑙2(𝐸

𝛾
𝑙 ; 𝑟𝛾) + 𝒪((𝜖 − 𝐸𝛾

𝑙 )
2) (5.8b)

with a general energy parameter 𝜖, up to linear order [71]. In the MT spheres, relative to the
APW basis (5.6), its linearized version comprises not only 𝑢𝛾

𝑙1(𝐸𝑙, 𝑟𝛾) anymore, but 𝑢
𝛾
𝑙1(𝐸𝑙; 𝑟𝛾)

and 𝑢𝛾
𝑙2(𝐸𝑙; 𝑟𝛾) [71]. Each of them is related to the energy parameter 𝐸𝑙, but in the LAPW

basis 𝐸𝑙 is considered constant (and suppressed hereinafter) [71]. Thus for all band energies

lying close to 𝐸𝑙, the same energy parameter can be chosen so that a simple eigenvalue

problem with a single diagonalization results, instead of the nonlinear problem in section 5.1.

All in all, the LAPW basis reads

𝜙LAPW𝒌,𝑮 (𝒓) ≔

⎧{{
⎨{{⎩

1√
𝛺
ei(𝒌+𝑮)⋅𝒓, 𝒓 ∈ IR

∑
𝑙𝑚𝑝

𝑎𝑮𝒌𝛾
𝑙𝑚𝑝 𝑢

𝛾
𝑙𝑝(𝑟𝛾)Y𝑙𝑚( ̂𝒓𝛾), 𝒓 ∈ MT𝛾

(5.9)

5 The argument indicating the energy dependence of 𝑢𝛾
𝑙1 is suppressed in section 5.1.
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with the index 𝑝 equalling 1 or 2. The function 𝑢𝛾
𝑙2(𝑟𝛾) is calculated from the energy derivative

of equation (5.4) [234]

[−1
2

∂2

∂𝑟2𝛾
+ 1

2
𝑙(𝑙 + 1)

𝑟2𝛾
+ 𝑉 (0)

eff, sph
(𝑟𝛾) − 𝐸𝛾

𝑙 ]𝑟𝛾𝑢
𝛾
𝑙2(𝑟𝛾) = 𝑟𝛾𝑢

𝛾
𝑙1(𝑟𝛾) . (5.10)

Furthermore, the energy parameter 𝐸𝑙 is equally chosen, both in equations (5.4) and (5.10).

Postulating the normalization condition

∫
𝑅𝛾

0
(𝑟𝛾𝑢

𝛾
𝑙1(𝑟𝛾))

2
d𝑟 = 1 (5.11)

of the solutions from equation (5.4), results in the orthogonality between 𝑢𝛾
𝑙1(𝑟) and 𝑢𝛾

𝑙2(𝑟).
In fact, this orthogonality is not vital, but simplifies the setup of the (F)LAPW framework.

The LAPW basis is utilized for the valence states and constructed orthogonal to states within

deeper lying energy spectra (see core states in section 5.3 and section 5.5.1). Having ordered

the LAPW-expansion terms of the MT wave-function according to the absolute value of the

vectors 𝑮, a truncated expansion, with already a small number of terms, approximates
the sophisticated behavior of the true MT wave-function fairly well. This is implied by the

aforementioned orthogonality. The matching parameter 𝑎𝑮𝒌𝛾
𝑙𝑚1 is again determined (at 𝐸

𝛾
𝑙 ) as

in equation (5.7), which analogously can likewise be used for obtaining the additional 𝑎𝑮𝒌𝛾
𝑙𝑚2 .

However, introducing the latter condition leads to a larger basis set than in the APW framework.

TheErrors LAPW scheme induces the errors (𝜖 − 𝐸𝛾
𝑙 )

2
and (𝜖 − 𝐸𝛾

𝑙 )
4
for the wave functions

and the eigenvalues, respectively. Equipped with the 2𝑛 + 1 theorem (section 4.1.3), esti-
mating errors of higher-order variations becomes also feasible [3]. In practice, 𝐸𝑙 is set in a

way so that the aforementioned errors are minimized [71]. This results in 𝐸𝑙 lying in the

middle of an interval enclosing the bands of 𝑙-like character [71]. But, the wider range of
Kohn–Sham energies, which can be described with a single choice of 𝐸𝑙 in the LAPW method,

comes at a price. Urging the first-order energy derivative to be continuous leads to a stiffness

and worse behavior of the basis for Kohn–Sham energies near to 𝐸𝑙. Therefore relative to

the APW method, a larger set of plane waves is required to converge the resulting quantities.

Nevertheless, provided a converged LAPW basis set, actually only the linearization error

remains [3]. Apart from that, the matching of even higher derivatives [237] does not bring

benefit, but worsens the variational properties of the wave functions [71]. Furthermore,

it requires more plane waves within the basis so that the calculation converges. Generally,

a remedy for avoiding higher plane-wave cut-offs can be achieved by local orbitals, which

section 5.4 is devoted to.

TheRelativistic
corrections

kinetic energy of some electrons close to the nuclei requires involving relativistic

corrections. In particular [234], this holds true for systems containing elements with a large

proton number. Apart from that, many phenomena of growing interest are due to relativistic

effects such as Spin–Orbit Coupling (SOC) or the spin itself [212]. The spin inheres organically

in the bi-spinors 𝛹, and relativistic effects are governed by the gauge-invariant and covariant
Dirac equation for electrons of mass 𝑚e (see e.g. the textbook of Peskin and Schroeder [238])

(i~ /𝒟−𝑚e𝑐2)𝛹 = −𝛾0𝑞e𝒱
(0)
eff

𝛹 . (5.12a)

This equation contains the speed of light 𝑐 (approximately equalling 137.036 in atomic
(Hartree) units [239]) and the effective Kohn–Sham potential operator 𝒱 (0)

eff
multiplied
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by the electronic charge 𝑞e. The notation /𝒟 [238] is a common abbreviation for

(i~𝛾𝜍𝒟𝜍 −𝑚e𝑐2)𝛹 = −𝛾0𝑞e𝒱
(0)
eff

𝛹 , (5.12b)

while the index 𝜍 indicates the components of the vectors in Minkowski space (Einstein
notation is assumed in the Dirac equation). Contracting the gauge invariant derivative

operator 𝒟𝜍 [238] with the Dirac 𝛾 matrices results in

(i~𝛾0∂𝛹
∂𝑡

+ i~𝑐𝜸 ⋅ (𝛁+ i
𝑞e
~𝑐

𝓐) −𝑚e𝑐2)𝛹 = −𝛾0𝑞e𝒱
(0)
eff

𝛹 , (5.12c)

with the vector potential operator𝓐. The 4 × 4 Dirac 𝛾 matrices [240] are defined as

𝛾𝜇 = (𝛾0, 𝜸) = (𝛽, 𝛽𝜶) = (𝛾0, 𝛾1, 𝛾2, 𝛾3) , (5.12d)

𝜶 = (0 𝝈
𝝈 0) = ⎛⎜

⎝
( 0 𝜎1
𝜎1 0 ) ,( 0 𝜎2

𝜎2 0 ) ,( 0 𝜎3
𝜎3 0 )⎞⎟

⎠

⊤

, 𝛽 = (12 0
0 −12

) , (5.12e)

𝜎1 = (0 1
1 0) , 𝜎2 = (0 −i

i 0 ) , 𝜎3 = (1 0
0 −1) , (5.12f)

while 𝜎𝑖 are the 2 × 2 Pauli spin matrices in the Hilbert space spanned by the spin-up and
spin-down states. Rewriting equation (5.12c) by using the 4 × 4 matrices 𝛼 and 𝛽 in the
Dirac–Pauli representation [240] from equation (5.12e) reads

(−i~𝑐𝛽𝜶 ⋅ (𝛁+ i
𝑞e
~𝑐

𝓐) + 𝛽2𝑚e𝑐2 − 𝛽𝑞e𝒱
(0)
eff

)𝛹 = 𝛽i~∂𝛹
∂𝑡

, (5.12g)

which can be multiplied by 𝛽

(𝜶 ⋅ (−i~𝑐𝛁 + 𝑞e𝓐) + 𝛽𝑚e𝑐2 − 𝑞e𝒱
(0)
eff

)𝛹 = i~∂𝛹
∂𝑡

, (5.12h)

and transfered into the stationary form [212]

(𝜶 ⋅ (𝑐𝓹+ 𝑞e𝓐) + 𝛽𝑚e𝑐2 − 𝑞e𝒱
(0)
eff

)𝛹 = 𝜖′𝛹 . (5.12i)

In the previous equation, 𝓹 is the momentum operator, and 𝜖′ = 𝜖 +𝑚e𝑐2 the energy from
which the rest energy 𝑚e𝑐2 can be split off [212].

The Non-relativistic
limit expansion

bi-spinor 𝛹 = (𝜓, 𝜒)⊤, as this name hints at, is composed of two spinors: the
so-called large spinor 𝜓 and the so-called small one 𝜒, which both are of the dimension 2 × 1.
If the momentum operator 𝓹 acts on the bi-spinor, the momentum 𝒑 of the particle will be
measured. Furthermore when acting on the bi-spinor, the effective potential operator𝒱 (0)

eff
and

the vector potential operator𝓐 deliver the respective values of the effective potential 𝑉 (0)
eff

(𝒓)
or the vector potential 𝑨(𝒓) in position space. Starting from the Dirac equation, focussing
on the large spinor 𝜓, and exploiting 𝑞e𝑉

(0)
eff

≪ 𝜖′ +𝑚e𝑐2 ≈ 2𝑚e𝑐2 within the non-relativistic
limit, it is possible to expand

(𝜖 + 𝑞e𝑉
(0)
eff

(𝒓) − 1
2𝑚e

(𝒑 +
𝑞e
𝑐
𝑨(𝒓))

2
+ 1

2𝑚e𝑐2
(𝜖 + 𝑞e𝑉

(0)
eff

(𝒓))
2
+ i

𝑞e
(2𝑚e𝑐)2

𝑬(𝒓) ⋅ 𝒑

−
𝑞e

(2𝑚e𝑐)2
𝝈 ⋅ (𝑬(𝒓) × 𝒑) −

𝑞e
2𝑚e𝑐

𝝈 ⋅ 𝑩(𝒓)]𝜓 = 0 (5.13)
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in orders of 𝑣/𝑐, while 𝑣 is the velocity of the electron and 𝑬(𝒓) denotes the electric field6.
The Schrödinger equation can be identified in the first three terms, the relativistic change

of the mass due to a finite velocity (mass-velocity term) is considered in the fourth term,

and the fifth term is called the Darwin term. These five terms are attributed to the group

of scalar-relativistic contributions. Their decisive difference relative to the last two terms in

equation (5.13), which represent the spin–orbit interaction and the coupling between the

spin and a magnetic field 𝑩(𝒓), is the lack of any spin matrices 𝝈. In order to simplify solving
equation (5.13) for 𝜖, this energy in the mass-velocity can be approximately replaced by the
energy parameter 𝐸𝑙. [212]

SinceScalar-relativistic
approximation

a full-relativistic description of the electrons significantly increases the computa-

tional effort, resorting to the scalar-relativistic approximation [213], which includes only the

aforementioned scalar-relativistic terms, appears attractive when not considering SOC. The

original quantum numbers can be further used, because a coupling of spin and spatial coordi-

nates is avoided, decoupling the spin-up and spin-down channels. Nonetheless, provided small

atomic numbers, the SOC contribution is so small that in some cases it can be subsequently

added on top of the scalar-relativistic solutions, using the second variation method [217] [68,

71]. Henceforth, the scalar-relativistic approximation is preferred for the valence electrons.

As in equations (5.4) and (5.10), the FLEUR [69] program implements the scalar-relativistic
Dirac equation with restricting to the spherical part of the effective Kohn–Sham potential.

Determining the scalar-relativistic radial functions for the spin channels indexed by 𝜎 requires
solving a set of coupled differential equations, e.g. for 𝑝 = 1 they read [234]

⎛⎜⎜⎜
⎝

𝑙(𝑙+1)

2𝑟2
𝛾(𝑚e+(

√
2𝑐)

−2
(𝐸−𝑉 (0)𝜎

eff, sph
(𝑟𝛾)))

+ 𝑉 (0)𝜎
eff, sph

(𝑟𝛾) −2𝑐
𝑟𝛾

− 𝑐 ∂
∂𝑟𝛾

𝑐 ∂
∂𝑟𝛾

−2𝑚e𝑐2 + 𝑉 (0)𝜎
eff, sph

(𝑟𝛾)

⎞⎟⎟⎟
⎠

�⃗�𝛾𝜎
𝑙1 (𝑟𝛾)

= 𝐸 �⃗�𝛾𝜎
𝑙1 (𝑟𝛾) (5.14)

(the spin index 𝜎 is suppressed hereinafter due to the focus on spin-degenerate systems).
Although the �⃗�𝛾

𝑙𝑝(𝑟𝛾) have a vectorial character and their two components are also called large
and small, they do not directly correspond to the large 𝜓 and the small 𝜒 of the bi-spinor 𝛹.
Additionally, since elements of the Euclidian vector space are written in bold font within

this dissertation, the vector composed of the large and the small components in �⃗�𝛾
𝑙𝑝(𝑟𝛾) is

indicated by a small arrow, and its components are indexed by 𝑠. Details of deriving the
previous equation and the scalar-relativistic formalism are provided in the dissertation of

Kurz [234]. Further information can be found in the paper of Koelling and Harmon [213]

and the textbook of Singh and Nordström [68]. As far as the matching coefficients are

concerned, only the large component solution is involved in the matching to the IR wave

function. The contribution of the small component close to the MT sphere boundary is too

small to be relevant for this procedure. In this sense, the small component depends on the

large component and in general, the contribution of the former is smaller than that of the

latter. Finally, the MT basis set in the scalar-relativistic approximation can be written as

⃗𝜙(0)𝛾
𝒌,𝑮(𝒓) ≔ ∑

𝑙𝑚𝑝
𝑎𝑮𝒌𝛾
𝑙𝑚𝑝

⎛⎜
⎝

𝑢1𝛾
𝑙𝑝 (𝑟𝛾)

𝑢2𝛾
𝑙𝑝 (𝑟𝛾)

⎞⎟
⎠

Y𝑙𝑚( ̂𝒓𝛾) ≕ ∑
𝑙𝑚𝑝

𝑎𝑮𝒌𝛾
𝑙𝑚𝑝 �⃗�

𝛾
𝑙𝑝(𝑟𝛾)Y𝑙𝑚( ̂𝒓𝛾) , (5.15)

6 An extension with less approximations [127] is e.g. the work of Yamagami [241].
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relative to the non-relativistic MT part of equation (5.9). In order to be consistent with

the non-relativistic basis set, the scalar-relativistic radial solutions obey the orthonormality

condition

∫
𝑅𝛾

0
𝑟2𝛾 ∑

𝑠
𝑢𝑠𝛾
𝑙𝑝′(𝑟𝛾)𝑢

𝑠𝛾
𝑙𝑝 (𝑟𝛾) d𝑟𝛾 = δ𝑝′𝑝 . (5.16)

Moreover, the IR plane-wave basis stays unaffected, because relativistic corrections are not

significant in this region. In summary, the unperturbed scalar-relativistic LAPW basis set, in

which the logarithmic radial MT mesh 𝜈 is no longer suppressed, reads7

𝜙(0)
𝒌,𝑮(𝒓) ≔

⎧{{
⎨{{⎩

1√
𝛺
ei(𝒌+𝑮)⋅𝒓, 𝒓 ∈ IR

∑
𝑙𝑚𝑝

𝑎𝑮𝒌𝛾
𝑙𝑚𝑝 �⃗�

𝛾
𝑙𝑝(𝑟𝜈𝛾)Y𝑙𝑚( ̂𝒓𝛾), 𝒓 ∈ MT𝛾

(5.17a)

𝜙(0)
𝒌,𝑮(𝒓) ≕

⎧{{
⎨{{⎩

1√
𝛺
ei(𝒌+𝑮)⋅𝒓, 𝒓 ∈ IR

∑
𝑙𝑚𝑝

𝑎𝑮𝒌𝛾
𝑙𝑚𝑝 �⃗�

𝛾
𝑙𝑚𝑝(𝒓𝜈𝛾), 𝒓 ∈ MT𝛾

≕

⎧{{
⎨{{⎩

𝜙(0)IR
𝒌,𝑮 (𝒓)

⃗𝜙(0)𝛾
𝒌,𝑮(𝒓𝜈𝛾)

. (5.17b)

It must be emphasized that the scalar-relativistic approximation does not lead to a larger basis

set and can therefore be considered highly efficient if applicable. [234]

Although Pros and consadditional complexity arises in the LAPW basis relative to the plane-wave

basis from a separate treatment of the MT spheres, and the number of LAPW basis functions

exceeds those of the nonlinear KKR method [242], or the linear LMTO [206] method, the

advantages of the LAPW method preponderate [3, 71]. Its convergence behavior surpasses

that of a pure plane-wave basis in the demanding potential landscape of a bulk solid, film

systems, chain structures, and single atoms. In addition, the asymptote problem of the

APW basis is resolved, as the decoupling of the IR and MT wave function is avoided by the

continuity of the radial or energy first-order derivative applied to the radial functions 𝑢𝛾
𝑙1(𝑟).

Due to this continuity the surface integrals mentioned at the end of section 5.1 and displayed

in equation (5.77) also vanish [71]. However, the introduction of the additional energy

derivatives causes linearization errors [3]. Altogether, the LAPW basis enables widespread

applications to arbitrary systems (see e.g. Singh and Nordström [68] or Martin [3] for an

overview) by solving an efficient linear eigenvalue problem. Its high accuracy excels and also

implies from the possibility and simplicity (non-linearity is avoided) of flexibly integrating all

electrons and the complete effective potential with overcoming any shape approximations

(see section 5.6 and especially section 5.3) [3]. Particularly prominent are calculations of

systems incorporating transition metals and rare earth elements in which magnetic order

or distorting the lattice induce slight energy differences underlying interesting features [3].

Likewise, the LAPW method has convinced with calculations involving surface and adsorbate

structures [71, 243].

7 As the small component of the MT basis does practically not contribute at the MT sphere boundary and the

IR does not feature relativistic corrections, the small arrow is only on top of the MT basis functions.
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5.3 All-Electron and Full-Potential Calculations

FacingDensity and
potential

expansions

the challenge of rigorous calculations in complex systems, approximations at some

point reach their limit leading to unsatisfactory results. One notable example is provided

by the 1/𝑟 singularity of the potential close to the nuclei. In this area, the expansion of the
wave function in a plane-wave basis only poorly works due to its bad convergence behavior,

as noted in the introduction of the current chapter. Furthermore, it is not compatible with a

variational approach, such as DFT described in chapter 2. The LAPW basis (see section 5.2)

circumvents this problem, as in the MT spheres, the exact solutions of a Schrödinger equation,

with potential relativistic corrections (Dirac equation), form the pivotal contribution. In

addition, matching the interstitial partition to the MT spheres only requires solving linear

equations, in contrast to the APW basis presented in section 5.1. It must be stressed that the

choice of a more adequate basis set for the wave function mirrors likewise in the properties

of the charge density and the potential [68]. Hence, a similar partitioning and expansion in

plane wave or spherical harmonics appears and proves adequate (the index 𝜈 indicates the
discrete MT mesh to set the stage for the following chapters)

𝜌(0)(𝒓) = ∑
𝑮

𝜌(0)IR (𝑮)ei𝑮⋅𝒓

⏟⏟⏟⏟⏟⏟⏟
𝜌(0)
IR

(𝒓)

+∑
𝛾

∑
𝑙𝑚

[𝜌(0)𝛾 (𝑟𝜈𝛾)]
𝑙𝑚

Y𝑙𝑚( ̂𝒓𝛾)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝜌(0)
𝛾 (𝒓)

, (5.18)

𝑉 (0)
eff

(𝒓) =

𝑉 (0)IR
eff

(𝒓)

⏞⏞⏞⏞⏞⏞⏞⏞⏞∑
𝑮

𝑉 (0)IR
eff

(𝑮)ei𝑮⋅𝒓 +∑
𝛾

𝑉 (0)𝛾
eff

(𝒓)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
∑
𝑙𝑚

[𝑉 (0)𝛾
eff

(𝑟𝜈𝛾)]
𝑙𝑚

Y𝑙𝑚( ̂𝒓𝛾) . (5.19)

Concept These two expansions in combination with the LAPW basis for the wave functions enable

one to treat all electrons accurately. Moreover, choosing the LAPW basis circumvents the use

of shape approximations done in the potential and density, and instead involves the more

rigorous all-electron charge density as well as the full potential (as described in section 5.5

and section 5.6) in the whole unit cell. Although the radial solutions are still determined

with only the spherical part of the total effective MT potential, the Hamiltonian incorporates

the complete potential and thereby the aforementioned singularity (see section 5.8). This

elaborate concept is denoted as the All-Electron Full-Potential Linearized Augmented Plane-Wave

(All-Electron FLAPW) [65, 218] method. [71]

TheCore- &
valence-electron

basis

electrons are subdivided into core electrons and valence electrons. Core electrons

feature eigenenergies lying so many Rydberg units below the Fermi energy that they are cen-

tered around the nucleus, as close as basically not to experience a non-spherical contribution of

the potential. The core wave-functions are ideally (exceptions are addressed in section 5.5.1)

localized to their MT spheres [71] and therefore not involved in bondings to other atoms [88]

or overlapping with core electrons from neighboring MT spheres. Consequently, instead of

expanding them in the LAPW basis, they are obtained from a Hamiltonian with a spherically

symmetric potential, which describes an isolated atom, by utilizing a numeric shooting method.

In general, they are calculated from the Dirac equation (see section 5.2) [68]. Finally, the core

wave functions are usually orthogonal to the valence wave functions [68]. In contrast, the

valence electrons are influenced by possible non-spherical contributions, correlated with the

fact that their wave functions extend across the IR and MT spheres. Thus, they are described

by the LAPW basis and the Hamiltonian setup employs the full effective potential. With their
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dependency on the spherical or the full effective potential, both the valence and the core

electrons are included into the self-consistency iteration [68]. [71]

Due Core tailsto the theoretically stringent localization of the core wave functions in their MT

spheres, the latter and the respective core energies do not depend8 on the Bloch vector 𝒌 and
would therefore feature a constant dispersion relation [88]. In fact however, as a consequence

of the long-range Coulomb interaction, tails, i.e., tiny contributions of the core wave functions,

reach out of the MT spheres. Hence, they oppose the requirement of the aforementioned

orthogonality between the MT valence and core state of the same orbital quantum number 𝑙
to a certain extent. Large overlaps between core and valence states are usually given for semi-

core states9. They feature a relatively short energy separation to valence states compared to

the other core states (see section 5.4). These finite overlaps can result in “ghost bands” [244]

above the actual core state energy, and indicate a significant core state contribution in a

valence state. Ghost bands depend on the LAPW energy parameter 𝐸𝑙 and result from its

disadvantageous choice for a certain MT sphere radius, culminating in inappropriate radial

solutions (see section 5.2) to describe the semi-core states in the valence band. However, ghost

bands can be spotted by (i) a nearly constant dispersion, (ii) their orbital quantum number

being identical to the respective core state, and (iii) the ghost-band-affected valence function

being substantially confined to the MT sphere. The extension with LOs (see section 5.4) turns

out to be the best way to overcome these difficulties. [68]

Which Basis parametersstates are attributed to the valence or the core spectrum can be steered, among

other options, by the choice of 𝐸𝑙. A separate treatment of valence and core electrons excludes

the core states from the dispersion relations so that the LAPW cutoff parameter can be chosen

smaller. Intricate all-electron FLAPW implementations can feature plenty of parameters as a

result of optimizations or their versatility. Nevertheless, some of those parameters are pivotal,

in particular to control the LAPW basis or cutoffs of the density and the potential. Essentially

in FLEUR, the number of plane-waves in the LAPW basis is set by 𝐾max ≥ |𝒌 +𝑮|, while the
number of IR expansion coefficients of the density in equation (5.18) and the potential in

equation (5.19) is operated by 2𝐾max ≤ 𝐺max ≥ |𝑮| [68, 88]. Furthermore, the number of
spherical harmonics used is controlled by a maximal orbital quantum number 𝑙max,𝛾, and the
partitioning of the LAPW basis set influenced by the MT sphere radii 𝑅𝛾. A usual choice of 𝑅𝛾
is guided by (i) considering that the core states are restricted to the MT spheres as well as

possible, (ii) the wave function, potential and density are optimally described by their IR

or MT expansion, and (iii) discontinuities at the MT spheres are minimized [88]. A rule of

thumb is given by the relation 𝑙max,𝛾 = 𝑅𝛾𝐾max which ensures a balanced number of plane

waves and spherical harmonics. Other key parameters are responsible for the density of the

logarithmic radial meshes, both for the MT valence and the core states. Further refinements

of the aforementioned parameters are addressed within the next sections, provided they

become significantly relevant. Nonetheless, in order to ensure that outcomes of the FLAPW

calculations are comparable, in particular the cutoff parameters must be converged, i.e., the

results should not differ significantly anymore when further increasing those parameters. [68]

8 Outside the representative unit cell, e.g. for supercells, Klüppelberg [88] introduces an additional factor

exp(i𝒌 ⋅ 𝑹), entailing an artificial dependence on the Bloch factor 𝒌. However, this index is suppressed
hereinafter as the focus lies predominantly on the representative unit cell.

9 They are typically relevant in materials involving rare earths, alkali metals, actinides or some transition

metals. [68]
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AsBenefits and
relevance

a consequence of the all-electron character, magnetism, nuclear quantities (for

example hyperfine field, isomer and core-level shift) as well as 3d- and 4f-electrons are

accurately dealt with. In addition, correlation, which is possibly insufficiently treated by

the LDA, is organically integrated [128]. Apart from that, the general all-electron FLAPW

method can be applied in various scenarios with basically any natural chemical elements

from the periodic table involved. Several geometries beyond bulk systems, such as surfaces,

organic and inorganic molecules, 1D geometries, to name but a few, or symmetries pose no

problem [3]. Although ranked among the more elaborate electronic structure methods, the

all-electron FLAPW method has acquired the reputation to represent the current benchmark

for other methods [3, 70]. This is because of its highest accuracy as well as its general and

widespread applicability in electronic structure calculations [3]. [71]

5.4 Local Orbitals

Often,Motivation it proves reasonable to set the energy parameter 𝐸𝑙 (see equations (5.4) and (5.10),

as well as section 5.3) to a value lying close to the average of the relevant band ensemble.

However, some systems feature core states, the energy of which is so high that they are not as

localized as the other core states. For example, this is the case if 4f inner-transition metals or

elements on the left-hand side of the periodic table are involved [71, 219]. Consequently,

neglecting the non-spherical component of the effective potential for these core states turns

out to be a bad approximation, especially as far as total energy calculations are concerned.

Furthermore, semi-core states form bands with a low energy in the dispersion and hinder

finding an optimal energy parameter which lives up to an accurate description of both the

valence and the semi-core bands. In other scenarios, the energy distance of the highest and

lowest lying bands (to be covered by the energy parameter 𝐸𝑙) can lead to a non-acceptable

linearization error (see equation (5.8)), in particular for the bands with the largest energy

difference to 𝐸𝑙. [68]

InAlternative order to address the aforementioned problems, either several energy parameter sets

are introduced (each attributed to one “window,” cutting out a certain energy interval of the

spectrum [71, 245]) or the LAPW basis set is extended by Local Orbitals (LOs) [219]. The

former is obsolete and further details can be found in Singh and Nordström [68], whereas the

more powerful and better-performing LO solution is well-established in the FLEUR code [69]10

and other implementations. Using LOs provides more variational freedom and can facilitate

or allow for converging the basis set. [68]

TheConcept basis function of an LO is given by the linear combination

𝜙𝛾𝑙�̃�
𝒌,𝑮�̃�

(𝒓𝛾) = ∑
𝑚

(𝑎𝑮�̃�𝒌𝛾
𝑙𝑚1 𝑢𝛾

𝑙1(𝑟𝜈𝛾) + 𝑎𝑮�̃�𝒌𝛾
𝑙𝑚2 𝑢𝛾

𝑙2(𝑟𝜈𝛾) + 𝑎𝑮�̃�𝒌𝛾
𝑙𝑚�̃� 𝑢𝛾

𝑙�̃�(𝑟𝜈𝛾))Y𝑙𝑚( ̂𝒓𝛾) . (5.20)

Since LOs are not relevant in this thesis, the scalar-relativistic approximation is not considered

at this point. Comparing it with the muffin-tin LAPW basis function in equation (5.9), a third

radial function 𝑢𝛾
𝑙�̃�(𝑅𝛾) with its own energy parameter, which can be set to the energy of the

problematic states, is added. The matching coefficients standing in front of the latter radial

10 In the FLEUR code, LOs have basically been programmed by Kurz [233].
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solutions are subject to the conditions

𝔞�̃�𝒌𝛾𝑙𝑚1𝑢
𝛾
𝑙1(𝑅𝛾) + 𝔞�̃�𝒌𝛾𝑙𝑚2𝑢

𝛾
𝑙2(𝑅𝛾) + 𝔞�̃�𝒌𝛾𝑙𝑚3𝑢

𝛾
𝑙�̃�(𝑅𝛾) = 0 (5.21a)

𝔞�̃�𝒌𝛾𝑙𝑚1
∂𝑢𝛾

𝑙1(𝑟𝜈𝛾)
∂𝑟𝜈𝛾

∣
𝑟𝜈𝛾=𝑅𝛾

+ 𝔞�̃�𝒌𝛾𝑙𝑚2
∂𝑢𝛾

𝑙2(𝑟𝜈𝛾)
∂𝑟𝜈𝛾

∣
𝑟𝜈𝛾=𝑅𝛾

+ 𝔞�̃�𝒌𝛾𝑙𝑚3

∂𝑢𝛾
𝑙�̃�(𝑟𝜈𝛾)
∂𝑟𝜈𝛾

∣
𝑟𝜈𝛾=𝑅𝛾

= 0 (5.21b)

∫
𝑅𝛾

0
𝑟2𝜈𝛾(𝔞�̃�𝒌𝛾𝑙𝑚1𝑢

𝛾
𝑙1(𝑟𝜈𝛾) + 𝔞�̃�𝒌𝛾𝑙𝑚2𝑢

𝛾
𝑙2(𝑟𝜈𝛾) + 𝔞�̃�𝒌𝛾𝑙𝑚3𝑢

𝛾
𝑙�̃�(𝑟𝜈𝛾)) d𝑟𝜈𝛾 = 1 . (5.21c)

The LO basis set which is fully located within the MT sphere boundary must vanish at the

MT sphere boundary, as ensured by equation (5.21a). Furthermore, the same holds true for

the radial derivative of the LO basis set, evaluated at the MT sphere boundary as stated by

equation (5.21b). Moreover, the LO basis is normed which is ensured by the condition in

equation (5.21c). This set of three equations (5.21) uniquely determines the three matching

coefficients contained within, therefore the LO extension does not require new boundary

conditions. [71]

However, Symmetry
optimizations

in the FLEUR implementation, the symmetry of lattices can be exploited to
speed up calculations. Exploiting inversion symmetry, the local orbitals must exhibit the same

transformation behavior as plane-waves, which is ensured by [71]

𝑎𝑮�̃�𝒌𝛾
𝑙𝑚1 = ei(𝒌+𝑮�̃�)⋅𝝉𝛾𝔞�̃�𝒌𝛾𝑙𝑚14π

1
𝑊

i𝑙Y∗
𝑙𝑚(𝒌 +𝑮�̃�
⋀

) (5.22a)

𝑎𝑮�̃�𝒌𝛾
𝑙𝑚2 = ei(𝒌+𝑮�̃�)⋅𝝉𝛾𝔞�̃�𝒌𝛾𝑙𝑚24π

1
𝑊

i𝑙Y∗
𝑙𝑚(𝒌 +𝑮�̃�
⋀

) (5.22b)

𝑎𝑮�̃�𝒌𝛾
𝑙𝑚�̃� = ei(𝒌+𝑮�̃�)⋅𝝉𝛾𝔞�̃�𝒌𝛾𝑙𝑚34π

1
𝑊

i𝑙Y∗
𝑙𝑚(𝒌 +𝑮�̃�
⋀

), (5.22c)

where

𝑊 = ⎛⎜
⎝

∂𝑢𝛾
𝑙1(𝑟𝜈𝛾)
∂𝑟𝜈𝛾

∣
𝑟𝜈𝛾=𝑅𝛾

𝑢𝑙2(𝑅𝛾) − 𝑢𝑙1(𝑅𝛾)
∂𝑢𝛾

𝑙2(𝑟𝜈𝛾)
∂𝑟𝜈𝛾

∣
𝑟𝜈𝛾=𝑅𝛾

⎞⎟
⎠

, (5.22d)

and the final matching coefficients on the left sides define those in equation (5.20). Equa-

tions (5.22) connect the local orbitals to the angular part of the virtual plane-waves, which is

extracted utilizing the plane-wave expansion in equation (5.5). Each local orbital requires

one virtual plane wave. The latter is labelled by an additional reciprocal basis vector 𝑮�̃�, and

within the complete set of virtual plane waves, they must be linearly independent.

Furthermore, Propertieseach LO comprises of 2𝑙 + 1 basis functions, due to the dependence of
the spherical harmonics on both the orbital quantum number 𝑙 and the magnetic quantum
number 𝑚 [88]. The orthogonality of the LO basis functions with respect to the LAPW basis
functions is not ensured, because on the one hand the complete radial part in equation (5.20)

does not fulfill an equation analogous to equation (5.10). On the other hand, all radial

functions in equation (5.20) have a finite contribution in general [88]. Within the scope of

this dissertation, only systems that do not necessarily require LOs are of relevance. Therefore,

LOs are not considered within the following sections and chapters. Details of the LO extension

within the FLAPW implementation FLEUR are for instance provided by Kurz [233]. [68]

5.4 Local Orbitals
55



5.5 Determining the Charge Density

InOccupation
number and 𝒌-set

periodic structures, the valence electron charge density is obtained from the Kohn–Sham

wave functions (5.1) with Bloch character 𝒌 and can therefore be evaluated by the integral

𝜌(0)(𝒓) = 2
𝛺

∫
𝛺

∑
𝑛|𝜖𝒌,𝑛<𝐸F

∣𝛹 (0)
𝒌,𝒏(𝒓)∣

2
d3𝑘 → 2∑

𝒌,𝑛
𝑓 (0)
𝒌,𝑛𝛹

∗(0)
𝒌,𝑛 (𝒓)𝛹 (0)

𝒌,𝑛(𝒓) (5.23)

over the Brillouin zone 𝛺 with its volume 𝛺. The integration over the 𝒌-point continuum is
normally either realized by the tetrahedron method [246–248] or the special points [249]

method. In the latter case (indicated by the→ in equation (5.23)), a specific grid of 𝒌-points is
determined, on the mesh points of which the valence charge density is evaluated. Afterwards,

all these results are weighted by 𝑓 (0)
𝒌,𝑛 and summed (additional symmetry optimizations are

discussed in section 5.7). Relevant are those Kohn–Sham wave functions, whose Kohn–Sham

eigenvalues 𝜖𝒌,𝑛 (see section 2.2.1) are smaller than the Fermi energy11 𝐸F. Moreover, the
occupation of band 𝑛 expresses through a binary integer for insulators and semiconductors
(both material classes are characterized by an energy band gap, incorporating the Fermi

energy between valence and conduction bands), reflecting the step-function character of the

Fermi function at temperature 𝑇 = 0 [88]. In contrast, metals feature bands crossing the
Fermi energy, i.e., depending on the Bloch vector 𝒌, sudden changes between occupied and
unoccupied states occur [88]. This badly harmonizes with the discrete sum in the special

points method, because actually the special points method requires the integrands to be

periodic and feature no rapid variations. Consequently, a larger set of 𝒌-points becomes
necessary to converge the summation in equation (5.23). However, a temperature broadening

of the Fermi function implies fractional occupation numbers, smoothens the transition from

occupied to unoccupied states and enhances the convergence for the aforementioned case [88].

Furthermore, the charge density should be independent of 𝑁𝒌, the number of terms in the 𝒌-
point sum [68]. Therefore, the occupation factor is divided by 𝑁𝒌, yielding the weighted

occupation factor 𝑓 (0)
𝒌,𝑛 [68]. Further technical details are for instance provided in the textbook

of Singh and Nordström [68]. Finally, due to the spin degeneracy this dissertation restricts to,

a factor of 2 is multiplied in equation (5.23). [71]

AsOutline mentioned in particular within section 5.3, the core states are not expanded in the

LAPW basis in contrast to the valence states (see section 5.2). This suggests splitting the

charge density

𝜌(0)(𝒓) = 𝜌(0)c (𝒓) + 2∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑧(0)𝑮 (𝒌, 𝑛)𝜙(0)∗

𝒌,𝑮′(𝒓)𝜙
(0)
𝒌,𝑮(𝒓) . (5.24)

into a core part 𝜌(0)c (𝒓) which is discussed in section 5.5.1. The remaining valence part
is addressed in section 5.5.2, while the LAPW basis functions 𝜙(0)

𝒌,𝑮(𝒓) are given by equa-
tions (5.17).

11 The technical details of determining the Fermi energy 𝐸F are for example provided by the textbook of Singh

and Nordström [68].
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5.5.1 Core Contribution and the Origin of Core Tails

The Core-electron
density

core contribution of the charge density

𝜌(0)c (𝒓) = ∑
𝛾

∑
𝔭
∣𝛹𝛾

𝔭(𝒓𝜈𝛾
c
)∣

2
(5.25a)

= ∑
𝛾

𝜌(0)𝛾,c(𝑟𝜈𝛾
c
)Y00( ̂𝒓𝛾) (5.25b)

derives from the core states 𝛹𝛾
𝔭(𝒓𝜈𝛾

c
) of MT 𝛾 (see section 5.3). The index 𝔭 summarizes all

quantum numbers arising in the spherical problem and simply enumerates the core states

according to their energy. Moreover expanding the charge density in a series of spherical

harmonics, the constant Y00 suffices, because the core wave functions are eigenstates of a

Hamiltonian with a spherical potential. Within the FLEUR implementation [69], the numerical
solution of the differential equation for the core states takes place on a radial mesh 𝑟𝜈𝛾

c
,

exceeding the separate radial mesh of the LAPW basis 𝑟𝜈𝛾 in the MT spheres [88]. The

complete core density 𝜌(0)c (𝒓) contains the core densities (4π)−1/2𝜌(0)𝛾,c(𝑟𝜈𝛾
c
) of every MT 𝛾 in the

unit cell. In systems with core tails [250], an additional contribution to the valence density

both in the IR and the MT spheres must be accounted for [68]. [88]

Due Core tailsto their construction, core states enable differentiation of arbitrary order not

featuring any discontinuity [88]. In order to calculate the IR contribution resulting from a

core state in MT 𝛾, its underlying spherical potential is augmented to the IR on condition that
it is matched continuously at the MT sphere boundary. In the FLEUR program this spherical
potential approximates a zero asymptote for large 𝑟𝜈𝛾

c
, possibly already intersecting with the

IR [88]. Furthermore, the real charge density in the MT sphere is substituted by a pseudo

charge-density [88]. The latter has the requirement of equalling the real charge density in

the IR, but to have a faster converging Fourier expansion so that [88]

𝜌(0)IR,ct(𝑮) = 1
𝛺

∫
𝛾
𝜌(0),psc (𝒓𝛾)e−i𝑮⋅𝒓 d3𝑟 (5.26a)

= ∑
𝛾

e−i𝑮⋅𝝉𝛾

⏟
𝑆𝛾(𝑮)

1
𝛺

∫
𝛾
𝜌(0),psc,𝛾 (𝒓𝛾)e−i𝑮⋅𝒓𝛾

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐹𝛾(𝑮)

d3𝑟 . (5.26b)

Within the last equation, a coordinate transformation to the local coordinate system of the

MT spheres 𝒓𝛾 = 𝒓 − 𝝉𝛾 is exploited, and leads to a definition of the structure factor 𝑆𝛾(𝑮)
as well as the form factor 𝐹𝛾(𝑮) [88]. The complete IR core-tail density sums up the IR
core-tail contributions of all MT spheres 𝛾. Once given the plane-wave representation, it can be
augmented to the neighboring MT spheres with the Rayleigh expansion in equation (5.5) [88].

The coefficients of the spherical harmonic expansion read [88]

[𝜌(0)𝛾
′

𝛾,ct (𝑟𝜈𝛾)]
𝑙𝑚

= ∑
𝑮

𝑆𝛾′(𝑮)𝐹𝛾′(𝑮)∮
∂𝛾

Y∗
𝑙𝑚( ̂𝒓𝛾)ei𝑮⋅𝒓 d𝑆 (5.27a)

= 4πi𝑙 ∑
𝑮

𝑆𝛾′(𝑮)𝐹𝛾′(𝑮)𝑆∗
𝛾(𝑮)Y∗

𝑙𝑚( ̂𝑮)j𝑙(𝐺𝑟𝜈𝛾) . (5.27b)

The superposition of all core-tails entering the MT sphere 𝛾 and originating from any other
MT 𝛾′ leads to the MT core-tail contribution 𝜌(0)𝛾,ct(𝒓𝜈𝛾). At this point, attention must be paid
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to subtract the pseudo charge-density and add the actual charge density in the MT sphere 𝛾.
Technical details of the core charge-density implementation are for example provided in the

appendix of reference [88]. [68]

5.5.2 Valence Contribution

TheInterstitial part IR part of the charge density

𝜌(0)IR (𝒓) = 𝜌(0)IR, v(𝒓) + 𝜌(0)IR, ct(𝒓) (5.28)

subdivides into a valence part with Kohn–Sham wave-function expansion coefficients, and a

potential core-tail part [68]. While the latter is set up in section 5.5.1, the former

𝜌(0)IR, v(𝒓) =
2
𝛺

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′

𝑧∗(0)𝑮′ (𝒌, 𝑛)e−i(𝒌+𝑮′)⋅𝒓 ∑
𝑮

𝑧(0)𝑮 (𝒌, 𝑛)ei(𝒌+𝑮)⋅𝒓 (5.29a)

derives from equation (5.24) by inserting the LAPW basis from equation (5.17). Next, an

index 𝑮″ ≔ 𝑮−𝑮′ is defined so that the index 𝑮 can be substituted

𝜌(0)IR, v(𝒓) =
2
𝛺

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′

∑
𝑮″+𝑮′

𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑧(0)𝑮″+𝑮′(𝒌′, 𝑛)ei𝑮″⋅𝒓 . (5.29b)

Using a FFT algorithm for exploiting the convolution theorem, the wave-function expansion

coefficients can be combined to the IR expansion coefficients of the charge density

𝜌(0)IR, v(𝒓) ≕ ∑
𝑮″

𝜌(0)IR, v(𝑮
″)ei𝑮″⋅𝒓 . (5.29c)

An alternative to the FFT method is to simply evaluate the sums in equation (5.29b). [71]

SinceNumerical cutoffs an infinite basis set is impossible to realize in the computation, only those 𝑮
and 𝑮′ in equations (5.29) fulfilling |𝒌 +𝑮| ≤ 𝐾max or ∣𝒌 +𝑮′∣ ≤ 𝐾max are considered, as

already touched in section 5.3. In turn, the IR charge density is a product of two quantities,

whose expansion is truncated at 𝐾max, implying its cutoff condition ∣𝑮″∣ ≤ 2𝐾max [71]. How-

ever, the core-tail contribution 𝝆(0)
IR, ct(𝒓) can have contributions in its plane-wave expansions

for 2𝐾max < ∣𝑮″∣ ≤ 𝐺max [127]. Therefore in practice, the expansion in equation (5.18)
fulfills |𝑮| ≤ 𝐺max.

ForScalar large
matching

coefficients

the MT coefficients of the charge density in atom 𝛾

𝐴𝒌𝛾𝑛
𝑙𝑚𝑝 ≔ ∑

𝑮
𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛾

𝑙𝑚𝑝 (5.30)

is defined, consisting of MT matching coefficients (see equation (5.9)) and the Kohn–Sham

wave-function expansion coefficients. Basically, the reciprocal lattice vectors𝑮 are contracted

and substituted by the bands 𝑛. This is motivated by the fact that the number of bands required
in a calculation is approximately tenth of the number of reciprocal lattice-vectors [127]. Similar

Muffin-tin part to the IR contribution of the charge density, the MT charge density again has two parts [68]

𝜌(0)𝛾 (𝒓) = 𝜌(0)𝛾,v(𝒓) + 𝜌(0)𝛾,ct(𝒓) . (5.31)
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The first one is the valence contribution, the second part is the overlap of core-tails reaching

into MT 𝛾 and originating from the neighboring MT spheres (cf. section 5.5.1) [68]. In order to
gain the valence expansion coefficient of the spherical harmonic expansion in equation (5.18),

the charge density in MT 𝛾 (see equation (5.24)) is projected onto an arbitrary spherical
harmonic Y𝑙𝑚( ̂𝒓𝛾)

[𝜌(0)𝛾,v(𝒓𝜈𝛾)]
𝑙𝑚

= ∮
∂𝛾

Y∗
𝑙𝑚( ̂𝒓𝛾)𝜌

(0)
𝛾,v(𝒓𝜈𝛾) d𝛺 . (5.32a)

By using equation (5.17) and expressing the scalar product, due to the scalar-relativistic

approximation (cf. equation (5.2)), in the sum over 𝑠, this yields

[𝜌(0)𝛾,v(𝒓𝜈𝛾)]
𝑙𝑚

= ∑
𝑙″𝑚″𝑝″

∑
𝑙′𝑚′𝑝′

2∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛𝐴

∗𝒌𝛾𝑛
𝑙′𝑚′𝑝′𝐴

𝒌𝛾𝑛
𝑙″𝑚″𝑝″ ∮

∂𝛾
Y∗

𝑙𝑚( ̂𝒓𝛾)∑
𝑠

×⎛⎜
⎝

∑
𝑙′𝑚′𝑝′

𝑢𝑠𝛾
𝑙′𝑝′(𝑟𝜈𝛾)Y∗

𝑙′𝑚′( ̂𝒓𝛾)⎞⎟
⎠
⎛⎜
⎝

∑
𝑙″𝑚″𝑝″

𝑢𝑠𝛾
𝑙″𝑝″(𝑟𝜈𝛾)Y∗

𝑙″𝑚″( ̂𝒓𝛾)⎞⎟
⎠

d𝛺 . (5.32b)

Finally, reordering results in

[𝜌(0)𝛾,v(𝒓𝜈𝛾)]
𝑙𝑚

= ∑
𝑙′𝑝′𝑙″𝑝″

∑
𝑠

𝑢𝑠𝛾
𝑙′𝑝′(𝑟𝜈𝛾)𝑢𝑠𝛾

𝑙″𝑝″(𝑟𝜈𝛾) ∑
𝑚′𝑚″

𝐺𝑚″𝑚𝑚′

𝑙″ 𝑙 𝑙′ 2∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛𝐴

∗𝒌𝛾𝑛
𝑙′𝑚′𝑝′𝐴

𝒌𝛾𝑛
𝑙″𝑚″𝑝″(5.32c)

which contains the Gaunt coefficients

𝐺𝑚″𝑚𝑚′

𝑙″ 𝑙 𝑙′ = ∮
∂𝛾

Y∗
𝑙″𝑚″( ̂𝒓𝛾) Y𝑙𝑚( ̂𝒓𝛾) Y𝑙′𝑚′( ̂𝒓𝛾) d𝑆 , (5.32d)

the properties of which can e.g. be found in the textbooks of Martin [3] or Singh and Nord-

ström [68]. Since this dissertation discusses only results of systems in which LOs are not

urgently required, the implementation of LOs to the charge density in FLEUR is not addressed at
this point, but can for instance be found in the work of Kurz [233]. All sums in equations (5.32)

over orbital or magnetic quantum numbers are governed by the cutoff 𝑙max,𝛾 mentioned in
section 5.3. [71]

5.6 Calculating the Full Effective Potential

Similarly Outlineto the charge density, addressed in section 5.5, the effective potential requires an ac-

curate expansion [3] in plane waves and spherical harmonics, as displayed by equation (5.19).

The effective potential is defined in equation (2.3b) as a sum of the external, the Hartree

and the xc potentials. In turn, the sum of the Hartree potential and the external potential is

known as the Coulomb potential [68]

𝑉 (0)
Cou

(𝒓) = ∫
𝜌(𝒓′)

|𝒓 − 𝒓′|
d3𝑟′ −∑

𝛾𝑹

𝑍
∣𝒓 − (𝝉𝛾𝑹

+𝑹)∣
. (5.33)

In the all-electron FLAPW implementation FLEUR [69], the plane-wave and spherical-harmonic
expansion coefficients of the Coulomb potential are determined with a method developed

by Weinert [64], which is outlined in section 5.6.1 [234]. Further details of the xc-potential

expansion coefficients are given in section 5.6.2.
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5.6.1 The Method of Weinert for the Coulomb Potential

TheMotivation Coulomb potential is related to the charge density by the Poisson equation

∆𝑉 (0)
Cou

(𝒓) = −4π𝜌(0)(𝒓) , (5.34)

determining the Coulomb potential as

𝑉 (0)
Cou

(𝒓) = ∑
𝑮

4π𝜌(0)(𝑮)
|𝑮|2

ei𝑮⋅𝒓 , (5.35)

with the Fourier coefficients of the charge density 𝜌(0)(𝑮). In the all-electron FLAPW method
(cf. section 5.3), the precise description of the Coulomb potential proves to be a tough chal-

lenge, because the plane-wave expansion does not converge near the nuclei. But Weinert [64]

has developed a method meeting the challenges of the rapidly varying core-electron charge

density or the point-like charge density of the nuclei, and constituting an alternative to the

widespread Ewald summation method. [68]

WeinertConcept utilizes the fact that different charge densities in a MT 𝛾 can have the same
multipole moments

𝔮𝛾𝑙𝑚 = ∫
𝛾
Y∗

𝑙𝑚( ̂𝒓)𝑟𝑙𝜌(0)(𝒓) d3𝑟 , (5.36)

which define the same expansion

𝑉 (0)
Cou

(𝒓) = ∑
𝑙𝑚

4π
2𝑙 + 1

𝔮𝑙𝑚
𝑟𝑙+1Y𝑙𝑚( ̂𝒓) (5.37)

of the Coulomb potential in spherical harmonics. Furthermore, the genuine charge density

𝜌(0)(𝒓) = 𝜌(0)IR (𝒓)Θ(𝒓 ∈ IR) +∑
𝛾

𝜌(0)𝛾 (𝒓)Θ(𝒓 ∈ MT𝛾) (5.38a)

= 𝜌(0)IR (𝒓) + (∑
𝛾

𝜌(0)𝛾 (𝒓) − 𝜌(0)IR (𝒓))Θ(𝒓 ∈ MT𝛾) (5.38b)

can be subdivided according to the known LAPW partitioning, while the step functions confine

terms to the IR and the MT spheres. For a more comfortable derivation, the IR representation

of the charge density is in addition evaluated in the whole unit cell, and afterwards subtracted

from all MTs 𝛾. [64]

ItInterstitial part turns out that the real charge density in the MT spheres has a badly-converging

Fourier expansion [64]. Therefore, it is substituted by a more adequate pseudo charge-density

to set up the IR plane-wave expansion of the Coulomb potential [64]. Its multipole moments

(based on equations (5.38b) and (5.36)) are given by

𝔮𝛾,ps𝑙𝑚 = 𝔮𝛾𝑙𝑚 − 𝔮𝛾,IR𝑙𝑚 , (5.39)

where

𝔮𝛾,IR𝑙𝑚 =
√
4π
3

𝑅3
𝛾𝜌

(0)
IR (𝑮 = 𝟎)δ𝑙0δ𝑚0 + 4πi𝑙𝑅𝑙+3

𝛾 ∑
𝑮|𝑮≠𝟎

𝜌(0)IR (𝑮)
j𝑙+1(|𝑮|𝑅𝛾)

|𝑮|𝑅𝛾
ei𝑮⋅𝝉𝛾Y∗

𝑙𝑚( ̂𝑮) (5.40)
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is obtained from the Rayleigh decomposition (5.5) of the IR charge density (5.28) in the MT

spheres. The sum over the reciprocal 𝑮 features the condition (indicated by | hereinafter,
which is borrowed from the nomenclature of sets) that𝑮 = 𝟎 is excluded. It is feasible to find
a pseudo-density sharing the same multipole moments (5.39) with the original charge density

in the MT sphere. However, the pseudo-density features a significantly rapider convergence

in reciprocal space relative to the true density. The Fourier coefficients of this pseudo-density

𝑛ps
Cou

(𝑮) = 𝜌(0)IR (𝑮) + δ𝑮𝟎δ𝑙0δ𝑚0

√
4π
𝛺

∑
𝛾

𝔮𝛾,ps𝑙𝑚 (5.41)

+ (1 − δ𝑮𝟎)
4π
𝛺

∑
𝑙𝑚𝛾

(−i)𝑙(2𝑙 + 2𝑁 + 3)!!
(2𝑙 + 1)!!

j𝑙+𝑁+1(|𝑮|𝑅𝛾)

(|𝑮|𝑅𝛾)
𝑁+1 e−i𝑮⋅𝝉𝛾Y𝑙𝑚( ̂𝑮)𝔮𝛾,ps𝑙𝑚

are inserted into the solution of the Poisson equation in equation (5.35) yielding the true

Coulomb potential in the IR

𝑉 (0)IR
Cou

(𝒓) = ∑
𝑮|𝑮≠𝟎

4π𝑛ps
Cou

(𝑮)
|𝑮|2

ei𝑮⋅𝒓 ≕ ∑
𝑮≠𝟎

𝑉 (0)IR
Cou

(𝑮)ei𝑮⋅𝒓 . (5.42)

Furthermore, the pseudo charge-density incorporates a parameter𝑁, whichWeinert introduces
and examines in his publication [64, 68]. FLEUR [69] stores the optimal parameters in
combination with the orbital quantum number 𝑙, hence 𝑁 is constant within a respective MT
sphere. Moreover, the Fourier transform of equation (5.34) reveals that an average charge

neutrality 𝜌(0)IR (𝑮 = 𝟎) must be imposed. Despite 𝑉 (0)IR
Cou

(𝑮 = 𝟎) is not set, due to the periodic
bulk system, this arbitrary shift of the potential is in general fixed to zero [71]. [88]

The Muffin-tin partMT coefficients of the Coulomb potential in the MT sphere of atom 𝛾 are determined
by the Dirichlet boundary value problem, utilizing the IR Coulomb potential at its MT sphere

boundary

𝑉 (0)𝛾
Cou

(𝒓)=∫
𝛾
(𝜌(0)𝛾 (𝒓′) − 𝑍Y00 )𝒢(𝒓𝛾, 𝒓′

𝛾) d3𝑟′−
𝑅2

𝛾

4π
∮
∂𝛾
𝑉 (0)IR
Cou

(𝑅𝛾)
∂𝒢(𝒓𝛾, 𝒓′

𝛾)
∂𝑛

d𝛺 (5.43a)

with the Green function (𝑟𝛾,< ≔ min(𝑟𝛾, 𝑟′𝛾) and 𝑟𝛾,> ≔ max(𝑟𝛾, 𝑟′𝛾))

𝒢(𝒓𝛾, 𝒓′
𝛾) = 4π∑

𝑙𝑚

Y∗
𝑙𝑚( ̂𝒓′

𝛾)Y𝑙𝑚( ̂𝒓𝛾)
2𝑙 + 1

𝑟𝑙𝛾,<
𝑟𝑙+1
𝛾,>

⎡⎢
⎣
1 −(

𝑟𝛾,>
𝑅𝛾

)
2𝑙+1

⎤⎥
⎦

(5.43b)

and the derivative

∂𝒢(𝒓𝛾, 𝒓′
𝛾)

∂𝑟′
∣
𝑟′=𝑅𝛾

= −4π
𝑅2

𝛾
∑
𝑙𝑚

(
𝑟𝛾
𝑅𝛾

)
𝑙

Y∗
𝑙𝑚( ̂𝒓′

𝛾)Y𝑙𝑚( ̂𝒓𝛾) . (5.43c)

Decisive at this point is using the real charge which is composed of the nuclear charge 𝑍
and the charges of the electrons in the MT sphere, given by the MT charge density (see

section 5.5). [88]
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5.6.2 Exchange-Correlation Potential

TheInterstitial part calculation of the exchange-correlation (xc) potential strongly depends on the technical

details of the xc-potential approximation chosen (see section 2.2.2). Generally however, it is

calculated in real space due to its non-linear dependence on the charge density. Hence, the

charge density is needed in its real space representation. Within a FLEUR [69] calculation, the
charge density is given by its expansion coefficients, according to equation (5.18). Therefore,

in the IR a FFT is used to transform the Fourier coefficients of the charge density to real space

and to determine the Fourier expansion of the xc potential from real space. As there is a

non-linear relation between the xc potential and the density, the cutoff 𝐺xcmax > 𝐺max must be
introduced for a better convergence of the calculation [88]. [71]

ForMuffin-tin part the MT region, the charge density is evaluated on the radial grid points and a set of

well-chosen angular mesh points to make it available in real space. This enables one to find the

real space representation of the xc potential in the MT spheres, which then can be projected

onto a spherical harmonic with orbital quantum number 𝑙 and magnetic quantum number 𝑚.
Equations revealing more technical details are provided in the context of section 7.3.2. [71]

5.7 Exploiting Symmetry

ThePossible
symmetry

optimizations

FLEUR program optimizes the representation of the LAPW wave function (section 5.2),
Brillouin zone integrations (section 5.5), the charge density (section 5.5), and the effective

potential (section 5.6), by considering the symmetries given by the system under investiga-

tion [234]. The latter fall into space group symmetries in the IR and point-group symmetries

(not altering the atomic position) within the MT spheres. Furthermore, inversion symmetry

makes complex quantities real, or symmetry operations can connect MT spheres containing

the same atom type (equal atomic number). All these symmetries can on the one hand be

encoded into the expansions of the charge density and the potential, and on the other hand

into the matching coefficients of the wave functions or the set of discrete 𝒌-points. However
if possible, inversion symmetry in lattices is taken into account already in the setup of the

system, namely by a well-educated choice of the unit cell-origin, serving as input for the

DFT calculation. The adaptations of the LAPW basis coefficients in the MT relative to those

introduced in equation (5.7) are postponed to section 5.8.2.

Section 5.7.1Outline presents the symmetry improvements to the Brillouin zone integrations

such as in equation (5.5). The set of symmetrized basis functions for the charge density and

the potential are called stars in the IR and lattice harmonics in the MT. Both are described

in section 5.7.2. Although additionally considering symmetry in the DFT implementation

involves certain effort, the benefit derived, e.g. a speed-up of run-time, better convergence,

or decreased demand of storage, clearly outweighs. Redundant, i.e., equal or vanishing

expansion coefficients, related or spotted by symmetry, are avoided, leading to an irreducible

set of coefficients. [68]
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5.7.1 Muffin-Tin Sphere Coordinates and Irreducible Brillouin Zone

In Local coordinate
system

order to live up to the geometry of the MT spheres and exploit symmetry, a local spherical

coordinate system is defined within them so that the MT centers are the origins of the local

coordinate systems. Furthermore, the transformation from the global coordinate system of

the unit cell (used for the IR) is given by 𝒓𝛾 = 𝒓− 𝝉𝛾. In polyatomic systems, the space group
symmetry of the system can induce some of the MT spheres to have similar scalar fields,

only differing by a rotation from the perspective of the global coordinate system in the unit

cell. From the set of symmetry-related MT spheres, one can be identified as representative

on condition that the remaining MT coordinate systems can be derived from it by a space

group operation so that all atoms of this set have the same atom type [68, 71]. This aspect is

depicted in figure 5.2. [68]

𝛯g 𝑥

𝑦

𝛯�̊�
𝝉�̊�

𝑦

𝑥𝛯𝛾
𝝉𝛾 𝑦

𝑥

Figure 5.2: Symmetry-related MT spheres feature similar local coordinate systems, which are

embedded in the global coordinate system 𝛯g of the unit cell. The local coordinate
system 𝛯𝛾, the origin of which is located at 𝝉𝛾, differs from the local coordinate
system 𝛯�̊� of the representative MT sphere, whose origin is at 𝝉�̊�, in this example
by a rotation of 3π/2. The coordinate transformation from 𝛯g to e.g. 𝛯 �̊� is given

by 𝒓�̊� = 𝒓 − 𝝉�̊� [68]. Usually within the spheres, a spherical coordinate system is
chosen. This 2D scheme is based on reference [71, figure 11].

The Irreducible
Brillouin zone

special-point Brillouin-zone integration addressed in section 5.5 utilizes the rota-

tional part of the point group symmetry to find an irreducible set of 𝒌-points, the so-called
Irreducible wedge of the Brillouin Zone (IBZ) [71]. Every 𝒌-point of this IBZ is a representa-
tive 𝒌-point so that all 𝒌-points of the remaining zone can be derived from the IBZ. Due to
the underlying symmetry, functions of the 𝒌-point feature the same value for related 𝒌-points.
Therefore, a 𝒌-point weight (depending on the number of symmetry-connected 𝒌-points)
is introduced so that sums, such as in equation (5.23), are correctly evaluated, despite the

reduced number of summands because of the IBZ. The factors 𝑓 (0)
𝒌,𝑛 are thus composed of the

(integer or fractional) occupation factor, the 𝒌-point weight factor and the reciprocal number
of 𝒌-points 𝑁𝒌 in the 𝒌-point mesh. [68]
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5.7.2 Charge Density and Effective Potential

TheStars charge density and the effective potential can be expanded in a symmetry-optimized way

by stars and lattice harmonics. The orthogonal stars basis functions are given by

𝜙s =
1

𝑁op
∑
ℜ

ei(ℜ𝑮)⋅(𝒓−𝒕ℜ)
(5.44a)

which can be rewritten as

𝜙s =
1
𝑚s

∑
𝑚

𝜑𝑚ei(ℜ𝑚𝑮)⋅𝒓 (5.44b)

with the phases

𝜑𝑚 =
𝑚𝑠
𝑁op

∑
ℜ|ℜ∈𝕞

e−i(ℜ𝑮)⋅𝒕ℜ . (5.44c)

Stars basis functions are governed by 𝑁op space group operations

{ℜ ∣ 𝒕}𝒓 = ℜ𝒓 + 𝒕 , (5.45)

which are composed of a rotation matrix ℜ and a translation 𝒕 to mimic the symmetry of the
lattice. The rotation can be a unit matrix, and the translation a vector with a vanishing 𝑙2-norm.
Given all 𝒕 = 𝟎, the space group is called symorphic [71]. As shown in equation (5.44b), each
plane-wave basis function labeled by its reciprocal lattice vector𝑮 can be attributed to exactly
one specific group of 𝑚s ≤ 𝑁op plane waves, called a star. A star features a representative 𝑮
to which all other 𝑮′ in this star are connected by a pure rotation matrix ℜ𝕞. The set 𝕞 in
equation (5.44c) contains all space group operations connecting the representative 𝑮 with
the symmetry equivalent ℜ𝕞𝑮. This implies all reciprocal lattice vectors in a star have the
same Euclidian norm. However, it must be underlined at this point that in general two plane

waves with their labels 𝑮 and 𝑮′, both having the same length, can belong to different stars.

In addition, the more symmetry operations inhere the lattice of interest, the fewer stars are

required to expand the density or the potential12 in stars, while the star members increase. If

the lattice of interest shows inversion symmetry and the location of the unit cell origin equals

the inversion site, certain phases ensure that the potential or density star coefficients, as well

as the stars, become real. In general however, the star expansion coefficients are complex,

but lead to real charge densities and potentials13. [68]

GivenLattice harmonics a converged basis set in the MT spheres, the spherical harmonics, which are used

for expanding the charge density or the potential in a specific MT sphere 𝛾, can be grouped
into lattice harmonics, characterized by the linear combination

𝔜𝛾
𝜆( ̂𝒓𝛾) = ∑

𝜇
𝔠𝛾𝜆𝜇Y𝑙(𝜆),𝑚(𝜇)( ̂𝒓𝛾) . (5.46)

This expansion, with its coefficients 𝔠𝛾𝜆𝜇, exploits the symmetry between related MT spheres,
analogously to section 5.7.1. Thus, it suffices to store the lattice-harmonic expansion coeffi-

cients of a representative MT sphere. Furthermore, redundant or vanishing contributions are

12 This also holds true for any other function living up to the lattice symmetry.
13 Charge densities and potentials must be real anyway, since they are observables.
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not considered so that a minimal set of relevant orbital quantum numbers 𝜆 and magnetic
quantum numbers 𝜇 results, which normally is significantly smaller than the set of 𝑙 and 𝑚.
Usually, the coefficients attributed to a lattice harmonic 𝔜𝛾

𝜆( ̂𝒓𝛾) are called members [127,
251]. In the FLEUR code, a lattice harmonic characterized by a specific 𝜆 is unique, i.e., there
is only one lattice harmonic per 𝜆 [127]. The expansion coefficients of the charge density or
the potential in a symmetry-related MT sphere can be derived by applying the connecting

symmetry operation to the expansion coefficients of the representative MT sphere. Technical

details for determining the lattice-harmonic coefficients are discussed in the textbook of Singh

and Nordström [68]. Moreover, the coefficients 𝔠𝛾𝜆𝜇 are chosen so as to ensure that the lattice
harmonics are real and orthonormal to each other. [68]

5.8 Constructing the Kohn–Sham Hamiltonian

During Partitioningthe self-consistency cycle, an essential part of one iteration step consists in determining

the Kohn–Sham eigenfunctions and Kohn–Sham eigenenergies from the Kohn–Sham Hamil-

tonian (see section 2.2). A variational ansatz typically implies introducing a basis set, and

deciding for the LAPW basis-set leads to a representation of the Hamiltonian matrix, which

inheres in a division into an IR and the ensemble of MT spheres [71]

⟨𝛹 (0)
𝒌,𝑛∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛹
(0)
𝒌,𝑛⟩𝛺

= ⟨𝛹 (0)
𝒌,𝑛∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛹
(0)
𝒌,𝑛⟩

IR
+∑

𝛾
⟨𝛹 (0)

𝒌,𝑛∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝛹

(0)
𝒌,𝑛⟩𝛾

. (5.47)

It must be stressed at this point that the FLEUR code [69] implements equation (5.47) in
terms of basis functions. However, for the sake of reducing redundancy, this representation is

chosen so that it is possible to refer to it from the following chapters.

The OutlineIR term of equation (5.47) is addressed in section 5.8.1, while section 5.8.2 is

devoted to the MT contributions. For both subsections, the discussion closely adheres to the

publication of Blügel and Bihlmayer [71].

5.8.1 Interstitial Contribution

In Step functionthe FLAPW method, the Heaviside step function

Θ(𝒓) = {
1, IR

0, MT
(5.48a)

with its plane-wave representation

Θ(𝒓) = ∑
𝑮″

⎛⎜
⎝
δ𝑮″,𝟎 − (1 − δ𝑮″,𝟎)∑

𝛾

4π𝑅3
𝛾

𝛺
e−i𝑮″⋅𝝉𝛾

j1(|𝑮″|𝑅𝛾)
|𝑮″|𝑅𝛾

⎞⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Θ(𝑮″)

ei𝑮″⋅𝒓 ,(5.48b)

is utilized for IR quantities, because as a factor it excludes the MT spheres from the unit

cell volume. Equipped Subdivisionwith the aforementioned step function, equation (5.47) is usually

subdivided into three parts, (i) the action of the kinetic energy operator, (ii) the action of

the effective potential operator and (iii) the overlap of the Kohn–Sham wave (LAPW basis)

5.8 Constructing the Kohn–Sham Hamiltonian
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functions. Furthermore, inserting a completeness relation of the position basis enables one to

use the LAPW basis functions for the IR, as given in equation (5.17). At the same time, the

integral is restricted to the IR by multiplying by the aforementioned Heaviside step function

⟨𝛹 (0)
𝒌,𝑛∣ℋ

(0) − 𝜖(0)
k,𝑛∣𝛹

(0)
𝒌,𝑛⟩

IR

= 1
𝛺

∑
𝑮′𝑮

𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑧(0)𝑮 (𝒌, 𝑛)∫
𝛺
Θ(𝒓)e−i(𝒌+𝑮′)⋅𝒓[(−∆

2
+𝒱 (0)

eff
− 𝜖(0)

k,𝑛)e
i(𝒌+𝑮)⋅𝒓] d3𝑟(5.49a)

= 1
𝛺

∑
𝑮′𝑮

𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑧(0)𝑮 (𝒌, 𝑛)∫
𝛺
e−i(𝑮′−𝑮)⋅𝒓Θ(𝒓)(

|𝒌 +𝑮|2

2
+ 𝑉 (0)

eff
(𝒓) − 𝜖(0)

k,𝑛)d3𝑟 (5.49b)

≕ ∑
𝑮′𝑮

𝑧∗(0)𝑮′ (𝒌, 𝑛)([𝐻 IR(𝒌)]
𝑮′𝑮

− 𝜖(0)
k,𝑛[𝑆

IR]
𝑮′𝑮

)𝑧(0)𝑮 (𝒌, 𝑛) . (5.49c)

Again, it must be stressed that only the part within the parentheses is relevant for the DFT

calculation, i.e., the sums and the wave-function expansion coefficients are not required.

ApplyingFinal forms the Laplace and the potential operator 𝒱 (0)
eff
to the plane-wave, results in the

known kinetic energy of a free particle and the effective potential evaluated at position 𝒓 in
equation (5.49b). In order to ensure a Hermitian matrix, the Laplace operator can be split into

a gradient acting on the ket and a gradient acting on the bra, using integration by parts [68].

However as a result, additional surface integrals (5.76) sustain given discontinuous derivatives

of the wave functions [68]. They are not considered in FLEUR, because for the LAPW basis with
converged parameters, its continuity by construction makes such surface integrals practically

irrelevant (their contribution is too small to be significant or completely vanishes). As a

consequence, an equivalence of both kinetic energy representations is implied. Still, the

kinetic energy is made Hermitian in FLEUR by averaging the action of the Laplace operator on
the bra and the ket basis functions. Finally in equation (5.49c), a Fourier transform of the

Hamiltonian at Bloch vector 𝒌

[𝐻 IR(𝒌)]
𝑮′𝑮

≔ 1
𝛺

∫
𝛺
e−i(𝑮′−𝑮)⋅𝒓Θ(𝒓)(

|𝒌 +𝑮|2

2
+ 𝑉 (0)

eff
(𝒓))d3𝑟 (5.50a)

=
∣𝒌 +𝑮′∣2 + |𝒌 +𝑮|2

4
Θ(𝑮′ −𝑮) + [𝑉 Θ](𝑮′ −𝑮) (5.50b)

≕
∣𝒌 +𝑮′∣2 + |𝒌 +𝑮|2

4
Θ(𝑮″) + [𝑉 Θ](𝑮″) (5.50c)

and the overlap of the IR Kohn–Sham wave (LAPW basis) functions

[𝑆IR]
𝑮′𝑮

≔ 1
𝛺

∫
𝛺
e−i(𝑮′−𝑮)⋅𝒓Θ(𝒓) d3𝑟 (5.51a)

= Θ(𝑮′ −𝑮) (5.51b)

≕ Θ(𝑮″) (5.51c)

result, while a new reciprocal lattice vector𝑮″ ≕ 𝑮′−𝑮 is defined. It simplifies the definition
of the Fourier coefficients for the so-called warped effective potential

[𝑉 Θ](𝑮″) = ∑
𝑮‴

𝑉(𝑮‴)Θ(𝑮″ −𝑮‴) . (5.52)
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The step function Fourier coefficients in equation (5.48b) are analytically determined fulfill-

ing 𝑮″ ≤ 2𝐺max. These coefficients together with the IR effective potential are subject to a
Fast Fourier Transform (FFT) so that both the step function and the potential are given in real

space, as exact as their chosen cutoffs. The real-space effective potential and step function

are multiplied to exploit the convolution theorem. After a back-transformation with the FFT,

the Fourier coefficients on the left-hand side of equation (5.52) result.

5.8.2 Muffin-Tin Contribution

In Basis-function
representation

a similar way to the IR, the variational wave-function expansion coefficients of the Kohn–

Sham wave function can be excluded. So, they enclose a sum of the MT Hamiltonian matrix

elements and the MT overlap matrix elements for a Bloch vector 𝒌, which are dependent on
the reciprocal lattice vectors 𝑮 and 𝑮′:

⟨ ⃗𝛹 (0)
𝒌,𝑛∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣ ⃗𝛹 (0)
𝒌,𝑛⟩𝛾

= ∑
𝑮′𝑮

𝑧∗(0)𝑮′ (𝒌, 𝑛)([𝐻𝛾(𝒌)]𝑮′𝑮 − 𝜖(0)𝒌,𝑛[𝑆
𝛾(𝒌)]𝑮′𝑮)𝑧(0)𝑮 (𝒌, 𝑛) . (5.53)

The small arrows above the Kohn–Sham wave function indicate the scalar-relativistic character.

Before Symmetry
optimization

proceeding, it is necessary to discuss another symmetry optimization of the FLEUR
implementation that becomes relevant in this context. In section 5.7, it is stated that inhering

space group symmetries can relate certain MT spheres to each other, enabling one to define a

representative MT sphere ̊𝛾 [68]. Hence, it suffices to store the lattice-harmonic expansion
coefficients of the effective potential within this special sphere, because the effective potential

in the related spheres could be derived by applying the symmetry operations underlying the

investigated system [68]. But actually, it is not implemented in this way [127]. Instead of

rotating the effective potential from the representative MT sphere to the symmetry-related

ones, the MT wave functions are rotated from the latter to the former with the respective

rotation matrices ℜ [68, 127]. This requires including them in the Rayleigh expansion (5.5),
in order to rotate the vector to the atomic positions 𝝉𝛾 and the 𝒌-vectors, resulting in

ei(ℜ(𝒌+𝑮))⋅(𝒓+ℜ𝝉𝛾) = ei(𝒌+𝑮)⋅𝝉𝛾4π∑
𝑙𝑚

i𝑙j𝑙(|𝒌 +𝑮|𝑟)Y∗
𝑙𝑚(ℜ(𝒌 +𝑮)
⋀

)Y𝑙𝑚( ̂𝒓) . (5.54)

Consequently, the matching coefficients allowing for focussing only on the representative unit

cell read (cf. equation (5.7))

𝑎𝑮𝒌𝛾
𝑙𝑚1 = ei(𝒌+𝑮)⋅𝝉𝛾4πi𝑙 1

𝑊
Y∗

𝑙𝑚(ℜ(𝒌 +𝑮)
⋀

) (5.55a)

× ⎡
⎢
⎣
𝑢1𝛾
𝑙2 (𝑅𝛾)|𝒌 +𝑮|

∂j𝑙(|𝒌 +𝑮|𝑟𝛾)
∂𝑟𝛾

∣
𝑟𝛾=𝑅𝛾

−
∂𝑢1𝛾

𝑙2 (𝑟𝛾)
∂𝑟𝛾

∣
𝑟𝛾=𝑅𝛾

j𝑙(|𝒌 +𝑮|𝑅𝛾)
⎤
⎥
⎦

𝑎𝑮𝒌𝛾
𝑙𝑚2 = ei(𝒌+𝑮)⋅𝝉𝛾4πi𝑙 1

𝑊
Y∗

𝑙𝑚(ℜ(𝒌 +𝑮)
⋀

) (5.55b)

× ⎡
⎢
⎣

∂𝑢1𝛾
𝑙1 (𝑟𝛾)
∂𝑟𝛾

∣
𝑟𝛾=𝑅𝛾

j𝑙(|𝒌 +𝑮|𝑅𝛾) − 𝑢1𝛾
𝑙1 (𝑅𝛾)|𝒌 +𝑮|

∂j𝑙(|𝒌 +𝑮|𝑟𝛾)
∂𝑟𝛾

∣
𝑟𝛾=𝑅𝛾

⎤
⎥
⎦

with the definition of the Wronskian matrix.

𝑊 = 𝑢1𝛾
𝑙2 (𝑅𝛾)

∂𝑢1𝛾
𝑙1 (𝑟𝛾)
∂𝑟𝛾

∣
𝑟𝛾=𝑅𝛾

− 𝑢1𝛾
𝑙1 (𝑅𝛾)

∂𝑢1𝛾
𝑙2 (𝑟𝛾)
∂𝑟𝛾

∣
𝑟𝛾=𝑅𝛾

(5.55c)
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ForFinal form of
overlap

the overlap matrix elements from equation (5.53), the muffin-tin LAPW basis

functions from equation (5.17b) are inserted so that

[𝑆𝛾(𝒌)]𝑮′𝑮 = ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

𝑎∗𝑮
′𝒌𝛾

𝑙𝑚𝑝 𝑎𝑮𝒌𝛾
𝑙𝑚𝑝 ∫

�̊�
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)𝜑𝑠�̊�

𝑙𝑚𝑝(𝒓𝜈�̊�) d3𝑟𝜈�̊� . (5.56)

This integral, which is independent of the Bloch vectors 𝒌 and the reciprocal lattice vectors 𝑮
and 𝑮′, shall be further reformulated. The MT basis functions with excluded matching

coefficients are substituted by their definition, yielding products of radial solutions and

spherical harmonics. This suggests introducing spherical coordinates

∫
�̊�
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)𝜑𝑠�̊�

𝑙𝑚𝑝(𝒓𝜈�̊�) d3𝑟𝜈�̊� (5.57a)

= ∫
�̊�
∑
𝑠

𝑢𝑠�̊�
𝑙′𝑝′(𝑟𝜈�̊�)Y∗

𝑙′𝑚′( ̂𝒓�̊�)𝑢
𝑠�̊�
𝑙𝑝 (𝑟𝜈�̊�)Y𝑙𝑚( ̂𝒓�̊�) d3𝑟𝜈�̊�

= ∫
𝑅�̊�

0+
∑
𝑠

𝑟2𝜈�̊�𝑢
𝑠�̊�
𝑙′𝑝′(𝑟𝜈�̊�)𝑢𝑠�̊�

𝑙𝑝 (𝑟𝜈�̊�)∮
∂�̊�

Y∗
𝑙′𝑚′( ̂𝒓�̊�)Y𝑙𝑚( ̂𝒓�̊�) d𝛺d𝑟𝜈�̊� . (5.57b)

Reordering the terms reveals in equation (5.57b) that the orthogonality relation of the

spherical harmonics can be used. This reflects in the product of Kronecker deltas, possessing

indices of orbital and magnetic quantum numbers, in the following equation

= δ𝑙𝑙′δ𝑚𝑚′ ∫
𝑅�̊�

0+
∑
𝑠

𝑟𝜈�̊�𝑢𝑠�̊�
𝑙′𝑝′(𝑟𝜈�̊�)𝑟𝜈�̊�𝑢𝑠�̊�

𝑙𝑝 (𝑟𝜈�̊�) d𝑟𝜈�̊� . (5.57c)

Finally, the properties of the radial solutions can be used, which have already been discussed

in section 5.2

=

⎧{{
⎨{{⎩

δ𝑙𝑙′δ𝑚𝑚′, 𝑝 = 1 ∧ 𝑝′ = 1

δ𝑙𝑙′δ𝑚𝑚′ ∫
𝑅�̊�

0+
∑
𝑠

𝑟𝜈�̊�𝑢𝑠�̊�
𝑙′2(𝑟𝜈�̊�)𝑟𝜈�̊�𝑢𝑠�̊�

𝑙2 (𝑟𝜈�̊�) d𝑟𝜈�̊� , 𝑝 = 2 ∧ 𝑝′ = 2

0, 𝑝 ≠ 𝑝′

(5.57d)

≕
⎧
{
⎨
{
⎩

δ𝑙𝑙′δ𝑚𝑚′, 𝑝 = 1 ∧ 𝑝′ = 1

δ𝑙𝑙′δ𝑚𝑚′𝑁
�̊�
𝑙𝑙′, 𝑝 = 2 ∧ 𝑝′ = 2

0, 𝑝 ≠ 𝑝′
. (5.57e)

Having evaluated the integrals, equation (5.56) simplifies to

−𝜖(0)𝒌,𝑛 ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

𝑎∗𝑮
′𝒌𝛾

𝑙′𝑚′𝑝′𝑎
𝑮𝒌𝛾
𝑙𝑚𝑝 ∫

�̊�
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)𝜑𝑠�̊�

𝑙𝑚𝑝(𝒓𝜈�̊�) d3𝑟𝜈�̊� (5.58)

= −𝜖(0)𝒌,𝑛∑
𝑙𝑚

(𝑎∗𝑮
′𝒌𝛾

𝑙𝑚1 𝑎𝑮𝒌𝛾
𝑙𝑚1 + 𝑎∗𝑮

′𝒌𝛾
𝑙𝑚2 𝑎𝑮𝒌𝛾

𝑙𝑚2 𝑁
�̊�
𝑙𝑙) .

TheSubdividing the
Hamiltonian

partitioning of the Hamiltonian in the MT spheres differs from the way it is done in the IR

(see section 5.8.1). While in the IR the kinetic energy is separated from the effective potential,

in the MT spheres the spherical part of the effective potential operator is summarized with

the kinetic energy operator to a spherical Hamiltonian operator. This avoids dealing with the

singularity at 𝒓𝛾 = 𝟎. Consequently, the remaining contribution is represented by the non-
spherical effective potential. In order to achieve the explicit Hermiticity of this Hamiltonian
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matrix-element part, the spherical Hamiltonian must be made Hermitian while the non-

spherical part is invariant under this operation [68]. Therefore, in the FLEUR code [69] the
spherical Hamiltonian is realized as

[𝐻𝛾(𝒌)]𝑮′𝑮 = ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

𝑎∗𝑮
′𝒌𝛾

𝑙𝑚𝑝
⎛⎜
⎝
∫
�̊�
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)12

(
↼
ℋ

(0)

sph +
⇀
ℋ

(0)

sph)𝜑𝑠�̊�
𝑙𝑚𝑝(𝒓𝜈�̊�) d3𝑟𝜈�̊�

+ ∫
�̊�
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)[𝑉 (0)�̊�

eff,nsph(𝒓𝜈�̊�)𝜑𝑠�̊�
𝑙𝑚𝑝(𝒓𝜈�̊�)] d3𝑟𝜈�̊�)𝑎𝑮𝒌𝛾

𝑙𝑚𝑝 . (5.59)

The symbols↼ and⇀ indicate the application direction of the Hamiltonian operator.

For Final spherical
Hamiltonian

revealing the action of the Hamiltonian operator, only the Hamiltonian operator

acting to the right is discussed now, its action to the left works analogously. After applying

again the orthonormality relation of the spherical harmonics, the spherical Hamiltonian acts

according to the eigenvalue equations (5.4) and (5.10) of the radial solutions yielding

∫
�̊�
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)(

⇀
ℋ

(0)

sph𝜑
𝑠�̊�
𝑙𝑚𝑝(𝒓𝜈�̊�))d3𝑟𝜈�̊� (5.60a)

= δ𝑙𝑙′δ𝑚𝑚′ ∫
𝑅�̊�

0+
∑
𝑠

𝑟2𝜈�̊�𝑢
𝑠�̊�
𝑙′𝑝′(𝑟𝜈�̊�)(

⇀
ℋ

(0)

sph𝑢
𝑠�̊�
𝑙𝑝 (𝑟𝜈�̊�))d𝑟𝜈�̊�

= δ𝑙𝑙′δ𝑚𝑚′ ∫
𝑅�̊�

0+
∑
𝑠

𝑟𝜈�̊�𝑢𝑠�̊�
𝑙′𝑝′(𝑟𝜈�̊�) (5.60b)

× (δ𝑝1𝐸
�̊�
𝑙 𝑟𝜈�̊�𝑢𝑠�̊�

𝑙1 (𝑟𝜈�̊�) + δ𝑝2(𝑟𝜈�̊�𝑢𝑠�̊�
𝑙1 (𝑟𝜈�̊�) + 𝐸�̊�

𝑙 𝑟𝜈�̊�𝑢𝑠�̊�
𝑙2 (𝑟𝜈�̊�)))d𝑟𝜈�̊� .

This result (and its analogous counterpart) can be inserted again into the first term of the

right-hand side in equation (5.59) so that

∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

𝑎∗𝑮
′𝒌𝛾

𝑙′𝑚′𝑝′𝑎
𝑮𝒌𝛾
𝑙𝑚𝑝 ∫

�̊�
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)12

(
↼
ℋ

(0)

sph +
⇀
ℋ

(0)

sph)𝜑𝑠�̊�
𝑙𝑚𝑝(𝒓𝜈�̊�) d3𝑟𝜈�̊� (5.61a)

= ∑
𝑙𝑚

(𝐸�̊�
𝑙 𝑎

∗𝑮′𝒌𝛾
𝑙𝑚1 𝑎𝑮𝒌𝛾

𝑙𝑚1 + 1
2
(𝑎∗𝑮

′𝒌𝛾
𝑙𝑚1 𝑎𝑮𝒌𝛾

𝑙𝑚2 + 𝑎∗𝑮
′𝒌𝛾

𝑙𝑚2 𝑎𝑮𝒌𝛾
𝑙𝑚1 ) +𝑁 �̊�

𝑙𝑙𝑎
∗𝑮′𝒌𝛾
𝑙𝑚2 𝑎𝑮𝒌𝛾

𝑙𝑚2 𝐸
�̊�
𝑙 )

= ∑
𝑙𝑚

𝐸�̊�
𝑙 (𝑎

∗𝑮′𝒌𝛾
𝑙𝑚1 𝑎𝑮𝒌𝛾

𝑙𝑚1 +𝑁 �̊�
𝑙𝑙𝑎

∗𝑮′𝒌𝛾
𝑙𝑚2 𝑎𝑮𝒌𝛾

𝑙𝑚2 ) + 1
2
(𝑎∗𝑮

′𝒌𝛾
𝑙𝑚1 𝑎𝑮𝒌𝛾

𝑙𝑚2 + 𝑎∗𝑮
′𝒌𝛾

𝑙𝑚2 𝑎𝑮𝒌𝛾
𝑙𝑚1 ) . (5.61b)

The Final
non-spherical
Hamiltonian

integral in equation (5.59) containing the non-spherical potential is also separately

considered now. The orthonormality condition of the spherical harmonics cannot be used

anymore here, since the non-spherical potential is additionally expanded in spherical har-

monics, leading to three separate orbital and magnetic quantum-number indices. However,

the surface integral in equation (5.62a) has already been defined in equation (5.32d) to be

the Gaunt coefficient. It is finally multiplied by the radial integrals 𝛴𝑝𝑝′�̊�
𝑙𝑙′𝑙″𝑚″[𝑉

(0)𝛾
eff,nsph(𝑟𝜈�̊�)] to
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result in the 𝒌-independent matrix elements

∫
�̊�
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)𝑉 (0)�̊�

eff,nsph(𝒓𝜈�̊�)𝜑𝑠�̊�
𝑙𝑚𝑝(𝒓𝜈�̊�) d3𝑟𝜈�̊� (5.62a)

= ∫
𝑅�̊�

0+
𝑟2𝜈�̊�∑

𝑠
𝑢𝑠�̊�
𝑙′𝑝′(𝑟𝜈�̊�)∑

𝜆𝜇
[𝑉 (0)�̊�
eff,nsph(𝑟𝜈�̊�)]

𝜆𝜇
𝑢𝑠�̊�
𝑙𝑝 (𝑟𝜈�̊�)

×∮
∂�̊�
Y∗

𝑙′𝑚′( ̂𝒓�̊�)Y𝑙″(𝜆) 𝑚″(𝜇)( ̂𝒓�̊�)Y𝑙𝑚( ̂𝒓�̊�) d𝛺d𝑟𝜈�̊�

= ∑
𝜆𝜇

𝐺𝑚′𝑚″(𝜇)𝑚
𝑙′ 𝑙″(𝜆) 𝑙 ∫

𝑅�̊�

0+
[𝑉 (0)�̊�
eff,nsph(𝑟𝜈�̊�)]

𝜆𝜇
∑
𝑠

𝑟𝜈�̊�𝑢𝑠�̊�
𝑙′𝑝′(𝑟𝜈�̊�)𝑟𝜈�̊�𝑢𝑠�̊�

𝑙𝑝 (𝑟𝜈�̊�) d𝑟𝜈�̊� (5.62b)

≔ ∑
𝜆𝜇

𝐺𝑚′𝑚″(𝜇)𝑚
𝑙′ 𝑙″(𝜆) 𝑙 [𝛴

𝑝𝑝′�̊�
𝑙𝑙′𝑙″𝑚″[𝑉

(0)�̊�
eff,nsph(𝑟𝜈�̊�)]]

𝜆𝜇
(5.62c)

≔ 𝑡full,𝑝𝑝
′�̊�

𝜂(𝑙′𝑚′𝑙𝑚)[𝑉
(0)�̊�
eff,nsph(𝒓𝜈�̊�)] . (5.62d)

TheSymmetry
nomenclature

symmetry optimizations, discussed in the beginning of this subsection and in

section 5.7, manifest themselves in the lattice harmonic coefficients (5.46) of the effective

potential and the small circles above the atom index ̊𝛾. Furthermore, the functions 𝑙″(𝜆)
and 𝑚″(𝜇) deliver the respective orbital and magnetic quantum number given the index 𝜆 of
the lattice harmonic or of its member with quantum number 𝜇. If the evaluation only takes
place in the representative MT sphere, it is important to multiply a factor 𝑁�̊� representing the

number of equivalent MT spheres, which are related to the representative MT sphere ̊𝛾.

5.9 Finding the Total Energy of the Ground State

TheDerivation total energy in the FLAPW method is derived from the Kohn–Sham total energy functional

given in equation (2.2a) [71]. Basically, the total energy

𝐸(0)
KS

[𝜌(0)(𝒓)] = (5.63a)

𝑇ni[𝜌(0)(𝒓)] + 𝐸(0)
Htr[𝜌

(0)(𝒓)] +∫
𝛺
𝑉 (0)
ext (𝒓)𝜌(0)(𝒓) d3𝑟 + 𝐸(0)

xc [𝜌(0)(𝒓)] + 𝐸(0)
ii

is composed of the kinetic energy 𝑇ni[𝜌(0)(𝒓)], the Hartree energy, the contribution incorporat-
ing the external potential 𝑉 (0)

ext(𝒓), the xc energy 𝐸
(0)
xc [𝜌(0)(𝒓)], and the ion–ion interaction 𝐸(0)

ii
.

Furthermore, it is implicitly assumed that the charge density, the Hartree energy and the xc

energy are self-consistent, i.e., they are zeroth-order or unperturbed ground-state quantities

and stem from a converged DFT calculation. By rearranging the Kohn–Sham equations (2.3a),

the independent-particle kinetic energy can be formulated as

𝑇ni[𝜌(0)(𝒓)] = ∑
𝒌,𝑛

𝜀(0)𝒌,𝑛 −∫
𝛺
𝑉 (0)
eff

(𝒓)𝜌(0)(𝒓) d3𝑟 (5.63b)

with the Kohn–Sham energies

𝜀(0)𝒌,𝑛 = ⟨𝛹 (0)
𝒌,𝑛∣𝐻KS∣𝛹

(0)
𝒌,𝑛⟩ . (5.63c)
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Using this independent-particle kinetic energy within the total energy (5.63a) reads

𝐸(0)
KS

[𝜌(0)(𝒓)] = ∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛𝜀

(0)
𝒌,𝑛 −∫

𝛺
𝑉 (0)
eff

(𝒓)𝜌(0)(𝒓) d3𝑟 +∫
𝛺
𝑉 (0)
ext (𝒓)𝜌(0)(𝒓) d3𝑟 + 𝐸(0)

ii

+ 1
2
∫
𝛺

𝜌(0)(𝒓)𝜌(0)(𝒓′)
|𝒓 − 𝒓′|

d3𝑟′ d3𝑟 +∫
𝛺
𝜌(0)(𝒓)𝜀(0)xc [𝜌(𝒓)] d3𝑟 . (5.63d)

In comparison to other DFT methods, the total energy functional within the all-electron

FLAPW method transcends by including both the real 1/𝑟 singularity and all electrons, hence,
also the core-electrons (see section 5.3). [3]

It Numeric
strategies

is important to develop a strategy so that the Coulomb singularity is reasonably coped

with [68]. One way is for instance presented in the publication of Weinert, Wimmer, and

Freeman [66]. They introduce a Madelung potential, which represents a Coulomb potential

including both all the electron and all the nuclear charges in the crystal volume. However,

the nuclear charge at the position the potential is evaluated at is not a part of the Madelung

potential. It allows for a reformulation of the total energy, avoiding a singularity and only

containing quantities which are available after a DFT calculation without significant effort.

As already mentioned in section 2.2.3, best results for the total energy can be achieved in

practice by using the input potential and the output charge density of one self-consistent

iteration step, because the numerical convergence can only be performed up to a certain

threshold, due to numerical reasons [3].

Analogously Metalsto section 5.5, metals require fractional occupation numbers in equa-

tion (5.63d). In order to sustain the variational character of the total energy in this case,

slight adjustments of the total energy become necessary. They can be found in the publication

of Weinert and Davenport [252]. [88]

5.10 Varying the Kohn–Sham Wave Functions

In Prefaceorder to set the stage for employing the FLAPW method to evaluate ab-initio forces or

harmonic phonon properties from DFPT, it is imperative to elucidate the impact of displaced

nuclei on the induced LAPW basis variations. The following nomenclature anticipates that

of the phonon formalism set up in chapter 6 and chapter 7. Nevertheless, the discussion in

this section can be adjusted to forces, because it exhibits all essential analogies. This is for

instance done within the dissertation of Klüppelberg [88], to which this complete section

refers unless differently cited.

Section 3.1 Recapitulationhas already addressed that on the one hand the first-order derivative of

the BO energy with respect to the atomic position is related to the ab-initio forces, and on

the other hand, the second-order derivative of the BO energy is connected to the dynamical

matrix. Section 4.1.2, in turn, has clarified that the first derivative of the BO energy with

respect to a general perturbation parameter is a functional of the unperturbed charge density.

Furthermore, the second-order derivative of the BO energy with respect to the general

perturbation parameter requires calculating the first variation of the charge density. Both facts

are supported by the 2𝑛 + 1 theorem mentioned in section 4.1.3. Moreover, equation (4.20e)
shows the first-order charge-density variation to be dependent on the first-order variation

of the Kohn–Sham wave function. However, forces (as shown in section 5.12) additionally
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require a first-order derivative of the wave functions with respect to the nuclei positions.

Analogously, the setup of the dynamical matrix involves a second-order derivative of the wave

functions (see for instance section 6.5.2). Still, these demands do not violate the 2𝑛 + 1
theorem, since only the derivative or variation of the LAPW basis is finally needed.

DueIncomplete Basis
Corrections

to its decisive property of being dependent on 𝒓, the variation of the wave functions
expanded in the LAPW basis (cf. equation (5.17)) presents a challenge if the inducing external

perturbation entails a displacement of the nuclei. Apart from the expansion coefficients, such

an external perturbation in particular affects the location of the MT spheres and thus the

LAPW basis. Analogously to section 4.1.1, the perturbed LAPW Kohn–Sham wave function

can be expanded in orders of the perturbation parameter 𝜆

𝛹pert𝒌,𝑛 (𝒓) = ∑
𝑮

𝑧(0)𝑮 (𝒌, 𝑛)𝜙(0)
𝒌,𝑮(𝒓) + 𝜆∑

�̃�,𝑮

(𝑧(1)𝑮 (�̃�, 𝑛)𝜙(0)
�̃�,𝑮

(𝒓) + 𝑧(0)𝑮 (𝒌, 𝑛)𝜙(1)
𝒌,𝑮(𝒓))

+ 𝜆2

2!
∑
�̃�,𝑮

[𝑧(2)𝑮 (�̃�, 𝑛)𝜙(0)
�̃�,𝑮

(𝒓) + 2𝑧(1)𝑮 (�̃�, 𝑛)𝜙(1)
�̃�,𝑮

(𝒓) + 𝑧(0)𝑮 (𝒌, 𝑛)𝜙(2)
�̃�,𝑮

(𝒓)]

+ 𝒪(𝜆3) (5.64a)

≕ 𝛹 (0)
𝒌,𝑛(𝒓) + 𝜆𝛹 (1)

𝒌,𝑛(𝒓) +
𝜆2

2
𝛹 (2)
𝒌,𝑛(𝒓) + 𝒪(𝜆3) . (5.64b)

The tilde above the Bloch vector �̃� indicates the possible impact on the Bloch character as a
result of the perturbation (details are postponed to section 6.1.1). In order to build upon the

successful features of the LAPW basis, the Kohn–Sham wave-function variations should be a

linear combination of the basis functions spanning the LAPW Hilbert space. This means, all

terms which are not proportional to 𝜙(0) in the equations (5.64) vanish. However, especially

for phonons and forces, the LAPW basis must be adjusted by so-called Incomplete Basis

Corrections (IBC) (see in particular the publication of Betzinger et al. [99]). They can be

subdivided into a basis response and a Pulay contribution [103]. The former results from

the variation of the �⃗�𝛾
𝑙𝑝(𝑟𝜈𝛾) in equation (5.17), due to the variation of the effective potential

given a perturbation. For forces, Yu, Singh, and Krakauer [224] ranked the benefit of this

contribution too small to be significant, especially against the background of the effort it takes

to implement the basis response. With regards to phonons, this can likewise be assumed [68],

therefore the focus henceforth is on the Pulay correction. Neglecting the basis response within

the frozen-augmentation approximation can be compensated by employing LOs [68].

WithoutOrigin of Pulay
corrections

loss of generality, the first variation of the Kohn–Sham wave function

𝛹 (1)
𝒌,𝑛(𝒓) = ∑

�̃�,𝑮

𝑧(1)𝑮 (�̃�, 𝑛)𝜙(0)
𝒌,𝑮(𝒓) +∑

�̃�,𝑮

𝑧(0)𝑮 (�̃�, 𝑛)𝜙(1)
�̃�,𝑮

(𝒓) (5.65a)

≕ 𝛹 (1),∈HS
𝒌,𝑛 + 𝛹 (1),∉HS

𝒌,𝑛 (5.65b)

thus subdivides into two terms. While the first one is proportional to 𝜙(0)
𝒌,𝑮(𝒓) and is therefore

fully within the LAPW Hilbert space, the second is partly or completely orthogonal to the

aforementioned Hilbert space. As a consequence,

⟨𝛹 (1)
𝒌,𝑛∣ℋ

(0)∣𝛹 (0)
𝒌,𝑛⟩ (5.66)
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features a finite overlap between the part of the wave-function variation outside the Hilbert

space, and especially the kinetic Laplace operator in the Hamiltonian applied to the ket.

Naively, this matrix element should actually vanish.

Furthermore, the Hellmann–Feynman theorem in equation (4.6) must be revisited:

∂𝜖(0)𝒌,𝑛

∂𝝉𝛼
= ∂

∂𝝉𝛼
∫𝛹 ∗(0)

𝒌,𝑛 (𝒓)ℋ (0)𝛹 (0)
𝒌,𝑛(𝒓) d

3𝑟 (5.67a)

= ∫
∂𝛹 ∗(0)

𝒌,𝑛

∂𝝉𝛼
ℋ (0)𝛹 (0)

𝒌,𝑛 d3𝑟 +∫𝛹 ∗(0)
𝒌,𝑛

∂ℋ (0)

∂𝝉𝛼
𝛹 (0)
𝒌,𝑛 d3𝑟 +∫𝛹 ∗(0)

𝒌,𝑛 ℋ (0)
∂𝛹 (0)

𝒌,𝑛

∂𝝉𝛼
d3𝑟 (5.67b)

≕ ∫𝜳 ∗(1)
𝒌,𝑛 ℋ (0)𝛹 (0)

𝒌,𝑛 d3𝑟 +∫𝛹 ∗(0)
𝒌,𝑛 𝓗(1)𝛹 (0)

𝒌,𝑛 d3𝑟 +∫𝛹 ∗(0)
𝒌,𝑛 ℋ (0)𝜳 (1)

𝒌,𝑛 d3𝑟 (5.67c)

≕ 𝜖(1)𝒌,𝑛 . (5.67d)

Due to finite contributions from matrix elements such as in equation (5.66), the first and

third terms in equation (5.67b) do not vanish anymore. An in-depth analysis reveals that the

Kohn–Sham wave functions are variational and only on average equal the correct pointwise

solution of the Kohn–Sham system. For a displacing perturbation, it turns out that the LAPW

basis set is not sufficient, i.e., not complete to describe the perturbed Kohn–Sham system. This

implies the aforementioned Pulay corrections. If it had been complete, extending the LAPW

basis by enlarging the number of its basis functions would have gradually made the part of the

first-order wave-function variation ∉ HS in equation (5.65b) irrelevant to any precision [68].

For Deducing its
explicit form

expounding on the explicit form of the Pulay correction, the transformation to

the MT14 local coordinate system 𝒓𝛼 = 𝒓 − 𝝉𝛼 becomes important. Furthermore, given a
displacement𝒘𝛼 of the nuclei (see section 3.1), be it due to forces or phonons, the MT spheres

surrounding the latter follow, justifying the generalization 𝒓𝛼 = 𝒓 − 𝝉𝛼 − 𝒘𝛼. Thus, the

derivative with respect to 𝒘𝛼 can be redirected to 𝝉𝛼 or 𝒓, obeying

𝛁𝒘𝛼
𝜙(0)𝛼
𝒌,𝑮(𝒓) = 𝛁𝝉𝛼

𝜙(0)𝛼
𝒌,𝑮(𝒓) = −𝛁𝒓𝜙

(0)𝛼
𝒌,𝑮(𝒓) ≡ −𝛁𝜙(0)𝛼

𝒌,𝑮(𝒓) . (5.68)

In the MT spheres 𝛼, all constituents of the basis functions 𝜙𝛼
𝒌,𝑮(𝒓) (see equation (5.9))

are sensitive to a displacement leading to

𝛁𝒘𝛼
𝜙(0)𝛼
𝒌,𝑮(𝒓) = [i(𝒌 +𝑮) −𝛁]𝜙(0)𝛼

𝒌𝑮 (𝒓) . (5.69)

The matching coefficients 𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 are given explicitly in equation (5.55), however, incorporate

the rotation to the representative local coordinate systems. In order to simplify the following

discussion, the rotation matrices 𝑅 ≡ 1 are set to the unit matrix. Differentiating the matching
coefficients with respect to the atomic equilibrium position 𝝉𝛼 results in the first term of the
previous equation due to the phase factors. For the remaining basis function, the differential

operator with respect to 𝒘 is rewritten using equation (5.68), ensuing a minus sign. Both the
radial solutions and the spherical harmonics are affected by the gradient with respect to 𝒓
(see appendix C) and therefore contribute to the remaining Pulay correction.

While Raison d’êtrethe term stemming from the matching coefficients in equation (5.69) can again be

expressed with the original MT basis functions 𝜙𝛼
𝒌,𝑮(𝒓), the remaining part of equation (5.69)

14 Displaced atoms are attributed the indices 𝛼 and 𝛽 hereinafter, instead of the general atom index 𝛾.
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requires the gradients of the MT basis functions. Consequently, the complete variation of the

MT basis function is not fully contained in the Hilbert space the LAPW basis functions span.

In contrast, the IR plane waves are not dependent on the atomic positions and applying a

derivative with respect to 𝒓 yields

𝛁ei(𝒌+𝑮)⋅𝒓 = −i(𝒌 +𝑮)ei(𝒌+𝑮)⋅𝒓 . (5.70)

This means that every variation of the IR LAPW basis function 𝜙IR𝒌,𝑮 can be described by a
basis function of the LAPW Hilbert space again.

AllUtilized basis
corrections

in all, the LAPW basis set does not suffice anymore in cases where the nuclei undergo

a slight or infinitesimal shift, although for the undisplaced system it performs in an excellent

way. Furthermore, the Pulay terms to compensate the incompleteness of the LAPW basis,

when expanding variations of the Kohn–Sham wave function, restrict to the MT and read

𝜙(1)𝒘𝛼
𝒌𝑮 (𝒓) = {

0, IR

𝒘⊤
𝛼 [i(𝒌 +𝑮) −𝛁]𝜙(0)𝛼

𝒌𝑮 (𝒓), MT𝛼
. (5.71)

In order to conceal the vectorial character of the last equation, it is projected onto the

displacement 𝒘𝛼. The second-order variation of the LAPW basis function is given by

𝜙(2)𝒘𝛼
𝒌𝑮 (𝒓) = {

0, IR

𝒘⊤
𝛼 [i(𝒌 +𝑮) −𝛁][i(𝒌 +𝑮) −𝛁]⊤𝜙(0)𝛼

𝒌𝑮 (𝒓) 𝒘𝛼, MT𝛼
. (5.72)

In this equation, the dyadic product of gradients applied to the MT basis function is surrounded

by the 𝒘𝛼. This both leads to a scalar expression and picks out the relevant components of

the intermediate matrix-like expression.

Finally,Non-self-adjoint
Hamiltonian

it must be considered that Hamiltonian operators acting on the kets in matrix

elements of the form (cf. for instance also the last term of equation (5.67c))

⟨�⃗�𝛾
𝑙′𝑚′𝑝′∣ℋ (0) − 𝜖(0)𝒌,𝑛∣𝛁�⃗�𝛾

𝑙𝑚𝑝⟩𝛾
(5.73a)

⟨�⃗�𝛾
𝑙′𝑚′𝑝′∣ℋ (0) − 𝜖(0)𝒌,𝑛∣𝛁𝛁⊤�⃗�𝛾

𝑙𝑚𝑝⟩𝛾
(5.73b)

cannot be simply applied to the bras (for example to let the matrix elements cancel by

exploiting the Kohn–Sham equations (2.3a)). The matrix elements are evaluated in the MT

sphere of atom 𝛾 and the �⃗� are defined as in equation (5.17b). In this sense, the Hamiltonian
operator is not self-adjoint in general. An application to the left would cause correction terms

which are further specified in appendix E, because their detailed discussion anticipates too

much and is too technical at this point. If only basis functions inside the LAPW Hilbert space

had been involved in these matrix elements, i.e., no gradient had been applied to the basis

functions, the Hamiltonian matrix-elements would have been self-adjoint [251].

5.11 Coping with the Discontinuity at the Muffin-Tin Boundary

TheOrigin of
discontinuities

MT matching coefficients 𝑎𝑮𝒌𝛾
𝑙𝑚𝑝 of the LAPW basis (equation (5.17)) are constructed such

as to enable a smooth continuation of the basis functions and their energy derivatives, when
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crossing the boundary between the IR and the MT spheres (MT sphere boundary hereinafter).

In practice however, the impossibility of implementing infinite basis sets restricts these quan-

tities to be continuous at the MT sphere boundary [88]. As a consequence, the charge density

(see section 5.5.2) constructed from LAPW wave functions, and the effective potential (see

section 2.2.1 and section 5.6) as a functional of the charge density likewise feature such

a discontinuity [88]. The discontinuity of the effective potential predominantly originates

from the xc potential (section 5.6.2), whereas the Coulomb potential (see section 5.6.1),

provided converged parameters of the Rayleigh expansion, features the best continuity by

construction [251]. In general, the smoothness of the LAPW basis can also be influenced by

the FLAPW parameters (𝐾max, 𝐺max, 𝑙max,�̊� to name but a few) as discussed in section 5.3.

A First-order
surface integral
corrections

direct consequence of the LAPW basis set being a function of the position 𝒓 is that the
boundaries of the basis-set partitions also depend on 𝒓. Since theymove, whenever phenomena
are considered entailing a displacement of the atoms, the aforementioned discontinuities

impact upon integrals over the unit cell volume (they are typically subdivided into IR and MT

spheres contributions reflecting the partitions of the LAPW15 basis set). If these integrals are

differentiated with respect to the atomic positions16 𝝉𝛾, and their integrands are formed of a
universal but discontinuous unperturbed quantity 𝑔(0) expanded in the LAPW basis,

d
d𝝉𝛼

∫
𝛺
𝑔(0)(𝒓) d3𝑟=⎡⎢

⎣
∫
IR

d𝑔(0)IR (𝒓)
d𝝉𝛼

d3𝑟+∑
𝛾

∫
𝛾

d𝑔(0)𝛾 (𝒓)
d𝝉𝛼

d3𝑟⎤⎥
⎦
+∮

∂𝛼
[𝑔(0)𝛼 (𝒓) − 𝑔(0)IR (𝒓)] ̂𝒓 d𝑆 (5.74)

must be obeyed. The previous equation depicts that apart from the first and second terms, in

which the IR representation 𝑔IR and its MT equivalent 𝑔𝛾 are differentiated, a surface integral
over the MT sphere boundary emerges. It accounts for the change of the integral boundaries

under a variation of 𝝉𝛼, and contains a difference of the MT representation 𝑔MT and 𝑔IR
expanded in the IR basis set, which vanishes as soon as 𝑔 is perfectly continuous. In practice, it
might prove successful sometimes to make the aforementioned surface integrals less relevant

by achieving a better continuity with converging 𝑙max,�̊� (while balancing 𝑘max). [88]

Phonons Second-order
surface integral
corrections

necessitate the calculation of the second-order total energy variation (see

section 4.1.2 and section 5.9). Therefore, also a second-order expression

∑
𝛼

𝒘⊤
𝛼 (∮

∂𝛼
[𝑔(0)𝛼 (𝒓) − 𝑔(0)IR (𝒓)] ̂𝒓 d𝑆)

(1)
(5.75a)

= ∑
𝛼

𝒘⊤
𝛼 (∫

𝛼
𝛁[𝑔(0)𝛼 (𝒓) − 𝑔(0)IR (𝒓)] d3𝑟)

(1)

= ∑
𝛼

𝒘⊤
𝛼 ∮

∂𝛼
𝛁[𝑔(0)𝛼 (𝒓) − 𝑔(0)IR (𝒓)] ̂𝒓⊤ d𝑆 𝒘𝛼 +∑

𝛼
𝒘⊤

𝛼 ∮
∂𝛼

[𝑔(1)𝛼 (𝒓) − 𝑔(1)IR (𝒓)] ̂𝒓 d𝑆 (5.75b)

of equation (5.74) is required. Within equations (5.75), the divergence theorem communicates

between volume integrals of the sphere 𝛼 and its surface integrals. Just as in the first variation,
the volume integral is completely varied by varying the integral boundaries (first term) and

varying the integrand (second term). All integrals, be they of a vectorial or matrix-like

character, are projected onto the displacement 𝒘𝛼 (see section 3.1). [88]

15 This consideration transfers analogously to similar methods, e.g. LMTO [206]. [88]
16 The subindex𝑹 indicating the unit cell, as in section 3.1, is suppressed henceforth because the focus lies on

periodic structures in the following.
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OneCorrected overlap application constitutes in varying the overlap of two Kohn–Sham wave functions

⟨𝛹 (1)
𝒌′,𝑛′∣𝛹

(0)
𝒌,𝑛⟩+⟨𝛹 (1)

𝒌′,𝑛′∣𝛹
(0)
𝒌,𝑛⟩+∑

𝛼
𝒘⊤

𝛼 ∮
∂𝛼

̂𝒓(𝛹 ∗(1)𝛼
𝒌′,𝑛′ (𝒓)𝛹

(0)𝛼
𝒌,𝑛 (𝒓) − 𝛹 ∗(0)IR

𝒌′,𝑛′ (𝒓)𝛹
(1)IR
𝒌,𝑛 (𝒓))d𝑆 .(5.76)

Beyond the first two terms resulting from the product rule, the aforementioned surface

integrals occur. This must be considered, for instance, when calculating whether the number

of electrons in the systems changes as a result of the perturbation, which causes the variation

of the Kohn–Sham wave functions. [88]

Finally,Symmetric
kinetic energy

if the Laplace operator is applied to a wave function expanded in the LAPW

basis, discontinuities at the MT sphere boundary occur since the LAPW basis is theoretically

only continuous up to linear order [68]. An alternative for the Laplace operator can be gained

from reviewing the form of the kinetic energy, as it is usually implemented in APW codes. It

is given by the left-hand side of

1
2
∫
𝛺
[𝛁𝛹 (0)

𝒌,𝑛(𝒓)]
†
𝛁𝛹 (0)

𝒌,𝑛(𝒓) d𝑉 = 1
2
∫
𝛺
𝛹 ∗(0)
𝒌,𝑛 (𝒓)∆𝛹 (0)

𝒌,𝑛(𝒓) d𝑉

+ 1
2
∮
∂𝛾

𝛹 ∗(0)
𝒌,𝑛 (𝒓)∑

𝛾
(𝛁⊤𝛹 (0)𝛾

𝒌,𝑛 (𝒓) −𝛁⊤𝛹 (0)IR
𝒌,𝑛 (𝒓)) d𝑺 ,(5.77)

and according to Slater [201] the more original form based on the variational principle,

underlying the derivation of the Schrödinger equation. In equation (5.77), the first identity

of Green (see for instance the textbook of Hanson [253]) can be recognized. It states that the

Laplacian and the symmetric form of the double derivative differ, given discontinuous wave

functions or gradients of wave functions at the MT sphere boundaries. Actually, the LAPW basis

is constructed to ensure both the continuity of the wave function and its gradient. Nevertheless,

due to the aforementioned cutoffs in numerics, the surface integrals in equation (5.77) might

become relevant and are at least numerically more correct. The FLEUR [69] code realizes
the kinetic energy operator as an average of a Laplacian acting to the left and to the right.

Furthermore, because of the LAPW basis set, the surface terms in equation (5.77) are ignored.

Still, FLEUR implements the APW+LO basis, where the symmetric form is used, a thorough
discussion on this topic is provided by Sjöstedt et al. [220, 221].

5.12 Ab-Initio Atomic Forces

OneMotivation output of a DFT calculation with the FLAPW method is the total or BO energy from equa-

tion (5.63d) [71]. The derivative of this BO energy with respect to the ion positions is linked17

in equation (3.1b) to the first-order interatomic force [3]. Ab-initio forces have independently

been developed by Soler and Williams [222, 223] as well as Yu, Singh, and Krakauer [224],

both formalisms have proven to be equivalent [68, 71]. Furthermore, as already pointed

out in section 3.1, the BO energy becomes minimal given vanishing first-order interatomic

forces. Hence, apart from numerical subtleties, finite forces resulting from a calculation based

on self-consistent DFT quantities indicate the atomic positions are not optimal [88]. This

17 This relation between the first-order energy derivative with respect to the ion position and the expectation

value of the acceleration operator was already given by Ehrenfest [254] in the early days of quantum

mechanics, further history of the Hellmann–Feynman theorem is outlined in the textbook of Martin [3].
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aspect can be exploited to optimize the underlying lattice structure [71]. Therefore, the DFT

algorithm to relax structures iterates displacing the atoms and updating the forces after a new

DFT calculation until the forces have vanished [71]. These relaxing algorithms can be made

more efficient by employing mathematical optimization or minimization methods [88]. As

discussed already in section 3.2, the force formalism, provided highly precise forces, can be

employed to calculate phonon properties.

Putting Hellmann–
Feynman
contribution

forward the argument that in the ground state the total energy is extremal as

far as all feasible wave function variations and hence the density variations are concerned,

justifies cancelling the first and third integrals in equation (5.67b) in a first approximation.

This leads to the Hellmann–Feynman force

𝑭HF𝛼 = −∫
∂𝑉 (0)

ext (𝒓)
∂𝝉𝛼

∣
𝒘𝛼=𝟎

𝜌(0)(𝒓) d3𝑟 −
∂𝐸(0)

ii

∂𝝉𝛼
∣
𝒘𝛼=𝟎

, (5.78)

the terms of which result from terms in the total energy exhibiting an explicit dependence on

the nuclei positions. [3, 88]

The Basis-induced
corrections

prerequisite of the Hellmann–Feynman theorem is an exact pointwise eigenstate

solution. However, as analyzed already in section 5.10, the LAPW basis does not suffice, and

does not fulfill this requirement when dealing with variations of wave functions expanded

in it. In particular, this holds true for variations with respect to the atomic positions. Both

initially mentioned groups figured out additional force terms functioning as an incomplete

basis correction, which are known as Pulay [103] forces. They result from reformulating the

neglected terms in equation (5.67) to

𝑭 Pl𝛼 = ∑
𝒌,𝑛

2𝑓 (0)
𝒌,𝑛

⎛⎜⎜
⎝
⟨

d𝛹 (0)
𝒌,𝑛

d𝝉𝛼
∣ℋ (0) − 𝜖(0)𝒌,𝑛∣𝛹

(0)
𝒌,𝑛⟩+⟨𝛹 (0)

𝒌,𝑛∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣

d𝛹 (0)
𝒌,𝑛

d𝝉𝛼
⟩⎞⎟⎟
⎠

, (5.79)

including a sum over the occupied states. Based on reference [224], Klüppelberg [88]

additionally considers core-tail corrections in the entire unit cell and the surface terms from

section 5.11, significantly refining the numerics of ab-initio forces. [88]
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DFPT Motivationis introduced in chapter 4 as a tremendous and highly efficient method surpassing

especially frozen-phonon methods in exploring harmonic phonon physics. Additionally in-

spired by the current benchmark status of the all-electron FLAPW framework (cf. chapter 5),

a fusion of the latter with the former appears to be extremely auspicious for obtaining highly

precise dynamical matrices in manifold materials. However, only a tiny number of respective

publications are available and already expounded in chapter 1.

This Outlinechapter presents the outstanding work of Klüppelberg [88], who has developed a

comprehensive formalism for dynamical matrices, accounting for the many subtleties that

ensue from the aforementioned combination in the case of linear phonon response. Before

discussing the central points of his work in detail, section 6.1 recapitulates the previous

chapters and covers a sketch of his concept. Thus, the basic and intricate information essential

for his approach and previously mentioned in this dissertation is unified. Afterwards, the

calculation of the linear1 charge-density variations is addressed in section 6.2. They form,

e.g., an indispensable part of the linear Hartree- and xc-potential variations. Section 6.3 is

devoted to these and all other potential variations required for phonon dispersion relations.

1 For the sake of readability, hereinafter I use the umbrella term “linear” to denote both the first-order variation

and the gradient of any unperturbed quantity.
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Furthermore, both the first-order potential and charge-density variation communicate via the

Sternheimer equation, the setup of which is the topic of section 6.4. Finally, the preceding

sections allow for composing the dynamical matrix in section 6.5.

AtChapter scope this point, it remains to be underlined, that this chapter cannot deliver every detail

in the theory of Klüppelberg. Nevertheless, it still aspires to elucidate its cohesion, identify

errors, and provide the background knowledge for chapter 7.

6.1 Preamble

InAnalogies analogy to a DFT calculation, utilizing the all-electron FLAPW method within DFPT pursues

the goal of ensuring a highly rigorous representation of the (full) linear charge-density and

effective-potential variations. Furthermore, both the valence and the core electrons are

involved. For unperturbed quantities from a DFT calculation, this is predominantly achieved

by employing the LAPW basis (plus local orbitals) for the valence electrons, theWeinert method

for the Coulomb potential, the relativistic pointwise description of the core wave-functions,

and by considering core-tail contributions to the charge density.

ItIncomplete basis
corrections

turns out that the LAPW basis is incomplete whenever expanding first- (or higher-)

order changes of the variational Kohn–Sham wave functions, mirroring the phonon response.

Therefore, it is imperative to include incomplete basis-set corrections, which fall into basis

response and Pulay contributions. While Klüppelberg assumes the former to be small (accord-

ing to experiences of Yu, Singh, and Krakauer [224] in force calculations), and hence neglects

it within the frozen-augmentation approximation, he consistently incorporates the latter. Fur-

thermore, he also extends the frozen-augmentation approximation of the LAPW basis to the

pointwise core-electron solutions within the frozen-core approximation. Although LOs can com-

pensate the neglected basis response in regimes or systems for which the frozen-augmentation

approximation is poor, reference [88] only marginally addresses their integration.

Additionally,Surface term
corrections

this reference reveals numerous surface terms, arising from a variation

of the integral boundaries due to a displacement of the MT spheres, with each of their

integrands discontinuous at the respective MT sphere boundary. The LAPW basis is constructed

to be continuous up to the first-order energy derivative. But in practice, the Kohn–Sham

wave functions, the charge density, and the xc quantities show a small discontinuity due

to a finite 𝑙max,�̊� cutoff. In contrast, the Coulomb potential is continuous by the Weinert
construction [251].

InPotentials and
core-tail

corrections

order to live up to the accurate unperturbed Coulomb-potential calculation, Klüppel-

berg extends the Weinert formalism to both the required linear Coulomb-potential variations

and the second-order variation of the ion–ion interaction. The latter is traditionally calculated

by Ewald summation methods (see for instance Gonze and Lee [255]). Finally, he explicitly

describes the variations of the core-tails as a consequence of the MT spheres leaving their

equilibrium positions.

AmongScope of theory the enormous variety of systems which are covered by the combination of the

DFT, the DFPT, and the all-electron FLAPW methods, reference [88] selects, as a first step,

3D bulk systems with a periodic lattice structure. Furthermore, (non-)collinear magnetism is

not dealt with, since it introduces an additional level of complexity. In principle, however,

6 Dynamical Matrix from DFPT Employing the All-Electron FLAPW Method
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it is possible to integrate it into the presented formalism. As part of future work, this will

in particular derive even more benefit from the FLAPW method. The same holds true for

the SOC, legitimating the scalar-relativistic approximation for obtaining the radial functions

in the muffin-tin LAPW basis set. Hereinafter, a spin degeneracy (for example emerging in

diamagnetic materials) is assumed, enabling one to suppress the spin index, provided a factor

of two is considered.

In Outlinethe following, section 6.1.1 recaps on the underlying phonon theory, because many

essential equations at this point are still too generally formulated or information is partly

isolated among the previous chapters. In order to frame this chapter and give an orientation

for its remaining sections, section 6.1.2 delivers a road map, starting from the results of a

preceding DFT calculation and ending with a phonon dispersion from DFPT.

6.1.1 Recapitulation with Emphasis on Phonons

Phonon Adiabatic
approximation

quasiparticles constitute the quantum-mechanical approach for describing the physics

of lattice vibrations in a solid, which basically subdivides into electrons and nuclei. By applying

the Born–Oppenheimer approximation, the electrons decouple from the nuclei at lowest order.

This enables one to deal with the electronic many-body system in the field of fixed nuclei,

and vice versa to learn about the dynamics of the nuclei in the BO potential given the total

energy of an electronic configuration. The total ground-state energy (BO potential) can be

determined from the well-established Kohn–Sham DFT.

It Linear response,
harmonic
frequencies

changes slightly provided infinitesimal collective displacements, i.e., phonons alter

the external potential

𝑉 (0)
ext (𝒓) = −∑

𝛾

𝑍𝛾𝑹

∣𝒓 − 𝝉𝛾𝑹
∣
, (6.1)

with 𝑍𝛾𝑹
indicating the nuclear charge, and 𝝉𝛾𝑹

denoting the position of an atom 𝛾𝑹 in the
unit cell addressed by𝑹 (cf. the electron–ion potential in equation (1.1)). This variation of the
external potential represents a phonon perturbation inducing an associated response. In linear

order, this response of the electrons constitutes an integral part of the dynamical matrix which

deduces from the second-order term in a perturbation series of the total energy. Diagonalizing

the dynamical matrix results in the polarization vectors and the harmonic frequencies of

the phonon. These three quantities relate to each other in the eigenvalue problem given by

equations (3.7). As far as the Hohenberg–Kohn total energy in equation (2.1) is concerned, it

is still correct because of the universality of its general functional, likewise holding true for

systems undergoing such a perturbation [3]. Therefore, varying this ground-state functional

is legitimate and yields valid results [3]. For vanishing forces the configuration of the nuclei

minimizes the total energy. Its harmonic perturbation-series term represents the lowest-order

correction, and one truncates higher-order terms within the harmonic approximation. Against

this background, the general perturbation parameters used in chapter 3 and chapter 4 specify

to 𝝉𝛾𝑹
(see e.g. references [77, 79, 87]).

In Density-
Functional
Perturbation
Theory

an elegant fashion, the linear response quantities for the dynamical matrix are self-

consistently obtained from DFPT. Supported by the 2𝑛 + 1 theorem, higher-order variations
of electronic quantities can be considered irrelevant for setting up the dynamical matrix.

6.1 Preamble
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In addition, Klüppelberg formulates his theory such that the polarization vectors surround

the desired quantities, but they need not be determined before they become known anyway

through the diagonalization of the dynamical matrix. Furthermore, it is generally feasible

to choose any real number for each component of the phonon wave vector 𝒒 without any
additional effort. In periodic structures, DFPT namely allows for concentrating on a single

representative unit cell with the volume 𝛺.

PeriodicBloch theorem systems in which the potential fulfills

𝑉 (0)(𝒓 +𝑹) = 𝑉 (0)(𝒓) (6.2)

allow for exploiting the Bloch theorem [198], resulting in eigenfunctions with Bloch char-

acter 𝒌. However, a phonon displacing atoms 𝛼𝑹 impacts the periodic structure of the

unperturbed lattice [22] so that

𝑉 (1)(𝒓 +𝑹; 𝒒𝛼) = ei𝒒⋅𝑹𝑉 (1)(𝒓; 𝒒𝛼) . (6.3)

Hence for every additional variation, a Bloch character shift by ±𝒒 occurs, relative to the
original Bloch character.

TheLinearized
Augmented

Plane-Wave basis

LAPW basis is directly affected by the displacements of atoms 𝛼𝑹. Based on

equation (5.17b), the transformation from the global to the local coordinate system of the

MT spheres can be generalized to

𝒓𝛼,𝑹,𝒘
center = 𝝉𝛼𝑹

+𝑹 +𝒘𝒒
𝛼𝑹

. (6.4)

This means the 𝝉𝛼𝑹
are defined to be fixed in their equilibrium positions in the following, and

the infinitesimal displacements

𝒘𝒒
𝛼𝑹

= 𝑸𝛼𝑹
ei𝒒⋅𝑹 +𝑸∗

𝛼𝑹
e−i𝒒⋅𝑹 (6.5a)

≕ 𝒘𝒒+

𝛼𝑹
+𝒘𝒒−

𝛼𝑹
(6.5b)

derive from a phonon with wave vector 𝒒 and polarization 𝑸𝛼𝑹
. They are composed of

a complex “+”-summand and a complex conjugate “−”-summand, in order to avoid an
unphysical complex-valued displacement. Relative to equation (3.5b), this displacement is

time-independent, and the dependency of the polarization vectors on 𝒒 inheres in the choice
of generally indicating them by capital 𝑸 (in accordance2 with reference [88]). It should be
stressed that this concept of two counter-propagating phonons in equations (6.5) pervades

the complete subsequent formalism. All in all, the LAPW basis (5.17) can thus be written as

𝜙(0),𝒘𝒒
𝛼𝑹

𝒌,𝑮,𝑹 (𝒓)≔

⎧{{{{{{
⎨{{{{{{⎩

1√
𝛺
ei(𝒌+𝑮)⋅𝒓, 𝒓 ∈ IR

∑
𝑙𝑚𝑝

𝑎𝑮𝒌𝛾
𝑙𝑚𝑝 �⃗�

𝛾𝑹
𝑙𝑝 (∣𝒓 − 𝒓𝛼,𝑹,𝒘𝟎

center ∣
𝜈𝛾
)Y𝑙𝑚

⎛⎜⎜⎜
⎝

𝒓 − 𝒓𝛼,𝑹,𝒘𝟎

center

∣𝒓 − 𝒓𝛼,𝑹,𝒘𝟎

center ∣

⎞⎟⎟⎟
⎠

, 𝒓 ∈ MT𝛾𝑹≠𝛼𝑹

∑
𝑙𝑚𝑝

𝑎𝑮𝒌𝛼𝑹
𝑙𝑚𝑝 �⃗�𝛼𝑹

𝑙𝑝 (∣𝒓 − 𝒓𝛼,𝑹,𝒘𝒒

center ∣
𝜈𝛼

)Y𝑙𝑚
⎛⎜⎜⎜
⎝

𝒓 − 𝒓𝛼,𝑹,𝒘𝒒

center

∣𝒓 − 𝒓𝛼,𝑹,𝒘𝒒

center ∣

⎞⎟⎟⎟
⎠

, 𝒓 ∈ MT𝛼𝑹
,

(6.6)

2 Within this dissertation, a reasonable part of the nomenclature is borrowed from reference [88], in order to

minimize confusion.
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employing the previous two equations and setting 𝒘 = 𝟎 in the undisplaced atom 𝛾𝑹 ≠ 𝛼𝑹.

Without loss of generality, hereinafter the unit cell 𝑹 = 𝟎 is chosen to be the representative
unit cell with the volume 𝛺 in order to suppress the index 𝑹. However, in some cases (for
instance equations (6.7)) the 𝟎 is not inserted, e.g. if the Bloch character is thought to manifest
itself.

From Pulay correctionsequation (6.6), it becomes obvious that the LAPW basis is expected to also

describe the displaced MT sphere surrounding an atom 𝛼. Inserting equation (6.5a) into
equation (5.71) yields the aforementioned Pulay correction

𝜙(1)𝛼
𝒌,𝑮(𝒓) = 𝑸⊤

𝛼 [i(𝒌 +𝑮) −𝛁]𝜙(0)𝛼
𝒌,𝑮(𝒓)ei𝒒⋅𝑹 +𝑸†

𝛼 [i(𝒌 +𝑮) −𝛁]𝜙(0)𝛼
𝒌,𝑮(𝒓)e−i𝒒⋅𝑹 (6.7a)

≕ 𝑸⊤
𝛼 𝝓(1)𝛼+

𝒌,𝑮 (𝒓) + 𝑸†
𝛼 𝝓(1)𝛼−

𝒌,𝑮 (𝒓) . (6.7b)

The Bloch character of this basis correction is expressed by the additional superscripts ±
denoting a shift by ±𝒒.

Reviewing First-order
wave-function
variation

equation (5.64), the discussed variation of the Bloch character resolves �̃�
such that each term of 𝛹 (1)

𝒌,𝑛 has Bloch character 𝒌 ± 𝒒. Explicitly, this yields

𝛹 (1)
𝒌,𝑛(𝒓; 𝒒) = ∑

𝛼
(𝑸⊤

𝛼 ∑
𝑮

(𝒛(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)𝜙(0)

𝒌+𝒒,𝑮(𝒓) + 𝑧(0)𝑮 (𝒌, 𝑛)𝝓(1)𝛼+
𝒌,𝑮 (𝒓)) (6.8a)

+𝑸†
𝛼 ∑

𝑮
(𝒛(1)

𝑮 (𝒌, 𝑛;−𝒒𝛼)𝜙(0)
𝒌−𝒒,𝑮(𝒓) + 𝑧(0)𝑮 (𝒌, 𝑛)𝝓(1)𝛼−

𝒌,𝑮 (𝒓)))

≔ ∑
𝛼

𝑸⊤
𝛼 𝜳 (1)+

𝒌,𝑛 (𝒓; 𝛼) + 𝑸†
𝛼 𝜳 (1)−

𝒌,𝑛 (𝒓; 𝛼) . (6.8b)

The basis functions or their variations must be evaluated at the same vector in reciprocal space

as the wave-function expansion coefficients or their variations. Therefore, the variations of the

MT basis functions are evaluated at 𝒌, but still feature a Bloch character 𝒌±𝒒, motivating the
additional notation with ±. Additionally, only the MT basis functions of the displaced atom 𝛼
are to be corrected, the plane-wave basis in the IR remains complete under the emergence of

phonons (cf. section 5.10).

Another Second-order
wave function
variation

variation to second-order, in which now atom 𝛽 is displaced, leads to terms
featuring a Bloch character of 𝒌 and 𝒌 ± 2𝒒. It shall turn out to suffice if only discussing the
part of 𝛹 (2)

𝒌,𝑛 which is of Bloch character 𝒌, i.e., 𝒒 equals 𝟎 so that the matrix elements for the
displaced atoms 𝛽 and 𝛼 read

[𝛹 (2)𝟎
𝒌,𝑛 (𝒓)]

𝛽𝛼
(6.9)

= 𝑸†
𝛽 ∑

𝑮
[𝑧(2)𝑮 (𝒌, 𝑛)𝜙(0)

𝒌,𝑮(𝒓)+𝒛(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)[𝝓(1)𝛽−

𝒌+𝒒,𝑮(𝒓)]
⊤
+𝑧(0)𝑮 (𝒌, 𝑛)𝜙(2)𝟎

𝒌,𝑮
(𝒓)] 𝑸𝛼

+𝑸⊤
𝛽 ∑

𝑮
[𝑧(2)𝑮 (𝒌, 𝑛)𝜙(0)

𝒌,𝑮(𝒓)+𝒛(1)
𝑮 (𝒌, 𝑛;−𝒒𝛼)[𝝓(1)+

𝒌−𝒒,𝑮(𝒓)]
⊤
+𝑧(0)𝑮 (𝒌, 𝑛)𝜙(2)𝟎

𝒌,𝑮
(𝒓)] 𝑸∗

𝛼 .

One Charge variationassumes charge neutrality in an unperturbed system, meaning the number of

electrons

𝑁e = ∫
𝛺
𝜌(0)(𝒓) d3𝑟 = ∫

𝛺
∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛𝛹

(0)∗
𝒌,𝑛 (𝒓)𝛹 (0)

𝒌,𝑛(𝒓) d
3𝑟 (6.10)
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is equal to the sum of atom core charges∑𝛾 𝑍𝛾 and arranged in all unit cells so that a zero net

charge results. Indeed, a phonon including its response changes the arrangement of electrons

and ions to one another, nevertheless the number of electrons remains unaffected. In order to

express this fact, equation (5.76) can be specified to equal bands 𝑛 and 𝒌-vectors and used as
a constituent in the first-order variation of the electron number

0 = 𝑁 (1)
e (6.11)

≔ ∑
𝛼

𝑸⊤
𝛼 (∑

𝒌,𝑛
𝑓 (0)
𝒌,𝑛[⟨𝜳

(1)+
𝒌,𝑛 (𝛼)∣𝛹 (0)

𝒌,𝑛⟩ + ⟨𝛹 (0)
𝒌,𝑛∣𝜳

(1)+
𝒌,𝑛 (𝛼)⟩] +∮

∂𝛼
̂𝒆[𝜌(0)𝛼 (𝒓) − 𝜌(0)IR (𝒓)] d𝑆)

+∑
𝛼

𝑸†
𝛼 (∑

𝒌,𝑛
𝑓 (0)
𝒌,𝑛[⟨𝜳

(1)−
𝒌,𝑛 (𝛼)∣𝛹 (0)

𝒌,𝑛⟩ + ⟨𝛹 (0)
𝒌,𝑛∣𝜳

(1)−
𝒌,𝑛 (𝛼)⟩] +∮

∂𝛼
̂𝒆[𝜌(0)𝛼 (𝒓) − 𝜌(0)IR (𝒓)] d𝑆) .

Finally,Occupation-
number variation

Klüppelberg omits terms which are proportional to the variation of the occupation

number. This is reasonable for insulators and semiconductors. But for metals, which in

general have fractional occupation numbers, he assumes that the occupation numbers vanish

for the first-order variation of the total energy (see Weinert and Davenport [252]). In second-

order, i.e., regarding phonons, he rests on references [87, 97] for this statement to hold

true, provided 𝒒 ≠ 𝟎. However for the Goldstone modes, additional terms [68, 86] become
necessary in metals3.

6.1.2 Road Map to Phonon Dispersions

TheDynamical matrix dynamical matrix, which becomes diagonal in the vector space spanned by the polarization

vectors 𝑸, relates to the second-order variation of the total energy by4 [97]

𝐸(2)
tot (𝒒) = ∑

𝛽𝛼
𝑸†

𝛽𝐷
𝛽𝛼(𝒒+−)𝑸𝛼 +𝑸⊤

𝛽𝐷
𝛽𝛼(𝒒−+)𝑸∗

𝛼 . (6.12)

According to Savrasov [97], only these terms contribute to the dynamical matrix𝐷 that have a
vanishing Bloch character5, i.e., that have a product of terms with Bloch character 𝒒+ and 𝒒−.

These mixed terms are indicated hereinafter by 𝐷(𝒒+−) or 𝐷(𝒒−+). As a function of 𝒒, the
eigenvalues of the dynamical matrix form the branches of the phonon dispersion-relation of

interest. Therefore, the strategy is to vary the total energy in equation (5.63d) in order to

identify the required constituents.

TheTotal-energy
variations

first variation is given by [256]

𝐸(1)
tot = ∑

𝒌,𝑛
(𝑓 (0)

𝒌,𝑛𝜖
(1)
𝒌,𝑛) −∫

𝛺
𝜌(0)(𝒓)𝑉 (1)

eff
(𝒓) d3𝑟 +∫

𝛺
𝜌(0)(𝒓)𝑉 (1)

ext (𝒓) d3𝑟 + 𝐸(1)
ii

(6.13)

+∑
𝛽

[𝒘𝒒
𝛽]

⊤
∮
∂𝛽

̂𝒓[𝜌(0)𝛽 (𝒓)(𝜖(0)𝛽xc (𝒓) − 𝑉 (0)𝛽
xc (𝒓)) − 𝜌(0)IR (𝒓)(𝜖(0)IRxc (𝒓) − 𝑉 (0)IR

xc (𝒓))]d𝑆 .

3 Neukirchen has derived these terms as an extension to the formalism [88] and finds that they only become

relevant for metals with a polyatomic basis (unpublished).
4 The Bloch character indicated in the dynamical matrices will be clarified within this chapter.
5 The pure terms𝐷(𝒒++) and𝐷(𝒒−−) would be proportional to exp(±i2𝒒 ⋅ 𝑹) and deliver contributions for

𝐸(2)
tot (2𝒒), although the investigation of 𝐸

(2)
tot (𝒒) is intended [97].
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Varying again yields the second-order variation [256]

𝐸(2)
tot = ∑

𝒌,𝑛
(𝑓 (0)

𝒌,𝑛𝜖
(2)
𝒌,𝑛 + 𝑓 (1)

𝒌,𝑛𝜖
(1)
𝒌,𝑛) −∫

𝛺
𝜌(1)(𝒓)𝑉 (1)

eff
(𝒓) d3𝑟 −∫

𝛺
𝜌(0)(𝒓)𝑉 (2)

eff
(𝒓) d3𝑟 (6.14a)

+∫
𝛺
𝜌(1)(𝒓)𝑉 (1)

ext (𝒓) d3𝑟 +∫
𝛺
𝜌(0)(𝒓)𝑉 (2)

ext (𝒓) d3𝑟 + 𝐸(2)
ii

+𝐸(2)
tot,sf .

According to the arguments given in section 6.1.1, terms containing variations of occupation

numbers in any variation of the total energy are dropped in the following. A closer inspection

of the second-order Kohn–Sham energies lets them fall into three categories

𝜖(2)𝒌,𝑛 = 𝜖(2)HF𝒌,𝑛 + 𝜖(2)Pl𝒌,𝑛 + 𝜖(2)sf𝒌,𝑛 , (6.14b)

the Hellmann–Feynman (HF), the Pulay (Pl), and the surface (sf) terms. The HF and Pl terms

are given by

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛𝜖

(2)HF
𝒌,𝑛 = ∑

𝒌,𝑛
𝑓 (0)
𝒌,𝑛⟨𝛹

(0)
𝒌,𝑛∣𝑉

(2)
eff

∣𝛹 (0)
𝒌,𝑛⟩ +∫

𝛺
𝜌(1)(𝒓)𝑉 (1)

ext (𝒓) d3𝑟 , (6.14c)

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛𝜖

(2)Pl
𝒌,𝑛 = ∑

𝒌,𝑛
𝑓 (0)
𝒌,𝑛⟨𝛹

(0)
𝒌,𝑛∣𝑉

(2)
eff

∣𝛹 (0)
𝒌,𝑛⟩ + 2∫

𝛺
𝜌(1)(𝒓)𝑉 (1)

eff
(𝒓) d3𝑟 (6.14d)

+∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛(⟨𝛹

(2)
𝒌,𝑛∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛹
(0)
𝒌,𝑛⟩ + ⟨𝛹 (0)

𝒌,𝑛∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝛹

(2)
𝒌,𝑛⟩

+ 2⟨𝛹 (1)
𝒌,𝑛∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛹
(1)
𝒌,𝑛⟩) .

All surface terms that result from the second-order variation of the total energy (section 5.11),

i.e., also including 𝜖(2)sf𝒌,𝑛 , are attributed to

𝐸(2)
tot,sf

= ∑
𝛽

[𝒘𝒒
𝛽]

⊤
{2∑

𝒌,𝑛
𝑓 (0)
𝒌,𝑛 ∮

∂𝛽
̂𝒓[𝛹 ∗(1)𝛽

𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹
(0)𝛽
𝒌,𝑛 (𝒓) (6.14e)

− 𝛹 ∗(1)IR
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)IR
𝒌,𝑛 (𝒓)] d𝑆

+ 2∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∮

∂𝛽
̂𝒓[𝛹 ∗(0)𝛽

𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹
(1)𝛽
𝒌,𝑛 (𝒓)

− 𝛹 ∗(0)IR
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(1)IR
𝒌,𝑛 (𝒓)] d𝑆

+ δ𝛽𝛼 ∑
𝛼

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∮

∂𝛽
[𝛁(𝛹 ∗(0)𝛽

𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹
(0)𝛽
𝒌,𝑛 (𝒓))

−𝛁(𝛹 ∗(0)IR
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)IR
𝒌,𝑛 (𝒓))] ̂𝒓⊤ d𝑆 𝒘𝒒

𝛼

+ δ𝛽𝛼 ∑
𝛼

∮
∂𝛽

[𝛁(𝜌(0)𝛽 (𝒓)(𝜖(0)𝛽xc (𝒓) − 𝜇(0)𝛽
xc (𝒓)))

−𝛁(𝜌(0)IR (𝒓)(𝜖(0)IRxc (𝒓) − 𝑉 (0)IR
xc (𝒓)))] ̂𝒓⊤ d𝑆 𝒘𝒒

𝛼

+ δ𝛽𝛼 ∮
∂𝛽

̂𝒓[𝜌(0)𝛽 (𝒓)(2𝑉 (1)𝛽
ext (𝒓) + 𝑉 (1)𝛽

Htr (𝒓))

− 𝜌(0)IR (𝒓)(2𝑉 (1)IR
ext (𝒓) + 𝑉 (1)IR

Htr (𝒓))] d𝑆} .
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Some of these terms result from additional variations of surface terms, such as the surface inte-

gral in equation (6.13). The way of calculating it is already discussed around equation (5.75).

Inserting the HF (6.14c) and Pl (6.14d) contributions of the second-order Kohn–Sham energy

variation into equation (6.14a), enables one to further evaluate the second-order variation of

the total energy so that it is finally composed of

𝐸(2)
tot = 𝐸(2)

tot,HF +𝐸(2)
tot,Pl

+𝐸(2)
tot,sf

, (6.15a)

while

𝐸(2)
tot,HF = ∫

𝛺
𝜌(1)(𝒓)𝑉 (1)

ext (𝒓) d3𝑟 +∫
𝛺
𝜌(0)(𝒓)𝑉 (2)

ext (𝒓) d3𝑟 + 𝐸(2)
ii

(6.15b)

and

𝐸(2)
tot,Pl

=∫
𝛺
𝜌(1)(𝒓)𝑉 (1)

eff
(𝒓) d3𝑟 + 2∑

𝒌,𝑛
𝑓 (0)
𝒌,𝑛(⟨𝛹

(2)
𝒌,𝑛∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛹
(0)
𝒌,𝑛⟩+⟨𝛹 (0)

𝒌,𝑛∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝛹

(2)
𝒌,𝑛⟩

+ 2⟨𝛹 (1)
𝒌,𝑛∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛹
(1)
𝒌,𝑛⟩) . (6.15c)

The third term in equation (6.15a) is still given by equation (6.14e).

EquationsRequired
quantities

(6.15) stimulate the introduction of the concept for the following discus-

sion. It immediately becomes obvious that unperturbed quantities are required such as the

charge density 𝜌(0)(𝒓), the unperturbed Kohn–Sham wave functions 𝛹 (0)
𝒌,𝑛, the Kohn–Sham

energies 𝜖(0)𝒌,𝑛, the effective potential 𝑉
(0)𝛽
eff

(𝒓) (or only the xc part), and the xc energy den-
sity 𝜖(0)𝛽xc (𝒓). These are typical results of a classical DFT calculation preceding the application
of the DFPT method. Quantities necessitated in the first-order variation are the charge-density

variation 𝜌(1)(𝒓), and therefore also the first-order variation of the Kohn–Sham energy 𝜖(1)𝒌,𝑛, as

well as the variation of the effective potential 𝑉 (1)
eff

(𝒓) (or parts of it). All of these first-order
electronic quantities can be obtained from DFPT. What remains are the second-order variation

of the external potential 𝑉 (2)
ext (𝒓), the second-order variation of the ion–ion interaction 𝐸(2)

ii
,

and the part of the second-order wave function 𝛹 (2)𝟎
𝒌𝑛 (𝒓) with Bloch character 𝒌. In contrast

to the first-order quantities, the required second-order variations are related to the nuclei

and hence do not involve employing a self-consistent approach. As soon as all quantities

are available, the dynamical matrix can be calculated and diagonalized for a specific 𝒒. This
procedure can be repeated for any further arbitrary 𝒒. However, in practice one tends to
calculate only certain desired or high-symmetry points of the dispersion and interpolate the

rest [92, 255, 257].

6.2 Charge Density Variations

VariationsOutline of the electron charge density are only required up to linear order. However, the

linear change of the charge density can either be represented by a numerical gradient, which

acts onto the unperturbed charge density, or by a first-order variation. The former is discussed

in section 6.2.1 while the latter is the subject of section 6.2.2. In this context, equation (5.68)

is to be considered.

6 Dynamical Matrix from DFPT Employing the All-Electron FLAPW Method
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6.2.1 Gradient of the Unperturbed Charge Density

In Interstitial regionthe IR, one can apply the gradient with respect to 𝒓 to the first term at the right-hand
side of equation (5.18). Since there is no position dependency in the Fourier coefficients, the

gradient only affects the plane waves so that

𝛁𝜌(0)IR (𝒓) = ∑
𝑮

i𝑮𝜌(0)IR (𝑮)ei𝑮⋅𝒓 . (6.16)

The Muffin-tin
spheres

analytical gradient of the charge density in the MT spheres of atoms 𝛾 (second
term at the right-hand side of equation (5.18)) turns out to be more sophisticated. Due to

the product rule, both the radial expansion coefficients and the spherical harmonics in

𝛁𝜌(0)𝛾 (𝒓) = ∑
𝑙𝑚

𝛁([𝜌(0)𝛾 (𝑟)]
𝑙𝑚

Y𝑙𝑚( ̂𝒓)) (6.17a)

are subject to the application of the gradient. An elongated derivation, which can be found in

appendix C, finally leads to

𝛁𝜌(0)𝛾 (𝒓𝛾) = 𝑇
1

∑
𝑚″=−1

̂𝒆𝑚″(−1)𝑚″√4π
3

∑
𝑙𝑚

Y𝑙𝑚( ̂𝒓𝛾) ∑
𝑙″|𝑙″∈{−1,1}

𝐺𝑚,𝑚+𝑚″, −𝑚″

𝑙, 𝑙+𝑙″, 1 (6.17b)

×
⎡
⎢
⎢
⎣

∂[𝜌(0)𝛾 (𝑟𝛾)]𝑙+𝑙″,𝑚′+𝑚″

∂𝑟𝛾
−⎛⎜⎜

⎝
−𝑙″𝑙 +

(i
√
3)𝑙

″+1𝑙″ − 1
2

⎞⎟⎟
⎠

[𝜌(0)𝛾 (𝑟𝛾)]𝑙+𝑙″,𝑚′+𝑚″

𝑟𝛾

⎤
⎥
⎥
⎦

.

This Correcting
Klüppelberg [88]

relation almost corresponds to Klüppelberg [88, equation (4.17)], apart from some

differences concerning indices or prefactors. An implementation of his equation (4.17) does

not deliver correct results and lets consistency checks fail, this discussion is postponed to

section 7.2. In addition, Klüppelberg reuses this incorrect formula for the MT gradient in [88,

equation (7.59)]. Since in equation (6.17b) the MT gradient is applied in a special coordinate

system spanned by the unit vectors ̂𝒆𝑚″ (see appendix C), it must be transformed back to a

cartesian gradient of a MT function by the transformation matrix

𝑇 = 1√
2
⎛⎜⎜
⎝

1 0 −1
−i 0 −i
0

√
2 0

⎞⎟⎟
⎠

. (6.17c)

It likewise differs from a wrong suggestion in [88, equation (4.18)].

The ContinuityLAPW basis ensures continuity up to 𝑙max,�̊� for a wave function expanded in it [68].
Applying the gradient to a function expanded in spherical harmonics lets contributions in the

orbital quantum-number channel 𝑙 scatter to the neighboring channels 𝑙 ± 1 [68]. Therefore,
the continuity of a gradient quantity is strictly speaking restricted up to 𝑙max,�̊� − 1 [68].
Furthermore, the gradient of the unperturbed charge density is influenced by the fact that

there are discontinuities in the first-order derivatives of the wave functions leading to cusps

for the charge density in the center of the MT spheres (see for example reference [258]).

However, with the logarithmic mesh which is used in the MT sphere, the atomic position is

only approximated, but never reached. Still, apart from relativistic effects the cusps result

in a respective noncontinuous behavior of the unperturbed charge density, its gradient or

quantities depending on them.

6.2 Charge Density Variations
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6.2.2 First-Order Variation of the Charge Density

TheSimplifications first-order variation of the density is already defined by equation (4.20e) in a compact way.

In general, however, the product rule also implies the variation of the occupation numbers so

that the first-order charge density variation for a spin-degenerate system (considered by a

factor 2)6 is given by

𝜌(1)(𝒓; 𝒒) = 2∑
𝒌,𝑛

𝑓 (1)
𝒌,𝑛(𝒒)𝛹

∗(0)
𝒌,𝑛 (𝒓)𝛹 (0)

𝒌,𝑛(𝒓) (6.18a)

+ 2∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛(𝛹

∗(1)
𝒌,𝑛 (𝒓; 𝒒)𝛹 (0)

𝒌,𝑛(𝒓) + 𝛹 ∗(0)
𝒌,𝑛 (𝒓)𝛹 (1)

𝒌,𝑛(𝒓; 𝒒))

= 2∑
𝒌,𝑛

(𝑓 (1)
𝒌,𝑛(𝒒)𝛹

∗(0)
𝒌,𝑛 (𝒓)𝛹 (0)

𝒌,𝑛(𝒓) + 2∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛𝛹

∗(0)
𝒌,𝑛 (𝒓)𝛹 (1)

𝒌,𝑛(𝒓; 𝒒)) . .(6.18b)

In accordance with section 6.1.1, focussing on insulators, semiconductors, and metals with

a monoatomic basis set, allows for only concentrating on the terms proportional to the

unperturbed occupation number. Therewith, the second term in equation (6.18a) transforms

into the respective term in equation (6.18b) (incorporating a factor 2) by exploiting

𝛹 (0)
−𝒌,𝑛(𝒓) = 𝛹 ∗(0)

𝒌,𝑛 (𝒓) , (6.19)

according to the TRS [180]. In each system relevant within this thesis TRS holds7, therefore

the following discussion rests on TRS being obeyed.

InSubdivision order to progress in terms of the all-electron FLAPW method, the states in equa-

tions (6.18) are subdivided into core states and valence states. Since the core density is ideally

strictly confined within the MT spheres, its variation can be expressed by the gradient of the

pointwise core wave-functions. Additionally, a phase factor dependent on 𝒒 is required so that
the description lives up to the displacements of the MT spheres, occurring for a phonon with

wave vector ±𝒒. In the valence spectrum, the LAPW basis (5.17) is utilized and corrected by
Pulay contributions. Due to the TRS, it is sufficient to restrict the discussion to the first term

in

𝜌(1)(𝒓; 𝒒) = ∑
𝛼

𝑸⊤
𝛼 𝝆(1)(𝒓; 𝒒+𝛼) +𝑸†

𝛼 𝝆(1)(𝒓; 𝒒−𝛼) , (6.20)

because the second one can be obtained from the first by a complex conjugation, switching

also the Bloch character from 𝒒+ to 𝒒− (cf. equation (6.19)). Equation (6.20) originates from

inserting equation (6.8b) (including equations (6.7)) into the last term of equation (6.18b).

The vectorial character of

𝝆(1)(𝒓; 𝒒±𝛼) = −2∑
𝑹

e±i𝒒⋅𝑹𝛁𝜌(0)𝛼 (𝒓) (6.21)

+ 4∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
(𝑧∗(0)𝑮′ (𝒌, 𝑛)𝒛(1)

𝑮 (𝒌, 𝑛;±𝒒𝛼)𝜙∗(0)
𝒌,𝑮′(𝒓)𝜙

(0)
𝒌±𝒒,𝑮(𝒓)

+∑
𝑹

Θ(𝑅MT𝛼 − ∣𝒓 − 𝝉𝛼 −𝑹∣)e±i𝒒⋅𝑹

× 𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑧(0)𝑮 (𝒌, 𝑛)𝜙∗(0)
𝒌,𝑮′(𝒓)(i(𝒌 +𝑮) −𝛁)𝜙(0)

𝒌,𝑮(𝒓))

6 In contrast, Klüppelberg includes the spin-degeneracy factor within the occupation numbers.
7 TRS for instance is broken for crystals in a ferromagnetic order [133, 180].
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derives from the cartesian directions in which a MT sphere, surrounding an ion, can be

displaced. Further details can be considered as technical subtleties of the implementation

and are therefore shifted to chapter 7.

6.3 Potential Variations

Throughout Overviewthe formalism, the linear variations of the effective potential, the second-order

variation of the ion–ion interaction, and the second-order variation of the external potential

are necessitated. In first-order, the effective potential variation

𝑽 (1)
eff

(𝒓; 𝒒±𝛼) = 𝑽 (1)
ext (𝒓; 𝒒±𝛼) + 𝑽 (1)

Htr (𝒓; 𝒒
±𝛼) + 𝑽 (1)

xc (𝒓; 𝒒±𝛼) (6.22)

subdivides into the external, the Hartree, and the xc contribution. In the same manner as for

instance in equation (6.20), equation (6.22) is part of

𝑉 (1)
eff

(𝒓; 𝒒) = ∑
𝛼

(𝑸⊤
𝛼 𝑽 (1)

eff
(𝒓; 𝒒+𝛼) +𝑸†

𝛼 𝑽 (1)
eff

(𝒓; 𝒒−𝛼)) . (6.23)

The “+”-term and the “−”-term relate to each other like in equation (6.20). While the
Hartree and xc potentials are purely electron-related, the first variation of the external

potential in equation (6.1) is also dependent on the charges and the positions of the nuclei.

However, 𝑽 (1)
ext (𝒓; 𝒒±𝛼) does not incorporate a variation of the charge density, enabling one to

vary it again in accordance with the 2𝑛+1 theorem. This results in the second-order variation
of the external potential which can be decomposed into

𝑉 (2)
ext (𝒓; 𝒒) = ∑

𝛽𝛼𝑹
[𝑸⊤

𝛽 (𝛁𝛁⊤𝑉 (0)𝑹
ext (𝒓)) 𝑸𝛼e2i𝒒⋅𝑹 +𝑸†

𝛽 (𝛁𝛁⊤𝑉 𝛽𝑹
ext (𝒓)) 𝑸∗

𝛼e−2i𝒒⋅𝑹 (6.24)

+𝑸⊤
𝛽 (𝛁𝛁⊤𝑉 𝛽𝑹

ext (𝒓)) 𝑸∗
𝛼 +𝑸†

𝛽 (𝛁𝛁⊤𝑉 𝛽𝑹
ext (𝒓)) 𝑸𝛼] .

But its calculation entails numerical drawbacks, urging one to circumvent the evaluation of

this potential, further details are provided in section 7.6.3. For this reason, the derivation of

the potential 𝑉 (2)
ext (𝒓) is not reviewed hereinafter. Finally, the second-order ion–ion interaction

involves only the nuclei.

All General conceptpotential variations in the work of Klüppelberg are set up in analogy either to

the Weinert construction of the Coulomb potential in section 5.6.1, or the xc potential in

section 5.6.2. The essential differences are that for the Hartree and the xc parts, the un-

perturbed charge density is substituted by a gradient, or the first-order variation of the

charge density. Furthermore, concerning the external potential, a gradient is applied to the

Dirac delta-distribution which describes the point charge. Additionally, the calculation of the

second-order ion–ion-interaction variation in particular differs from the usually-employed

Ewald summation. Klüppelberg bases his proposal on a publication of Weinert, Wimmer, and

Freeman [66] which suggests a similar approach as for the Coulomb potential.

The Outlinelinear variations of the external potential are the subject of section 6.3.1, the

setup of the linear Hartree potential variations is addressed in section 6.3.2, and the linear

xc-potential variations are dealt with in section 6.3.3. Section 6.3.4 concludes with the setup

of the second-order ion–ion interaction.

6.3 Potential Variations
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6.3.1 Linear Variations of the External Potential

The linear external potential variations are handled in the same way as the Coulomb potential

in section 5.6.1. Therefore, a separate consideration of the IR and the MT spheres ensues.

Interstitial contribution

DueReal charge to the phonon, the point charges undergo a shift which is expressed by applying the

gradient to a position-dependent Dirac delta-distribution. If the displacement amplitudes of the

MT spheres must live up to modulation with a finite 𝒒, an additional phase factor exp(i ̃𝒒 ⋅ 𝑹)
becomes necessary. For the sake of avoiding redundancy, the notation ̃𝒒 of Klüppelberg is
introduced. Expressions containing a ̃𝒒 are valid for gradients ( ̃𝒒 = 𝟎) or first-order variations
with an arbitrary 𝒒± = ̃𝒒. Provided the bare gradient of the external potential is of interest,
the aforementioned phase factor becomes the neutral element of multiplication. Hence, the

charge variation for the linear variation of the external potential is assumed to be

𝒏ext(𝒓, ̃𝒒𝛼𝑹) = ∑
𝑹

𝑍𝛼e±i ̃𝒒⋅𝑹𝛁δ(𝒓 − 𝝉𝛼𝑹
−𝑹) . (6.25)

OneMultipole
moments

immediately envisages that a plane-wave expansion does not work well in this case.

Therefore, one can avoid the gradient with respect to the Dirac delta distribution by employing

integration by parts. The boundary terms vanish because the Dirac delta distribution only

contributes at the MT sphere centers of the displaced atoms 𝛼 and not at their MT sphere
boundaries. This leads to the multipole moments

𝖖𝛾𝑹′

𝑙𝑚 ( ̃𝒒𝛼) = −𝑍𝛼e±i ̃𝒒⋅𝑹′δ𝛾𝛼𝛁[𝑟𝑙Y∗
𝑙𝑚( ̂𝒓)]

𝒓=𝟎
(6.26)

for MT sphere 𝛾 in the unit cell 𝑹′, if atom 𝛼 (and its images, which is implicitly assumed
hereinafter) is displaced to satisfy a phonon with wave vector ̃𝒒. DuePseudo-density to the Kronecker delta

in the last relation, a pseudo-charge is only located in the displaced atom 𝛼. Moreover,
Klüppelberg shows that only the channel with orbital quantum number 𝑙 = 1 delivers a
contribution, as equation (6.26) is evaluated at the MT sphere center. Since this form of

the multipole moments is not easily tractable (cf. section 6.2.1), Klüppelberg suggests the

reformulation

1

∑
𝑚=−1

(𝛁𝒔[𝑠Y∗
1𝑚( ̂𝒔)]𝒔=𝟎)Y1𝑚( ̂𝒓𝛼) =

3
4π

̂𝒓𝛼 (6.27a)

=
3

∑
𝑖=1

̂𝒆𝑖

1

∑
𝑚=−1

3
4π

𝜁𝑖𝑚Y1𝑚( ̂𝒓𝛼) , (6.27b)

with the matrix elements

𝜁 = √2π
3

⎛⎜⎜
⎝

1 0 −1
i 0 i
0

√
2 0

⎞⎟⎟
⎠

, (6.27c)
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defining the linear combination of spherical harmonics for the vector 𝒓. This form (6.27b)
leads to the pseudo-density

𝒏psext(𝑮; ̃𝒒𝛼) = −4π
𝛺

1

∑
𝑚=−1

i(2 + 2𝑁 + 3)!!
(2 + 1)!!𝑅𝛼

j1+𝑁+1(|𝑮 ± ̃𝒒|𝑅𝛼)
(|𝑮 ± ̃𝒒|𝑅𝛼)𝑁+1 e−i(𝑮± ̃𝒒)⋅𝝉𝛼 (6.28a)

×Y1𝑚(𝑮± ̃𝒒
⋀

)𝖖𝛼𝟎
1𝑚( ̃𝒒𝛼)

= i
𝑍𝛼
𝛺

(2𝑁 + 5)!!
(𝑮 ± ̃𝒒)e−i(𝑮± ̃𝒒)⋅𝝉𝛼

(|𝑮 ± ̃𝒒|𝑅𝛼)𝑁+2 j𝑁+2(|𝑮 ± ̃𝒒|𝑅𝛼) (6.28b)

𝒏psext(𝟎; ̃𝒒𝛼) = 𝟎 . (6.28c)

Now, Potentialsboth the first-order variation of the external potential

𝑽 (1)
ext (𝒓; 𝒒±𝛼) = ∑

𝑮|𝑮±𝒒≠𝟎
4π

𝒏psext(𝑮; 𝒒±𝛼)
|𝑮 ± 𝒒|2

ei(𝑮±𝒒)⋅𝒓 (6.29a)

≕ ∑
𝑮|𝑮±𝒒≠𝟎

𝑽 (1)
ext (𝑮; 𝒒±𝛼)ei(𝑮±𝒒)⋅𝒓 (6.29b)

and the gradient of the first-order variation can be separately set up by solving the Poisson

equation. The gradient is in line with a collective displacement of all atoms, without a 𝒒-
modulation, therefore an additional sum over all atoms implies

𝛁𝑉 (0)
ext (𝒓) = − ∑

𝑮|𝑮≠𝟎
∑
𝛼

4π
𝒏psext(𝑮; 𝛼)

|𝑮|2
ei𝑮⋅𝒓 (6.30a)

≕ ∑
𝑮|𝑮≠𝟎

[𝛁𝑉 (0)
ext ](𝑮)ei𝑮⋅𝒓 . (6.30b)

Muffin-tin contribution

After the IR representation for the first-order variation of the external potential and the

gradient of the external potential have been found, a Dirichlet boundary-value problem is

solved. As a consequence, the spherical harmonic coefficients of the MT first-order external-

potential variation are given by

[𝑽 (1)
ext (𝒓𝛾 + 𝝉𝛾 +𝑹′; 𝒒±𝛼)]

𝑙𝑚
(6.31)

= e±i𝒒⋅𝑹′ ∑
𝑮|𝑮±𝒒≠𝟎

ei(𝑮±𝒒)⋅𝝉𝛾𝑽 (1)
ext (𝑮; 𝒒±𝛼)(

𝑟𝛾
𝑅𝛾

)
𝑙

4πi𝑙Y∗
𝑙𝑚(𝑮± 𝒒
⋀

)j𝑙(|𝑮 ± 𝒒|𝑅𝛾)

− e±i𝒒⋅𝑹′𝑍𝛼δ𝛾𝛼
4π
3

1
𝑟2𝛼

⎛⎜
⎝
1 −(

𝑟𝛼
𝑅𝛼

)
3
⎞⎟
⎠

1

∑
𝑚=−1

3
4π

∑
𝑖

̂𝒆𝑖𝜁𝑖𝑚 .

Furthermore, the gradient of the unperturbed external potential in the MT spheres reads

[𝛁𝑉 (0)
ext (𝒓𝛾 + 𝝉𝛾 +𝑹′)]

𝑙𝑚
= ∑

𝑮|𝑮≠𝟎
ei𝑮⋅𝝉𝛾[𝛁𝑉 (0)

ext ](𝑮)(
𝑟𝛾
𝑅𝛾

)
𝑙

4πi𝑙Y∗
𝑙𝑚( ̂𝑮)j𝑙(|𝑮|𝑅𝛾)

+ 𝑍𝛼δ𝛾𝛼
4π
3

1
𝑟2𝛼

⎛⎜
⎝
1 −(

𝑟𝛼
𝑅𝛼

)
3
⎞⎟
⎠

1

∑
𝑚=−1

3
4π

∑
𝑖

̂𝒆𝑖𝜁𝑖𝑚 . (6.32)
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6.3.2 Linear Variations of the Hartree Potential

CalculatingMotivation the linear variations of the Hartree potential seems less sophisticated, because

no gradients of Dirac delta distributions are involved. Nevertheless, the linear all-electron

charge-density variations are still not well-describable in a Fourier expansion, especially in

the vicinity of the nuclei. Therefore, Klüppelberg again applies the Coulomb potential scheme

of Weinert, which is why this section subdivides into the setup of the IR and MT contributions

of the linear Hartree variations.

Interstitial contribution

WhenMultipole
moments

calculating the multipole moments, one must account for the charge density variation

given in the MT spheres as well as in the IR. Klüppelberg therefore derives for the multipole

moments of the first-order Hartree potential variation

[𝖖𝛾𝑹′

δ𝜌 (𝒒±𝛼)]
𝑙𝑚

(6.33)

= e±i𝒒⋅𝑹′ ∫
𝑅�̊�

0
𝑟𝑙+2
𝜈�̊� [𝝆(1)

𝛾,full(𝑟𝜈�̊�; 𝒒±𝛼)]
𝑙𝑚

d𝑟𝜈�̊�

− 4πi𝑙𝑅𝑙+3
�̊� e±i𝒒⋅𝑹′ ∑

𝑮|𝑮+𝒒≠𝟎
𝝆(1)
IR (𝑮; 𝒒±𝛼)ei(𝑮±𝒒)⋅𝝉𝛾Y∗

𝑙𝑚(𝑮± 𝒒
⋀

)
j𝑙+1(|𝑮 ± 𝒒|𝑅�̊�)

|𝑮 ± 𝒒|𝑅�̊�
,

while the multipole moments for the gradient of the Hartree potential variation read

[𝖖𝛾𝑹′

𝛁𝜌 ]
𝑙𝑚

= ∫
𝑅�̊�

0
𝑟𝑙+2
𝜈�̊� [𝛁𝜌(0)𝛾 (𝑟𝜈�̊�)]

𝑙𝑚
d𝑟𝜈�̊� (6.34)

− 4πi𝑙𝑅𝑙+3
�̊� ∑

𝑮|𝑮≠𝟎
[𝛁𝜌(0)IR ](𝑮)ei𝑮⋅𝝉𝛾Y∗

𝑙𝑚( ̂𝑮)
j𝑙+1(|𝑮|𝑅�̊�)

|𝑮|𝑅�̊�
.

Both multipole moments exhibit analogies to the Hartree multipole moments in section 5.6.1,

particularly because the contributions of the IR charge-density variation and that of the MT

sphere are subtracted from each other. Moreover, since equations (6.33) and (6.34) need no

further reformulation for the implementation, I anticipate the nomenclature of chapter 7, and

already indicate the discrete logarithmic MT mesh 𝑟𝜈�̊� of atom 𝛾 at this point. Furthermore,
some quantities remain equal in all MT spheres of the same atom type, and thus must only be

stored once for the representative MT sphere ̊𝛾 (see section 5.7). This I display by a small
circle above the atom indices hereinafter. DueSurface-term

multipole
correction

to the discontinuity of the charge density an

additional surface term

[𝖖𝛾𝑹′

surf
( ̃𝒒𝛼)]

𝑙𝑚
= δ𝛾𝛼e±i ̃𝒒⋅𝑹′ ∮

∂𝛼
̂𝒆Y∗

𝑙𝑚( ̂𝒓𝛼)𝑟𝑙𝛼(𝜌
(0)
𝛼 (𝒓𝛼 + 𝝉𝛼) − 𝜌(0)IR (𝒓𝛼 + 𝝉𝛼)) d𝑆 (6.35)

with the aforementioned ̃𝒒 notation must be included into the calculation of the multipole
moments. In order to calculate this term, the charge density response

𝒏surf( ̃𝒒𝛼) = (𝜌(0)𝛼 (𝒓) − 𝜌(0)IR (𝒓))∣
∂𝛼

∑
𝑹

e±i ̃𝒒⋅𝑹
𝒓 − 𝝉𝛼𝑹

−𝑹

∣𝒓 − 𝝉𝛼𝑹
−𝑹∣

δ(𝑅𝛼 − ∣𝒓 − 𝝉𝛼𝑹
−𝑹∣) (6.36)
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can be assumed. The surface contribution is a function of the electron charge density discon-

tinuity and usually less relevant than the remaining contributions of the multipole moments.

All Pseudo-densitiesin all, the aforementioned multipole moments contributions for the first-order variation of

the Hartree potential combine to

[𝖖𝛾𝑹′

δ𝜌,tot(𝒒
±𝛼)]

𝑙𝑚
= [𝖖𝛾𝑹′

δ𝜌 (𝒒±𝛼)]
𝑙𝑚

+ [𝖖𝛾𝑹′

surf
(𝒒±𝛼)]

𝑙𝑚
(6.37)

and the pseudo-density with these multipole moments is given by

𝒏ps,δ𝜌Htr (𝑮; 𝒒±𝛼) = 𝝆(1)
IR (𝑮; 𝒒±𝛼) + 4π

𝛺
∑
𝛾

∑
𝑙𝑚

(−i)𝑙(2𝑙 + 2𝑁 + 3)!!
(2𝑙 + 1)!!𝑅𝑙

𝛾

j𝑙+𝑁+1(|𝑮 ± 𝒒|𝑅𝛾)

(|𝑮 ± 𝒒|𝑅𝛾)
𝑁+1 (6.38)

× e−i(𝑮±𝒒)⋅𝜏𝛾Y𝑙𝑚(𝑮± 𝒒
⋀

)[𝒒𝛾𝑹′

δ𝜌,tot(𝒒
±𝛼)]

𝑙𝑚
.

The multipole moments for the gradient of the unperturbed Hartree potential, with the

Kronecker delta in the surface contribution already evaluated, are given by

[𝖖𝛾𝑹′

𝛁𝜌,tot]𝑙𝑚
= [𝖖𝛾𝑹′

𝛁𝜌 ]
𝑙𝑚

−∑
𝛼

[𝖖𝛾𝑹′

surf
( ̃𝒒±𝛼)]

𝑙𝑚
(6.39)

so that the pseudo-charges yield

𝒏ps,𝛁Htr (𝑮) = 𝛁𝜌(0)IR (𝑮) + 4π
𝛺

∑
𝛾

∑
𝑙𝑚

(−i)𝑙(2𝑙 + 2𝑁 + 3)!!
(2𝑙 + 1)!!𝑅𝑙

𝛾

j𝑙+𝑁+1(|𝑮|𝑅𝛾)

(|𝑮|𝑅𝛾)
𝑁+1 (6.40)

× e−i𝑮⋅𝝉𝛾Y𝑙𝑚( ̂𝑮)[𝖖𝛾𝑹′

𝛁𝜌,tot]𝑙𝑚
.

These Potentialspseudo-densities can be used to solve the Poisson equation and obtain the IR represen-

tation of the first-order Hartree potential variation

𝑽 (1)
Htr (𝒓; 𝒒

±𝛼) = ∑
𝑮|𝑮±𝒒≠𝟎

4π
𝒏ps,δ𝜌Htr (𝑮; 𝒒±𝛼)

|𝑮 ± 𝒒|2
ei(𝑮±𝒒)⋅𝒓 (6.41a)

≔ ∑
𝑮|𝑮±𝒒≠𝟎

𝑽 (1)
Htr (𝑮; 𝒒±𝛼)ei(𝑮±𝒒)⋅𝒓 . (6.41b)

The IR representation for the gradient of the unperturbed Hartree potential reads

𝛁𝑉 (0)
Htr (𝒓) = ∑

𝑮|𝑮≠𝟎
4π

𝒏ps𝛁Htr (𝑮)
|𝑮|2

ei𝑮⋅𝒓 (6.42a)

≔ ∑
𝑮|𝑮≠𝟎

[𝛁𝑉 (0)
Htr ](𝑮)ei𝑮⋅𝒓 . (6.42b)
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Muffin-tin contribution

Analogously to the linear external potential variations, the Dirichlet boundary value problem

is solved. This results in the MT representation of the first-order Hartree potential variation

[𝑽 (1)
Htr (𝒓𝛾 + 𝝉𝛾; 𝒒±𝛼)]

𝑙𝑚
(6.43)

= 4π
2𝑙 + 1

∫
𝑅𝛾

0
𝑠2𝛾[𝝆

(1)
𝛾,full(𝒓𝛾; 𝒒

±𝛼)]
𝑙𝑚

𝑟𝑙<
𝑟𝑙+1
>

⎛⎜
⎝
1 −(

𝑟>
𝑅𝛾

)
2𝑙+1

⎞⎟
⎠

d𝑠𝛾

+(
𝑟𝛾
𝑅𝛾

)
𝑙

∑
𝑮|𝑮±𝒒≠𝟎

ei(𝑮±𝒒)⋅𝝉𝛾𝑽 (1)
Htr (𝑮; 𝒒±𝛼)4πi𝑙Y∗

𝑙𝑚(𝑮± 𝒒
⋀

)j𝑙(|𝑮 ± 𝒒|𝑅𝛾) .

Furthermore, it leads to the gradient of the unperturbed Hartree potential in the MT spheres

[𝛁𝑉 (0)
Htr (𝒓𝛾 + 𝝉𝛾)]𝑙𝑚

= 4π
2𝑙 + 1

∫
𝑅𝛾

0
𝑠2𝛾[𝛁𝜌(0)𝛾 (𝑟𝛾)]𝑙𝑚

𝑟𝑙<
𝑟𝑙+1
>

⎛⎜
⎝
1 −(

𝑟>
𝑅𝛾

)
2𝑙+1

⎞⎟
⎠

d𝑠𝛾 (6.44)

+(
𝑟𝛾
𝑅𝛾

)
𝑙

∑
𝑮|𝑮≠𝟎

ei𝑮⋅𝝉𝛾[𝛁𝑉 (0)
Htr ](𝑮)4πi𝑙Y∗

𝑙𝑚( ̂𝑮)j𝑙(|𝑮|𝑅𝛾) .

6.3.3 Linear Variations of the Exchange-Correlation Potential

The linear variations of the xc potential result from a functional derivative of the xc potential

𝛁𝑉 (0)
xc (𝒓) = 𝛁𝜌(0)(𝒓)

δ𝑉 (0)
xc [𝜌(𝒓)]
δ𝜌(𝒓)

∣
𝜌(𝒓)=𝜌(0)(𝒓)

(6.45)

𝑽 (1)
xc (𝒓; 𝒒±𝛼) = 𝝆(1)(𝒓; 𝒒±𝛼)

δ𝑉 (0)
xc [𝜌(𝒓)]
δ𝜌(𝒓)

∣
𝜌(𝒓)=𝜌(0)(𝒓)

, (6.46)

where in equation (6.45) the inner derivative is expressed by the gradient of the charge

density and in equation (6.46) by the first-order variation of the charge density.

Interstitial contribution

In the IR, both the functional derivative of the xc kernel with respect to the charge density and

the gradient of the charge density (first-order variation of the charge density) are expanded

in plane waves. It is imperative to find the Fourier expansion coefficients of the interstitial xc

potential which is composed of the products

𝛁𝑉 (0)
xc (𝒓) = ∑

𝑮𝑮′

𝛁𝜌(0)IR (𝑮)
δ𝑉 (0)
xc [𝜌(𝒓)]
δ𝜌(𝒓)

(𝑮′)ei(𝑮+𝑮′)⋅𝒓 (6.47)

𝑽 (1)
xc (𝒓; 𝒒±𝛼) = ∑

𝑮𝑮′

𝝆(1)
IR (𝑮; 𝒒±𝛼)

δ𝑉 (0)
xc [𝜌(𝒓)]
δ𝜌(𝒓)

(𝑮′)ei(𝑮+𝑮′±𝒒)⋅𝒓 . (6.48)

Further details are given in the IR part of section 7.3.2.
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Muffin-tin contribution

In the MT spheres, the constituents of the xc-potential variations are expanded in spherical

harmonics. The aim constitutes in finding the expansion coefficients for the spherical harmonic

expansion of the product, which for the gradient of the unperturbed xc potential yields

𝛁𝑉 (0)𝛾
xc (𝒓) = (∑

𝑙𝑚
[𝛁𝜌(0)𝛾 (𝑟)]

𝑙𝑚
Y𝑙𝑚( ̂𝒓))⎛⎜⎜

⎝
∑
𝑙′𝑚′

⎡
⎢
⎣

δ𝑉 (0)
xc [𝜌(0)(𝒓)]

δ𝜌(0)(𝒓)
(𝑟)⎤⎥

⎦𝑙′𝑚′

Y𝑙′𝑚′( ̂𝒓)⎞⎟⎟
⎠

, (6.49)

and the first-order variation of the xc potential is

𝑽 (1)𝛾
xc (𝒓; 𝒒±𝛼) = (∑

𝑙𝑚
[𝝆(1)

𝛾 (𝑟; 𝒒±𝛼)]
𝑙𝑚

Y𝑙𝑚( ̂𝒓))⎛⎜⎜
⎝
∑
𝑙′𝑚′

⎡
⎢
⎣

δ𝑉 (0)
xc [𝜌(0)(𝒓)]

δ𝜌(0)(𝒓)
(𝑟)⎤⎥

⎦𝑙′𝑚′

Y𝑙′𝑚′( ̂𝒓)⎞⎟⎟
⎠
.(6.50)

Further details are provided by the MT part of section 7.3.2.

6.3.4 Second-Order Variation of the Ion–Ion Interaction

In Periodic lattice
structure

order to determine the second-order ion–ion energy variation 𝐸(2)
ii
for equation (6.14a),

the ion–ion interaction of zeroth order, in equation (2.2d), is reformulated in the sense of

a periodic lattice structure. Within this lattice, a phonon with wave vector 𝒒 displaces the
nuclei. This means an atom 𝛼 (𝛽) is located in unit cell𝑹 (𝑹′) at the position 𝝉𝛼𝑹

(𝝉𝛽𝑹′) and

displaced by 𝒘𝒒
𝛼𝑹
(𝒘𝒒

𝛽𝑹′
) resulting in

𝐸(0)
ii

(𝒒) = 1
2
∑
𝛼𝛽

∑
𝑹𝑹′|
𝑹≠𝑹′

𝑍𝛼𝑍𝛽

∣𝝉𝛼𝑹
+𝑹 +𝒘𝒒

𝛼𝑹
− 𝝉𝛽𝑹′ −𝑹′ −𝒘𝒒

𝛽𝑹′
∣
. (6.51)

The 𝝉 are now expressed in the global coordinate system of the unit cell, and the displacements
are defined in equation (6.5). Relative to equation (2.2d), a combination of three vectors (cf.

equation (6.4)) now points to the center of the respective MT sphere.

The Derivationansatz for the second-order response of the ion–ion energy

𝐸(2)
ii

(𝒒) = 1
2
∑
𝛼′𝛽′

∑
𝑹″𝑹‴

𝒘⊤𝒒
𝛼′

𝑹″

⎡⎢
⎣
𝛁𝒘𝒒

𝛼′
𝑹″

𝛁⊤
𝒘𝒒

𝛽′
𝑹‴

𝐸(0)
ii

(𝒒)⎤⎥
⎦𝒘𝒒=𝟎

𝒘𝒒
𝛽′
𝑹‴

(6.52a)

exhibits analogies to the second-order term in a Taylor series of a scalar function with a

multi-dimensional argument, which in this case is given by the displacement. Each gradient

addresses the displacement of a general atom 𝛼′ or 𝛽′ in the unit cells to which 𝑹″ or 𝑹‴

point, respectively. According to the product rule, this leads to the four terms

𝐸(2)
ii

(𝒒) = 1
2
∑
𝛼′𝛽′

∑
𝑹″𝑹‴

𝒘⊤𝒒
𝛼′

𝑹″

⎡⎢
⎣
(δ𝛼′𝛼δ𝑹″𝑹 + δ𝛼′𝛽δ𝑹″𝑹′)(δ𝛽′𝛼δ𝑹‴𝑹 + δ𝛽′𝛽δ𝑹‴𝑹′) (6.52b)

×𝛁𝒘𝒒
𝛼′

𝑹″

𝛁⊤
𝒘𝒒

𝛽′
𝑹‴

𝐸(2)
ii

(𝒒)⎤⎥
⎦𝒘𝒒=𝟎

𝒘𝒒
𝛽′
𝑹‴

.
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As soon as the derivative sets 𝛼′ or 𝛽′ to either 𝛼 or to 𝛽, respectively, this also fixes𝑹″ or𝑹‴

to either 𝑹 or 𝑹′, mirroring in the products of Kronecker deltas. Applying the Kronecker

deltas, redirecting the application of the gradients from the displacements 𝒘𝒒 to the atomic

positions 𝝉 (see equation (5.68)), and evaluating 𝒘 = 𝟎 yields

𝐸(2)
ii

(𝒒) = 1
2
∑
𝛼𝛽

∑
𝑹𝑹′|
𝑹≠𝑹′

𝑍𝛼𝑍𝛽
⎛⎜
⎝
𝒘⊤𝒒

𝛼𝑹
𝛁𝝉𝛼𝑹

𝛁⊤
𝝉𝛼𝑹

1
∣𝝉𝛼𝑹

+𝑹 − 𝝉𝛽𝑹′ −𝑹′∣
𝒘𝒒

𝛼𝑹
(6.52c)

+𝒘⊤𝒒
𝛼𝑹

𝛁𝝉𝛼𝑹
𝛁⊤

𝝉𝛽𝑹′

1
∣𝝉𝛼𝑹

+𝑹 − 𝝉𝛽𝑹′ −𝑹′∣
𝒘𝒒

𝛽𝑹′

+𝒘⊤𝒒
𝛽𝑹′

𝛁𝝉𝛽𝑹′
𝛁⊤

𝝉𝛼𝑹

1
∣𝝉𝛼𝑹

+𝑹 − 𝝉𝛽𝑹′ −𝑹′∣
𝒘𝒒

𝛼𝑹

+𝒘⊤𝒒
𝛽𝑹

𝛁𝝉𝛽𝑹′
𝛁⊤

𝝉𝛽𝑹′

1
∣𝝉𝛼𝑹

+𝑹 − 𝝉𝛽𝑹′ −𝑹′∣
𝒘𝒒

𝛽𝑹′
⎞⎟
⎠

.

By renaming 𝛼𝑹 to 𝛽𝑹′ and vice versa, and doing the same with 𝑹 and 𝑹′, the last two lines

are equalized to the first two lines but the denominators remain effectively the same so that

𝐸(2)
ii

(𝒒) = ∑
𝛼𝛽

∑
𝑹𝑹′|
𝑹≠𝑹′

𝑍𝛼𝑍𝛽
⎛⎜
⎝
𝒘⊤𝒒

𝛼𝑹
𝛁𝝉𝛼𝑹

𝛁⊤
𝝉𝛼𝑹

1
∣𝝉𝛼𝑹

+𝑹 − 𝝉𝛽𝑹′ −𝑹′∣
𝒘𝒒

𝛼𝑹
(6.52d)

+𝒘⊤𝒒
𝛼𝑹

𝛁𝝉𝛼𝑹
𝛁⊤

𝝉𝛽𝑹′

1
∣𝝉𝛼𝑹

+𝑹 − 𝝉𝛽𝑹′ −𝑹′∣
𝒘𝒒

𝛽𝑹′
⎞⎟
⎠

.

If now inserting the definitions of the displacements (6.5), and substituting the 𝑹 and 𝑹′ by

the definitions 𝑹″ ≔ 𝑹′ −𝑹 as well as 𝑹‴ = 𝑹′ (which are both decoupled from the 𝑹″

and 𝑹‴ introduced in equation (6.52a)),

𝐸(2)
ii

(𝒒) = ∑
𝛼𝛽

𝑍𝛼𝑍𝛽

⎧{{
⎨{{⎩

(∑
𝑹‴

e−2i𝒒⋅𝑹‴)
⎛⎜⎜⎜⎜⎜
⎝

𝑸†
𝛼 ∑

𝑹″|𝑹″≠𝟎,
if𝛼=𝛽

𝛁𝝉𝛼
𝛁⊤

𝝉𝛼

e2i𝒒⋅𝑹″

∣𝝉𝛼 − 𝝉𝛽 −𝑹″∣
𝑸∗

𝛼

+𝑸†
𝛽 ∑

𝑹″|𝑹″≠𝟎,
if𝛼=𝛽

𝛁𝝉𝛼
𝛁⊤

𝝉𝛽

ei𝒒⋅𝑹″

∣𝝉𝛼 − 𝝉𝛽 −𝑹″∣
𝑸∗

𝛼

⎞⎟⎟⎟⎟⎟
⎠

+(∑
𝑹‴

e2i𝒒⋅𝑹‴)
⎛⎜⎜⎜⎜⎜
⎝

𝑸⊤
𝛼 ∑

𝑹″|𝑹″≠𝟎,
if𝛼=𝛽

𝛁𝝉𝛼
𝛁⊤

𝝉𝛼

e−2i𝒒⋅𝑹″

∣𝝉𝛼 − 𝝉𝛽 −𝑹″∣
𝑸𝛼

+𝑸⊤
𝛽 ∑

𝑹″|𝑹″≠𝟎,
if𝛼=𝛽

𝛁𝝉𝛼
𝛁⊤

𝝉𝛽

e−i𝒒⋅𝑹″

∣𝝉𝛼 − 𝝉𝛽 −𝑹″∣
𝑸𝛼

⎞⎟⎟⎟⎟⎟
⎠
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+𝑁𝑸⊤
𝛼 ∑

𝑹″|𝑹″≠𝟎,
if𝛼=𝛽

𝛁𝝉𝛼
𝛁⊤

𝝉𝛼

1
∣𝝉𝛼 − 𝝉𝛽 −𝑹″∣

𝑸𝛼

+𝑁𝑸⊤
𝛽 ∑

𝑹″|𝑹″≠𝟎,
if𝛼=𝛽

𝛁𝝉𝛼
𝛁⊤

𝝉𝛽

ei𝒒⋅𝑹″

∣𝝉𝛼 − 𝝉𝛽 −𝑹″∣
𝑸𝛼

+𝑁𝑸†
𝛼 ∑

𝑹″|𝑹″≠𝟎,
if𝛼=𝛽

𝛁𝝉𝛼
𝛁⊤

𝝉𝛼

1
∣𝝉𝛼 − 𝝉𝛽 −𝑹″∣

𝑸∗
𝛼

+𝑁𝑸†
𝛽 ∑

𝑹″|𝑹″≠𝟎,
if𝛼=𝛽

𝛁𝝉𝛼
𝛁⊤

𝝉𝛽

e−i𝒒⋅𝑹″

∣𝝉𝛼 − 𝝉𝛽 −𝑹″∣
𝑸∗

𝛼

⎫}}
⎬}}⎭

(6.52e)

results. Self-interaction is avoided by excluding the terms 𝑹″ = 𝟎 for the case 𝛼 = 𝛽. The
sums in parentheses within the first and third lines yield either 0 (if 2𝒒 is a reciprocal lattice
vector𝑮) or𝑁, the number of unit cells (else). Due to equation (6.12), only the last four lines
of the previous equation are of interest, as the other lines contain either pairs of 𝑸† and 𝑸∗

or 𝑸⊤ and 𝑸, respectively. Furthermore, the indices 𝑹 and 𝑹′ of the atom indices 𝛼 or 𝛽 can
be dropped, because 𝑹″ now indicates the distance between the unit cells the atoms 𝛼 or 𝛽
are located in.

Consistent Reformulation for
Weinert method

with the prevailing nomenclature and exploiting the lattice periodicity to

focus on a single unit cell (which implies dividing by 𝑁), Klüppelberg [88] defines

𝐸(2)
ii

(𝒒+−) ≔ ∑
𝛼𝛽

𝑍𝛼𝑍𝛽 ∑
𝑹″|𝑹″≠𝟎,

if𝛼=𝛽

⎛⎜
⎝
𝑸⊤

𝛼 𝛁𝝉𝛼
𝛁⊤

𝝉𝛼

1
∣𝝉𝛼 − 𝝉𝛽 −𝑹″∣

𝑸∗
𝛼 (6.53a)

+𝑸⊤
𝛽 𝛁𝝉𝛼

𝛁⊤
𝝉𝛽

ei𝒒⋅𝑹″

∣𝝉𝛼 − 𝝉𝛽 −𝑹″∣
𝑸∗

𝛼
⎞⎟
⎠

𝐸(2)
ii

(𝒒−+) ≔ ∑
𝛼𝛽

𝑍𝛼𝑍𝛽 ∑
𝑹″|𝑹″≠𝟎,

if𝛼=𝛽

⎛⎜
⎝
𝑸†

𝛼 𝛁𝝉𝛼
𝛁⊤

𝝉𝛼

1
∣𝝉𝛼 − 𝝉𝛽 −𝑹″∣

𝑸𝛼 (6.53b)

+𝑸†
𝛽 𝛁𝝉𝛼

𝛁⊤
𝝉𝛽

e−i𝒒⋅𝑹″

∣𝝉𝛼 − 𝝉𝛽 −𝑹″∣
𝑸𝛼

⎞⎟
⎠

.

It is obvious that 𝐸(2)
ii

(𝒒+−) = 𝐸∗(2)
ii

(𝒒−+). Moreover, the gradient with respect to 𝝉𝛽 differs
from that with respect to 𝝉𝛼 only by the sign of its inner derivative. Consequently

𝐸(2)
ii

(𝒒−+) = ∑
𝛼𝛽

𝑍𝛼𝑍𝛽 ∑
𝑹″|𝑹″≠𝟎,

if𝛼=𝛽

⎛⎜
⎝
𝑸†

𝛼 𝛁𝝉𝛼
𝛁⊤

𝝉𝛼

1
∣𝝉𝛼 − 𝝉𝛽 −𝑹″∣

𝑸𝛼 (6.54a)

−𝑸†
𝛽 𝛁𝝉𝛼

𝛁⊤
𝝉𝛼

e−i𝒒⋅𝑹″

∣𝝉𝛼 − 𝝉𝛽 −𝑹″∣
𝑸𝛼

⎞⎟
⎠
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≕ ∑
𝛼𝛽

𝑸†
𝛽 𝐸(2)𝛽𝛼

ii
(𝒒−+) 𝑸𝛼 − 𝑸†

𝛼 𝐸(2)𝛽𝛼
ii

(𝟎−+) 𝑸𝛼 (6.54b)

holds and reveals that its second term equals minus the first term for 𝒒 = 𝟎, ignoring the
polarization vectors. This means that these terms obviously only cancel each other for the 3 × 3
submatrices located in the diagonal of the 3𝑁 ×3𝑁 dynamical matrix. Hence, in the following
it is imperative to find a way to calculate

𝐸(2)𝛽𝛼
ii

(𝒒−+) = −𝑍𝛼 ∑
𝑹″|𝑹″≠𝟎,

if𝛼=𝛽

𝛁𝝉𝛼
𝛁⊤

𝝉𝛼

𝑍𝛽e−i𝒒⋅𝑹″

∣𝝉𝛼 − 𝝉𝛽 −𝑹″∣
(6.55a)

= −𝑍𝛼 lim
𝒓→𝝉𝛼

∑
𝑹″|𝑹″≠𝟎,

if𝛼=𝛽

𝛁𝛁⊤ 𝑍𝛽e−i𝒒⋅𝑹″

∣𝒓 − 𝝉𝛽 −𝑹″∣
(6.55b)

and sufficient to solely focus on it. In equation (6.55b), a limit is introduced, implying the

gradients should be redirected to 𝒓 instead of 𝝉𝛼. By utilizing the Dirac delta distribution, an
integral representation becomes feasible. However, the gradients still act on 𝒓, i.e., on the
denominator of the fraction. With two applications of integrations by parts, the gradients are

redirected to 𝒓′, yielding

𝐸(2)𝛽𝛼
ii

(𝒒−+) = 𝑍𝛼 lim
𝒓→𝝉𝛼

∫
𝛺

∑
𝑹″|𝑹″≠𝟎,

if𝛼=𝛽

−𝑍𝛽e−i𝒒⋅𝑹″𝛁𝒓′𝛁⊤
𝒓′δ(𝒓′ − (𝝉 ′

𝛽 +𝑹″))

|𝒓 − 𝒓′|
d3𝑟′ . (6.55c)

Thereby, the boundary terms vanish because of the Dirac delta distribution in the limit as

its argument approaches infinity, and the two minus signs emerging in front of the volume

integral cancel each other. For this integral in equation (6.55c), Klüppelberg has developed

a framework which is in line with the Weinert [64] formalism for calculating the Coulomb

potential and its first variations. However, his theory borrows some concepts from the publi-

cation of Weinert, Wimmer, and Freeman [66]. The condition underlying the sum over 𝑹″,

from equation (6.52e) on, is relaxed while calculating the IR contribution of equations (6.55).

Thus, the sum in equation (6.55c) runs over all 𝑹″, also for 𝛼 = 𝛽, in order to not violate the
periodicity of the lattice [127]. This must be considered later in the MT region.

InMultipole
moments

this sense, from equation (6.55c) the true charge density

𝑛𝛽(𝒓′; 𝒒−+) = −𝑍𝛽 ∑
𝑹″

e−i𝒒⋅𝑹″𝛁𝒓′𝛁⊤
𝒓′δ(𝒓′ − (𝝉𝛽 +𝑹″)) (6.56a)

can be extracted. Renaming the indices 𝑹″ to 𝑹‴ and 𝛽 to 𝛽′ yields

𝑛𝛽′(𝒓′; 𝒒−+) = −𝑍𝛽′ ∑
𝑹‴

e−i𝒒⋅𝑹‴𝛁𝒓𝛽′𝛁
⊤
𝒓𝛽′δ(𝒓

′ − (𝝉𝛽′ +𝑹‴)) (6.56b)

and is used to find the multipole moments. They are given by the MT integral

𝔮𝛽𝑹″

𝑙𝑚
(𝒒−+) = ∫

𝛽𝑹″

Y∗
𝑙𝑚(𝒓′ − 𝝉𝛽 −𝑹″
⋀

)∣𝒓′ − 𝝉𝛽 −𝑹″∣𝑙𝑛𝛽′(𝒓𝛽 + 𝜏𝛽 +𝑹; 𝒒−+) d3𝑟𝛽 (6.57a)
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and are evaluated in the local coordinate system with its transformation 𝒓𝛽 = 𝒓′ − 𝝉𝛽 −𝑹.
Inserting equation (6.56a) leads to

𝔮𝛽𝑹″

𝑙𝑚
(𝒒−+) = ∑

𝑹‴

𝑍𝛽′e−i𝒒⋅𝑹‴ ∫
𝛽𝑹″

Y∗
𝑙𝑚( ̂𝒓𝛽)∣𝒓′

𝛽∣
𝑙

(6.57b)

×𝛁𝒓𝛽
𝛁⊤

𝒓𝛽
δ(𝒓𝛽 − (𝝉𝛽′ − 𝝉𝛽) − (𝑹‴ −𝑹″)) d3𝑟𝛽 ,

which fixes 𝝉𝛽′ ≡ 𝝉𝛽 and𝑹‴ ≡ 𝑹″, collapsing the sum over𝑹‴. Circumventing the gradients

acting on the Dirac delta by integrating by parts twice, results in a classical Dirac delta integral

which can be evaluated so that

𝔮𝛽𝑹″

𝑙𝑚
(𝒒−+) = −𝑍𝛽e−i𝒒⋅𝑹″𝛁𝒓𝛽

𝛁⊤
𝒓𝛽
[𝑟𝑙𝛽Y

∗
𝑙𝑚( ̂𝒓𝛽)]𝒓𝛽=𝟎

. (6.57c)

The boundary terms vanish because the Dirac delta and its gradient are zero at the MT sphere

boundary, and analogously to section 6.3.1, equation (6.57c) implies that 𝑙 = 2 gives the only
contribution. This Pseudo-densityleads to the pseudo-density

𝑛𝛽
ps
(𝑮; 𝒒−+) =

𝑍𝛽

𝛺
(2𝑁 + 7)!!

j𝑁+3(|𝑮 − 𝒒|𝑅𝛽)

(|𝑮 − 𝒒|𝑅𝛽)
𝑁+3 e−i(𝑮−𝒒)⋅𝝉𝛽 (6.58)

×((𝑮− 𝒒)(𝑮 − 𝒒)⊤ −
|𝑮− 𝒒|2

3
1) ,

provided 𝑮− 𝒒 ≠ 𝟎, otherwise there is no contribution. Now Beyond displaced
muffin-tin sphere

it is possible to formulate the

IR contribution as

𝑍𝛼 lim
𝒓→𝝉𝛼

∫
𝛺

∑
𝑹″|𝑹″≠𝟎,

if𝛼=𝛽

−𝑍𝛽e−i𝒒⋅𝑹″𝛁𝒓′𝛁⊤
𝒓′δ(𝒓′ − (𝝉 ′

𝛽 +𝑹″))

|𝒓 − 𝒓′|
d3𝑟′ (6.59a)

= ∑
𝑮|𝑮−𝒒≠𝟎

𝑍𝛼 lim
𝒓→𝝉𝛼

4π𝑛𝛽(𝑮; 𝒒−+)
|𝑮 − 𝒒|2

ei(𝑮−𝒒)⋅𝒓

= ∑
𝑮|𝑮−𝒒≠𝟎

𝑍𝛼
4π𝑛𝛽(𝑮; 𝒒−+)

|𝑮 − 𝒒|2
ei(𝑮−𝒒)⋅𝝉𝛼 , (6.59b)

while in this context IR means everything beyond the MT spheres 𝛽 (and their images), i.e.,
also the MT spheres 𝛽 ≠ 𝛼. Thus, there is no danger that self-interaction is considered in this
case.

Given Displaced
muffin-tin sphere

the MT sphere 𝛽 = 𝛼 at 𝑹 = 0, a Dirichlet boundary value problem is set up.
To avoid self interaction in the volume integral, the ion charge at 𝑹 = 𝟎 is excluded by an
appropriate sum. Therefore, the Dirac delta in the volume integral always yields zero as the

condition 𝑹 = 𝟎 is never fulfilled. Within the surface integral, the pseudo-density (6.58), in
which 𝑹 = 𝟎 is included, is corrected by subtracting the contribution from the problematic
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ionic charge again. All in all, this yields

𝑍𝛼 lim
𝒓→𝝉𝛼

∫
𝛺

∑
𝑹″|𝑹″≠𝟎,

if𝛼=𝛽

−𝑍𝛽e−i𝒒⋅𝑹″𝛁𝒓′𝛁⊤
𝒓′δ(𝒓′ − (𝝉 ′

𝛽 +𝑹″))

|𝒓 − 𝒓′|
d3𝑟′ (6.60)

= −𝑍𝛼 ∫𝑍𝛽 ∑
𝑹″|𝑹″≠𝟎

e−i𝒒⋅𝑹″𝛁𝒔𝛽
𝛁⊤

𝒔𝛽
δ(𝒔𝛽 − (𝑹″ − 𝟎))𝒢(𝒓𝛽, 𝒔𝛽) d3𝑠𝛽

− 𝑍𝛼 ∮∫
𝑍𝛽 ∑𝑹″ e−i𝒒⋅𝑹″𝛁𝒓′𝛁⊤

𝒓′δ(𝒓′ − 𝝉𝛽 −𝑹″) − 𝑍𝛽𝛁𝒓′𝛁⊤
𝒓′δ(𝒓′ − 𝝉𝛽)

∣𝑅𝛽𝒔 + 𝝉𝛽 − 𝒓′∣
d3𝑟′

×∑
𝑙𝑚

(
𝑟𝛽
𝑅𝛽

)
𝑙

Y∗
𝑙𝑚( ̂𝒔)Y∗

𝑙𝑚( ̂𝒓𝛽) d𝑆

with 𝒢(𝒓𝛽, 𝒔𝛽) defined in equation (5.43b).

6.4 Sternheimer Equation

TheOutline Sternheimer equation delivers the first-order variation of the Kohn–Sham wave-function

expansion coefficients. Therefore, the former is derived and motivated in section 6.4.1. It

shall become apparent that most of the quantities required for the Sternheimer equation are

already set up or are available from a DFT calculation conducted in advance. This includes

the unperturbed and the first-order variation of the effective potential, the unperturbed and

the first-order variation of the Kohn–Sham wave function, and the unperturbed Kohn–Sham

energies. What remains is the detailed form of the first-order Kohn–Sham energy variation,

which is given in section 6.4.2. Finally, section 6.4.3 is devoted to the self-consistent iteration

procedure which inheres in the DFPT.

6.4.1 Derivation

The form of the Sternheimer equation, as found in Klüppelberg [88, equation (7.19)] can be

motivated starting from the Schrödinger equation

(ℋ (0) − 𝜀(0)𝒌,𝑛)∣𝛹
(0)
𝒌,𝑛⟩ = 0 . (6.61a)

In a first step, a projection of the Schrödinger equation onto the LAPW basis functions,

evaluated at a general reciprocal wave vector �̃� specified at the end of this section,

⟨𝜙(0)
�̃�,𝑮′

∣ℋ (0) − 𝜀(0)𝒌,𝑛∣𝛹
(0)
𝒌,𝑛⟩

𝛺
= 0 (6.61b)

is performed. This results in an additional integral over the unit cell with the volume 𝛺. If the
wave function in the ket is then expanded in the LAPW basis, the central Kohn–Sham matrix

element of a DFT calculation (5.47) manifests itself. Adhering to the product rule, the bra, the

inner part, and the ket of this matrix element are varied. Afterwards, equation (6.8) for the

first-variation of the Kohn–Sham wave function, and equations (6.7) for the first-variation of
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the LAPW basis (Pulay corrections) are inserted. Varying the integral boundaries yields surface

terms (see equation (5.74)) which are projected onto the displacement vector displayed by

equations (6.5). Since the kinetic energy operator is not sensitive to the external-potential

perturbation, it is excluded from variation [68]. Hence, only the effective-potential part of

the Hamiltonian undergoes a variation, suggesting the insertion of equation (6.23). In the

same manner as the already-introduced varied quantities, the variation of the Kohn–Sham

energy is split into

𝜖(1)𝒌,𝑛(𝒒) = ∑
𝛼

(𝑸⊤
𝛼 𝝐(1)𝒌,𝑛(𝒒

+𝛼) +𝑸†
𝛼 𝝐(1)𝒌,𝑛(𝒒

−𝛼)) . (6.61c)

It can be shown (see for instance reference [88]) that the first-order variation of the Kohn–

Sham energy must only be evaluated for the Goldstone modes. The explicit form of the former

is given in section 6.4.2. Finally for obtaining the expression

⟨𝜙(0)
�̃�,𝑮′

∣ℋ (0) − 𝜀(0)𝒌,𝑛∣𝑸
⊤ 𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)𝜙(0)
𝒌+𝒒,𝑮 +𝑸† 𝒛(1)

𝑮 (𝒌, 𝑛;−𝒒𝛼)𝜙(0)
𝒌−𝒒,𝑮⟩

𝛺
(6.61d)

= −⟨𝑸⊤ 𝝓(1)𝛼+
�̃�,𝑮′

+𝑸† 𝝓(1)𝛼−
�̃�,𝑮′

∣ℋ (0) − 𝜀(0)𝒌,𝑛∣𝛹
(0)
𝒌,𝑛⟩

𝛼

− ⟨𝜙(0)
�̃�,𝑮′

∣𝑸⊤ (𝓥(1)
eff

(𝒒+𝛼) − δ𝒒𝟎𝝐
(1)
𝒌,𝑛(𝒒

+𝛼)) +𝑸† (𝓥(1)
eff

(𝒒−𝛼) − δ𝒒𝟎𝝐
(1)
𝒌,𝑛(𝒒

±𝛼))∣𝛹 (0)
𝒌,𝑛⟩

𝛺

−⟨𝜙(0)
�̃�,𝑮′

∣ℋ (0) − 𝜀(0)𝒌,𝑛∣∑
𝑮

𝑧(0)𝑮 (𝒌, 𝑛)(𝑸⊤ 𝝓(1)𝛼+
𝒌,𝑮 +𝑸† 𝝓(1)𝛼−

𝒌,𝑮 )⟩
𝛼

−𝑸⊤ ∑
𝑹

ei𝒒⋅𝑹 ∮
∂𝛼𝑹

𝜙∗(0)𝛼
�̃�,𝑮′

(𝒓)(ℋ (0) − 𝜀(0)𝒌,𝑛)𝛹
(0)𝛼
𝒌,𝑛 (𝒓) d𝑺

+𝑸⊤ ∑
𝑹

ei𝒒⋅𝑹 ∮
∂𝛼𝑹

𝜙∗(0)IR
�̃�,𝑮′

(𝒓)(ℋ (0) − 𝜀(0)𝒌,𝑛)𝛹
(0)IR
𝒌,𝑛 (𝒓) d𝑺

−𝑸† ∑
𝑹

e−i𝒒⋅𝑹 ∮
∂𝛼𝑹

𝜙∗(0)𝛼
�̃�,𝑮′

(𝒓)(ℋ (0) − 𝜀(0)𝒌,𝑛)𝛹
(0)𝛼
𝒌,𝑛 (𝒓) d𝑺

+𝑸† ∑
𝑹

e−i𝒒⋅𝑹 ∮
∂𝛼𝑹

𝜙∗(0)IR
�̃�,𝑮′

(𝒓)(ℋ (0) − 𝜀(0)𝒌,𝑛)𝛹
(0)IR
𝒌,𝑛 (𝒓) d𝑺 ,

those terms in which the bra, partially the ket, and the middle of the braket, i.e., the Hamilto-

nian operator and the Kohn–Sham energies, are varied, are subtracted on both sides and thus

shifted to the right-hand side of the equation.

On Analysisthe left-hand side, there remains the term with the quantity of interest. These are

the first-order variation of the Kohn–Sham expansion coefficients multiplied with a matrix

which must be inverted to obtain the varied expansion coefficients. On the right-hand side,

the terms fall into a Hellmann–Feynman contribution in which the Hamiltonian and the

Kohn–Sham energies are varied, Pulay terms in which the basis functions are varied, and

surface integrals to consider the variation of the integral boundaries, provided a displacement

of the MT spheres in atom 𝛼. The Pulay terms are confined from the complete unit cell to the
MT spheres of the displaced atom 𝛼, since only there the Pulay correction of the LAPW basis
has a contribution. The essential matrix relation at the representative unit cell 𝑹 = 𝟎 (this 𝟎
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is suppressed hereinafter) can be extracted from equation (6.61d) and formulated as

∑
𝑮

⟨𝜙(0)
𝒌±𝒒,𝑮′∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣𝜙
(0)
𝒌±𝒒,𝑮⟩

𝛺
𝒛(1)
𝑮 (𝒌, 𝑛;±𝒒𝛼) (6.61e)

= −∑
𝑮

{⟨𝜙(0)
𝒌±𝒒,𝑮′∣𝓥

(1)
eff

(𝒒±𝛼) − δ𝒒𝟎𝝐
(1)
𝒌,𝑛(𝒒

±𝛼)∣𝜙(0)
𝒌,𝑮⟩

𝛺

+ ⟨𝝓(1)𝛼∓
𝒌±𝒒,𝑮′∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣𝜙
(0)
𝒌,𝑮⟩

𝛼
+ ⟨𝜙(0)

𝒌±𝒒,𝑮′∣ℋ
(0) − 𝜀(0)𝒌,𝑛∣𝝓

(1)𝛼±
𝒌,𝑮 ⟩

𝛼

+∮
∂𝛼

𝜙∗(0)𝛼
𝒌±𝒒,𝑮′(𝒓)(ℋ

(0) − 𝜀(0)𝒌,𝑛)𝜙
(0)𝛼
𝒌,𝑮(𝒓) d𝑺

− ∮
∂𝛼

𝜙∗(0)IR
𝒌±𝒒,𝑮′(𝒓)(ℋ

(0) − 𝜀(0)𝒌,𝑛)𝜙
(0)IR
𝒌,𝑮 (𝒓) d𝑺}𝑧(0)𝑮 (𝒌, 𝑛) .

Within the previous equation 𝑛 is the band index, 𝒌 is the momentum of the electrons, 𝒒 is the
phonon wave-vector and 𝑮 and 𝑮′ are the reciprocal lattice vectors. DueBloch character to the dependency

of the first-order expansion coefficient on 𝒌± 𝒒 on the left-hand side of equation (6.61e), the
basis function must feature the Bloch character 𝒌 ± 𝒒. On condition that the Bloch character
must vanish in an integral over the unit cell, the basis function in the bra must have the same

Bloch character, i.e., 𝒌 ± 𝒒. This uniquely fixes also the general vector �̃� on the right-hand
side of equation (6.61d). Then, each of the remaining matrix elements on this side features a

vanishing Bloch character. The Bloch character 𝒒 of the first-order potential variation in the
HF term compensates for the −𝒒 character of the basis-function in the bra, which is implicitly
complex conjugated. In the first Pulay term (third line of (6.61e)), the basis function variation

is evaluated at 𝒌 ± 𝒒, inducing an additional Bloch-character shift of ±𝒒 which compensates
for the phase factor shift ∓𝒒 indicated by the superscript. Furthermore, in the second Pulay
term, the Bloch characters of the bra and the ket cancel each other. As far as the surface

integral is concerned, the ∓𝒒 of the complex conjugated LAPW basis-function has its counter
part in the phase factor, which has been suppressed due to 𝑹 = 𝟎 and actually contains a ±𝒒.
AsTime Reversal

Symmetry
a consequence of the TRS, the Sternheimer equations, in which �̃� = 𝒌+𝒒 and �̃� = 𝒌−𝒒 are

almost related to each other by a complex conjugation. Applying the TRS also shifts 𝒌 → −𝒌.
This can later be compensated by summing over all 𝒌, e.g. for obtaining the charge-density
variation [251]. If all wave vectors 𝒌 are symmetrically located within the Brillouin zone, it
makes no difference whether the sum is performed over 𝒌 or −𝒌 and the index can adequately
be interchanged. In this case, the ±𝒒 solutions of the Sternheimer equation are in fact related
to each other by a complex conjugation. Hence analogously to the previous procedure, only

the solution with �̃� = 𝒌 + 𝒒 shall be discussed further.

Finally,Analytical
solution for

𝒒 = 𝟎

it must be underlined that there exists an analytical solution of equation (6.61e)

for the Goldstone modes [251]. This discussion is postponed to section 7.4, but in appendix D,

I prove this for an optimized version of equation (6.61e).
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6.4.2 First-Order Variation of the Kohn–Sham Energies

The General formSternheimer equation (6.61e) requires the first-order change of the Kohn–Sham energies

for the Goldstone modes. Klüppelberg suggests using

𝝐(1)𝒌,𝑛(𝟎
±𝛼) = ⟨𝛹 (0)

𝒌,𝑛∣𝓥
(1)
eff

(𝟎±𝛼)∣𝛹 (0)
𝒌,𝑛⟩𝛺

(6.62)

+∑
𝑮′

𝑧∗(0)𝑮′ (𝒌, 𝑛)⟨𝝓(1)∓
𝒌,𝑮′(𝟎𝛼)∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛹
(0)
𝒌,𝑛⟩𝛺

+∑
𝑮

⟨𝛹 (0)
𝒌,𝑛∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝝓
(1)±
𝒌,𝑮 (𝟎𝛼)⟩

𝛺
𝑧(0)𝑮 (𝒌, 𝑛)

+∮
∂𝛼

̂𝒓[∑
𝛾

𝛹 ∗(0)𝛾
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)𝛾
𝒌,𝑛 (𝒓)

− 𝛹 ∗(0)IR
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)IR
𝒌,𝑛 (𝒓)] d𝑆 .

Comparing equation (6.62) with the Sternheimer equation (6.61e), a similarity reveals itself.

However in contrast to the Sternheimer equation, the matrix elements are diagonal in the

bands and the reciprocal vectors 𝒌.

For Case 𝒒 = 𝟎𝒒 = 𝟎, the change of the Kohn–Sham energies is zero if the material features
monoatomic unit cells, because the crystal is only rigidly shifted. There is no reason that a

variation should have been induced. But in polyatomic systems, an inner breathing mode

within the unit cells is possible so that equation (6.62) does not vanish in general anymore.

Coincidently, the center-of-mass movement still equals the shift of the whole crystal such as

in the monoatomic case. In ionic materials this scenario leads to a LO-TO splitting in optical

branches (cf. section 4.3). For finite 𝒒, Klüppelberg shows that the first-order variation of the
Kohn–Sham energies vanishes.

6.4.3 Self-Consistency Cycle

The Theoretical
background

self-consistency cycle of the DFPT is already partly motivated at the end of section 4.2.2.

Applied to phonons, the minimum of the dynamical matrix, which is a functional of the

first-order charge-density and effective-potential variation, must be found. If the external

potential changes, implying a perturbation of the system, the electrons are induced to move,

varying the charge density. It happens until the electrons again screen the external potential

adjusted to the moved ions (cf. section 4.2.1). This is a self-consistent scenario, because

the first-order variations of the Hartree and the xc potentials are again functionals of the

first-order charge-density variation. An in-depth analysis originates this from the fact that the

Kohn–Sham DFT and the DFPT are effective mean-field theories [3]. Hence, apart from the

response function or susceptibility (see chapter 4), e.g. the charge density variation due to

a phonon, the electronic potentials, i.e., the Hartree and the xc contributions also vary [3].

Details of the concrete self-consistency cycle are shifted to chapter 7 to avoid redundancy.
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6.5 Dynamical Matrix

TheOutline contributions to the dynamical matrix have already been derived in section 6.1.2, but

are discussed in more detail now. Essentially they are grouped into three categories, the

Hellmann–Feynman contributions 𝐷
HF
(𝒒) (see section 6.5.1), the Pulay contributions 𝐷

Pl
(𝒒)

as discussed in section 6.5.2, and finally the surface-term contributions 𝐷
sf
(𝒒), which are

addressed in section 6.5.3

𝐷𝛽𝛼(𝒒) = 𝐷𝛽𝛼
HF (𝒒) + 𝐷𝛽𝛼

Pl
(𝒒) + 𝐷𝛽𝛼

sf
(𝒒) . (6.63)

6.5.1 Hellmann–Feynman Contribution

AccordingDeduction to equation (6.15b), equation (6.12), and equation (6.63) the Hellmann–Feynman

contributions to the dynamical matrix comprises the first-order charge-density variation, the

first-order external potential, the unperturbed charge density, the second-order variation of

the external potential, and the second-order variation of the ion–ion interaction. All of these

quantities have been discussed in the previous sections. Hence, equation (6.20), the external

part of equation (6.23), equation (6.24), and equations (6.53) can be inserted so that

𝐷𝛽𝛼
HF (𝒒) = ∫

𝛺
(𝑸⊤

𝛽 𝝆(1)(𝒓; 𝒒+𝛽) +𝑸†
𝛽 𝝆(1)(𝒓; 𝒒−𝛽)) (6.64a)

× ([𝑽 (1)
ext (𝒓; 𝒒+𝛼)]

⊤
𝑸𝛼 + [𝑽 (1)

ext (𝒓; 𝒒−𝛼)]
⊤
𝑸∗

𝛼)d3𝑟

+∫
𝛺
𝜌(0)(𝒓)(𝑸⊤

𝛽e
i𝒒⋅𝑹 +𝑸†

𝛽e
−i𝒒⋅𝑹) δ𝛽𝛼𝛁𝛁⊤𝑉 (0)

ext (𝒓)(𝑸𝛼ei𝒒⋅𝑹 +𝑸∗
𝛼e−i𝒒⋅𝑹) d3𝑟

+ 𝐸(2)
ii

(𝒒−+) + 𝐸(2)
ii

(𝒒+−)

results. As mentioned in section 6.1.2 and section 6.3.4, only terms with effectively vanishing

Bloch character remain. Therefore, the complete HF contribution to the dynamical matrix is

given by

𝐷𝛽𝛼
HF (𝒒) = 𝑸†

𝛽 (∫
𝛺
𝝆(1)(𝒓; 𝒒−𝛽)[𝑽 (1)

ext (𝒓; 𝒒+𝛼)]
⊤
d3𝑟 + δ𝛽𝛼 ∫

𝛺
𝜌(0)(𝒓)𝛁𝛁⊤𝑉 (0)

ext (𝒓) d3𝑟) 𝑸𝛼

+𝑸⊤
𝛽 (∫

𝛺
𝝆(1)(𝒓; 𝒒+𝛽)[𝑽 (1)

ext (𝒓; 𝒒−𝛼)]
⊤
d3𝑟 + δ𝛽𝛼 ∫

𝛺
𝜌(0)(𝒓)𝛁𝛁⊤𝑉 (0)

ext (𝒓) d3𝑟) 𝑸∗
𝛼

+𝑸†
𝛽 𝐸(2)𝛽𝛼

ii
(𝒒−+) 𝑸𝛼 + δ𝑸𝛽𝑸𝛼

𝑸†
𝛽 𝐸(2)𝛽𝛼

ii
(𝟎−+) 𝑸𝛼

+𝑸⊤
𝛽 𝐸(2)𝛽𝛼

ii
(𝒒+−) 𝑸𝛼 + δ𝑸𝛽𝑸𝛼

𝑸⊤
𝛽 𝐸(2)𝛽𝛼

ii
(𝟎+−) 𝑸𝛼 (6.64b)

≕ 𝑸†
𝛽 𝐷𝛽𝛼

HF(𝒒
−+) 𝑸𝛼 +𝑸⊤

𝛽 𝐷𝛽𝛼
HF(𝒒

+−) 𝑸𝛼 . (6.64c)

6.5.2 Pulay Corrections

ItSubdivision proves convenient to separate the following discussion of equation (6.15c) into two parts.

First, the unit-cell integral is expounded on, the integrand of which is a product of the

first-order charge-density and effective potential variation. After this, the remaining matrix
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elements, which depend on the wave vector 𝒌, are further specified. Consequently the Pulay
contribution of the dynamical matrix can be subdivided into

𝐷𝛽𝛼
Pl

(𝒒) = 𝐷𝛽𝛼
Pl,dp

(𝒒) + 𝐷𝛽𝛼
Pl,bk

(𝒒) . (6.65)

Unit-Cell Integral

The unit-cell integral of the Pulay contribution to the dynamical matrix is the first integral in

equation (6.14a) and given by

𝐷𝛽𝛼
Pl,dp

(𝒒) = ∫
𝛺
(𝑸⊤

𝛽 𝝆(1)(𝒓; 𝒒+𝛽) +𝑸†
𝛽 𝝆(1)(𝒓; 𝒒−𝛽)) (6.66a)

× ([𝑽 (1)
eff

(𝒓, 𝒒+𝛼)]
⊤
𝑸𝛼 + [𝑽 (1)

eff
(𝒓, 𝒒−𝛼)]

†
𝑸∗

𝛼)d3𝑟

= 𝑸†
𝛽 ∫

𝛺
𝝆(1)(𝒓; 𝒒−𝛽)[𝑽 (1)

eff
(𝒓; 𝒒+𝛼)]

⊤
d3𝑟 𝑸𝛼 (6.66b)

+𝑸⊤
𝛽 ∫

𝛺
𝝆(1)(𝒓; 𝒒+𝛽)[𝑽 (1)

eff
(𝒓; 𝒒−𝛼)]

⊤
d3𝑟 𝑸∗

𝛼 .

≕ 𝑸†
𝛽 𝐷𝛽𝛼

Pl,dp
(𝒒−+) 𝑸𝛼 +𝑸⊤

𝛽 𝐷𝛽𝛼
Pl,dp

(𝒒+−) 𝑸𝛼 (6.66c)

Here, equations (6.20) and (6.23) are inserted into the respective integral of equations (6.66).

Relative to the Hellmann–Feynman contribution in equation (6.64b), it does not only contain

the first-order variation of the external potential, but also that of the Hartree and the xc

potentials.

Matrix Elements

Compared Derivation and
nomenclature

to the unit-cell integral contribution in the previous equation, the matrix element

contributions take significantly more effort to calculate. This is a consequence of using the

challenging all-electron FLAPW method. They are given by the terms behind the second sum

in equation (6.14d). When inserting the variations of the Kohn–Sham wave functions from

equation (6.8) and equation (6.9), which are expanded in the LAPW basis, the following

abbreviations are introduced: If the second-order variation of the Kohn–Sham wave function

stands in the bra, the contribution is denoted as “2b.” Provided the ket contains the second-

order variation, “2k” is used. And when the first-order variation of the wave function is

incorporated both in the bra and in the ket, it is indicated by “1bk.”

Expanding General
expressions

the matrix elements therefore results in

𝐷𝛽𝛼
Pl,bk

(𝒒) ≔ ∑
𝒌,𝑛

(𝑸†
𝛽 2𝑓 (0)

𝒌,𝑛𝐷
𝒌𝑛𝛽𝛼
Pu2b

(𝒒+−) 𝑸𝛼 +𝑸†
𝛽 2𝑓 (0)

𝒌,𝑛𝐷
𝒌𝑛𝛽𝛼
Pu2k

(𝒒−+) 𝑸𝛼 (6.67a)

+𝑸†
𝛽 4𝑓 (0)

𝒌,𝑛𝐷
𝒌𝑛𝛽𝛼
Pu1bk

(𝒒++) 𝑸𝛼 +𝑸⊤
𝛽 4𝑓 (0)

𝒌,𝑛𝐷
𝒌𝑛𝛽𝛼
Pu1bk

(𝒒−−) 𝑸∗
𝛼

+𝑸⊤
𝛽 2𝑓 (0)

𝒌,𝑛𝐷
𝒌𝑛𝛽𝛼
Pu2b

(𝒒−+) 𝑸∗
𝛼 +𝑸⊤

𝛽 2𝑓 (0)
𝒌,𝑛𝐷

𝒌𝑛𝛽𝛼
Pu2k

(𝒒+−) 𝑸∗
𝛼)
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with

𝐷𝒌𝑛𝛽𝛼
Pu2b

(𝒒±∓) ≔ ⟨2∑
𝑮′

𝒛(1)
𝑮′(𝒌, 𝑛;±𝒒𝛽)[ ⃗𝝓(1)𝛼∓

𝒌±𝒒,𝑮′]
⊤
∣ℋ (0) − 𝜖(0)𝒌,𝑛∣∑

𝑮
𝑧(0)𝑮 (𝒌, 𝑛)𝜙(0)

𝒌,𝑮⟩ (6.67b)

+⟨∑
𝑮′

𝑧(0)𝑮′(𝒌, 𝑛) ⃗𝜙(2)𝛽±∓
𝒌+𝟎,𝑮′

δ𝛽𝛼∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣∑

𝑮
𝑧(0)𝑮 (𝒌, 𝑛)𝜙(0)

𝒌,𝑮⟩ ,

𝐷𝒌𝑛𝛽𝛼
Pu2k

(𝒒∓±) ≔ ⟨∑
𝑮′

𝑧(0)𝑮′(𝒌, 𝑛)𝜙
(0)
𝒌,𝑮′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣2∑
𝑮

𝒛(1)
𝑮 (𝒌, 𝑛;∓𝒒𝛽)[ ⃗𝝓(1)𝛼±

𝒌∓𝒒,𝑮]
⊤
⟩ (6.67c)

+⟨∑
𝑮′

𝑧(0)𝑮′(𝒌, 𝑛)𝜙
(0)
𝒌,𝑮′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣∑
𝑮

𝑧(0)𝑮 (𝒌, 𝑛) ⃗𝜙(2)𝛽∓±
𝒌+𝟎,𝑮

δ𝛽𝛼⟩ ,

and

𝐷𝒌𝑛𝛽𝛼
Pu1bk

(𝒒±±) ≔ ⟨∑
𝑮′

𝒛(1)
𝑮′(𝒌, 𝑛;±𝒒𝛽)𝜙(0)

𝒌±𝒒,𝑮′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣∑

𝑮
[𝒛(1)

𝑮 (𝒌, 𝑛;±𝒒𝛼)]
⊤
𝜙(0)
𝒌±𝒒,𝑮⟩

+⟨∑
𝑮′

𝒛(1)
𝑮′(𝒌, 𝑛;±𝒒𝛽)𝜙(0)

𝒌±𝒒,𝑮′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣∑

𝑮
𝑧(0)𝑮 (𝒌, 𝑛)[ ⃗𝝓(1)𝛼±

𝒌,𝑮 ]
⊤
⟩

+⟨∑
𝑮′

𝑧(0)𝑮′(𝒌, 𝑛) ⃗𝝓(1)𝛽±
𝒌,𝑮′ ∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣∑
𝑮

[𝒛(1)
𝑮 (𝒌, 𝑛;±𝒒𝛼)]

⊤
𝜙(0)
𝒌±𝒒,𝑮⟩

+⟨∑
𝑮′

𝑧(0)𝑮′(𝒌, 𝑛) ⃗𝝓(1)𝛽±
𝒌,𝑮′ ∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣∑
𝑮

𝑧(0)𝑮 (𝒌, 𝑛)[ ⃗𝝓(1)𝛼±
𝒌,𝑮 ]

⊤
⟩ . (6.67d)

It becomes directly obvious that no second-order variation of the wave-function expansion

coefficients is required. This is because they are combined with a classical unperturbed basis

function. Hence, both the bra and the ket are completely covered by the LAPW Hilbert space.

As a consequence, the Hamiltonian fulfills the Kohn–Sham equation variationally and its

application to the unperturbed Kohn–Sham wave function results in the Kohn–Sham energy

so that these matrix elements cancel. Ultimately, this constitutes the reason why the 2𝑛 + 1
theorem is not violated.

6.5.3 Surface-Term Corrections

TheDerivation surface-term contributions from section 6.1.2 are further evaluated and the displace-

ment (6.5) inserted. Moreover, it is necessary to employ the first-order wave function varia-

tions from equations (6.8) with the first-order basis-function variation from equations (6.7).

Furthermore, equation (6.23) with the external and Hartree part of equation (6.22) are

required. They are pointed out in section 6.3.1 and section 6.3.2, respectively. All of them
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subdivide into contributions with Bloch characters 𝒒 and −𝒒 so that

𝐷𝛽𝛼
sf

(𝒒) = (𝑸⊤
𝛽 +𝑸†

𝛽){∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛{ (6.68a)

2∮
∂𝛽

̂𝒓[([𝜳 (1)𝛽+
𝒌,𝑛 (𝒓; 𝛼)]

⊤
𝑸𝛼 + [𝜳 (1)𝛽−

𝒌,𝑛 (𝒓; 𝛼)]
⊤
𝑸∗

𝛼)
∗
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)𝛽
𝒌,𝑛 (𝒓)

− ([𝜳 (1)IR+
𝒌,𝑛 (𝒓; 𝛼)]

⊤
𝑸𝛼 + [𝜳 (1)IR−

𝒌,𝑛 (𝒓; 𝛼)]
⊤
𝑸∗

𝛼)
∗
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)IR
𝒌,𝑛 (𝒓)] d𝑆

+ 2∮
∂𝛽

̂𝒓[𝛹 ∗(0)𝛽
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)([𝜳

(1)𝛽+
𝒌,𝑛 (𝒓; 𝛼)]

⊤
𝑸𝛼 + [𝜳 (1)𝛽−

𝒌,𝑛 (𝒓; 𝛼)]
⊤
𝑸∗

𝛼)

− 𝛹 ∗(0)IR
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)([𝜳

(1)IR+
𝒌,𝑛 (𝒓; 𝛼)]

⊤
𝑸𝛼 + [𝜳 (1)IR−

𝒌,𝑛 (𝒓; 𝛼)]
⊤
𝑸∗

𝛼)]d𝑆

+ δ𝛽𝛼 ∮
∂𝛽

[𝛁(𝛹 ∗(0)𝛽
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)𝛽
𝒌,𝑛 (𝒓))

−𝛁(𝛹 ∗(0)IR
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)IR
𝒌,𝑛 (𝒓))] ̂𝒓⊤ d𝑆 (𝑸𝛽 +𝑸∗

𝛼)}

+ δ𝛽𝛼 ∮
∂𝛽

[𝛁(𝜌(0)𝛽 (𝒓)(𝜖(0)𝛽xc (𝒓) − 𝑉 (0)𝛽
xc (𝒓)))

−𝛁(𝜌(0)IR (𝒓)(𝜖(0)IRxc (𝒓) − 𝑉 (0)IR
xc (𝒓)))] ̂𝒓⊤ d𝑆 (𝑸𝛽 +𝑸∗

𝛼)

+ δ𝛽𝛼 ∮
∂𝛽

̂𝒓[𝜌(0)𝛽 (𝒓)((2[𝑽 (1)𝛽
ext (𝒓; 𝒒+𝛼)]

⊤
+ [𝑽 (1)𝛽

Htr (𝒓; 𝒒+𝛼)]
⊤
)𝑸𝛼

+ (2[𝑽 (1)𝛽
ext (𝒓; 𝒒−𝛼)]

†
+ [𝑽 (1)𝛽

Htr (𝒓; 𝒒−𝛼)]
†
)𝑸∗

𝛼)]d𝑆

+ δ𝛽𝛼 ∮
∂𝛽

̂𝒓[𝜌(0)IR (𝒓)((2[𝑽 (1)IR
ext (𝒓; 𝒒+𝛼)]

⊤
+ [𝑽 (1)IR

Htr (𝒓; 𝒒+𝛼)]
⊤
)𝑸𝛼

+ (2[𝑽 (1)IR
ext (𝒓; 𝒒−𝛼)]

†
+ [𝑽 (1)IR

Htr (𝒓; 𝒒−𝛼)]
†
)𝑸∗

𝛼)]d𝑆}

According Time Reversal
Symmetry

to section 6.1.2 only the terms are relevant which have a Bloch character of ±𝒒.
Therefore, the previous equation simplifies to

𝐷𝛽𝛼
sf

(𝒒) ≕ ∑
𝛽𝛼

(𝑸†
𝛽 𝐷𝛽𝛼

sf
(𝒒+) 𝑸𝛼 +𝑸⊤

𝛽 𝐷𝛽𝛼
sf

(𝒒−) 𝑸∗
𝛼) . (6.68b)
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with

𝐷𝛽𝛼
sf

(𝒒±) ≔ ∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛{2∮

∂𝛽
̂𝒓[[𝜳 (1)𝛽∓

𝒌,𝑛 (𝒓; 𝛼)]
†
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)𝛽
𝒌,𝑛 (𝒓) (6.68c)

− [𝜳 (1)IR∓
𝒌,𝑛 (𝒓; 𝛼)]

†
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)IR
𝒌,𝑛 (𝒓)] d𝑆

+ 2∮
∂𝛽

̂𝒓[𝛹 ∗(0)𝛽
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)[𝜳

(1)𝛽±
𝒌,𝑛 (𝒓; 𝛼)]

⊤

− 𝛹 ∗(0)IR
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)[𝜳

(1)IR±
𝒌,𝑛 (𝒓; 𝛼)]

⊤
] d𝑆

+ δ𝛽𝛼 ∮
∂𝛽

[𝛁(𝛹 ∗(0)𝛽
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)𝛽
𝒌,𝑛 (𝒓))

−𝛁(𝛹 ∗(0)IR
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)IR
𝒌,𝑛 (𝒓))] ̂𝒓⊤ d𝑆}

+ δ𝛽𝛼 ∮
∂𝛽

[𝛁(𝜌(0)𝛽 (𝒓)(𝜖(0)𝛽xc (𝒓) − 𝑉 (0)𝛽
xc (𝒓)))

−𝛁(𝜌(0)IR (𝒓)(𝜖(0)IRxc (𝒓) − 𝑉 (0)IR
xc (𝒓)))] ̂𝒓⊤ d𝑆

+ δ𝛽𝛼 ∮
∂𝛽

̂𝒓[𝜌(0)𝛽 (𝒓)(2[𝑽 (1)𝛽
ext (𝒓; 𝒒±𝛼)]

⊤
+ [𝑽 (1)𝛽

Htr (𝒓; 𝒒±𝛼)]
⊤
)

− 𝜌(0)IR (𝒓)(2[𝑽 (1)IR
ext (𝒓; 𝒒±𝛼)]

⊤
+ [𝑽 (1)IR

Htr (𝒓; 𝒒±𝛼)]
⊤
)]d𝑆 .

Further technical details of the implementation are pointed out in section 7.6.

6 Dynamical Matrix from DFPT Employing the All-Electron FLAPW Method
108



Chapter 7
Implementation and Results
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7.7 Phonon Dispersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

In Intention of
chapter

chapter 6 (and preceding chapters), a theory is introduced to calculate phonon dispersion-

relations from a combination of the DFPT and the FLAPW method. Hereinafter, I elucidate

juPhon, our implementation of this approach. This covers (i) an explanation of the algorithms
used to address the multitudinous numerical challenges, (ii) an overview of all conducted

validity tests and (iii) a presentation of the juPhon results. Already realizing the Stern-
heimer equation is comparable to, or even more intricate than, a standard self-consistent

DFT algorithm for determining the total energy. Currently, the juPhon code overall contains
approximately 50 000 lines of real source code, i.e., excluding comments, documentation, and
blank lines [259].

This Assistance
received

is a huge project that cannot be completed alone within a restricted time frame of

a PhD program. I was therefore supported by some members of the institute for the Quantum

Theory of Materials. It is part of the Peter Grünberg Institute and the Institute of Advanced

Simulation, which bothmaintain a long-standing tradition in developing sophisticated research

software. While I have essentially programmed each line of juPhon, many of the applied
concepts, pointed out in the following, have resulted from discussions [119, 127, 251, 256,

260, 261]. Furthermore, I was supported by my advisors in debugging and inventing testing

strategies [119, 127, 251]. Due to the large scale of the project, this initial implementation

adopted some concepts rather than tackling each problem from scratch. A few algorithms

thus adhere to adequate snippets of the FLEUR code [69]1 or suggestions of Klüppelberg [88].

1 Whenever reasonable, the most current version of the FLEUR code served as inspiration.
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However,Code philosophy therein lies the danger that these ideas might turn out to only be a quick-fix

solution2 or even not work at all. The former entails a refactoring, which must sometimes

be postponed due to restricted time resources (in this case, the quality of the source code

is worsened). But, the probability of facing the latter will be much higher if everything is

realized from scratch. Moreover, reinventing the wheel, i.e., a dissipation of time is avoided by

initially analyzing whether issues have already been resolved. I have followed the guidelines of

adjusting recycled code snippets in the first instance as little as possible, in order to maximize

the probability of retaining their functionality. However, this delays the aforementioned

refactoring in favor of an earlier-working implementation.

ApartChapter overview
flow-chart

from the succeeding outline of this chapter, the flow chart in figure 7.1 is sup-

posed to additionally facilitate the navigation through chapter 7, and establish a connection

to chapter 6. This figure provides an overview of the central steps that characterize the

algorithm of juPhon for a specific phonon vector 𝒒. It includes the initialization (grayish), the
Sternheimer self-consistency cycle (blueish), determining the second-order variation of the

ion–ion interaction due to a phonon (reddish), as well as the setup of the dynamical matrix

(yellowish). Diagonalizing the dynamical matrix and processing this scheme for a special set

of 𝒒-vectors, phonon dispersion relations (greenish) can be computed.

InOutline of
chapter 7

more detail and consecutive order, section 7.1 starts with general remarks on what to

consider as important for the implementation, and elaborates on the initialization of juPhon.
In section 7.2, the implementation of the linear charge-density variations is discussed and 2D

plots of the first-order charge-density variation are provided for selected 𝒒-vectors. Section 7.3
then presents the implementation of the linear potential variations and their visualizations.

While the potential gradients are given as isosurfaces in 3D, the first-order variations are

illustrated again in 2D for the same 𝒒-values as chosen in section 7.2. Our way of achieving the
self-consistency of the Sternheimer equation is explained in section 7.4. Section 7.5 discusses

the realized implementation of the second-order ion–ion interaction. In particular from a

numerical point of view, the implementation of the dynamical matrix has proven to be highly

demanding. Enlarging upon it and elucidating our implementation strategy is the subject

of section 7.6. Finally, I contrast my phonon-dispersions results from DFPT with benchmark

FD-computations and experimental data in section 7.7.

2 Some snippets are more complicated than necessary, because in former times the architecture of the hardware

required a way of programming which is obsolete or even self-defeating today. Furthermore, it is often

impossible to organically absorb foreign original code snippets into the present juPhon code structure. Finally,
important numerical issues might have been ignored heretofore.
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Input DFT results (FLEUR)
Initialize juPhon,
Section 7.1.6

Initialize Sternheimer self-consistency cycle,

Calculate: 𝝆(1)[𝑽 (1)
ext ] (Run 1), 𝝆(1)[𝑽 (1)

eff
] (Run 2)

Section 7.4.6, Figure 7.17, based on Section 6.4

Set up 𝑽 (1)
eff

[𝝆(1)]
Section 7.3, grounded on Section 6.3

∀𝒒-vectors

Solve Sternheimer equation: 𝛹 (1)
𝒌,𝑛

Section 7.4.1, Sections 7.4.2 – 7.4.4, referring to Section 6.4

Compute 𝝆(1)

Section 7.2, based on Section 6.2

Converged?Mix 𝝆(1),

Section 7.4.5

Calculate 𝐸(2)
ii
,

Section 7.5, based on Section 6.3.4

Set up dynamical matrix 𝐷(𝒒)
Section 7.6 (final form in Section 7.6.8), grounded on Section 6.5

DONE!

Phonon energies from diagonalized 𝐷(𝒒) (Section 7.6.1)
Phonon dispersions-relations (Section 7.7)

Yes

No

Figure 7.1: Flowchart summarizing the central steps for calculating phonon energies with the

computer code juPhon. For each step, the sections containing the details of the
implementation (chapter 7) and of the theory (chapter 6) are indicated. The order of

variation due to a phonon is expressed by an upper index in parentheses.

111



7.1 Setting the Stage

InCompatibility of
juPhon

principle, a juPhon calculation can be based on an arbitrary DFT all-electron FLAPW
calculation (cf. chapter 1). This however requires an interface for juPhon, which I have
programmed for the FLEUR code version 263. It enables me to employ the read-in results
of the aforementioned FLEUR version for every juPhon calculation4. During the course of
developing juPhon, FLEUR has significantly been modernized, refactored, and improved so
that my interface requires adjustments. Thus, I always refer to this old version of the FLEUR
code, unless differently stated. This is because the new version had not been stable and

reliable for a long time during the development of juPhon. Now, switching to the latest FLEUR
version is possible and updating my interface is part of future work.

VariousOutline general aspects must be considered for the realization of a project as big as that

of phonon-dispersion relations. During the implementation, I have faced the challenge that it

involves sustained programming efforts before physically relevant results can be achieved.

Such physics data is comparable to published benchmarks, coming either from experiments

or from other electronic-structure codes. Consequently, we are convinced that establishing

a comprehensive testing framework is of utmost importance [119, 127, 251]. This suite of

testing subroutines is introduced in section 7.1.1 and serves, among others, to verify the

reliability of (intermediate) results from juPhon. In particular, the combination of the DFPT
and FLAPW methods inevitably requires developing strategies for handling the numerics.

Section 7.1.2 addresses the applied concepts for reaching the desired precision. Moreover, a

first naive implementation, especially of such an intricate framework, often results in a poor

computational performance. In section 7.1.3, I roughly estimate the runtime of juPhon and
describe the procedure I have followed for improving it. In this context, starting points for

implementing a future parallelization are likewise presented. Section 7.1.4 and section 7.1.5

are devoted to simplifications underlying in order to reduce the level of complexity in the

first implementation. These cover the symmetry optimizations and relativistic corrections (cf.

in particular section 5.2 and section 5.7), respectively. Finally, section 7.1.6 defines the FLEUR
input, points out the initialization algorithm of juPhon, and presents a set of tests that check
the integrity of the input and initialization quantities juPhon relies on.

7.1.1 Test Suite

TheMotivation implementation of the DFPT framework presented in the previous chapters proves to be

highly elaborate and urges the development of sophisticated optimizations. Consequently

adhering to the principle of “divide and conquer,” the algorithm must be reasonably split

into coherent subprocedures that calculate intermediate quantities. Doing this, it is naive to

assume that each subtlety is always considered, and human nature inevitably leads to software

bugs at some point. All the more, it is of paramount importance to develop a suite of testing

subroutines, which substantiates the reliability of juPhon and helps to identify problems.
Possible errors can originate from (i) fundamentally incorrect assumptions or calculations

3 The version referred to (see reference [69] for its documentation) is given in the repository oldfleur4juphon

when searching for the hash 1332f354af36cab1086ac5c3aeba345b852367e0 .
4 The results of juPhon discussed in the following (except for those in section 7.7.1) are generated by the version

stored in the repository juPhonwith the hash e7c50ff83e44aeb32a63741e1bb5ae4ac2e8aaaa. Furthermore,
both FLEUR and juPhon are compiled with the Intel Fortran compiler [262] (version 19.1.0.166).
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in the underlying theory, (ii) typos in reference [88], (iii) bugs within its implementation,

or (iv) numerical reasons. The more intricate the algorithm, the harder it is to spot such

errors. But at least for the cases (ii), (iii), and (iv), tests allow for highlighting the causing

issues. Numerical inaccuracies are often tricky to find, especially when one does not ponder

their existence. Nevertheless, their impact must not be underestimated, because violations of

central mathematical relations such as the Divergence Theorem are possible.

The Raison d’êtredevelopment of a comprehensive test framework is costly and not often rewarded

in science. But improving the reliability and preserving the reproducibility or functionality

are actually pivotal for a good scientific practice. In the long term, a test suite drastically

simplifies the maintenance and extension of the code [263, 264]. Without consistent testing,

optimizations can corrupt recent achievements and errors accumulate [263, 264]. Such

optimizations range from obtaining and retaining a clean code according to Martin [263], to

increasing the computational performance or the numerical stability (e.g. after having devised

new features). Hence, automating the manual execution of the test is beneficial [263, 264].

Still, in a first poor man’s version, the juPhon test suite must be started manually. It must
be stressed that a subset of these checks should always, or at least regularly, be conducted

before the actual juPhon calculation. Especially, this holds true when new parameters for
this computation have been set. In a next step, the poor man’s testing framework will be

automated so that for every commit it will be executed by the server, which stores the juPhon
repository.

Basically, Test typesthe constituents of the juPhon test suite fall into two categories. Either
the inherent consistency of subroutines is validated or their return values are compared to

expected values. The former tests ensure that two contributions cancel each other or a certain

sum adds up to e.g. one. Concerning the latter test type, many return values of subroutines are

not always known in the beginning. In particular, this holds true when either the correctness

of this subroutine has not been proven before or intermediate quantities are not measurable

in the experiment, due to the basic principles of quantum mechanics. Phonon observables are

primarily their dispersion relations. But in principle, the charge-density responses or certain

sorts of potentials likewise belong to the former. Nevertheless, sometimes it is feasible to find

limiting cases for which the result(s) of a subroutine is (are) clear, concurrently accepting this

to not cover all possible outcomes of the subroutine. Another more fruitful option consists of

utilizing the results of already-established electronic-structure programs. They can ideally

calculate phonon-dispersion relations from DFPT within the FLAPW method in the same

way juPhon does. But, such a program does not exist, although the Elk [96] project5 and
the exciting [102] code are closest to this requirement (see chapter 1). However, since
it takes considerable effort to make the intermediate quantities of two codes comparable,

I mainly resort to the aforesaid alternative test concepts. Still for final results, such as the

dispersion relations or the second-order ion–ion interaction, it is interesting to contrast them

with outcomes obtained from other numerical methods. Especially the former quantities

can be compared to calculations from code frameworks listed in chapter 1. Apart from

that, I benchmark our Weinert implementation of the latter with an Ewald-inspired method,

realized in the subroutines of the ABINIT [55–57, 255, 265] package. Finally, in some cases
it is possible to manipulate the subroutines of juPhon such that their return values can be
compared with intermediate results of the FLEUR code. Further tests of juPhon involve using
5 Neukirchen verified the Sternheimer self-consistency cycle for Al and the second-order ion–ion interaction

by comparing it to the Elk results as far as possible (unpublished).
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debug programs like TotalView [266] and Valgrind [267–269], or employing compilers
that are different from the Intel Fortran Compiler [262]. Many of the test concepts are not

obvious and their development has been influenced by discussions [119, 127, 251], but I

have been driving this test-suite development, and I have programmed all tests.

AllLimits and
overview

in all, the integrity of juPhon would be optimally tested provided (almost) every
possible result of the code is checked. But as a consequence of the aforementioned reasons,

reaching a full coverage6 is in fact hard, in particular for finite 𝒒 values. Furthermore, the
details and subtleties of all tests are not described here, but in the following sections. This

is in order to ensure that they are discussed in the context of the quantities they check.

Nonetheless, table 7.1 and table 7.2 provide an overview of all tests in this chapter and

include also references to the pages they can be found on.

7.1.2 Numerical Accuracy

InChallenges and
motivation

the end, it stands to reason that the valid significant figures in the phonon frequencies

should be maximized [127]. However, the absolute numerical value of the total energy is

about five orders of magnitude7 larger than that of typical phonon frequencies. This fact can

probably be ranked as the most formidable numerical challenge [119]. It is exacerbated by

the circumstance that these small energies are planned to be obtained from sums of gradient

quantities, and gradient operations are roughening operations in the field of numerical

mathematics [119]. They can feature enormously larger values, in particular close around

the nuclei. In a nutshell, very small numbers must be calculated from the sum or difference

of very large numbers. It has turned out that relying on a naive handling of numerics in

this context inevitably fails. On the contrary, it must be considered pivotal to strive for the

required numerical accuracy of intermediate results so that an sufficiently accurate result can

be obtained in the end.

AnsweringAvoiding error
sources

the question which accuracy is technically achievable and reasonable is

guided by various aspects. In general, numerical errors fall into three categories: (i) round-

ing errors, (ii) truncation errors, and (iii) discretization errors [270, 271]. Additionally,

non-numerical approximation errors such as for the xc quantities (cf. section 2.2.2) or the

linearization error of the LAPW basis (5.2) should be kept in mind [271]. Category (i) de-

pends on the length of the floating-point significand [270]. The measure adopted from the

FLEUR code is likewise to use an 8 byte representation of the floating-point number in juPhon,
doubling the default 4 byte precision in FORTRAN. The former is known as the IEEE format
and allows for a machine precision of approximately 10−16 as an upper limit for the relative

error of rounding [271]. Nevertheless, the floating-point precision can drastically be lowered

by the propagation of rounding errors 𝜀𝒙 of a variable vector 𝒙 with 𝑖 components

𝜀𝔤 = ∑
𝑖
∣
𝑥𝑖

𝔤(𝒙)
∂𝔤(𝒙)
∂𝒙

∣𝜀𝑥𝑖
, (7.1)

if a general function 𝔤(𝒙) is applied [270]. This propagated error 𝜀𝔤 becomes huge, provided
the result of the function is close to zero [270]. For instance, this happens if subtracting two

similar numbers [270]. Such problematic operations should be performed as soon as possible

6 The coverage will be visualized by respective tools in the near future.
7 This ratio is exact for Ne and Al.
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Table 7.1: Overview of the 39 tests in the juPhon code (1/2). The abbreviations I/O, LDV, and
LPV denote input/output, linear density variation, and linear potential variation,

respectively.

# Class Name Page

1 I/O The 𝒌-point generator and the kpts file 128

2 I/O Consistency of the eig file using Fermie 128

3 I/O Continuities of the wave functions (eig), the charge density
(cdn1), and the effective potential (pottot_unwarped) from
FLEUR

128

4 I/O Properties of the radial functions from the LAPW basis set 130

5 I/O Orthogonality of the Kohn–Sham wave functions (eig) 130

6 I/O Comparing the log files of FLEUR and juPhon 131

7 I/O Abandoning the rotations of the local coordinate systems 132

8 LDV Radial derivatives 150

9 LDV Gaunt coefficients 150

10 LDV Trivial muffin-tin gradient 152

11 LDV Reproducing the unperturbed charge density 152

12 LDV First-order density variation for the Goldstone modes 153

13 LDV Continuity of density gradient and first-order density variation 153

14 LDV First-order charge-density variation from difference quotients 154

15 LPV Alternative for the gradient of the unperturbed Coulomb poten-

tial

175

16 LPV Alternative of pseudo-density for the external-potential varia-

tions

176

17 LPV Continuity of the linear potential variations 178

18 LPV Reproducing the unperturbed FLEUR potentials 178

19 LPV The first-order effective-potential variations for 𝒒 = 𝟎 179

20 LPV Time Reversal Symmetry 179
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Table 7.2: Overview of the 39 tests in the juPhon code (2/2). The abbreviations SHE, EI2, and
DMS mean Sternheimer equation, second-order ion–ion interaction, and dynamical-

matrix setup, respectively.

# Class Name Page

21 SHE Hellmann–Feynman Sternheimer equation 205

22 SHE Hellmann–Feynman matrix element for 𝒒 = 𝟎 206

23 SHE Vanishing of the first-order Kohn–Sham energy 206

24 SHE Cross-checking the Pulay contributions 207

25 SHE Muffin-tin sphere complement of IR surface integral 208

26 SHE Converge Sternheimer equation from analytical Goldstone-

modes solution

209

27 SHE Comparing converged result to analytical solution for 𝒒 = 𝟎 209

28 SHE First-order density variation from occupied-occupied band com-

binations

210

29 SHE Time Reversal Symmetry of converged quantities 209

30 EI2 Alternative method for pseudo-density Fourier coefficients 215

31 EI2 Time Reversal Symmetry 215

32 EI2 Cross-checking of Weinert method (juPhon) with Ewald method
(ABINIT)

215

33 DMS Converged parameter for interstitial step function 259

34 DMS Converged parameter for convolution of potential and step func-

tion

259

35 DMS Cross-checking the MT Hamiltonian and overlap matrix element 260

36 DMS Adding the IR part to the MT Hamiltonian and overlap matrix

element

260

37 DMS Cross-checking with Sternheimer surface integral 260

38 DMS Cross-checking of surface integrals with almost continuous Inte-

grands

260

39 DMS Analytical Goldstone-modes solution for correction terms 261
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in an evaluation of an expression [271]. But, it is better to avoid them and sometimes this can

be achieved by a rearrangement of the problematic terms [270]. Furthermore, the accuracy

of the integrals used in FLEUR or juPhon is around 10−7 in units of the integrands [251].

This impacts on the significant digits of the phonon frequencies. Generally, the choice of

the integration or differentiation methods governs the numerical accuracy, see e.g. classical

difference quotient versus the symmetric one [271]. Details on the methods used and the

arisen problems are provided in the following sections. Finally, the truncation error can be

mitigated by optimizing the set of input parameters, such as 𝐺max, 𝑘max, 𝑙max,�̊�, 𝑅�̊�, and the

discrete MT mesh, to name but a few.

As General strategya consequence, our approach is guided by an analytical reformulation of the terms in

Klüppelberg [88], such that numerical pitfalls are minimized [119, 127, 251, 270]. Essentially,

this means being critical and vigilant about the cancellation of sums or fulfillment of math-

ematical relations from a numerical point of view, even though this may seem superfluous

from an analytical standpoint [251]. Each of the aforesaid error categories (i) to (iii) must be

contemplated. All in all, the numerical errors (noise) should not influence the final results

significantly (numerical stability) [270, 271].

7.1.3 Performance

For Prioritizationthe first implementation, I have prioritized obtaining a working realization of the DFPT

in reference [88]. Therefore, the main focus has not been on achieving a cutting-edge

performance. Nonetheless, sometimes the implementation has turned out to be too naive

for pursuing the aforementioned strategy. Enhancements have become necessary, when

the runtime of juPhon had become too large for an efficient debugging in reasonable time.
But, enormous potential can still be unleashed, in order to achieve a significantly better

computational performance.

Important Possible
optimizations

examples constitute in employing parallelization or further adjusting the

recycled FLEUR subroutines. Usually, they do not feature an optimal performance yet within
their new environment of juPhon subroutines, or are already improved in the latest version of
the FLEUR code. Furthermore, the order and size of some array dimensions can be optimized
to ensure a contiguous run through the storage. Apart from that, the evaluation of some

quantities have become redundant during the implementation process, which will be fixed in

a future refactoring. However, an overall analysis of the most severe performance bottlenecks

ensued by a respective prioritization should always precede this kind of fixes.

In Runtime
assumptions

algorithm 1, algorithm 2, and algorithm 3, I estimate lower asymptotes Ω(.) for
the runtime of juPhon as a function of the LAPW cutoffs or of the material parameters.

These lower boundaries originate from the essential loop structure of juPhon. Due to the
scope of the complete algorithm, it is subdivided into an initialization part in algorithm 1, a

Sternheimer part in algorithm 2, and a dynamical-matrix part in algorithm 3. For the FFT, I

assume in general a performance of Ω(𝑛 lg(𝑛)) (lg(𝑛) ≡ log2(𝑛)), and for the diagonalization
of the dynamical matrix a performance of Ω(𝑛3) [272]. In this estimate, 𝑛 is the number
of coefficients undergoing the FFT, or one dimension of the quadratic dynamical matrix,

respectively [272]. Furthermore, 𝜉I/O in the first line of algorithm 1 is a not further specified
runtime constant for the interface to the DFT calculation in advance. The exact meaning

of “general initialization” in algorithm 1 is the subject of section 7.1.6. Moreover, I refer to
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the average performances in a DFT calculation, concerning the setups of the unperturbed

charge density and the effective potential, as well as the number of cycles required to reach

self-consistency [92]. This for instance takes place in the second line of algorithm 1, in which

the runtime is specified in units of setting up either an unperturbed (Coulomb) potential

with the Weinert method or an unperturbed xc potential. Additionally and e.g. in line 3 of

algorithm 1, the performance depends on the number of MT sphere mesh points #𝜈 (see
section 5.1). Within the algorithms, the abbreviations Sh, Pl, ctC, sf, HF denote Sternheimer,

Pulay, core-tail correction, surface, and Hellmann–Feynman, respectively. Finally, I include

expressions defined in section 7.4.1 to section 7.4.6 for the Sternheimer, and in section 7.6.8

for the dynamical matrix part.

Algorithm 1: Rough runtime analysis of the juPhon program (1/3: initialization).

1 General initialization ; // Ω(𝜉I/O)
2 All potential and density gradients ;

// Ω(3#𝐺max + 9𝑙max,�̊�(2𝑙max,�̊� + 1)#atoms+ 4𝑉 (0)
Weinert

+ 2𝑉 (0)
xc )

3 Prepare Sh Pl ; // Ω(2#𝜈�̊�(𝑙max,�̊�(2𝑙max,�̊� + 1))
3
#atoms)

4 Prepare Sh ctC ; // Ω((#𝐺max(1 + #𝜈�̊�) + 10#𝜈�̊�)#atoms)

InRuntime factors summary, the algorithms reveal that the runtime can be influenced by the typical

FLAPW cutoff parameters 𝑙max,�̊�, 𝐺max, 𝑘max, and #𝜈�̊�. Particularly the Sternheimer self-

consistency cycle however scales with Ω(#atoms2), a factor of 3 for the three displacement
directions, the product of occupied and unoccupied bands, and the size of the 𝒌-set and 𝒒-set.
It must be considered that 𝒌 + 𝒒 must again be in the group of 𝒌-vectors utilized during
the juPhon calculation. Therefore, if choosing a 𝒒 which does not fulfill this property, the
aforesaid condition must be restored by adding more 𝒌-vectors to the set at hand [251]. The
setup of the dynamical matrix scales with the number of 𝒒 and 𝒌 vectors, with Ω(#atoms2),
the squared number of displacement directions Ω(9), but only with the number of occupied
bands, which are few relative to the unoccupied bands.

AssumingComparison with
Finite

Displacement

that the number of bands is proportional to the number of atoms [119], the

Sternheimer self-consistency cycle scales with Omega(#atoms4), i.e., also the DFPT method.
This is faster than the FD technique, which scales with Omega(#atoms5) because of the
DFT diagonalization scaling with Omega(#atoms3). Furthermore, due to the requirement of
supercells, the DFPT approach outperforms the FD method for a general 𝒒-vector.

ForParallelization
strategy

the parallelization of algorithm 2, I suggest8 that pairs of fixed phonon vectors 𝒒 and
displaced atoms 𝛼 are ideally qualified to be calculated on distinct nodes. This is because these
pairs are independent from each other and basically do not require any data transfer with

other nodes during their calculation. In principle, one could also reformulate the Sternheimer

algorithm to only calculate one displacement direction, which then is provided as a parameter.

In this case, there would be a triple of displacement direction 𝑖, displaced atom 𝛼 and 𝒒-vector
per node. In my opinion, all remaining loops should be parallelized on the same node. In

contrast, for the setup of the dynamical matrix in algorithm 3, only the 𝒒 loop should be
8 Similar considerations have already been done before by others on a theoretical level or for different codes.

This paragraph refers explicitly to the juPhon code.
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Algorithm 2: Rough runtime analysis of the juPhon program (2/3: Sternheimer loop).

1 foreach 𝒒 do // Ω(#𝒒)
2 foreach 𝛼 do // Ω(#atoms)
3 Calculate ctC; // Ω(𝑙max,�̊� + 3#𝜈�̊�(#𝐺max + (2𝑙max,�̊� + 1)𝑙max,�̊�#atoms))

4 Prepare Sh sf ; // Ω(9#𝐺max𝑙max,�̊�(2𝑙max,�̊� + 1))
5 repeat// ≈ Ω(#DFT SCC iterations)
6 Calculate Sh potentials ;

// ≈ Ω(𝑉 (0)
Weinert

+ 𝑉 (0)
xc + 3#𝜈�̊�𝑙max,�̊�(2𝑙max,�̊� + 1)#atoms)

7 Prepare Sh HF ; // Ω(12#𝜈�̊�(𝑙max,�̊�(2𝑙max,�̊� + 1))
3
#atoms)

8 foreach 𝒌 do // Ω(#𝒌)
9 foreach 𝑖 do // Ω(3)
10 Prepare ket matching coefficients;

// Ω(8kmax𝑙max,�̊�(2𝑙max,�̊� + 1)#atoms#occ. val. bands)
11 Prepare bra matching coefficients;

// Ω(8kmax𝑙max,�̊�(2𝑙max,�̊� + 1)#atoms#all val. bands)
12 foreach 𝑛 do // Ω(#occupied valence bands)
13 foreach 𝑛′ do // Ω(#all valence bands)
14 HF IR ; // Ω(34 #𝐺3

max lg(33#𝐺3
max))

15 HF MT ; // Ω(24#𝜈�̊�((2𝑙max,�̊� + 1)𝑙max,�̊�)
3
#atoms)

16 Pl ;

// Ω(22𝑙max,�̊�(2𝑙max,�̊� + 1)(6 + 23(𝑙max,�̊�(2𝑙max,�̊� + 1))
2
))

17 sf; // Ω(3k2max(3 + (𝑙max,�̊�)
3(2𝑙max,�̊� + 1)2))

18 end foreach

19 end foreach

20 end foreach

21 end foreach

22 Calculate and mix Sh 𝜌(1) ; // ≈ Ω(3𝜌(0)DFT)
23 until self-consistent;

24 Calculate full 𝜌(1) ; // ≈ Ω(3𝜌(0)DFT)
25 end foreach

26 end foreach
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Algorithm 3: Rough runtime analysis of the juPhon program (3/3: dynamical matrix).

1 foreach 𝒒 do // Ω(#𝒒)
2 foreach 𝛼 do // Ω(#atoms)
3 foreach 𝛽 do // Ω(#atoms)
4 foreach 𝑖 do // Ω(3)
5 foreach 𝑗 do // Ω(3)
6 Calculate 𝐷𝛽𝛼

HF (𝒒) ;
// Ω(162 #𝐺4

max lg(33#𝐺3
max) + 27 #𝐺3

max + 2𝑉 (0)
Weinert

) +

Ω((9((2𝑙max,�̊� + 1)𝑙max,�̊�)
2
+ 6#𝜈�̊�(2𝑙max,�̊� + 1)𝑙max,�̊�)#atoms)+

Ω(3#𝜈�̊�(2𝑙max,�̊� + 1)𝑙max,�̊�)

7 Calculate 𝐷𝛽𝛼
Pl,dp

(𝒒); // Ω(6#𝜈�̊�(2𝑙max,�̊� + 1)𝑙max,�̊�#atoms)
8 foreach 𝒌 do // Ω(#𝒌)
9 foreach 𝑛 do // Ω(#occucpied valence bands)
10 Calculate 𝐷𝛽𝛼

Pl,bk
(𝒒) ; // Ω(60k2max(𝑙max,�̊�(2𝑙max,�̊� + 1))

2
)

11 Calculate 𝒌- and 𝑛-dependent 𝐷𝛽𝛼
sf

(𝒒) ; // Ω(216#𝑘2
max)

12 end foreach

13 end foreach

14 Calculate rest of IR 𝐷𝛽𝛼
sf

(𝒒) ; // Ω(27#𝐺2
max)

15 Calculate rest of MT 𝐷𝛽𝛼
sf

(𝒒) ; // Ω(18(𝑙max,�̊�(2𝑙max,�̊� + 1))
2
)

16 Hermitization ; // Ω(1)
17 end foreach

18 end foreach

19 end foreach

20 end foreach

21 Diagonalization ; // Ω(33(#atoms)3)
22 Post Processing ; // Ω(1)
23 end foreach
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distributed to different nodes. The iterations in the loop over the 𝒌-points are essentially
independent from each other. They are summed in the end to determine corrections to the

dynamical matrix, which can likewise be exploited for the parallelization. In general, it is

beneficial to exclude every calculation of 𝒌-independent quantities from the 𝒌-point loop,
because the number of 𝒌-points becomes large when converging demanding materials [251].
The same holds true for the loop over all valence bands. Further more specific optimizations

are proposed throughout the rest of the chapter.

7.1.4 Relativistic Corrections

According Approximationto chapter 5, the wave functions in the matrix-element Pulay corrections (6.67)

subdivide into a valence contribution and a core contribution. Klüppelberg [88] has developed

a way to integrate the latter into the dynamical matrix. But we are of the opinion that this

is not properly done, because Klüppelberg [88, equation (7.115)] does not sufficiently take

the relativistic Dirac character of the core states into account [127, 251]. Still, for the first

implementation, we decided to resort to the Schrödinger equation, decreasing the level of

complexity. In order to achieve this, I increase the constant for the speed of light by three

orders of magnitude, both within the variables of the FLEUR and the juPhon code [127, 251].
This reduces the significance of the small component in the LAPW basis [119, 127, 251].

However, it leads to unphysical results the more relativistic corrections become relevant

(heavy elements).

7.1.5 Dealing with Broken Symmetry

Phonons, Simplificationwhich displace atoms from their equilibrium positions, break certain symmetries, de-

pending on the respective phonon mode. This requires adjusting the symmetry optimizations,

such as the irreducible wedge of the 𝒌-point set (see for instance Singh and Nordström [68]).
However, the unperturbed quantities remain unaffected by the symmetry breaking of the

phonons so that the symmetry optimizations are still valid [251]. Despite the advantages in

computational performance and numerical stability that entail from exploiting the remaining

symmetries (see section 5.7), we decided against it in a first approach [119, 127, 251].

This allows for postponing the evaluation of the remaining symmetries and their correct

implementation, as well as reducing the complexity. As a consequence, all symmetry opti-

mizations which are done in FLEUR and are described in chapter 5 are abandoned. But, these
optimizations also inhere in the results that juPhon uses as its starting point. Therefore, a
back-transformation becomes necessary of which the details are pointed out in section 7.1.6.

7.1.6 Initialization of juPhon and Integrity Tests of its Starting Data

This Outlinesection contains more technical details about obtaining the required input quantities (see

section 6.1.2) and further initialization data after a FLEUR calculation. More details can be
found in appendix A. It results in various files required for the juPhon calculation and listed
in table 7.3, which only indicates their relevant content. In addition, table 7.4 shows all tests

requiring files beyond those in table 7.3, including the pages where these tests are specified.
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Table 7.3: Files stemming from the FLEUR computation that precedes the juPhon calculation.
Some of them contain more (irrelevant) information than indicated here. The last

five files are necessitated by the recycled FLEUR subroutine Fleur_init. By the term
“warping”, I denote convoluting an IR quantity with the IR step function. This is explic-

itly not done in the files pottot_unwarped, excpw_uw_fleur, and vxc0_uw_fleur.

File Name Contained Information

cdn1 𝜌(0)IR (𝑮), 𝜌(0)�̊� (𝑟𝜈�̊�)

kpts 𝒌, 𝒒

pottot [Θ 𝑉 (0)IR
eff

](𝑮), 𝑉 (0)�̊�
eff

(𝑟𝜈�̊�)

eig |𝑮| < 𝑘max,𝐸𝑙,𝜖
(0)
𝒌,𝑛, 𝑧

(0)
𝑮 (𝒌, 𝑛)

pottot_unwarped 𝑉 (0)IR
eff

(𝑮), 𝑉 (0)𝛾
eff

(𝑟𝜈�̊�)

enpara 𝐸𝑙

excpw_uw_fleur 𝜖(0)IRxc (𝑮)

excr_fleur 𝜖(0)𝛾xc (𝑟𝜈�̊�)

vxc0_uw_fleur 𝑉 (0)IR
xc (𝑮), 𝑉 (0)𝛾

xc (𝑟𝜈�̊�)

JuPhon.inp input parameters of juPhon

inp for Fleur_init (parameters)

sym.out for Fleur_init (symmetries)

fl7para for Fleur_init (parameters)

stars for Fleur_init 𝜙s

wkf2 for Fleur_init Θ(𝑮), Θ(𝒓)

7 Implementation and Results
122



Table 7.3 Fleur_initincorporates the expression Fleur_init. It refers to the recycled and equally-
named subroutine, which initializes a FLEUR calculation, as well as to its recycled subroutine
dependencies. In contrast to the usual procedure, these subroutines are taken from an early

stage of the modernized FLEUR version9. This is because a significant change between ver-
sion 26 and newer versions of FLEUR consists in the introduction of FORTRAN types. Employing
them is in line with fulfilling my ambition of a modern FORTRAN code. Furthermore, borrowing
the version of Fleur_init containing FORTRAN types is tolerable, because data that results can
easily and comprehensively be tested. These tests, the concept of which has been developed

by Betzinger [251] or is inspired by checks of the FLEUR code, shall be discussed at the end of
this section. First, however, the initialization part of juPhon is described in detail.

Table 7.4: List of tests that require files apart from those given in table 7.3.

# Name Page

7 Abandoning the rotations of the local coordinate systems 132

11 Reproducing the unperturbed charge density 152

14 First-order charge-density variation from difference quotients 154

18 Reproducing the unperturbed FLEUR potentials 178

24 Cross-checking the Pulay contributions 207

32 Cross-checking of Weinert method (juPhon) with Ewald method
(ABINIT)

215

34 Converged parameter for convolution of potential and step func-

tion

259

Initialization

Before starting a regular juPhon calculation, the files in table 7.3 must be available and the
juPhon parameters must be set (see appendix A and appendix B for the applied input parame-
ters). In Birch–

Murnaghan fit
particular for phonon calculations, the curve fit to the Birch–Murnaghan equation of

state [3, 273, 274] or in general the relaxation of the lattice structure is decisive [119, 127].

It ensures that the total energy is minimal, the forces vanish, and the harmonic contribution of

the total energy is the leading order of correction (cf. section 3.1). This should actually already

be the case when employing the experimental lattice parameters 𝑎exp (4.42Å for Ne [275]
and 4.05Å for Al [276, 277]). However, applying approximations, e.g. for the xc potential, in
turn leads to deviations and requires a relaxation of the lattice structure. This particularly

holds true for the simple X𝛼 potential (cf. section 2.2.2). For the aforesaid systems, the input
data and the results of the Birch–Murnaghan curve fit are listed in table 7.5 and table 7.6,

9 Within the repository of the FLEUR code, the commit of the referred version is addressed by the hash
f02ffa2e8b1e374ac78118d94f00c88cf7ecb95b.
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respectively. The input data points are symmetrically distributed around the resulting lattice

constant 𝑎DFT, which is taken for the juPhon calculation and features the minimum total
energy. For Ne 𝑎DFT = 4.19Å is found and for Al the result is 𝑎DFT = 4.09Å. The former
outcome of the fit is 5.1% smaller and the latter 0.9% larger than the respective experimental
value 𝑎exp. I have assumed that 1Å = 1.889 726 124 57 a0.

Table 7.5: Input data of the Birch–Murnaghan fit for Ne and Al. The first and third columns
contain the ratios between the lattice constants 𝑎DFT set for the calculation, and the
respective experimental lattice constants 𝑎exp. The remaining columns incorporate the
resulting total energies of the FLEUR calculation in units of the Hartree energy Eh.

𝑎Ne
DFT/𝑎

Ne
exp 𝐸(0)

tot,Ne / Eh 𝑎Al
DFT/𝑎

Al
exp 𝐸(0)

tot,Al / Eh

0.90 −127.491 987 565 3 0.96 −240.474 247 058 5
0.91 −127.492 091 132 5 0.97 −240.475 449 453 0
0.92 −127.492 162 748 9 0.98 −240.476 312 634 2
0.93 −127.492 209 570 0 0.99 −240.476 878 436 4
0.94 −127.492 235 157 5 1.00 −240.477 158 030 3
0.95 −127.492 242 873 8 1.01 −240.477 170 153 0
0.96 −127.492 235 152 6 1.02 −240.476 941 193 6
0.97 −127.492 216 436 8 1.03 −240.476 496 078 0
0.98 −127.492 187 887 9 1.04 −240.475 857 888 1
0.99 −127.492 151 474 6 1.05 −240.475 046 912 4
1.00 −127.492 109 503 1 1.06 −240.474 106 645 2

Table 7.6: Results of the Birch–Murnaghan fit for Ne and Al.

fit results Ne Al

𝑎DFT/𝑎exp 0.948 925 2 1.009 627 7
𝐵0 / mbar 0.037 25 0.685 08
𝐵′

0 / mbar 7.443 05 4.224 59

AtInput data
interface

the start of the juPhon calculation, the subroutine InitializeJuPhon is called. Thus,
the subroutine ReadInpFile is executed, which reads in JuPhon.inp and is based on the
parameter management of the SpeX [230] code. Furthermore, the setup of the 𝒌 and 𝒒 set is
inspired by the 𝒌-point generator in FLEUR and will be unified with it in the future. The 𝒒-point
set is constructed such that it is a subset of the 𝒌-point set in order to ensure that all required
wave-functions expansion coefficients are available [88]. At the same time, a mapping array

is determined which stores the index of the 𝒌-vector being the result of 𝒌 + 𝒒 [251]. If 𝒌 + 𝒒
leaves the first Brillouin zone, the resulting sum of the vectors is back-folded by a reciprocal

lattice vector 𝑮bf as sketched in figure 7.2 [251]. The setup of the Bloch vectors needs

First_glance, Rw_inp and their dependent subroutines, each of them recycled from FLEUR.
The former is a simplified version of the already mentioned Fleur_init subroutine. It is
called in the regular mode of juPhon and provides the complete input data, likewise required
for a FLEUR calculation. As soon as Fleur_init finishes, the mixing parameters read from the
inp file are overwritten by their equivalents from JuPhon.inp. Moreover, in order to initiate
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𝒃1

𝒃2

𝒌 𝒌 + 𝒒𝒌+
bf

𝑮bf

𝒒

× ××

Figure 7.2: Schematic visualization of the relation between 𝒌 + 𝒒, that is in a second Brillouin
zone, and a (translation-)symmetry related 𝒌+

bf
, that is in the first Brillouin zone and

connected to the second Brillouin zone by a back-folding vector 𝑮bf. The reciprocal

unit-cell vectors 𝑏𝑖 are chosen such as in juPhon, i.e., 𝑏𝑖 ∈ [0, 1[ in internal units.

the back-rotation of the local coordinate systems in the MT spheres, the original orthogonal

rotation matrices are substituted by their transposed version. This is equivalent to their

inversion. Now, the eig file, containing the Kohn–Sham wave-function expansion coefficients
and the Kohn–Sham energies, is read in by the subroutine Read_eig. The algorithm is guided
by the I/O of eig in FLEUR. Furthermore, within Read_eig the number of eigenvalues and of
the basis functions per 𝒌-point are parsed (not listed in table 7.3). Since the reciprocal basis
vectors in the sphere of radius 𝑘max are partially redundantly stored for every 𝒌-point, we
decided to only store each of the vectors once and generate a mapping array [251]. This is to

optimize the storage requirements, which can grow immensely as a function of the 𝒌-set size.
Afterwards, the subroutine ReadPotFleur makes the unperturbed potentials from table 7.3
available, by using the Loddop subroutine from FLEUR and its depending subroutines. The
aforementioned FLEUR subroutine is likewise utilized for reading the unperturbed charge
density. Moreover, the required xc potentials and energy densities are read in by the subroutine

ReadXCquantities. In contrast, the radial solutions 𝑢�̊�
𝑙𝑝 are calculated within GenRadSolnInt,

using the subroutine Radfun from FLEUR and its dependencies. It must be stressed that the
result of this subroutine is not the pure quantity 𝑢�̊�

𝑙𝑝(𝑟𝜈�̊�), but it is multiplied by the radial
mesh points 𝑟𝜈�̊�𝑢�̊�

𝑙𝑝(𝑟𝜈�̊�) in order to anticipate Jacobi determinants. As a post-processing step,
they are sorted for a better computational performance [251]. The set of reciprocal lattice

vectors with the cutoff 𝐺max is still missing. Its generator is guided by the FLEUR equivalent
Strgn, but the 𝐺max from inp is not corrected in juPhon [127, 278]. Finally, the cardinality

𝑁occ
𝒌 = ∣{𝑓 (0)

𝒌,𝑛 ∣ ∣𝑓 (0)
𝒌,𝑛∣ > 10−8}∣ . (7.2)
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is determined by juPhon to find the number of occupied bands per 𝒌-point. It must be stressed
that the 𝑓 (0)

𝒌,𝑛 are subsequently multiplied by the norm
1/𝑁𝒌 of the 𝒌 sums, where 𝑁𝒌 is the

number of employed 𝒌-points for a calculation [127, 251].

DuePurification of
input data

to historical or practical reasons, some information from FLEUR is still biased by
undesired operations [127, 251]. We decided to use the pure quantities in order to avoid

software bugs which are hard to find and generated by confusion. So,

[𝑉 (0)�̊�
eff

(𝑟𝜈�̊�)]
𝜆
=

⎧{{
⎨{{⎩

[
√
4π

𝑟𝜈�̊�
𝑉 (0)�̊�
eff, inp

(𝑟𝜈�̊�)]
𝜆

, 𝜆 = 0

[𝑉 (0)�̊�
eff, inp

(𝑟𝜈�̊�)]
𝜆

, 𝜆 > 0
(7.3)

is set up to revert the decorating factor from the 𝜆 = 0 lattice-harmonic coefficient of 𝑉 (0)�̊�
eff, inp

(𝒓),
which has been parsed from pottot. Furthermore, all lattice-harmonic expansion coefficients
of the unperturbed charge density in the MT spheres, which are read in from cdn1, are
multiplied by squared reciprocal mesh points so that

[𝜌(0)�̊� (𝑟𝜈�̊�)]
𝜆
= 1

𝑟2𝜈�̊�

[𝜌(0)�̊�,inp(𝑟𝜈�̊�)]
𝜆

(7.4)

results.

AccordingRelaxing
symmetry

to section 7.1.5, the symmetry-optimized expansions of the effective poten-

tial and the charge density must be transformed into the original plane-wave and spherical-

harmonic expansions of the LAPW basis. For the IR, this is done by multiplying the coeffi-

cient 𝜌(0)IR (𝑠(𝑮′)) of a star 𝑠 containing 𝑮′, by a phase factor 𝜑𝑠(𝑮′), where 𝑮′ is an element

of the unsymmetrized reciprocal lattice vector set. The latter phase is the complex conjugate

summand of equation (5.44c), for which ℜ𝕞𝑮 ≡ 𝑮′, so that overall

𝜌(0)IR (𝑮′) = 𝜌(0)IR (𝑠(𝑮′)) 𝜑𝑠(𝑮′) (7.5a)

𝑉 (0)IR
eff

(𝑮′) = 𝑉 (0)IR
eff

(𝑠(𝑮′)) 𝜑𝑠(𝑮′) (7.5b)

holds. In the MT spheres, firstly the transformation coefficients

𝑐𝛾𝑙𝑚 = ∑
𝑚′

[𝔇ℜ−1]
𝑙

𝑚,𝑚′
𝔠�̊�𝑙𝑚′ (7.6a)

must be determined, in which the Wigner matrix 𝔇ℜ−1
reverts the rotations of symmetry-

related local MT coordinate systems and fulfills [251]

𝔇ℜY𝑙𝑚( ̂𝒓) = ∑
𝑚′

Y𝑙𝑚′( ̂𝒓)⟨Y∗
𝑙𝑚′( ̂𝒓)∣𝔇ℜ∣Y∗

𝑙𝑚( ̂𝒓)⟩ ≕ ∑
𝑚′

𝔇ℜ,𝑙
𝑚,𝑚′Y𝑙𝑚′( ̂𝒓) . (7.6b)

Actually, the 𝑐𝛾𝑙𝑚 from equation (7.6a) are still attributed to lattice harmonics with index 𝜆
and members addressed by 𝜇 so that relaxing the symmetry of the unperturbed charge density
and the unperturbed effective potential formally reads [68]

[𝜌(0)𝛾 (𝑟𝜈𝛾)]
𝑙𝑚

= [𝜌(0)�̊� (𝑟𝜈�̊�)]
𝜆(𝑙)

𝑐𝛾𝜆(𝑙),𝜇(𝑚) (7.6c)

[𝑉 (0)𝛾
eff

(𝑟𝜈𝛾)]
𝑙𝑚

= [𝑉 (0)�̊�
eff

(𝑟𝜈�̊�)]
𝜆(𝑙)

𝑐𝛾𝜆(𝑙),𝜇(𝑚) . (7.6d)
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The orthogonal Wigner matrix 𝔇ℜ,𝑙
𝑚,𝑚′ is generated by the subroutine D_wigner, and equa-

tion (7.6a) realized by the subroutine Rotate_clnu [279] (see also references [68]). Both
subroutines are recycled from FLEUR. The outcome of Rotate_clnu are the arrays clnu_atom,
nmem_atom, mlh_atom, and nmem_atom. In this order, they contain the 𝑐𝛾𝑙𝑚 from equation (7.6a),
the number of lattice harmonic members, and their magnetic quantum number for every

atom in the back-rotated MT spheres [251]. Moreover, both the charge density and the

effective potential are converted from the stars to the plane-wave representation as well

as from the lattice-harmonic to the spherical-harmonic representation by the subroutine

UnfoldRho0nVeff0Symmetry. This is done utilizing the subroutines ConvertStar2G and
ConvertLH2SphHarm. In algorithm 4 the typical loop structure underlying the conversion
conducted in the latter is shown. Although the symmetry optimizations of the expansion

Algorithm 4: Loop structure typically employed for converting symmetrized to unsym-

metrized expansions (inspired by FLEUR).
1 forall |𝑮| ≤ 𝐺max do
2 Get index of star 𝑠(𝑮) containing current 𝑮 (mapping array available);

3 Convert star to plane-wave representation (e.g. using equation (7.5a)) ;

4 end forall

5 forall ̊𝛾 do // atom types
6 forall 𝛾 do // equivalent atoms of an atom type
7 forall sym( ̊𝛾) do // symmetries of an atom type
8 forall 𝜆(sym( ̊𝛾)) do // lattice harmonics of a symmetry
9 Get orbital quantum number 𝑙 of 𝜆 (mapping array available);
10 forall 𝜇(𝜆) do // members of a lattice harmonic
11 Get magnetic quantum number 𝑚 of 𝜇 (mapping array available);
12 Construct combined index lm of 𝑙 and 𝑚 ;
13 forall 𝜈�̊� do // mesh points of a MT

14 Convert lattice-harmonic to spherical-harmonic representation

(e.g. using equation (7.6c)) ;

15 end forall

16 end forall

17 end forall

18 end forall

19 end forall

20 end forall

coefficients are abandoned, only those expansion coefficients are significant which have a

non-vanishing coefficient 𝑐𝛾𝑙𝑚. At the moment this is often not exploited and the loops consider
every orbital quantum number 𝑙 or magnetic quantum number 𝑚. This can potentially be
optimized in the future [251]. However, it must be analyzed first, whether this leads to a

performance gain and does not prevent modern chip architectures from applying optimizations

such as vectorization. Using each of the aforesaid subroutines, all variables, arrays, and types

are filled with the required information to start a juPhon calculation.
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Test 1: The 𝒌-Point Generator and the kpts File

In the regular mode of juPhon (the parameter createKpts is deactivated in JuPhon.inp by a
number sign), the 𝒌-point generator runs in the background. Thus after reading in the 𝒌-point
information from kpts, it is compared with the data internally generated for the 𝒌-point and
the 𝒒-point sets. This identifies possible errors, while converting the data from the kpts file.
For instance, the 𝑘𝑖 are listed as integer and a common divisor is written to the first line of
the kpts file. But, the internal 𝑘𝑖 are real and must be within the interval [0, 1[. Detailed
information about the kpts file can be found in the documentation of FLEUR. In a nutshell,
juPhon only accepts kpts files which could have been generated by its own 𝒌-point generator.
Furthermore, the read-in 𝒌-point information is compared with the 𝒌-point information
written to the eig file. There should be no difference.

Finally, a test to check whether the 𝒌-point generator works correctly is to sum up the
weights of the 𝒌-points

∑
𝒌

1
𝑁𝒌

= 1 . (7.7)

Since symmetry is irrelevant, no irreducible wedge of 𝒌-points is constructed (see section 5.7.1).
Consequently, 𝒌-points trivally feature the weight 1/𝑁𝒌, where𝑁𝒌 is the number of all 𝒌-points.
The sum in the previous equation must therefore yield 1, because it should be normalized.

Test 2: Consistency of the eig File Using Fermie

The consistency of the eig file can be tested by determining the total number of valence
electrons 𝑁e−

val
. For the relevant systems Ne and Al, the number of valence electrons is 8 and 3,

respectively. This test is based on the recycled FLEUR subroutine Fermie and its depending
subroutines. They likewise deliver the unperturbed occupation numbers 𝑓 (0)

𝒌,𝑛. Evaluating

∑
𝒌,𝑛

2
𝑁𝒌

𝑓 (0)
𝒌,𝑛 = 𝑁 e−

v (7.8)

results in the total number of valence electrons, provided a spin degeneracy factor of 2 is
multiplied. The sum runs over all occupied bands 𝑛 and the 𝒌-points of the Brillouin zone. By
using Fermie, the 𝒌-point weights and the eig file is proven to be consistent. The latter covers
for example the eigenenergies, the Fermi energy, the number of occupied states, the sum of

occupation numbers, the sum of semicore eigenvalues, and the sum of semicore charges.

Test 3: Continuities of the Wave Functions (eig file), the Charge Density (cdn1 file),
and the Effective Potential (pottot_unwarped file) from FLEUR

TheGeneral idea IR and MT expansion coefficients of the charge density, the potential, and the wave

functions from FLEUR are tested by checking their continuity at random points on the MT
surfaces of all atoms. It is important that the potential is not convoluted with a step function

in the IR, otherwise the continuity suffers. The continuity data of juPhon can be compared to
the continuities calculated by the FLEUR code, in which the same algorithm (in the Checkdop
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subroutine) is used. I have written an own version of Checkdop to get familiar with the read-in
quantities.

The Sensitivityrandom points from the recycled FLEUR routine Sphpts are generally different
when determined in FLEUR or juPhon. Furthermore, the discontinuities can be so small that
numerical accuracy thwarts an exact comparison. We decided therefore that it is sufficient

to ensure the discontinuities written out by FLEUR and juPhon to be at the same order of
magnitude. The former can be found in the file out while the latter stands in juPhon.log.
The continuity information is ended by a statistical evaluation using the FLEUR routine Fitchk.
It yields in particular the root mean square of the differences between the IR and the MT

representations on the MT sphere boundary. These values should be similar in FLEUR and
juPhon.

The Random
generator

quality of the random generator influences this test, because a well-distributed set

of testing points on the MT sphere boundary is most representative to check the continuity.

However, the employed generator has proven sufficient. In juPhon, a new set of points is
generated and then scaled by the MT sphere radii. The number of points can be set behind

the label Pts2ChkCont in JuPhon.inp.

In Potential and
density

order to test whether the data related to the stars and the lattice harmonics is correct,

the evaluation of the charge density and the potential takes place in these representations.

Within FLEUR and juPhon two scalings, namely the internal (int) and the cartesian (crt)
scalings are used. While the former scaling is normalized, i.e., for example the length of each

lattice vector is 1, the latter scaling incorporates the material information (real lengths of lattice
vectors). The canonical matrices 𝐴 and 𝐵, containing the lattice information of the material in
a cartesian basis, communicate between these internal and cartesian representations. Hence,

expanding a general function 𝔤 at a random cartesian point 𝒓crt in stars (5.44a) yields

𝔤(𝒓crt) = ∑
𝑠

𝑁𝑮
𝑠 𝔤(𝑠)𝜙s(𝒓crt) (7.9a)

= ∑
𝑠

𝑁𝑮
𝑠 𝔤(𝑠) 1

𝑁op
∑
ℜ

e2πi(ℜ𝑮)⋅( 1
2π𝐵𝒓crt−𝒕int) , (7.9b)

where 𝑮 is the representative reciprocal lattice vector and 𝑁op the number of symmetry
operations {ℜ, 𝒕}. Therefore, the function must be multiplied with 𝑁𝑮

𝑠 , the number of plane

waves in this star. Furthermore, the position vector in the cartesian scaling is back-transformed

to the internal scaling, which is why the argument of the exponential function contains a 2π.
In the MT spheres 𝛾, the transformation from the global to the local coordinate system as well
as a rotation ℜ𝛾 to the representative MT ̊𝛾 is required (cf. equation (5.6) and (5.54)). The
function 𝑔𝛾(𝒓 − 𝝉𝛾) can be expanded in lattice harmonics 𝔜𝜆 and spherical harmonics Y𝑙𝑚

𝑔(𝒓 − 𝝉𝛾) = ∑
𝜆

𝑔𝜆(|𝒓 − 𝝉𝛾|) 𝔜𝜆(𝒓 − 𝝉𝛾⋀

) (7.10a)

= ∑
𝑙𝑚

𝑔𝑙(|𝒓 − 𝝉𝛾|) 𝔠𝛾𝑙𝑚Y𝑙𝑚(𝐴 ℜ𝛾 1
2π

𝐵(𝒓crt − 𝝉𝛾
crt)

⋀

). (7.10b)

For the effective potential, the root mean square of Ne is 0.064% and of Al 0.040%. In
comparison, the root mean squares of the charge density are 0.104% for Ne and 0.005% for
Al. This indicates highly continuous quantities.
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TheWave function wave function is expanded in the LAPW basis defined in equation (5.9). With a

cartesian vector 𝒓crt𝛾 = 𝒓𝛾 + 𝝉𝛾, pointing to a random point on the MT sphere and |𝑟|�̊� = 𝑅�̊�
and in the local coordinates of the MT sphere, the IR and the MT wave function read

𝛹(𝒓crt,𝛾) = 1√
𝛺

∑
𝒌,𝑛,𝑮

𝑧(0)𝑮 (𝒌, 𝑛) ei(𝐵(𝒌int+𝑮int))⋅𝒓crt,𝛾 (7.11)

and

𝛹(𝑅�̊� ̂𝒓�̊�) = ∑
𝒌,𝑛

∑
𝑙𝑚𝑝

1
𝑅�̊�

𝐴𝒌𝛾𝑛
𝑙𝑚𝑝𝑅�̊�𝑢

1�̊�
𝑙𝑝 (𝑅�̊�)Y𝑙𝑚( ̂𝒓𝛾) , (7.12)

respectively. The average absolute mismatch of both systems at the MT sphere boundary is

found to be smaller than 7 ⋅ 10−8 e0.5 a−1.5
0 .

Test 4: Properties of the Radial Functions from the LAPW Basis Set

The idea of this test is to check the overlap (5.57e) of the radial solutions 𝑢�̊�
𝑙𝑝(𝑟). This can

easily be done for the normalization 𝑝 = 𝑝′ = 1, and if the radial solutions are orthogonal to
each other, i.e., 𝑝 = 1 and 𝑝′ = 2 or vice versa. For the case 𝑝 = 𝑝′ = 2, a constant results
that is not known in advance and can thus not be tested in general. When evaluating the

radial integrals for all orbital quantum numbers 𝑙 and representative atoms ̊𝛾, the absolute
difference to the analytical results 0 and 1 should not be larger than 10−7. This is the case for

Ne and Al.

Test 5: Orthogonality of the Kohn–Sham Wave Functions

TheGeneral concept Kohn–Sham wave functions which are expanded in the LAPW basis must be orthonormal,

which indirectly also validates the set of Kohn–Sham energies 𝜖(0)𝒌,𝑛, because both type of quan-

tities stem from the FLEUR diagonalization routine [251]. Furthermore, this test covers (i) the
wave-function expansion coefficients 𝑧(0)𝑮 (𝒌, 𝑛), (ii) the small matching coefficients 𝑎𝒌𝛾𝑮𝑙𝑚𝑝 ,

determined by the recycled routine Abcof310, (iii) the �⃗��̊�
𝑙𝑝, and (iv) whether the spherical

harmonics are correctly calculated by the recycled routine Ylm4. The idea consists in evaluat-
ing an analytical overlap of the LAPW basis in the IR and the MT spheres, and numerically

contracting it with the wave-function expansion coefficients.

ForDerivation of the
overlap

the overlap of the LAPW IR wave functions, a transformation to position space is

conducted and the LAPW basis functions from equation (5.9) inserted yielding

⟨𝜙(0)
𝒌,𝑮′∣𝜙

(0)
𝒌,𝑮⟩

IR
= 1

𝛺
∫
IR

e−i(𝒌+𝑮′)⋅𝒓ei(𝒌+𝑮)⋅𝒓 d3𝑟 . (7.13a)

10 This routine was provided by Markus Betzinger and does not consider the factor i𝑙 of the MT matching
coefficients (5.55). For polyatomic systems, the array of symmetry-dictated rotations (passed to Abcof3 for
the sake of an optimization) is replaced by a set of unity operations [127].
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Then, the IR region can be expressed as the volume of the unit cell 𝛺 without that of the MT
spheres 𝛾

= 1
𝛺

∫
𝛺
ei(𝑮−𝑮′)⋅𝒓 d3𝑟 −∑

𝛾

1
𝛺

∫
𝛾
ei(𝑮−𝑮′)⋅𝒓𝛾 d3𝑟𝛾 , (7.13b)

where 𝒓𝛾 = 𝒓 − 𝝉𝛾. Defining 𝑮″ ≔ 𝑮−𝑮′ and identifying a Dirac delta distribution

= δ(𝑮″) − 1
𝛺

∑
𝛾

∑
𝑙𝑚

ei𝑮
″⋅𝝉𝛾4πi𝑙Y∗

𝑙𝑚( ̂𝑮″)∫
𝛾
𝑟2𝛾 j𝑙(𝐺″𝑟𝛾)Y𝑙𝑚( ̂𝒓𝛾) d3𝑟𝛾 (7.13c)

results, where the Rayleigh decomposition (5.5) is used. Finally, this leads to

= 1
𝛺
𝛺δ(𝑮″) − 1

𝛺
4π

√
4π∑

𝛾
ei𝑮

″⋅𝝉𝛾i0 1√
4π

∫
𝑅𝛾

0
𝑟2𝛾 j0(𝐺″𝑟𝛾) d𝑟𝛾 (7.13d)

= δ(𝑮″) − 4π
𝛺

∑
𝛾

ei𝑮
″⋅𝝉𝛾

sin(𝐺″𝑅𝛾) − 𝐺″𝑅𝛾 cos(𝐺″𝑅𝛾)

|𝑮″|3
. (7.13e)

Only the 𝑙 = 0 integral remains due to the symmetry of the spherical harmonics. Inserting the
definition of j0(𝑥) = sin(𝑥)𝑥−1 enables one to solve the radial integral [280, 281]. The MT

overlap is already evaluated in section 5.8.2 and reads

⟨𝜙(0)𝛾
𝒌,𝑮′∣𝜙

(0)𝛾
𝒌,𝑮⟩

𝛾
= ∑

𝑙𝑚
∑
𝑝′𝑝

𝑎∗𝑮
′𝒌𝛾

𝑙𝑚𝑝′ 𝑎𝑮𝒌𝛾
𝑙𝑚𝑝 ∫

�̊�
∑
𝑠

𝑟𝜈�̊�𝑢𝑠�̊�
𝑙𝑝′(𝑟𝜈�̊�)𝑟𝜈�̊�𝑢𝑠�̊�

𝑙𝑝 (𝑟𝜈�̊�) d𝑟𝜈�̊� ,

where the sum over 𝑠 accounts for the scalar-relativistic character of the MT basis functions
and the circles above 𝛾 indicate when a loop over atom types is sufficient. Finally, the overlap
of the Kohn–Sham wave function can be determined by multiplying the overlaps by the

wave-function expansion coefficients

⟨𝛹 (0)
𝒌,𝑛∣𝛹

(0)
𝒌,𝑛⟩ = ∑

𝑮′𝑮
𝑧∗(0)𝑮′ (𝒌, 𝑛)(⟨𝜙(0)IR

𝒌,𝑮′∣𝜙
(0)IR
𝒌,𝑮 ⟩

IR
+∑

𝛾
⟨𝜙(0)𝛾

𝒌,𝑮′∣𝜙
(0)𝛾
𝒌,𝑮⟩

𝛾
)𝑧(0)𝑮 (𝒌, 𝑛) (7.14a)

= ∑
𝑮′𝑮

⎛⎜
⎝
δ(𝑮″) − 4π

𝛺
∑
𝛾

ei𝑮
″⋅𝝉𝛾

sin(𝐺″𝑅�̊�) − 𝐺″𝑅�̊� cos(𝐺″𝑅�̊�)

|𝑮″|3
(7.14b)

+∑
𝛾

∑
𝑙𝑚

∑
𝑝′𝑝

𝑎∗𝑮
′𝒌𝛾

𝑙𝑚𝑝′ 𝑎𝑮𝒌𝛾
𝑙𝑚𝑝 ∫

�̊�
∑
𝑠

𝑟𝜈�̊�𝑢𝑠�̊�
𝑙𝑝′(𝑟𝜈�̊�)𝑟𝜈�̊�𝑢𝑠�̊�

𝑙𝑝 (𝑟𝜈�̊�) d𝑟𝜈�̊�⎞⎟
⎠

.

Test 6: Comparing the Log Files of FLEUR and juPhon

Apart Exchange-
correlation
integrals

from the aforementioned tests of the data available after the initialization, the log files

of juPhon (juPhon.log) and FLEUR (out) can be compared. Basically, the information which
can reasonably be written to a file is found there. For the surface-term corrections of the

dynamical matrix, it derives benefit to compare the integrals

∫
𝛺
𝜌(0)(𝒓)𝜖(0)xc (𝒓) d3𝑟 (7.15a)

∫
𝛺
𝜌(0)(𝒓)𝑉 (0)

xc (𝒓) d3𝑟 (7.15b)
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in juPhon.log with the ones in out [127]. They must be the same within the possible
numerical accuracy of the integral routines (cf. section 7.1.2). This test checks the correctness

of the routines that calculate IR and MT integrals such as in equation (7.15). The factors of

the integrand are either expanded in plane waves exp(i𝑮 ⋅ 𝒓) or lattice harmonics Y( ̂𝒓). Thus
also the set of reciprocal 𝑮 with the cutoff 𝐺max and the MT mesh is tested. The detailed
algorithm of evaluating such integrals is given at a more prominent place in section 7.6.8.

Another𝑙-like charge quantity, that can be compared, is the so-called 𝑙-like charge in the MT sphere 𝛾 [71]

𝑄𝛾
𝑙 = ∑

𝒌,𝑛
∑
𝑚𝑝

𝑓 (0)
𝒌,𝑛𝐴

∗𝒌𝛾𝑛
𝑙𝑚𝑝 𝐴𝒌𝛾𝑛

𝑙𝑚𝑝 ∫
�̊�
∑
𝑠

𝑟𝜈�̊�𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝑟𝜈�̊�)𝑟𝜈�̊�𝜑𝑠�̊�

𝑙𝑚𝑝(𝑟𝜈�̊�) d𝑟𝜈�̊� . (7.16)

Finally, the total charge is calculated by the recycled FLEUR routine Cdntot, which essentially
sums the previous equation over all orbital quantum numbers 𝑙, MT spheres 𝛾, and adds the
IR charge.

Test 7: Abandoning the Rotations of the Local Coordinate Systems

The arrays checked by this test are clnu_atom, nmem_atom, and mlh_atom for the back-rotated
local coordinate systems of the MT spheres (cf. equation (7.6a)). We decided, without loss of

generality, to choose the density here and convert it according to the aforesaid equations.

First the benchmark is obtained from an additional FLEUR calculation with the same
system in a separate folder. However, the symmetry is deactivated by deleting all symme-

try operations in the sym.out file except for the unity operation, before executing FLEUR.
Afterwards, juPhon must be executed with only this test activated. It results in the files
radDenslmA𝛾R.ssv for the real part and radDenslmA𝛾I.ssv for the imaginary part of the
coefficients. The placeholder 𝛾 must be substituted by the index of the atom here11. In a
system without symmetry, the number of lattice harmonics (𝑙max,�̊� + 1)2 corresponds to that
of the spherical harmonics. This means every lattice harmonic likewise consists of only one

member. The aforesaid files should be renamed and copied to the folder, where the original

juPhon calculation takes place in. In the original folder, the symmetrization of the charge
density is abandoned using the routine ConvertLH2SphHarm. The resulting coefficients are
written to radDenslmA𝛾R.ssv and radDenslmA𝛾I.ssv. These files can be compared to those
produced before.

7.2 Linear Charge-Density Variations

AmongOutline the linear charge-density variations, the gradient of the unperturbed density provides

the toughest challenges regarding its numerics and implementation. These challenges and

our way to successfully deal with them are elucidated in section 7.2.1. Moreover, provided

core-tails reach out of the MT spheres, terms for correcting them become necessary for the

first-order density variation and are introduced in section 7.2.2. Section 7.2.3 then finally

presents the details of the complete first-order density variation, also clarifying its relation

11 For polyatomic systems, FLEUR can be instructed not to build groups of symmetry equivalent atoms by setting
the charge 𝑍 of the atom slightly differing from the actual nuclear charge of the atom, i.e., 10−3 can be

added to 𝑍�̊� for every equivalent atom in the input generator inpgen.x [127].
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to core-tail corrections and the gradient of the unperturbed density. In order to give an

impression of the first-order density variation in real space, I illustrate it in section 7.2.4 for

one 𝒒-value, selecting fcc Ne and fcc Al. Finally, the framework to validate the implementation
of the linear density variations is pointed out in section 7.2.5. Apart from the FLEUR version 26,
specified on page 112, a newer version12 of FLEUR has served as inspiration for the juPhon
routines.

7.2.1 Gradient of the Unperturbed Charge Density

After Interstitial regionthe initialization of juPhon, the plane-wave coefficients 𝜌(0)IR (𝑮) from FLEUR are available.
By moreover resting on equation (6.16), immediately

[𝛁𝜌(0)IR ](𝑮) ≔ i𝑮𝜌(0)IR (𝑮) (7.17)

can be defined and reveals the way of determining the IR unperturbed density-gradient

coefficients. Since this approach is based on an analytical derivative of the IR plane-wave

basis, numerical inaccuracy can mainly be expected from truncation errors, i.e., a non-

converged 𝐺max13. It implies the usual requirement that the charge density gradient should
not change significantly anymore when further raising 𝐺max. Apart from that, we established
the criterion that the unperturbed charge density gradient must be continuous at the MT

sphere boundary [127, 251]. However, this is in principle already ensured by the construction

of the LAPW basis, which is continuous to linear order [127, 251].

The Motivation of
first muffin-tin
optimizations

MT unperturbed density gradient (6.17) requires the coefficients of the unperturbed

density which must not be decorated by any additional factor, such as 𝑟𝜈𝛾𝜌(𝑟𝜈𝛾). Otherwise,
either the gradient must be divided by this factor in the end or the latter must possibly be

taken into account by using the product rule. After the juPhon initialization, these naked
coefficients are at hand, both in the lattice-harmonic (7.4) and the spherical-harmonic repre-

sentation (7.6c). But provided the symmetry of the unperturbed quantities, which remains

unaffected by the emergence of phonons, only certain 𝑙 and𝑚 channels have significant contri-
butions [127, 251]. Thus, respectively looping over irrelevant orbital and magnetic quantum

numbers in the spherical-harmonic representation is inefficient [251]. These symmetries

are partly broken when the gradient is applied, so we decided to use a spherical-harmonic

representation of the gradient to reduce complexity in the first implementation [119, 251].

Moreover, a closer inspection of equation (6.17b) displays that the 𝑙 or 𝑚 quantum numbers

of the input and output quantities differ. For example, a scattering takes place from an input

channel 𝑙 to the output channels 𝑙 ± 1. Consequently, our first optimization is guided by three
aspects: (i) no irrelevant calculation, (ii) an efficient sequential run through the storage of the

input coefficients, and (iii) an integration of the transformation (7.6c) [251]. These measures

can be characterized as a performance optimization regarding runtime and storage. However,

(i) to (iii) cause a non-contiguous storage access of the output-quantity array. Nonetheless,

12 This version can be found in the FLEUR repository when searching for the commit indexed by the hash
1138084ca03ddbad5ba178c97d8082234b112988.

13 Recollecting that the charge density (5.23) yields from a product of two wave functions featuring a cutoff

𝑘max, the unperturbed charge-density should be converged for 𝐺max ≥ 2𝑘max [251]. But due to overlapping
core-tails, in general it has proven necessary to increase the lower limit and use the same 𝐺max > 2𝑘max as
for the unperturbed potential, which is larger than 2𝑘max due to the xc part. [127].
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we deem this to be the better solution, because an array is available, storing the 𝑙 and 𝑚
of the lattice harmonic members characterized by 𝜆 and 𝜇 [251]. Additionally, in this way
no 𝑙 or 𝑚 contributions of the lattice harmonic representation are requested, which are not
available due to symmetry. Catching these exceptions would necessitate conditional clauses

in the inner scope of the loops, which oppose runtime optimizations by the compiler.

RealizingFirst muffin-tin
optimization

the aforesaid optimizations, firstly in equation (6.17b) the 𝑙″ sum is evaluated

𝛁𝜌(0)𝛾 (𝒓𝜈�̊�) = 𝑇
1

∑
𝑚″=−1

̂𝒆𝑚″(−1)𝑚″√4π
3

∑
𝑙𝑚

Y𝑙𝑚( ̂𝒓𝛾)𝐺
𝑚,𝑚+𝑚″,−𝑚″

𝑙, 𝑙−1, 1 (7.18a)

×
⎛⎜⎜⎜⎜
⎝

∂[𝜌(0)𝛾 (𝑟𝜈�̊�)]
𝑙−1,𝑚+𝑚″

∂𝑟𝜈�̊�
− (𝑙 − 1)

[𝜌(0)𝛾 (𝑟𝜈�̊�)]
𝑙−1,𝑚+𝑚″

𝑟𝜈�̊�

⎞⎟⎟⎟⎟
⎠

+ 𝑇
1

∑
𝑚″=−1

̂𝒆𝑚″(−1)𝑚″√4π
3

∑
𝑙𝑚

Y𝑙𝑚( ̂𝒓𝛾)𝐺
𝑚,𝑚+𝑚″,−𝑚″

𝑙, 𝑙+1, 1

×
⎛⎜⎜⎜⎜
⎝

∂[𝜌(0)𝛾 (𝑟𝜈�̊�)]
𝑙+1,𝑚+𝑚″

∂𝑟𝜈�̊�
+ (𝑙 + 2)

[𝜌(0)𝛾 (𝑟𝜈�̊�)]
𝑙+1,𝑚+𝑚″

𝑟𝜈�̊�

⎞⎟⎟⎟⎟
⎠

≔ 𝑇
1

∑
𝑚″=−1

̂𝒆𝑚″ ∑
𝑙𝑚

([𝛁𝜌(0)𝛾 (𝑟𝜈�̊�)]
−1𝑚″

𝑙𝑚
+ [𝛁𝜌(0)𝛾 (𝑟𝜈�̊�)]

+1𝑚″

𝑙𝑚
)Y𝑙𝑚( ̂𝒓𝛾) (7.18b)

which essentially yields two summands, corresponding to the two aforementioned scattering

channels 𝑙 ± 1. In the first summand of (7.18a), now the index shifts ̃𝑙 ≔ 𝑙 − 1 ⇔ 𝑙 = ̃𝑙 + 1
and �̃� ≔ 𝑚+𝑚″ ⇔ 𝑚 = �̃� −𝑚″ are applied so that

[𝛁𝜌(0)𝛾 (𝑟𝜈�̊�)]
−1𝑚″

̃𝑙+1,�̃�−𝑚″
= (−1)𝑚″√4π

3
𝐺�̃�−𝑚″,�̃�,−𝑚″

̃𝑙+1, ̃𝑙, 1
(7.18c)

×
⎛⎜⎜⎜
⎝

∂[𝜌(0)𝛾 (𝑟𝜈�̊�)] ̃𝑙�̃�
∂𝑟𝜈�̊�

−
̃𝑙

𝑟𝜈�̊�
[𝜌(0)𝛾 (𝑟𝜈�̊�)] ̃𝑙�̃�

⎞⎟⎟⎟
⎠

.

Including the transformation (7.6c) results in

[𝛁𝜌(0)𝛾 (𝑟𝜈�̊�)]
−1𝑚″

̃𝑙+1,�̃�−𝑚″
= (−1)𝑚″√4π

3
𝐺�̃�−𝑚″,�̃�,−𝑚″

̃𝑙+1, ̃𝑙, 1
(7.18d)

×
⎛⎜⎜⎜⎜⎜
⎝

∂[𝜌(0)�̊� (𝑟𝜈�̊�)]
𝜆( ̃𝑙)

∂𝑟�̊�
𝑐𝛾
𝜆( ̃𝑙),𝜇(�̃�)

−
̃𝑙

𝑟𝜈𝛾
[𝜌(0)�̊� (𝑟𝜈�̊�)]

𝜆( ̃𝑙)
𝑐𝛾
𝜆( ̃𝑙),𝜇(�̃�)

⎞⎟⎟⎟⎟⎟
⎠

.
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In contrast, the second summand of (7.18a) undergoes the index shift ̃𝑙 ≔ 𝑙 + 1 ↔ 𝑙 = ̃𝑙 − 1
and �̃� ≔ 𝑚+𝑚″ ↔ 𝑚 = �̃� −𝑚″, leading to

[𝛁𝜌(0)𝛾 (𝑟𝜈�̊�)]
+1𝑚″

̃𝑙−1,�̃�−𝑚″
= (−1)𝑚″√4π

3
𝐺�̃�−𝑚″,�̃�,−𝑚″

̃𝑙−1, ̃𝑙, 1
(7.18e)

×
⎛⎜⎜⎜
⎝

∂[𝜌(0)𝛾 (𝑟𝜈�̊�)] ̃𝑙�̃�
∂𝑟𝜈�̊�

+
( ̃𝑙 + 1)

𝑟𝜈�̊�
[𝜌(0)𝛾 (𝑟𝜈�̊�)] ̃𝑙�̃�

⎞⎟⎟⎟
⎠

or

[𝛁𝜌(0)𝛾 (𝑟𝜈�̊�)]
+1𝑚″

̃𝑙−1,�̃�−𝑚″
= (−1)𝑚″√4π

3
𝐺�̃�−𝑚″,�̃�,−𝑚″

̃𝑙−1, ̃𝑙, 1
(7.18f)

×
⎛⎜⎜⎜⎜⎜
⎝

∂[𝜌(0)�̊� (𝑟𝜈�̊�)]
𝜆( ̃𝑙)

∂𝑟𝜈�̊�
𝑐𝛾
𝜆( ̃𝑙),𝜇(�̃�)

+
( ̃𝑙 + 1)

𝑟𝜈�̊�
[𝜌(0)�̊� (𝑟𝜈�̊�)]

𝜆( ̃𝑙)
𝑐𝛾
𝜆( ̃𝑙),𝜇(�̃�)

⎞⎟⎟⎟⎟⎟
⎠

.

Apart Motivation of
second
optimization

from the concepts presented in section 7.2.5, one test [127, 251] is prominent in

the sense that it has driven further development. Basically, it compares the numerical (n) MT

gradient of the test function14 𝔤(𝑟𝜈) = 𝑟−1
𝜈 Y00 with the analytical (a) result

𝛁a
1
𝑟𝜈

= −
𝒓𝜈
𝑟2𝜈

, (7.19a)

projected onto the respective cartesian displacement directions ̂𝒆𝑖, respectively. Figure 7.3

illustrates the absolute error

∣δ( ̂𝒆𝑥 ⋅ 𝛁n𝑟−1
𝜈 Y00 )∣ ≔ ∣ ̂𝒆𝑥 ⋅ (𝛁n𝑟−1

𝜈 Y00 −𝛁a𝑟−1
𝜈 )∣ (7.19b)

and the relative error of the numerical MT gradient with respect to the analytical gradient

on doubly logarithmic scales (the 𝑦- and 𝑧-directions are analogous and do not contain new
information). The input file can be found in appendix B. It manifests itself that the error

becomes larger the closer the logarithmic mesh points are to the MT sphere center. Still,

the relative error is overall smaller than 0.01% for the implementation of equation (7.18),
which is denoted as the naive implementation in this figure. In my opinion, the increase

of inaccuracy towards the MT sphere center can be ascribed to the fact that approximately

equal numbers, which become relatively large in this region, are summed in this MT gradient

approach (cf. section 7.1.2). Nevertheless, the absolute value can be large relative to typical

phonon-frequencies, although the relative error is small. Therefore in practice, the effects of

this drawback should be minimized. Furthermore, it becomes obvious that the accuracy of

the naive approach is limited and the error grows again at the MT sphere boundary. Reasons

could be the thinned-out logarithmic mesh or a non-optimal boundary mesh-points algorithm

of the radial derivative subroutine Derivative.

14 This test function has been stimulated by the divergence behavior of the external potential variations, because

they normally feature the largest values relative to other quantities used here. In particular this holds true

for the mesh points in the close vicinity of the MT sphere center.
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InSecond muffin-tin
optimization

order to mitigate the error, we decided to multiply the input coefficients by a damping

factor 𝑟2𝜈�̊�, approaching zero for small 𝜈�̊� [127, 251]. However, the introduction of such a

damping factor entails considering the product rule. I found a way to reformulate the

concept (7.18) without damping, such that the implemented subroutine expects an input

functionmultiplied by 𝑟2𝜈�̊� and outputs the MT gradient of the original input functionmultiplied

by 𝑟2𝜈�̊�. Hence, the final result must be divided by the auxiliary 𝑟2𝜈�̊� and one gains the desired

MT gradient of the original input function. For this reformulation, the charge density in

equation (7.18c) is generalized to a function ̃𝔤(𝒓) ≔ 𝑟2𝔤(𝒓). This is because the following
derivation also underlies when evaluating the gradient of the unperturbed effective potential

or its constituents. So, the generalized version of equation (7.18c) reads

[𝛁(𝑟2𝔤)(𝑟)]
−1𝑚″

𝑙+1,𝑚−𝑚″ ≔ [𝛁 ̃𝔤(𝑟)]
−1𝑚″

𝑙+1,𝑚−𝑚″ (7.20a)

= (−1)𝑚″√4π
3
𝐺𝑚−𝑚″,𝑚,−𝑚″

𝑙+1, 𝑙, 1 (
∂ ̃𝔤𝑙𝑚(𝑟)

∂𝑟
− 𝑙

𝑟
̃𝔤𝑙𝑚(𝑟)) . (7.20b)

Applying the product rule to the general function leads to

= (−1)𝑚″√4π
3
𝐺𝑚−𝑚″,𝑚,−𝑚″

𝑙+1, 𝑙, 1 (2𝑟𝔤𝑙𝑚(𝑟) + 𝑟2
∂𝔤𝑙𝑚(𝑟)

∂𝑟
− 𝑙

𝑟
̃𝔤𝑙𝑚(𝑟)) ,(7.20c)

in which the concept (7.18c) can be identified

= 𝑟2[𝛁𝔤(𝑟)]
−1𝑚″

𝑙+1,𝑚−𝑚″ + (−1)𝑚″√4π
3
𝐺𝑚−𝑚″,𝑚,−𝑚″

𝑙+1, 𝑙, 1 2𝑟𝔤𝑙𝑚(𝑟) , (7.20d)

provided 𝔤(𝒓) is the charge density. Analogously employing equation (7.18e), results in

[𝛁 ̃𝔤(𝑟)]
+1𝑚″

𝑙−1,𝑚−𝑚″ = 𝑟2[𝛁𝔤(𝑟)]
+1𝑚″

𝑙−1,𝑚−𝑚″ + (−1)𝑚″√4π
3
𝐺𝑚−𝑚″,𝑚,−𝑚″

𝑙−1, 𝑙, 1 2𝑟𝔤𝑙𝑚(𝑟) . (7.20e)

In practice, it is beneficial to shift the respective remaining terms to the left-hand side:

𝑟2[𝛁𝔤(𝑟)]
−1𝑚″

𝑙+1,𝑚−𝑚″ = (−1)𝑚″√4π
3
𝐺𝑚−𝑚″,𝑚,−𝑚″

𝑙+1, 𝑙, 1 (
∂ ̃𝔤𝑙𝑚(𝑟)

∂𝑟
−

(𝑙 + 2)
𝑟

̃𝔤𝑙𝑚(𝑟)) , (7.20f)

𝑟2[𝛁𝔤(𝑟)]
+1𝑚″

𝑙−1,𝑚−𝑚″ = (−1)𝑚″√4π
3
𝐺𝑚−𝑚″,𝑚,−𝑚″

𝑙−1, 𝑙, 1 (
∂ ̃𝔤𝑙𝑚(𝑟)

∂𝑟
+

(𝑙 − 1)
𝑟

̃𝔤𝑙𝑚(𝑟)) . (7.20g)

Finally employing this for the MT gradient of the unperturbed charge density, the implemented

expression reads

𝛁𝜌(0)𝛾 (𝒓𝜈�̊�) = ∑
𝑙𝑚

[𝛁𝜌(0)𝛾 (𝑟𝜈�̊�)]
𝑙𝑚

Y𝑙𝑚(𝒓𝛾) (7.21a)

≔ 𝑇
1

∑
𝑚″=−1

̂𝒆𝑚″ ∑
̃𝑙�̃�

([𝛁𝜌(0)𝛾 (𝑟𝜈�̊�)]
opt+1𝑚″

̃𝑙+1,�̃�−𝑚″
Y ̃𝑙+1,�̃�−𝑚″( ̂𝒓𝛾) (7.21b)

+[𝛁𝜌(0)𝛾 (𝑟𝜈𝛾)]
opt−1𝑚″

̃𝑙−1,�̃�−𝑚″
Y ̃𝑙−1,�̃�−𝑚″( ̂𝒓𝛾))

7 Implementation and Results
136



with

[𝛁𝜌(0)𝛾 (𝑟𝜈�̊�)]
opt−1𝑚″

̃𝑙+1,�̃�−𝑚″
≕ 1

𝑟2𝜈�̊�

̂𝒆𝑚″(−1)𝑚″√4π
3

𝐺�̃�−𝑚″,�̃�,−𝑚″

̃𝑙+1, ̃𝑙, 1
(7.21c)

×
⎛⎜⎜⎜⎜⎜
⎝

∂[ ̃𝜌(0)�̊� (𝑟𝜈�̊�)]
𝜆( ̃𝑙)

∂𝑟�̊�
𝑐𝛾
𝜆( ̃𝑙),𝜇(�̃�)

−
( ̃𝑙 + 2)

𝑟𝜈𝛾
[ ̃𝜌(0)�̊� (𝑟𝜈�̊�)]

𝜆( ̃𝑙)
𝑐𝛾
𝜆( ̃𝑙),𝜇(�̃�)

⎞⎟⎟⎟⎟⎟
⎠

and

[𝛁𝜌(0)𝛾 (𝑟𝜈�̊�)]
opt+1𝑚″

̃𝑙−1,�̃�−𝑚″
≕ 1

𝑟2𝜈�̊�

̂𝒆𝑚″(−1)𝑚″√4π
3

𝐺�̃�−𝑚″,�̃�,−𝑚″

̃𝑙−1, ̃𝑙, 1
(7.21d)

×
⎛⎜⎜⎜⎜⎜
⎝

∂[ ̃𝜌(0)�̊� (𝑟𝜈�̊�)]
𝜆( ̃𝑙)

∂𝑟𝜈�̊�
𝑐𝛾
𝜆( ̃𝑙),𝜇(�̃�)

+
( ̃𝑙 − 1)

𝑟𝜈�̊�
[ ̃𝜌(0)�̊� (𝑟𝜈�̊�)]

𝜆( ̃𝑙)
𝑐𝛾
𝜆( ̃𝑙),𝜇(�̃�)

⎞⎟⎟⎟⎟⎟
⎠

.

When Analysis of
second
optimization

analyzing the impact of this optimization (7.21) in figure 7.3 relative to the naive

approach (7.18), the desired reduction of the error close to the MT sphere center is essentially

not achieved. However, the accuracy at the MT sphere boundary has been increased and

seems not to be limited anymore. This will lead to an improved continuity in this region. But,

it must be stressed at this point that these results hold particularly true for the discussed test

function. Since this optimization has still enhanced the accuracy, we decided to implement

this approach (7.21), estimating it to be the better choice for each of the real input coefficients

to the MT-gradient routine [127, 251]. Furthermore, both approaches show a similar error

for all cartesian displacement directions (not shown), although each direction requires an

individual spherical-harmonic expansion of the MT gradient coefficients.

Ultimately, Numerical cutoffboth approaches make obvious that contributions in a channel 𝑙 = 𝑙max,�̊� are
scattered to 𝑙max,�̊� + 1 [251]. In the following sections, it shall be discussed that this leads to
inconsistencies in the cutoffs, when the gradient coefficients are used within other quantities.

Therefore, we decided to cut this quantity at 𝑙max,�̊�, i.e., omit the aforesaid 𝑙max,�̊� + 1 contribu-
tion on condition that 𝑙max,�̊� is converged [127]. Apart from that, the contribution scattering
from 𝑙 = 0 to 𝑙 = −1 is caught because it is unphysical. The Gaunt coefficients (5.32d) are
determined with the recycled FLEUR routine Gaunt1 and the radial derivative routine is taken
from SpeX [230], essentially utilizing Lagrange interpolation of 3rd order.

7.2.2 Core-Tail Corrections

If Motivation and
concept

core tails exist, a displacement of the MT spheres causes their change. For 𝒒 = 𝟎, this correc-
tion can be determined from applying the gradient to the core-tail expressions in section 5.5.1.

But for a non-vanishing 𝒒, they must be multiplied by a factor of exp(i𝒒 ⋅ 𝒓) in advance, mirror-
ing the phonon displacement pattern [127]. According to the frozen-core approximation, the

core density is fixed and not dependent on 𝒒. Hence, the only dependence on 𝒒 comes from the
aforesaid phase factor. Furthermore, the pseudo core-density underlying the Fourier transform
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Figure 7.3: Benchmark of the MT gradient subroutine utilized in the juPhon code by differenti-
ating the toy function 𝑟−1

𝜈 Y00 . The analytical derivative −𝒓/𝑟2 is compared with the

output of two different numerical approaches: the naive (7.18) and the optimized

one (7.21), with the input-density coefficients substituted by the aforementioned test

function. The optimized concept exploits a damping factor of 𝑟2𝜈�̊� relative to the naive

method. Since the absolute (above) and the relative (below) error show a similar

behavior for all displacement directions, only the 𝑥-direction is presented here. The
employed input-generator input file can be found in appendix B.
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of the core tails (5.26b) is represented by a Gaussian 𝜌(0),psc,𝛼 (𝑟𝜈�̊�) = 𝐴𝛼 exp(−𝑎𝛼𝑟2𝜈�̊�) with

𝐴𝛼 = 𝜌(0),psc,𝛼 (𝑅𝛼) exp(𝑎𝛼𝑟2𝜈�̊�) , 𝑎𝛼 = − 1
2𝑅𝛼

∂𝜌(0),ps
c,𝛼 (𝑟𝜈�̊�)
∂𝑟𝜈�̊�

∣𝑟𝜈�̊�=𝑅�̊�

𝜌(0),psc,𝛼 (𝑅𝛼)
(7.22)

in FLEUR. In contrast to the core-tails, which in general arise from several MT spheres, the
core-tail corrections only originate from the displaced MT sphere (and its periodic images).

Therefore, the latter need not be overlapped with those of the non-displaced atoms. Despite

the gradient, the core-tail corrections must be continuous at the MT sphere boundary. This

is ensured by the requirement on the Gaussian parameters (7.22), which in analogy to the

LAPW basis set are determined such that a linear derivative is still continuous. [88]

In Interstitial regionthe IR, the first-order core-tail correction reads [88]

𝝆(1)
IR, ctC

(𝒓, 𝒒+𝛼) = −∇(∑
𝑮

𝜌(0),psc,𝛼 (𝑮)ei𝑮⋅𝒓ei𝒒⋅𝒓) (7.23a)

= −∑
𝑮

i(𝑮 + 𝒒)𝜌(0),ps𝛼,c (𝑮)ei(𝑮+𝒒)⋅𝒓 (7.23b)

≔ ∑
𝑮

𝝆(1)
IR, ctC

(𝑮, 𝒒+𝛼)ei(𝑮+𝒒)⋅𝒓 , (7.23c)

where the matrix elements are defined in equation (6.27c). The set of reciprocal lattice

vectors for the expansion coefficients 𝜌(0),ps𝛼,c (𝑮) lives up to the condition |𝑮| ≤ 𝐺max, and
the same holds true for its gradient, i.e., given the case 𝒒 = 𝟎. But for a finite 𝒒, the basis
functions exp(i(𝑮 + 𝒒) ⋅ 𝒓) suggest using the reciprocal lattice vectors within the sphere given
by |𝑮 + 𝒒| < 𝐺max. This is a contradiction and cannot be implemented. Two options are at
hand: the first one is to ignore the core-tail corrections, and the second one is to ignore the

shift of the aforesaid ball by 𝒒. In order that the latter is a good approximation, 𝐺max must be
converged. Nevertheless, this entails disadvantages that shall be clarified within the following

sections.

The Muffin-tin
spheres

first-order core-tail corrections in the MT spheres are given by

[𝝆(1)
𝛾,ctC(𝒓𝜈�̊�

, 𝒒+𝛼)]
𝑙𝑚

= −δ𝛾𝛼2𝑟𝜈�̊�
𝑎𝛼𝐴𝛼 exp(−𝑎𝛼𝑟2𝜈�̊�

)
3

∑
𝑖=1

̂𝒆𝑖𝜁𝑖,𝑚δ1𝑙 (7.24)

− 4πi𝑙 ∑
𝑮

i(𝑮 + 𝒒)ei(𝑮+𝒒)⋅𝝉𝛼Y∗
𝑙𝑚(𝑮+ 𝒒
⋀

)j𝑙(|𝑮 + 𝒒|𝑟𝜈𝛽
)𝜌(0),ps𝛼,c (𝑮) .

Their second summand describes the Rayleigh decomposition (5.5) of the core-tail corrections

in the IR (7.23c), which are augmented to all MT spheres. But since the source of the core-tail

correction is only in the displaced MT sphere, no core-tails that permeate this sphere need to be

corrected. Thus, the aforementioned Rayleigh decomposition must be eliminated there. This

is done in analogy to FLEUR [127]. Instead of subtracting the second term of equation (7.24)
again or ignoring it in the displaced MT sphere, the first term in equation (7.24) is added to

compensate with the second term. The second term results from the gradient of the pseudo

core-density. Due to the fact that it is represented by a Gaussian, the application of the

gradient is significantly facilitated. For the implementation of the characterizing Gaussian

coefficients (7.22), I recycled the subroutine Cdnovlp and its dependencies from FLEUR. [88]

7.2 Linear Charge-Density Variations
139



7.2.3 First-Order Charge Density Variation

BothBack-folding the IR and the MT first-order density variation (6.21) contain a contribution in which

the wave-function expansion coefficients are varied. Restricting to the 𝒒+ part (without loss

of generality), the resulting Bloch character 𝒌 + 𝒒 manifests itself in the aforesaid coefficients
and particularly likewise in the basis functions. However for some instances of 𝒌 and 𝒒, their
sum 𝒌 + 𝒒 can leave the first Brillouin zone. One case is for example shown in figure 7.2.
This is problematic, because the 𝒛(1)

𝑮 (𝒌, 𝑛;±𝒒𝛼) in juPhon are only determined within the
first Brillouin zone. We thus decided to exploit

𝒌 + 𝒒 = 𝒌+
bf
−𝑮bf (7.25)

whenever such a scenario occurs and set 𝑮bf = 𝟎 otherwise [127, 251]. So, the reciprocal
lattice vector 𝑮bf folds back to the first Brillouin zone if required, thereby assuming the

periodicity of the reciprocal space. In our opinion invoking here this periodicity is legitimate,

because

𝛹 (0)
𝒌+𝒒,𝑛 = ∑

𝑮
𝑧(0)𝑮 (𝒌, 𝑛; 𝒒)𝜙(0)

𝒌+𝒒,𝑮(𝒓) ≡ ∑
𝑮

𝑧(0)𝑮−𝑮bf
(𝒌+
bf
, 𝑛)𝜙(0)

𝒌+
bf
,𝑮−𝑮bf

(𝒓) = 𝛹 (0)
𝒌+
bf
,𝑛 (7.26)

is beyond dispute [127, 251, 282]. Furthermore, it is assumed that substituting the unper-

turbed wave-function expansion coefficients by its first-order variation in the previous equation

does not break the aforementioned periodicity. By introducing auxiliary first-order variations

of the wave-function expansion coefficients, which depend on two bands 𝑛 and 𝑛′ instead of

being indexed by a band 𝑛 and a reciprocal lattice vector 𝑮, the preceding assumptions can
be deduced from [251]

∑
𝑮

𝒛(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)𝜙(0)

𝒌+𝒒,𝑮(𝒓) = ∑
𝑮

∑
𝑛′

𝒛(1)
𝑛′ (𝒌, 𝑛; 𝒒𝛼)𝒛

(0)
𝑮 (𝒌, 𝑛′; 𝒒)𝜙(0)

𝒌+𝒒,𝑮(𝒓) (7.27a)

= ∑
𝑛′

𝒛(1)
𝑛′ (𝒌, 𝑛; 𝒒𝛼)𝛹

(0)
𝒌+𝒒,𝑛′ . (7.27b)

Basically, it is possible to identify the unperturbed wave function and refer to the relation (7.26)

again. For the Sternheimer equation, the same line of arguments can be applied. Consequently,

adequate 𝒛(1)
𝑮−𝑮bf

(𝒌+
bf
, 𝑛; 𝛼) result so that

𝜳 (1)+
𝒌,𝑛 (𝒓; 𝛼) = ∑

𝑮
(𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)𝜙(0)
𝒌+𝒒,𝑮(𝒓) + 𝑧(0)𝑮 (𝒌, 𝑛)𝝓(1)𝛼+

𝒌,𝑮 (𝒓)) (7.28a)

= ∑
𝑮

(𝒛(1)
𝑮−𝑮bf

(𝒌+
bf
, 𝑛; 𝛼)𝜙(0)

𝒌+
bf
,𝑮−𝑮bf

(𝒓) + 𝑧(0)𝑮 (𝒌, 𝑛)𝝓(1)𝛼+
𝒌,𝑮 (𝒓)) (7.28b)

holds, while equations (6.7) and (6.8) serve as starting point. Moreover, it allows for refor-

mulating the 𝒒+ part of equation (6.21) into

𝝆(1)(𝒓; 𝒒+𝛼) = −2∑
𝑹

e+i𝒒⋅𝑹𝛁𝜌(0)𝛼 (𝒓) (7.29)

+ 4∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
(𝑧∗(0)𝑮′ (𝒌, 𝑛)𝒛(1)

𝑮−𝑮bf
(𝒌+
bf
, 𝑛; 𝛼)𝜙(0)∗

𝒌,𝑮′(𝒓)𝜙
(0)
𝒌+
bf
,𝑮−𝑮bf

(𝒓)

+∑
𝑹

Θ(𝑅MT𝛼 − ∣𝒓 − 𝝉𝛼 −𝑹∣)e+i𝒒⋅𝑹

× 𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑧(0)𝑮 (𝒌, 𝑛)𝜙∗(0)
𝒌,𝑮′(𝒓)(i(𝒌 +𝑮) −𝛁)𝜙(0)

𝒌,𝑮(𝒓))
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for a non-vanishing 𝒒. These statements are confirmed by numerical tests [127, 251].

Evidently Analytical
solution for
𝒒 = 𝟎

in the case of the Goldstone modes, selecting [251]

𝒛(1)
𝑮 (𝒌, 𝑛; 𝟎𝛼) ≡ −i(𝒌 +𝑮)𝒛(0)

𝑮 (𝒌, 𝑛; 𝟎𝛼) (7.30)

and inserting it into equation (7.29) implies

𝝆(1)(𝒓; 𝟎+𝛼) = −𝛁𝜌(0)(𝒓) (7.31)

for monoatomic systems15. This is due to the fact that the third and fourth line of equa-

tion (7.29) vanish for the IR part, and its second line is conform with the gradient of the

unperturbed charge density. In most systems, the first line of equation (7.29) involves IR

core-tail corrections and is irrelevant otherwise. Within the displaced MT sphere, the second

line cancels the term within the third and fourth line which is not proportional to the gradient

of the basis function. Thus exactly this term proportional to the gradient of the basis function

remains, and forms the valence contribution of minus the density gradient. Combining it with

the core-electron part from the first line results in minus the full unperturbed density gradi-

ent. All in all given the Goldstone modes, this reflects an infinitesimal shift of the complete

crystal, which is specified by the polarization vectors. For polyatomic systems, the IR and the

displaced MT sphere behave in the same way, but the non-displaced MT spheres feature a

distinct charge-density variation. It is composed of the second line as well as the core-tail

corrections from the first line and reflects the scenario that atoms within one unit cell still can

move independently. Nevertheless, the center-of-mass movement must still correspond to the

infinitesimal displacement described before. However, it is feasible to find polarization vectors

for which all atoms of systems with a polyatomic lattice basis are uniformly displaced [251].

Interstitial Region

Focussing Final
valence-electron
form

on the valence first-order charge-density variation in the IR

𝝆(1)
IR,v(𝒓, 𝒒

+𝛼) = 4∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛𝛹

∗(0)
𝒌,𝑛 (𝒓)𝛹 (1)𝛼

𝒌,𝑛 (𝒓) (7.31a)

and expanding it according to equation (7.29) leads to

= 4
𝛺

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛∑

𝑮′

𝑧∗(0)𝑮′ (𝒌, 𝑛)e−i(𝒌+𝑮′)⋅𝒓∑
𝑮

𝒛(1)
𝑮−𝑮bf

(𝒌+
bf
, 𝑛; 𝛼)ei(𝒌

+
bf
−𝑮bf+𝑮)⋅𝒓(7.31b)

= 4
𝛺

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
𝑧∗(0)𝑮′ (𝒌, 𝑛)𝒛(1)

𝑮−𝑮bf
(𝒌+
bf
, 𝑛; 𝛼)ei(−𝒌−𝑮′+𝒌+𝒒+𝑮)⋅𝒓 . (7.31c)

By introducing 𝑮″ = 𝑮−𝑮′

= 4
𝛺

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮″+𝑮′

∑
𝑮′

𝑧∗(0)𝑮′ (𝒌, 𝑛)𝒛(1)
𝑮″+𝑮′−𝑮bf

(𝒌+
bf
, 𝑛; 𝛼)ei(𝑮

″+𝒒)⋅𝒓 (7.31d)

15 The information about the displaced atom is normally suppressed in 𝒛(0)
𝑮 (𝒌,𝑛; 𝟎𝛼). Furthermore, the spin

degeneracy factor is included implicitly.
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and 𝑮‴ = 𝑮″ +𝑮′ −𝑮bf ⇔ 𝑮″ = 𝑮‴ −𝑮′ +𝑮bf [251]

= 4
𝛺

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮‴|+𝑮bf

∑
𝑮′

𝑧∗(0)𝑮′ (𝒌, 𝑛)𝒛(1)
𝑮‴(𝒌+

bf
, 𝑛; 𝛼)ei(𝑮

‴−𝑮′+𝑮bf+𝒒)⋅𝒓 (7.31e)

its expansion coefficients

𝝆(1)
IR,v(𝒓, 𝒒

+𝛼) ≕ ∑
𝑮′

∑
𝑮‴|+𝑮bf

𝝆(1)
IR,v(𝑮

‴ −𝑮′ +𝑮bf, 𝒒+𝛼)ei(𝑮
‴−𝑮′+𝑮bf+𝒒)⋅𝒓 (7.31f)

= ∑
𝑮″

𝝆(1)
IR,v(𝑮

″, 𝒒+𝛼)ei(𝑮
″+𝒒)⋅𝒓 (7.31g)

can be defined.

ThisAlgorithm expression guides the way of the implementation. Having conducted the in-

dex shifts in equations (7.31d) and (7.31e), enables us a linear run through the reciprocal

lattice-vector indices of the unperturbed and the first-order wave-function expansion coef-

ficients [251]. But this is at the expense of not sequentially addressing the 𝝆(1)
IR,v(𝑮

″, 𝒒+𝛼),
because 𝑮″ = 𝑮‴ −𝑮′ +𝑮bf. Furthermore, despite the index shift indicated at the sum

over 𝑮‴, the addressed index of the first-order wave-function expansion coefficient is not

shifted [127]. The shift intrinsically expresses in the set of 𝑮′ and 𝑮‴ which is attributed to

a certain wave-function expansion coefficient or its first-variation, respectively [127]. This

reflects in the cutoff condition |𝒌 + 𝒒 +𝑮| ≤ 𝑘max, which governs the shift of the ball the 𝑮
are chosen from as a function of 𝒌 + 𝒒 [127]. The two sums in equation (7.31e) can formally
be united to one sum in equation (7.31g) so that the unperturbed and the first-order wave

function are convoluted with each other. Since this “double sum” method is easy to implement,

it is used within this thesis. As part of future work however, the convolution shall be realized

by a FFT, performing better in particular for large systems. This FFT subroutine is programmed

but not sufficiently tested at the moment.

TheCutoff condition first-order charge-density cutoff deduces from the cutoffs of the wave functions

it is composed of, as visualized in equation (7.31a). While the unperturbed wave function

at 𝒌 is expanded in a set of reciprocal lattice vectors fulfilling |𝒌 +𝑮| < 𝑘max, the first-order
variation must strictly-speaking employ the aforementioned shifted set of reciprocal lattice

vectors. The condition |𝒌 + 𝒒 +𝑮| < 𝑘max the latter lives up to mirrors the shift of the Bloch
character by 𝒒. Due to the back-folding mentioned in the beginning of this section, the
first-order wave function is actually expanded in a set of reciprocal lattice vectors fulfill-

ing |𝒌 + 𝒒 +𝑮| = ∣𝒌+
bf
−𝑮bf +𝑮∣ < 𝑘max, which are at hand [251]. Consequently, the idea

of displacing the ball of reciprocal lattice vectors for the product of the aforementioned wave

functions must coincide, implying the condition |𝒒 +𝑮| < 2𝑘max for the first-order density
variation. As the complete charge-density variation can contain core-tail corrections (7.23c)

𝝆(1)
IR (𝒓, 𝒒+𝛼) = ∑

𝑮
(𝝆(1)

IR,v(𝑮, 𝒒+𝛼) + 𝝆(1)
IR,ctC

(𝑮, 𝒒+𝛼))ei(𝑮+𝒒)⋅𝒓 , (7.32)

we decided to extend the upper limit of 2𝑘max to 𝐺max > 2𝑘max [127]. This is in line with the
cutoff of the unperturbed charge density in FLEUR, relating to all other unperturbed quantities
used in juPhon.

ApartSymmetry
breaking

from that, for the vector sum 𝑮″ = 𝑮‴ −𝑮′ +𝑮bf in equation (7.31f) gener-

ally 𝐺max > ∣𝒒 +𝑮″∣ > 2𝑘max holds. But obviously, this contradicts with the set of reciprocal
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lattice vectors necessary for the core-tail corrections, on which I already elaborate in sec-

tion 7.2.2. It must be clear that deciding for the option to ignore this shift technically breaks

a symmetry in reciprocal space. This can be learned from inserting the Bloch vector −𝒒+ into

equation (7.31g) and rearranging it so that 𝝆∗(1)
IR (𝒓; 𝒒+𝛼) results [251]. But −𝒒+ is currently

not in the set of 𝑞+𝑖 ∈ [0, 1[ implemented in juPhon, as it would have been, if 𝑞+𝑖 ∈ [−0.5, 0.5[
had held. Therefore, a −𝒒+ located outside the current definition of the Brillouin zone is

back-folded in a similar fashion as illustrated in figure 7.2

𝒒+
f
= −𝒒+ +𝑮f . (7.33)

Using this relation and that the complete linear combination of the first-order variation is

real, the reciprocal symmetry actually demands [251]

𝝆(1)
IR (𝒓; 𝒒+

f
𝛼) = ∑

𝑮
𝝆(1)
IR (𝑮; 𝒒+

f
𝛼)ei(𝑮−𝒒++𝑮f)⋅𝒓 (7.34a)

= ∑
𝑮

𝝆(1)
IR (𝑮; 𝒒+

f
𝛼)e−i(−𝑮−𝑮f+𝒒+)⋅𝒓 (7.34b)

!= ∑
𝑮

𝝆∗(1)
IR (−𝑮−𝑮f; 𝒒+𝛼)e−i(−𝑮−𝑮f+𝒒+)⋅𝒓 (7.34c)

= ∑
𝑮′|+𝑮f

𝝆∗(1)
IR (𝑮′; 𝒒+𝛼)e−i(𝑮′+𝒒+)⋅𝒓 (7.34d)

= 𝝆∗(1)
IR (𝒓; 𝒒+𝛼) . (7.34e)

I programmed this test, which in essence checks whether

𝝆(1)
IR (𝑮; 𝒒+

f
𝛼) = 𝝆∗(1)

IR (−𝑮−𝑮f; 𝒒+𝛼) (7.35)

is fulfilled. In the end, I found that the set of employed reciprocal lattice vectors must be

shifted according to the currently investigated 𝒒 for this test to work, i.e., |𝑮 ± 𝒒| < 𝐺max
must be chosen16. In practice, we ignore this at the moment and resort to a large enough𝐺max.
This lets the first-order variation coefficients with reciprocal lattice vectors at the boundary

of |𝒒 +𝑮| < 𝐺max become insignificant, thereby concealing the described symmetry breaking.

Muffin-tin Spheres

In Setting the stagecontrast to the IR, the third and fourth lines of equation (7.29) become additionally relevant

for the displaced atoms. As a consequence, the gradient of the core-electron charge density

(first line) and the valence-electron charge density (third and fourth lines) can be condensed

into the all-electron charge-density gradient. It should be emphasized at this point that this

contribution then also effectively involves the core-tail corrections.

Before Vectorial large
matching
coefficients

inserting the LAPW basis of the MT spheres (5.9) into equation (7.29), the

vectorial large matching coefficients

𝑨𝒌𝛾𝑛
𝑙𝑚𝑝 = ∑

𝑮
𝑮𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛾

𝑙𝑚𝑝 (7.36a)

16 Since this test does not involve core-tails or their corrections, 𝐺max can be substituted by 2𝑘max in principle.
But we decided to adhere to the usually employed cutoff 𝐺max.
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𝑨𝒌𝛾𝑛
𝑙𝑚𝑝(𝒒

+𝛼) ≔ ∑
𝑮

𝒛(1)
𝑮 (𝒌, 𝑛; 𝒒+𝛼)𝑎𝑮𝒌𝛾

𝑙𝑚𝑝 (𝒒) (7.36b)

= ∑
𝑮

𝒛(1)
𝑮−𝑮bf

(𝒌+
bf
, 𝑛; 𝛼)𝑎𝑮−𝑮bf𝒌

+
bf
𝛾

𝑙𝑚𝑝 (7.36c)

≕ ∑
𝑮′|+𝑮bf

𝒛(1)
𝑮′(𝒌+

bf
, 𝑛; 𝛼)𝑎𝑮

′𝒌+
bf
𝛾

𝑙𝑚𝑝 (7.36d)

̃𝑨𝒌𝛾𝑛
𝑙𝑚𝑝 ≔ i(𝐴𝒌𝑛𝛾

𝑙𝑚𝑝𝒌 +𝑨𝒌𝑛𝛾
𝑙𝑚𝑝) (7.36e)

̄𝑨𝒌𝛾𝑛
𝑙𝑚𝑝(𝒒

+𝛼) ≔ 𝑨𝒌𝑛𝛾
𝑙𝑚𝑝(𝒒

+𝛼) + δ𝛾𝛼 ̃𝑨𝒌𝑛𝛾
𝑙𝑚𝑝 (7.36f)

are defined. Equations (7.36a) and (7.36b) are borrowed from Klüppelberg [88]. Using

equation (7.25) in the latter, a index shift 𝑮′ = 𝑮 − 𝑮bf can be conducted. In contrast

to the IR, it does not have a persistent impact such as in equation (7.31f). This is due to

the fact that the reciprocal lattice-vector indices are equally shifted both in the first-order

wave-function expansion coefficients and the small matching coefficients [127, 282]. But

again strictly-speaking, the shifted set of reciprocal lattice vectors inheres in the first-order

variation of the wave-function expansion coefficients (Bloch-character change 𝒒). Finally,
this leads to the respective formulation of the matching coefficients in equation (7.36d), only

containing quantities at hand. TogetherFinal
valence-electron

form

with the scalar large matching coefficient (5.30), the

MT sphere projection of the valence part in equation (7.29) to Y𝑙𝑚( ̂𝒓) reads

[𝝆(1)
𝛾,v(𝒓𝜈�̊�, 𝒒+𝛼)]

𝑙𝑚
(7.37a)

= ∑
𝑙′𝑝′𝑙″𝑝″

∑
𝑠

𝑢𝑠�̊�
𝑙′𝑝′(𝑟𝜈�̊�)𝑢𝑠�̊�

𝑙″𝑝″(𝑟𝜈�̊�) ∑
𝑚′𝑚″

𝐺𝑚″,𝑚,𝑚′

𝑙″, 𝑙, 𝑙′ 2∑
𝒌𝑛v

𝑓 (0)
𝒌,𝑛𝐴

∗𝒌𝛾𝑛
𝑙′𝑚′𝑝′𝑨

𝒌𝛾𝑛
𝑙″𝑚″𝑝″(𝒒+𝛼)

+ δ𝛾𝛼 ∑
𝑙𝑚

2i ∑
𝑙′𝑝′𝑙″𝑝″

∑
𝑠

𝑢𝑠�̊�
𝑙′𝑝′(𝑟𝜈�̊�)𝑢𝑠�̊�

𝑙″𝑝″(𝑟𝜈�̊�) ∑
𝑚′𝑚″

𝐺𝑚″,𝑚,𝑚′

𝑙″, 𝑙, 𝑙′

×∑
𝒌𝑛

𝑓 (0)
𝒌,𝑛𝐴

∗𝒌𝛾𝑛
𝑙′,𝑚′,𝑝′(𝒌𝐴

𝒌𝛾𝑛
𝑙′𝑚′𝑝′ +𝑨𝒌𝛾𝑛

𝑙″𝑚″𝑝″)Y𝑙𝑚( ̂𝒓𝛾)

− [𝛁𝜌(0)𝛾 (𝑟𝜈�̊�)]
𝑙𝑚

.

Using equation (7.36f) then leads to

= ∑
𝑙′𝑝′𝑙″𝑝″

∑
𝑠

𝑢𝑠�̊�
𝑙′𝑝′(𝑟𝜈�̊�)𝑢𝑠�̊�

𝑙″𝑝″(𝑟𝜈�̊�) ∑
𝑚′𝑚″

𝐺𝑚″,𝑚,𝑚′

𝑙″, 𝑙, 𝑙′ 4∑
𝒌𝑛

𝑓 (0)
𝒌,𝑛𝐴

∗𝒌𝛾𝑛
𝑙′𝑚′𝑝′

̄𝑨𝒌𝛾𝑛
𝑙″𝑚″𝑝″(𝒒+𝛼) (7.37b)

− [𝛁𝜌(0)𝛾 (𝑟𝜈�̊�)]
𝑙𝑚

.

Finally, the valence-electron part must be combined with the core-tail corrections for the MT

spheres (7.24)

[𝝆(1)
𝛾 (𝒓𝜈�̊�, 𝒒+𝛼)]

𝑙𝑚
= [𝝆(1)

𝛾,v(𝑟𝜈�̊�, 𝒒+𝛼)]
𝑙𝑚

+ [𝝆(1)
𝛾,ctC(𝒓𝜈�̊�

, 𝒒+𝛼)]
𝑙𝑚

. (7.38)

AccordingCutoff to section 7.2.1 however, a contradiction occurs since the gradient of the charge

density must strictly-speaking be expanded until 𝑙max,�̊� + 1, while there is no obvious math-
ematical reason why this should be done for the remaining part of the first-order density

variation. We decided therefore to converge 𝑙max,�̊� such that the contributions at 𝑙max,�̊� and
particularly 𝑙max,�̊� + 1 become too small to be significant [127].
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Consistent Algorithmwith our first approach to recycle as much as possible [119, 127, 251], the

implementation of the first-order density variation is likewise based on various FLEUR sub-
routines. Doing this, it has essentially been necessary to remove the symmetry optimizations

concerning the lattice harmonics. If the documentation of the FLEUR routines was poor, I was
supported by my advisors [127, 251]. In principle, the Abcof subroutine can be employed
in its original form, when looping over the displacement directions [127, 251]. However, it

must be considered that the term i𝑙 in equation (5.55) is not part of this subroutine [251].
According to the vectorial matching coefficients (7.36), the coefficients 𝑧(0)𝑮 (𝒌, 𝑛) must for
instance be decorated with a 𝑮 before passing it to Abcof. By introducing summarizing
matching coefficients such as in equation (7.36f), the 𝑎𝑮𝒌𝛾

𝑙𝑚𝑝 (𝒒) can be factored out [251]. This
minimizes the number of Abcof calls [251]. For a later extension to polyatomic systems, the
set of symmetry-guided rotations, which is passed to Abcof for the sake of an optimization, is
substituted by a set of unity operations [127]. Although Abcof does not cause a bottleneck
in FLEUR, I have found that performance decreases significantly if it is called too often. In
contrast to FLEUR, this is possible in juPhon given a naive implementation. It suggests itself
that the FLEUR subroutines are essentially taken from the part which calculates the unper-
turbed charge density (see section 5.5). As a consequence, the spherical part (𝑙 = 0) of the
MT charge density is calculated separately from the non-spherical part. Although this can

be designed more efficiently on modern hardware architectures, various combinations of 𝑝
and 𝑝′ are furthermore individually dealt with and attributed to respective arrays, which
are listed in table 7.7. The indices 𝑝′ and 𝑝″ in the Kronecker deltas are either 1 or 2. The
corresponding combinations of Kronecker deltas can be derived from equation (7.37b) in the

following way

[𝝆(1)
𝛾,v(𝑟𝜈�̊�, 𝒒+𝛼)]

𝑙𝑚
(7.39a)

= ∑
𝑠

∑
𝑙′𝑝′𝑙″𝑝″

𝑢𝑠�̊�
𝑙′𝑝′(𝑟𝜈�̊�)𝑢𝑠�̊�

𝑙″𝑝″(𝑟𝜈�̊�) ∑
𝑚𝑚′

𝐺𝑚″,𝑚,𝑚′

𝑙″, 𝑙, 𝑙′ 4∑
𝒌𝑛v

𝑓 (0)
𝒌,𝑛𝐴

∗𝒌𝛾𝑛
𝑙′,𝑚′,𝑝′

̄𝑨𝒌′𝛾𝑛
𝑙″,𝑚″,𝑝″(𝒒𝛼)

= ∑
𝑙′𝑚′𝑝′

∑
𝑙″𝑚″𝑝″

(1 − δ𝑙0δ𝑚0)(δ𝑝′1δ𝑝″1 + δ𝑝′1δ𝑝″2 + δ𝑝′2δ𝑝″1 + δ𝑝′2δ𝑝″2) (7.39b)

×∑
𝑠

𝑢𝑠�̊�
𝑙′𝑝′(𝑟𝜈�̊�)𝑢𝑠�̊�

𝑙″𝑝″(𝑟𝜈�̊�)𝐺𝑚″,𝑚,𝑚′

𝑙″, 𝑙, 𝑙′ 4∑
𝒌𝑛v

𝑓 (0)
𝒌,𝑛𝐴

∗𝒌𝛾𝑛
𝑙′,𝑚′,𝑝′

̄𝑨𝒌′𝛾𝑛
𝑙″,𝑚″,𝑝″(𝒒𝛼)

+ δ𝑙0δ𝑚0 ∑
𝑙′𝑚′𝑝′𝑝″

1√
4π

(δ𝑝′1δ𝑝″1 + δ𝑝′1δ𝑝″2 + δ𝑝′2δ𝑝″1 + δ𝑝′2δ𝑝″2)

×∑
𝑠

𝑢𝑠�̊�
𝑙′𝑝′(𝑟𝜈�̊�)𝑢𝑠�̊�

𝑙′𝑝″(𝑟𝜈�̊�) 4∑
𝒌𝑛v

𝑓 (0)
𝒌,𝑛𝐴

∗𝒌𝛾𝑛
𝑙′,𝑚′,𝑝′

̄𝑨𝒌′𝛾𝑛
𝑙′,𝑚′,𝑝″(𝒒𝛼) .

The implementation of the 𝒌-dependent matching coefficients is based on the recycled sub-
routines Abcof, Rhomt, and Rhonmt. However, the radial solutions 𝑢𝑠�̊�

𝑙′𝑝′(𝑟𝜈�̊�) are efficiently
multiplied outside the 𝒌 loop based on the recycled Cdnmt subroutine (taken from the FLEUR
version specified on page 133). The separation of the spherical coefficient 𝑙 = 0 from the
remaining non-spherical contributions 𝑙 ≠ 0 in this subroutine saves one call of the subroutine
Gaunt1, which calculates the Gaunt coefficients. This originates from the fact that for 𝑙 = 0,
the surface integral (5.32d) simplifies to the orthogonality relation of the spherical harmonics

δ𝑙0δ𝑚0𝐺
𝑚″,0,𝑚′

𝑙″, 0, 𝑙′ = δ𝑙0δ𝑚0
1√
4π

∮Y𝑙″𝑚″( ̂𝒓)Y∗
𝑙′𝑚′( ̂𝒓) d𝛺 = 1√

4π
δ𝑙0δ𝑚0δ𝑙″𝑙′δ𝑚″𝑚′ . (7.40)
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which can be directly integrated into the formalism. As moreover the 𝑢𝑠�̊�
𝑙′𝑝′(𝑟𝜈�̊�) are stored with

an additional 𝑟𝜈�̊�, the valence contribution of the density variation accumulates a factor 𝑟2𝜈�̊�.

Therefore, the final first-order density-variation coefficients are divided by this factor in the

end at the moment, in order to avoid errors in the first implementation.

Table 7.7: Relating Kronecker deltas in equation (7.39b) and variable names in juPhon.

uu δ𝑙0δ𝑚0δ𝑝′1δ𝑝″1 uunmt (1 − δ𝑙0δ𝑚0)δ𝑝′1δ𝑝″1
ud δ𝑙0δ𝑚0δ𝑝′1δ𝑝″2 dunmt (1 − δ𝑙0δ𝑚0)δ𝑝′2δ𝑝″1
du δ𝑙0δ𝑚0δ𝑝′2δ𝑝″1 udnmt (1 − δ𝑙0δ𝑚0)δ𝑝′1δ𝑝″2
dd δ𝑙0δ𝑚0δ𝑝′2δ𝑝″2 ddnmt (1 − δ𝑙0δ𝑚0)δ𝑝′2δ𝑝″2

7.2.4 Visualization

InFormalism order to illustrate the first-order variation of the density in real space, equation (6.20)

must be used. However due to the TRS, juPhon only calculates the 𝒒+ part of the first-order

density variation. But, the IR representation can be reformulated so that

𝜌(1)IR (𝒓𝜈; 𝒒+𝛼) (7.41a)

= ∑
𝛼

𝑸⊤
𝛼 ⋅ 𝝆(1)

IR (𝒓𝜈; 𝒒+𝛼) +∑
𝛼

𝑸†
𝛼 ⋅ 𝝆(1)

IR (𝒓𝜈; 𝒒−𝛼)

= ∑
𝛼𝑮

(𝑸⊤
𝛼 ⋅ 𝝆(1)

IR (𝑮; 𝒒+𝛼))ei(𝑮+𝒒)⋅𝒓𝜈 +∑
𝛼𝑮

(𝑸†
𝛼 ⋅ 𝝆(1)

IR (𝑮; 𝒒−𝛼))ei(𝑮−𝒒)⋅𝒓𝜈 (7.41b)

= ∑
𝛼𝑮

(𝑸⊤
𝛼 ⋅ 𝝆(1)

IR (𝑮; 𝒒+𝛼))ei(𝑮+𝒒)⋅𝒓𝜈 +∑
𝛼𝑮

(𝑸†
𝛼 ⋅ 𝝆∗(1)

IR (−𝑮; 𝒒+𝛼))ei(𝑮−𝒒)⋅𝒓𝜈 (7.41c)

= ∑
𝛼𝑮

(𝑸⊤
𝛼 ⋅ 𝝆(1)

IR (𝑮; 𝒒+𝛼))ei(𝑮+𝒒)⋅𝒓𝜈 + ∑
𝛼,−𝑮

(𝑸†
𝛼 ⋅ 𝝆∗(1)

IR (𝑮; 𝒒+𝛼))e−i(𝑮+𝒒)⋅𝒓𝜈 (7.41d)

= 2Re(∑
𝛼𝑮

(𝑸⊤
𝛼 ⋅ 𝝆(1)

IR (𝑮; 𝒒+𝛼))ei(𝑮+𝒒)⋅𝒓𝜈) (7.41e)

results and thus everything is available. Analogously, the MT part can be rearranged, leading

to

𝜌(1)𝛾 (𝒓𝜈; 𝒒+𝛼) (7.42a)

= ∑
𝛼

𝑸⊤
𝛼 ⋅ 𝝆(1)

𝛾 (𝒓𝜈; 𝒒+𝛼) +∑
𝛼

𝑸†
𝛼 ⋅ 𝝆(1)

𝛾 (𝒓𝜈; 𝒒−𝛼)

= ∑
𝛼

𝑸⊤
𝛼 ⋅ 𝝆(1)

𝛾 (𝒓𝜈; 𝒒+𝛼) +∑
𝛼

𝑸†
𝛼 ⋅ 𝝆∗(1)

𝛾 (𝒓𝜈; 𝒒+𝛼) (7.42b)

= ∑
𝑙𝑚

(∑
𝛼

𝑸⊤
𝛼 ⋅ [𝝆(1)

𝛾 (𝒓𝜈; 𝒒+𝛼)]
𝑙𝑚

)Y𝑙𝑚( ̂𝒓𝜈) (7.42c)

+∑
𝑙𝑚

(∑
𝛼

𝑸†
𝛼 ⋅ [𝝆∗(1)

𝛾 (𝒓𝜈; 𝒒+𝛼)]
𝑙𝑚

)Y∗
𝑙𝑚( ̂𝒓𝜈)

= ∑
𝑙𝑚

(∑
𝛼

𝑸⊤
𝛼 ⋅ ([𝝆(1)

𝛾 (𝒓𝜈; 𝒒+𝛼)]
𝑙𝑚

+ (−1)−𝑚[𝝆∗(1)
𝛾 (𝒓𝜈; 𝒒+𝛼)]

𝑙,−𝑚
))Y𝑙𝑚( ̂𝒓𝜈) ,(7.42d)
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thereby exploiting (see e.g. references [172, 283])

Y∗
𝑙𝑚( ̂𝒓) = (−1)𝑚Y𝑙,−𝑚( ̂𝒓) . (7.43)

When Algorithmplotting the real-space representation of a quantity given in the LAPW basis, it

must be clear which part of the unit cell can be attributed to the IR or lies within any MT

sphere. The adequate algorithm can be found in the FLEUR subroutine Plotdop, although it
only accepts quantities given in stars and lattice harmonics. I removed these symmetry opti-

mizations and substituted the existing real-space evaluations by equations (7.41) and (7.42)

so that first-order variation quantities can be properly plotted. As an example, the phonon

vector 𝒒 = (0.25, 0.25, 0)⊤ (internal units) is chosen for fcc Ne and fcc Al systems, in which
the atoms are displaced along the cartesian 𝑧-direction. Since juPhon provides the plot data
for each of the cartesian directions, a linear combination of them is required to achieve the

aforementioned displacement along the aforementioned fcc lattice vector. Basically, the data

of the 𝑦- and 𝑧-displacement direction must be added and divided by the factor 2.

Figure 7.4 Resultsshows the first-order density variation in a 2D heat map17 for the fcc Ne
system, while the fcc Al example can be found in figure 7.5. In these figures, within the lower
plots the gradient term in equation (7.37b) is not subtracted. This leads to discontinuities

at the MT sphere boundaries. So, these plots impressively substantiate the relevance of

the complete MT basis correction. Furthermore, it can be seen that an essential part of the

first-order density variation is given by the gradient of the unperturbed full charge density.

Since it is mainly governed by the 𝑙 = 1 channel, the shape of the spherical harmonics Y1𝑚
can clearly be identified within the MT spheres. Due to the symmetry given by the cubic

lattice and the monoatomic lattice basis, all displacement directions must show the same

behavior [127, 251]. Therefore, showing only one displacement direction is sufficient here.

7.2.5 Tests

The Test coveragefirst-order charge density variation for finite 𝒒 does actually not differ significantly from
its result for 𝒒 = 𝟎, since the 𝒒-character is essentially determined by the first-order wave-
function expansion coefficients. Within the displaced MT spheres, this contribution is much

smaller relative to the gradient of the full unperturbed density. Additionally, it has proven

much easier to find tests for the boundary case of the Goldstone modes. Therefore, the

majority of the following tests are devoted to the gradient of the unperturbed density. Still,

the few tests for finite 𝒒 are hard to pass and thus represent a good indicator of whether the
first-order variation density variation is correctly programmed.

While Outlinetest 8, test 9, and test 10 are supposed to check the gradient of the unperturbed

density gradient, test 11, test 12, and test 14 test the routines for the first-order density

variation. Test 13 describes the way in which the continuity of both the gradient and the

first-order variation of the density is checked.

17 All heat maps within this thesis are generated with XCrySDen (see e.g. references [284, 285]), while the 1D
plots employ Matplotlib [286] and NumPy [287].
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Figure 7.4: Real-space plot of the first-order density variation for fcc Ne. The atoms are displaced
along the cartesian 𝑧-direction for a phonon with 𝒒 = (0.25, 0.25, 0)⊤ (longitudinal
mode). While the upper plot shows the complete first-order density variation, the

lower plot omits the gradient of the full unperturbed density. Since this part is central

to the LAPW basis-set correction, its relevance is indicated here. The charge density,

i.e., particularly the values in the color legend above, are given in the unit e a−4
0 . The

input files for the FLEUR input generator are given in appendix B.
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Figure 7.5: Real-space plot of the first-order density variation for fcc Al. The setup and the
units are the same as for the Ne plot in figure 7.4. Relative to it, the Al system
shows different features in the central MT sphere and at the MT sphere boundaries.

Furthermore, the values in the color legend are one order of magnitude larger than

for the Ne system.
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Test 8: Radial Derivatives

Equation (7.21) requires employing a numerical differentiation routine. It is checked by

differentiating the test functions

𝔤1(𝑟𝜈�̊�) = −𝑟−1
𝜈�̊� , 𝔤2(𝑟𝜈�̊�) = exp(−𝑟𝜈�̊�), (7.44)

and analyzing the difference to their analytical derivatives. The relative error is shown in

figure 7.6 on the logarithmic MT mesh 𝑟𝜈�̊�. Both derivatives feature a small relative error.

While for 𝔤1 it is essentially about 10−7, the relative error of 𝔤2 basically lies between 10−7

and 10−15. Nevertheless, the latter shows a more interesting behavior. It increases towards the

MT sphere center, because 𝔤1 varies there more rapidly, which is numerically more challenging.
Furthermore, it increases towards the MT sphere boundary. This is due to the logarithmic

mesh. It is dense close to the MT sphere center and less dense near the MT sphere boundary.

However, numerical differentiation routines perform better the denser the mesh is chosen.

Both functions show a different relative error for the boundary points, for which a different

differentiation algorithm is selected by the subroutine.

Test 9: Gaunt coefficients

The recycled subroutine Gaunt1 can be tested by evaluating the closed forms18

𝐺𝑚+1,𝑚,1
𝑙+1, 𝑙, 1 = √ 3

4π
√(𝑙 +𝑚+ 1)(𝑙 + 𝑚+ 2)

2(2𝑙 + 1)(2𝑙 + 3)
(7.45a)

𝐺𝑚+1,1,𝑚
𝑙−1, 1, 𝑙 = −√ 3

4π
√(𝑙 −𝑚)(𝑙 − 𝑚− 1)

2(2𝑙 − 1)(2𝑙 + 1)
(7.45b)

𝐺𝑚, 𝑚, 0
𝑙+1, 𝑙, 1 = √ 3

4π
√(𝑙 −𝑚+ 1)(𝑙 + 𝑚+ 1)

(2𝑙 + 1)(2𝑙 + 3)
(7.45c)

𝐺𝑚, 𝑚,0
𝑙−1, 𝑙, 1 = √ 3

4π
√ (𝑙 −𝑚)(𝑙 + 𝑚)

(2𝑙 − 1)(2𝑙 + 1)
(7.45d)

𝐺𝑚−1,𝑚,−1
𝑙+1, 𝑙, 1 = √ 3

4π
√(𝑙 −𝑚+ 1)(𝑙 − 𝑚+ 2)

2(2𝑙 + 1)(2𝑙 + 3)
(7.45e)

𝐺𝑚−1,𝑚,−1
𝑙−1, 𝑙, 1 = −√ 3

4π
√(𝑙 +𝑚)(𝑙 + 𝑚− 1)

2(2𝑙 − 1)(2𝑙 + 1)
(7.45f)

of the Gaunt coefficients for 𝑙 ∈ [0, 30] (30 is arbitrarily chosen as an upper bound of the
test). They result from applying the gradient to a spherical harmonic. The accuracy of Gaunt1
proves to be better than 10−9.

18 These forms have been verified employing Wolfram Mathematica [281] by Fabian Lux.
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Figure 7.6: Check of the radial derivative subroutine employed in juPhon. The relative numerical
errors of the functions exp(−𝑟𝜈) (above) and −𝑟−1

𝜈 (below) with respect to their

analytical derivatives are plotted as a function of a typical MT mesh with the mesh

points 𝑟𝜈 on a doubly-logarithmic scale. Apart from boundary effects, the functions
are accurately differentiated up to a threshold of about 1 ⋅ 10−7. As boundary points

are differentiated with a special method, the accuracy of their differentiation differs

from that of the remaining points. As a consequence of the logarithmic mesh, the

preciseness towards the MT sphere boundary worsens. The employed input file can

be found in appendix B.
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Test 10: Trivial Muffin-tin Gradient

In order to check equation (7.21c), the test function 𝔤(𝑟𝜈�̊�) = 𝑟𝜈�̊�Y00 = 𝑟𝜈�̊�/√4π is chosen [251].

An analytical evaluation results in

[𝛁⊤𝔤(𝑟𝜈�̊�)]1,∓1
⋅ ̂𝒆𝑥 = ± 1√

6
, (7.46a)

[𝛁⊤𝔤(𝑟𝜈�̊�)]1,∓1
⋅ ̂𝒆𝑦 = i 1√

6
, (7.46b)

[𝛁⊤𝔤(𝑟𝜈�̊�)]1,0 ⋅ ̂𝒆𝑧 = 1√
3
, (7.46c)

which is in line with the numerical results at an accuracy better than 10−6. Since the test

function only features a 𝑙 = 0 contribution, the other part of the MT gradient (7.21d) is not
covered by this test. An appropriate test function must have expansion coefficients for 𝑙 > 0.
As this takes more effort and the gradient subroutine has worked already, we decided to

postpone adding it [127, 251].

Test 11: Reproducing the Unperturbed Charge Density

The subroutines to calculate the first-order density variation can be cross-checked by manipu-

lating their input such that the valence part of the unperturbed density results [127, 251].

InInterstitial region the IR, it requires substituting the first-order variation of the wave-function expansion

coefficients with their unperturbed version so that equation (7.31b) is reformulated to

2𝜌(0)IR,v(𝒓) =
4
𝛺

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮″+𝑮′

∑
𝑮′

𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑧(0)𝑮″+𝑮′(𝒌′, 𝑛)ei𝑮″⋅𝒓 (7.47a)

= 4
𝛺

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮‴

∑
𝑮′

𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑧(0)𝑮‴(𝒌′, 𝑛)ei(𝑮
‴−𝑮′)⋅𝒓 (7.47b)

= ∑
𝑮″

𝜌(0)IR,v(𝑮
″)ei𝑮″⋅𝒓 . (7.47c)

In this derivation 𝑮″ = 𝑮−𝑮′ and 𝑮‴ = 𝑮″ +𝑮′ are used.

TheMuffin-tin same can be done for the MT spheres, although this involves a more sophisticated

manipulation of the juPhon subroutines. On the one hand, the first-order variation of the
wave-function expansion coefficients in equation (7.29) are analogously replaced. On the

other hand, the remaining lines of this equation must be deactivated, because they stem from

the basis-set correction or relate to core electrons. All in all, this leads to

[𝝆(0)
v,𝛾(𝒓𝜈�̊�)]

𝑙𝑚
= ∑
𝑙′𝑝′𝑙″𝑝″𝑠

𝑢𝑠�̊�
𝑙′𝑝′(𝑟𝜈�̊�)𝑢𝑠�̊�

𝑙″𝑝″(𝑟𝜈�̊�) ∑
𝑚′𝑚″

𝐺𝑚″,𝑚,𝑚′

𝑙″, 𝑙, 𝑙′ 2∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛𝐴

∗𝒌𝛾𝑛
𝑙′𝑚′𝑝′𝐴

𝒌𝛾𝑛
𝑙″𝑚″𝑝″ . (7.48)

ItAspects to
consider

is important to consider that the first-order density variation is a vector and the

unperturbed density a scalar quantity. Despite the possible solution to fill up every vector

component with the unperturbed wave-function expansion coefficients, only one component

contributes and the others are set to zero. This worsens the test coverage, but the displacement

directions are independent from each other and the respective loops are located in a very
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outer scope. In the long term, parallelization might supplant these direction loops within the

tested routines by a parameter, because the loop is shifted to a more outer scope. Furthermore,

for core-tail systems this test delivers unsatisfying results, when using the unperturbed charge

density from the initialization routine. Therefore, the employed version of FLEUR writes
out the files fort.7800 for the IR and fort.1040 for the MT spheres in cdnval, containing
the IR and the MT charge density before core-tail contributions are added. Additionally, in

systems fulfilling TRS FLEUR only calculates half of the Brillouin zone (𝒌-point set) [127].
The implying factor 2 compensates with the factor 2 inhering in the juPhon routines and
stemming from the product rule, which is irrelevant in the unperturbed case. Finally, the

initialization procedure described in appendix A must be followed in order to ensure that the

densities are not taken from different iterations.

Test 12: First-Order Density Variation for the Goldstone Modes

As pointed out in the introduction of section 7.2.3, the first-order density variation becomes

the negative unperturbed density gradient, provided relation (7.30) holds. In order to check

this, the test exactly sets the first-order variation of the wave-function expansion coefficients as

in equation (7.30). The raison d’être of this procedure originates from the circumstance that

numerical errors can accumulate while the Sternheimer equation is solved self-consistently.

This implies that the resulting first-order wave-function expansion coefficients differ from

the aforesaid perfect analytical solution. By conducting the test, the correctness of the

implementation is decoupled from numerical issues that might still inhere. Especially, the test

aims to check the Pulay basis correction in the MT first-order density variation.

Extended to a polyatomic basis, the first-order wave-function expansion coefficients

must be

𝒛(1)
𝑮 (𝒌, 𝑛; 𝟎𝛼) ≡ − 1

𝑁𝛾
i(𝒌 +𝑮)𝒛(0)

𝑮 (𝒌, 𝑛; 𝟎𝛼) . (7.49)

The factor 1/𝑁𝛾 accounts for the second line of equation (7.29) which now implicitly contains

a sum over all MT spheres. Additionally, a sum over the displaced atoms 𝛼 is required, which
must be normed by the factor 1/𝑁𝛾 again. [251]

Test 13: Continuity of the Density Gradient and First-Order Density Variation

The continuity of the linear density variations is essentially governed by the LAPW basis they

are expanded in [251]. Since the LAPW basis (5.6) and the Gaussian parameters (7.22) are

constructed such that the energy derivative is also continuous on the MT sphere boundary,

the aforementioned variations must likewise be continuous [251]. This check follows the

same procedure as in test 3. However, the first-order density variation is represented by its 𝒒+

part in juPhon, which in general is complex-valued. Thus, the continuity of both the real and
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the imaginary part are investigated. All in all,

𝝆(1)
IR (𝒓crt; 𝒒+𝛼) = ∑

𝑮|𝑮+𝒒≠𝟎
𝝆(1)
IR (𝑮; 𝒒+𝛼)ei(𝑮+𝒒)⋅𝐵𝒓crt , (7.50a)

𝝆(1)
𝛾 (𝒓𝜈�̊�; 𝒒+𝛼) = [𝝆(1)

𝛾 (𝑟𝜈�̊�; 𝒒+𝛼)]
𝑙𝑚

Y𝑙𝑚( ̂𝒓𝛾 − ̂𝝉𝛾) , (7.50b)

𝛁𝜌(0)IR (𝒓crt) = ∑
𝑮|𝑮+𝒒≠𝟎

𝛁𝜌(0)IR (𝑮)ei𝑮⋅𝐵𝒓crt , (7.51a)

[𝛁𝜌(0)𝛾 (𝒓𝜈�̊�)]
𝑙𝑚

= ∑
𝛾
[𝛁𝜌(0)𝛾 (𝑟𝜈�̊�)]

𝑙𝑚
Y( ̂𝒓𝛾 − ̂𝝉𝛾) (7.51b)

are evaluated. The results should roughly be comparable to the continuities of the unperturbed

charge densities.

Test 14: First-Order Charge-Density Variation from Difference Quotients

TheConcept strongest and most general test of an arbitrary DFPT first-order density variation is

to cross-check it with results from other methods or programs. A fair consistency for the

comparison can be expected when the first-order charge-density variation is generated from a

finite-difference method, based on the unperturbed charge density of FLEUR [127]

𝑸𝛼 ⋅ Δ𝝆(1)(𝒓, 𝒒+𝛼) = ∣𝑸𝛼 ⋅ 𝝆(1)Δ(𝒓, 𝒒+𝛼) −𝑸𝛼 ⋅ 𝝆(1)(𝒓, 𝒒+𝛼)∣ (7.52a)

with

𝑸𝛼 ⋅ 𝝆(1)Δ(𝒓, 𝒒+𝛼) ≕
𝜌(0)(𝒓 + 𝛿𝛼𝒒+) − 𝜌(0)(𝒓)

∣𝛿𝛼𝒒+∣
ei𝒒⋅𝑹 . (7.52b)

In this method the displacement |𝛿𝛼𝒒+| is to be set so small that the differential quotient con-
verges, i.e., it does not change significantly anymore when further lowering |𝛿𝛼𝒒+|. We decided
this to be the case as soon as equation (7.52a) is on average 1.0 ⋅10−3 e a−4

0 , from an inspection

of the evaluated values, and |𝛿𝛼𝒒+| = 1 ⋅ 10−5 a0. Based on a perturbation expansion (4.1) of

the charge density, a theoretical upper limit 𝒪(|𝛿𝛼𝒒+|2) can be assumed here [251]. Since the
real-space first-order density variation is evaluated according to equations (7.41) and (7.42),

equation (7.52a) must be multiplied by a factor of 2.

InTest systems order to avoid superfluous complexity, a sc Ne system is chosen, featuring the phonon
vectors 𝒒1 = (0, 0, 0.25)⊤ and 𝒒2 = (0, 0.25, 0.5)⊤ in internal units (cf. figure 3.1 for 𝒒2). The

FLEUR calculation must be set up in a supercell that contains the complete period of these
phonons. Its input parameters can be found in appendix B. This leads in the former case to

the dimension 1 × 1 × 4 and in the latter case to a 1 × 4 × 2 supercell. So, relative to the
original unit cell, the lattice constant is doubled or quadruplicated in the respective directions.

Furthermore, the 𝒌 sets must be adjusted because an increase in real space leads to a decrease
in reciprocal space. Consequently, 𝒒1 necessitates an 8×8×2 and 𝒒2 an 8×4×2 set, provided
the single unit cell is calculated with an 8 × 8 × 8 set. For 𝒒1, the inp file for FLEUR should
be checked after the input-file generator has been executed, because the latter does not

consistently set the parameters for all neon atoms of the supercell.
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Figure 7.7 Resultscontrasts 2D heat maps of the juPhon calculation with the finite difference
method based on FLEUR. For 𝒒1 a plotting resolution of 150×600 is set in the 𝑥 and 𝑧 directions,
respectively. The same is done in figure 7.8 for 𝒒2 and a resolution of 600 × 300 in the 𝑦
and 𝑧 directions, respectively. In both figures, the origins can be found in the upper left
corners. XcrySDen cuts all values larger or smaller than the maxima or minima in the legends
of the aforementioned figures. For the sake of quantifying the difference between the two

methods, the absolute error is evaluated on the complete aforementioned meshes and along

horizontal 1D lines between the extrema. The results are shown in figure 7.9 for 𝒒1 and

for 𝒒2. Significant differences manifest in particular at the boundaries of the unit cell. These

boundary effects stem for instance from deciding for a naive numerical differentiation method.

Moreover, close to the MT sphere centers the values are large, implying a larger absolute error.

Still we assume there a sufficiently small relative error [127]. Overall, both methods are very

well in line with each other, although the features in the non-displaced atoms differ a little.
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Figure 7.7: Heat maps contrasting the first-order density variation from the juPhon code with a
benchmark using a difference quotient method (7.52a) based on the FLEUR program,
for a sc Ne system and a longitudinal phonon with 𝒒 = (0, 0, 0.25)⊤ (internal units).
The variable 𝑎 is the lattice constant. Furthermore, the first-order density variations
are given in the unit e a−4

0 , and the input-generator input files are given in appendix B.

Although the tiny features in the non-displaced atoms (at (001) and (003)) are only
poorly reproduced, the overall consistency is very good. The resolution of each

plot is 150 × 600 in 𝑥 and 𝑧 direction, respectively. Within the four upper plots of
figure 7.9, the absolute error, i.e., the difference between the two methods is analyzed

on a horizontal line on the thirty-eighth mesh point of the 150 data points along the
𝑥-direction. The origin are located in the upper left corner.
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Figure 7.8: Heat maps contrasting the first-order density variation from the juPhon code with a
benchmark using a difference quotient method (7.52a) based on the FLEUR program,
for a sc Ne system and a longitudinal phonon with 𝒒 = (0, 0.25, 0.5)⊤ (internal units).
The units and involved methods are the same as in figure 7.7. Furthermore, the consis-

tency between the two methods shown here is comparable with the aforementioned

figure. Again, the most obvious differences occur in the non-displaced MT spheres.

But, the resolution of each plot in this example is 600 × 300 in 𝑦 and 𝑧 direction,
respectively. Within the four lower plots of figure 7.9, the absolute error, i.e., the

difference between the two methods is likewise analyzed on a horizontal lines at the

seventy-fifth, the 161th, and the 150th, mesh points of the 300 data points along the
𝑦-direction. The upper left corner is defined as the origin.
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Figure 7.9: Absolute error 1D-analysis of figure 7.7 (four upper plots) and figure 7.8 (four lower

plots) on the complete mesh and along horizontal lines between the MT extrema. The

locations of the horizontal lines are already explained in the aforementioned figures.

Here, 𝑁𝜈 is the number of mesh points and 𝑎 the lattice constant. In the middle of
the MT spheres the absolute error becomes large, but also the values are large there.

Furthermore, large differences are caused by boundary effects of the finite-differences

method. But, the overall consistency is good. The order of the points in the left plots

of the first and third rows is such that all columns (indexed by 𝑧𝑖 above and 𝑦𝑖 below)
are run through before the next row (denoted by 𝑥𝑖 above and 𝑧𝑖 below) is addressed.
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7.3 Linear Potential Variations

Chapter 6Requirements clarifies that the linear variations of both the external and the effective potentials

form integral parts of the dynamical matrix. Within this framework, the external component

of the first-order effective-potential variation expresses the perturbation which acts on the

system due to a phonon. Therefore, this contribution is known in advance of the Sternheimer

equation and serves as the input for the self-consistency procedure, the outputs of which

are the complementary Hartree and xc terms. Moreover, the gradient of the unperturbed

effective potential must also be determined before the Sternheimer equation, in which it

is incorporated. So overall, the implementation of the linear potential variations must

satisfy different requirements that are imposed by the Sternheimer equation, the dynamical

matrix, and the test suite. Hence, it must be feasible to flexibly activate and deactivate

only certain constituents of the linear effective-potential variations, in order to minimize

redundant lines of code and thus the risk of programming errors. This even involves addressing

specific compartmentalized terms of the linear Hartree-, external-, or xc-potential variations.

Nevertheless, in this section the complete linear effective-potential variations are discussed.

InWeinert method
for potential

gradient

principle, the unperturbed effective potential (such as the unperturbed charge

density) is at hand from a preceding DFT calculation, for which the FLEUR code is employed.
Consequently, one could naively argue that in order to obtain the gradient of any unperturbed

effective-potential part, the numerical gradient procedure is sufficient (as introduced for the

unperturbed density in section 6.2.1). But this algorithm in general precipitates numerical

issues. They originate from the fact that the aforementioned numerical gradients in the IR

and the MT sphere both on their own do not ensure a continuous derivative of the potential

at the MT sphere boundary. It constitutes a difference to the gradient of the unperturbed

charge density, the continuity of which at the MT sphere boundary is guaranteed by the LAPW

basis [251]. In contrast, the formalism of Klüppelberg [88] ensures continuity at the MT

sphere boundary for both the linear Hartree- and the linear external-potential variations [251].

This is based on the Weinert [64] construction, and in particular holds true for a converged

Rayleigh expansion [127]. As far as the linear variations of the xc potential are concerned,

Klüppelberg derives expressions which are functionals of the linear density variations.

ItRaison d’être of
Coulomb
potential

has established itself in the FLEUR code to usually deal with the sum of the repulsive
Hartree potential and the attractive external potential, which is called the Coulomb potential.

This weakens the awkward numerical impact of the 1/𝑟 singularity, lets contributions with
large absolute values annihilate each other, and all in all can be handled with the concept

of Weinert [64]. Analogously, the Coulomb potential is introduced in the total energy, as

described in section 5.9. We decided to follow this approach [127, 251], thereby realizing the

linear Hartree- and external-potential variations within the same scope of routines and data

structures.

TheOutline implementation details of the linear Coulomb-potential variations are reported in

section 7.3.1. Section 7.3.2 then expounds on the implementation of the linear xc-potential

variations. In order to give an impression of the linear effective-potential variations, sec-

tion 7.3.3 is devoted to visualize the shape of the Hartree, the external, or the xc part, utilizing

3D isosurfaces and their 2D cross-sections. The way of verifying the integrity of the resulting

linear potential variations is finally discussed in section 7.3.4. Overall, the implementation
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was guided by subroutines from FLEUR version 26 (see page 112), but also from a more
modern version19 of FLEUR.

7.3.1 Coulomb Potential

In Surface integrals
of multipole
moments

this section, the calculation of the unperturbed Coulomb-potential gradient and the first-

order Coulomb-potential response to a phonon are explained. Common to both linear Hartree-

potential variations is the surface-term contribution to the multipole moments (6.35), which

partitions into a MT spheres and an IR term

[𝖖𝛾𝑹′

surf
( ̃𝒒±𝛼)]

𝑙𝑚
= [𝖖𝛾𝑹′

surf, MT
( ̃𝒒±𝛼)]

𝑙𝑚
− [𝖖𝛾𝑹′

surf, IR
( ̃𝒒±𝛼)]

𝑙𝑚
. (7.53)

Their sign differs, because the normal vectors on the IR boundaries, which encapsulate the

MT spheres, are antiparallel to the normal vectors of the MT sphere boundaries. Deciding for

the MT normal vector ̂𝒓, both in the MT term

[𝖖𝛾𝑹′

surf, MT
( ̃𝒒±𝛼)]

𝑙𝑚
= δ𝛾𝛼ei𝒒

±⋅𝑹′ ∮
∂𝛼𝑹=𝟎

̂𝒓Y∗
𝑙𝑚( ̂𝒓𝛼)𝑟𝑙�̊�𝜌

(0)
𝛼 (𝒓𝛼 + 𝝉𝛼) d𝑆 (7.54a)

= δ𝛾𝛼ei𝒒
±⋅𝑹′𝑅𝑙+2

�̊� ∑
𝑙′𝑚′

[𝜌(0)𝛼 (𝑅�̊�)]𝑙′𝑚′

1

∑
𝑚″=−1

∑
𝑖

̂𝒆𝑖𝜁𝑖,𝑚″ (7.54b)

×∮
∂𝛼𝑹=𝟎

Y∗
𝑙𝑚( ̂𝒓𝛼)Y𝑙′𝑚′( ̂𝒓𝛼)Y1𝑚″( ̂𝒓𝛼) d𝛺

= δ𝛾𝛼ei𝒒
±⋅𝑹′𝑅𝑙+2

�̊� ∑
𝑙′𝑚′

[𝜌(0)𝛼 (𝑅�̊�)]𝑙′𝑚′

1

∑
𝑚″=−1

∑
𝑖

̂𝒆𝑖𝜁𝑖,𝑚″𝐺𝑚,𝑚′,𝑚″

𝑙, 𝑙′, 1 (7.54c)

and the IR term

−[𝖖𝛾𝑹′

surf, IR
( ̃𝒒±𝛼)]

𝑙𝑚
= −δ𝛾𝛼ei𝒒

±⋅𝑹′ ∮
∂𝛼𝑹=𝟎

̂𝒓Y∗
𝑙𝑚( ̂𝒓𝛼)𝑟𝑙�̊�𝜌

(0)
IR (𝒓𝛼 + 𝝉𝛼) d𝑆 (7.55a)

= −δ𝛾𝛼ei𝒒
±⋅𝑹′ ∑

𝑙′𝑚′

4πi𝑙′ ∑
𝑮

ei𝑮⋅𝝉𝛼𝜌(0)IR (𝑮)Y∗
𝑙′𝑚′( ̂𝑮)j𝑙′(|𝑮|𝑅�̊�) (7.55b)

×
1

∑
𝑚″=−1

∑
𝑖

̂𝒆𝑖𝜁𝑖,𝑚″ ∮
∂𝛼𝑹=𝟎

Y∗
𝑙𝑚( ̂𝒓𝛼)Y𝑙′𝑚′( ̂𝒓𝛼)Y1𝑚″( ̂𝒓𝛼) d𝛺

= −δ𝛾𝛼ei𝒒
±⋅𝑹′ ∑

𝑙′𝑚′

4πi𝑙′ ∑
𝑮

ei𝑮⋅𝝉𝛼𝜌(0)IR (𝑮)Y∗
𝑙′𝑚′( ̂𝑮)j𝑙′(|𝑮|𝑅�̊�) (7.55c)

×
1

∑
𝑚″=−1

∑
𝑖

̂𝒆𝑖𝜁𝑖,𝑚″𝐺𝑚,𝑚′,𝑚″

𝑙, 𝑙′, 1

finally implies a minus sign in the latter. Within equation (7.54b), the spherical-harmonic

expansion of the unperturbed charge density (5.18) is used. According to equation (6.27b),

the normal vectors ̂𝒓 are moreover expanded in spherical harmonics in each of the cartesian di-
rections. Furthermore, the surface integral is evaluated at the MT sphere boundary ∣𝒓𝛼∣ ≡ 𝑅�̊�,

and the differential d𝑆 is unfolded to 𝑅2
�̊� d𝛺. This enables one to identify the Gaunt co-

efficients (5.32d) in equation (7.54c). Due to one orbital quantum number of the Gaunt

19 The version referred to is in the FLEUR repository and can be found under the commit labeled by the hash
1069634bca0c874f65be440dc9c58c165a968d74.
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coefficients being fixed to 1, only a few Gaunt coefficients remain (fulfilling the selection
rules 𝑚 = 𝑚′ +𝑚″ and ∣𝑙′ − 1∣ < 𝑙 ≤ 𝑙 + 1 [88]). I usually avoid implementing these Gaunt
selection rules, because if-clauses within loops are required, preventing performance opti-

mizations of modern CPU architectures. Exceptions (in recycled routines) will be eliminated

in the future. The approach (7.55) for the multipole moments in the IR is similar to the

aforementioned one in the MT spheres. However for the former, the IR plane-wave expan-

sion of the charge density (5.18) is used and the subject of a Rayleigh decomposition (5.5).

Evaluating the surface terms (7.53), (7.54), and (7.55) is already partly and less precisely

described in reference [88].

SinceTheir relevance equation (7.53) is proportional to the discontinuity of the charge density, it

suggests itself that this contribution is small relative to the remaining multipole-moment

parts (6.33) and (6.34). I can confirm this for the systems relevant within this dissertation.

Still, one could possibly imagine more problematic systems, in which converging the LAPW

parameter 𝑘max and 𝑙max,�̊� significantly increases the computation time. Surface terms then
allow smaller cutoffs and thus a better computational performance [88]. Again it must be

stressed that only the 𝒒+ parts in the relevant equations of the first-order Coulomb-potential

variation are programmed and discussed in the following (TRS).

AspiringOptimal Weinert
parameter

for a correct implementation of the Coulomb potential, the question arises how

the Weinert convergence parameter 𝑁 in the pseudo-densities (6.28b), (6.38), and (6.40)
should be set. This parameter is actually supposed to optimize the Fourier expansion of the

pseudo-charge [64, 251]. But, the resulting Coulomb potential should not be dependent

on the choice of 𝑁 [251], provided it is converged with respect to the LAPW parameters

and the aforesaid Fourier expansion behaves well. Checking this for a linear external po-

tential variation, I found that the choice of a sufficiently small 𝐺max implied the potential
to become a function of the Weinert parameter 𝑁. Ultimately, it has turned out to be ade-
quate if the parameter 𝑁 is chosen such as in the construction of the unperturbed Coulomb
potential 𝑉 (0)

C
(𝒓).

Gradient of the Unperturbed Interstitial Part

TheExternal potential
multipole
moment

exact numerical realization of the multipole moments (6.26) is impossible, because the

expression undergoing the application of the gradient must afterwards be evaluated at 𝒓 = 𝟎.
Both juPhon and FLEUR employ a logarithmic MT mesh to achieve the required accuracy in the
close vicinity of the MT sphere center, therefore 𝒓 = 0 can only be approached. But deciding
for this approximate solution, numerical errors must possibly be handled in a MT gradient

expression, as it is depicted in figure 7.3. Furthermore, pathological functions which rapidly

vary close to the MT sphere center cause knotty problems. These issues are circumvented in

the reformulation (6.27b) and therefore

𝖖𝛾𝑹′

𝑙𝑚 (𝟎, 𝛼) = −𝑍�̊�δ𝛾𝛼𝛁[𝑟𝑙Y∗
𝑙𝑚( ̂𝒓)]

𝒓=0
(7.56a)

= −𝑍�̊�δ𝛾𝛼
3

∑
𝑖=1

̂𝒆𝑖

1

∑
𝑚=−1

3
4π

𝜁𝑖,𝑚 (7.56b)

is implemented in juPhon.
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As Coulomb
pseudo-density

in FLEUR, the multipole moments of the Hartree-potential gradient (6.39) and the
external-potential gradient (7.56) are combined to those of the Coulomb-potential gradient.

This results in the pseudo-charge Fourier coefficients

𝒏ps,𝛁
Cou

(𝑮) = 𝛁𝜌(0)IR (𝑮) + 4π
𝛺

∑
𝛾

∑
𝑙𝑚

(−i)𝑙(2𝑁opt

�̊� + 3)!!

(2𝑙 + 1)!!𝑅𝑙
�̊�

j𝑙+𝑁+1(|𝑮|𝑅�̊�)

(|𝑮|𝑅�̊�)
𝑁+1 (7.57)

× e−i𝑮⋅𝝉𝛾Y𝑙𝑚( ̂𝑮)([𝖖𝛾𝑹′

𝛁𝜌,tot]𝑙𝑚
− δ𝑙1 ∑

𝛼
𝖖𝛾𝑹′

𝑙𝑚 (𝛼))

(the minus from equation (6.30a) is taken into account here). In cases which only require

the gradient of the unperturbed Hartree or external potential, the respective complementary

contribution of the Coulomb potential gradient is omitted. Moreover, it must be considered

that within FLEUR the convergence parameter 𝑁 is optimized for each atom type ̊𝛾 [64].
Overall, this results in the optimized

𝑁opt

�̊� ≔ 𝑁 + 𝑙 , (7.58)

which are constant with respect to the quantum number 𝑙. With Final formequation, the IR Coulomb

potential finally reads

𝛁𝑉 (0)
Cou

(𝒓) = ∑
𝑮|𝑮≠𝟎

4π
𝒏ps,𝛁
Cou

(𝑮)
|𝑮|2

ei𝑮⋅𝒓 (7.59a)

≕ ∑
𝑮|𝑮≠𝟎

[𝛁𝑉 (0)
Cou

](𝑮)ei𝑮⋅𝒓 . (7.59b)

The sum over 𝑮 features the property that 𝑮 = 𝟎 is explicitly excluded. Overall, the IR
algorithm is inspired by the recycled FLEUR routines Vgen and Psqpw.

Gradient of the Unperturbed Muffin-tin Part

For Original
expression

the Coulomb-potential gradient in the MT spheres, the previous equation is used in the

surface-integral term of equation (5.43). The volume-integral contributions of the Dirichlet

boundary-value problem for the unperturbed Coulomb-potential gradient are taken from the

second lines in the respective external (6.32) and Hartree expressions (6.44)

[𝛁𝑉 (0)
Cou

(𝒓𝛾 + 𝝉𝛾)]𝑙𝑚
= (

𝑟𝛾
𝑅𝛾

)
𝑙

∑
𝑮|𝑮≠𝟎

ei𝑮⋅𝝉𝛾[𝛁𝑉 (0)
Cou

](𝑮)4π∑
𝑙𝑚

i𝑙Y∗
𝑙𝑚( ̂𝑮)j𝑙(|𝑮|𝑅𝛾) (7.60)

+ 𝑍𝛼δ𝛾𝛼
4π
3

1
𝑟2𝛼

⎛⎜
⎝
1 −(

𝑟𝛼
𝑅𝛼

)
3
⎞⎟
⎠

1

∑
𝑚=−1

3
4π

∑
𝑖

̂𝒆𝑖𝜁𝑖,𝑚

+ 4π
2𝑙 + 1

∫
𝑅𝛾

0
𝑠2𝛾[𝛁𝜌(0)𝛾 (𝑠𝛾)]𝑙𝑚

𝑟𝑙<
𝑟𝑙+1
>

⎛⎜
⎝
1 −(

𝑟>
𝑅𝛾

)
2𝑙+1

⎞⎟
⎠

d𝑠𝛾 .

Since Rearrangement
due to recycling

the subroutine Vmts from FLEUR is recycled, the implemented Hartree volume-integral
differs from equation (7.60). It must be rearranged to

[𝛁𝑉 (0)
Htr, vol

(𝑟𝛾)]𝑙𝑚
= 4π

2𝑙 + 1
∫

𝑅𝛾

0
𝑠2𝛾[𝛁𝜌(0)𝛾 (𝑠𝛾)]𝑙𝑚

𝑟𝑙<
𝑟𝑙+1
>

⎛⎜
⎝
1 −(

𝑟𝛾
𝑅𝛾

)
2𝑙+1

⎞⎟
⎠

d𝑠𝛾 (7.61a)
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= 4π
2𝑙 + 1

∫
𝑟𝛾

0
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𝛾
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∫
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𝑟𝑙𝛾
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𝛾
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𝑟𝛾
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⎝

1
𝑟𝑙+1
𝛾
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𝑟𝑙𝛾
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𝛾
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∫
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0
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d𝑠𝛾 (7.61c)

+ 4π
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𝑟𝛾
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1
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𝑟𝑙𝛾
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𝛾
∫

𝑅𝛾

𝑟𝛾
[𝛁𝜌(0)𝛾 (𝑠𝛾)]𝑙𝑚

𝑠𝑙+2
𝛾 d𝑠𝛾

= − 4π
2𝑙 + 1

𝑟𝑙𝛾
𝑅2𝑙+1

𝛾
∫

𝑅𝛾

0
𝑠𝑙+2
𝛾 [𝛁𝜌(0)𝛾 (𝑠𝛾)]𝑙𝑚

d𝑠𝛾 (7.61d)

+ 4π
2𝑙 + 1

1
𝑟𝑙+1
𝛾

∫
𝑟𝛾

0
𝑠𝑙+2
𝛾 [𝛁𝜌(0)𝛾 (𝑠𝛾)]𝑙𝑚

d𝑠𝛾

+ 4π
2𝑙 + 1

𝑟𝑙𝛾(∫
𝑅𝛾

0

1
𝑠𝑙−1
𝛾

[𝛁𝜌(0)𝛾 (𝑠𝛾)]𝑙𝑚
d𝑠𝛾 −∫

𝑟𝛾

0

1
𝑠𝑙−1
𝛾

[𝛁𝜌(0)𝛾 (𝑠𝛾)]𝑙𝑚
)d𝑠𝛾 .

Ultimately,Final form the realized MT Coulomb-potential gradient (𝑹′ = 𝟎) can be presented

[𝛁𝑉 (0)
Cou

(𝒓𝜈�̊� + 𝝉𝛾)]𝑙𝑚
(7.62)

= (
𝑟𝜈�̊�

𝑅�̊�
)
𝑙

∑
𝑮|𝑮≠𝟎

ei𝑮⋅𝝉𝛾[𝛁𝑉 (0)
Cou

](𝑮)4π∑
𝑙𝑚

i𝑙Y∗
𝑙𝑚( ̂𝑮)j𝑙(|𝑮|𝑅�̊�)

+ 𝑍�̊�δ𝛾𝛼
4π
3

1
𝑟2𝜈�̊�

⎛⎜
⎝
1 −(

𝑟𝜈�̊�

𝑅�̊�
)
3
⎞⎟
⎠

1

∑
𝑚=−1

3
4π

∑
𝑖

̂𝒆𝑖𝜁𝑖,𝑚

− 4π
2𝑙 + 1

𝑟𝑙𝜈�̊�

𝑅2𝑙+1
�̊�

∫
𝑅�̊�

0
𝑠𝑙+2
𝜈�̊� [𝛁𝜌(0)𝛾 (𝑠𝜈�̊�)]

𝑙𝑚
d𝑠𝜈�̊�

+ 4π
2𝑙 + 1

1
𝑟𝑙+1
𝜈�̊�

∫
𝑟𝜈�̊�

0
𝑠𝑙+2
𝜈�̊� [𝛁𝜌(0)𝛾 (𝑠𝜈�̊�)]

𝑙𝑚
d𝑠𝜈�̊�

+ 4π
2𝑙 + 1

𝑟𝑙𝜈�̊�
⎛⎜
⎝
∫

𝑅�̊�

0

1
𝑠𝑙−1
𝜈�̊�

[𝛁𝜌(0)𝛾 (𝑠𝜈�̊�)]
𝑙𝑚

d𝑠𝜈�̊� −∫
𝑟𝜈�̊�

0

1
𝑠𝑙−1
𝜈�̊�

[𝛁𝜌(0)𝛾 (𝑠𝜈�̊�)]
𝑙𝑚

d𝑠𝜈�̊�
⎞⎟
⎠

.

InAlgorithm summary, the procedure for calculating the gradient of the unperturbed Coulomb

potential in aWeinert [64, 88] fashion is described in algorithm 5. Utilizing conditional clauses,

it is feasible to select whether only the Hartree-, only the external-, or the complete Coulomb-

potential gradient is evaluated. Furthermore, it is possible to deactivate the volume integral

terms in equation (7.61), the motivation of which shall be pointed out in the subsequent

sections.
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Algorithm 5: Calculating𝛁𝑉 (0)IR
⊆C (𝒓) (7.59b) and𝛁𝑉 (0)𝛾

⊆C (𝒓) (7.62).

1 if Hartree then
2 qlmGrVhar0Vol ← Eval. Eq. (6.34) ;

3 qlmGrVhar0Surf ← Eval. Eq. (7.53) ;

4 qlmGrVc0 ← Eval. Eq. (6.39) ;

5 end if

6 if extern then
7 qlmGrVext0 ← Eval. Eq. (7.56b) ;

8 qlmGrVc0 ← qlmGrVc0 + qlmGrVext0 only for l = 1;
9 end if

10 nPsGrVc ← Eval. Eq. (7.57) using qlmGrVc0;
11 grVIR ← Eval. Eq. (7.59b) using nPsGrVc;
12 grVMT ← Eval. Eq. (7.62) second line using grVIR;
13 if fullMT then
14 if Hartree then
15 grVMT ← (7.62) except for first three lines;

16 end if

17 if extern then
18 grVMT ← only third line of (7.62) ;

19 end if

20 end if

First-Order Variation of the Interstitial Part

Analogously Pseudo-densityto the gradient of the unperturbed Coulomb potential, the pseudo-density Fourier

coefficients for the first-order variation of the Coulomb potential read

𝒏ps,δ𝜌
Cou

(𝑮; 𝒒+𝛼) = 𝝆(1)
IR (𝑮, 𝒒+𝛼) + 4π

𝛺
∑
𝛾

∑
𝑙𝑚

(−i)𝑙(2𝑁opt

�̊� + 3)!!

(2𝑙 + 1)!!𝑅𝑙
�̊�

j𝑙+𝑁+1(|𝑮 + 𝒒|𝑅�̊�)

(|𝑮 + 𝒒|𝑅�̊�)
𝑁+1 (7.63)

× e−i(𝑮+𝒒)⋅𝝉𝛾Y𝑙𝑚(𝑮+ 𝒒
⋀

)([𝒒𝛾𝟎
δ𝜌,tot(𝖖

+𝛼)]
𝑙𝑚

+ δ𝑙1 ∑
𝛼

𝖖𝛾𝟎
𝑙𝑚(𝒒+𝛼)) .

In this equation, the multipole moments of the external potential gradient (7.56b) are uti-

lized. This is legitimate, because the dependency of equation (6.26) on 𝒒 is only given
by exp(±i𝒒 ⋅ 𝑹), and DFPT enables us to restrict ourselves to𝑹 = 𝟎. Moreover, the 𝒒+ part of

the first-order Hartree-potential multipole moments (6.33) is employed. So, Final formthe IR first-order

Coulomb-potential variation reads

𝑽 (1)
Cou

(𝒓; 𝒒+𝛼) = ∑
𝑮|𝑮+𝒒≠𝟎

4π
𝒏ps,δ𝜌
Cou

(𝑮; 𝒒+𝛼)
|𝑮 + 𝒒|2

ei(𝑮+𝒒)⋅𝒓 (7.64a)

≕ ∑
𝑮|𝑮+𝒒≠𝟎

𝑽 (1)
Cou

(𝑮; 𝒒+𝛼)ei(𝑮+𝒒)⋅𝒓 . (7.64b)
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InCase 𝒒 = 𝟎 section 7.2.3, the behavior of the first-order density variation for the Goldstone modes

is pointed out. For this special modes, it turns into the negative gradient of the unperturbed

charge density. Given polyatomic systems, in particular a sum over all displaced atoms 𝛼
must be considered. Making a mental note about this, and comparing the pseudo-density

Fourier coefficients (7.57) with (7.63), a similar relation for the IR linear potential variation is

deducible: Equation (7.64b) yields the negative equivalent of (7.59b), provided it is summed

over the displaced atoms 𝛼 and 𝒒 = 𝟎.

First-Order Variation of the Muffin-tin Part

FollowingOriginal form a procedure similar to the gradient of the unperturbed Coulomb potential, the MT

expansion coefficients of the first-order Coulomb-potential variation read

[𝑽 (1)
Cou

(𝒓𝛾 + 𝝉𝛾; 𝒒+𝛼)]
𝑙𝑚

(7.65)

= (
𝑟𝛾
𝑅𝛾

)
𝑙

∑
𝑮|𝑮+𝒒≠𝟎

ei(𝑮+𝒒)⋅𝝉𝛾𝑽 (1)
Cou

(𝑮; 𝒒+𝛼)4π∑
𝑙𝑚

i𝑙Y∗
𝑙𝑚(𝑮+ 𝒒
⋀

)j𝑙(|𝑮 + 𝒒|𝑅𝛾)

− 𝑍𝛼δ𝛾𝛼
4π
3

1
𝑟2𝛼

⎛⎜
⎝
1 −(

𝑟𝛼
𝑅𝛼

)
3
⎞⎟
⎠

1

∑
𝑚=−1

3
4π

∑
𝑖

̂𝒆𝑖𝜁𝑖,𝑚

+ 4π
2𝑙 + 1

∫
𝑅𝛾

0
d𝑠𝛾 𝑠2𝛾[𝝆

(1)
𝛾,full(𝒓𝛾; 𝒒

±𝛼)]
𝑙𝑚

𝑟𝑙<
𝑟𝑙+1
>

⎛⎜
⎝
1 −(

𝑟>
𝑅𝛾

)
2𝑙+1

⎞⎟
⎠

.

Within this expression, the Fourier coefficients from equation (7.64b) are used. In the third

line of equation (7.65), the volume term in equation (6.31) is copied, and the fourth line is

equal to the volume integral in equation (6.43).

TheCase 𝒒 = 𝟎 discussion about the Goldstone-condition consequences for the IR first-order

Coulomb potential variation can be continued. Applying it to equation (7.65), it can likewise

be stated that the MT first-order Coulomb variation becomes the negative gradient of the

unperturbed Coulomb potential. For the second line of (7.65), this follows from the aforesaid

IR discussion. When moreover comparing the third line of equation (7.65) with the third

line of equation (7.60), the desired minus sign manifests immediately. Finally, the fourth

line of equation (7.65) becomes minus the last line of (7.60), remembering the discussion

of section 7.2.3. Each of the statements in this paragraph presumes that a sum over 𝛼 is
simultaneously performed for polyatomic systems.

Again,Algorithm due to
recycling

the last line in equation (7.65) must be reformulated so that

[𝑽 (1)
Cou

(𝒓𝜈�̊� + 𝝉𝛾; 𝒒+𝛼)]
𝑙𝑚

(7.66)

= (
𝑟𝜈�̊�

𝑅�̊�
)
𝑙

∑
𝑮|𝑮+𝒒≠𝟎

ei(𝑮+𝒒)⋅𝝉𝛾𝑽 (1)
Cou

(𝑮; 𝒒+𝛼)4π∑
𝑙𝑚

i𝑙Y∗
𝑙𝑚(𝑮+ 𝒒
⋀

)j𝑙(|𝑮 + 𝒒|𝑅�̊�)

− 𝑍�̊�δ𝛾𝛼
4π
3

1
𝑟2𝜈�̊�

⎛⎜
⎝
1 −(

𝑟𝜈�̊�

𝑅�̊�
)
3
⎞⎟
⎠

1

∑
𝑚=−1

3
4π

∑
𝑖

̂𝒆𝑖𝜁𝑖𝑚

− 4π
2𝑙 + 1

𝑟𝑙𝜈�̊�

𝑅2𝑙+1
�̊�

∫
𝑅�̊�

0
𝑠𝑙+2
𝜈�̊� [𝝆(1)

𝛾,full(𝑠𝜈�̊�; 𝒒±𝛼)]
𝑙𝑚

d𝑠𝜈�̊�
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+ 4π
2𝑙 + 1

1
𝑟𝑙+1
𝜈�̊�

∫
𝑟𝜈�̊�

0
𝑠𝑙+2
𝜈�̊� [𝝆(1)

𝛾,full(𝑠𝜈�̊�; 𝒒±𝛼)]
𝑙𝑚

d𝑠𝜈�̊�

+ 4π
2𝑙 + 1

𝑟𝑙𝜈�̊�
⎛⎜
⎝
∫

𝑅�̊�

0

1
𝑠𝑙−1
𝜈�̊�

[𝝆(1)
𝛾,full(𝑠𝜈�̊�; 𝒒±𝛼)]

𝑙𝑚
d𝑠𝜈�̊� −∫

𝑟𝜈�̊�

0

1
𝑠𝑙−1
𝜈�̊�

[𝝆(1)
𝛾,full(𝑠𝜈�̊�; 𝒒±𝛼)]

𝑙𝑚
d𝑠𝜈�̊�

⎞⎟
⎠

implies and represents the implemented version in juPhon. Deducing this expression is
analogous to equation (7.61), since only the gradient of the unperturbed density must be

substituted by the first-order variation of the density. The procedure for the complete first-

order Coulomb potential is sketched in algorithm 6, in which likewise the methods for either

only calculating the first-order Hartree or external potential inhere and the volume terms can

be deactivated.

Algorithm 6: Calculating 𝑽 (1)IR
⊆Cou (𝒓) (7.64b) and 𝑽 (1)𝛾

⊆Cou(𝒓) (7.66)

1 if Hartree then
2 qlmVhar1Vol ← Eval. Eq. (6.33);

3 qlmVhar1Surf ← Eval. Eq. (7.53);

4 qlmVc1 ← Eval. Eq. (6.37);

5 end if

6 if extern then
7 qlmVext1 ← Eval. Eq. (7.56b) ;

8 qlmVc1 ← qlmVc1 + qlmVext1 only for l = 1;
9 end if

10 nPsVc1 ← Eval. Eq. (7.63) using qlmVc1;
11 v1IR ← Eval. Eq. (7.64b) using nPsVc1;
12 v1MT ← Eval. Eq. (7.66) second line using v1IR;
13 if fullMT then
14 if Hartree then
15 v1MT ← (7.66) except for first three lines;

16 end if

17 if extern then
18 v1MT ← only third line of (7.66);

19 end if

20 end if

7.3.2 Exchange-Correlation Potential

Determining Conceptthe linear xc-potential variations differs from the Weinert-like method, em-

ployed for the linear Coulomb-potential variations. Basically, the Fourier coefficients of

equations (6.47) and (6.48) must be determined in the IR. Within the MT spheres, it is im-

perative to find the spherical-harmonic expansion coefficients of equations (6.49) and (6.50).

Each equation contains a functional derivative of the unperturbed xc-potential with respect to

the unperturbed density.
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InX𝛼 xc-potential order to reduce complexity in the first implementation we decided to resort to the

X𝛼 xc-potential [119, 127, 251]

𝑉 (0)
xc [𝜌(𝒓)] = −1

2
2𝛼( 3

2π
)

2
3(4π

3
)

1
3(𝜌(0)(𝒓))

1
3 . (7.67)

In this definition, the factor 1/2 is due to the conversion from Rydberg into Hartree energy
units, and the factor 2 accounts for the spin degeneracy. The advantage of the X𝛼 potential is
that the functional derivative with respect to 𝜌(0) is uncomplicated relative to other instances
in the plethora of xc potentials (cf. section 2.2.2, section 2.3 and Klüppelberg [88])

δ𝑉 (0)
xc [𝜌(𝒓)]
δ𝜌(𝒓)

≔ 𝔣(0)xc [𝜌](𝒓) = −1
2
2𝛼( 3

2π
)

2
3(4π

3
)

1
3 δ
δ𝜌(𝒓)

(𝜌(0)(𝒓))
1
3 (7.68a)

= −( 1
9π

)
1
3𝛼(𝜌(0)(𝑟𝜈))

− 2
3 . (7.68b)

However,Future extension
with libxc

I prepared the current implementation for a straight-forward extension with

any further xc types. This is realized by separating the functional derivative of the xc potential

from generating the complete linear xc-potential variation. In this regard, integrating the

well-established library libxc [288] suggests itself, because it allows for accessing a wide
selection of various xc-potential kernels and their functional derivatives [251].

TheRecycling algorithms of the linear xc-potential variations are based on the FLEUR routines
Visxc, Vmtxc, Vxcall, and their dependencies. Apart from that, the concepts of these routines
are already described by Singh and Nordström [68] as well as Blügel and Bihlmayer [71].

They shall be applied to the linear xc-potential variations.

Gradient of the Unperturbed Interstitial Part

ByFinal Form defining 𝑮″ ≔ 𝑮+𝑮′ ⇔ 𝑮′ = 𝑮″ −𝑮 ⇔ 𝑮 = 𝑮″ −𝑮′, equation (6.45) becomes

𝛁𝑉 (0)IR
xc (𝒓) = ∑

𝑮″|𝑮″−𝑮
(∑

𝑮
[𝛁𝜌(0)IR ](𝑮)[𝔣(0)xc [𝜌]](𝑮″ −𝑮))ei𝑮″⋅𝒓 . (7.69a)

The shift in the sum over𝑮″ can be omitted due to the underlying periodicity in the reciprocal

space. While furthermore the Fourier coefficients of the unperturbed density gradient are

already given in equation (7.17), the plane-wave expansion coefficients of the functional

derivative are unknown. But according to equation (7.68b), the real-space representation of

the latter is not. However, it incorporates the real-space unperturbed charge density in the

IR, of which only the Fourier coefficients (7.5a) are at hand after the juPhon initialization.
Essentially, this stimulates to exploit the convolution theorem including several FFTs in order

to calculate

𝛁𝑉 (0)IR
xc (𝒓; 𝒒+𝛼) = ∑

𝑮″

[(𝛁𝜌(0)IR ) ∗ 𝔣(0)xc [𝜌]](𝑮″)ei𝑮″⋅𝒓 (7.69b)

≕ ∑
𝑮″

[𝛁𝑉 (0),IR
xc ](𝑮″)ei𝑮″⋅𝒓 . (7.69c)

TheAliasing implemented procedure for this task is sketched in algorithm 7. First a linear FFT
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Algorithm 7: Calculating the convolution of𝛁𝑉 (0),IR
xc (𝒓; 𝒒+𝛼) (7.69)

1 nfft[1] = 3 × k1d, nfft[2] = 3 × k2d, nfft[3] = 3 × k3d ;
2 forall |𝑮| < Gmax do
3 if 𝑮𝑖 >= 0 then
4 Gpos[𝑖] = 𝐺𝑖 ;

5 else

6 Gpos[𝑖] = 𝐺𝑖 + nfft[𝑖] ;
7 end if

8 end forall

9 mapFFTmesh[G] = Gpos[1]+ Gpos[2]× nfft[1]+ Gpos[3]× nfft[1]× nfft[2] ;
10 Setup grRho0IR on FFT mesh grRho0IRFFT and kernelDerivIR on FFT mesh

kernelDerivFFT using mapFFTmesh;
11 Perform FFT on grRho0IRFFT and kernelDerivFFT using Cfft from FLEUR ;
12 grVxc0IR ← Multiply grRho0IRFFT and kernelDerivFFT;
13 Perform FFT on grVxc0IR using Cfft from FLEUR ;
14 /* Next line performs cut-off to Gmax */
15 Back-Transform from Fourier mesh grVxc0IR to grVxc0IR using mapFFTmesh;

mesh with 27 × k1d× k2d× k3d points is created. The variables k1d, k2d, and k3d define a
box with the volume

𝛺FFT = (k1d− (−k1d)) × (k2d− (−k2d)) × (k3d− (−k3d)) , (7.70)

which must surround the ball |𝑮| < 𝐺max in the middle of this box. Thus, 𝐺𝑖 ∈ [−k𝑖d, k𝑖d]
holds, so a mesh with 8×k1d×k2d×k3d points naively suffices. But in practice, aliasing errors
must be faced [289], which corrupt the FFTs. These drawbacks originate from overlapping

effects caused by FFT meshes which are not generously dimensioned [127, 278]. Particularly,

this subtlety must be considered for plane-wave expansion coefficients [127]. In contrast, the

star construction averages such errors out, because plane-wave coefficients with equivalent

absolute values of their labelling 𝑮 are summarized [127]. As a long-term solution in FLEUR,
a factor of 3 precedes every k𝑖d and implies the aforementioned size of the linear FFT mesh.

However, Mesh sizewe found that the proposed size of the FLEUR mesh is still not sufficient for
a juPhon calculation [127]. The most organic way to overcome this problem is to already
increase the 𝐺max proposed by the FLEUR input generator. In order to find a minimal 𝐺max for
the juPhon calculation, we designed a benchmark test [127, 251]. This test compares the
juPhon convolution of the IR unperturbed effective potential and the IR Heaviside function
with its equivalent outcome of FLEUR (see appendix A).

The Algorithmconvolution described in algorithm 7 is straight-forward, apart from amapping array

constructed from line 2 to 9. This array communicates between the plane-wave coefficients

and the aforesaid FFT mesh. So, both the unperturbed IR density and its gradient are

determined on the aforesaid FFT mesh, before the FFT is applied to obtain their real-space

representation. Then, the product in equation (6.45) can trivally be formed in real-space,

based on equation (7.68b). It is attributed to a FFT mesh, which is back-transformed to

reciprocal space. Reversely utilizing the aforementioned mapping array results in the desired
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Fourier coefficients of the xc-potential gradient (7.69c). However, it must be clear that this

back-mapping restricts the accuracy of the xc-potential gradient to the cutoff 𝑮max. This

cutoff is applied, although the product of two IR quantities actually must be expanded on

condition that |𝑮| < 2𝐺max. Finally, a factor conform to the size of the FFT mesh accumulates
from the convolution procedure. At the end of the numerical convolution, the coefficients

must be divided by this factor, because FFTs should not change the physics.

First-Order Variation of the Interstitial Part

TheFinal form algorithm for the IR first-order variation of the xc potential is similar to that of the

unperturbed xc-potential gradient. Instead of the unperturbed density gradient however, the

first-order variation of the density for a finite 𝒒 is employed. So, the 𝒒+ part of equation (6.48)

can analogously be transformed into

𝑽 (1)
xc (𝒓; 𝒒+𝛼) = ∑

𝑮″

[𝝆(1)
IR ∗ 𝔣(0)xc [𝜌]](𝑮″; 𝒒+𝛼)ei(𝑮

″+𝒒)⋅𝒓 (7.70a)

≕ ∑
𝑮″

𝑽 (1)
xc (𝑮″; 𝒒+𝛼)ei(𝑮

″+𝒒)⋅𝒓 . (7.70b)

InAlgorithm comparison to equation (7.69), a phase factor exp(i𝒒 ⋅ 𝒓) inheres to account for the
Bloch character 𝒒 of the resulting first-order xc-potential variation. But, this phase can be
factored out so that it is irrelevant in the convolution [127]. Strictly-speaking and as already

discussed in section 6.2.2, the Bloch character 𝒒 entails a shift of the ball |𝑮 + 𝒒| < 𝐺max that
defines the set of the utilized reciprocal lattice vectors. Due to this effect, the mapping array

for distributing the Fourier coefficients of the first-order density variation on the FFT mesh

differs from that of the unperturbed charge density. In addition, the same new mapping array

must be used to collect the Fourier coefficients of the first-order xc-potential variation from

the Fourier mesh again. Since exp(i𝒒 ⋅ 𝒓) can be factored out and despite the special mapping
array, the numerical results showed that the FFT mesh of the unperturbed xc-potential gradient

is sufficient. Moreover, if a shifted set of reciprocal lattice vectors is employed, we estimate

that 2∣𝑮𝑖 + 𝒒∣ ≪ 3× k𝑖d must hold to avoid aliasing effects. It must be clear that ignoring the
shift of the reciprocal lattice vectors (for a large enough 𝐺max) strictly-speaking also neglects
the Bloch character of the IR xc-potential to a certain extent. Furthermore, the aforementioned

special mapping arrays become obsolete. Finally, it must be considered that the real-space

representation of 𝝆(1)
IR (𝑮; 𝒒+𝛼) can possibly be complex-valued. But this is legitimate, because

it forms only a part of the complete first-order density variation (6.20), which must be real as

an observable.

Gradient of the Unperturbed Muffin-tin Part

WithinChallenge the MT spheres, the left-hand spherical-harmonic coefficients of

𝛁𝑉 (0)𝛾
xc (𝒓) = ∑

𝑙′𝑚′

[𝛁𝜌(0)𝛾 (𝑟)]
𝑙′𝑚′

Y𝑙′𝑚′( ̂𝒓) ∑
𝑙″𝑚″

[𝔣(0)xc [𝜌](𝑟)]
𝑙″𝑚″

Y𝑙″𝑚″( ̂𝒓) (7.71a)
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must be found (cf. equations (6.49) and (7.68b)). Essentially, this can be done by projecting

both sides onto an arbitrary lattice harmonic so that

[𝛁𝑉 (0)𝛾
xc (𝑟𝜈�̊�)]

𝑙𝑚
(7.71b)

= ∮
∂𝛾

Y∗
𝑙𝑚( ̂𝒓𝛾)∑

𝑙′𝑚′

[𝛁𝜌(0)𝛾 (𝑟𝜈�̊�)]
𝑙′𝑚′

Y𝑙′𝑚′( ̂𝒓𝛾) ∑
𝑙″𝑚″

[𝔣(0)xc [𝜌](𝑟𝜈�̊�)]
𝑙″𝑚″

Y𝑙″𝑚″( ̂𝒓𝛾) d𝛺

results. But its computation features a poor performance, since a surface integral such as in

equation (7.54) must be evaluated for each mesh point 𝜈.

An Final form and
algorithm

approximation to this problem consists in the Gauss–Legendre integration [71]

[𝛁𝑉 (0)𝛾
xc (𝑟𝜈�̊�)]

𝑙𝑚
≈ ∑

𝝃g𝜇

𝑤(𝝃g𝜇)Y∗
𝑙𝑚( ̂𝝃g𝜇)∑

𝑙′𝑚′

[𝛁𝜌(0)𝛾 (𝜉g𝜇; 𝑟𝜈�̊�)]
𝑙′𝑚′

Y𝑙′𝑚′( ̂𝝃g𝜇) (7.71c)

× ∑
𝑙″𝑚″

[𝔣(0)xc [𝜌](𝜉
g
𝜇; 𝑟𝜈�̊�)]

𝑙″𝑚″
Y𝑙″𝑚″( ̂𝝃g𝜇)

≔ ∑
𝝃g𝜇

Y∗
𝑙𝑚( ̂𝝃g𝜇)[𝛁𝑉 (0)𝛾

xc (𝜉g𝜇; 𝑟𝜈�̊�)]
𝑙𝑚

. (7.71d)

In this method, the surface integral in equation (7.71b) is reformulated to a weighted sum

over all points of so-called real-space Gauss meshes. A Gauss mesh 𝜉g𝜇 with according Gauss
weights 𝑤(𝜉g𝜇) is generated on the surface of a unit ball by the recycled FLEUR routine Gaussp.
With the set of ̂𝝃g𝜇 pointing to the respective Gauss mesh points, spherical harmonics up to
a cutoff 𝑙max,�̊� can be set up, using the FLEUR routine Ylm4. Although the gradient of the
unperturbed density must actually be expanded until 𝑙max,�̊� + 1, we again decided to choose
the cutoff 𝑙max,�̊� on condition that it is converged [127]. By expanding both the unperturbed
density and its gradient on the Gauss mesh, their angular-distributed real-space representation

on the sphere surface results. The mesh of the latter is then multiplied by equation (7.68b),

employing the mesh of the former. After evaluating all sums in equation (7.71d), the MT

coefficients of the first-order xc-potential variation are known for a specific MT mesh point 𝑟𝜈�̊�.

Hence, the aforementioned procedure must be repeated for each shell of the MT sphere,

according to the logarithmic MT mesh.

First-Order Variation of the Muffin-tin Part

For Final form and
algorithm

obtaining the spherical-harmonic coefficients of the first-order xc-potential variation, the

gradient of the charge density must be replaced by the first-order density variation, so that

analogously

𝑽 (1)𝛾
xc (𝒓; 𝒒𝛼) = ∑

𝑙′𝑚′

[𝝆(1)
𝛾 (𝑟; 𝒒𝛼)]

𝑙′𝑚′
Y𝑙′𝑚′( ̂𝒓) ∑

𝑙″𝑚″

[𝔣(0)xc [𝜌](𝑟)]
𝑙″𝑚″

Y𝑙″𝑚″( ̂𝒓) (7.71e)

can be deduced from equations (6.50) and (7.68b). Applying again the Gauss quadrature,

[𝑽 (1)𝛾
xc (𝑟𝜈�̊�; 𝒒𝛼)]

𝑙𝑚
(7.72a)

= ∮
∂𝛾

d𝛺Y∗
𝑙𝑚( ̂𝒓𝛾)∑

𝑙′𝑚′

[𝝆(1)
𝛾 (𝑟𝜈�̊�; 𝒒𝛼)]

𝑙′𝑚′
Y𝑙′𝑚′( ̂𝒓𝛾) ∑

𝑙″𝑚″

[𝔣(0)xc [𝜌](𝑟𝜈�̊�)]
𝑙″𝑚″

Y𝑙″𝑚″( ̂𝒓𝛾)

7.3 Linear Potential Variations
169



≈ ∑
𝝃g𝜇

Y∗
𝑙𝑚( ̂𝝃g𝜇)𝑤(𝜉g𝜇)∑

𝑙′𝑚′

[𝝆(1)
𝛾 (𝜉g𝜇; 𝑟𝜈�̊�; 𝒒𝛼)]

𝑙′𝑚′
Y𝑙′𝑚′( ̂𝝃g𝜇) (7.72b)

× ∑
𝑙″𝑚″

[𝔣(0)xc [𝜌](𝜉
g
𝜇; 𝑟𝜈�̊�)]

𝑙″𝑚″
Y𝑙″𝑚″( ̂𝝃g𝜇)

= ∑
𝝃g𝜇

Y∗
𝑙𝑚( ̂𝝃g𝜇)[𝑽

(1)𝛾
xc (𝑟𝜈�̊�; 𝜉g𝜇; 𝒒𝛼)]

𝑙𝑚
(7.72c)

finally results for the implementation.

7.3.3 Visualization

TheFormalism real-space visualization of the first-order effective-potential variations or its constituents

(all combinations summarized by the index “⊆ eff”) requires the approach which is already
discussed in section 7.2.4. All relevant equations from the aforesaid section can simply be

translated into expressions which are required here. So in the IR, the evaluation must live up

to

𝑉 (1)IR
⊆eff (𝒓𝜈; 𝒒𝛼) = ∑

𝛼
𝑸⊤

𝛼 ⋅ 𝑽 (1)IR
⊆eff (𝒓𝜈; 𝒒+𝛼) +∑

𝛼
𝑸†

𝛼 ⋅ 𝑽 (1)IR
⊆eff (𝒓𝜈; 𝒒−𝛼) (7.73a)

= 2Re(∑
𝛼𝑮

(𝑸⊤
𝛼 ⋅ 𝑽 (1)IR

⊆eff (𝑮, 𝒒+𝛼))ei(𝑮+𝒒)⋅𝒓𝜈) (7.73b)

and in the MT spheres to

𝑉 (1)𝛾
⊆eff (𝒓𝜈; 𝒒𝛼) (7.74a)

= ∑
𝛼

𝑸⊤
𝛼 ⋅ 𝑽 (1)𝛾

⊆eff (𝒓𝜈; 𝒒
+𝛼) +∑

𝛼
𝑸†

𝛼 ⋅ 𝑽 (1)𝛾
⊆eff (𝒓𝜈; 𝒒

−𝛼)

= ∑
𝑙𝑚

∑
𝛼

𝑸⊤
𝛼 ⋅ ([𝑽 (1)𝛾

⊆eff (𝒓𝜈; 𝒒
+𝛼)]

𝑙𝑚
+ (−1)−𝑚[𝑽 ∗(1)𝛾

⊆eff (𝒓𝜈; 𝒒+𝛼)]
𝑙−𝑚

)Y𝑙𝑚( ̂𝒓𝜈) . (7.74b)

In contrast, the gradient of the effective potential (or parts of it) is simpler to construct.

Basically, it is equal to the FLAPW expansion of the unperturbed quantities so that

𝛁𝑉 (0)IR
⊆eff (𝒓𝜈) = ∑

𝑮
(𝑸⊤ ⋅ 𝛁𝑉 (0)IR

⊆eff (𝑮))ei𝑮⋅𝒓𝜈 (7.75)

and

𝛁𝑉 (0)𝛾
⊆eff (𝒓𝜈) = ∑

𝑙𝑚
(𝑸⊤ ⋅ [𝛁𝑉 (0)𝛾

⊆eff (𝒓𝜈)]𝑙𝑚
)Y𝑙𝑚( ̂𝒓𝜈) (7.76)

hold.

ThisPlot types and
shown systems

section contains two types of plots for fccNe and fccAl, respectively. The first-order
variations of the effective potential or its constituents for 𝒒 = (0.25, 0.25, 0)⊤𝑎a−1

0 are plotted

in 2D, parallel to the 𝑥-𝑧 area. In a second group of plots, the gradients of the unperturbed
aforementioned potentials are plotted as 3D isosurfaces. The units are composed of the lattice

constant 𝑎, the Bohr radius a0, the Hartree energy Eh, and the elementary charge e. In all
plots, the phonon displaces the atoms in 𝑧-direction.
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0.0000
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14.500 ⋅ 10−1
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29.000 ⋅ 10−1

𝑧

𝑥

⊗

Figure 7.10: 2D-slices of first-order effective (upper left), xc (upper right), Hartree (lower left),

and external (lower right) potential variations for fcc Ne and 𝒒 = (1/4, 1/4, 0)⊤
(internal units). The features of the upper left and right plots show similarities,

except for the central region which stems from the two lower plots. Due to the

opposite sign the contributions shown in the lower plots partially cancel each other.

The first-order potentials are in the unit Eh e
−1 a−1

0 . The input-generator input file is

given in appendix B.
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Figure 7.10Ne 2D contains the first-order variations of the effective potential and its con-

stituents for fcc Ne. Comparing the effective with the xc potential variation, it can be seen
that the shape of the colored areas in the four corners is similar. However, the central region

of the former cannot be found in the latter. It is essentially shaped by the sum of the Hartree

and the external potentials in the lower plots. Their absolute values look equal at the order of

magnitude 100, but the sign of their values is opposite to each other, leading to an annihilation
at the aforesaid order of magnitude. The remainder of this sum can in particular be identified

in the center of the upper left plot in figure 7.10.

−15.00 ⋅ 10−2

−11.25 ⋅ 10−2

−7.50 ⋅ 10−2

−3.75 ⋅ 10−2

0.0000
3.75 ⋅ 10−2

7.50 ⋅ 10−2

11.25 ⋅ 10−2

15.00 ⋅ 10−2

𝑧

𝑥

⊗

−4.0000
−3.0000
−2.0000

−1.0000
0.0000
1.0000

2.0000
3.0000
4.0000

𝑧

𝑥

⊗

Figure 7.11: 2D-slices of first-order effective (upper left), xc (upper right), Hartree (lower left),

and external (lower right) potential variations for fcc Al and 𝒒 = (1/4, 1/4, 0)⊤. The
units and the location of the input-generator input file are the same as in figure 7.10.

Likewise, the Hartree and external potential partially cancel each other. However,

relative to fcc Ne the features of the xc potential in the MT spheres at the corners as
well as of the effective potential in the central MT sphere are different.

ForAl 2D fcc Al, the same first-order potential variations can be found in figure 7.11. While
the Hartree and the external potentials cancel each other again, as they have the same order

of magnitude but an opposite sign, the xc potential differs slightly relative to fcc Ne. I think,
compared to neon, this leads to different features for the central atom in the effective potential.

IsosurfacesNe 3D of the effective-potential gradient and its constituents for fcc Ne are plotted
in figure 7.12. The isosurfaces of the external- and Hartree-potential gradients have the
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𝑥

𝑧

⊗

Figure 7.12: 3D isosurfaces of unperturbed effective- (upper left), exchange-correlation- (upper

right), Hartree- (lower left), and external-potential (lower right) gradients for fcc

Ne. All isosurfaces are shown at 4 ⋅ 10−2 Eh e
−1 a−1

0 . Furthermore, the input files

are provided in appendix B. It can be seen that the features of the effective and

the xc potential look almost similar. Moreover, the Hartree potential features a

different sign than the external potential so that they partially annihilate each other,

substantiating the use of the Coulomb potential gradient. As a consequence of the

annihilation, there is a close resemblance between the effective and the xc-potential

gradients.
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𝑥

𝑧

⊗

Figure 7.13: 3D isosurfaces of unperturbed effective- (upper left), exchange-correlation- (upper

right), Hartree- (lower left), and external-potential (lower right) gradients for fcc

Al. All isosurfaces are shown at 8 ⋅ 10−2 Eh e
−1 a−1

0 . The units and the reference

to the input-generator input file have already be defined in figure 7.12. Relative

to Ne the shape of the effective potential gradient for fcc Al is similar but only at
a larger value. In particular, the shapes and values of the xc-potential gradient

are significantly different, whereas the Hartree and external potential gradients

appear practically equal compared to figure 7.12. Nevertheless, the Hartree and the

external isosurfaces are shown at a larger value than for neon.
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same shape but an opposite sign so they partially cancel each other, which is why the xc

potential essentially governs the shape of the effective potential. It must be emphasized,

that I manipulated all instances of the largest value in the data files of the effective- and the

external-potential gradients for fcc Ne and Al so that they feature a similar order of magnitude
than the instances of the second-largest value [127]. This does not have an effect on the

shape of the isosurfaces but allows for a correct coloring (fixing a bug of XcrySDen) [127].

The Al 3Dsame isosurfaces for fcc Al are depicted in figure 7.13. Relative to fcc Ne, the
isosurfaces of the xc-potential gradients have a different more localized shape. However, the

isosurfaces are shown at larger value relative to neon in order to reproduce the shapes of the

remaining neon isosurfaces.

7.3.4 Tests

Analogously Test coverageto section 7.2.4, again there are more tests that check the case of a vanishing

than of a finite 𝒒. However, the checks for the Goldstone modes form already an essential
part of what can be tested. The differences emerging as far as a finite 𝒒 is concerned can be
handled with fewer tests. In addition, it is simpler to find tests for 𝒒 = 𝟎.

First Overviewin test 15, the gradient of the effective potential is cross-checked with the input

from FLEUR. Based on this, test 19 compares the first-order effective potential with the gradient
of the unperturbed effective potential, given the boundary case 𝒒 = 𝟎. The contribution of the
former, which stems from a finite 𝒒, is then checked in test 20. Finally, the continuity of all
linear potential variations is monitored within test 17. So, the aforementioned tests basically

cover the complete linear potential variations, whereas the remaining tests are devoted to

check intermediate steps.

Test 15: Alternative for the Gradient of the Unperturbed Coulomb Potential

Basically, ConceptjuPhon provides two methods to calculate the gradient of the effective potential.
The first one is being employed in the juPhon production. It is the Weinert-like method
elaborated in section 7.3.1, and the calculation of the xc-potential gradient as in section 7.3.2.

But, it is also possible to apply the numerical gradient to equations (7.5b) and (7.6d), respec-

tively. The procedure to be followed is very similar to that introduced for the unperturbed

charge density (cf. section 7.2.1). Again, for the MT spheres it is beneficial to employ the

original MT potential 𝑉 (0)�̊�
eff, inp

(𝑟𝜈�̊�) on the right-hand side of equation (7.3) instead of that
from equation (7.6d). Hence in the IR,

𝛁𝑉 (0)
eff

(𝒓) = i𝑮𝛁𝑉 (0)
eff

(𝑮)ei𝑮⋅𝒓 (7.77)

holds and the MT sphere gradient reads

𝛁𝑉 (0)𝛾
Cou

(𝒓𝜈�̊�) = ∑
𝑙𝑚

[𝛁𝑉 (0)𝛾
Cou

(𝑟𝜈�̊�)]
𝑙𝑚

Y𝑙𝑚(𝒓𝛾) (7.78a)

≔ 𝑇
1

∑
𝑚″=−1

̂𝒆𝑚″ ∑
̃𝑙�̃�

([𝛁𝑉 (0)𝛾
Cou

(𝑟𝜈�̊�)]
opt+1𝑚″

̃𝑙+1,�̃�−𝑚″
Y ̃𝑙+1,�̃�−𝑚″( ̂𝒓𝛾) (7.78b)

+ [𝛁𝑉 (0)𝛾
Cou

(𝑟𝜈𝛾)]
opt−1𝑚″

̃𝑙−1,�̃�−𝑚″
Y ̃𝑙−1,�̃�−𝑚″( ̂𝒓𝛾)) .
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Its two required channels are given by

[𝛁𝑉 (0)𝛾
C

(𝑟𝜈�̊�)]
opt+1𝑚″

̃𝑙−1,�̃�−𝑚″
≕ 1

𝑟2𝜈�̊�

̂𝒆𝑚″(−1)𝑚″√4π
3
𝐺�̃�−𝑚″,�̃�,−𝑚″

̃𝑙−1, ̃𝑙, 1
(7.78c)

×
⎛⎜⎜⎜⎜⎜
⎝

∂[ ̃𝑉 (0)�̊�
C

(𝑟𝜈�̊�)]
𝜆( ̃𝑙)

∂𝑟𝜈�̊�
𝑐𝛾
𝜆( ̃𝑙),𝜇(�̃�)

+
( ̃𝑙 − 1)

𝑟𝜈�̊�
[ ̃𝑉 (0)�̊�
C

(𝑟𝜈�̊�)]
𝜆( ̃𝑙)

𝑐𝛾
𝜆( ̃𝑙),𝜇(�̃�)

⎞⎟⎟⎟⎟⎟
⎠

and

[𝛁𝑉 (0)𝛾
C

(𝑟𝜈�̊�)]
opt−1𝑚″

̃𝑙+1,�̃�−𝑚″
≕ 1

𝑟2𝜈�̊�

̂𝒆𝑚″(−1)𝑚″√4π
3
𝐺�̃�−𝑚″,�̃�,−𝑚″

̃𝑙+1, ̃𝑙, 1
(7.78d)

×
⎛⎜⎜⎜⎜⎜
⎝

∂[ ̃𝑉 (0)�̊�
C

(𝑟𝜈�̊�)]
𝜆( ̃𝑙)

∂𝑟�̊�
𝑐𝛾
𝜆( ̃𝑙),𝜇(�̃�)

−
( ̃𝑙 + 2)

𝑟𝜈𝛾
[ ̃𝑉 (0)�̊�
C

(𝑟𝜈�̊�)]
𝜆( ̃𝑙)

𝑐𝛾
𝜆( ̃𝑙),𝜇(�̃�)

⎞⎟⎟⎟⎟⎟
⎠

.

TheContinuity essential difference manifesting in a comparison between the two aforesaid methods

is the continuity at the MT sphere boundary. While the Coulomb-potential gradient from the

Weinert-like method is per construction urged to be continuous there, there is no reason why

this must be fulfilled for the numerical gradient. In contrast to the numerical gradient of the

charge density variation, the LAPW basis with its matching coefficients is not utilized for the

unperturbed potential gradients. Nevertheless, the latter are also expanded in plane waves

and spherical harmonics within the FLAPW method (see equation (5.19)).

TheResults aforesaid comparison is illustrated in figure 7.14 for the 𝑥-𝑧 area and a displacement
in the 𝑧-direction. Close to the core, the absolute error of the numerical gradient compared to
the production method is large, although the relative error is small. To mitigate this effect, I

have multiplied the MT sphere coefficients with a factor of 𝑟2𝜈𝛾. As a consequence, both for

fcc Ne and for fcc Al, the error in the MT sphere is of the order 10−3. Still, the absolute error

of the former system is a little smaller than that of the latter. But in both cases, the largest

error displays close to the MT sphere boundary in the MT spheres, as expected. The IR region

is nearly identical for both methods. In particular, the Hartree potential Fourier coefficients

are different at an order of about 10−6, which might be correlated with the accuracy of the

integral in the first line of equation (6.34). This is substantiated by the fact that the errors

of the xc and the external potential gradients are at least two or three orders of magnitude

smaller. Still this cannot be recognized well in figure 7.14, because the error originating from

the discrepancy in the continuity is of the order 1.0 ⋅ 10−3 Eh e
−1 a−1

0 .

Test 16: Alternative of Pseudo-Density for the External-Potential Variations

For the sake of being as close as possible to the recycled FLEUR routines, the pseudo-density
for the external potential is evaluated as in equation (6.28a). But, using equation (7.56b),

the pseudo-density can further be rearranged and results in equation (6.28b). In the end,

both methods should deliver the same outcome. Indeed, this is the case. It indicates that the

numerical benefit of using the analytically facilitated version (6.28b) is negligible. Hence, it
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Figure 7.14: Difference between the Weinert and the numerical gradient method, using the

example of the effective potential gradient (𝒒 = 𝟎) for fcc Ne (above) and fcc
Al (below). On the MT mesh, the values are mitigated with a factor 𝑟2𝜈�̊�. The

differences are in particular well-marked at the MT sphere boundary, because the

Weinert method urges continuity at the MT sphere, whereas the numerical gradient

does not. Comparing fcc Ne with fcc Al, the differences of the former are little
smaller. The units are Eh e

−1 a−1
0 and the input file can be found in appendix B.
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is acceptable to add the multipole moments for the complete pseudo-density of the Coulomb

potential as done in equation (7.57).

Test 17: Continuity of the Linear Potential Variations

TheConcept continuities of the linear effective potential variations are similarly checked as in test 13.

Thus,

𝛁𝑉 (0)IR
eff

(𝒓crt) = ⎛⎜
⎝

∑
𝑮|𝑮≠𝟎

[𝛁𝑉 (0)
Cou

](𝑮) +∑
𝑮

[𝛁𝑉 (0)
xc ](𝑮)⎞⎟

⎠
e2πi𝑮⋅ 1

2π𝐵𝒓crt , (7.79a)

𝛁𝑉 (0)𝛾
eff

(𝒓crt) = ∑
𝑙𝑚

([𝛁𝑉 (0)
Cou

(𝑅�̊�)]𝑙𝑚
+ [𝛁𝑉 (0)𝛾

xc (𝑅�̊�)]𝑙𝑚
)Y𝑙𝑚( ̂𝒓crt − ̂𝝉𝛾) , (7.79b)

𝑽 (1)
eff

(𝒓crt; 𝒒+𝛼) = ⎛⎜
⎝

∑
𝑮|𝑮+𝒒≠𝟎

𝑽 (1)
Cou

(𝑮; 𝒒+𝛼) +∑
𝑮

𝑽 (1)
xc (𝑮; 𝒒+𝛼)⎞⎟

⎠
e2πi(𝑮+𝒒)⋅ 1

2π𝐵𝒓crt , (7.80a)

and

𝑽 (1)𝛾
eff

(𝒓crt; 𝒒+𝛼) = ∑
𝑙𝑚

([𝑽 (1)
Cou

(𝑅�̊�; 𝒒+𝛼)]
𝑙𝑚

+ [𝑽 (1)𝛾
xc (𝑅�̊�; 𝒒𝛼)]𝑙𝑚

)Y𝑙𝑚( ̂𝒓crt − ̂𝝉𝛾) (7.80b)

hold. As mentioned in the previous sections, the continuity of the linear Coulomb-potential

variations is mainly governed by the Weinert construction. It is excellent, provided the

Rayleigh expansion is converged. However, the continuity of the linear xc-potential variations

is a little poorer, because there is no comparable requirement to the continuity. Still, it is

based on the continuity of the linear density variations which are unified with the functional

derivative of the unperturbed xc potentials, again dependent on the charge density.

BeforeRealization the Sternheimer cycle, actually only the gradient of the effective potential and

the first-order variation of the external potential is at hand. Therefore, only those are suitable

for the test suite, which is executed in advance of the juPhon calculation. But, the continuity of
the complete first-order variation can be checked after the Sternheimer equation is converged.

It is possible to write the results to the log file juPhon.log. Finally, also in this case the
coefficients of the first-order effective potential attributed to 𝒒+ can be complex in general.

Therefore, both the real and the imaginary parts are checked.

Test 18: Reproducing the Unperturbed FLEUR Potentials

AConcept comprehensive test of the subroutines to calculate the first-order variation of the Coulomb

potential is to manipulate their input such that they generate the unperturbed Coulomb

potential. This can be cross-checked with the outcome of FLEUR and is in this sense analogous
to test 11.

ComparingInterstitial
adjustments

equation (5.39) (including (5.36) and (5.40)) with equation (6.37), 𝒒must
be set to zero and the first-order density variation must be substituted by the unperturbed
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charge density20. Furthermore, the multipole moments of the first-order external potential

variation (6.26) must be replaced by

𝔮𝛾,ext,IR𝑙𝑚 =
√
4π
3

𝑅3
𝛾𝜌

(0)
IR (𝑮 = 𝟎)δ𝑙0δ𝑚0 , (7.81)

which is proportional to the average charge density in the IR. If (i) these multipole moments

are employed in the subroutine to calculate equation (7.63) for 𝑮 ≠ 𝟎 and (ii) the first-order
variation of the charge density is again substituted by the unperturbed charge density, the

desired pseudo-charge Fourier coefficients (5.42) are almost reproduced. It remains to add

the term

𝑛ps
diff

(𝑮) = δ𝑮𝟎δ𝑙0δ𝑚0

√
4π
𝛺

∑
𝛾

𝔮𝛾,ps𝑙𝑚 . (7.82)

Now for the Goldstone modes, the IR Coulomb potential (5.42) must be reproducible with

the subroutines thought for equation (7.64b).

In Muffin-tin
adjustments

the MT spheres, the third line of equation (7.66) must be left away. In addition, the

aforementioned IR potential must be passed to the subroutine in order to substitute the first-

order variation of the Coulomb potential in equation (7.66). Finally, in the volume integrals

of the aforementioned equation, the unperturbed charge density minus 𝑍Y00 replaces the

first-order density variation in the MT sphere 𝛾. In this way equations (5.43) should be
reproducible.

The Realizationreference arrays are determined from the files rho0pwFLEUR (pseudo-density IR)
and v0MTFLEUR_coul (MT unperturbed effective potential) which are written out after Vmts
has been executed in Vgen. I have implemented in FLEUR that these files contain the Coulomb
potential after the call of the FLEUR routine Vmts, i.e., the IR part is not convoluted with the step
function. Furthermore, the unperturbed charge density must stem from the plane-wave (7.5a)

and spherical-harmonic expansion (7.6c), respectively.

Test 19: The First-Order Effective-Potential Variations for 𝒒 = 𝟎

Analogously to test 12, the first-order variation of the effective potential can be evaluated

for the Goldstone modes and summed over all displaced atoms 𝛼. As already discussed in
the previous sections, the first-order effective-potential variation should then be the negative

gradient of the effective potential.

Test 20: Time Reversal Symmetry

For a finite 𝒒, the quantities which depend on reciprocal lattice vectors must fulfill certain
relations [251]. This aspect is already elucidated at the end of section 7.2.3 and shall be

applied to the first-order variation of the external potential, because it is available without a

20 Since a scalar quantity is put into a vectorial variable, we deem it sufficient to only check one component of

the first-order variation vector and set the other components to zero.
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converged Sternheimer equation. So, using 𝒒+
f
= −𝒒+ +𝑮f in equation (6.28b) leads to

𝒏psext(𝑮; 𝒒+
f
𝛼) (7.83a)

= i
𝑍𝛼
𝛺

(2𝑁 + 5)!!
(𝑮 − 𝒒+ +𝑮f)e−i(𝑮−𝒒++𝑮f)⋅𝝉𝛼

(∣𝑮 − 𝒒+ +𝑮f∣𝑅𝛼)
𝑁+2 j𝑁+2(∣𝑮 − 𝒒+ +𝑮f∣𝑅𝛼)

= −i
𝑍𝛼
𝛺

(2𝑁 + 5)!!
(−𝑮−𝑮f + 𝒒+)ei(−𝑮−𝑮f+𝒒+)⋅𝝉𝛼

(∣−𝑮−𝑮f + 𝒒+∣𝑅𝛼)
𝑁+2 j𝑁+2(∣−𝑮−𝑮f + 𝒒+∣𝑅𝛼)(7.83b)

= 𝒏∗ps
ext(−𝑮−𝑮f; 𝒒+𝛼) (7.83c)

for the Fourier coefficients of the pseudo-density.

This implies for the IR external potential

𝑽 (1)
ext (𝒓; 𝒒

+
f
𝛼) = ∑

𝑮|𝑮±𝒒≠𝟎
4π

𝒏psext(𝑮; 𝒒+
f
𝛼)

∣𝑮 + 𝒒f∣
2 ei(𝑮+𝒒f)⋅𝒓 (7.84a)

= ∑
𝑮|𝑮±𝒒≠𝟎

4π
𝒏∗ps
ext(−𝑮−𝑮f; 𝒒+𝛼)

∣−𝑮−𝑮f + 𝒒+∣2
e−i(−𝑮−𝑮f+𝒒+)⋅𝒓 (7.84b)

= ∑
𝑮′|𝑮′±𝒒≠𝟎,+𝑮f

4π
𝒏∗ps
ext(𝑮′; 𝒒+𝛼)
|𝑮′ + 𝒒+|2

e−i(𝑮′+𝒒+)⋅𝒓 (7.84c)

= 𝑽 ∗(1)
ext (𝒓; 𝒒+𝛼) . (7.84d)

Hence, basically

𝑽 (1)
⊆ext(𝑮; 𝒒+

f
𝛼) = 𝑽 ∗(1)

⊆ext(−𝑮−𝑮f; 𝒒+𝛼) (7.85)

must be checked.

This concept can also be applied to the second line of equation (7.66) and to the

coefficients of the first-order xc-potential variation (7.70a). However, this must be done

after the Sternheimer equation is converged. The remaining terms of the MT first-order

effective-potential variation incorporate the first-order variation of the density, the correct

behavior of which for a finite and exemplary 𝒒 is proven on test 14.

7.4 Solving the Sternheimer Equation

TheSetting the stage linear response of the electronic system to a specific phonon perturbation is governed

by the self-consistent Sternheimer equation, which contains the interdependent first-order

variations of the charge density and the effective potential. They are determined in an iterative

procedure up to a predefined threshold of accuracy, thereby solving the Sternheimer equation

with the same precision. It stands to reason that correct implementations of this process

can be ranked according to their efficiency, their numerical stability and their versatility

regarding the plethora of material systems. This chapter introduces the approach of juPhon
to this challenge. The ultimate organization of the principal loop structure in the Sternheimer

module results from a discussion [127, 251, 260]. For the Goldstone modes, the analytical
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solution of the Sternheimer equation is already anticipated in equation (7.30) and proven in

appendix D.

The Outlineform (6.61e) of the Sternheimer equation features several deficiencies in its nu-

merics, hampering its effective implementation in the sense of the aforesaid criteria. These

drawbacks, our strategy to circumvent them, and the finally implemented representation of

the Sternheimer equation are elucidated in section 7.4.1. As anticipated in section 6.4.1, the

terms of the Sternheimer equation fall into three categories: the HF, the Pulay and the surface

contributions. In the aforementioned order, section 7.4.2, section 7.4.3, and section 7.4.4

present the intricacies of and challenges faced in their realization. Furthermore, mixing is

essential in order to reach self-consistency. The way of doing it in juPhon is dealt with in
section 7.4.5. Section 7.4.6 is devoted to give an overview of the self-consistency cycle (SCC),

including its optimizations. Finally, section 7.4.7 presents the tests that verify the integrity

of the Sternheimer SCC. Some subroutines of juPhon are inspired by subroutines of FLEUR
version 26 and newer versions21 of FLEUR.

7.4.1 Facilitating the Numerics

There Avoiding
basis-function
gradients

are manifold compelling reasons stimulating a rearrangement of the Sternheimer

equation (6.61e) before its implementation. As far as the two Pulay terms (in its third

line) are concerned, they feature one first-order variation of the LAPW basis function per

braket. These brakets are evaluated in the unit cell with the volume 𝛺. But according to
equations (5.71) and (6.7), the first-order LAPW basis variation only delivers a contribution

in the displaced MT spheres 𝛼. Furthermore, this variation contains a gradient that is applied
to the unperturbed LAPW basis functions, inducing undesired contributions outside their

Hilbert space. However, these potentially hinder us from building on the success of DFT codes

that employ the FLAPW method (cf. chapter 5). Thus, Klüppelberg [88] proposes introducing

two lacking terms, enabling a backward application of the product rule for the gradient. If

focussing on the 𝒒+ part of the Sternheimer equation, overall this reads

∑
𝑮

⟨𝜙(0)
𝒌+𝒒,𝑮′∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣𝜙
(0)
𝒌+𝒒,𝑮⟩

𝛺
𝒛(1)
𝑮 (𝒌, 𝑛; 𝒒+𝛼) (7.86a)

= −∑
𝑮

{⟨𝜙(0)
𝒌+𝒒,𝑮′∣𝓥

(1)
eff

(𝒒+𝛼) − δ𝒒𝟎𝜖
(1)
𝒌,𝑛(𝒒

+𝛼)∣𝜙(0)
𝒌,𝑮⟩

𝛺

+ ⟨ ⃗𝜙(0)
𝒌+𝒒,𝑮′∣𝛁𝒱 (0)

eff
∣ ⃗𝜙(0)

𝒌,𝑮⟩
𝛼
−𝛁⟨ ⃗𝜙(0)

𝒌+𝒒,𝑮′∣ℋ
(0) − 𝜀(0)𝒌,𝑛∣ ⃗𝜙(0)

𝒌,𝑮⟩
𝛼

+ i(𝒌 +𝑮− 𝒌 −𝑮′ − 𝒒)⟨ ⃗𝜙(0)
𝒌+𝒒,𝑮′∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣ ⃗𝜙(0)
𝒌,𝑮⟩

𝛼

+∮
∂𝛼

⃗𝜙∗(0)𝛼
𝒌+𝒒,𝑮′(𝒓)(ℋ

(0) − 𝜀(0)𝒌,𝑛) ⃗𝜙(0)𝛼
𝒌,𝑮(𝒓) d𝑺

− ∮
∂𝛼

𝜙∗(0)IR
𝒌+𝒒,𝑮′(ℋ

(0) − 𝜀(0)𝒌,𝑛)𝜙
(0)IR
𝒌,𝑮 d𝑺}𝑧(0)𝑮 (𝒌, 𝑛) .

Exploiting then the divergence theorem

−𝛁⟨ ⃗𝜙(0)
𝒌+𝒒,𝑮′∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣ ⃗𝜙(0)
𝒌,𝑮⟩

𝛼
= −∮

∂𝛼
⃗𝜙∗(0)𝛼
𝒌+𝒒,𝑮′(𝒓)(ℋ

(0) − 𝜀(0)𝒌,𝑛) ⃗𝜙(0)𝛼
𝒌,𝑮(𝒓) d𝑺 (7.86b)

21 For section 7.4, the version defined on page 159 is referred to. Especially for section 7.4, the version is stored

in the FLEUR repository and can be addressed by the hash acb2166b19a55a6b2891ac9244f5ca8b7db63cde.
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in equation (7.86a)

∑
𝑮

⟨𝜙(0)
𝒌+𝒒,𝑮′∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣𝜙
(0)
𝒌+𝒒,𝑮⟩

𝛺
𝒛(1)
𝑮 (𝒌, 𝑛; 𝒒+𝛼) (7.86c)

= −∑
𝑮

{⟨𝜙(0)
𝒌+𝒒,𝑮′∣𝓥

(1)
eff

(𝒒+𝛼) − δ𝒒𝟎𝜖
(1)
𝒌,𝑛(𝒒

+𝛼)∣𝜙(0)
𝒌,𝑮⟩

𝛺

+ ⟨ ⃗𝜙(0)
𝒌+𝒒,𝑮′∣𝛁𝒱 (0)

eff
∣ ⃗𝜙(0)

𝒌,𝑮⟩
𝛼

+ i(𝒌 +𝑮− 𝒌 −𝑮′ − 𝒒)⟨ ⃗𝜙(0)
𝒌+𝒒,𝑮′∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣ ⃗𝜙(0)
𝒌,𝑮⟩

𝛼

− ∮
∂𝛼

̂𝒓𝜙∗(0)IR
𝒌+𝒒,𝑮′(ℋ

(0) − 𝜀(0)𝒌,𝑛)𝜙
(0)IR
𝒌,𝑮 d𝑆}𝑧(0)𝑮 (𝒌, 𝑛)

results. In this reformulated Sternheimer equation22, Klüppelberg [88] has eliminated the

brakets with LAPW basis function gradients, thereby canceling the MT surface integral in the

last line of equation (7.86a).

DrawingAvoiding
numerical

(matrix) inversion

an analogy to the mixing of the charge density in FLEUR [119, 127, 251] pre-
cedes the next step. Ultimately, the aforesaid procedure translates into mixing the first-order

charge-density variation. Hence, it is imperative to solve equation (7.86c) for 𝒛(1)
𝑮 (𝒌, 𝑛; 𝒒+𝛼).

Consequently, the 𝑁𝑮 ×𝑁𝑮′ braket on the left-hand side of equation (7.86c) must be in-

verted (𝑁𝑮′ denotes the number of reciprocal lattice vectors 𝑮′). Given the number of 𝑁𝒌 𝒌-
and of 𝑁𝒒 𝒒-vectors, numerically inverting the aforementioned quadratic matrix roughly
scales with 𝒪(𝑁3

𝒒𝑁3
𝒌𝑁

3
𝑮′) per iteration (LUP-decomposition algorithm) [272]. Moreover,

additional numerical inaccuracies might emerge, making an adverse impact upon reaching

self-consistency. But, these drawbacks could be avoided when renouncing to operate in

the representation of LAPW basis functions [260]. As soon as the latter are substituted by

Kohn–Sham wave functions23 on the left-hand side of equation (7.86c), tremendous effort is

taken out of the numerical inversion [260]. This originates from the fact that the Kohn–Sham

equations can now be exploited. So, the Hamiltonian can now either act on the right or on the

left, leading to Kohn–Sham energies at bands 𝑝 or 𝑚, respectively. However, the Kronecker
delta resulting from the overlap of the Kohn–Sham wave functions in

∑
𝑛″

⟨𝛹 (0)
𝒌+𝒒,𝑛′∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣𝛹
(0)
𝒌+𝒒,𝑛″⟩

𝛺
𝒛(1)
𝑛″(𝒌, 𝑛; 𝒒+𝛼) (7.87a)

= ∑
𝑛″

δ𝑛′𝑛″(𝜀
(0)
𝒌+𝒒,𝑛″ − 𝜀(0)𝒌,𝑛)𝒛

(1)
𝑛″(𝒌, 𝑛; 𝒒+𝛼)

= (𝜀(0)𝒌+𝒒,𝑛′ − 𝜀(0)𝒌,𝑛)𝒛
(1)
𝑛′ (𝒌, 𝑛; 𝒒+𝛼) (7.87b)

makes both options equivalent in the end. Finally in equation (7.87b), the difference of Kohn–

Sham energies simplifies the original braket matrix-elements. A systematic application of this

concept requires multiplying both sides of equation (7.86c) from the left by unperturbed wave-

function coefficients 𝑧(0)𝑮′(𝒌, 𝒏), and summing over all reciprocal lattice vectors 𝑮′. Moreover,

we introduce an auxiliary first-order wave-function expansion-coefficients variation, which is a

matrix dimensioned by the bands 𝑛 and 𝑛′ [251]. The vector of 𝑛′ unperturbed wave-function

22 This form has firstly been suggested by Kouba et al. [93] based on a numerical experiment.
23 This idea of using the Kohn–Sham wave functions instead of the LAPW basis functions is also realized in

FLEUR in the subroutines that calculate SOC from second variation [260].
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coefficients is multiplied by this matrix in [251]

𝒛(1)
𝑮 (𝒌, 𝑛; 𝒒+𝛼) ≕ ∑

𝑛′

𝑧(0)𝑮 (𝒌, 𝑛′; 𝒒)𝒛(1)
𝑛′ (𝒌, 𝑛; 𝒒+𝛼) (7.87c)

= 𝒛(1)
𝑮 (𝒌+

bf
, 𝑛; 𝛼) . (7.87d)

Defining furthermore

⟨̃⃗𝜳
(0)
𝒌+𝒒,𝑛′∣ ≔ ⟨i∑

𝑮′

(𝒌 + 𝒒 +𝑮′)𝑧(0)𝑮′(𝒌, 𝑛′; 𝒒) ⃗𝜙(0)
𝒌+𝒒,𝑮′∣ , (7.87e)

from which the expression ∣ ̃⃗𝜳
(0)
𝒌,𝑛⟩ can trivally be deduced, leads all in all to

∑
𝑛″

⟨𝛹 (0)
𝒌+𝒒,𝑛′∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣𝛹
(0)
𝒌+𝒒,𝑛″⟩

𝛺
𝒛(1)
𝑛″(𝒌, 𝑛; 𝒒+𝛼) (7.87f)

= −⟨𝛹 (0)
𝒌+𝒒,𝑛′∣𝓥

(1)
eff

(𝒒+𝛼) − δ𝒒𝟎𝜖
(1)
𝒌,𝑛(𝒒

+𝛼)∣𝛹 (0)
𝒌,𝑛⟩𝛺

− ⟨ ⃗𝛹 (0)
𝒌+𝒒,𝑛′∣𝛁𝒱 (0)

eff
∣ ⃗𝛹 (0)

𝒌,𝑛⟩𝛼

−⟨̃⃗𝜳
(0)
𝒌+𝒒,𝑛′∣ℋ (0) − 𝜀(0)𝒌,𝑛∣ ⃗𝛹 (0)

𝒌,𝑛⟩
𝛼
−⟨ ⃗𝛹 (0)

𝒌+𝒒,𝑛′∣ℋ
(0) − 𝜀(0)𝒌,𝑛∣

̃⃗𝜳
(0)
𝒌,𝑛⟩

𝛼

+∮
∂𝛼

̂𝒓 𝛹 ∗(0)IR
𝒌+𝒒,𝑛′(ℋ

(0) − 𝜀(0)𝒌,𝑛)𝛹
(0)IR
𝒌,𝑛 d𝑆 .

Using equation (7.87b), the difference of Kohn–Sham energies can be brought to the right-

hand side yielding

𝒛(1)
𝑛′ (𝒌, 𝑛; 𝒒+𝛼) = − 1

𝜀(0)𝒌+𝒒,𝑛′ − 𝜀(0)𝒌,𝑛

(7.87g)

×{⟨𝛹 (0)
𝒌+𝒒,𝑛′∣𝓥

(1)
eff

(𝒒+𝛼) − δ𝒒𝟎𝜖
(1)
𝒌,𝑛(𝒒

+𝛼)∣𝛹 (0)
𝒌,𝑛⟩𝛺

+ ⟨ ⃗𝛹 (0)
𝒌+𝒒,𝑛′∣𝛁𝒱 (0)

eff
∣ ⃗𝛹 (0)

𝒌,𝑛⟩𝛼

+⟨̃⃗𝜳
(0)
𝒌+𝒒,𝑛′∣ℋ (0) − 𝜀(0)𝒌,𝑛∣ ⃗𝛹 (0)

𝒌,𝑛⟩
𝛼
+⟨ ⃗𝛹 (0)

𝒌+𝒒,𝑛′∣ℋ
(0) − 𝜀(0)𝒌,𝑛∣

̃⃗𝜳
(0)
𝒌,𝑛⟩

𝛼

−∮
∂IR𝛼

̂𝒓 𝛹 ∗(0)IR
𝒌+𝒒,𝑛′(ℋ

(0) − 𝜀(0)𝒌,𝑛)𝛹
(0)IR
𝒌,𝑛 d𝑆} ,

which is a rectangular matrix concerning the bands 𝑛 and 𝑛′.

Klüppelberg [88] Numerical benefitadditionally states that in equation (7.87g), the brakets of the dis-

placed atoms 𝛼 containing the linear variations of the effective potential can be unified to
one braket. Thus

𝒛(1)
𝑛′ (𝒌, 𝑛; 𝒒+𝛼) = − 1

𝜀(0)𝒌+𝒒,𝑛′ − 𝜀(0)𝒌,𝑛

(7.87h)

×{⟨𝛹 (0)
𝒌+𝒒,𝑛′∣𝓥

(1)
eff

(𝒒+𝛼)∣𝛹 (0)
𝒌,𝑛⟩

IR
+∑

𝛾
⟨ ⃗𝛹 (0)

𝒌+𝒒,𝑛′∣𝓥
(1)
eff

(𝒒+𝛼) +𝛁𝒱 (0)
eff

δ𝛾𝛼∣ ⃗𝛹 (0)
𝒌,𝑛⟩𝛾
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+⟨̃⃗𝜳
(0)
𝒌+𝒒,𝑛′∣ℋ (0) − 𝜀(0)𝒌,𝑛∣ ⃗𝛹 (0)

𝒌,𝑛⟩
𝛼
+⟨ ⃗𝛹 (0)

𝒌+𝒒,𝑛′∣ℋ
(0) − 𝜀(0)𝒌,𝑛∣

̃⃗𝜳
(0)
𝒌,𝑛⟩

𝛼

−∮
∂IR𝛼

̂𝒓𝛹 ∗(0)IR
𝒌+𝒒,𝑛′(ℋ

(0) − 𝜀(0)𝒌,𝑛)𝛹
(0)IR
𝒌,𝑛 d𝑆}

results. The sum of the linear potential variations in the last braket of the second line leads to

further simplifications in the implementation [88]. Analyzing equations (7.62) and (7.66)

for the displaced MT sphere 𝛼, it becomes obvious that their third lines cancel in the case
of the Goldstone modes. Furthermore, the gradient of the unperturbed charge density is

subtracted in the first-order density variation (7.37b). Therefore also the last three lines of

equations (7.62) cancel in general, because they compensate with respective parts of the last

three lines in equation (7.37b). In a similar way, the sum of equations (7.71d) and (7.72c) can

be simplified. As a consequence, the 1/𝑟 and the 1/𝑟2 behavior as well as the large potentially

inaccurate numbers of the MT gradients at the core are not calculated anymore. This alleviates

the MT braket in the second line of equation (7.87h) and is beneficial for the convergence

behavior of the self-consistency cycle, the overall accuracy as well as the performance.

AnotherBack-folding and
final form

problem we face in the implementation is that the unperturbed wave-function

expansion coefficients are not available outside the first Brillouin zone. But if

𝒛(1)
𝑛′ (𝒌+

bf
, 𝑛; 𝛼) = − 1

𝜖(0)𝒌+
bf
,𝑛′ − 𝜖(0)𝒌,𝑛

(7.88)

×{⟨𝛹 (0)
𝒌+
bf
,𝑛′∣𝓥

(1)
eff

(𝒒+𝛼)∣𝛹 (0)
𝒌,𝑛⟩

IR

+∑
𝛾
⟨ ⃗𝛹 (0)

𝒌+
bf
,𝑛′∣𝓥

(1)
eff

(𝒒+𝛼) +𝛁𝒱 (0)
eff

δ𝛾𝛼∣ ⃗𝛹 (0)
𝒌,𝑛⟩

𝛾

+⟨̃⃗𝜳
(0)
𝒌+
bf
,𝑛′∣ℋ (0) − 𝜀(0)𝒌,𝑛∣ ⃗𝛹 (0)

𝒌,𝑛⟩
𝛼
+⟨ ⃗𝛹 (0)

𝒌+
bf
,𝑛′∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣
̃⃗𝜳
(0)
𝒌,𝑛⟩

𝛼

−∮
∂IR𝛼

̂𝒆IR𝛹
∗(0)IR
𝒌+
bf
,𝑛′ (ℋ

(0) − 𝜀(0)𝒌,𝑛)𝛹
(0)IR
𝒌,𝑛 d𝑆} .

was implemented according to equation (7.25), they and the set of reciprocal lattice vec-

tors ∣𝒌+
bf
+𝑮∣ < 𝑘max from the eig file would always be at hand [127, 251].

ForSingularities the Goldstone modes, equation (7.88) features a singularity for 𝑛′ = 𝑛. However ac-
cording to equation (4.20b), only combinations of occupied and unoccupied states contribute

to the first-order density variation [3, 87]. Thus, the division by zero is ruled out [3, 87].

Degenerate Kohn–Sham energies in the Sternheimer equation are an additional case in which

the first-order wave-function expansion coefficients vanish [251]. This can be understood

from multiplying the reciprocal difference of Kohn–Sham energies back to the left-hand side of

equation (7.87g). Provided a configuration of bands and Bloch vectors featuring degeneracy,

the remaining right-hand side then equals zero. Moreover in practice, two general energies for

any distinct bands and arbitrary Bloch vectors 𝒌 and 𝒒 can lie very close to each other. It can
cause pseudo-singularities with a severe impact on the numerics, therefore this “numerical

degeneracy” is caught by a threshold24 [251]. When dealing with the aforesaid singularities

24 Alexander Neukirchen has analyzed the differences of various Sternheimer quantities from juPhon with the
Elk program for fcc Ne and fcc Al. The best results have been achieved if the threshold was 5 ⋅ 10−3 Eh and

thus identical to Elk (with Eh being the Hartree energy). However, Neukirchen has likewise found for the
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of the Sternheimer equation, the orthogonality of (i) two unperturbed Kohn–Sham wave

functions (see equation (7.14)) and (ii) an unperturbed Kohn–Sham wave function and a

first-order Kohn–Sham wave function (cf. equation (6.11)) are decisive [3, 251]. However,

the variational ansatz underlying the DFT and the DFPT method intrinsically guarantees it for

both cases. Orthogonality forms a constraint in these variational approaches. On these facts

the respective previous chapters already elaborate in detail.

Stimulated Future projectsby the reformulations of the dynamical matrix, which shall be discussed in

section 7.6, the effect of transforming the surface integral in the last line of equation (7.88)

should be investigated in a future project. This reformulation, which underlies the divergence

theorem as in equation (7.86b), might lead to a better error cancelation, because each IR

quantity would then be evaluated by a FFT. Thereby, the numerical errors committed might be

more similar. But, it must be examined if a potentially deteriorating performance is acceptable,

because one surface integral is replaced by three FFT volume integrals. Nevertheless, this

reformulation would make the discussion about the best form of the IR kinetic energy in

section 7.4.4 obsolete. Apart from that, it is at the moment not exploited that a Sternheimer

equation with 𝑛 and 𝑛′ only addressing occupied bands leads to a vanishing first-order density

variation [251]. However, I tested it successfully for the Goldstone modes and fcc Ne during
the development. Nonetheless, including this analytical assumption could further improve the

numerical accuracy. Due to numeric errors in more challenging systems, the aforesaid band

combinations could still wrongly contribute to the first-order density variation. However, in

the first implementation we decided to investigate to which extent the Pulay and the surface

terms cause well-behaving numerics.

7.4.2 Optimized Hellmann–Feynman Contribution

Having Subdivisionprovided the complete optimized Sternheimer equation (7.88), the implementation

of its second line is now described. These HF contributions fall into an IR integral and MT

matrix elements of all atoms 𝛾, i.e., including the displaced atom 𝛼.

Interstitial Part

The Concept and final
form

HF contribution in the IR is similar to the potential component of the central DFT

Hamiltonian matrix element (5.49). This suggests analogously employing a FFT in order

to evaluate the former. Furthermore, implementing the latter has already been optimized

by Michalicek [290, Section 5.2] on which the juPhon implementation is based. But, it is
important to consider some additional subtleties [127, 251, 282], which manifest themselves

when reformulating the respective braket in equation (7.88). Expressing it in position space

and letting the potential operator act on the ket implies

⟨𝛹 (0)
𝒌+
bf
,𝑛′∣𝓥

(1)
eff

(𝒒+𝛼)∣𝛹 (0)
𝒌,𝑛⟩

IR

(7.89a)

= ∫
𝛺
𝛹 ∗(0)IR
𝒌+
bf
,𝑛′ (𝒓)Θ

IR(𝒓)𝑽 (1)
eff

(𝒓; 𝒒+𝛼)𝛹 (0)IR
𝒌,𝑛 (𝒓) d3𝑟 .

discussed systems in this thesis that the best dispersion relations result if the cutoff is set to 1 ⋅ 10−12 Eh.

Thus, I use this value for all calculations presented in this dissertation, except for those in section 7.7.1.
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Inserting equation (7.26), but substituting 𝒌+
bf
according to equation (7.25) in the argument

of the complex-conjugated basis-function yields

= ∑
𝑮′

𝑧∗(0)𝑮′−𝑮bf
(𝒌+
bf
, 𝑛′)∫

𝛺

1√
𝛺
e−i(𝒌+𝒒+𝑮′)⋅𝒓ΘIR(𝒓)𝑽 (1)

eff
(𝒓; 𝒒+𝛼)𝛹 (0)IR

𝒌,𝑛 (𝒓) d3𝑟 (7.89b)

This reveals the necessity of employing a FFT, the result of which is represented by the

convoluted quantity 𝝃[𝛩𝑉 𝛹]
𝒒+𝛼 (𝒓) (see equation (7.90)) so that

≕ ∑
𝑮′𝑮

𝑧∗(0)𝑮′−𝑮bf
(𝒌+
bf
, 𝑛′) 1

𝛺
∫
𝛺
e−i(𝒌+𝒒+𝑮′)⋅𝒓𝝃[𝛩𝑉 𝛹]

𝒒+𝛼 (𝑮)ei(𝒌+𝒒+𝑮)⋅𝒓 d3𝑟 (7.89c)

≕ ∑
𝑮′𝑮

𝑧∗(0)𝑮′−𝑮bf
(𝒌+
bf
, 𝑛′)𝝃[𝛩𝑉 𝛹]

𝒒+𝛼 (𝑮) 1
𝛺

∫
𝛺
ei(𝑮−𝑮′)⋅𝒓 d3𝑟 (7.89d)

= ∑
𝑮′𝑮

𝑧∗(0)𝑮′−𝑮bf
(𝒌+
bf
, 𝑛′)𝝃[𝛩𝑉 𝛹]

𝒒+𝛼 (𝑮)δ𝑮𝑮′ (7.89e)

= ∑
𝑮′

𝑧∗(0)𝑮′−𝑮bf
(𝒌+
bf
, 𝑛′)𝝃[𝛩𝑉 𝛹]

𝒒+𝛼 (𝑮′) (7.89f)

=
+𝑮bf

∑
𝑮

𝑧∗(0)𝑮 (𝒌+
bf
, 𝑛′)𝝃[𝛩𝑉 𝛹]

𝒒+𝛼 (𝑮 +𝑮bf) (7.89g)

results. The quantity

𝝃[𝛩𝑉 𝛹]
𝒒+𝛼 (𝒓) ≔ ΘIR(𝒓)𝑽 (1)

eff
(𝒓; 𝒒+𝛼)𝛹 (0)IR

𝒌,𝑛 (𝒓) (7.90a)

can be expanded in plane waves, if defining 𝑮‴ ≔ 𝑮+𝑮′ +𝑮″

= ∑
𝑮𝑮′𝑮″

ΘIR(𝑮)𝑽 (1)
eff

(𝑮′; 𝒒+𝛼) 1√
𝛺
𝑧(0)𝑮″(𝒌, 𝑛)ei(𝑮+𝑮′+𝒒+𝒌+𝑮″)⋅𝒓 , (7.90b)

≔ ∑
𝑮‴

1√
𝛺
𝝃[𝛩𝑉 𝛹]
𝒒+𝛼 (𝑮‴)ei(𝒌+𝒒+𝑮‴)⋅𝒓 . (7.90c)

When furthermore identifying the integral in equation (7.89d) as a representation of the delta-

distribution, it is important to consider that the periodicity of the lattice is exploited, because

the integration volume should actually be the complete crystal. Since moreover the reciprocal

lattice vectors are discrete, a Kronecker delta is chosen. As can be seen from equation (7.89g),

the Fourier coefficients of 𝝃[𝛩𝑉 𝛹]
𝒒+𝛼 (𝒓) and the unperturbed wave-function expansion coefficients

are shifted relative to each other by the reciprocal back-folding vector 𝑮bf.

TheImplementation recycled subroutine of Michalicek is named Hsint_wu. It differs from the normal
FLEUR FFT subroutine Fft3d by utilizing the faster external FFT library fftw [291]. Fur-
thermore, the wave-function expansion coefficients feature the cutoff |𝒌 +𝑮| ≤ 𝑘max, the
Fourier coefficients of the potential variation |𝑮 + 𝒒| ≤ 𝐺max, and those of the step func-
tion |𝑮| ≤ 𝐺max. Hence, all Fourier coefficients of 𝝃

[𝛩𝑉 𝛹]
𝒒+𝛼 (𝒓) fulfilling |𝑮 + 𝒒| ≤ 2𝐺max + 𝑘max

must be taken into account. In order to be consistent with the FFT necessary for the xc-potential

variation in section 7.3.2, the size of the mesh is the same and given by 33 × k1d× k2d× k3d.
This is sufficient to embed each Fourier coefficient of 𝝃[𝛩𝑉 𝛹]

𝒒+𝛼 (𝒓) without aliasing effects. Anal-
ogously to section 7.3.2, the 𝐺max we assume to be adequate for this matrix element is
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determined in the prearrangements of the juPhon calculation, according to appendix A [127,
278].

The Algorithmprocedure to calculate the matrix element (7.89) is sketched in algorithm 8. A

simpler but similar method is provided in algorithm 7, given the context of the unperturbed

xc-potential gradient. For the matrix element (7.89), different mapping arrays must be con-

structed for (i) the ket wave-function expansion coefficients, (ii) the first-order potential

variation, and (iii) the auxiliary quantity 𝝃[𝛩𝑉 𝛹]
𝒒+𝛼 (𝒓) [251]. The mapping array (iii) must be

shifted by the reciprocal lattice vector𝑮bf relative to mapping array (i) (see equation (7.89g)).

Considering this already in the mapping array (iii), the reciprocal lattice vectors in equa-

tion (7.89g) need not to be shifted anymore. All Fourier coefficients fulfilling ∣𝒌+
bf
+𝑮∣ ≤ 𝑘max

can be multiplied now in a straight-forward way. Moreover, our decision to ignore the Bloch

vector shift in the set of reciprocal lattice vectors |𝑮 + 𝒒| ≤ 𝐺max for the first-order effective
potential leads also here to a small inconsistency. But until now, it can be kept under control by

a sufficiently large 𝐺max. Furthermore, the step function is taken from the ufft array, gener-
ated during the juPhon initialization in Fleur_init. It contains the real-space representation
of a step function, the Fourier coefficients of which must be expanded until |𝑮| ≤ 2𝐺max [68,
127]. This is due to the fact that a step function, which is once truncated by the cutoff 𝐺max,
severely looses accuracy in real space and should therefore not be transformed back [68, 127].

Finally, it must be clear that the 𝒒+ component of the effective potential can generally be

complex-valued in real space, i.e., after one FFT.

Muffin-tin Part

In Setting the stageorder to elucidate the implementation, the last braket in the second line of equation (7.88)

must be simplified first. So, the potential operators act on the ket, the sum of the linear poten-

tial variations is denoted as ̃𝑽 stbl,𝛾
eff

(𝒒+𝛼), and the large matching coefficients are separated
from the braket reading

∑
𝛾
⟨ ⃗𝛹 (0)

𝒌+
bf
,𝑛′∣𝓥

(1)
eff

(𝒒+𝛼) +𝛁𝒱 (0)
eff

δ𝛾𝛼∣ ⃗𝛹 (0)
𝒌,𝑛⟩

𝛾
(7.91a)

= ∑
𝛾
⟨ ⃗𝛹 (0)

𝒌+
bf
,𝑛′∣𝑽

(1)𝛾
eff

(𝒒+𝛼) +𝛁𝑉 (0)𝛾
eff

δ𝛾𝛼∣ ⃗𝛹 (0)
𝒌,𝑛⟩

𝛾

≔ ∑
𝛾
⟨ ⃗𝛹 (0)

𝒌+
bf
,𝑛′∣ ̃𝑽 stbl,𝛾

eff
(𝒒+𝛼)∣ ⃗𝛹 (0)

𝒌,𝑛⟩
𝛾

(7.91b)

= ∑
𝛾

∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

𝐴∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′𝑝′ ⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ ̃𝑽 stbl,𝛾

eff
(𝒒+𝛼)∣�⃗��̊�

𝑙𝑚𝑝⟩𝛾
𝐴𝒌𝛼𝑛

𝑙𝑚𝑝 . (7.91c)

In the last step (7.91c), the reduced MT basis functions �⃗��̊�
𝑙𝑚𝑝 are already defined in equa-

tion (5.17b) and the large matching coefficients are introduced in equation (5.30). Further-

more, the reciprocal lattice vectors at 𝒌+
bf
are at hand and no shift of them is required [127,

282]. Finally, the 𝑙max,�̊� + 1 cutoff of the effective potential gradient is reduced to 𝑙max,�̊�,
provided 𝑙max,�̊� is converged, in order to simplify the complexity in the first implementation
(see section 7.2.1)

It Recycling
subroutines

is obvious to make an analogy between equation (7.91c) and the MT non-spherical

potential part of the Hamiltonian matrix element (5.53). However, the linear potential varia-
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Algorithm 8: Calculation of the matrix element in equations (7.89), based on the

subroutine in Michalicek [290].

1 shiftFFT[𝑖] =3×GboxDim[𝑖] ; // GboxDim contains dimensions of box
incorporating ball of used 𝑮 for potential and density (𝒒 = 𝟎)

2 fftMeshDim = ∏3
𝑖=1 shiftFFT[i] ;

3 forall |𝑮 + 𝒒| < Gmax do
4 if 𝐺𝑖 < 0 then
5 Gpositive[𝑖] = 𝐺𝑖 + shiftFFT[i]
6 else

7 Gpositive[𝑖] = 𝐺𝑖
8 end if

9 indexFFTMeshV[𝑮] = Gpositive (1) + shiftFFT[1] × Gpositive (2) + shiftFFT[1] ×
shiftFFT[2] × Gpositive (3) ; // Mapping array between plane-wave and FFT
mesh representation for linear potential variation.

10 end forall

11 init VFFTmesh with size fftMeshDim;
12 VFFTmesh[indexFFTMeshV[𝑮]] = 𝑽 (1)IR

eff
(𝑮; 𝒒+𝛼) ;

13 FFTr2d(VFFTmesh[.]) ; // FFT from reciprocal to direct space.
14 forall |𝑮 + 𝒌| < kmax do
15 if 𝐺𝑖 < 0 then
16 Gpositive[𝑖] = 𝐺𝑖 + shiftFFT[i]
17 else

18 Gpositive[𝑖] = 𝐺𝑖
19 end if

20 indexFFTMeshKet[𝑮] = Gpositive (1) + shiftFFT[1] × Gpositive (2) + shiftFFT[1] ×
shiftFFT[2] × Gpositive (3) ; // Mapping array ket wave function.

21 end forall

22 forall ∣𝑮 + 𝒌+
bf
∣ < kmax do

23 if 𝐺𝑖 < 0 then
24 Gpositive[𝑖] = 𝐺𝑖 + shiftFFT[i]+ [𝑮bf]𝑖
25 else

26 Gpositive[𝑖] = 𝐺𝑖 + [𝑮f]𝑖
27 end if

28 indexFFTMeshBra[𝑮] = Gpositive (1) + shiftFFT[1] × Gpositive (2) + shiftFFT[1] ×
shiftFFT[2] × Gpositive (3) ; // Mapping array bra wave function.

29 end forall

30 ketFFTMesh[indexFFTMeshKet[𝑮]] ← 𝑧(0)𝑮 (𝒌, 𝑛) ;
31 xiFFTMesh[.] ← thetaMesh[.] × VFFTmesh[.] × ketFFTMesh[.] ; // thetaMesh is

direct-space step function Θ(𝒓) evaluated on FFT mesh.
32 FFTd2r(xiFFTMesh[.]) ; // FFT from direct to reciprocal space.
33 xiG[𝑮] ← xiFFTMesh[indexFFTMeshBra[𝑮]];
34 xiG[𝑮] = xiG[𝑮] / fftMeshDim ; // Remove FFT-overhead factor.

35 Evaluate (7.89g) using xiG[.] and 𝑧∗(0)𝑮′ (𝒌+
bf
, 𝑛) ;
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tion in the former equation features three coordinates instead of having a scalar character.

Moreover, the matrix element (7.91c) is set up in the the Kohn–Sham wave-function repre-

sentation instead of the LAPW basis-function one. Ultimately, there exist enough similarities

so that the FLEUR subroutines Tlmplm and Hsssr_wu are recycled for the first implementation.
But due to their optimizations to former hardware architectures, their algorithm is highly

sophisticated and often self-defeating as far as modern compiler optimizations are concerned.

A simplified version of calculating the MT potential part of the Hamiltonian matrix element

shall be introduced in section 7.6.6, and is meanwhile partially realized in the latest FLEUR
version. In a future project, it will substitute the current algorithm for determining equa-

tion (7.91c). Having done this, in particular LOs can be included in an organic way later,

in contrast to their separate calculation in FLEUR. But the LO implementation is outside the
scope of this dissertation, implying 𝑝 and 𝑝′ to equal either 1 or 2.

For Reformulation
due to Tlmplm
and final form

the sake of using snippets of Tlmplm, the matrix element with the reduced MT basis
functions is extracted from equation (7.91c), i.e., the large matching coefficients are ignored

for a moment. This remaining part must be reformulated to reveal the way the aforesaid

subroutine can be employed:

⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ ̃𝑽 stbl,𝛾

eff
(𝒒+𝛼)∣�⃗��̊�

𝑙𝑚𝑝⟩𝛾
(7.92a)

= ∫
𝛾
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�) ̃𝑽 stbl,𝛾

eff
(𝒓𝜈�̊�; 𝒒+𝛼)𝜑𝑠�̊�

𝑙𝑚𝑝(𝒓𝜈�̊�) d3𝑟𝜈�̊�

= ∫
𝑅�̊�

0
𝑟2𝜈�̊�∑

𝑠
𝑢𝑠�̊�
𝑙′𝑝′(𝑟𝜈�̊�)∑

𝑙″𝑚″

[ ̃𝑽 stbl,𝛾
eff

(𝑟𝜈�̊�; 𝒒+𝛼)]
𝑙″𝑚″

𝑢𝑠�̊�
𝑙𝑝 (𝑟𝜈�̊�) d𝑟𝜈�̊� (7.92b)

×∮
∂𝛾

Y∗
𝑙′𝑚′( ̂𝒓𝛾)Y𝑙″𝑚″( ̂𝒓𝛾)Y𝑙𝑚( ̂𝒓𝛾) d𝛺

= ∑
𝑙″𝑚″

𝐺𝑚′,𝑚″,𝑚
𝑙′, 𝑙″, 𝑙 ∫

𝑅�̊�

0
𝑟2𝜈�̊�[ ̃𝑽 stbl,𝛾

eff
(𝑟𝜈�̊�; 𝒒+𝛼)]

𝑙″𝑚″
∑
𝑠
𝑢𝑠�̊�
𝑙′𝑝′(𝑟𝜈�̊�)𝑢𝑠�̊�

𝑙𝑝 (𝑟𝜈�̊�) d𝑟𝜈�̊� (7.92c)

= ∑
𝑙″𝑚″

𝐺𝑚′,𝑚″,𝑚
𝑙′, 𝑙″, 𝑙 𝜮

𝑝𝑝′𝛾
𝑙𝑙′𝑙″𝑚″(𝒒+𝛼) (7.92d)

≔ 𝒕full,𝑝𝑝
′𝛾

𝜂(𝑙′𝑚′𝑙𝑚)(𝒒
+𝛼) = 𝒕L,𝑝𝑝

′𝛾
𝜂(𝑙′𝑚′𝑙𝑚)(𝒒

+𝛼) + 𝒕U,𝑝𝑝
′𝛾

𝜂(𝑙′𝑚′𝑙𝑚)(𝒒
+𝛼) . (7.92e)

It is important to know that due to the hermiticity of the matrix element (5.62), only the

lower (L) 𝑙 ≤ 𝑙′ matrix is evaluated. Therefore, in equation (7.92e), I subdivide the com-
plete matrix into a lower and an upper (U) 𝑙 > 𝑙′ part. This is illustrated in figure 7.15.
If 𝒕full,𝑝𝑝

′𝛾
𝜂(𝑙′𝑚′𝑙𝑚)(𝒒

+𝛼) had been a Hermitian matrix, it would have been easily feasible to de-
duce the U matrix from adjoining the L one (the diagonal must additionally be omitted).

However, ̃𝑽 stbl,𝛾
eff

(𝒓; 𝒒+𝛼) can generally be complex, since only its superposition with the 𝒒−

complement is an observable. Therefore, the recycled Tlmplm routine needs the input

[ ̃𝑽 stbl,𝛾
eff, U

(𝒓𝜈�̊�; 𝒒+𝛼)]
𝑙″𝑚″

≡ (−1)−𝑚″[ ̃𝑽 ∗ stbl,𝛾
eff

(𝑟𝜈�̊�; 𝒒+𝛼)]
𝑙″−𝑚″

(7.93)

so that 𝒕U,𝑝𝑝
′𝛾

𝜂(𝑙′𝑚′𝑙𝑚)(𝒒
+𝛼) can be determined from a complex conjugation of the subroutine

output. In order to prove this, the derivation starts with the aforesaid upper part of 𝒕 and
reformulates it to a form of 𝒕L,𝑝𝑝

′𝛾
𝜂(𝑙′𝑚′𝑙𝑚)(𝒒

+𝛼), in which equation (7.93) can be identified. So
by exploiting equation (7.43), the relation
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( )
L

U
𝑙𝑚𝑝

𝑙′
𝑚

′ 𝑝
′

Figure 7.15: Defining the lower (L) and upper (U) parts of the matrix elements 𝒕full,𝑝𝑝
′𝛾

𝜂(𝑙′𝑚′𝑙𝑚)(𝒒
+𝛼).

The former lives up to 𝑙 ≤ 𝑙′, i.e., including the diagonal and the latter to 𝑙 > 𝑙′.

𝒕𝑝𝑝
′𝛾,U

𝜂(𝑙𝑚,𝑙′𝑚′)[ ̃𝑽 stbl,𝛾
eff

(𝒓; 𝒒+𝛼)] (7.94a)

= ⟨�⃗��̊�
𝑙𝑚𝑝∣ ̃𝑽 stbl,𝛾

eff
(𝒒+𝛼)∣�⃗��̊�

𝑙′𝑚′𝑝′⟩

= ⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ ̃𝑽 ∗stbl,𝛾

eff
(𝒒+𝛼)∣�⃗��̊�

𝑙𝑚𝑝⟩
∗

(7.94b)

= (∫
𝑅�̊�

0+
𝑟2�̊�∑

𝑠
𝑢𝑠�̊�
𝑙′𝑝′(𝑟�̊�)∑

𝑙″𝑚″

[ ̃𝑽 ∗stbl,𝛾
eff

(𝒓�̊�; 𝒒+𝛼)]
𝑙″𝑚″

𝑢𝑠�̊�
𝑙𝑝 (𝑟�̊�) d𝑟�̊� (7.94c)

×∮
∂𝛾

Y∗
𝑙′𝑚′( ̂𝒓𝛾)Y∗

𝑙″𝑚″( ̂𝒓𝛾)Y𝑙𝑚( ̂𝒓𝛾) d𝛺)
∗

= (∫
𝑅�̊�

0+
𝑟2�̊�∑

𝑠
𝑢𝑠�̊�
𝑙′𝑝′(𝑟�̊�)∑

𝑙″𝑚″

[ ̃𝑽 ∗stbl,𝛾
eff

(𝑟�̊�; 𝒒+𝛼)]
𝑙″𝑚″

𝑢𝑠�̊�
𝑙𝑝 (𝑟�̊�) d𝑟�̊� (7.94d)

×∮
∂𝛾

Y∗
𝑙′𝑚′( ̂𝒓𝛾)(−1)𝑚″Y𝑙″−𝑚″( ̂𝒓𝛾)Y𝑙𝑚( ̂𝒓𝛾) d𝛺)

∗

= (∫
𝑅�̊�

0+
∑
𝑠
𝑟�̊�𝑢

𝑠�̊�
𝑙′𝑝′(𝑟)∑

𝑙″𝑚″

(−1)−𝑚″[ ̃𝑽 ∗stbl,𝛾
eff

(𝑟�̊�; 𝒒+𝛼)]
𝑙″−𝑚″

𝑟�̊�𝑢
𝑠�̊�
𝑙𝑝 (𝑟�̊�) d𝑟�̊� (7.94e)

×∮
∂𝛾

Y∗
𝑙′𝑚′( ̂𝒓𝛾)Y𝑙″𝑚″( ̂𝒓𝛾)Y𝑙𝑚( ̂𝒓𝛾) d𝛺)

∗

= ⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ ̃𝑽 stbl,𝛾

eff, U
(𝒒+𝛼)∣�⃗��̊�

𝑙𝑚𝑝⟩
∗

(7.94f)

= 𝒕∗𝑝
′𝑝𝛾,L

𝜂(𝑙′𝑚′𝑙𝑚)[ ̃𝑽 stbl,𝛾
eff, U

(𝒓; 𝒒+𝛼)] (7.94g)

can be deduced. If the input potential had been real, it would have been an equivalent

operation to just complex conjugate its starred expansion coefficients and the attributed

starred spherical harmonics in equation (7.94c).

WhileAdjusting
Tlmplm

recycling the Tlmplm subroutine from FLEUR, it is important to find all optimiza-
tions that only hold for lattice harmonics. One example is that the integrands of the radial

integrals are not generally real anymore, because lattice-harmonic coefficients are real and

spherical-harmonic coefficients may not be. Thus integrals for the imaginary part must be
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added. During the development, we decided moreover to change the interpolation in the

FLEUR integration routine Intgr3. The integral between the first mesh point and the MT
sphere center is interpolated by a triangle, since all integrands become zero at the MT sphere

center [127]. But due to the Jacobi determinant and the sum of linear potential variations,

the form of the interpolation (at least for the monoatomic systems) proved to be irrelevant.

The Reformulations
due to Hsssr_wu
and final form

large matching coefficients are multiplied in a routine which is based on Hsssr_wu.
Therefore, there is no sum over 𝑝 or 𝑝′, but each of their four possible permutations is
separately dealt with. As soon as the sums over 𝑝 and 𝑝′ are introduced, it should be easier for
the compiler to optimize, e.g. employing vectorization (especially when LOs are involved). To

prepare this, the three large matching-coefficients arrays from the recycled FLEUR subroutine
Abcof are summarized to one array and already reordered. Hence for the implementation,
equation (7.91c) transforms into

∑
𝛾

∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

𝐴∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′𝑝′ ⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ ̃𝑽 stbl,𝛾

eff
(𝒒+𝛼)∣�⃗��̊�

𝑙𝑚𝑝⟩𝛾
𝐴𝒌𝛼𝑛

𝑙𝑚𝑝 (7.95)

= ∑
𝛾

∑
𝑙′𝑚′

∑
𝑙𝑚

𝐴∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′1′ (𝐴𝒌𝛼𝑛
𝑙𝑚1 𝑡

full,11𝛼
𝜂(𝑙′𝑚′𝑙𝑚)[ ̃𝑽 stbl,𝛾

eff
(𝒒+𝛼)] + 𝐴𝒌𝛼𝑛

𝑙𝑚2 𝑡
full,12𝛼
𝜂(𝑙′𝑚′𝑙𝑚)[ ̃𝑽 stbl,𝛾

eff
(𝒒+𝛼)])

+∑
𝛾

∑
𝑙′𝑚′

∑
𝑙𝑚

𝐴∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′2 (𝐴𝒌𝛼𝑛
𝑙𝑚1 𝑡

full,21𝛼
𝜂(𝑙′𝑚′𝑙𝑚)[ ̃𝑽 stbl,𝛾

eff
(𝒒+𝛼)] + 𝐴𝒌𝛼𝑛

𝑙𝑚2 𝑡
full,22𝛼
𝜂(𝑙′𝑚′𝑙𝑚)[ ̃𝑽 stbl,𝛾

eff
(𝒒+𝛼)]) .

Since Algorithmfurthermore Abcof is programmed for systems in which symmetry can be exploited, its
output may be rotated in polyatomic system [127]. This is based on an array addressing the

types of symmetry operations, so this parameter array must only contain the index of the

unit matrix in juPhon [127]. Moreover, in this routine the factors i𝑙 are multiplied and the
diagonal of 𝒕full,𝑝𝑝

′𝛾
𝜂(𝑙′𝑚′𝑙𝑚)(𝒒

+𝛼) is only considered once. Although the speed of light within juPhon
is increased by three orders of magnitude and suppresses the 𝑝 = 2 components, the scalar-
relativistic character of the LAPW basis is already programmed. Finally, the complete procedure

of calculating equation (7.91c) is sketched in algorithm 9, which includes algorithm 10 as

well as algorithm 11, and in algorithm 12.

7.4.3 Optimized Pulay Corrections

Within Varied-bra braket:
subdivision and
inventory

the third line of the Sternheimer equation (7.88), there are two Pulay terms owing to

the fact that it is possible to vary the basis function both in the bra and in the ket. First, the

former is reformulated, aiming to identify already discussed expressions, or those in principle

available from FLEUR:

⟨̃⃗𝜳
(0)
𝒌+
bf
,𝑛′∣ℋ (0) − 𝜀(0)𝒌,𝑛∣ ⃗𝛹 (0)

𝒌,𝑛⟩
𝛼

(7.96a)

= ∑
𝑮′

(i(𝒌+
bf
+𝑮′)𝑧(0)𝑮′(𝒌+

bf
, 𝑛′))

∗
⟨ ⃗𝜙(0)

𝒌+
bf
,𝑮′∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣ ⃗𝛹 (0)
𝒌,𝑛⟩

𝛼

= ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

∑
𝑮′

(i(𝒌+
bf
+𝑮′)𝑧(0)𝑮′(𝒌+

bf
, 𝑛′)𝑎𝒌

+
bf
𝛼𝑮′

𝑙𝑚𝑝 )
∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝐴𝒌𝛼𝑛
𝑙𝑚𝑝 (7.96b)

= ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

̃𝑨∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′𝑝′ ⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
�̊�
𝑙𝑚𝑝⟩𝛼

𝐴𝒌𝛼𝑛
𝑙𝑚𝑝 (7.96c)
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Algorithm 9: Main algorithm to calculate 𝒕L,𝑝𝑝
′𝛾

𝜂(𝑙′𝑚′𝑙𝑚)(𝒒
+𝛼) from equation (7.92e). This

routine is also used to calculate 𝒕U,𝑝𝑝
′𝛾

𝜂(𝑙′𝑚′𝑙𝑚)(𝒒
+𝛼) using equation (7.93).

1 forall atoms 𝛾 in unit cell do
2 for 𝑙′ = 0 to 𝑙max,�̊� do
3 𝑙′△ = 0.5 × 𝑙′ × (𝑙′ + 1) ; // Triangular numbers
4 for 𝑙 = 0 to 𝑙′ do
5 𝔩 = 𝑙 + 𝑙′△ ; // Packed storage for 𝑙′, 𝑙
6 for 𝑙″ = 0 to 𝑙max,�̊� do
7 if 𝑙 + 𝑙′ + 𝑙″ even ∧ ∣𝑙 − 𝑙′∣ < 𝑙″ < ∣𝑙 + 𝑙′∣ then // 𝐺𝑚′,𝑚″,𝑚

𝑙′, 𝑙″, 𝑙 finite
8 for 𝑚″ <= ∣𝑙″∣ do
9 𝐿″ = 𝑙″ × (𝑙″ + 1) + 1 +𝑚″ ; // Packed storage for 𝑙″,𝑚″

10 uvu[𝔩,𝐿″] = 𝜮11′𝛾
𝑙𝑙′𝑙″𝑚″(𝒒+𝛼);

11 dvu[𝔩,𝐿″] = 𝜮21𝛾
𝑙𝑙′𝑙″𝑚″(𝒒+𝛼);

12 uvd[𝔩,𝐿″] = 𝜮12𝛾
𝑙𝑙′𝑙″𝑚″(𝒒+𝛼);

13 dvd[𝔩,𝐿″] = 𝜮22𝛾
𝑙𝑙′𝑙″𝑚″(𝒒+𝛼);

14 end for

15 end if

16 end for

17 end for

18 end for

19 Include algorithm 10 ;

20 Include algorithm 11 ;

21 end forall
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Algorithm 10: Outsourced part of algorithm 9 covering the multiplication of the

matrices 𝜮𝑝𝑝′𝛾
𝑙𝑙′𝑙″𝑚″(𝒒+𝛼) with the Gaunt coefficients as described in equation (7.92d)

using the Gaunt selection and only 𝑙 ≤ 𝑙′ (see figure 7.15).
1 for 𝑙′ = 0 to 𝑙max,�̊� do
2 𝑙′△ = 0.5 × 𝑙′ × (𝑙′ + 1) ;
3 for 𝑚′ <= ∣𝑙′∣ do
4 𝐿′ = 𝑙′ × (𝑙′ + 1) +𝑚′ ;

5 𝐿′
△ = 0.5 × 𝐿′ × (𝐿′ + 1) ;

6 for 𝑙″ = 0 to min(𝑙max,�̊�, 2𝑙′) do
7 ̃𝑙min = ∣𝑙′ − 𝑙″∣ ; // ∣𝑙′ − 𝑙″∣ ≤ 𝑙 ≤ 𝑙′ + 𝑙″
8 𝑙max = 𝑙′ − (𝑙″ mod 2) ; // (𝑙 ≤ 𝑙′ + 𝑙″) ∧ 𝑙 <= 𝑙′ ⇒ 𝑙 ≤ 𝑙′; latter

condition not violated as modulo result subtracted.
Subtracting ensures 𝑙″ mod 2 = 0 in (𝑙max + 𝑙′ + 𝑙″), while 𝑙max
mod 2 = 𝑙′ mod 2 holds.

9 for ∣𝑚″∣ ≤ 𝑙″ do
10 𝐿″ = 𝑙″ × (𝑙″ + 1) +𝑚″ ; // Packed storage for 𝑙″,𝑚″

11 𝑚 = 𝑚′ −𝑚″ ; // Gaunt selection rule for 𝑚,𝑚′,𝑚″

12 𝑙min = max( ̃𝑙min, |𝑚|) ; // |𝑚| < 𝑙 must hold, either way.
13 𝑙min = 𝑙min + (𝑙max − 𝑙min) ; // Ensure that 𝑙min mod 2 equals 𝑙max

mod 2 so that (𝑙″ + 𝑙′ + 𝑙) mod 2 = 0 holds provided 𝑙 is
incremented by steps of size 2.

14 for 𝑙 ∈ [𝑙min, 𝑙min + 2,… , 𝑙max − 2, 𝑙max] ∩ 𝑙min ≤ 𝑙 ≤ 𝑙max do
15 𝐿 = 𝑙 × (𝑙 + 1) +𝑚 ;
16 if 𝐿 ≤ 𝐿′ then

17 𝔩 = 𝑙′△ + 𝑙 ; // Packed storage for 𝑙′, 𝑙
18 𝔏 = 𝐿′

△ + 𝐿 ; // Packed storage for 𝐿′, 𝐿
19 tuu[𝔏, 𝛾] = 𝒕∗11𝛾,L𝜂(𝑙′𝑚′𝑙𝑚)[ ̃𝑽 stbl,𝛾

eff, U
(𝒓; 𝒒+𝛼)] ; // Using uvu.

20 tud[𝔏, 𝛾] = 𝒕∗12𝛾,L𝜂(𝑙′𝑚′𝑙𝑚)[ ̃𝑽 stbl,𝛾
eff, U

(𝒓; 𝒒+𝛼)] ; // Using uvd.

21 tdu[𝔏, 𝛾] = 𝒕∗21𝛾,L𝜂(𝑙′𝑚′𝑙𝑚)[ ̃𝑽 stbl,𝛾
eff, U

(𝒓; 𝒒+𝛼)] ; // Using dvu.

22 tdd[𝔏, 𝛾] = 𝒕∗22𝛾,L𝜂(𝑙′𝑚′𝑙𝑚)[ ̃𝑽 stbl,𝛾
eff, U

(𝒓; 𝒒+𝛼)] ; // Using dvd.
23 isSet[𝔏] = True ;
24 end if

25 end for

26 end for

27 end for

28 end for

29 end for
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Algorithm 11: Outsourced part of algorithm 9 setting up an index and logical matrix

to provide all matrix elements 𝒕full,𝑝𝑝
′𝛾

𝜂(𝑙′𝑚′𝑙𝑚)(𝒒
+𝛼) from the calculated matrix elements

𝒕L,𝑝𝑝
′𝛾

𝜂(𝑙′𝑚′𝑙𝑚)(𝒒
+𝛼) from equation (7.92e) (see figure 7.15).

1 for 𝑙′ = 0 to 𝑙max,�̊� do
2 for 𝑚′ <= ∣𝑙′∣ do
3 𝐿′ = 𝑙′ × (𝑙′ + 1) +𝑚′ ;

4 for 𝑙 = 0 to 𝑙max,�̊� do
5 for 𝑚 <= |𝑙| do
6 𝐿 = 𝑙 × (𝑙 + 1) +𝑚 ;
7 if 𝐿′ ≥𝐿 then
8 𝔏 = 0.5 × 𝐿′ × (𝐿′ + 1) + 𝐿 ;
9 if isSet[𝔏] then
10 eta(𝐿′, 𝐿, 𝛾) = 𝔏
11 else

12 eta(𝐿′, 𝐿, 𝛾) = −9999 ; // 𝔏 is never −9999
13 end if

14 else

15 𝔏 = 0.5 × 𝐿 × (𝐿 + 1) + 𝐿′ ; // Transpose means interchanging
𝐿 and 𝐿′

16 if isSet[𝔏] then
17 eta2(𝐿′, 𝐿, 𝛾) = -𝔏
18 else

19 eta2(𝐿′, 𝐿, 𝛾) = −9999 ; // −𝔏 is very unlikely −9999
20 end if

21 end if

22 end for

23 end for

24 end for

25 end for
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Algorithm 12: Implements equation (7.95), provided with the input of algorithm

algorithm 9 which includes algorithm 10 and algorithm 11 for generating the tuu1,
tud1, tdu1 and tdd1. For eta2, tuu2, tud2, tdu2 and tdd2 equation (7.93) is used.
1 forall atoms 𝛾 in unit cell do
2 𝐿′ = −1 ; ℒ′ = 1 ;
3 for 𝑙′ = 0 to 𝑙max,�̊� do
4 for ∣𝑚′∣ <= ∣𝑙′∣ do
5 𝐿′ = 𝐿′ + 1 ; 𝐿 = −1 ; ℒ = 1;
6 for 𝑙 = 0 to 𝑙max,�̊� do
7 for 𝑚 <= |𝑙| do
8 𝐿 = 𝐿+ 1 ;
9 if 𝐿 ≤ 𝐿′ then

10 𝔏 = eta(𝐿′, 𝐿, 𝛾)
11 else

12 𝔏 = eta2(𝐿′, 𝐿, 𝛾)
13 end if

14 if 𝔏 ≠ −9999 then
15 if 𝔏 > 0 then
16 utu = i𝑙−𝑙′ × tuu1[𝔏, 𝛾] ; utd = i𝑙−𝑙′ × tud1[𝔏, 𝛾] ; dtu = i𝑙−𝑙′ ×

tdu1[𝔏, 𝛾] ; dtd = i𝑙−𝑙′ × tdd1[𝔏, 𝛾] ;
17 else

18 utu = i𝑙−𝑙′ × (tuu2[-𝔏, 𝛾])∗ ; utd = i𝑙−𝑙′ × (tud2[-𝔏, 𝛾])∗ ; dtu
= i𝑙−𝑙′ × (tdu2[-𝔏, 𝛾])∗ ; dtd = i𝑙−𝑙′ × (tdd2[-𝔏, 𝛾])∗ ;

19 end if

20 forall 𝑛 do occupied bands
21 ax[𝑛] = ax[𝑛] + utu × mCoeffK[𝑛,ℒ,𝛾] + utd ×

mCoeffK[𝑛,ℒ+ 1,𝛾] ;
22 bx[𝑛] = bx[𝑛] + dtu × mCoeffK[𝑛,ℒ,𝛾] + dtd ×

mCoeffK[𝑛,ℒ+ 1,𝛾] ;
23 end forall

24 end if

25 ℒ = ℒ+ 2
26 end for

27 end for

28 forall occupied 𝑛 at 𝒌 do
29 forall occupied and unoccupied 𝑛′ at 𝒌 + 𝒒 do
30 matElem[𝑛′, 𝑛] = matElem[𝑛′, 𝑛] + (mCoeffB[𝑛′,ℒ′,𝛾])∗ × ax[𝑛] +

(mCoeffB[𝑛′,ℒ′,𝛾])∗ × bx[𝑛]
31 end forall

32 end forall

33 end for

34 end for

35 ℒ′ = ℒ′ + 2
36 end forall
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= ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

̃𝑨∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′𝑝′ 𝐴𝒌𝛼𝑛
𝑙𝑚𝑝(∫

𝛼
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)((ℋ (0)

sph
+ 𝑉 (0)𝛼

eff,nsph(𝒓𝜈�̊�))𝜑𝑠�̊�
𝑙𝑚𝑝(𝒓𝜈�̊�)) d3𝑟𝜈�̊�

− 𝜖(0)𝒌,𝑛 ∫
�̊�
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)𝜑𝑠�̊�

𝑙𝑚𝑝(𝒓𝜈�̊�) d3𝑟𝜈�̊�) . (7.96d)

In fact, it turns out that the overlap integral in the second line of equation (7.96d) is with

equation (5.57). Moreover, the Hamiltonian integral (excluding the matching coefficients)

in the first line of the former equation shows strong similarities to the integrals within the

parentheses of equation (5.59). The only difference consists in the fact that the left- and right-

directed action of the Hamiltonian is averaged in equation (5.59), but this does not manifest

itself in equation (7.96d). The scalar matching coefficient occurring in equation (7.96) is

already defined in equation (5.30) and the vectorial one is introduced in equations (7.36b)

to (7.36e). Since therefore analogous derivations are already described in section 5.8.2

and the MT part of section 7.2.3, the following discussion is focussed on the final results.

Although furthermore the recycled subroutines Tlmplm and Hssr_wu could be left untouched,
we still decided to remove the symmetry optimizations for the sake of consistency in the first

implementation [127, 251]. This, for instance, requires again handling complex-valued MT

integrals or calculating some of them for all atoms instead of only the representative one.

AllVaried-bra braket:
final form

in all, the overlap term of Equation (7.96d) is condensed to

−𝜖(0)𝒌,𝑛 ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

̃𝑨∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′𝑝′ 𝐴𝒌𝛼𝑛
𝑙𝑚𝑝 ∫

�̊�
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)𝜑𝑠�̊�

𝑙𝑚𝑝(𝒓𝜈�̊�) d3𝑟𝜈�̊� (7.97a)

= −𝜖(0)𝒌,𝑛∑
𝑙𝑚

( ̃𝑨∗𝒌+
bf
𝛼𝑛′

𝑙𝑚1 𝐴𝒌𝛼𝑛
𝑙𝑚1 + ̃𝑨∗𝒌+

bf
𝛼𝑛′

𝑙𝑚2 𝐴𝒌𝛼𝑛
𝑙𝑚2𝑁

�̊�
𝑙𝑙) .

Moreover, the spherical Hamiltonian part in equation (7.96d) finally results in

∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

̃𝑨∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′𝑝′ 𝐴𝒌𝛼𝑛
𝑙𝑚𝑝 ∫

𝛼
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)[ℋ (0)

sph
𝜑𝑠�̊�
𝑙𝑚𝑝(𝒓𝜈�̊�)] d3𝑟𝜈�̊� (7.98a)

= ∑
𝑙𝑚

(𝐸�̊�
𝑙

̃𝑨∗𝒌+
bf
𝛼𝑛′

𝑙𝑚1 𝐴𝒌𝛼𝑛
𝑙𝑚1 + ̃𝑨∗𝒌+

bf
𝛼𝑛′

𝑙𝑚1 𝐴𝒌𝛼𝑛
𝑙𝑚2 +𝑁𝑙𝑙

̃𝑨∗𝒌+
bf
𝛼𝑛′

𝑙𝑚2 𝐴𝒌𝛼𝑛
𝑙𝑚2𝐸

�̊�
𝑙 )

= ∑
𝑙𝑚

𝐸�̊�
𝑙 ( ̃𝑨∗𝒌+

bf
𝛼𝑛′

𝑙𝑚1 𝐴𝒌𝛼𝑛
𝑙𝑚1 +𝑁𝑙𝑙

̃𝑨∗𝒌+
bf
𝛼𝑛′

𝑙𝑚2 𝐴𝒌𝛼𝑛
𝑙𝑚2) +∑

𝑙𝑚

̃𝑨∗𝒌+
bf
𝛼𝑛′

𝑙𝑚1 𝐴𝒌𝛼𝑛
𝑙𝑚2 . (7.98b)

As the Hamiltonian only acts on the ket, in general no Hermitian matrix results. However

at least for the Goldstone modes, effectively a hermitization takes place if the second Pulay

matrix element (7.100) is added in the Sternheimer equation. Although this does not hold

anymore given a finite 𝒒, the dynamical matrix in the end is hermitized. Furthermore, this
discussion only focuses on the 𝒒+ part of the complete Sternheimer equation (6.61d). Since

finally the Hamiltonian matrix is not diagonalized as in a DFT calculation, the presented

implementation is uncritical [127]. The non-spherical potential term in equation (7.96d)

remains to be reformulated into

∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

̃𝑨∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′𝑝′ 𝐴𝒌𝛼𝑛
𝑙𝑚𝑝 ∫

𝛼
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)𝑉 (0)𝛼

eff,nsph(𝒓𝜈�̊�)𝜑𝑠�̊�
𝑙𝑚𝑝(𝒓𝜈�̊�) d3𝑟𝜈�̊� (7.99a)

= ∑
𝑙′𝑚′

∑
𝑙𝑚

̃𝑨∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′1 𝐴𝒌𝛼𝑛
𝑙𝑚1 𝑡

full,11𝛼
𝜂(𝑙′𝑚′𝑙𝑚)[𝑉

(0)𝛼
eff,nsph(𝒓𝜈�̊�)]
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+ ∑
𝑙′𝑚′

∑
𝑙𝑚

̃𝑨∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′1 𝐴𝒌𝛼𝑛
𝑙𝑚2 𝑡

full,21𝛼
𝜂(𝑙′𝑚′𝑙𝑚)[𝑉

(0)𝛼
eff,nsph(𝒓𝜈�̊�)]

+ ∑
𝑙′𝑚′

∑
𝑙𝑚

̃𝑨∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′2 𝐴𝒌𝛼𝑛
𝑙𝑚1 𝑡

full,12𝛼
𝜂(𝑙′𝑚′𝑙𝑚)[𝑉

(0)𝛼
eff,nsph(𝒓𝜈�̊�)]

+ ∑
𝑙′𝑚′

∑
𝑙𝑚

̃𝑨∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′2 𝐴𝒌𝛼𝑛
𝑙𝑚2 𝑡

full,22𝛼
𝜂(𝑙′𝑚′𝑙𝑚)[𝑉

(0)𝛼
eff,nsph(𝒓𝜈�̊�)] .

It Ket-varied braket:
final form

is straight-forward to apply the recent considerations to the the second Pulay matrix

element in the Sternheimer equation

⟨ ⃗𝛹 (0)
𝒌+
bf
,𝑛∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣
̃⃗𝜳
(0)
𝒌,𝑛′⟩

𝛼
(7.100a)

= ∑
𝑮

⟨ ⃗𝛹 (0)
𝒌+
bf
,𝑛∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣ ⃗𝜙(0)
𝒌,𝑮⟩

𝛼
i(𝒌+

bf
+𝑮)𝑧(0)𝑮 (𝒌+

bf
, 𝑛′)

= ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

𝐴∗𝒌+
bf
𝛼𝑛

𝑙𝑚𝑝
̃𝑨𝒌𝛼𝑛′

𝑙′𝑚′𝑝′(∫
𝛼
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)[(ℋ (0)

sph
+ 𝑉 (0)𝛼

eff,nsph(𝒓𝜈�̊�))𝜑𝑠�̊�
𝑙𝑚𝑝(𝒓𝜈�̊�)] d3𝑟𝜈�̊�

− 𝜖(0)𝒌𝑛 ∫
�̊�
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)𝜑𝑠�̊�

𝑙𝑚𝑝(𝒓𝜈�̊�) d3𝑟𝜈�̊�) .(7.100b)

The overlap part is given by

−𝜖(0)𝒌,𝑛 ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

𝐴∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′𝑝′
̃𝑨𝒌𝛼𝑛
𝑙𝑚𝑝 ∫

�̊�
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)𝜑𝑠�̊�

𝑙𝑚𝑝(𝒓𝜈�̊�) d3𝑟𝜈�̊� (7.101)

= −𝜖(0)𝒌,𝑛∑
𝑙𝑚

(𝐴∗𝒌+
bf
𝛼𝑛′

𝑙𝑚1
̃𝑨𝒌𝛼𝑛
𝑙𝑚1 +𝐴∗𝒌+

bf
𝛼𝑛′

𝑙𝑚2
̃𝑨𝒌𝛼𝑛
𝑙𝑚2𝑁

�̊�
𝑙𝑙) ,

the spherical Hamiltonian part by

∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

𝐴∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′𝑝′
̃𝑨𝒌𝛼𝑛
𝑙𝑚𝑝 ∫

𝛼
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)[ℋ (0)

sph
𝜑𝑠�̊�
𝑙𝑚𝑝(𝒓𝜈�̊�)] d3𝑟𝜈�̊� (7.102a)

= ∑
𝑙𝑚

(𝐸�̊�
𝑙 𝐴

∗𝒌+
bf
𝛼𝑛′

𝑙𝑚1
̃𝑨𝒌𝛼𝑛
𝑙𝑚1 +𝐴∗𝒌+

bf
𝛼𝑛′

𝑙𝑚1
̃𝑨𝒌𝛼𝑛
𝑙𝑚2 +𝑁𝑙𝑙𝐴

∗𝒌+
bf
𝛼𝑛′

𝑙𝑚2
̃𝑨𝒌𝛼𝑛
𝑙𝑚2𝐸

�̊�
𝑙 )

= ∑
𝑙𝑚

𝐸�̊�
𝑙 (𝐴

∗𝒌+
bf
𝛼𝑛′

𝑙𝑚1
̃𝑨𝒌𝛼𝑛
𝑙𝑚1 +𝑁𝑙𝑙𝐴

∗𝒌+
bf
𝛼𝑛′

𝑙𝑚2
̃𝑨𝒌𝛼𝑛
𝑙𝑚2) +∑

𝑙𝑚
𝐴∗𝒌+

bf
𝛼𝑛′

𝑙𝑚1
̃𝑨𝒌𝛼𝑛
𝑙𝑚2 , (7.102b)

and the non-spherical Hamiltonian contribution by

∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

𝐴∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′𝑝′
̃𝑨𝒌𝛼𝑛
𝑙𝑚𝑝 ∫

𝛼
∑
𝑠

𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)𝑉 (0)𝛼

eff,nsph(𝒓𝜈�̊�)𝜑𝑠�̊�
𝑙𝑚𝑝(𝒓𝜈�̊�) d3𝑟𝜈�̊� (7.103)

= ∑
𝑙′𝑚′

∑
𝑙𝑚

𝐴∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′1 ( ̃𝑨𝒌𝛼𝑛
𝑙𝑚1 𝑡

full,11𝛼
𝜂(𝑙′𝑚′𝑙𝑚)[𝑉

(0)𝛼
eff,nsph(𝒓𝜈�̊�)] + ̃𝑨𝒌𝛼𝑛

𝑙𝑚2 𝑡
full,12𝛼
𝜂(𝑙′𝑚′𝑙𝑚)[𝑉

(0)𝛼
eff,nsph(𝒓𝜈�̊�)])

+ ∑
𝑙′𝑚′

∑
𝑙𝑚

𝐴∗𝒌+
bf
𝛼𝑛′

𝑙′𝑚′2 ( ̃𝑨𝒌𝛼𝑛
𝑙𝑚1 𝑡

full,21𝛼
𝜂(𝑙′𝑚′𝑙𝑚)[𝑉

(0)𝛼
eff,nsph(𝒓𝜈�̊�)] + ̃𝑨𝒌𝛼𝑛

𝑙𝑚2 𝑡
full,22𝛼
𝜂(𝑙′𝑚′𝑙𝑚)[𝑉

(0)𝛼
eff,nsph(𝒓𝜈�̊�)]) .

It Algorithmmust be considered that these two matrix elements must both be calculated because a

complex conjugation is not necessarily the same. Surface integrals such as described by
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Klüppelberg [88, equation (A.52)] might entail. The implemented procedure of the non-

spherical part is analogous to the already referenced algorithm 9, algorithm 10, algorithm 11

and algorithm 12. However, there is no distinct treatment of triangular parts because the

effective potential is real. Finally, analogous to the MT part of section 7.4.2, the triangle

interpolation of Intgr3 is applied, but it has shown no significant effect.

7.4.4 Optimized Surface-Integral Correction

TheSubdivision IR surface integral in the last line of the Sternheimer equation (7.88)

∮
∂IR𝛼

̂𝒆IR𝛹
∗(0)IR
𝒌+𝒒,𝑛′(𝒓)(ℋ

(0) − 𝜀(0)𝒌,𝑛)𝛹
(0)IR
𝒌,𝑛 (𝒓) d𝑆 (7.104)

= −∮
∂𝛼

̂𝒓𝛹 ∗(0)IR
𝒌+
bf
,𝑛′ (𝒓)(𝒯+ 𝑉 (0)IR

eff
(𝒓) − 𝜀(0)𝒌,𝑛)𝛹

(0)IR
𝒌,𝑛 (𝒓) d𝑆

subdivides into a kinetic-energy part, an overlap part multiplied by the Kohn–Sham energy,

and a part containing the full effective potential. This partitioning is typical for the IR

Hamiltonian matrix-element, as already discussed in section 5.8.1. Furthermore, some

concepts of equation (7.55) can here likewise be adapted.

FocussingOverlap on the overlap integral, the LAPW basis functions (5.17b) can be inserted

and summarized by using equation (7.25):

∮
∂𝛼

̂𝒓 𝛹 ∗(0)IR
𝒌+
bf
,𝑛′ (𝒓)𝛹

(0)IR
𝒌,𝑛 (𝒓) d𝑆 (7.105a)

=
𝑅2

�̊�
𝛺

∮
∂𝛼

̂𝒓 ∑
𝑮′𝑮

𝑧∗(0)𝑮′ (𝒌+
bf
, 𝑛′)e−i(𝒌+

bf
+𝑮′)⋅𝒓𝑧(0)𝑮 (𝒌, 𝑛)ei(𝒌+𝑮)⋅𝒓 d𝛺

=
𝑅2

�̊�
𝛺

∑
𝑮′𝑮

𝑧∗(0)𝑮′ (𝒌+
bf
, 𝑛′)𝑧(0)𝑮 (𝒌, 𝑛)∮

∂𝛼
̂𝒓 ∑
𝑮𝑮′

e−i(𝒌+𝒒+𝑮f+𝑮′)⋅𝒓ei(𝒌+𝑮)⋅𝒓 d𝛺 (7.105b)

=
𝑅2

�̊�
𝛺

∑
𝑮′𝑮

𝑧∗(0)𝑮′ (𝒌+
bf
, 𝑛′)𝑧(0)𝑮 (𝒌, 𝑛)∮

∂𝛼
̂𝒓∗ei(𝑮−𝒒−𝑮f−𝑮′)⋅(𝒓𝛼+𝝉𝛼) d𝛺 . (7.105c)

Having changed into the local coordinate system 𝒓𝛾 = 𝒓−𝝉𝛾, a Rayleigh decomposition (5.5),
the definition 𝑮″ ≔ 𝑮−𝑮bf −𝑮′, and the orthogonality of the spherical harmonics can be

applied. The latter selects 𝑙 = 1 as only relevant channel

∮
∂𝛼

̂𝒓 𝛹 ∗(0)IR
𝒌+
bf
,𝑛′ (𝒓)𝛹

(0)IR
𝒌,𝑛 (𝒓) d𝑆 (7.105d)

=
𝑅2

�̊�
𝛺

∑
𝑮′𝑮

𝑧∗(0)𝑮′ (𝒌+
bf
, 𝑛′)𝑧(0)𝑮 (𝒌, 𝑛)∮

∂𝛼
̂𝒓∗ei(𝑮

″−𝒒)⋅(𝒓𝛼+𝝉𝛼) d𝛺

=
𝑅2

�̊�
𝛺

∑
𝑮′𝑮

𝑧∗(0)𝑮′ (𝒌+
bf
, 𝑛′)𝑧(0)𝑮 (𝒌, 𝑛)∑

𝑖𝑚′

𝜁∗𝑖,𝑚′ ̂𝒆𝑖 ∑
𝑙𝑚

4πi𝑙j𝑙(∣𝑮″ − 𝒒∣𝑅�̊�)e
i(𝑮″−𝒒)⋅𝝉𝛼 (7.105e)

×Y∗
𝑙𝑚(𝑮″ − 𝒒
⋀

)∮
∂𝛼

Y∗
1𝑚′( ̂𝒓𝛼)Y𝑙𝑚(𝒓𝛼) d𝛺

= i
4π𝑅2

�̊�
𝛺

∑
𝑮′𝑮

𝑧∗(0)𝑮′ (𝒌+
bf
, 𝑛′)𝑧(0)𝑮 (𝒌, 𝑛)j1(∣𝑮″ − 𝒒∣𝑅�̊�)e

i(𝑮″−𝒒)⋅𝝉𝛼 (7.105f)
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×∑
𝑖𝑚

𝜁∗𝑖,𝑚 ̂𝒆𝑖Y∗
1𝑚(𝑮″ − 𝒒
⋀

).

For Kinetic-energythe kinetic energy, the Laplace operator only acts on the ket in the first implementa-

tion:

∮
∂𝛼

̂𝒓 𝛹 ∗(0)IR
𝒌+
bf
,𝑛′ (𝒓) 𝒯 𝛹 (0)IR

𝒌,𝑛 (𝒓) d𝑆 (7.106a)

= −
𝑅2
MT

𝛺
∮
∂𝛼

̂𝒓 ∑
𝑮′𝑮

𝑧∗(0)𝑮′ (𝒌+
bf
, 𝑛′)e−i(𝒌+

bf
+𝑮′)⋅𝒓𝑧(0)𝑮 (𝒌, 𝑛)∆

2
ei(𝒌+𝑮)⋅𝒓 d𝛺 (7.106b)

= i
4π𝑅2

�̊�
𝛺

∑
𝑮′𝑮

𝑧∗(0)𝑮′ (𝒌+
bf
, 𝑛′)𝑧(0)𝑮 (𝒌, 𝑛)

|𝒌 +𝑮|2

2
j1(∣𝑮″ − 𝒒∣𝑅�̊�)e

i(𝑮″−𝒒)⋅𝝉𝛼 (7.106c)

×∑
𝑖𝑚

𝜁∗𝑖,𝑚 ̂𝒆𝑖Y∗
1𝑚(𝑮″ − 𝒒
⋀

).

But as anticipated in section 5.11, this can lead to numerical problems, because the LAPW

basis is only continuous up to the first-order energy derivative. A symmetric application of

the kinetic energy, as on the left-hand side of equation (5.77), appears to be more stable from

a numeric point of view25[119, 127, 278]. When choosing the type of the kinetic energy

operator, consistency is decisive [251]. For the Pulay matrix elements in section 7.4.3 the

numerics are controllable with the Laplace operator, since the eigenvalue equations (5.4)

and (5.10) can be exploited. Therefore, one must also start from a Laplace operator in the

IR, which however can be reformulated causing additional terms similar to those in equation

section 5.11.

For Potentialthe surface integral containing the potential in equation (7.104), an auxiliary

quantity

𝝃𝑙″𝑚″ ≔ ∮
∂𝛼

Y∗
𝑙″𝑚″( ̂𝒓𝛼) ̂𝒓𝑉 (0)IR

eff
(𝒓) d𝑆 (7.107a)

= ∮
∂𝛼

Y∗
𝑙″𝑚″( ̂𝒓𝛼)∑

𝑖
∑
𝑚′

𝜁𝑖,𝑚′ ̂𝒆𝑖Y1𝑚′( ̂𝒓𝛼)∑
𝑮

𝑉 (0)IR
eff

(𝑮)ei𝑮⋅𝒓 d𝑆 (7.107b)

= ∮
∂𝛼

Y∗
𝑙″𝑚″( ̂𝒓𝛼)∑

𝑖
∑
𝑚′

𝜁𝑖,𝑚′ ̂𝒆𝑖Y1𝑚′( ̂𝒓𝛼)∑
𝑮

𝑉 (0)IR
eff

(𝑮)ei𝑮⋅(𝒓𝛼+𝝉𝛼) d𝑆 (7.107c)

= ∮
∂𝛼

Y∗
𝑙″𝑚″( ̂𝒓𝛼)∑

𝑖
∑
𝑚′

𝜁𝑖,𝑚′ ̂𝒆𝑖Y1𝑚′( ̂𝒓𝛼)∑
𝑮

𝑉 (0)IR
eff

(𝑮)ei𝑮⋅𝝉𝛼 (7.107d)

×∑
𝑙𝑚

4πi𝑙Y∗
𝑙𝑚( ̂𝑮)j𝑙(𝐺𝑟)Y∗

𝑙𝑚( ̂𝒓𝛼) d𝑆

= ∑
𝑖

∑
𝑚′

𝜁𝑖,𝑚′ ̂𝒆𝑖 ∑
𝑮

𝑉 (0)IR
eff

(𝑮)∑
𝑙𝑚

4πi𝑙Y∗
𝑙𝑚( ̂𝑮)j𝑙(𝐺𝑅�̊�)ei𝑮⋅𝝉𝛼 (7.107e)

×∮
∂𝛼

Y∗
𝑙″𝑚″( ̂𝒓𝛼)Y1𝑚′( ̂𝒓𝛼)Y𝑙𝑚(𝒓) d𝑆

= 4π∑
𝑮

𝑉 (0)IR
eff

(𝑮)ei𝑮⋅𝝉𝛼 ∑
𝑙𝑚

i𝑙j𝑙(𝐺𝑅�̊�)Y∗
𝑙𝑚( ̂𝑮)∑

𝑚′𝑖
𝜁𝑖,𝑚′ ̂𝒆𝑖𝐺

𝑚″,𝑚′,𝑚
𝑙″, 1, 𝑙 (7.107f)

is introduced. This is because the number of four expandable quantities (two wave functions,

the potential and the normal vector) must be reduced, because one Gaunt coefficient is

25 Alexander Neukirchen has found that this has only a marginal effect on the phonon dispersion relation of fcc

Al. However he has programmed it as a potential backup solution for more complicated systems.
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composed of only three spherical harmonics. Using this 𝝃𝑙″𝑚″, the potential part of the surface

integral finally yields

∮
∂𝛼

̂𝒓 𝛹 ∗(0)
𝒌+
bf
,𝑛′(𝒓)𝑉

(0)IR
eff

(𝒓)𝛹 (0)
𝒌,𝑛(𝒓) d𝑆 (7.108a)

= 1
𝛺

∮
∂𝛼

∑
𝑮𝑮′

𝑧∗(0)𝑮′ (𝒌+
bf
, 𝑛′)e−i(𝒌+

bf
+𝑮′)⋅𝒓𝑧(0)𝑮 (𝒌, 𝑛)ei(𝒌+𝑮)⋅𝒓 ∑

𝑙″𝑚″

𝝃𝑙″𝑚″Y𝑙″𝑚″(𝒓𝛼) d𝑆 (7.108b)

=
(4π𝑅�̊�)2

𝛺
∑
𝑮′

𝑧∗(0)𝑮′ (𝒌+
bf
, 𝑛′)∑

𝑙′𝑚′

(−i)𝑙′j𝑙′(∣𝒌
+
bf
+𝑮∣𝑅�̊�)Y𝑙′𝑚′(𝒌+

bf
+𝑮
⋀

)ei(𝒌
+
bf
+𝑮′)⋅𝝉𝛼

×∑
𝑮

𝑧(0)𝑮 (𝒌, 𝑛)∑
𝑙𝑚

i𝑙j𝑙(|𝒌 +𝑮|𝑅�̊�)Y∗
𝑙𝑚(𝒌 +𝑮
⋀

)ei(𝒌+𝑮)⋅𝝉𝛼 ∑
𝑙″𝑚″

𝝃𝑙″𝑚″ (7.108c)

×∮
∂𝛼

Y∗
𝑙′𝑚′(𝒓𝛼)Y𝑙𝑚(𝒓𝛼)Y𝑙″𝑚″(𝒓𝛼) d𝛺

=
(4π𝑅�̊�)2

𝛺
∑
𝑙′𝑚′

(7.108d)

×(∑
𝑮′

𝑧∗(0)𝑮′ (𝒌+
bf
, 𝑛′)((−i)𝑙′j𝑙′(∣𝒌

+
bf
+𝑮∣𝑅�̊�)Y𝑙′𝑚′(𝒌+

bf
+𝑮
⋀

)e−i(𝒌+
bf
+𝑮′)⋅𝝉𝛼))

×∑
𝑙𝑚

(∑
𝑮

𝑧(0)𝑮 (𝒌, 𝑛)(i𝑙j𝑙(|𝒌 +𝑮|𝑅�̊�)Y∗
𝑙𝑚(𝒌 +𝑮
⋀

)ei(𝒌+𝑮)⋅𝝉𝛼)) ∑
𝑙″𝑚″

𝝃𝑙″𝑚″𝐺𝑚′,𝑚,𝑚″

𝑙′, 𝑙, 𝑙″

=
(4π𝑅�̊�)2

𝛺

∣𝑙+𝑙″∣

∑
𝑙′=|𝑙−𝑙″|

(7.108e)

×(∑
𝑮′

𝑧∗(0)𝑮′ (𝒌+
bf
, 𝑛′)((−i)𝑙′j𝑙′(∣𝒌

+
bf
+𝑮∣𝑅�̊�)Y𝑙′,𝑚+𝑚″(𝒌+

bf
+𝑮
⋀

)e−i(𝒌+
bf
+𝑮′)⋅𝝉𝛼))

×∑
𝑙𝑚

(∑
𝑮

𝑧(0)𝑮 (𝒌, 𝑛)(i𝑙j𝑙(|𝒌 +𝑮|𝑅�̊�)Y∗
𝑙𝑚(𝒌 +𝑮
⋀

)ei(𝒌+𝑮)⋅𝝉𝛼)) ∑
𝑙″𝑚″

𝝃𝑙″𝑚″𝐺𝑚+𝑚″,𝑚″,𝑚
𝑙′, 𝑙″, 𝑙 .

ItAlgorithm is important to use the unwarped potential, i.e., lacking the convolution with the IR Heaviside

step function [251]. The algorithm which has been presented for the surface integral (7.104)

is inspired by the strategy which has been developed by Klüppelberg [88] for similar surface

integrals in his force formalism. Finally, I programmed a factor to increase the 𝑙max,�̊� of the
Rayleigh decomposition as discussed by Klüppelberg [88], who proposes a factor of 2 [251].
Although for fcc Ne and fcc Al a factor of 1 is sufficient, it might be necessary to increase it
for more sophisticated materials. It must be considered that expanding IR quantities by a

Rayleigh decomposition until 𝑙max,�̊� introduces to some extent a new cutoff, which should be
well-converged [251].

7.4.5 Mixing

AsConcept already touched in section 7.4.1, the output first-order density variation 𝝆(1)
out(𝒓, 𝒒+𝛼) must

be mixed with the input one 𝝆(1)
in

(𝒓, 𝒒+𝛼) for the Sternheimer equation to reach self-consistency.
Following section 2.2.3, the mixing of the first-order density variation translates into finding
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the minimum of

min ∥𝝆(1)
out(𝒓, 𝒒+𝛼) − 𝝆(1)

in
(𝒓, 𝒒+𝛼)∥ ≕ min ∥Δ𝝆(1) (𝒓, 𝒒+𝛼)∥ . (7.109a)

In FLEUR, i.e., in the FLAPW method (see in chapter 5), the norm reads

min ∥Δ𝝆(1) (𝒓, 𝒒+𝛼)∥ = ∫
𝛺
Δ𝝆∗(1) (𝒓, 𝒒+𝛼)𝑤(𝒓)Δ𝝆(1) (𝒓, 𝒒+𝛼) d3𝑟 (7.109b)

= ∫
IR

Δ𝝆∗(1) (𝒓, 𝒒+𝛼)𝑤(𝒓)Δ𝝆(1) (𝒓, 𝒒+𝛼) d3𝑟 (7.109c)

+∑
𝛾

∫
𝛾
Δ𝝆∗(1) (𝒓, 𝒒+𝛼)𝑤(𝒓)Δ𝝆(1) (𝒓, 𝒒+𝛼) d3𝑟

where the metric 𝑤 is utilized [292]. By analogy with equation (5.18), the plane-wave and
spherical-harmonic basis set is now inserted. Furthermore, the IR integral volume is extended

to the complete unit cell by introducing the IR step function (5.48b). This allows for revealing

the definition of the metric 𝑤 [292] in the IR

∫
IR

Δ𝝆∗(1)(𝒓, 𝒒+𝛼)𝑤(𝒓)Δ𝝆(1)(𝒓, 𝒒+𝛼) d3𝑟 (7.110a)

≔ ∑
𝑮

Δ𝝆∗(1)(𝑮; 𝒒+𝛼)∑
𝑮′

Δ𝝆(1)(𝑮′; 𝒒+𝛼) 1
𝛺

∫
𝛺
e−i𝑮⋅𝒓Θ(𝒓)ei𝑮′⋅𝒓 d3𝑟

= ∑
𝑮

Δ𝝆∗(1)(𝑮; 𝒒+𝛼)[Δ𝝆(1) Θ](𝑮; 𝒒+𝛼) , (7.110b)

and for the MT integral with a logarithmic mesh

∑
𝛾

∫
𝛾
Δ𝝆∗(1)

𝛾 (𝒓, 𝒒+𝛼)𝑤(𝒓)Δ𝝆(1)
𝛾 (𝒓, 𝒒+𝛼) d3𝑟 (7.111a)

≔ ∑
𝛾

∑
𝑙𝑚

∑
𝜈
[𝝆∗(1)

𝛾 (𝑟𝜈, 𝒒+𝛼)]
𝑙𝑚

1
𝛺
𝑟2𝜈�̊�

d𝑟𝜈�̊�

d𝜈�̊�
[𝝆(1)

𝛾 (𝑟𝜈, 𝒒+𝛼)]
𝑙𝑚

= ∑
𝛾

∑
𝑙𝑚

∑
𝜈�̊�

1
𝛺
𝑟3𝜈�̊� δ𝑟𝜈�̊� [𝝆∗(1)𝛾

�̊� (𝑟𝜈, 𝒒+𝛼)]
𝑙𝑚

[𝝆(1)𝛾
�̊� (𝑟𝜈, 𝒒+𝛼)]

𝑙𝑚
. (7.111b)

The integral in equation (7.110a) including 𝛺−1 and the prefactor 𝛺−1𝑟3𝜈�̊� δ𝑟𝜈�̊� in equa-

tion (7.111a) are denoted as elements of the so-called Gram matrix [127, 293]. Furthermore,

the latter expression shows that predominantly the mesh points close to the boundary con-

tribute to the mixing because of the factor 𝑟3𝜈�̊� in equation (7.111b). However as an additional

security measure for the convergence of the mixing, we do not involve the second line of

equation (7.37b) into the mixing, since it does not change during the self-consistency proce-

dure. Equations (7.110b) and (7.111b) contain the coefficients which are strung together

into a mixing vector, subject to a mixing algorithm. In the current version of juPhon, one can
choose between simple mixing and general Anderson mixing (cf. section 2.2.3).

Finally, Algorithmit must be considered that coefficients of the charge-density variation are (i)

complex-valued and (ii) have a vectorial character. Case (i) does not present a challenge,

because likewise the star coefficients are complex [119, 127, 278]. Therefore, for each

single IR coefficient (7.110b) its real and imaginary parts are placed subsequently into

the aforementioned mixing vector. This can analogously be applied to the complex-valued
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spherical harmonic coefficients (7.111b) which replace the real lattice harmonic coefficients

in the recycled routines. These FLEUR routines are Mix.F and their dependencies [127]. As
far as case (ii) is concerned, I implemented that the displacement directions are separately

dealt with. This enables us to stop the mixing in one direction while the other directions are

not converged yet. In order to allow for a close inspection of the mixing distance (2.10), the

real and imaginary part as well as each displacement direction are printed for every iteration

step.

TheEvolution of
mixing distances

aforementioned distances for fcc Ne and bcc Al are plotted in figure 7.16 as a

function of iteration steps for various real and imaginary parts, displacement directions and 𝒒-
vectors. Some distances are very large in the first two iterations but rapidly collapse then.

This originates from the fact that the general Anderson mixing requires two iteration to store

a history, before it unlocks its true potential. In general the distances of fcc Al are a little
larger relative to fcc Ne. This might be due to their different orders of magnitude for their
phonon frequencies or the different importance of the Hartree potential, since fcc Al features
stronger bondings (covalent for the former vs. Van der Waals for the latter) [127]. For both

materials, 𝒒 = 𝟎 converges fastest relative to finite 𝒒-vectors. The calculation in juPhon is
assumed to be converged below 4 ⋅ 10−5 e a−4

0 and mixing parameter 𝛼 reads 0.05.

7.4.6 Self-Consistency Cycle

TheSetting the stage self-consistency cycle (SCC) serves the purpose of iteratively achieving a self-consistent

solution of the Sternheimer equation, i.e., self-consistent first-order potential and density

variations. Both quantities (ideally) increase their accuracy as a function of the iteration steps.

The efficiency and the numerical stability of this minimization procedure is governed by its

strategy. In the following the approach of juPhon is described.

AsInitial density
variations

already discussed in section 6.4.3, the first-order external-potential variation is

known before the first iteration. It describes the perturbation the system undergoes, inducing

a response. Therefore, the density variation as well as the Hartree- and xc-potential variations

cannot be generated before the second iteration. Apart from those quantities, all gradients

of the unperturbed density or the unperturbed effective potential are at hand from the

beginning. Hence, two options for the HF contributions to the Sternheimer equation (7.88)

in the displaced MT 𝛼 are available for the first iteration. The first one (i) is to switch off
the gradient of the unperturbed Hartree and xc potentials and activate them again for the

second iteration in the second matrix element of the second line in equation (7.88), as soon

as an approximation to the first-order effective potential is available. In contrast, the second

option (ii) is to include the gradient of the complete effective potential from the beginning

of the SCC. On the one hand, the HF contributions are optimized to avoid inaccuracies

due to the summation of large numbers. In this sense, option (i) should be preferred and

is consistent with the proposal of Klüppelberg [88]. Given this choice, inaccuracies from

the gradients of the Hartree and the xc potentials need not to be dealt with in the first

iteration. On the other hand, one could argue that omitting the gradient of the Hartree- and

the xc potentials in the first iteration could hinder the SCC from converging to the correct

minimum [256]. But, the volume integrals in the MT Hartree-potential gradient (6.44) and

the xc-potential gradient (7.71d) only give a contribution in the first iteration. Furthermore,

they are large relative to the contributions of the remaining iterations. Still, in all iterations
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Re, 𝑖 = 1, (0, 0, 0)⊤

Im, 𝑖 = 1, (0, 0, 0)⊤
Re, 𝑖 = 2, (0, 1/8, 1/8)⊤

Im, 𝑖 = 2, (0, 1/8, 1/8)⊤
Re, 𝑖 = 3, (1/8, 5/8, 1/2)⊤

Im, 𝑖 = 3, (1/8, 5/8, 1/2)⊤

Figure 7.16: Mixing distances of first-order density variation as a function of iteration steps for fcc

Ne (above) and fcc Al (below). Shown are its real and imaginary parts for various
displacement directions 𝑖 and 𝒒-vectors. As soon as the mixing distances are below
the threshold 4 ⋅ 10−5 e a−4

0 , the calculation is assumed to be converged. Finally, the

FLEUR input-generator input files this calculations are based on can be found in
appendix B.
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𝛁𝜌(0)(𝒓) ((7.17), (7.21)) 𝔣xc[𝜌](𝒓) (7.68b) [𝛁𝑉 (0)𝛾
eff, sh

(𝒓)]
𝑙𝑚
((7.62) + (7.71d))

[𝛁𝑉 (0)𝛾
eff, shInit

(𝒓)]
𝑙𝑚
(2. (ext) & 3. lns. (7.62))𝒕full,𝑝𝑝′𝛼

𝜂(𝑙′𝑚′𝑙𝑚)[𝛁𝑉 (0)𝛾,nsph
eff, shInit

(𝒓)] (5.62)

𝝆(1)
ct (𝒓, 𝒒+𝛼) ((7.23c), (7.24))

𝑽 (1)IR
eff

(𝒓), ̃𝑽 stbl,𝛾
eff,init

(𝒒+𝛼) ((7.64b), (7.66))𝒛(1)
𝑮 (𝒌,𝑛; 𝒒+𝛼) (7.87c)

𝝆(1)
sh

(𝒓; 𝒒+𝛼) ((7.32), (7.38))

𝑽 (1)IR
eff

(𝒓), ̃𝑽 stbl,𝛾
eff

(𝒒+𝛼)((7.64b), (7.66), (7.70a), (7.72c))𝒛(1)
𝑮 (𝒌,𝑛; 𝒒+𝛼) (7.87c)

𝝆(1)
sh

(𝒓; 𝒒+𝛼) ((7.32), (7.38))

𝑽 (1)IR
eff

(𝒓), ̃𝑽 stbl,𝛾
eff

(𝒒+𝛼)((7.64b), (7.66), (7.70a), (7.72c))𝒛(1)
𝑮 (𝒌,𝑛; 𝒒+𝛼) (7.87c)

𝝆(1)
sh

(𝒓; 𝒒+𝛼) ((7.32), (7.38))

𝑽 (1)
eff

(𝒓; 𝒒+𝛼) ((7.64b), (7.66), (7.70a), (7.72c))

𝝆(1)(𝒓; 𝒒+𝛼) ((7.32), (7.38))

Start self-consistency procedure

Initial cycle

Regular cycle,

until converged

Final cycle

FINISHED!

Figure 7.17: Flow chart of the implemented Sternheimer self-consistency cycle. Various quantities

(grayish background) are generated before the actual self-consistency procedure

starts with the first cycle, in order to avoid calculating them redundantly. For the

initial cycle only the external part of the unperturbed effective potential gradient

and the first-order effective-potential variation are utilized. After the regular cycle

has converged, the final cycle serves to calculate all resulting quantities (greenish

background) without any adjustments for the Sternheimer equation. This ensures

to have a complete result when the Sternheimer self-consistency cycle is finished.
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they are sufficiently mitigated by the radial Jacobi determinant 𝑟2𝜈�̊�. In the end, a numerical

analysis of the final results by Alexander Neukirchen has shown for fcc Ne and fcc Al that
no difference between options (i) and (ii) can be observed. Although this must be tested

for further systems in the future, this discussion proceeds with option (i), because it is more

consistent with the overall optimization concept.

A Start of mixingfurther decision we reached is to start the mixing, i.e., to store a mixing history

after the third iteration (the second one of the regular cycle in figure 7.17). The first-order

density variations known after the second and third iterations serve as an input for the mixing

routine. Its output first-order density variation is inserted into the first-order effective potential

variations for the fourth iteration. This gives lower starting distances than if the mixing would

have been started after the second iteration.

According Further
optimizations and
algorithm

to the frozen-core and the frozen-augmentation approximations, only the

first-order variations of the wave-function expansion coefficients are the subjects of the SCC.

Furthermore, the MT gradient is assumed to cause severe numerical challenges disadvan-

tageous for the mixing, i.e., the convergence of the Sternheimer equation. Therefore, the

gradient of the density is separated from the mixing process, i.e., only the part of the density

variation that lies fully in the LAPW Hilbert space is varied by the mixing. However, the

generation of the first-order Hartree-potential variation multipole-moments (6.37) requires

the full charge-density variation. This in particular includes the gradient of the unperturbed

charge density. Since moreover the complete first-order density variation is required for the

dynamical matrix, the gradient is added after the SCC has converged. The same holds true

for the linear first-order effective potential variation, which is optimized for the Sternheimer

equation. All terms that have been deactivated for the sake of optimizing the Sternheimer

equation must be enabled in the final iteration. Otherwise, continuity checks fail. Before

starting a new mixing sequence, all files with “broyden” in their name must be deleted, on
condition that the general Anderson mixing is activated. The complete SCC is sketched in

figure 7.17.

7.4.7 Tests

The Outlinetests of the Sternheimer equation fall into different categories. While test 21, test 22,

as well as test 23 deal with the HF contributions, test 24 is devoted to the Pulay part, and

test 25 checks the IR surface integral. The ultimate test of the mixing subroutines is that the

converged results are correct. Still, the small consistency check in test 26 makes sense in this

context. Finally, test 27, test 28, and test 29 check the outcome of the Sternheimer equation.

Test 21: Hellmann–Feynman Sternheimer Equation

Ignoring the Pulay and surface corrections in the Sternheimer equation (7.86) and set-

ting 𝒒 = 𝟎 leads to

𝒛(1)
𝑛′ (𝒌, 𝑛; 𝟎+𝛼) = −

⟨𝛹 (0)
𝒌,𝑛′∣𝓥

(1)
eff

(𝟎+𝛼)∣𝛹 (0)
𝒌,𝑛⟩𝛺

𝜀(0)𝒌,𝑛′ − 𝜀(0)𝒌,𝑛

(7.112a)
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results. This equation features close analogies to the expression for the first-order wave

function in Rayleigh–Schrödinger perturbation theory (4.8c). The background details are

already pointed out in chapter 4. When choosing now a constant potential with value 1, so

[𝓥(1)IR
eff

(𝑮 = 𝟎; 𝟎+𝛼)] = 1 (7.112b)

and

[𝓥(1)𝛾
eff

(𝑟𝜈�̊�; 𝟎+𝛼)]
00

=
√
4π , (7.112c)

the overlap in the nominator of equation (7.112) remains. For every 𝒌-vector it equals δ𝑛𝑛′

and is already checked in test 5. But if 𝑛 = 𝑛′, the Kohn–Sham energies are degener-

ate. Thus, this band configuration gives no contribution to the first-order wave-function

expansion coefficients (see section 7.4.1). According to the implementation, this test passes

provided [𝒛(1)
𝑛′ (𝒌, 𝑛; 𝒒𝛼)]

𝑖
< 9⋅10−8 e

1
2 a−2

0 , where 𝑖 denotes the displacement directions. [251]

Test 22: Hellmann–Feynman Matrix Element for 𝒒 = 𝟎

For the Goldstone modes, the IR first-order effective-potential variation equals minus the

gradient of the unperturbed potential (for polyatomic system a sum over all displaced atoms

is required). As a consequence, the first matrix element in the second line of the Sternheimer

equation (7.88) turns into the summands of

−∑
𝒌,𝑛

⟨𝛹 (0)
𝒌,𝑛∣𝛁𝑉 (0)

eff
∣𝛹 (0)

𝒌,𝑛⟩
IR

= −𝛺∑
𝒌,𝑛

1
𝛺

∫
𝛺
𝛹 ∗(0)
𝒌,𝑛 𝛁𝑉 (0)

eff
ΘIR(𝒓)𝛹

(0)
𝒌,𝑛 d3𝑟 . (7.113)

The test passes if the difference of the left and the right sides for every 𝒌-vector and band 𝑛 is
less than 1 ⋅ 10−6 Eh a

−1
0 , where Eh is the Hartree energy and a0 the Bohr radius.

Test 23: Vanishing of the First-Order Kohn–Sham Energy

AccordingConcept to the theory in section 6.1, the first-order variation of the Kohn–Sham energy

vanishes for non-metallic systems and for metals with a monoatomic lattice basis. So, this

test passes if 𝝐(1)𝒌𝑛(𝛼𝟎
+) ≤ 9 ⋅ 10−6 Eh a

−1
0 , which is fulfilled for each system relevant in this

dissertation. For polyatomic metals, this test must be deactivated, because 𝝐(1)𝒌𝑛(𝛼𝟎
+) can have

a finite value for the Goldstone modes.

StartingFormalism and
algorithm

from Equation (6.62), 𝝐(1)𝒌𝑛(𝛼𝟎
+) can be reformulated with an ansatz very

similar to section 7.4.1. This yields

𝝐(1)𝒌,𝑛(𝛼𝟎
+) = ⟨𝛹 (0)

𝒌,𝑛∣𝓥
(1)
eff

(𝟎+𝛼)∣𝛹 (0)
𝒌,𝑛⟩

IR
(7.114)

+∑
𝛾
⟨ ⃗𝛹 (0)

𝒌,𝑛∣𝓥
(1)
eff

(𝟎+𝛼) +𝛁𝒱 (0)
eff

δ𝛾𝛼∣ ⃗𝛹 (0)
𝒌,𝑛⟩𝛾

+⟨̃⃗𝜳
(0)
𝒌,𝑛∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣ ⃗𝛹 (0)
𝒌,𝑛⟩

𝛼

+⟨ ⃗𝛹 (0)
𝒌,𝑛∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣
̃⃗𝜳
(0)
𝒌,𝑛⟩

𝛼
+∮

∂IR𝛼

̂𝒆IR𝛹
∗(0)IR
𝒌,𝑛 (ℋ (0) − 𝜀(0)𝒌,𝑛)𝛹

(0)IR
𝒌,𝑛 d𝑺 .
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For being able to conduct this test before the first-order variation of the effective potential is

at hand, the negative gradient of the unperturbed effective potential is inserted. Furthermore,

by testing whether the right-hand side of equation (7.114) vanishes, also the complete

Sternheimer equation is checked, because the former and latter are identical for 𝒒 = 𝟎
and 𝑛 = 𝑛′.

Thus, Optimizing
Sternheimer
implementation

when inserting equation (7.114) into the Sternheimer equation (7.87g) on

condition that 𝒒 = 𝟎, the right-hand side of the latter becomes zero for equal bands. Hence,
for equal bands in the bras and kets, the right hand-side of the Sternheimer equation can be

set to zero to improve numerics. This can be seen in

−𝒛(1)
𝑛 (𝒌, 𝑛; 𝛼𝟎+)(𝜀(0)𝒌,𝑛 − 𝜀(0)𝒌,𝑛) (7.115)

= ⟨𝛹 (0)
𝒌,𝑛∣𝓥

(1)
eff

(𝟎+𝛼)∣𝛹 (0)
𝒌,𝑛⟩

IR
+∑

𝛾
⟨ ⃗𝛹 (0)

𝒌,𝑛∣𝓥
(1)
eff

(𝟎+𝛼) +𝛁𝒱 (0)
eff

δ𝛾𝛼∣ ⃗𝛹 (0)
𝒌,𝑛⟩𝛾

− 𝝐(1)𝒌,𝑛(𝟎
+𝛼)

+ ⟨̃⃗𝜳
(0)
𝒌,𝑛∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣ ⃗𝛹 (0)
𝒌,𝑛⟩

𝛼
+⟨ ⃗𝛹 (0)

𝒌,𝑛∣ℋ
(0) − 𝜀(0)𝒌,𝑛∣

̃⃗𝜳
(0)
𝒌,𝑛⟩

𝛼

+∮
∂IR𝛼

̂𝒆IR𝛹
∗(0)IR
𝒌,𝑛 (ℋ (0) − 𝜀(0)𝒌,𝑛)𝛹

(0)IR
𝒌,𝑛 d𝑺 .

Test 24: Cross-Checking the Pulay Contributions

Since Conceptlarge implementation parts of both Pulay contributions in the third line of the Stern-

heimer equation (7.88) can be borrowed from FLEUR, a cross-checking suggests itself. Al-
though the algorithms of FLEUR (see section 5.8.2) and juPhon (see section 7.4.3) differ
regarding a few subtleties, these matrix elements can in principle easily be compared. It must

be considered however, that the regular mode in FLEUR is to set up the Hamiltonian in the
representation of the LAPW basis functions, while juPhon utilizes Kohn–Sham wave func-
tions. Therefore, the matrix element from FLEUR must be contracted with two wave-function
expansion coefficients.

The Algorithmprerequisite for running this test is to generate the files hmatTest and smatTest,
containing the FLEUR Hamiltonian matrix elements and the overlap of the LAPW basis func-
tions, respectively. These files are written out in the FLEUR subroutine Eigen after Hssphn.
It is best to make a new folder, copy at least the FLEUR calculation into it, and change the
directory into this folder. Within this folder, the inp file of FLEUR must be manipulated. It is
important to set the number of iterations to 1 and to set the mixing parameter alpha to 0.00.
This is due to an anew mixing would probably impede the aforesaid comparison of the matrix

elements, unless an extremely good convergence of the FLEUR calculation was given. The
contraction of the Hamiltonian matrix elements is done in FLEUR before the files are written
out, both happening in the eigen subroutine of FLEUR. In order to configure FLEUR to generate
the aforementioned files, an empty file writeoutHS must be created. It is also beneficial to
delete the files wkf2, stars, broyden, and broyden.7, then FLEUR can be executed. The last
step is to copy the desired files hmatTest and smatTest to the original folder.

Since Challengesthere is a difference in the action of the spherical Hamiltonian between the FLEUR
method in equation (5.59) and the procedure of juPhon in equation (7.98b), this must be
corrected by a respective subtraction and addition of terms. Apart from that, in juPhon the
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wave function ̃𝛹 must be substituted by the canonical unperturbed wave function 𝛹 (0)
𝒌,𝑛. For

polyatomic systems, the rotation of the small matching coefficients must not be removed in

juPhon, because in FLEUR symmetry is still exploited. Moreover, at the moment this test is
only executed for one arbitrary 𝒌-point (currently the 𝒌-vector with index 28). In principle,
this test could be extended to check all 𝒌-points.

Test 25: Muffin-Tin Sphere Complement of IR Surface integral

AsConcept seen in the last two lines of equation (7.86a), the IR and MT surface integrals differ by a

global sign, among other things. This is because the normal vector of the former is antiparallel

to that used in the latter. Another difference originates from the discontinuity at the MT

sphere boundary. If however this difference is small enough, the IR surface integral can in

principle be tested by calculating the MT surface integral.

ThisFormalism can be applied to the last line of the Sternheimer equation (7.88) [251]. For

computing the MT complement of the IR surface integral in the aforesaid Sternheimer equation

∮
∂𝛼

̂𝒓 ⃗𝛹 ∗(0)𝛼
𝒌+
bf
,𝑛′(𝒓)(ℋ

(0) − 𝜀(0)𝒌,𝑛) ⃗𝛹 (0)𝛼
𝒌,𝑛 (𝒓) d𝑆 (7.116a)

= ∮
∂𝛼

̂𝒓 ⃗𝛹 ∗(0)𝛼
𝒌+
bf
,𝑛′(𝒓)(ℋ

(0)
sph

− 𝜀(0)𝒌,𝑛 + 𝑉 (0)𝛼
eff,nsph(𝒓)) ⃗𝛹 (0)𝛼

𝒌,𝑛 (𝒓) d𝑆

must be evaluated. In the MT spheres, the Hamiltonian is differently subdivided relative

to the IR, as already seen for volume integrals. Before presenting the final result, first two

quantities are defined. They describe the action of the spherical Hamiltonian on the ket wave

function

∑
𝑙𝑚𝑝

𝐴𝒌𝛼𝑛
𝑙𝑚𝑝((ℋ

(0)
sph

− 𝜀(0)𝒌,𝑛)�⃗�
�̊�
𝑙𝑚𝑝(𝒓)) (7.116b)

= ∑
𝑙𝑚

(𝐴𝒌𝛼𝑛
𝑙𝑚1(𝐸

�̊�
𝑙 − 𝜀(0)𝒌,𝑛)�⃗�

�̊�
𝑙1(𝑟) + 𝐴𝒌𝛼𝑛

𝑙𝑚2(�⃗�
�̊�
𝑙1(𝑟) + (𝐸�̊�

𝑙 − 𝜀(0)𝒌,𝑛)�⃗�
�̊�
𝑙2(𝑟)))Y𝑙𝑚( ̂𝒓)

≔ �⃗�𝒌𝛼𝑛
𝑙𝑚 (𝑟)Y𝑙𝑚( ̂𝒓) (7.116c)

and a projection of the unit vector as well as the non-spherical potential to a general lattice

harmonic

𝖛(0)𝛼
𝑙″𝑚″(𝑟) ≔ ∑

𝑙‴𝑚‴

1

∑
𝑚iv=−1

∑
𝑖

𝜁𝑖,𝑚iv[𝑉 (0)𝛼
eff,nsph(𝒓))]𝑙‴𝑚‴

̂𝒆𝑖𝐺
𝑚″, 𝑚‴, 𝑚iv

𝑙″, 𝑙‴, 1 . (7.116d)

Hence ultimately,

∮
∂𝛼

̂𝒓 ⃗𝛹 ∗(0)𝛼
𝒌+
bf
,𝑛′(𝒓)(ℋ

(0)
sph

− 𝜀(0)𝒌,𝑛) ⃗𝛹 (0)𝛼
𝒌,𝑛 (𝒓) d𝑆 (7.116e)

= ∑
𝑙′𝑚′𝑝′

𝐴∗𝒌+
bf
𝛼𝑛

𝑙′𝑚′𝑝′ ∑
𝑠

𝑢�̊�𝑠
𝑙′𝑝′(𝑅�̊�)∑

𝑙𝑚
𝔥𝒌𝛼𝑛
𝑙𝑚𝑠 (𝑅�̊�)

1

∑
𝑚″=−1

∑
𝑖

̂𝒆𝑖𝜁𝑖,𝑚″𝑅2
�̊�𝐺

𝑚′,𝑚,𝑚″

𝑙′, 𝑙, 1

and

∮
∂𝛼

̂𝒓 ⃗𝛹 ∗(0)𝛼
𝒌+
bf
,𝑛′(𝒓)𝑉

(0)𝛼
eff,nsph(𝒓) ⃗𝛹 (0)𝛼

𝒌,𝑛 (𝒓) d𝑆 (7.116f)
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= ∑
𝑠

∑
𝑙″𝑚″

𝖛(0)𝛼
𝑙″𝑚″(𝑅�̊�) ∑

𝑙′𝑚′𝑝′

𝐴∗𝒌+
bf
𝛼𝑛

𝑙′𝑚′𝑝′ 𝑢�̊�𝑠
𝑙′𝑝′(𝑅�̊�)∑

𝑙𝑚𝑝
𝐴𝒌𝛼𝑛

𝑙𝑚𝑝𝑢
�̊�𝑠
𝑙𝑝 (𝑅�̊�)

1

∑
𝑚″=−1

∑
𝑖

̂𝒆𝑖𝜁𝑖,𝑚″𝑅2
�̊�𝐺

𝑚′,𝑚″,𝑚
𝑙′, 𝑙″, 𝑙

must be implemented (see also the discussion around equation (7.54)).

However, Continuity of
kinetic-energy
part

in practice only the potential and overlap parts are compared, because the

effective potential and the LAPW basis are fairly continuous. The kinetic energy is known to be

discontinuous in the LAPW basis, if essentially a Laplace operator is applied (cf. section 5.11).

Therefore, given a single Bloch vector 𝒌 and band 𝑛, the kinetic energies of the IR and the
MT surface integrals cannot convincingly be compared. However, summed over all Bloch

vectors and bands, I found that this discrepancy disappears again, at least for fcc Ne. When
contrasting the potential part of the IR and MT surface integrals, in the latter the spherical

Hamiltonian must be omitted. Instead the routines for the non-spherical potential must be

manipulated to also consider the 𝑙 = 0 component.

Test 26: Converge Sternheimer Equation from Analytical Goldstone-Modes Solution

For being able to assess whether the mixing subroutines in juPhon are broken, the Sternheimer
self-consistency cycle can be started with the analytical solution of the Goldstone modes.

Essentially, I already elaborate on this outcome around equation (7.30) and in appendix D. So,

in this test the Sternheimer SCC is started with minus the gradient of the unperturbed density,

being the initial first-order density variation. A first-order effective potential variation can be

generated, and theoretically the Sternheimer equation should be immediately converged. In

practice, the number of iterations significantly decreases. But depending on the threshold that

defines at which point the Sternheimer equation is converged, still a few iterations must be

processed. This is due to the numerical noise which impedes an absolutely precise numerical

solution of the Sternheimer equation for the Goldstone modes. The fact that the SCC in

this test does not significantly diverge from the correct solution shows that the Sternheimer

equation for 𝒒 = 𝟎 is correctly implemented.

Test 27: Comparing Converged Result to Analytical Solution for 𝒒 = 𝟎

This Conceptcheck can be interpreted as an intensification of the last test. The outcome of the Stern-

heimer equation should be converged to the analytical solution (7.30), after the Sternheimer

SCC is finished (see section 7.4.6). Thus in the IR, the Fourier coefficients of the first-order

density variation can be cross-checked with minus the Fourier coefficients of the unperturbed

density gradient. However in the MT spheres, it is disadvantageous from a numerical point

of view to compare the coefficients of minus the unperturbed density gradient with those

of the first-order density variation. A better solution consists in conducting test 12 with the

results of the Sternheimer equation, i.e., the first line in equation (7.37b) must vanish. This is

excellently fulfilled for fcc Ne and fairly well for fcc Al. In the former case, the difference from
the analytical result is of the order 10−6e a−4

0 , and in the latter case of the order 10
−3e a−4

0 .

Due to performance optimizations in the general version of FLEUR26, its diagonalization rou-
tines for the DFT Hamiltonian do not completely converge out the wave-function expansion

coefficients [127]. These errors actually cancel when calculating the charge density later. But

26 There is one version of FLEUR for materials featuring inversion symmetry, such as fcc Ne and fcc Al.
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focussing on the wave functions, this expresses in small imaginary values in the wave-function

expansion coefficients, although they should have been real in the case of inversion symmetry.

Hence, we think that the quality of the FLEUR calculation has amongst others an impact on
the accuracy of the Sternheimer results [251].

AnAlternative
concept

alternative, which is harder and takes significantly more effort to be realized, is

to compare the resulting first-order wave-function expansion coefficients directly to equa-

tion (7.30). However, real challenges must be faced. For example unitary transformations

can make degenerate subspaces more difficult to compare [251]. Furthermore, numerical

errors of the wave functions must be brought under control, because FLEUR is designed for
an optimal charge density, in which errors of the wave functions cancel away. Investigating

selected 𝒌-vectors and fcc Ne with this approach, I found fair consistency. But, the band–band
representation in equation (7.87c) delivers slightly better results than the band-reciprocal

lattice vectors representation of the first-order wave-function expansion coefficients. If compar-

ing the former and starting from the latter, equation (7.87c) must be inverted by multiplying

the inverse27 of 𝑧(0)𝑮 (𝑮) from the left on both sides, provided it can be inverted. But, this
should be the case, unless 𝑘max is chosen too large (the basis set becomes increasingly linearly
dependent) [251].

Test 28: First-Order Density Variation from Occupied-Occupied Band Combinations

As stated in section 4.2, the Sternheimer equation delivers only contributions for occupied–

unoccupied band combinations (see also reference [87]). In this test, the loop over all bands

in the juPhon subroutine SolveSternheimerEq is restricted such that only occupied–occupied
band combinations are evaluated [251]. For the case of fcc Ne, the resulting first-order density
variation vanishes in the first iteration.

Test 29: Time Reversal Symmetry of Converged Quantities

This test idea is actually already presented around equations (7.33), (7.34), and (7.35) for the

first-order density variation. However, this quantity represents an outcome of the Sternheimer

equation, so this test is mentioned at this point again. Analogously, test 20 describes the

same approach for the first-order external-potential variation, which is known before or

without the Sternheimer SCC. But, this does not hold true for the Hartree- and xc-potential

variations, which are converged given a self-consistent Sternheimer equation. Hence all in all

and provided a finished SCC, checking the TRS of the first-order density and effective-potential

variation defines this test. For fcc Ne and fcc Al, it passes.

7.5 Second-Order Variation of the Ion–Ion Interaction

InOutline section 6.3.4, the second-order ion–ion interaction is introduced according to the disser-

tation of Klüppelberg [88]. However, a correct implementation involving the expressions

27 The matrix dimensions of these wave-function expansion coefficients are the reciprocal lattice vectors and all

bands 𝑛′.
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from the aforesaid section is impossible. Therefore, section 7.5.1 deals with my employed

optimizations and corrections. The results of the juPhon subroutines are then presented in
section 7.5.2 for an exemplary fcc Al and bcc Na structure. Justifying my ultimate form of
the implementation is realized by strict tests to which section 7.5.3 is devoted.

7.5.1 Algorithm

For Final formthe relevant part of the dynamical matrix, essentially equation (6.54) must be evaluated,

which incorporates equation (6.55) for both 𝒒 = 𝟎 and 𝒒 ≠ 𝟎. In monoatomic systems, it is
sufficient to reformulate equation (6.60) further, in order to obtain an expression suitable for

the implementation. This has already been done by Klüppelberg [88], by using the Rayleigh

decomposition (5.5) of equation (6.59a) and the Legendre polynomials (e.g. reference [3])

P𝑙(𝑥) =
1
2𝑙𝑙!

d𝑙(𝑥2 − 1)𝑙

d𝑥𝑙 . (7.117)

Finally,

𝐸(2)𝛽𝛼
ii

(𝒒−+) = −𝑍𝛼 ∑
𝑮|𝑮−𝒒≠𝟎

4π𝑛𝛽
ps
(𝑮; 𝒒−+)ei(𝑮−𝒒)⋅𝝉𝛽

|𝑮 − 𝒒|2
j0(|𝑮 − 𝒒|𝑅𝛽) (7.118)

+ 𝑍𝛼
𝑍𝛽

𝑅3
𝛽

1

∑
𝑡=−1

∑
𝑖𝑗

( 3
4π

𝑐𝑖,𝑡𝑐𝑗,−𝑡(−1)𝑡 − δ𝑖𝑗) .

results. However, this expression differs by a global minus sign from the outcome of Klüppel-

berg [88], because his derivation is in this sense a little inconsistent or the reader could at least

be misdirected. For polyatomic systems, the previous equation is only valid for 𝛼 = 𝛽, i.e., in
the 3 × 3 submatrices located on the diagonal of the complete 3𝑁at × 3𝑁at dynamical matrix.
The submatrices off the large matrix diagonal must be filled according to equation (6.59b).

In Algorithmmy implementation, I leave out the second line of equation (7.118). This can be

done, because in equation (6.54) the integrals (6.55) for 𝒒 = 𝟎 and 𝒒 ≠ 𝟎 are subtracted
from each other. As a consequence, the second line in equation (7.118) is incorporated both

in its original form and multiplied by −1. These contributions therefore annihilate each
other for every 𝒒, because they are constant with respect to 𝒒. Ultimately, this leads to the
implementation of

𝐸(2)𝛽𝛼
ii

(𝒒−+) (7.119)

= 4π𝑍𝛼
⎡⎢
⎣

∑
𝑮|𝑮≠𝟎

𝑛𝛽
ps
(𝑮; 𝟎−+)

|𝑮|2
j0(|𝑮|𝑅𝛽) − ∑

𝑮|𝑮−𝒒≠𝟎

𝑛𝛽
ps
(𝑮; 𝒒−+)

|𝑮 − 𝒒|2
j0(|𝑮 − 𝒒|𝑅𝛽)⎤⎥

⎦
.

So basically, the question how to properly consider the exclusion of self-interaction becomes

obsolete now, because this term effectively cancels.

But Not subtracting
the trace

it must be emphasized at this point that calculating the second-order ion–ion

interaction in the described way implies wrong results. The last term in the parentheses of

equation (6.58) induces a vanishing diagonal of the second-order ion–ion-interaction matrix,

because its trace is subtracted. My idea to ignore the trace has finally led to correct numerical
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results, as can be seen from test 35. Hence, the employed pseudo-density Fourier coefficients

read

𝑛𝛽
ps
(𝑮; 𝒒−+) =

𝑍𝛽

𝛺
(2𝑁 + 7)!!

j𝑁+3(|𝑮 − 𝒒|𝑅𝛽)

(|𝑮 − 𝒒|𝑅𝛽)
𝑁+3 e−i(𝑮−𝒒)⋅𝝉𝛽(𝑮 − 𝒒)(𝑮 − 𝒒)⊤ . (7.120)

Up to now however, we were not able to analytically reason it [127, 251, 256]. Furthermore,

according to our understanding the term we ignore in the following actually excludes self-

interaction, appearing to be a contradiction to the excellent consistency with benchmark

data [127, 251].

7.5.2 Visualization

InHigh-symmetry
points

this section, the second-order ion–ion interaction for a fcc and a bcc lattice structure with

a monoatomic lattice basis are presented. This is done for a 𝒒 along the common path of
high-symmetry points (HSPs), which is also used in respective phonon-dispersion relations.

As usual in the literature, given a fcc structure the HSP sequence Γ - X - K - Γ - L is employed,
and for bcc Γ - H - P - Γ - N - H is used [127]. Table 7.8 lists which 𝒒 vectors correspond to
the aforesaid HSPs.

Table 7.8: Legend of high-symmetry points (HSP) for fcc and bcc lattice structures. The 𝒒-vectors
are given in internal units.

HSP 𝒒⊤

Γ (0, 0, 0)
X (0, 0.5, 0.5)
K (0.375, 0.75, 0.375)
L (0.5, 0.5, 0.5)
H (−0.5, 0.5, 0.5)
P (0, 0, 0)
N (0.25, 0.25, 0.25)

SinceResults the only information required about the material is concerned with the lattice

geometry and the atomic numbers, the shape of the second-order ion–ion interaction remains

equal among materials of the same lattice structure. The difference between them is basically

a global scaling of the curves. Therefore, only fcc Al and bcc Na are shown as examples in
figure 7.18 and figure 7.19, respectively. Due to the hermiticity of the dynamical matrix, of

which 𝐸(2)
ii
is a constituent, overall six different curves manifest themselves in each of the

figures, i.e., for both lattice structures.

InPerformance test 35, the second-order ion–ion interaction is calculated with an ABINIT subrou-
tine [55–57, 255]. This allows for benchmarking the performance of juPhon. TheWeinert-like
juPhon implementation proves to be superior to the Ewald-summation method, at least as
implemented in ABINIT. This in particular becomes obvious for bcc structures.
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Figure 7.18: Behavior of the second-order ion–ion interaction 𝐸(2)
ii
from juPhon for fcc Al on a

typical path, incorporating fcc high-symmetry points. The unit is Eh a
−2
0 . Moreover,

the 3 × 3 grid of plots represents the entries of the 3 × 3 matrix 𝐸(2)
ii
. The input file

can be found in appendix B.
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Figure 7.19: Behavior of the second-order ion–ion interaction 𝐸(2)
ii
from juPhon for bcc Na on a

typical path, incorporating bcc high-symmetry points. The unit, the arrangement of

the plots for this matrix quantity, and the location of the input file are the same as

in figure 7.18.
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7.5.3 Tests

Since Outlinethe second-order ion–ion interaction vanishes by construction for the Goldstone modes,

foremost of interest are tests that check the behavior for 𝒒 ≠ 𝟎. While test 33 and test 34
focus on the intermediate Fourier coefficients of the pseudo-density (7.120), test 35 is devoted

to cross-check the complete second-order ion–ion interaction for an arbitrary 𝒒. The latter is
a strict test and clearly shows the correctness of this quantity from juPhon.

Test 30: Alternative Method for Pseudo-Density Fourier Coefficients

Klüppelberg [88] points out the close relation between the second-order variation of the

external potential and the second-order ion–ion interaction. Essentially, the integral in

equation (6.55c) for 𝒒 = 𝟎 shows analogies to the integral underlying the second-order
variation of the external potential. Although the second-order external-potential variation is

not further specified in this dissertation, the last statement becomes plausible from a close

inspection of equation (6.55c). In this expression, the external potential for 𝒒 = 𝟎 can be
identified, provided the gradients are ignored. It stimulated me to compare the analytical

derivative of the first-order external potential-variation Fourier coefficients (6.28b) with the

Fourier coefficients required for the second-order ion–ion interaction (7.120). So, in a nutshell

this test checks whether the relation

i(𝑮 − 𝒒)𝒏⊤ps
ext (𝑮;−𝒒+𝛼) = 𝑛𝛽

ps
(𝑮; 𝒒−+) (7.121)

holds. It must be stressed that this can only be ensured if the pseudo-density from equa-

tion (7.120), instead of that from equation (6.58) is utilized. The analytical equivalence,

assumed in equation (7.121), is not derived analytically. Still, I found that it is numerically

fulfilled up to an accuracy of 1 ⋅ 10−8 Eh a
−2
0 , where Eh is the Hartree energy and a0 the Bohr

radius. The presented test can be performed for an arbitrary 𝒒, i.e., likewise for 𝒒 = 𝟎. In
practice, all 𝒒 from the set available in a juPhon calculation are checked.

Test 31: Time Reversal Symmetry

In analogy to equation (7.34), the relation

𝐸(2)
ii

(𝒒f) = 𝐸(2)
ii

(𝒒) (7.122)

is checked within the 𝒒-set at hand in juPhon [251]. The test passes if the equality is fulfilled
up to an accuracy of 1 ⋅ 10−9 Eh a

−2
0 .

Test 32: Cross-Checking of Weinert Method (juPhon) with Ewald Method (ABINIT)

For Algorithmthis test, we have chosen the subroutine Ewald9 of the ABINIT package [55–57, 127, 256].
This subroutine calculates the second-order ion–ion interaction, using an Ewald-summation

method [3, 255]. I have written a small program, which calls Ewald9 and employs the FLEUR
subroutine Dotset28. This allows for flexibly manipulating the parameters of the former,
28 This program is located within a subfolder of the juPhon repository under the commit with the hash

e7c50ff83e44aeb32a63741e1bb5ae4ac2e8aaaa.
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independent of how it is originally embedded in ABINIT. Basically, the information necessary
for the parameters can be extracted from the FLEUR out file (for instance lattice geometry
and atomic numbers). It is pivotal that Ewald9 is not called with an activated performance
optimization flag [127]. In this case, the calculation of ABINIT runs faster but delivers the
wrong results.

ThisResult test has been conducted for fcc Ne, fcc Al, and bcc Na and delivered similar
results in all scenarios. Consistent with section 7.5.2, figure 7.20 shows the absolute error for

the second aforesaid system and figure 7.21 for the third one. Although the second-order

variation of the ion–ion interaction has been calculated with two different methods, the

maximal absolute error is 1 ⋅ 10−6 Eh a
−2
0 .
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Figure 7.20: Absolute error of second-order ion–ion interaction 𝐸(2)
ii
for fcc Al on a typical path,

incorporating fcc high-symmetry points. Results from juPhon are cross-checked with
an extracted subroutine of ABINIT. The unit is Eh a

−2
0 . Moreover, the 3 × 3 grid of

plots represents the entries of the 3× 3 matrix 𝐸(2)
ii
. Overall, the error is at the same

order of magnitude as for the employed integration and differentiation subroutines.

The input file is given in appendix B.
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Figure 7.21: Absolute error of second-order ion–ion interaction 𝐸(2)
ii
for bcc Na on a typical path,

incorporating bcc high-symmetry points. The method, the unit, the arrangement of

the plots, and the location of the input file are the same as for neon in figure 7.20.

The consistency of the bcc test is comparable with the fcc test in the aforementioned

figure.
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7.6 Dynamical matrix

Conceptual Translation into
numerics

tests and ultimately dispersion relations reveal that the involved dynamical matrix

approach of Klüppelberg [88] is absolutely inapplicable to numerics. Consequently, the

successful realization of accurate phonon frequencies proved to be a tough challenge. Still it

must be emphasized: from an analytical standpoint, the expressions of Klüppelberg are in

principle correct (apart from typos).

Delicate Challengessubjects are in particular MT terms with gradients or Hessian matrices (see

also reference [3]). If such (numerical) derivatives of Kohn–Sham wave functions are in-

corporated in MT matrix-elements or MT surface-integrals, selecting the correct indices for

the evaluation turns out to be a complex task (cf. section 7.2). For instance, focussing only

on the orbital quantum number 𝑙, two applications of the numerical gradient connect con-
tributions of the original channel 𝑙 to five resulting channels, namely from 𝑙 − 2 to 𝑙 + 2.
When programming such terms, the aforementioned channel relations are required, and must

be stored [251]. Further obstacles are presented by relevant integral contributions beyond

logarithmic integration meshes, e.g. between the radial integral boundary 𝑟𝛾 = 0 and the
first mesh point 𝜈 = 1. Overall, numerical inaccuracies have a massive impact and must be
circumvented or surmounted as well as possible, when dealing with such small energy scales

as in phonon dispersion-relations.

In Outlinethis section, the dynamical matrix equations given in reference [88] are radically

reformulated, aiming for a numerically-optimized condensed framework, which we found

to be well-performing [127, 256]. Given the specific context, I shall point out in more

detail (i) the underlying numerical problems and (ii) the way of alleviating their influence

on the final results. But at first, the explicit way of obtaining the phonon frequencies in

juPhon is elucidated in section 7.6.1. Based on this approach and on TRS, relations can
be implied which are exploited in the subsequent discussion. Then in section 7.6.2, the

dynamical matrix shown in section 6.5 is further evaluated to conform for the most part

with the equations suggested by Klüppelberg [88]. However, I already re-express some terms

by exploiting TRS so that every quantity is available from the Sternheimer self-consistency

cycle in juPhon. In section 7.6.3, I describe my reformulation of this dynamical-matrix
approach for the purpose of avoiding terms which incorporate an outer product of gradients.

It is based on a generalized divergence theorem, a proof of which by Fabian Lux is given

in appendix E [294]. Moreover, section 7.6.4 deals with my rearrangement of the terms,

encouraging numerically vanishing phonon frequencies for 𝒒 = 𝟎. For monoatomic systems
and ignoring small surface terms, I additionally show there that the rewritten formalism

theoretically leads to these desired frequencies. Although computations of fcc Ne in fact
confirm this, the numerical accuracy for finite 𝒒-vectors is still insufficient. Hence, unphysical
results are produced, i.e., instabilities of experimentally stable structures such as fcc Al are
forecasted (imaginary frequencies in the dispersion relations). But, a derivation of the second-

order total energy by Neukirchen [256], which is more general and most widely independent

from Klüppelberg, does not feature terms incorporating MT gradients of wave functions.

Therefore, section 7.6.5 is devoted to further reformulations, eliminating all gradients of

MT wave functions and starting with the expressions presented in section 7.6.4. Apart from

that, I have experienced that some radial integrands are extremely large close to the MT

sphere center, despite the Jacobi determinant. Hence, the interpolation between the first
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integration-mesh point and the center of the MT sphere becomes very relevant. In order to

avoid developing versatile and accurate interpolations, we further rearrange the equations

so that interpolations become insignificant, which is the subject of section 7.6.6 [256]. The

basic idea employed is borrowed from an optimization that has already been suggested by

Klüppelberg [88] for the Sternheimer equation. Still, he does not consistently apply it to the

dynamical matrix. The last step is grounded on the aforementioned derivation of Neukirchen,

in which already terms of the first-order total-energy variation are canceled, in contrast to

Klüppelberg. Therefore, these expressions are identified in section 7.6.7 and ignored in

the implementation. All described optimizations are summarized in section 7.6.8 so that

an overview of the currently programmed equations is provided. Finally, I elaborate on

consistency tests in section 7.6.9 related to the dynamical matrix.

7.6.1 Determining the Phonon Frequencies

AccordingExtracting the
dynamical matrix

to equation (6.12), both 𝐷𝛽𝛼(𝒒+−) and 𝐷𝛽𝛼(𝒒−+) contribute to the linear com-
bination, which is equal to the second-order total energy variation. This expression can be

reformulated to [127, 251]

𝐸(2)
tot (𝒒) = ∑

𝛽𝛼
(𝑸†

𝛽 𝐷
𝛽𝛼(𝒒+−)𝑸𝛼 +𝑸⊤

𝛽 𝐷𝛽𝛼(𝒒−+)𝑸∗
𝛼) (7.123a)

= ∑
𝛽𝛼

∑
𝑖𝑗

([𝑄∗
𝛽]𝑖

[𝐷𝛽𝛼(𝒒+−)]
𝑖𝑗
[𝑄𝛼]𝑗 + [𝑄𝛽]𝑖[𝐷

𝛽𝛼(𝒒−+)]
𝑖𝑗
[𝑄∗

𝛼]𝑗) (7.123b)

= ∑
𝛽𝛼

∑
𝑖𝑗

([𝑄∗
𝛽]𝑖

[𝐷𝛽𝛼(𝒒+−)]
𝑖𝑗
[𝑄𝛼]𝑗 + [𝑄𝛼]𝑗[𝐷

𝛼𝛽(𝒒−+)]
𝑗𝑖
[𝑄∗

𝛽]𝑖
) (7.123c)

= ∑
𝛽𝛼

∑
𝑖𝑗

[𝑄∗
𝛽]𝑖

([𝐷𝛽𝛼(𝒒+−)]
𝑖𝑗
+ [𝐷𝛼𝛽(𝒒−+)]

𝑗𝑖
)[𝑄𝛼]𝑗 (7.123d)

= ∑
𝛽𝛼

𝑸†
𝛽 (𝐷

𝛽𝛼(𝒒+−) + [𝐷𝛼𝛽(𝒒−+)]⊤)𝑸𝛼 , (7.123e)

and provided TRS holds to

= ∑
𝛽𝛼

𝑸†
𝛽 (𝐷

𝛽𝛼(𝒒+−) + [𝐷𝛼𝛽(𝒒+−)]†)𝑸𝛼 (7.123f)

≕ 2∑
𝛽𝛼

𝑸†
𝛽 (𝐷

𝛽𝛼(𝒒))𝑸𝛼 (7.123g)

= 2𝑸† 𝐷(𝒒)𝑸 . (7.123h)

In these equations, the indices 𝑖 and 𝑗 address components of the polarization vectors as well as
the matrix entries of the 3×3 submatrices𝐷𝛽𝛼, in which 𝛼 and 𝛽 indicate the displaced atoms.
The complete 3𝑁𝛾×3𝑁𝛾 dynamical matrix𝐷 is composed of these submatrices, where𝑁𝛾 is the

number of atoms per unit cell. Furthermore, in the second summand of equation (7.123c) 𝑖 is
renamed to 𝑗 and vice versa, which also holds true for the atom indices 𝛼 and 𝛽. Since juPhon
currently assumes TRS, only 𝐷𝛽𝛼(𝒒+−) is set up and discussed in the following. Moreover, it
is important to know that in juPhon the dynamical matrix 𝐷𝛽𝛼 is summed with [𝐷𝛼𝛽]† (as in
equation (7.123f)) and divided by 2 to ensure real eigenvalues [127, 251, 256].
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Due Preparing
substitutions

to the commutativity of summation, it is legitimate to substitute components

of 𝐷𝛽𝛼(𝒒+−) with their complements in [𝐷𝛼𝛽(𝒒+−)]† or [𝐷𝛼𝛽(𝒒−+)]⊤ (for the latter see
equation (7.123e)). This becomes necessary if terms are not at hand in juPhon or when it
turns out to be beneficial in the following subsections. One example is the Pulay term

(𝑸†
𝛽 𝒛

(1)
𝑮 (𝒌, 𝑛;−𝒒𝛽)[ ⃗𝝓(1)𝛼+

𝒌−𝒒,𝑮]
⊤
𝑸𝛼 +𝑸⊤

𝛽 𝒛
(1)
𝑮 (𝒌, 𝑛; 𝒒𝛽)[ ⃗𝝓(1)𝛼−

𝒌+𝒒,𝑮]
⊤
𝑸∗

𝛼) (7.124a)

= 𝑸†
𝛽(𝒛

(1)
𝑮 (𝒌, 𝑛;−𝒒𝛽)[ ⃗𝝓(1)𝛼+

𝒌−𝒒,𝑮]
⊤
+ ⃗𝝓(1)𝛽−

𝒌+𝒒,𝑮[𝒛(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)]

⊤
)𝑸𝛼

in which the second summand on the right-hand side is replaced by the first summand, since

juPhon only calculates 𝒛(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼). In addition, I substitute the first two lines by the last

two lines on the right-hand side of the two relations

𝑸†
𝛽 2∮

∂𝛽
̂𝒓([𝜳 (1)𝛽−

𝒌,𝑛 (𝒓; 𝛼)]
†
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)𝛽
𝒌,𝑛 (𝒓) (7.124b)

− [𝜳 (1)IR−
𝒌,𝑛 (𝒓; 𝛼)]

†
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)IR
𝒌,𝑛 (𝒓)) d𝑆 𝑸𝛼

+𝑸⊤
𝛽 2∮

∂𝛽
̂𝒓([𝜳 (1)𝛽+

𝒌,𝑛 (𝒓; 𝛼)]
†
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)𝛽
𝒌,𝑛 (𝒓)

− [𝜳 (1)IR+
𝒌,𝑛 (𝒓; 𝛼)]

†
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)IR
𝒌,𝑛 (𝒓)) d𝑆 𝑸∗

𝛼

= 𝑸†
𝛽 2{∮

∂𝛽
̂𝒓([𝜳 (1)𝛽−

𝒌,𝑛 (𝒓; 𝛼)]
†
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)𝛽
𝒌,𝑛 (𝒓)

− [𝜳 (1)IR−
𝒌,𝑛 (𝒓; 𝛼)]

†
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)IR
𝒌,𝑛 (𝒓)) d𝑆

+∮
∂𝛼

(𝜳 ∗(1)𝛼+
𝒌,𝑛 (𝒓; 𝛽)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)𝛼
𝒌,𝑛 (𝒓)

− 𝜳 ∗(1)IR+
𝒌,𝑛 (𝒓; 𝛽)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹

(0)IR
𝒌,𝑛 (𝒓)) ̂𝒓⊤ d𝑆}𝑸𝛼 ,

𝑸†
𝛽 δ𝛽𝛼 ∮

∂𝛽
( ⃗𝛹 ∗(0)𝛽

𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛁 ⃗𝛹 (0)𝛽
𝒌,𝑛 (𝒓) (7.124c)

− 𝛹 ∗(0)IR
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛁𝛹 (0)IR

𝒌,𝑛 (𝒓)) ̂𝒓⊤ d𝑆 𝑸𝛼

+𝑸⊤
𝛽 δ𝛽𝛼 ∮

∂𝛽
( ⃗𝛹 ∗(0)𝛽

𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛁 ⃗𝛹 (0)𝛽
𝒌,𝑛 (𝒓)

− 𝛹 ∗(0)IR
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛁𝛹 (0)IR

𝒌,𝑛 (𝒓)) ̂𝒓⊤ d𝑆 𝑸∗
𝛼

= 𝑸†
𝛽 {δ𝛽𝛼 ∮

∂𝛽
( ⃗𝛹 ∗(0)𝛽

𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛁 ⃗𝛹 (0)𝛽
𝒌,𝑛 (𝒓)

− 𝛹 ∗(0)IR
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛁𝛹 (0)IR

𝒌,𝑛 (𝒓)) ̂𝒓⊤ d𝑆

+ δ𝛼𝛽 ∮
∂𝛼

̂𝒓( ⃗𝛹 ∗(0)𝛼
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛁

⊤ ⃗𝛹 (0)𝛼
𝒌,𝑛 (𝒓)

− 𝛹 ∗(0)IR
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛁

⊤𝛹 (0)IR
𝒌,𝑛 (𝒓))d𝑆}𝑸𝛼 .
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They only contribute if 𝛼 = 𝛽, and one can show that they are real. Thus, interchanging𝛼 and 𝛽
is formally correct, but effectively not necessary, and adjoining translates into transposing.

So, either the last two lines or the first two lines on the right-hand side of equation (7.124c)

can be used.

IfDetermining the
phonon

frequencies

the dynamical matrix is completely set up and self-adjoint, the eigenvalues 𝜆𝜄 are

determined by a numerical diagonalization, employing the LAPACK routine Zheev [295]
(Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 [296]). According to

equations (3.7b) and (3.8a), the modes 𝜔𝜄 are then given by

𝜔𝜄 = √
𝜆𝜄
𝑀𝛾

(7.125a)

≈ √𝜆𝜄E
−1
h a20

𝐴r(𝛾)
√ 4.3597 ⋅ 10−18 J

(5.2918 ⋅ 10−11 m)2 1.836 15 ⋅ 103me
(7.125b)

≈ √𝜆𝜄E
−1
h a20

𝐴r(𝛾)
1
33

√ 4.3597 ⋅ 10−18

(5.2918 ⋅ 10−11)2 1.836 15 ⋅ 103 9.1094 ⋅ 10−31
cm−1 . (7.125c)

The atomic weights 𝐴r(𝛾) are provided by table 7.9.

Table 7.9: Atomic weights utilized in this thesis according to Meija et al. [297].

element 𝐴r
Ne 20.180
Al 26.982
Cu 63.546
Ar 39.948
Mo 95.951
Au 196.967

7.6.2 Expanding under Time Reversal Symmetry

AsIntention shown in equation (7.123), systems with TRS allow for calculating only a part of the dynam-

ical matrix, and adding its adjoint in the end. So firstly, these expressions in section 6.5 are

identified, further evaluated, and reformulated on condition that TRS holds. As a consequence,

they essentially conform with the terms that are finally suggested by Klüppelberg [88]. But,

the ultimate aim shall be that they only contain quantities at hand, which leads to differences.

Altogether, these equations are composed of Sternheimer-equation solutions and the outcome

of the second-order ion–ion interaction. Thereby, the categorization of the aforesaid section

into HF, Pl unit-cell integral, Pl matrix-elements, and sf contributions predetermines the

following discussion.
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Hellmann–Feynman Contributions

It is only necessary to further elaborate on the first term in the linear combination of equa-

tion (6.64c), the matrix part of which is

𝐷𝛽𝛼
HF(𝒒

−+) (7.126a)

= ∫
𝛺
𝝆(1)(𝒓; 𝒒−𝛽)[𝑽 (1)

ext (𝒓; 𝒒+𝛼)]
⊤
d3𝑟

+ δ𝛽𝛼 ∫
𝛺
𝜌(0)(𝒓)𝛁𝛁⊤𝑉 (0)

ext (𝒓) d3𝑟

+ 𝐸(2)𝛽𝛼
ii

(𝒒−+) + δ𝑸𝛽𝑸𝛼
𝐸(2)𝛽𝛼
ii

(𝟎−+)

= ∫
IR

𝝆∗(1)
IR (𝒓; 𝒒+𝛽)[𝑽 (1)IR

ext (𝒓; 𝒒+𝛼)]
⊤
d3𝑟 +∑

𝛾
∫
𝛾
𝝆∗(1)
𝛾 (𝒓; 𝒒+𝛽)[𝑽 (1)𝛾

ext (𝒓; 𝒒+𝛼)]
⊤
d3𝑟

+ δ𝛽𝛼 ∫
IR

𝜌(0)IR (𝒓)𝛁𝛁⊤𝑉 (0)IR
ext (𝒓) d3𝑟 + δ𝛽𝛼 ∑

𝛾
∫
𝛾
𝜌(0)𝛾 (𝒓)𝛁𝛁⊤𝑉 (0)𝛾

ext (𝒓) d3𝑟

+ 𝐸(2)𝛽𝛼
ii

(𝒒−+) + δ𝑸𝛽𝑸𝛼
𝐸(2)𝛽𝛼
ii

(𝟎−+) . (7.126b)

In equation (7.126b), the first-order density with Bloch character 𝒒− is transformed by a

complex conjugation to the result of the Sternheimer equation with Bloch character 𝒒+.

Furthermore, the integral volume is subdivided into the IR and the MT spheres, because

they are differently evaluated, due to the partitioning of the LAPW basis. Explaining in

which way to compute these integrals in detail is postponed to section 7.6.8. These HF

contributions in equation (7.126b) are essentially consistent with the respective expressions

by Klüppelberg [88].

Pulay Unit-Cell Integral Correction

Since the Pulay integral

𝐷𝛽𝛼
Pl,dp

(𝒒−+) (7.127a)

= ∑
𝛾

∫
𝛾
𝝆(1)
𝛾 (𝒓; 𝒒−𝛽)[𝑽 (1)𝛾

eff
(𝒓; 𝒒+𝛼)]

⊤
d3𝑟 +∫

IR

𝝆(1)
IR (𝒓; 𝒒−𝛽)[𝑽 (1)IR

eff
(𝒓; 𝒒+𝛼)]

⊤
d3𝑟

= ∑
𝛾

∫
𝛾
𝝆∗(1)
𝛾 (𝒓; 𝒒+𝛽)[𝑽 (1)𝛾

eff
(𝒓; 𝒒+𝛼)]

⊤
d3𝑟 +∫

IR

𝝆∗(1)
IR (𝒓; 𝒒+𝛽)[𝑽 (1)IR

eff
(𝒓; 𝒒+𝛼)]

⊤
d3𝑟 (7.127b)

from the first line of equation (6.66b) is similar to the first term in equation (7.126b), the

procedure is analogous. This means the first-order density is complex conjugated so that the

integral is expressed by available quantities. Furthermore, the integral volume is subdivided

into the IR and the MT spheres. The form as given in (7.127a) is equivalent to the proposal

of Klüppelberg [88].
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Pulay Matrix-Element Corrections

Exploiting TRS, equation (6.67) reduces to

𝐷𝛽𝛼
Pl,bk

(𝒒) ≔ 𝑸†
𝛽 ∑

𝒌,𝑛
2𝑓 (0)

𝒌,𝑛(𝐷
𝒌𝑛𝛽𝛼
Pu2b

(𝒒+−) + 𝐷𝒌𝑛𝛽𝛼
Pu2kO

(𝒒−+) + 2𝐷𝒌𝑛𝛽𝛼
Pu1bk

(𝒒++)) 𝑸𝛼 . (7.128a)

From equation (6.67b), only

𝐷𝒌𝑛𝛽𝛼
Pu2b

(𝒒+−) (7.128b)

= ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

∑
𝑮′𝑮

{

2(𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒)i[𝒌 + 𝒒 +𝑮′]⊤)

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− 2(𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨𝛁⊤�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
[𝒌 +𝑮′][𝒌 +𝑮′]⊤⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′i[𝒌 +𝑮′])

∗
⟨𝛁⊤�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− δ𝛽𝛼⟨𝛁�⃗��̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
�̊�
𝑙𝑚𝑝⟩𝛼

[𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙′𝑚′𝑝′i[𝒌 +𝑮′]]
†
𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝

+ δ𝛽𝛼(𝑧
(0)
𝑮 (𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
⟨𝛁𝛁⊤�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 }

is required, where the definitions of the respective basis functions and their variations from

equations (5.17b), (6.7), and (5.72) are now inserted. Doing this, only the “−”-part of
equation (6.7) and only the Bloch character 𝟎 of equation (6.9) are necessary, respectively.
In the latter, additionally equation (6.5) is employed. Analogously, equation (6.67c) can be

rewritten into

𝐷𝒌𝑛𝛽𝛼
Pu2kO

(𝒒−+) (7.128c)

= ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

∑
𝑮′𝑮

{

2(𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)i[𝒌 + 𝒒 +𝑮][𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤

− 2(𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛁�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
[𝒌 +𝑮][𝒌 +𝑮]⊤⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝 i[𝒌 +𝑮]⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛁
⊤�⃗��̊�

𝑙𝑚𝑝⟩𝛼
− δ𝛽𝛼⟨�⃗�

�̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛁�⃗��̊�
𝑙𝑚𝑝⟩𝛼

(𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙′𝑚′𝑝′)
∗
[𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝 i[𝒌 +𝑮]]
⊤

+ δ𝛽𝛼(𝑧
(0)
𝑮 (𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝛁𝛁⊤�⃗��̊�

𝑙𝑚𝑝⟩𝛼
𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝 } .

But in equation (6.67c), the demanded first-order variations of the expansion coefficients

stem from the Sternheimer equation, in which the bra wave-functions are evaluated at 𝒌 − 𝒒.
Therefore, I exploit that in the end a Hermitian matrix is ensured so that it is legitimate to
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substitute the first term in (7.124a) with its second term. As a consequence, equation (7.128c)

only contains quantities at hand. Finally with the aforementioned strategies, equation (6.67d)

is rewritten into

𝐷𝒌𝑛𝛽𝛼
Pu1bk

(𝒒++) (7.128d)

= ∑
𝑮′𝑮

⎛⎜
⎝
𝒛∗(1)
𝑮′ (𝒌, 𝑛; 𝒒𝛽)⟨𝜙(0)IR

𝒌+𝒒,𝑮′∣ℋ (0) − 𝜖(0)𝒌,𝑛∣𝜙
(0)IR
𝒌+𝒒,𝑮⟩

IR
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤

+ ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

{

∑
𝛾
(𝒛(1)

𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎
𝑮′𝒌𝛾
𝑙′𝑚′𝑝′(𝒒))

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛾

[𝒛(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)]

⊤
𝑎𝑮𝒌𝛾
𝑙𝑚𝑝 (𝒒)

+ (𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

i[𝒌 +𝑮]⊤𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− (𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝛁

⊤�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

+ (𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′i[𝒌 +𝑮′])

∗
⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)

− (𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
⟨𝛁�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)

+ δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′i[𝒌 +𝑮′])

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 i[𝒌 +𝑮]⊤

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
⟨𝛁�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 i[𝒌 +𝑮]⊤

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′i[𝒌 +𝑮′])

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝛁

⊤�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

+ δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
⟨𝛁�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝛁

⊤�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 }⎞⎟

⎠
.

These three 𝒌- and band-dependent Pulay contributions are essentially already published in
the appendix of Klüppelberg [88]. However, Klüppelberg does not reformulate them such

that only the first-order expansion coefficients with Bloch character 𝒒+ are necessitated and

has a typo in a relative minus. Furthermore, relative to him I regroup the terms in order to

set the stage for the following discussion.
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Surface-Terms Correction

In the 𝒒+ part of equation (6.68c), those terms incorporating wave functions or their variations

can further be evaluated so that

𝐷𝛽𝛼
sfO

(𝒒+) (7.129)

= ∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
{

2∮
∂𝛼

((𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽) ⃗𝜙(0)𝛼

𝒌+𝒒,𝑮′(𝒓))
∗
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛) ⃗𝜙(0)𝛼

𝒌,𝑮(𝒓)

+ δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)i(𝒌 +𝑮′) ⃗𝜙(0)𝛽

𝒌,𝑮′(𝒓))
∗
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛) ⃗𝜙(0)𝛽

𝒌,𝑮(𝒓)

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝛁 ⃗𝜙(0)𝛽

𝒌,𝑮′(𝒓))
∗
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛) ⃗𝜙(0)𝛽

𝒌,𝑮(𝒓)

− (𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝜙

(0)IR
𝒌+𝒒,𝑮′(𝒓))

∗
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛)𝜙(0)IR

𝒌,𝑮 (𝒓)) ̂𝒓⊤ d𝑆

+ 2∮
∂𝛽

̂𝒓(𝑧∗(0)𝑮′ (𝒌, 𝑛) ⃗𝜙∗(0)𝛽
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜖(0)𝒌,𝑛)[𝒛
(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)]

⊤ ⃗𝜙(0)𝛽
𝒌+𝒒,𝑮(𝒓)

+ δ𝛽𝛼𝑧
∗(0)
𝑮′ (𝒌, 𝑛) ⃗𝜙∗(0)𝛽

𝒌,𝑮′ (𝒓)(ℋ
(0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛)i[𝒌 +𝑮]⊤ ⃗𝜙(0)𝛽

𝒌,𝑮(𝒓)

− δ𝛽𝛼𝑧
∗(0)
𝑮′ (𝒌, 𝑛) ⃗𝜙∗(0)𝛽

𝒌,𝑮′ (𝒓)(ℋ
(0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛)(𝛁⊤ ⃗𝜙(0)𝛽

𝒌,𝑮(𝒓))

− 𝑧∗(0)𝑮′ (𝒌, 𝑛)𝜙∗(0)IR
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜖(0)𝒌,𝑛)[𝒛
(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)]

⊤
𝜙(0)IR
𝒌+𝒒,𝑮(𝒓)) d𝑆

+ δ𝛽𝛼 ∮
∂𝛽

(𝑧∗(0)𝑮′ (𝒌, 𝑛)(𝛁 ⃗𝜙∗(0)𝛽
𝒌,𝑮′ (𝒓))(ℋ

(0) − 𝜖(0)𝒌,𝑛)𝑧
(0)
𝑮 (𝒌, 𝑛) ⃗𝜙(0)𝛽

𝒌,𝑮(𝒓)

− 𝑧∗(0)𝑮′ (𝒌, 𝑛)(𝛁𝜙∗(0)IR
𝒌,𝑮′ (𝒓))(ℋ

(0) − 𝜖(0)𝒌,𝑛)𝑧
(0)
𝑮 (𝒌, 𝑛)𝜙(0)IR

𝒌,𝑮 (𝒓)

+ 𝑧∗(0)𝑮′ (𝒌, 𝑛) ⃗𝜙∗(0)𝛽
𝒌,𝑮′ (𝒓)(𝛁𝑉 (0)𝛽

eff
(𝒓))𝑧(0)𝑮 (𝒌, 𝑛) ⃗𝜙(0)𝛽

𝒌,𝑮(𝒓)

− 𝑧∗(0)𝑮′ (𝒌, 𝑛)𝜙∗(0)IR
𝒌,𝑮′ (𝒓)(𝛁𝑉 (0)IR

eff
(𝒓))𝑧(0)𝑮 (𝒌, 𝑛)𝜙(0)IR

𝒌,𝑮 (𝒓)) ̂𝒓⊤ d𝑆

+ δ𝛽𝛼 ∮
∂𝛽

̂𝒓(𝑧∗(0)𝑮′ (𝒌, 𝑛) ⃗𝜙∗(0)𝛽
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜖(0)𝒌,𝑛)𝑧
(0)
𝑮 (𝒌, 𝑛)(𝛁⊤ ⃗𝜙(0)𝛽

𝒌,𝑮(𝒓))

− 𝑧∗(0)𝑮′ (𝒌, 𝑛)𝜙∗(0)IR
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜖(0)𝒌,𝑛)𝑧
(0)
𝑮 (𝒌, 𝑛)(𝛁⊤𝜙(0)IR

𝒌,𝑮 (𝒓)))d𝑆}

+ δ𝛽𝛼 ∮
∂𝛽

[𝛁(𝜌(0)𝛽 (𝒓)(𝜖(0)𝛽xc (𝒓) − 𝑉 (0)𝛽
xc (𝒓)))

−𝛁(𝜌(0)IR (𝒓)(𝜖(0)IRxc (𝒓) − 𝑉 (0)IR
xc (𝒓)))] ̂𝒓⊤ d𝑆

+ δ𝛽𝛼 ∮
∂𝛽

̂𝒓[𝜌(0)𝛽 (𝒓)(2[𝑽 (1)𝛽
ext (𝒓; 𝒒+𝛼)]

⊤
+ [𝑽 (1)𝛽

Htr (𝒓; 𝒒+𝛼)]
⊤
)

− 𝜌(0)IR (𝒓)(2[𝑽 (1)IR
ext (𝒓; 𝒒+𝛼)]

⊤
+ [𝑽 (1)IR

Htr (𝒓; 𝒒+𝛼)]
⊤
)]d𝑆

results. Basically, the wave functions are expanded in the LAPW basis (5.17b) and the

respective parts in the definition of the first-order wave-function variation (cf. equations (6.8)

and (6.7)) are inserted. Again, there are first-order wave-function expansion coefficients

with Bloch character 𝒒−, which are not available. But due to making the dynamical matrix
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self-adjoint in the end, the first two lines on the right-hand side of equation (7.124b) can be

substituted by the last two lines. Furthermore, the first two lines of equation (7.124c) are

replaced by the last two lines to prepare the following derivation. Mainly, this is consistent with

Klüppelberg [88], but certain terms of his thesis are not at hand after the juPhon computation.
Furthermore, he describes how to calculate his surface-integral expressions in detail. However,

in my opinion this is highly inefficient, because many terms can and should be summarized

first.

7.6.3 Circumventing Hessian Contributions

Having Motivationimplemented the dynamical matrix approach of Klüppelberg [88] as described in

section 7.6.2 [251], the numerics turn out to be absolutely not satisfying. From our conceptual

tests [127, 251] that I have programmed, in particular those have permanently failed which

check fundamental relations based on the divergence theorem or the product rule of derivation.

Localizing most of the numerical problems in those terms which incorporate outer products

of two gradients stimulated me to develop a reformulation that circumvents them. It is based

on a generalized outer-product divergence theorem [294] which is provided first, as well as

its implications (a proof by Fabian Lux can be found in appendix E). Then, the HF part of the

dynamical matrix is separately discussed from its valence Pulay and surface correction terms.

Finally, the Pulay core-electron corrections are elucidated and rectified.

Outer-Product Divergence Theorem

The Required relationdivergence theorem with a vectorial integrand only incorporates one gradient in the

volume integral and none in the surface integral. However, it is possible to generalize it so

that the surface integral contains an outer product of the gradient and the normal vector,

while the volume integral comprises an outer product of two gradients [294]

∫
∂𝔇

𝔨∗(𝒓)�̂�𝛁⊤𝔤(𝒓) d𝑆 = ∫
𝔇
𝛁(𝔨∗(𝒓)𝛁⊤𝔤(𝒓)) d3𝑟 (7.130a)

= ∫
𝔇
(𝛁𝔨∗(𝒓))(𝛁⊤𝔤(𝒓)) d3𝑟 +∫

𝔇
𝔨∗(𝒓)𝛁𝛁⊤𝔤(𝒓) d3𝑟 (7.130b)

= ∫
𝔇
⟨𝛁𝔨|𝒓⟩⟨𝒓∣𝛁⊤𝔤⟩ d3𝑟 +∫

𝔇
⟨𝔨|𝒓⟩⟨𝒓∣𝛁𝛁⊤𝔤⟩ d3𝑟 (7.130c)

= ⟨𝛁𝔨∣𝛁⊤𝔤⟩
𝔇
+ ⟨𝔨∣𝛁𝛁⊤𝔤⟩

𝔇
, (7.130d)

where 𝔇 is a domain and ∂𝔇 its surface. Furthermore, by interchanging 𝔨∗ and 𝔤

⟨𝛁𝔨∣𝛁⊤𝔤⟩⊤
𝔇

+ ⟨𝛁𝛁⊤𝔨∣𝔤⟩
𝔇

= ∫
∂𝔇

[(𝛁𝔨∗(𝒓))�̂�⊤]⊤𝔤(𝒓) d𝑆 (7.131)

can be implied [294].

Hellmann–Feynman Terms

Within Second-order
external potential
variation

the HF contributions (6.64b), only that part of the second-order external-potential

variation must be calculated which features a Bloch character of 𝟎. Essentially, this is the
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Hessian matrix of the external potential. Klüppelberg [88] suggests an algorithm for this

quantity, based on the Weinert [64] method for computing the Coulomb potential. Although

it enables us to generate a continuous quantity, this non-linear variation is still unemployable.

AfterNo subtraction of
trace

I have programmed it, we are able to give two reasons why the numerical results

are inadequate and conceptual tests fail. The first one concerns the pseudo-density, which is

utilized for the second-order external-potential variation. Basically, it is given by setting 𝒒
equal to zero in equation (6.58). But, comparing this pseudo-density with that of the external

potential gradient in equation (6.28), which is transposed and undergoes an outer product

with i𝑮, fails. I found in a numerical experiment that this can be overcome with omitting
the subtraction of the trace, by analogy with the discussion around the optimized pseudo-

density (7.120) of the second-order ion–ion-interaction variation. Likewise, for this external-

potential variation we have not been able yet to analytically explain this numerical finding [127,

251, 256, 261].

WhileDecisive
drawback

stimulating the
reformulation

the aforementioned error can in principle be numerically rectified, another one

in the MT spheres cannot, representing the second and main reason for the reformulation

hereinafter. In a test, the Hessian matrix of the external potential in the MT spheres has been

calculated in two ways. On the one hand with the Weinert-based approach of Klüppelberg,

and on the other hand by employing the numerical gradient of a MT function [127, 251].

This is analogous to test 15, in which the gradient instead of the Hessian matrix is used. Both

applying the numerical gradient once to the transposed version of equation (6.32), and an

outer product of two numerical gradients applied to the unperturbed external potential from

FLEUR essentially lead to the same result. Comparing it moreover with the outcome of the
Weinert method for the second-order external-potential variation, it is consistent within the

expected preciseness [127]. This means considering the aforesaid first reason and regarding

to which extent both methods can be compared (continuity at the MT sphere boundary) [127].

However, reviewing the Hessian matrix of the external potential, it becomes obvious that

its trace equals the application of the Laplacian operator ∆ to the unperturbed external

potential. Moreover, from the Poisson equation it is known that 𝒓 = 𝟎 (conform with the
center of the MT sphere) is absolutely relevant. But, due to the discrete logarithmic MT

mesh points employed, 𝑟𝜈𝛾 = 0 is never included29. Hence, the main contribution of 𝑉 (2)
ext

cannot be exactly calculated [127]. This motivated me to search for a relation allowing for

reformulating the integrals such that the Hessian matrix of the external potential is avoided

(as anticipated in chapter 6). In fact, this requires a variation of the divergence theorem

which is suited for integrals incorporating outer products. It is given by the right-hand side of

equation (7.130b) equaling the left-hand side in equation (7.130a). Applying it to the next

to last line of equation (7.126b), while the IR and the respective MT spheres are separate

connected domains, reads

∫
IR

𝜌(0)IR (𝒓)𝛁𝛁⊤𝑉 (0)IR
ext (𝒓) d3𝑟 +∑

𝛾
∫
𝛾
𝜌(0)𝛾 (𝒓)𝛁𝛁⊤𝑉 (0)𝛾

ext (𝒓) d3𝑟 (7.132)

= −∫
IR

(𝛁𝜌(0)IR (𝒓))𝛁⊤𝑉 (0)IR
ext (𝒓) d3𝑟 −∑

𝛾
∫
𝛾
(𝛁𝜌(0)𝛾 (𝒓))𝛁⊤𝑉 (0)𝛾

ext (𝒓) d3𝑟

29 In reality, the core electrons screen the core and lead to a non-diverging Yukawa potential for distances

smaller than about 1 ⋅ 10−5 a0 [119, 127]. In the DFT, the
1/𝑟 potential is assumed, which must be coped

with, because it and its variations diverge at the core [119, 127, 251].
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+∑
𝛾

∮
𝛾

̂𝒓𝜌(0)𝛾 (𝒓)𝛁⊤𝑉 (0)𝛾
ext (𝒓) d𝑆 −∮

IR

̂𝒓𝜌(0)IR (𝒓)𝛁⊤𝑉 (0)IR
ext (𝒓) d𝑆 .

Valence-Electron Pulay and Surface Correction Terms

The Reasons why
reformulation
urges

last lines of equations (7.128b), (7.128c), and (7.128d) comprise outer products of

two gradients. Although gradients or Hessian matrices of Kohn–Sham wave functions do

not regularly feature a very large absolute value at the core, they can still be numerically

imprecise. Furthermore, implementing them is a tremendous challenge, since test scenarios

are hard to find, and the MT basis functions are differentiated with a numerical MT gradient

subroutine, similar to that in section 7.2.1. It must be emphasized that the gradient connects

contributions from the orbital quantum number 𝑙 with the neighboring channels 𝑙 ± 1. For
a Hessian matrix, a channel 𝑙 influences all channels from 𝑙 − 2 to 𝑙 + 2. Additionally, there
are the magnetic quantum numbers and the three displacement directions to be considered.

But, as can be deduced for instance from section 7.4.3, evaluating matrix elements requires

summing the right combinations of orbital and magnetic quantum numbers. If gradients or

Hessian matrices are involved, both the information from which channel one contribution

stems and to which channels it is distributed must be stored [251]. I have programmed

our implementation [251] of these matrix elements and we have developed tests based on

the product rule [127, 251]. For example, the numerically calculated Hessian matrix of

the charge density has been compared to a sum of differentiated wave-function overlaps,

incorporating amongst others Hessian matrices of wave functions [127]. The numerical

performance of these tests has not been satisfying. Apart from that, this test only covers a

simple scenario. In the worst case, the kinetic energy operator applied to a Hessian matrix of

a wave function implies fourfold derivatives of Kohn–Sham wave functions, which are only

continuous up to linear order. All in all, handling the outer product of two gradients is at

least numerically demanding. This stimulated me to rearrange the terms so that the Hessian

matrices of Kohn–Sham wave functions are circumvented.

For Auxiliary relationpreparing the main derivation, the auxiliary relation

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛(⟨ ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣𝛁𝛁⊤𝒱 (0)
eff

∣ ⃗𝛹 (0)𝛼
𝒌,𝑛 ⟩

𝛼
+ ⟨ ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣𝛁𝒱 (0)
eff

∣𝛁⊤ ⃗𝛹 (0)𝛼
𝒌,𝑛 ⟩

𝛼
(7.133a)

+ ⟨ ⃗𝛹 (0)𝛼
𝒌,𝑛 ∣𝛁𝒱 (0)

eff
∣𝛁⊤ ⃗𝛹 (0)𝛼

𝒌,𝑛 ⟩
⊤

𝛼
)

= ∫
𝛼
𝜌(0)𝛼,v(𝒓)𝛁𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟 + 1

2
∫
𝛼
(𝛁𝑉 (0)𝛼

eff
(𝒓)𝛁⊤𝜌(0)𝛼,v(𝒓) +𝛁𝜌(0)𝛼,v(𝒓)𝛁⊤𝑉 (0)𝛼

eff
(𝒓)) d3𝑟

= ∫
𝛼
𝜌(0)𝛼,v(𝒓)𝛁𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟 +∫

𝛼
𝛁𝜌(0)𝛼,v(𝒓)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟 (7.133b)

= ∮
∂𝛼

̂𝒓𝜌(0)𝛼,v(𝒓)𝛁⊤𝑉 (0)𝛼
eff

(𝒓) d𝑆 (7.133c)

is necessary. Evaluating the sums on the left-hand side of equation (7.133a), the valence-

electron density and its gradient (regular and transposed) can be identified. According to

equation (7.123f) furthermore, terms within the dynamical matrix can always be substituted by

their adjoint version with interchanged indices 𝛼 and 𝛽. Assuming 𝛼 = 𝛽 here, interchanging
these atom indices is not required. Moreover, it suffices to replace by a transposed version
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instead of an adjoint one, provided only real quantities are involved (e.g. the charge density and

the effective potential). Hence, the second integral on the right-hand side of equation (7.133a)

can be substituted by its transposed version and summarized with its succeeding term. In the

last step (7.133c), the equivalence of equations (7.130a) and (7.130b) is utilized, by analogy

with equation (7.132).

ForReformulation the main part, the left-hand side of equation (7.130a) and the right-hand side of

equation (7.130d) are necessary, while

𝔨 = ⃗𝛹 (0)𝛼
𝒌,𝑛 , 𝔤 = (ℋ (0) − 𝜖(0)𝒌,𝑛) ⃗𝛹 (0)𝛼

𝒌,𝑛 . (7.134)

This yields

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛(⟨𝛁 ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣𝛁⊤(ℋ (0) − 𝜖(0)𝒌,𝑛) ⃗𝛹 (0)𝛼
𝒌,𝑛 ⟩

𝛼
+ ⟨ ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣𝛁𝛁⊤(ℋ (0) − 𝜖(0)𝒌,𝑛) ⃗𝛹 (0)
𝒌,𝑛⟩

𝛼
)

= ∑
𝒌𝑛

𝑓 (0)
𝒌,𝑛 ∮

∂𝛼
̂𝒓 ⃗𝛹 ∗(0)𝛼

𝒌,𝑛 (𝒓)𝛁⊤(ℋ (0) − 𝜖(0)𝒌,𝑛) ⃗𝛹 (0)𝛼
𝒌,𝑛 (𝒓) d𝑆 . (7.135a)

Applying then the product rule and exploiting the Schwarz theorem reads

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛(⟨𝛁 ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣𝛁⊤𝒱 (0)
eff

∣ ⃗𝛹 (0)𝛼
𝒌,𝑛 ⟩

𝛼
+ ⟨𝛁 ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣ℋ (0) − 𝜖(0)𝒌,𝑛∣𝛁
⊤ ⃗𝛹 (0)𝛼

𝒌,𝑛 ⟩
𝛼

(7.135b)

+ ⟨ ⃗𝛹 (0)𝛼
𝒌,𝑛 ∣𝛁𝛁⊤𝒱 (0)

eff
∣ ⃗𝛹 (0)𝛼

𝒌,𝑛 ⟩
𝛼
+ ⟨ ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣𝛁𝒱 (0)
eff

∣𝛁⊤ ⃗𝛹 (0)𝛼
𝒌,𝑛 ⟩

𝛼

+ ⟨ ⃗𝛹 (0)𝛼
𝒌,𝑛 ∣𝛁𝒱 (0)

eff
∣𝛁⊤ ⃗𝛹 (0)𝛼

𝒌,𝑛 ⟩
⊤

𝛼
+ ⟨ ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣(ℋ (0) − 𝜖(0)𝒌,𝑛)∣𝛁𝛁⊤ ⃗𝛹 (0)𝛼
𝒌,𝑛 ⟩

𝛼
)

= ∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛(∮

∂𝛼
̂𝒓 ⃗𝛹 ∗(0)𝛼

𝒌,𝑛 (𝒓)(𝛁⊤𝒱 (0)
eff

) ⃗𝛹 (0)𝛼
𝒌,𝑛 (𝒓) d𝑆

+∮
∂𝛼

̂𝒓 ⃗𝛹 ∗(0)𝛼
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛁

⊤ ⃗𝛹 (0)𝛼
𝒌,𝑛 (𝒓) d𝑆) .

By using the relation (7.133), the previous step can be simplified to

1
2
∫𝛁𝜌(0)𝛼,v(𝒓)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟 +∮

∂𝛼
̂𝒓𝜌(0)𝛼,v(𝒓)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d𝑆 (7.135c)

+∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛(⟨𝛁 ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣ℋ (0) − 𝜖(0)𝒌,𝑛∣𝛁
⊤ ⃗𝛹 (0)𝛼

𝒌,𝑛 ⟩
𝛼
+ ⟨ ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣(ℋ (0) − 𝜖(0)𝒌,𝑛)∣𝛁𝛁⊤ ⃗𝛹 (0)𝛼
𝒌,𝑛 ⟩

𝛼
)

= ∮
∂𝛼

̂𝒓𝜌(0)𝛼,v(𝒓)𝛁⊤𝑉 (0)𝛼
eff

(𝒓) d𝑆 +∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∮

∂𝛼
̂𝒓 ⃗𝛹 ∗(0)𝛼

𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛁
⊤ ⃗𝛹 (0)𝛼

𝒌,𝑛 (𝒓) d𝑆 ,

a rearrangement of which finally leads to

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛⟨ ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣(ℋ (0) − 𝜖(0)𝒌,𝑛)∣𝛁𝛁⊤ ⃗𝛹 (0)𝛼
𝒌,𝑛 ⟩

𝛼
(7.135d)

= −1
2
∫𝛁𝜌(0)𝛼,v(𝒓)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟 −∑

𝒌,𝑛
𝑓 (0)
𝒌,𝑛⟨𝛁 ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣ℋ (0) − 𝜖(0)𝒌,𝑛∣𝛁
⊤ ⃗𝛹 (0)𝛼

𝒌,𝑛 ⟩
𝛼

+∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∮

∂𝛼
̂𝒓 ⃗𝛹 ∗(0)𝛼

𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛁
⊤ ⃗𝛹 (0)𝛼

𝒌,𝑛 (𝒓) d𝑆 .
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Inserting analogously the definitions (7.134) into (7.131) implies

∑
𝒌𝑛

𝑓 (0)
𝒌,𝑛(⟨𝛁 ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣𝛁⊤(ℋ (0) − 𝜖(0)𝒌,𝑛) ⃗𝛹 (0)𝛼
𝒌,𝑛 ⟩

⊤

𝛼
+ ⟨𝛁𝛁⊤ ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣(ℋ (0) − 𝜖(0)𝒌,𝑛) ⃗𝛹 (0)𝛼
𝒌,𝑛 ⟩

𝛼
)

= ∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∮

∂𝛼
̂𝒓(𝛁⊤ ⃗𝛹 ∗(0)𝛼

𝒌,𝑛 (𝒓))(ℋ (0) − 𝜖(0)𝒌,𝑛) ⃗𝛹 (0)𝛼
𝒌,𝑛 (𝒓) d𝑆 . (7.136a)

Applying then the product rule reads

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛(⟨𝛁 ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣𝛁⊤𝒱 (0)
eff

∣ ⃗𝛹 (0)𝛼
𝒌,𝑛 ⟩

⊤

𝛼
+ ⟨𝛁 ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣ℋ (0) − 𝜖(0)𝒌,𝑛∣𝛁
⊤ ⃗𝛹 (0)𝛼

𝒌,𝑛 ⟩
⊤

𝛼
(7.136b)

+ ⟨𝛁𝛁⊤ ⃗𝛹 (0)𝛼
𝒌,𝑛 ∣(ℋ (0) − 𝜖(0)𝒌,𝑛)∣ ⃗𝛹 (0)𝛼

𝒌,𝑛 ⟩
𝛼
)

= ∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∮

∂𝛼
̂𝒓(𝛁⊤ ⃗𝛹 ∗(0)𝛼

𝒌,𝑛 (𝒓))(ℋ (0) − 𝜖(0)𝒌,𝑛) ⃗𝛹 (0)𝛼
𝒌,𝑛 (𝒓) d𝑆 .

Now, only the first term is summed over the 𝒌-points and bands 𝑛 so that

1
2
∫
𝛼
𝛁𝑉 (0)𝛼

eff
(𝒓)𝛁⊤𝜌(0)𝛼,v(𝒓) d3𝑟 (7.136c)

+∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛(⟨𝛁 ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣ℋ (0) − 𝜖(0)𝒌,𝑛∣𝛁
⊤ ⃗𝛹 (0)𝛼

𝒌,𝑛 ⟩
⊤

𝛼
+ ⟨𝛁𝛁⊤ ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣(ℋ (0) − 𝜖(0)𝒌,𝑛)∣ ⃗𝛹 (0)𝛼
𝒌,𝑛 ⟩

𝛼
)

= ∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∮

∂𝛼
̂𝒓(𝛁⊤ ⃗𝛹 ∗(0)𝛼

𝒌,𝑛 (𝒓))(ℋ (0) − 𝜖(0)𝒌,𝑛) ⃗𝛹 (0)𝛼
𝒌,𝑛 (𝒓) d𝑆 .

Substituting the first and second term by their adjoint complement and rewriting leads to

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛⟨𝛁𝛁⊤ ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣(ℋ (0) − 𝜖(0)𝒌,𝑛)∣ ⃗𝛹 (0)𝛼
𝒌,𝑛 ⟩

𝛼
(7.136d)

= −1
2
∫𝛁𝜌(0)𝛼,v(𝒓)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟 −∑

𝒌,𝑛
𝑓 (0)
𝒌,𝑛⟨𝛁 ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣ℋ (0) − 𝜖(0)𝒌,𝑛∣𝛁
⊤ ⃗𝛹 (0)𝛼

𝒌,𝑛 ⟩
𝛼

+∑
𝒌𝑛

𝑓 (0)
𝒌,𝑛 ∮

∂𝛼
̂𝒓(𝛁⊤ ⃗𝛹 ∗(0)𝛼

𝒌,𝑛 (𝒓))(ℋ (0) − 𝜖(0)𝒌,𝑛) ⃗𝛹 (0)𝛼
𝒌,𝑛 (𝒓) d𝑆 .

Adding (7.135d) and (7.136d) then implies

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛⟨ ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣(ℋ (0) − 𝜖(0)𝒌,𝑛)∣𝛁𝛁⊤ ⃗𝛹 (0)𝛼
𝒌,𝑛 ⟩

𝛼
+∑

𝒌,𝑛
𝑓 (0)
𝒌,𝑛⟨𝛁𝛁⊤ ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣(ℋ (0) − 𝜖(0)𝒌,𝑛)∣ ⃗𝛹 (0)𝛼
𝒌,𝑛 ⟩

𝛼

= −∫
𝛼
𝛁𝜌(0)𝛼,v(𝒓)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟 − 2∑

𝒌,𝑛
𝑓 (0)
𝒌,𝑛⟨𝛁 ⃗𝛹 (0)𝛼

𝒌,𝑛 ∣ℋ (0) − 𝜖(0)𝒌,𝑛∣𝛁
⊤ ⃗𝛹 (0)𝛼

𝒌,𝑛 ⟩
𝛼

+∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∮

∂𝛼
(𝛁 ⃗𝛹 ∗(0)𝛼

𝒌,𝑛 (𝒓))(ℋ (0) − 𝜖(0)𝒌,𝑛) ⃗𝛹 (0)𝛼
𝒌,𝑛 (𝒓) ̂𝒓⊤ d𝑆

+∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∮

∂𝛼
̂𝒓 ⃗𝛹 ∗(0)𝛼

𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛁
⊤ ⃗𝛹 (0)𝛼

𝒌,𝑛 (𝒓) d𝑆 . (7.137)

In a nutshell, equation (7.137) means that we can neglect the terms with tensor gradients

in the last line of equations (7.128b), (7.128c), and (7.128d). But we must add the two
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surface integrals from equations (7.137) to (7.129). Moreover, the volume integral in equa-

tion (7.137), incorporating the gradients of the valence density and the unperturbed effective

potential, must be summed with equation (7.127b).

Core-Electron Pulay Correction Terms

Core-electronNeglecting
relativism

wave functions are normally pointwise solutions of the Dirac equation in

FLEUR [127]. However, in our opinion, it seems that the Pulay corrections for the core-
electrons by Klüppelberg [88]

𝐷𝛽𝛼
Pl,c

(7.138)

= δ𝛽𝛼 ∑
𝔭
(2⟨𝛹 (1)

𝔭 ∣ℋ (0) − 𝜖(0)𝔭 ∣𝛹 (1)
𝔭 ⟩

𝛼
+ ⟨𝛹 (0)

𝔭 ∣ℋ (0) − 𝜖(0)𝔭 ∣𝛹 (2)
𝔭 ⟩

𝛼
+ ⟨𝛹 (2)

𝔭 ∣ℋ (0) − 𝜖(0)𝔭 ∣𝛹 (0)
𝔭 ⟩

𝛼
)

are based on the non-relativistic Schrödinger equation. For light elements, it is legitimate to

neglect relativistic corrections. So in a first implementation, we decided to postpone their

thorough analysis and increase the variable, storing the speed of light, both in juPhon and
FLEUR by a factor of 103 [119, 127, 251]. Consequently, relativistic corrections become less
relevant. Furthermore, this dissertation focusses on systems with a monoatomic lattice basis.

Thus, there is one MT sphere per unit cell, and it is displaced.

InCorrection of
Klüppelberg [88]

my opinion, the further reformulation of equation (7.138) by Klüppelberg contains

errors. So, I suggest rearranging this equation in the following way: since the core-electron

wave functions are pointwise solutions, their variation, in particular within the frozen-core

approximation, is simply [251]

∣𝛹 (1)
𝔭 ⟩ ≡ ∣𝛁𝛹 (0)

𝔭 ⟩ , ∣𝛹 (2)
𝔭 ⟩ ≡ ∣𝛁𝛁⊤𝛹 (0)

𝔭 ⟩ . (7.139)

As a consequence, the Hamiltonian is self-adjoint [88]. Then, equation (7.138) reads

𝐷𝛽𝛼
Pl,c

= δ𝛽𝛼 ∑
𝔭
[2⟨𝛁𝛹 (0)

𝔭 ∣ℋ (0) − 𝜖(0)𝔭 ∣𝛁⊤𝛹 (0)
𝔭 ⟩

𝛼
+ ⟨𝛹 (0)

𝔭 ∣ℋ (0) − 𝜖(0)𝔭 ∣𝛁𝛁⊤𝛹 (0)
𝔭 ⟩

𝛼
(7.140a)

+ ⟨𝛁𝛁⊤𝛹 (0)
𝔭 ∣ℋ (0) − 𝜖(0)𝔭 ∣𝛹 (0)

𝔭 ⟩
𝛼
] .

If the Hamiltonian acts on the bra in the second term or on the ket in the third term, only the

non-spherical part of the potential remains

⟨𝛹 (0)
𝔭 ∣(ℋ (0)

sph
− 𝜖(0)𝔭 ) = 0 = (ℋ (0)

sph
− 𝜖(0)𝔭 )∣𝛹 (0)

𝔭 ⟩ (7.140b)

because the spherical part of the Hamiltonian results in the eigenenergy so that

𝐷𝛽𝛼
Pl,c

= δ𝛽𝛼 ∑
𝔭
[2⟨𝛁𝛹 (0)

𝔭 ∣ℋ (0) − 𝜖(0)𝔭 ∣𝛁⊤𝛹 (0)
𝔭 ⟩

𝛼
+ ⟨𝛹 (0)

𝔭 ∣𝒱 (0)
eff, nsph

∣𝛁𝛁⊤𝛹 (0)
𝔭 ⟩

𝛼
(7.140c)

+ ⟨𝛁𝛁⊤𝛹 (0)
𝔭 ∣𝒱 (0)

eff, nsph
∣𝛹 (0)

𝔭 ⟩
𝛼
] .

By analogy with a procedure suggested by Klüppelberg [88] for valence electrons, a gradient

is applied to the Schrödinger equation of the core-electrons reading

⟨𝛁𝛹 (0)
𝔭 ∣ℋ (0)

sph
= ⟨𝛁𝛹 (0)

𝔭 ∣𝜖(0)𝔭 − ⟨𝛹 (0)
𝔭 ∣𝛁𝒱 (0)

eff, sph
(7.141a)
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ℋ (0)
sph

∣𝛁⊤𝛹 (0)
𝔭 ⟩ = 𝜖(0)𝔭 ∣𝛁⊤𝛹 (0)

𝔭 ⟩ − (𝛁⊤𝒱 (0)
eff, sph

)∣𝛹 (0)
𝔭 ⟩ . (7.141b)

Therefore, we can rewrite the matrix element with one gradient per ket and bra as

⟨𝛁𝛹 (0)
𝔭 ∣ℋ (0)

sph
+𝒱 (0)

eff, nsph
− 𝜖(0)𝔭 ∣𝛁⊤𝛹 (0)

𝔭 ⟩
𝛼

(7.141c)

= −⟨𝛹 (0)
𝔭 ∣𝛁𝒱 (0)

eff, sph
∣𝛁⊤𝛹 (0)

𝔭 ⟩
𝛼
+ ⟨𝛁𝛹 (0)

𝔭 ∣𝒱 (0)
eff, nsph

∣𝛁⊤𝛹 (0)
𝔭 ⟩

𝛼

= −⟨𝛁𝛹 (0)
𝔭 ∣𝛁⊤𝒱 (0)

eff, sph
∣𝛹 (0)

𝔭 ⟩
𝛼
+ ⟨𝛁𝛹 (0)

𝔭 ∣𝒱 (0)
eff, nsph

∣𝛁⊤𝛹 (0)
𝔭 ⟩

𝛼
, (7.141d)

and thus

2⟨𝛁𝛹 (0)
𝔭 ∣ℋ (0)

sph
+𝒱 (0)

eff, nsph
− 𝜖(0)𝔭 ∣𝛁⊤𝛹 (0)

𝔭 ⟩
𝛼

(7.141e)

= −⟨𝛹 (0)
𝔭 ∣𝛁𝒱 (0)

eff, sph
∣𝛁⊤𝛹 (0)

𝔭 ⟩
𝛼
+ ⟨𝛁𝛹 (0)

𝔭 ∣𝒱 (0)
eff, nsph

∣𝛁⊤𝛹 (0)
𝔭 ⟩

⊤

𝛼

−⟨𝛁𝛹 (0)
𝔭 ∣𝛁⊤𝒱 (0)

eff, sph
∣𝛹 (0)

𝔭 ⟩
𝛼
+ ⟨𝛁𝛹 (0)

𝔭 ∣𝒱 (0)
eff, nsph

∣𝛁⊤𝛹 (0)
𝔭 ⟩

𝛼

holds, where the second term on the right-hand side of the equation can be substituted by its

transposed complement (the dynamical matrix is made self-adjoint in the end).

Utilizing equation (7.131) for the third term in (7.140c) implies

∫
𝛼
(𝛁𝛁⊤𝛹 ∗(0)

𝔭 (𝒓))𝑉 (0)𝛼
eff, nsph

(𝒓)𝛹 (0)
𝔭 (𝒓) d3𝑟 (7.142a)

= −(∫
𝛼
(𝛁𝛹 ∗(0)

𝔭 (𝒓))𝛁⊤(𝑉 (0)𝛼
eff, nsph

(𝒓)𝛹 (0)
𝔭 (𝒓)) d3𝑟)

⊤

+∮
∂𝛼

̂𝒓(𝛁⊤𝛹 ∗(0)
𝔭 (𝒓))𝑉 (0)𝛼

eff, nsph
(𝒓)𝛹 (0)

𝔭 (𝒓) d𝑆

= −⟨𝛁𝛹 (0)
𝔭 ∣𝛁⊤𝒱 (0)

eff, nsph
∣𝛹 (0)

𝔭 ⟩
⊤

𝛼
− ⟨𝛁𝛹 (0)

𝔭 ∣𝒱 (0)
eff, nsph

∣𝛁⊤𝛹 (0)
𝔭 ⟩

⊤

𝛼
. (7.142b)

Assuming now that the core-electron wave functions vanish at the MT sphere boundary, the

surface integral in equation (7.142a) is zero and can be omitted. For the materials relevant

in this dissertation, we think that this is fulfilled in good approximation [127]. This is

because a product of core-wave wave functions and non-spherical potential should not deliver

significant contributions at the MT sphere boundary. Therefore, we decided to postpone the

implementation of these integrals. Furthermore, the second term in (7.142b) is substituted by

its transposed version in the following (legitimate because the dynamical matrix is ensured to

be Hermitian). An analogous calculation can be conducted, exploiting the relation (7.130d):

∫
𝛼
𝛹 ∗(0)
𝔭 (𝒓)𝑉 (0)𝛼

eff, nsph
(𝒓)(𝛁𝛁⊤𝛹 (0)

𝔭 (𝒓)) d3𝑟 (7.143a)

= −∫
𝛼
(𝛁𝛹 ∗(0)

𝔭 (𝒓))𝛁⊤(𝑉 (0)𝛼
eff, nsph

(𝒓)𝛹 (0)
𝔭 (𝒓)) d3𝑟 +∮

∂𝛼
̂𝒓 𝛹 ∗(0)

𝔭 (𝒓)𝛁⊤(𝑉 (0)𝛼
eff, nsph

(𝒓)𝛹 (0)
𝔭 (𝒓)) d𝑆

= −⟨𝛁𝛹 (0)
𝔭 ∣𝛁⊤𝒱 (0)

eff, nsph
∣𝛹 (0)

𝔭 ⟩
𝛼
− ⟨𝛁𝛹 ∗(0)

𝔭 ∣𝒱 (0)
eff, nsph

∣𝛁⊤𝛹 (0)
𝔭 ⟩

𝛼
. (7.143b)
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AllResume in all, this leads to

𝐷𝛽𝛼
Pl,c

= −δ𝛽𝛼 ∑
𝔭
(⟨𝛹 (0)

𝔭 ∣𝛁𝒱 (0)
eff, sph

∣𝛁⊤𝛹 (0)
𝔭 ⟩

𝛼
+ ⟨𝛁𝛹 (0)

𝔭 ∣𝛁⊤𝒱 (0)
eff, sph

∣𝛹 (0)
𝔭 ⟩

𝛼
(7.144a)

+ ⟨𝛁𝛹 (0)
𝔭 ∣𝛁⊤𝒱 (0)

eff, nsph
∣𝛹 (0)

𝔭 ⟩
⊤

𝛼
+ ⟨𝛁𝛹 (0)

𝔭 ∣𝛁⊤𝒱 (0)
eff, nsph

∣𝛹 (0)
𝔭 ⟩

𝛼
) .

Substituting its first and third braket by their transposed version, and complex conjugating

the fourth braket, we can re-express the previous expression as

𝐷𝛽𝛼
Pl,c

= −δ𝛽𝛼 ∫
𝛼
(𝛁𝜌(0)𝛼,c(𝒓))(𝛁⊤𝑉 (0)𝛼

eff
(𝒓)) d3𝑟 . (7.144b)

In practice, the mesh of the core density is the logarithmic MT mesh for the valence electrons,

since contributions of the core-density within the IR are attributed to the IR valence-density

(core-tails). Furthermore the complex conjugation is an equivalent operation, since the

gradients of both the charge density and the potential are observables, and therefore the

braket ist real. Finally, in my derivation the gradient is applied to the full effective potential,

instead of only its non-spherical part as proposed by Klüppelberg [88].

7.6.4 Goldstone Condition

ForOutline the Goldstone modes and monoatomic systems, the solution of the Sternheimer equation

is given by equation (7.30) [251]. As a consequence, many terms of the dynamical-matrix

expressions cancel each other. Hereinafter, I discuss this separately for the HF terms, the

Pulay integral, the Pulay matrix elements, and the surface terms. Each of them shall be shown

without outer products of gradients (see section 7.6.3). Moreover, I prove that the remaining

terms must likewise vanish in monoatomic systems for 𝒒 = 𝟎. A dynamical matrix equalling
zero leads to phonon frequencies with energy zero, which is consistent with the fact that for

infinite wavelengths only the complete crystal is rigidly shifted, not requiring any energy. In

this section, I explain how I have rearranged the dynamical-matrix expressions so that the

numerics is optimized for these Goldstone modes.

Hellmann–Feynman Terms

Inserting equation (7.132) into (7.126b), the HF contribution to the dynamical matrix reads

𝐷𝛽𝛼
HF(𝒒

−+) (7.145)

= ∫
IR

𝝆∗(1)
IR (𝒓; 𝒒+𝛽)[𝑽 (1)IR

ext (𝒓; 𝒒+𝛼)]
⊤
d3𝑟 − δ𝛽𝛼 ∫

IR

(𝛁𝜌(0)IR (𝒓))𝛁⊤𝑉 (0)IR
ext (𝒓) d3𝑟

+∑
𝛾

∫
𝛾
𝝆∗(1)
𝛾 (𝒓; 𝒒+𝛽)[𝑽 (1)𝛾

ext (𝒓; 𝒒+𝛼)]
⊤
d3𝑟 −∑

𝛾
δ𝛽𝛼 ∫

𝛾
(𝛁𝜌(0)𝛾 (𝒓))𝛁⊤𝑉 (0)𝛾

ext (𝒓) d3𝑟

+ δ𝛽𝛼 ∑
𝛾

∮
𝛾

̂𝒓𝜌(0)𝛾 (𝒓)𝛁⊤𝑉 (0)𝛾
ext (𝒓) d𝑆 − δ𝛽𝛼 ∮

IR

̂𝒓𝜌(0)IR (𝒓)𝛁⊤𝑉 (0)IR
ext (𝒓) d𝑆

+ 𝐸(2)𝛽𝛼
ii

(𝒒−+) + δ𝑸𝛽𝑸𝛼
𝐸(2)𝛽𝛼
ii

(𝟎−+) .
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For 𝒒 = 𝟎 andmonoatomic systems, the first-order density variation is given by equation (7.31).
Furthermore,

[𝑽 (1)
ext (𝒓; 𝟎+𝛼)]

⊤
= −𝛁⊤𝑽 (1)

ext (𝒓; 𝒒+𝛼) (7.146)

holds, which is discussed in section 7.3.1. As a consequence, the second and third lines in

equation (7.145) analytically cancel each other. Likewise, these expressions exactly annihilate

in the numerics, since the integrals containing the linear variations of the density and the

external potential are successively arranged. The integrands in principle become equivalent

for 𝒒 = 𝟎 and the same numerical errors are made, implying an effective error cancelation.
Moreover, the sum of the surface integrals in the fourth line of the aforementioned equation

should be smaller than 1 ⋅ 10−5 Eh a
−2
0 . This originates from the fact that both the charge

density and the gradient of the external potential are rather continuous at the MT sphere

boundary, due to the construction of the LAPW basis and the Weinert method. Thus effectively,

this sum of surface integrals does not significantly contribute to the phonon frequencies

in the end. Finally, it manifests itself in equation (6.54) that the second-order variation of

the ion–ion interaction vanishes for the Goldstone modes. So overall, the HF contribution

should vanish completely. If it does not, this draws from the fact that the outcome of the

Sternheimer equation is not perfectly consistent with the analytical solution for 𝒒 = 𝟎 given
by equation (7.30).

Pulay Integral Terms

If combining equation (7.127b) with the first term in equation (7.137) and equation (7.144b),

𝐷𝛽𝛼
Pl,dp

(𝒒−+) = ∫
IR

𝝆∗(1)
IR (𝒓; 𝒒+𝛽)[𝑽 (1)IR

eff
(𝒓; 𝒒+𝛼)]

⊤
d3𝑟 (7.147)

+∑
𝛾

∫
𝛾
𝝆∗(1)
𝛾 (𝒓; 𝒒+𝛽)[𝑽 (1)𝛾

eff
(𝒓; 𝒒+𝛼)]

⊤
− δ𝛾𝛼δ𝛽𝛼𝛁𝜌(0)𝛼 (𝒓)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟

results. In contrast to the HF contribution (7.145), this expression only contains one IR

integral with first-order variations, but none with gradients. Hence, this term does not

obviously vanish for 𝒒 = 𝟎. For the MT sphere 𝛾 in monoatomic systems, the integrals are
arranged such that they annihilate each other again, analogously to the aforementioned

HF contributions. Since moreover equation (7.31) holds for the first-order charge density

variation,

[𝑽 (1)𝛾
eff

(𝒓; 𝟎+𝛼)]
⊤
= −𝛁⊤𝑽 (0)𝛾

eff
(𝒓) (7.148)

is implied. This is discussed in section 7.3.1 for the Coulomb potential. However, regard-

ing the xc potential, it becomes immediately obvious when inserting equation (7.31) into

equation (7.71e) and comparing it with (7.71) in the MT sphere 𝛾.
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Pulay Matrix-Element Terms

According to equation (7.137), the terms with outer products of gradients cancel in equa-

tions (7.128b), (7.128c), and (7.128d). This yields

𝐷𝒌𝑛𝛽𝛼
Pu2b

(𝒒+−) (7.149a)

= ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

∑
𝑮′𝑮

{

2(𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒)i[𝒌 + 𝒒 +𝑮′]⊤)

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
[𝒌 +𝑮′][𝒌 +𝑮′]⊤⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− 2(𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨𝛁⊤�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′i[𝒌 +𝑮′])

∗
⟨𝛁⊤�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− δ𝛽𝛼⟨𝛁�⃗��̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
�̊�
𝑙𝑚𝑝⟩𝛼

[𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙′𝑚′𝑝′i[𝒌 +𝑮′]]
†
𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝 } ,

𝐷𝒌𝑛𝛽𝛼
Pu2kO

(𝒒−+) (7.149b)

= ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

∑
𝑮′𝑮

{

2(𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)i[𝒌 + 𝒒 +𝑮][𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
[𝒌 +𝑮][𝒌 +𝑮]⊤⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− 2(𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛁�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝 i[𝒌 +𝑮]⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛁
⊤�⃗��̊�

𝑙𝑚𝑝⟩𝛼
− δ𝛽𝛼⟨�⃗�

�̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛁�⃗��̊�
𝑙𝑚𝑝⟩𝛼

(𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙′𝑚′𝑝′)
∗
[𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝 i[𝒌 +𝑮]]
⊤
} ,

and

𝐷𝒌𝑛𝛽𝛼
Pu1bk

(𝒒++) (7.149c)

= ∑
𝑮′𝑮

{𝒛∗(1)
𝑮′ (𝒌, 𝑛; 𝒒𝛽)⟨𝜙(0)IR

𝒌+𝒒,𝑮′∣ℋ (0) − 𝜖(0)𝒌,𝑛∣𝜙
(0)IR
𝒌+𝒒,𝑮⟩

IR
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤

+ ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

{

∑
𝛾
(𝒛(1)

𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎
𝑮′𝒌𝛾
𝑙′𝑚′𝑝′(𝒒))

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛾

[𝒛(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)]

⊤
𝑎𝑮𝒌𝛾
𝑙𝑚𝑝 (𝒒)

+ δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′i[𝒌 +𝑮′])

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 i[𝒌 +𝑮]⊤

+ (𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

i[𝒌 +𝑮]⊤𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝
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+ (𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′i[𝒌 +𝑮′])

∗
⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)

− (𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
⟨𝛁�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
⟨𝛁�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 i[𝒌 +𝑮]⊤

− (𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝛁

⊤�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′i[𝒌 +𝑮′])

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝛁

⊤�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 }} .

In these expressions, similar terms are arranged in groups, based on equation (7.30). Given

Goldstone modes in monoatomic systems, the last three lines of equation (7.149a) cancel

each other (provided the last one is substituted by its transposed version, which is valid

according to section 7.6.1). In contrast, the third line is multiplied by a factor of two and

so does not completely cancel with the fourth line in equation (7.149a). Equation (7.149b)

behaves analogously for 𝒒 = 𝟎. Thus, also its third line without the factor of two remains. As
far as equation (7.149c) is concerned, all lines from the fourth to the eleventh cancel each

other, i.e., the fourth with the fifth, the sixth with the seventh, the eighth with the ninth, and

the tenth with the eleventh. What persists, is the IR matrix element in the second line.

Surface Terms

If the two surface terms from equation (7.137) are omitted in equation (7.129),

𝐷𝛽𝛼
sfO

(𝒒+) (7.150a)

= ∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
{

2∮
∂𝛼

((𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽) ⃗𝜙(0)𝛼

𝒌+𝒒,𝑮′(𝒓))
∗
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛) ⃗𝜙(0)𝛼

𝒌,𝑮(𝒓)

+ δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)i(𝒌 +𝑮′) ⃗𝜙(0)𝛽

𝒌,𝑮′(𝒓))
∗
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛) ⃗𝜙(0)𝛽

𝒌,𝑮(𝒓)

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝛁 ⃗𝜙(0)𝛽

𝒌,𝑮′(𝒓))
∗
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛) ⃗𝜙(0)𝛽

𝒌,𝑮(𝒓)

− (𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝜙

(0)IR
𝒌+𝒒,𝑮′(𝒓))

∗
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛)𝜙(0)IR

𝒌,𝑮 (𝒓)) ̂𝒓⊤ d𝑆

+ 2∮
∂𝛽

̂𝒓(𝑧∗(0)𝑮′ (𝒌, 𝑛) ⃗𝜙∗(0)𝛽
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜖(0)𝒌,𝑛)[𝒛
(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)]

⊤ ⃗𝜙(0)𝛽
𝒌+𝒒,𝑮(𝒓)

+ δ𝛽𝛼𝑧
∗(0)
𝑮′ (𝒌, 𝑛) ⃗𝜙∗(0)𝛽

𝒌,𝑮′ (𝒓)(ℋ
(0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛)i[𝒌 +𝑮]⊤ ⃗𝜙(0)𝛽

𝒌,𝑮(𝒓)

− δ𝛽𝛼𝑧
∗(0)
𝑮′ (𝒌, 𝑛) ⃗𝜙∗(0)𝛽

𝒌,𝑮′ (𝒓)(ℋ
(0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛)(𝛁⊤ ⃗𝜙(0)𝛽

𝒌,𝑮(𝒓))

− 𝑧∗(0)𝑮′ (𝒌, 𝑛)𝜙∗(0)IR
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜖(0)𝒌,𝑛)[𝒛
(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)]

⊤
𝜙(0)IR
𝒌+𝒒,𝑮(𝒓)) d𝑆

+ δ𝛽𝛼 ∮
∂𝛽

(2𝑧∗(0)𝑮′ (𝒌, 𝑛)(𝛁 ⃗𝜙∗(0)𝛽
𝒌,𝑮′ (𝒓))(ℋ

(0) − 𝜖(0)𝒌,𝑛)𝑧
(0)
𝑮 (𝒌, 𝑛) ⃗𝜙(0)𝛽

𝒌,𝑮(𝒓)

− 𝑧∗(0)𝑮′ (𝒌, 𝑛)(𝛁𝜙∗(0)IR
𝒌,𝑮′ (𝒓))(ℋ

(0) − 𝜖(0)𝒌,𝑛)𝑧
(0)
𝑮 (𝒌, 𝑛)𝜙(0)IR

𝒌,𝑮 (𝒓)
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+ 𝑧∗(0)𝑮′ (𝒌, 𝑛) ⃗𝜙∗(0)𝛽
𝒌,𝑮′ (𝒓)(𝛁𝑉 (0)𝛽

eff
(𝒓))𝑧(0)𝑮 (𝒌, 𝑛) ⃗𝜙(0)𝛽

𝒌,𝑮(𝒓)

− 𝑧∗(0)𝑮′ (𝒌, 𝑛)𝜙∗(0)IR
𝒌,𝑮′ (𝒓)(𝛁𝑉 (0)IR

eff
(𝒓))𝑧(0)𝑮 (𝒌, 𝑛)𝜙(0)IR

𝒌,𝑮 (𝒓)) ̂𝒓⊤ d𝑆

+ δ𝛽𝛼 ∮
∂𝛽

̂𝒓(2𝑧∗(0)𝑮′ (𝒌, 𝑛) ⃗𝜙∗(0)𝛽
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜖(0)𝒌,𝑛)𝑧
(0)
𝑮 (𝒌, 𝑛)(𝛁⊤ ⃗𝜙(0)𝛽

𝒌,𝑮(𝒓))

− 𝑧∗(0)𝑮′ (𝒌, 𝑛)𝜙∗(0)IR
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜖(0)𝒌,𝑛)𝑧
(0)
𝑮 (𝒌, 𝑛)(𝛁⊤𝜙(0)IR

𝒌,𝑮 (𝒓)))d𝑆}

+ δ𝛽𝛼 ∮
∂𝛽

[𝛁(𝜌(0)𝛽 (𝒓)(𝜖(0)𝛽xc (𝒓) − 𝑉 (0)𝛽
xc (𝒓)))

−𝛁(𝜌(0)IR (𝒓)(𝜖(0)IRxc (𝒓) − 𝑉 (0)IR
xc (𝒓)))] ̂𝒓⊤ d𝑆

+ δ𝛽𝛼 ∮
∂𝛽

̂𝒓[𝜌(0)𝛽 (𝒓)(2[𝑽 (1)𝛽
ext (𝒓; 𝒒+𝛼)]

⊤
+ [𝑽 (1)𝛽

Htr (𝒓; 𝒒+𝛼)]
⊤
)

− 𝜌(0)IR (𝒓)(2[𝑽 (1)IR
ext (𝒓; 𝒒+𝛼)]

⊤
+ [𝑽 (1)IR

Htr (𝒓; 𝒒+𝛼)]
⊤
)]d𝑆

results and can be simplifed and rewritten as

𝐷𝛽𝛼
sfO

(𝒒+) (7.150b)

= ∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
{

2∮
∂𝛼

((𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽) ⃗𝜙(0)𝛼

𝒌+𝒒,𝑮′(𝒓))
∗
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛) ⃗𝜙(0)𝛼

𝒌,𝑮(𝒓)

+ δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)i(𝒌 +𝑮′) ⃗𝜙(0)𝛽

𝒌,𝑮′(𝒓))
∗
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛) ⃗𝜙(0)𝛽

𝒌,𝑮(𝒓)

− (𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝜙

(0)IR
𝒌+𝒒,𝑮′(𝒓))

∗
(ℋ (0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛)𝜙(0)IR

𝒌,𝑮 (𝒓)

− 1
2
δ𝛽𝛼𝑧

∗(0)
𝑮′ (𝒌, 𝑛)(𝛁𝜙∗(0)IR

𝒌,𝑮′ (𝒓))(ℋ
(0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛)𝜙(0)IR

𝒌,𝑮 (𝒓)) ̂𝒓⊤ d𝑆

+ 2∮
∂𝛽

̂𝒓(𝑧∗(0)𝑮′ (𝒌, 𝑛) ⃗𝜙∗(0)𝛽
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜖(0)𝒌,𝑛)[𝒛
(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)]

⊤ ⃗𝜙(0)𝛽
𝒌+𝒒,𝑮(𝒓)

+ δ𝛽𝛼𝑧
∗(0)
𝑮′ (𝒌, 𝑛) ⃗𝜙∗(0)𝛽

𝒌,𝑮′ (𝒓)(ℋ
(0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛)i[𝒌 +𝑮]⊤ ⃗𝜙(0)𝛽

𝒌,𝑮(𝒓)

− 𝑧∗(0)𝑮′ (𝒌, 𝑛)𝜙∗(0)IR
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜖(0)𝒌,𝑛)[𝒛
(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)]

⊤
𝜙(0)IR
𝒌+𝒒,𝑮(𝒓)

− 1
2
δ𝛽𝛼 𝑧∗(0)𝑮′ (𝒌, 𝑛)𝜙∗(0)IR

𝒌,𝑮′ (𝒓)(ℋ
(0) − 𝜖(0)𝒌,𝑛)𝑧

(0)
𝑮 (𝒌, 𝑛)(𝛁⊤𝜙(0)IR

𝒌,𝑮 (𝒓)))d𝑆}

+ δ𝛽𝛼 ∮
∂𝛽

(𝜌(0)𝛽 (𝛁𝑉 (0)𝛽
eff

(𝒓)) − 𝜌(0)IR (𝒓)(𝛁𝑉 (0)IR
eff

(𝒓))) ̂𝒓⊤ d𝑆

+ δ𝛽𝛼 ∮
∂𝛽

[𝛁(𝜌(0)𝛽 (𝒓)(𝜖(0)𝛽xc (𝒓) − 𝑉 (0)𝛽
xc (𝒓)))

−𝛁(𝜌(0)IR (𝒓)(𝜖(0)IRxc (𝒓) − 𝑉 (0)IR
xc (𝒓)))] ̂𝒓⊤ d𝑆

+ δ𝛽𝛼 ∮
∂𝛽

̂𝒓[𝜌(0)𝛽 (𝒓)(2[𝑽 (1)𝛽
ext (𝒓; 𝒒+𝛼)]

⊤
+ [𝑽 (1)𝛽

Htr (𝒓; 𝒒+𝛼)]
⊤
)
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− 𝜌(0)IR (𝒓)(2[𝑽 (1)IR
ext (𝒓; 𝒒+𝛼)]

⊤
+ [𝑽 (1)IR

Htr (𝒓; 𝒒+𝛼)]
⊤
)]d𝑆 .

Restricting to monoatomic systems and inserting equation (7.30) for 𝒒 = 𝟎, the third and
fourth, as well as the seventh and eighth lines in equation (7.150b) cancel each other. However,

the sixth and the tenth lines are multiplied by a factor of one half, which is why they do

not completely cancel the fifth and the ninth lines, respectively. Finally, the last five lines in

equation (7.150b) contain sums of surface integrals which are small, analogously to the sum

of surface integrals in equation (7.145). The largest of these surface term contributions are

normally those incorporating either the xc energy density or the xc potential. However, it has

turned out later that the last five lines in equation (7.150b) can be further simplified. As a

consequence, the aforementioned xc surface terms vanish (cf. section 7.6.8).

Leftover Terms

Those Intentionterms of the dynamical matrix which do not directly cancel are displayed in equa-

tion (7.152f). In the following, I show that they vanish given monoatomic systems and 𝒒 = 𝟎,
because the Schrödinger equation

0 = (ℋ (0) − 𝜖(0)𝒌,𝑛)∣𝛹
(0)
𝒌,𝑛⟩ (7.151a)

= ∑
𝑮′𝑮

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛𝑧

∗(0)
𝑮′ (𝒌, 𝑛)𝑧(0)𝑮 (𝒌, 𝑛) (7.151b)

× (⟨𝜙(0)IR
𝒌,𝑮′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝜙
(0)IR
𝒌,𝑮 ⟩

IR
+ ⟨ ⃗𝜙(0)𝛼

𝒌,𝑮′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣ ⃗𝜙(0)𝛼

𝒌,𝑮⟩
𝛼
)

must hold.

I Proofstart with the assumption that the right-hand side of

0 = ∑
𝑮′𝑮

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛{(−i2[𝒌 +𝑮′][𝒌 +𝑮′]⊤ − i2[𝒌 +𝑮][𝒌 +𝑮]⊤)𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑧(0)𝑮 (𝒌, 𝑛) (7.152a)

× (⟨𝜙(0)IR
𝒌,𝑮′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝜙
(0)IR
𝒌,𝑮 ⟩

IR
+∑

𝛼
⟨ ⃗𝜙(0)𝛼

𝒌,𝑮′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣ ⃗𝜙(0)𝛼

𝒌,𝑮⟩
𝛼
)}

still is equal to zero if it is expanded in this manner relative to the right-hand side of equa-

tion (7.151b) [251]. Exploiting

∑
𝑮

𝑧(0)𝑮 (𝒌, 𝑛)i[𝒌 +𝑮]𝜙(0)IR
𝒌,𝑮 (𝒓) = ∑

𝑮
𝑧(0)𝑮 (𝒌, 𝑛)𝛁𝜙(0)IR

𝒌,𝑮 (𝒓) = 𝛁𝛹 (0)IR
𝒌,𝑛 (𝒓) (7.152b)

for the IR then leads to

0 = −∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛(⟨𝛁𝛁⊤𝛹 (0)IR

𝒌,𝑛 ∣ℋ (0) − 𝜖(0)𝒌,𝑛∣𝛹
(0)IR
𝒌,𝑛 ⟩

IR
+ ⟨𝛹 (0)IR

𝒌,𝑛 ∣ℋ (0) − 𝜖(0)𝒌,𝑛∣𝛁𝛁⊤𝛹 (0)IR
𝒌,𝑛 ⟩

IR
)

+∑
𝛼

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
{(−i2[𝒌 +𝑮′][𝒌 +𝑮′]⊤ − i2[𝒌 +𝑮][𝒌 +𝑮]⊤) (7.152c)

× ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

(𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙′𝑚′𝑝′)
∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 } .
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Now, the IR matrix elements incorporating an outer product of gradients can be replaced by

using an IR version of equations (7.136d) and (7.135d), in which the gradient acts on the IR

basis functions. This yields

0 = ∫
IR

(𝛁𝜌(0)IR (𝒓))(𝛁⊤𝑉 (0)IR
eff

(𝒓)) d3𝑟 (7.152d)

+ 2∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮′

⟨−i[𝒌 +𝑮′]𝑧(0)𝑮′(𝒌, 𝑛)𝜙
(0)IR
𝒌,𝑮′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣−i[𝒌 +𝑮]⊤𝑧(0)𝑮 (𝒌, 𝑛)𝜙(0)IR
𝒌,𝑮 ⟩

IR

−∑
𝛼

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛{∮

∂𝛼
̂𝒓(∑

𝑮′

−i[𝒌 +𝑮′]⊤𝑧(0)𝑮′(𝒌, 𝑛)𝜙
(0)IR
𝒌,𝑮′(𝒓))

∗

(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹
(0)
𝒌,𝑛(𝒓) d𝑆

+∮
∂𝛼

̂𝒓 𝛹 (0)∗
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)∑

𝑮
(−i)[𝒌 +𝑮]⊤𝑧(0)𝑮 (𝒌, 𝑛)𝜙(0)IR

𝒌,𝑮 (𝒓) d𝑆}

−∑
𝛼

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
∑

𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

(i2[𝒌 +𝑮′][𝒌 +𝑮′]⊤𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙′𝑚′𝑝′)
∗
𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝

× ⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
�̊�
𝑙𝑚𝑝⟩𝛼

−∑
𝛼

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
∑

𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

(𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙𝑚𝑝 )
∗
i2[𝒌 +𝑮][𝒌 +𝑮]⊤𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙′𝑚′𝑝′

× ⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
�̊�
𝑙𝑚𝑝⟩𝛼

,

where in the second line a product of two minus signs is inserted. For the surface integrals in

the third and fourth lines of equation (7.152d), an additional minus sign results from the fact

that the normal vector on the outside of the IR surface is antiparallel to the normal vector on

the MT sphere. Furthermore, the MT terms in equation (7.152c) have been further evaluated.

Identifying 𝒛(1)
𝑮′(𝒌, 𝑛; 𝟎𝛼) = −i[𝒌 +𝑮]𝑧(0)𝑮 (𝒌, 𝑛) leads to

0 = ∫
IR

(𝛁𝜌(0)IR (𝒓))(𝛁⊤𝑉 (0)IR
eff

(𝒓)) d3𝑟 (7.152e)

+ 2∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛⟨∑

𝑮′

𝒛(1)
𝑮′(𝒌, 𝑛; 𝟎𝛼)𝜙

(0)IR
𝒌,𝑮′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣∑
𝑮

𝒛(1)
𝑮 (𝒌, 𝑛; 𝟎𝛼)𝜙(0)IR

𝒌,𝑮 ⟩
IR

−∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛{∮

∂𝛼
̂𝒓(∑

𝑮′

𝒛(1)
𝑮′(𝒌, 𝑛; 𝟎𝛼)𝜙

(0)IR
𝒌,𝑮′)

∗

(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹
(0)
𝒌,𝑛 d𝑆

+∮
∂𝛼

̂𝒓 𝛹 ∗(0)(𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)∑
𝑮

𝒛(1)
𝑮 (𝒌, 𝑛; 𝟎𝛼)𝜙(0)IR

𝒌,𝑮 d𝑆}

+∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
∑

𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

(𝒛(1)
𝑮′(𝒌, 𝑛; 𝟎𝛼)i[𝒌 +𝑮′]⊤𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝

× ⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
�̊�
𝑙𝑚𝑝⟩𝛼

+∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
∑

𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

(𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙𝑚𝑝 )
∗
𝒛(1)
𝑮′(𝒌, 𝑛; 𝟎𝛼)i[𝒌 +𝑮]⊤𝑎𝑮𝒌𝛼

𝑙′𝑚′𝑝′

× ⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
�̊�
𝑙𝑚𝑝⟩𝛼

.
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Finally, this is reformulated to the desired terms that do not obviously cancel:

0 = ∫
IR

𝛁𝜌(0)IR (𝒓)𝛁⊤𝑉 (0)IR
eff

(𝒓) d3𝑟 (7.152f)

+ 2∑
𝒌𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
𝒛∗(1)
𝑮′ (𝒌, 𝑛; 𝟎𝛼)⟨𝜙(0)IR

𝒌,𝑮′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝜙

(0)IR
𝒌,𝑮 ⟩

IR
𝒛(1)
𝑮 (𝒌, 𝑛; 𝟎𝛼)

−∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛{∮

∂𝛼
𝜳 ∗(1)IR𝟎

𝒌,𝑛 (𝒓; 𝛼)(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹
(0)IR
𝒌,𝑛 ̂𝒓⊤ d𝑆

+ ∮
∂𝛼

̂𝒓 𝛹 ∗(0)IR
𝒌,𝑛 (𝒓)(ℋ (0) − 𝜖(0)𝒌,𝑛)[𝜳

(1)IR𝟎
𝒌,𝑛 (𝒓; 𝛼)]

⊤
d𝑆}

+∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
∑

𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

(𝒛(1)
𝑮′(𝒌, 𝑛; 𝟎𝛼)i[𝒌 +𝑮′]⊤𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝

× ⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
�̊�
𝑙𝑚𝑝⟩𝛼

+∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
∑

𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

(𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙𝑚𝑝 )
∗
𝒛(1)
𝑮′(𝒌, 𝑛; 𝟎𝛼)i[𝒌 +𝑮]⊤𝑎𝑮𝒌𝛼

𝑙′𝑚′𝑝′

× ⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
�̊�
𝑙𝑚𝑝⟩𝛼

.

But as shown, they overall vanish for monoatomic systems and Goldstone modes.

7.6.5 Canceling Gradient Pulay Matrix-Elements with Surface Integrals

Relative Resume and
motivating
further
reformulations

to the dynamical-matrix approach of Klüppelberg [88], thus far (i) the expressions for

the Pulay core-electron corrections have been rectified, (ii) terms containing outer products of

gradients are avoided, and (iii) only those quantities are demanded that are actually available

from juPhon. Having programmed these optimizations, each of our developed tests passes.
Furthermore, the acoustical frequencies of fcc Ne for 𝒒 = 𝟎 vanish, as well as the numerical
accuracy of the employed integration routines admits it, whereas computing the Goldstone

modes of fcc Al works less well. Although implementing Hessian matrices of Kohn–Sham
wave functions in the MT spheres is not required anymore, matrix elements and surface

integrals incorporating gradients of Kohn–Sham wave functions are still a challenging part of

the formalism. But, the fact that the resulting dispersion relations are absolutely unphysical,

i.e., they predict material instabilities not reproducible by the experiment or FD reference

calculations, poses the main problem.

Neukirchen Inspiring
contradiction

has derived a more general form of the second-order total-energy vari-

ation due to a phonon, in particular being valid for arbitrary metals [256]. In contrast to

Klüppelberg [88], it takes all terms into account which are proportional to variations of the

occupation number. However, omitting these contributions, his formalism seems not consis-

tent with the equations that Klüppelberg has deduced. Especially, it does not comprise terms

in which gradients of wave functions are required. Inspired by this outcome, I have found a

way to reformulate the formalism of Klüppelberg so that it better conforms with the results of

Neukirchen.
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ExtractingReformulation the third, fourth, eighth, and ninth lines of equation (7.129) as well as

separating those terms which are independent of the surface integral reads

2(𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒) + δ𝛽𝛼i(𝒌 +𝑮′)𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝 (7.153a)

×∮
∂𝛼

̂𝒓⊤�⃗�∗𝑠�̊�
𝑙′𝑚′𝑝′(ℋ

(0) − 𝜖(0)𝒌,𝑛)�⃗�
∗𝑠�̊�
𝑙𝑚𝑝 d𝑆

+ 2∮
∂𝛽

̂𝒓�⃗�∗𝑠 ̊𝛽
𝑙′𝑚′𝑝′(ℋ

(0) − 𝜖(0)𝒌,𝑛)�⃗�
∗𝑠 ̊𝛽
𝑙𝑚𝑝 d𝑆

× 𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑎∗𝑮
′𝒌𝛽

𝑙′𝑚′𝑝′[𝒛
(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)𝑎𝑮𝒌𝛽

𝑙𝑚𝑝 (𝒒) + δ𝛽𝛼i(𝒌 +𝑮)𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 ]

⊤
.

Now, the divergence theorem

∮
∂𝛼

̂𝒓⊤�⃗�∗𝑠�̊�
𝑙′𝑚′𝑝′(ℋ

(0) − 𝜖(0)𝒌,𝑛)�⃗�
𝑠�̊�
𝑙𝑚𝑝 d𝑆 (7.153b)

= ⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛁
⊤�⃗��̊�

𝑙𝑚𝑝⟩𝛼
+ ⟨𝛁⊤�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

+ ⟨�⃗��̊�
𝑙′𝑚′𝑝′∣𝛁⊤𝒱 (0)

eff
∣�⃗��̊�

𝑙𝑚𝑝⟩𝛼
can be applied, which is likewise valid in its transposed form

∮
∂𝛽

̂𝒓�⃗�∗𝑠 ̊𝛽
𝑙′𝑚′𝑝′(ℋ

(0) − 𝜖(0)𝒌,𝑛)�⃗�
𝑠 ̊𝛽
𝑙𝑚𝑝 d𝑆 (7.153c)

= ⟨�⃗�
̊𝛽

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝛁�⃗�

̊𝛽
𝑙𝑚𝑝⟩

𝛽
+ ⟨𝛁�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽

+ ⟨�⃗�
̊𝛽

𝑙′𝑚′𝑝′∣𝛁𝒱 (0)
eff

∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
.

Doing this and adding those terms with a gradient in equations (7.128b), (7.128c), as well

as (7.128d) results in

2(𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣𝛁⊤𝒱 (0)
eff

∣�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 (7.153d)

+ 2δ𝛽𝛼(i(𝒌 +𝑮′)𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙′𝑚′𝑝′)
∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣𝛁⊤𝒱 (0)
eff

∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛼
𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝

+ 2⟨�⃗�
̊𝛽

𝑙′𝑚′𝑝′∣𝛁𝒱 (0)
eff

∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑎∗𝑮

′𝒌𝛽
𝑙′𝑚′𝑝′[𝒛

(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)𝑎𝑮𝒌𝛽

𝑙𝑚𝑝 (𝒒)]
⊤

+ 2δ𝛽𝛼⟨�⃗�
̊𝛽

𝑙′𝑚′𝑝′∣𝛁𝒱 (0)
eff

∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑎∗𝑮

′𝒌𝛽
𝑙′𝑚′𝑝′[i(𝒌 +𝑮)𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛽

𝑙𝑚𝑝 ]
⊤

+ 2(𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨𝛁⊤�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− 2(𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨𝛁⊤�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′i[𝒌 +𝑮′])

∗
⟨𝛁⊤�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

+ 2δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′i[𝒌 +𝑮′])

∗
⟨𝛁⊤�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝 i[𝒌 +𝑮]⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛁
⊤�⃗��̊�

𝑙𝑚𝑝⟩𝛼
+ 2(𝒛(1)

𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮
′𝒌𝛼

𝑙′𝑚′𝑝′(𝒒))
∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝛁

⊤�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝
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− 2(𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝛁

⊤�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

+ 2δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′i[𝒌 +𝑮′])

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝛁

⊤�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− 2δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′i[𝒌 +𝑮′])

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝛁

⊤�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

+ 2(𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛁�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤

− 2(𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛁�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤

− δ𝛽𝛼⟨�⃗�
�̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛁�⃗��̊�
𝑙𝑚𝑝⟩𝛼

(𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙′𝑚′𝑝′)
∗
[𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝 i[𝒌 +𝑮]]
⊤

+ 2δ𝛽𝛼⟨�⃗�
�̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛁�⃗��̊�
𝑙𝑚𝑝⟩𝛼

(𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙𝑚𝑝 )
∗
[𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙′𝑚′𝑝′i[𝒌 +𝑮]]
⊤

− δ𝛽𝛼⟨𝛁�⃗��̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
�̊�
𝑙𝑚𝑝⟩𝛼

[𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙′𝑚′𝑝′i[𝒌 +𝑮′]]
†
𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝

+ 2δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
⟨𝛁�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 i[𝒌 +𝑮]⊤

− 2δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
⟨𝛁�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 i[𝒌 +𝑮]⊤

+ 2(𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
⟨𝛁�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)

− 2(𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
⟨𝛁�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒) ,

which can be simplifed to

= 2(𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣𝛁⊤𝒱 (0)
eff

∣�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 (7.153e)

+ 2δ𝛽𝛼(i(𝒌 +𝑮′)𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙′𝑚′𝑝′)
∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣𝛁⊤𝒱 (0)
eff

∣�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

+ 2⟨�⃗�
̊𝛽

𝑙′𝑚′𝑝′∣𝛁𝒱 (0)
eff

∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑎∗𝑮

′𝒌𝛽
𝑙′𝑚′𝑝′[𝒛

(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)𝑎𝑮𝒌𝛽

𝑙𝑚𝑝 (𝒒)]
⊤

+ 2δ𝛽𝛼⟨�⃗�
̊𝛽

𝑙′𝑚′𝑝′∣𝛁𝒱 (0)
eff

∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑎∗𝑮

′𝒌𝛽
𝑙′𝑚′𝑝′[i(𝒌 +𝑮)𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛽

𝑙𝑚𝑝 ]
⊤

+ 2iδ𝛽𝛼 Im((𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙′𝑚′𝑝′i[𝒌 +𝑮′])
∗
⟨𝛁⊤�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 )

+ 2iδ𝛽𝛼 Im(⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛁�⃗��̊�
𝑙𝑚𝑝⟩𝛼

(𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙𝑚𝑝 )
∗
[𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′i[𝒌 +𝑮′]]

⊤
) .

Since the dynamical matrix is made self-adjoint in the end, imaginary parts cancel. As a

consequence, the last two lines of the previous equation are ignored in the following. Finally,

it must be stressed that a reformulation of equation (7.153a) enormously simplifies the

formalism of Klüppelberg [88]. Now, no matrix elements with gradients of the Kohn–Sham

wave functions need to be calculated anymore.

7.6.6 Alleviating Muffin-Tin Integrands

Through Motivationa numerical analysis, I have found that certain MT integrands are extremely large

close to the core. The ultimate example is provided by the integrals of the displaced MT sphere
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in the third line of equation (7.145). Here, linear variations of the external potential and the

density are multiplied. At the first mesh points, the integrands are about 1015Eh a−5
0 , while

average radial Jacobi determinants 𝑟2𝜈𝛾 are about 10−10a20 there. So, the Jacobi determinant,

which normally leads to an irrelevant integrand close the core, is not efficient enough. As

discussed in section 7.6.4, I have optimally arranged the formalism for the vanishing Goldstone

modes by exploiting error cancelation. But for finite 𝒒, this only partially helps, because some
of the involved terms are dependent on 𝒒 and their change worsens the aforementioned error
cancelation. As a consequence, the interpolation between 𝒓 = 𝟎 and the last mesh point
becomes significant, especially against the background of the small energy scales that are

usual for phonons.

SinceIdea of
Klüppelberg [88]

the development of general and accurate interpolations takes considerable effort,

we searched for a way to avoid it. Finally, our discussion has come to the decision that

it would be most consistent to apply again an optimization that was already suggested

by Klüppelberg [88] for the Sternheimer equation [256]. He rewrites it such that a sum of

the MT first-order effective potential and the MT gradient of the effective potential results

(see section 7.4.1). As a consequence, numerically inaccurate sums analytically cancel and

need not to be calculated anymore. Nonetheless, he has not transferred these ideas to the

dynamical matrix.

ForReformulation applying the aforementioned optimization of Klüppelberg [256], I proceed with the

remaining terms of section 7.6.5, given by

∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

∑
𝑮′𝑮

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛{2(𝒛(1)

𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮
′𝒌𝛼

𝑙′𝑚′𝑝′(𝒒))
∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣𝛁⊤𝒱 (0)
eff

∣�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

+ 2δ𝛽𝛼(i(𝒌 +𝑮′)𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙′𝑚′𝑝′)
∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣𝛁⊤𝒱 (0)
eff

∣�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

+ 2⟨�⃗�
̊𝛽

𝑙′𝑚′𝑝′∣𝛁𝒱 (0)
eff

∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑎∗𝑮

′𝒌𝛽
𝑙′𝑚′𝑝′[𝒛

(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)𝑎𝑮𝒌𝛽

𝑙𝑚𝑝 (𝒒)]
⊤
(7.154a)

+ 2δ𝛽𝛼⟨�⃗�
̊𝛽

𝑙′𝑚′𝑝′∣𝛁𝒱 (0)
eff

∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑎∗𝑮

′𝒌𝛽
𝑙′𝑚′𝑝′[i(𝒌 +𝑮)𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛽

𝑙𝑚𝑝 ]
⊤
} .

Adding supplementary zeroes and substituting terms according to equation (7.123f) leads to

=∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

∑
𝑮′𝑮

∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛{2(𝒛

(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝 ⟨�⃗��̊�
𝑙′𝑚′𝑝′∣𝛁⊤𝒱 (0)

eff
∣�⃗��̊�

𝑙𝑚𝑝⟩𝛼

+ 2δ𝛽𝛼(i(𝒌 +𝑮′)𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙′𝑚′𝑝′)
∗
𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝 ⟨�⃗��̊�
𝑙′𝑚′𝑝′∣𝛁⊤𝒱 (0)

eff
∣�⃗��̊�

𝑙𝑚𝑝⟩𝛼
+ 2𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑎∗𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′ 𝒛

(1)
𝑮 (𝒌, 𝑛;−𝒒𝛽)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝 (−𝒒)⟨�⃗��̊�
𝑙′𝑚′𝑝′∣𝛁⊤𝒱 (0)

eff
∣�⃗��̊�

𝑙𝑚𝑝⟩𝛼
+ 2δ𝛽𝛼𝑧

∗(0)
𝑮′ (𝒌, 𝑛)𝑎∗𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′ i(𝒌 +𝑮)𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝 ⟨�⃗��̊�
𝑙′𝑚′𝑝′∣𝛁⊤𝒱 (0)

eff
∣�⃗��̊�

𝑙𝑚𝑝⟩𝛼
+ 2δ𝛽𝛼𝑧

∗(0)
𝑮′ (𝒌, 𝑛)𝑎∗𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′ 𝑧

(0)
𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝 ⟨𝛁�⃗��̊�
𝑙′𝑚′𝑝′∣𝛁⊤𝒱 (0)

eff
∣�⃗��̊�

𝑙𝑚𝑝⟩𝛼
(7.154b)

− 2δ𝛽𝛼𝑧
∗(0)
𝑮′ (𝒌, 𝑛)𝑎∗𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′ 𝑧

(0)
𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝 ⟨𝛁�⃗��̊�
𝑙′𝑚′𝑝′∣𝛁⊤𝒱 (0)

eff
∣�⃗��̊�

𝑙𝑚𝑝⟩𝛼
+ 2δ𝛽𝛼𝑧

(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′𝑧

∗(0)
𝑮 (𝒌, 𝑛)𝑎∗𝑮𝒌𝛼

𝑙𝑚𝑝 ⟨𝛁�⃗��̊�
𝑙′𝑚′𝑝′∣𝛁⊤𝒱 (0)

eff
∣�⃗��̊�

𝑙𝑚𝑝⟩
∗

𝛼

− 2δ𝛽𝛼𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′𝑧

∗(0)
𝑮 (𝒌, 𝑛)𝑎∗𝑮𝒌𝛼

𝑙𝑚𝑝 ⟨𝛁�⃗��̊�
𝑙′𝑚′𝑝′∣𝛁⊤𝒱 (0)

eff
∣�⃗��̊�

𝑙𝑚𝑝⟩
∗

𝛼
} .
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This allows for identifying the first-order variation and the gradient of the Kohn–Sham wave

function in the MT, resulting in the matrix elements

= 2⟨𝛹 (1)+
𝒌,𝑛 ∣𝛁⊤𝒱 (0)

eff
∣𝛹 (0)

𝒌,𝑛⟩𝛼
+ 2⟨𝛹 (1)−

𝒌,𝑛 ∣𝛁⊤𝒱 (0)
eff

∣𝛹 (0)
𝒌,𝑛⟩

∗

𝛼
(7.154c)

+ 2δ𝛽𝛼⟨𝛁𝛹 (0)
𝒌,𝑛∣𝛁

⊤𝒱 (0)
eff

∣𝛹 (0)
𝒌,𝑛⟩𝛼

+ 2δ𝛽𝛼⟨𝛁𝛹 (0)
𝒌,𝑛∣𝛁

⊤𝒱 (0)
eff

∣𝛹 (0)
𝒌,𝑛⟩

∗

𝛼
,

which can be written as the integrals

= ∫
𝛼
𝝆∗(1)
𝛼,v (𝒓; 𝒒+𝛽)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟 +∫

𝛼
𝝆(1)
𝛼,v(𝒓; 𝒒−𝛽)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟 (7.154d)

+ δ𝛽𝛼 ∫
𝛼
𝛁𝜌(0)𝛼,v(𝒓)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟 + δ𝛽𝛼 ∫

𝛼
𝛁𝜌(0)𝛼,v(𝒓)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟 ,

and simplfied due to TRS to

= 2∫
𝛼
𝝆∗(1)
𝛼,v (𝒓; 𝒒+𝛽)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟 + 2δ𝛽𝛼 ∫

𝛼
𝛁𝜌(0)𝛼,v(𝒓)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟 . (7.154e)

Finally, these integrals are written as sums over all atoms 𝛾 with Kronecker deltas

= 2∑
𝛾
δ𝛾𝛼∫

𝛼
𝝆∗(1)
𝛼,v (𝒓; 𝒒+𝛽)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟 + 2δ𝛽𝛼 ∑

𝛾
δ𝛾𝛼∫

𝛼
𝛁𝜌(0)𝛼,v(𝒓)𝛁⊤𝑉 (0)𝛼

eff
(𝒓)d3𝑟 .(7.154f)

Now, equation (7.145) can be optimized by adding equation (7.154f) divided by two:

∑
𝛾

∫
𝛾
𝝆∗(1)
𝛾 (𝒓; 𝒒+𝛽)[𝑽 (1)𝛾

ext (𝒓; 𝒒+𝛼)]
⊤
d3𝑟 −∑

𝛾
δ𝛽𝛼 ∫

𝛾
(𝛁𝜌(0)𝛾 (𝒓))𝛁⊤𝑉 (0)𝛾

ext (𝒓) d3𝑟 (7.155a)

+∑
𝛾

δ𝛾𝛼 ∫
𝛼
𝝆∗(1)
𝛼,v (𝒓; 𝒒+𝛽)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟 + δ𝛽𝛼 ∑

𝛾
δ𝛾𝛼 ∫

𝛼
𝛁𝜌(0)𝛼,v(𝒓)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟 .

The first-order density variation (7.38) is subdivided into a part 𝝆∗(1)
𝛾,Sh(𝒓; 𝒒

+𝛽) without the all-
electron gradient (omitting the second line in equation (7.37b)) and the gradient contribution

in the second line of equation (7.37b). Moreover, the all-electron gradients are rewritten as a

sum of the valence contribution𝛁𝜌(0)𝛾,v(𝒓) and the core contribution𝛁𝜌(0)𝛾,c(𝒓), resulting in

∑
𝛾

∫
𝛾
(𝝆∗(1)

𝛾,Sh(𝒓; 𝒒
+𝛽) − δ𝛾𝛽𝛁𝜌(0)𝛾,v(𝒓) − δ𝛾𝛽𝛁𝜌(0)𝛾,c(𝒓))[𝑽

(1)𝛾
ext (𝒓; 𝒒+𝛼)]

⊤
d3𝑟 (7.155b)

−∑
𝛾

δ𝛽𝛼 ∫
𝛾
(𝛁𝜌(0)𝛾,v(𝒓) +𝛁𝜌(0)𝛾,c(𝒓))𝛁⊤𝑉 (0)𝛾

ext (𝒓) d3𝑟

+∑
𝛾

∫
𝛾
(𝝆∗(1)

𝛾,Sh(𝒓; 𝒒
+𝛽) − δ𝛽𝛼δ𝛾𝛽𝛁𝜌(0)𝛾,v(𝒓))δ𝛾𝛼𝛁⊤𝑉 (0)𝛾

ext (𝒓) d3𝑟

+ δ𝛽𝛼 ∑
𝛾

δ𝛾𝛼 ∫
𝛾
𝛁𝜌(0)𝛾,v(𝒓)𝛁⊤𝑉 (0)𝛾

ext (𝒓) d3𝑟

+∑
𝛾

δ𝛾𝛼 ∫
𝛼
𝝆∗(1)
𝛼,val(𝒓; 𝒒

+𝛽)𝛁⊤𝑉 (0)𝛼
Hxc (𝒓) d3𝑟 + δ𝛽𝛼 ∑

𝛾
δ𝛾𝛼 ∫

𝛼
𝛁𝜌(0)𝛼,val(𝒓)𝛁

⊤𝑉 (0)𝛼
Hxc (𝒓) d3𝑟

= ∑
𝛾

∫
𝛾
𝝆∗(1)
𝛾,Sh(𝒓; 𝒒

+𝛽)[𝑽 (1)𝛾
ext (𝒓; 𝒒+𝛼) + δ𝛾𝛼𝛁𝑉 (0)𝛾

ext (𝒓)]
⊤
d3𝑟 (7.155c)
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−∑
𝛾

∫
𝛾
δ𝛾𝛽𝛁𝜌(0)𝛾,v(𝒓)[𝑽

(1)𝛾
ext (𝒓; 𝒒+𝛼) + δ𝛽𝛼δ𝛾𝛼𝛁𝑉 (0)𝛾

ext (𝒓)]
⊤
d3𝑟

−∑
𝛾

∫
𝛾
δ𝛾𝛽𝛁𝜌(0)𝛾,c(𝒓)[𝑽

(1)𝛾
ext (𝒓; 𝒒+𝛼) + δ𝛽𝛼δ𝛾𝛼𝛁𝑉 (0)𝛾

ext (𝒓)]
⊤
d3𝑟

+ δ𝛽𝛼 ∑
𝛾
(δ𝛾𝛼 − 1)∫

𝛾
𝛁𝜌(0)𝛾,v(𝒓)𝛁⊤𝑉 (0)𝛾

ext (𝒓) d3𝑟 +∫
𝛼
𝝆∗(1)
𝛼,Sh(𝒓; 𝒒

+𝛽)𝛁⊤𝑉 (0)𝛼
Hxc (𝒓) d3𝑟

= ∑
𝛾

∫
𝛾
𝝆∗(1)
𝛾 (𝒓; 𝒒+𝛽)[𝑽 (1)𝛾

ext (𝒓; 𝒒+𝛼) + δ𝛾𝛼𝛁𝑉 (0)𝛾
ext (𝒓)]

⊤
d3𝑟 (7.155d)

+∫
𝛼
𝝆∗(1)
𝛼,Sh(𝒓; 𝒒

+𝛽)𝛁⊤𝑉 (0)𝛼
Hxc (𝒓) d3𝑟 + δ𝛽𝛼 ∑

𝛾
(δ𝛾𝛼 − 1)∫

𝛾
𝛁𝜌(0)𝛾,v(𝒓)𝛁⊤𝑉 (0)𝛾

ext (𝒓) d3𝑟 ,

where 𝑉 (0)𝛼
Hxc (𝒓) is the sum of the Hartree and the xc potentials.

The same can be done with the Pulay integral in equation (7.147), yielding

∑
𝛾

∫
𝛾
(𝝆∗(1)

𝛾,Sh(𝒓; 𝒒
+𝛽) − δ𝛾𝛽𝛁𝜌(0)𝛾,v(𝒓) − δ𝛾𝛽𝛁𝜌(0)𝛾,c(𝒓))[𝑽

(1)𝛾
eff

(𝒓; 𝒒+𝛼)]
⊤
d3𝑟 (7.156a)

− δ𝛽𝛼 ∫
𝛼
𝛁𝜌∗(0)𝛼,v (𝒓)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟 − δ𝛽𝛼 ∫

𝛼
𝛁𝜌∗(0)𝛼,c (𝒓)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟

+∑
𝛾

∫
𝛾
(𝝆∗(1)

𝛾,Sh(𝒓; 𝒒
+𝛽) − δ𝛽𝛼δ𝛾𝛽𝛁𝜌(0)𝛾,v(𝒓))δ𝛾𝛼𝛁⊤𝑉 (0)𝛾

ext (𝒓) d3𝑟

+ δ𝛽𝛼 ∫
𝛼
𝛁𝜌(0)𝛼,v(𝒓)𝛁⊤𝑉 (0)𝛼

eff
(𝒓) d3𝑟

= ∑
𝛾

∫
𝛾
(𝝆∗(1)

𝛾,Sh(𝒓; 𝒒
+𝛽) − δ𝛾𝛽𝛁𝜌(0)𝛾,v(𝒓) − δ𝛾𝛽𝛁𝜌(0)𝛾,c(𝒓))[𝑽

(1)𝛾
eff

(𝒓; 𝒒+𝛼)]
⊤
d3𝑟

−∑
𝛾

δ𝛾𝛽δ𝛾𝛼δ𝛽𝛼 ∫
𝛾
𝛁𝜌∗(0)𝛾,c (𝒓)𝛁⊤𝑉 (0)𝛾

eff
(𝒓) d3𝑟

+∑
𝛾

∫
𝛾
(𝝆∗(1)

𝛾,Sh(𝒓; 𝒒
+𝛽) − δ𝛽𝛼δ𝛾𝛽𝛁𝜌(0)𝛾,v(𝒓))δ𝛾𝛼𝛁⊤𝑉 (0)𝛾

ext (𝒓) d3𝑟

= ∑
𝛾

∫
𝛾
𝝆∗(1)
𝛾 (𝒓; 𝒒+𝛽)[𝑽 (1)𝛾

eff
(𝒓; 𝒒+𝛼) + δ𝛾𝛼𝛁𝑉 (0)𝛾

eff
(𝒓)]

⊤
d3𝑟 . (7.156b)

Utilizing these mitigated integrals makes the interpolations practically irrelevant.

7.6.7 Avoiding Second-Order Terms Already Vanishing in First Order

NeukirchenMotivation has found in his derivation that

0 = ⟨∑
𝑮′

𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽) ⃗𝜙(0)

𝒌+𝒒,𝑮∣ℋ (0) − 𝜖(0)𝒌,𝑛∣𝛹
(0)
𝒌,𝑛⟩

𝛺

(7.157a)

= ∑
𝑛

𝒛(1)
𝑛 (𝒌, 𝑛′; 𝒒𝛽)⟨𝛹 (0)

𝒌+𝒒,𝑛∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝛹

(0)
𝒌,𝑛⟩𝛺

and

0 = ⟨𝛹 (0)
𝒌,𝑛∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣∑
𝑮

𝒛(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼) ⃗𝜙(0)

𝒌+𝒒,𝑮⟩
𝛺

(7.157b)
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are part of the first-order total energy variation and vanish. Therefore, he does not vary them

further.

But Reformulationby nevertheless summing equations (7.157a) and (7.157b) and varying them again,

superfluous terms in the formalism of Klüppelberg [88] can be spotted [256]. Applying a

variation to the aforementioned sum reads

⟨∑
𝑮′

𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)[ ⃗𝜙(1)𝛼−

𝒌+𝒒,𝑮′]
⊤
∣ℋ (0) − 𝜖(0)𝒌,𝑛∣𝛹

(0)
𝒌,𝑛⟩

𝛺

(7.158)

+⟨∑
𝑮′

𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽) ⃗𝜙(0)

𝒌+𝒒,𝑮′∣[𝓥
(1)
eff

(𝒒𝛼)]
⊤
∣𝛹 (0)

𝒌,𝑛⟩
𝛺

+⟨∑
𝑮′

𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽) ⃗𝜙(0)

𝒌+𝒒,𝑮′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣∑

𝑮
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤ ⃗𝜙(0)

𝒌+𝒒,𝑮⟩
𝛺

+⟨∑
𝑮′

𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽) ⃗𝜙(0)

𝒌+𝒒,𝑮′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣∑

𝑮
𝒛(0)
𝑮 (𝒌, 𝑛)[ ⃗𝝓(1)𝛼+

𝒌,𝑮 ]
⊤
⟩
𝛺

+⟨𝛹 (0)
𝒌,𝑛∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣∑
𝑮

⃗𝝓(1)𝛽−
𝒌+𝒒,𝑮[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤
⟩
𝛺

+⟨𝛹 (0)
𝒌,𝑛∣𝓥

(1)
eff

(𝒒𝛽)∣∑
𝑮

[𝒛(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)]

⊤ ⃗𝜙(0)
𝒌+𝒒,𝑮⟩

𝛺

+⟨∑
𝑮′

𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽) ⃗𝜙(0)

𝒌+𝒒,𝑮′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣∑

𝑮
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤ ⃗𝜙(0)

𝒌+𝒒,𝑮⟩
𝛺

+⟨∑
𝑮′

𝒛(0)
𝑮′(𝒌, 𝑛) ⃗𝝓(1)𝛽+

𝒌,𝑮′ ∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣∑

𝑮
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤ ⃗𝜙(0)

𝒌+𝒒,𝑮⟩
𝛺

+∮
𝛼
∑
𝑮′

𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽) ⃗𝜙(0)𝛼

𝒌+𝒒,𝑮(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹
(0)𝛼
𝒌,𝑛 ̂𝒓⊤ d𝑆

−∮
𝛼
∑
𝑮′

𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽) ⃗𝜙(0)𝛼

𝒌+𝒒,𝑮(ℋ (0) − 𝜖(0)𝒌,𝑛)𝛹
(0)𝛼
𝒌,𝑛 ̂𝒓⊤ d𝑆

+∮
𝛽

̂𝒓 𝛹 (0)
𝒌,𝑛(ℋ

(0) − 𝜖(0)𝒌,𝑛)∑
𝑮

[𝒛(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)]

⊤ ⃗𝜙(0)
𝒌+𝒒,𝑮 d𝑆

+∮
𝛽

̂𝒓 𝛹 (0)
𝒌,𝑛(ℋ

(0) − 𝜖(0)𝒌,𝑛)∑
𝑮

[𝒛(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)]

⊤ ⃗𝜙(0)
𝒌+𝒒,𝑮 d𝑆 .

From these terms, in my preceding derivation the matrix-element terms

(𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣𝛁⊤𝒱 (0)
eff

∣�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 (7.159a)

+ ⟨�⃗�
̊𝛽

𝑙′𝑚′𝑝′∣𝛁𝒱 (0)
eff

∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑎∗𝑮

′𝒌𝛽
𝑙′𝑚′𝑝′[𝒛

(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)𝑎𝑮𝒌𝛽

𝑙𝑚𝑝 (𝒒)]
⊤

+ (𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣[𝓥
(1)
eff

(𝒒, 𝛼)]
⊤
∣�⃗��̊�

𝑙𝑚𝑝⟩
𝛺
𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝

+ ⟨�⃗�
̊𝛽

𝑙′𝑚′𝑝′∣𝓥
(1)
eff

(𝒒, 𝛽)∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛺
𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑎∗𝑮

′𝒌𝛽
𝑙′𝑚′𝑝′[𝒛

(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)𝑎𝑮𝒌𝛽

𝑙𝑚𝑝 (𝒒)]
⊤

+ (𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨𝛁⊤�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝
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− (𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨𝛁⊤�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

+ (𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝛁

⊤�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− (𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣𝛁

⊤�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

+ (𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛁�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤

− (𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣𝛁�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤

+ (𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
⟨𝛁�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)

− (𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
⟨𝛁�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)

+ (𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒)i[𝒌 + 𝒒 +𝑮′]⊤)

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

+ (𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)i[𝒌 + 𝒒 +𝑮][𝒛(1)

𝑮 (𝒌, 𝑛;+𝒒𝛼)]
⊤

+ (𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′i[𝒌 +𝑮′])

∗
⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)

+ (𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

i[𝒌 +𝑮]⊤𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

+ 2(𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎

𝑮′𝒌𝛾
𝑙′𝑚′𝑝′(𝒒))

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛺

[𝒛(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)]

⊤
𝑎𝑮𝒌𝛾
𝑙𝑚𝑝 (𝒒)

can be identified and shall therefore be ignored in the following. Furthermore, the first four

lines can be rewritten as

(𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣𝛁⊤𝒱 (0)
eff

∣�⃗��̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 (7.159b)

+ ⟨�⃗�
̊𝛽

𝑙′𝑚′𝑝′∣𝛁𝒱 (0)
eff

∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑎∗𝑮

′𝒌𝛽
𝑙′𝑚′𝑝′[𝒛

(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)𝑎𝑮𝒌𝛽

𝑙𝑚𝑝 (𝒒)]
⊤

+ (𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒))

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣[𝓥
(1)
eff

(𝒒, 𝛼)]
⊤
∣�⃗��̊�

𝑙𝑚𝑝⟩
𝛺
𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝

+ ⟨�⃗�
̊𝛽

𝑙′𝑚′𝑝′∣𝓥
(1)
eff

(𝒒, 𝛽)∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛺
𝑧∗(0)𝑮′ (𝒌, 𝑛)𝑎∗𝑮

′𝒌𝛽
𝑙′𝑚′𝑝′[𝒛

(1)
𝑮 (𝒌, 𝑛; 𝒒𝛼)𝑎𝑮𝒌𝛽

𝑙𝑚𝑝 (𝒒)]
⊤

= ∫
IR

𝝆∗(1)
IR (𝒓; 𝒒+𝛽)[𝑽 (1)IR

eff
(𝒓; 𝒒+𝛼)]

⊤
d3𝑟

+∑
𝛾

∫
𝛾
𝝆∗(1)
𝛾,𝒛(1)(𝒓; 𝒒+𝛽)[𝑽 (1)𝛾

eff
(𝒓; 𝒒+𝛼) +𝛁𝑽 (0)𝛾

eff
(𝒓)]

⊤
d3𝑟 ,

where 𝝆∗(1)
𝛾,𝒛(1)(𝒓; 𝒒+𝛽) is the MT first-order density variation without the Pulay basis-correction,

i.e., equation (7.37a) without the third, fourth, and fifth lines. Moreover, the surface-terms

− ∑
𝑮′𝑮

{𝒛∗(1)
𝑮′ (𝒌, 𝑛; 𝒒𝛽)𝑧(0)𝑮 (𝒌, 𝑛)∮

∂𝛼
𝜙∗(0)IR
𝒌+𝒒,𝑮′(𝒓)(ℋ

(0) − 𝜖(0)𝒌,𝑛)𝜙
(0)IR
𝒌,𝑮 (𝒓) ̂𝒓⊤ d𝑆 (7.159c)

+∮
∂𝛽

̂𝒓𝜙∗(0)IR
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜖(0)𝒌,𝑛)𝜙
(0)IR
𝒌+𝒒,𝑮(𝒓) d𝑆 𝑧∗(0)𝑮′ (𝒌, 𝑛)[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤
}

vanish. The fact that these terms can be neglected is related to the discussion of the leftover

terms for the Goldstone modes in section 7.6.4.
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7.6.8 Final Expressions

Including Resumeall discussed reformulations, a final form of the dynamical matrix results. Apart

from almost irrelevant surface terms, it is consistent with the outcome of Neukirchen [256].

These surface terms are as small as the discontinuities of the unperturbed charge density, the

LAPW basis, or the Coulomb potential (not significantly larger than 1 ⋅ 10−5 Eh a
−2
0 for the

investigated materials). However, in his derivation contributions dependent on the variations

of the occupation number or the Kohn–Sham energy must be excluded (vanishing for the

relevant systems in this thesis) [256].

All Assistance,
symmetric kinetic
energy, and
subdivision

changes that imply from omitting the terms in equation (7.159) have been pro-

grammed by Neukirchen. Furthermore, he has implemented the symmetric application of the

kinetic energy in the IR. As stated in section 7.4.4, he has also done this for the Sternheimer

equation, but there the impact on the results of Al is only marginal. Therefore, we decided to
deactivate it now, but to investigate the effect on the results of more complicated systems in

the future [127, 256]. Still, within the dynamical matrix it is activated, because a thorough

analysis about the relevance on different system has not been done yet. Activating it in the

dynamical matrix, but deactivating it in the Sternheimer equation, is an inconsistency. But,

we deem it to be small, which is deduced from our experience with the Sternheimer equa-

tion [127, 256]. This is legitimate, because the terms referred to in the Sternheimer equation

and the dynamical matrix show many analogies. Furthermore, I assume that estimating the

inconsistency to be insignificant is supported by the fact that Klüppelberg takes the disconti-

nuities rigorously into account by introducing surface terms. In particular, Klüppelberg [88]

states that those surface terms incorporating kinetic energy operators are very relevant for

forces. Since the results are convincing for a first implementation, we decided to postpone

a thorough analysis of the kinetic-energy form to the future. The final expressions for the

dynamical matrix are again subdivided into HF, Pulay integral, Pulay matrix-elements, and

surface terms.

Hellmann–Feynman Contributions

Applying Reverting
optimization

equations (7.155) to the MT volume integrals in equation (7.145) the HF dynamical-

matrix reads

𝐷𝛽𝛼
HF(𝒒

−+) = ∫
IR

𝝆∗(1)
IR (𝒓; 𝒒+𝛽)[𝑽 (1)IR

ext (𝒓; 𝒒+𝛼)]
⊤
d3𝑟 − δ𝛽𝛼 ∫

IR

𝛁𝜌(0)IR (𝒓)𝛁⊤𝑉 (0)IR
ext (𝒓) d3𝑟

+∑
𝛾

∫
𝛾
𝝆∗(1)
𝛾 (𝒓; 𝒒+𝛽)[𝑽 (1)𝛾

ext (𝒓; 𝒒+𝛼) + δ𝛾𝛼𝛁𝑉 (0)𝛾
ext (𝒓)]

⊤
d3𝑟

+∫
𝛼
𝝆∗(1)
𝛼,Sh(𝒓; 𝒒

+𝛽)𝛁⊤𝑉 (0)𝛼
Hxc (𝒓) d3𝑟

+ δ𝛽𝛼 ∑
𝛾

∮
𝛾

̂𝒓𝜌(0)𝛾 (𝒓)𝛁⊤𝑉 (0)𝛾
ext (𝒓) d𝑆 − δ𝛽𝛼 ∮

IR

̂𝒓𝜌(0)IR (𝒓)𝛁⊤𝑉 (0)IR
ext (𝒓) d𝑆

+ 𝐸(2)𝛽𝛼
ii

(𝒒−+) + δ𝑸𝛽𝑸𝛼
𝐸(2)𝛽𝛼
ii

(𝟎−+)

+ δ𝛽𝛼 ∑
𝛾
(δ𝛾𝛼 − 1)∫

𝛾
𝛁𝜌(0)𝛾,v(𝒓)𝛁⊤𝑉 (0)𝛾

ext (𝒓) d3𝑟 , (7.160a)
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However, Neukirchen has found from numerical experiments that the optimization discussed in

equations (7.155) does rather worsens the frequencies for the systems in this thesis. Therefore,

equation (7.160a) is simplified in the implementation by Neukirchen, principally reverting

the optimization to the form in equation (7.155a) (see also equation (7.154e)):

𝐷𝛽𝛼
HF(𝒒

−+) (7.160b)

= ∫
IR

𝝆∗(1)
IR (𝒓; 𝒒+𝛽)[𝑽 (1)IR

ext (𝒓; 𝒒+𝛼)]
⊤
d3𝑟 − δ𝛽𝛼 ∫

IR

𝛁𝜌(0)IR (𝒓)𝛁⊤𝑉 (0)IR
ext (𝒓) d3𝑟

∑
𝛾

∫
𝛾
𝝆∗(1)
𝛾 (𝒓; 𝒒+𝛽)[𝑽 (1)𝛾

ext (𝒓; 𝒒+𝛼)]
⊤
d3𝑟 −∑

𝛾
δ𝛽𝛼 ∫

𝛾
(𝛁𝜌(0)𝛾 (𝒓))𝛁⊤𝑉 (0)𝛾

ext (𝒓) d3𝑟

+∫
𝛼
𝝆∗(1)
𝛼,Sh(𝒓; 𝒒

+𝛽)𝛁⊤𝑉 (0)𝛼
eff

(𝒓) d3𝑟

+ δ𝛽𝛼 ∑
𝛾

∮
𝛾

̂𝒓𝜌(0)𝛾 (𝒓)𝛁⊤𝑉 (0)𝛾
ext (𝒓) d𝑆 − δ𝛽𝛼 ∮

IR

̂𝒓𝜌(0)IR (𝒓)𝛁⊤𝑉 (0)IR
ext (𝒓) d𝑆

+ 𝐸(2)𝛽𝛼
ii

(𝒒−+) + δ𝑸𝛽𝑸𝛼
𝐸(2)𝛽𝛼
ii

(𝟎−+) .

ForInterstitial
integral algorithm

evaluating the IR integrals in equation (7.160b), their integration volume is ex-

panded from the IR to the complete unit cell, requiring the introduction of an IR step func-

tion (5.48b). Expanding the linear variations of the density and the external potential as

well as the unperturbed step function in plane waves, a convolution of the step function,

for example with the first-order external potential variation, becomes obvious (the so-called

warping). This warping is analogous to combining the IR xc kernel with the linear variation

of the density (see section 7.3.2). Ultimately, the IR integral reduces to a multiplication of

Fourier coefficients, such as in

∫
IR

𝝆∗(1)
IR (𝒓; 𝒒+𝛽)[𝑽 (1)IR

ext (𝒓; 𝒒+𝛼)]
⊤
d3𝑟 (7.161a)

= ∫
𝛺
𝝆∗(1)
IR (𝒓; 𝒒+𝛽)[𝑽 (1)IR

ext (𝒓; 𝒒+𝛼)]
⊤
ΘIR(𝒓) d3𝑟

= 𝛺∑
𝑮

𝝆∗(1)
IR (𝑮; 𝒒+𝛽)[[𝑽 (1)IR

ext ΘIR ](𝑮; 𝒒+𝛼)]
⊤
. (7.161b)

Warping the potential can lead to aliasing errors if the FFT grid is not chosen large enough [127,

278]. Therefore, conducting test 34 is vital before investigating a new system (or convergence

parameter set). Furthermore, it is known and not critical that warping worsens the continuity

of the respective quantity [127, 251].

ForMuffin-tin
integral algorithm

computing the MT sphere integrals, the orthogonality relation of the spherical

harmonics is exploited. This means for an exemplary MT integral in equation (7.160b)

∫
𝛾
𝝆∗(1)
𝛾 (𝒓; 𝒒+𝛽)[𝑽 (1)𝛾

ext (𝒓; 𝒒+𝛼)]
⊤
d3𝑟 (7.162a)

= ∑
𝑙′𝑚′

∑
𝑙𝑚

∫
𝛾
𝑟2𝜈�̊�[𝝆

∗(1)
𝛾 (𝑟𝜈�̊�; 𝒒+𝛽)]

𝑙′𝑚′
[𝑽 (1)𝛾
ext (𝑟𝜈�̊�; 𝒒+𝛼)]

⊤

𝑙𝑚
d𝑟𝜈�̊� ∫

∂𝛾
Y𝑙′𝑚′( ̂𝒓)Y𝑙𝑚( ̂𝒓) d𝛺

= ∑
𝑙𝑚

∫
𝛾
𝑟2𝜈�̊�[𝝆

∗(1)
𝛾 (𝑟𝜈�̊�; 𝒒+𝛽)]

𝑙𝑚
[𝑽 (1)𝛾
ext (𝑟𝜈�̊�; 𝒒+𝛼)]

⊤

𝑙𝑚
d𝑟𝜈�̊� . (7.162b)
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So, the volume integral reduces to a sum of radial integrals for every combination of the

orbital quantum number 𝑙 and the magnetic quantum number 𝑚. This is done employing the
recycled radial integration routine Intgr3 of FLEUR.

The Surface-integral
algorithm

IR surface integral in equation (7.160b) is computed as in

∮
𝛽

̂𝒓𝜌(0)IR (𝒓)𝛁⊤𝑽 (0)IR
ext (𝒓) d𝑆 (7.163a)

= ∑
𝑮,𝑮′

𝑅2
𝛽 ∮ ̂𝒓ei(𝑮−𝑮′+𝒒)⋅𝒓 d𝛺𝜌(0)IR (𝑮′)𝛁⊤𝑽 (0)IR

ext (𝑮)

= 4iπ𝑅2
�̊� ∑

𝑮′𝑮
j1(∣𝑮 −𝑮′ + 𝒒∣𝑅�̊�)e

i(𝑮−𝑮′+𝒒)⋅𝝉𝛼 ∑
𝑖𝑚

𝜁∗𝑖,𝑚 ̂𝒆𝑖Y∗
1𝑚(𝑮−𝑮′ + 𝒒
⋀

) (7.163b)

× 𝜌(0)IR (𝑮′)𝛁⊤𝑽 (0)IR
ext (𝑮) ,

and the MT surface integral as in

∮
𝛽

̂𝒓𝜌(0)𝛽 (𝒓)𝛁⊤𝑉 (0)𝛽
ext (𝒓) d𝑆 (7.164a)

= ∑
𝑙″𝑚″

∑
𝑙𝑚

𝑅2
𝛽 ∮

𝛽
̂𝒓Y∗

𝑙″𝑚″( ̂𝒓)Y𝑙𝑚( ̂𝒓) d𝛺[𝜌(0)̊𝛽
(𝑅𝛽)]

𝜆(𝑙)
𝑐𝛽𝜆(𝑙)𝜇(𝑚)[𝛁

⊤𝑽 ∗(0)𝛽
ext (𝑅𝛽)]𝑙″𝑚″

= ∑
𝑙″𝑚″

∑
𝑙𝑚

𝑅2
𝛽 ∑

𝑖𝑚′

𝜁𝑖,𝑚′ ̂𝒆𝑖[𝜌
(0)
̊𝛽
(𝑅𝛽)]

𝜆(𝑙)
𝑐𝛽𝜆(𝑙)𝜇(𝑚)[𝛁

⊤𝑽 ∗(0)𝛽
ext (𝑅𝛽)]𝑙″𝑚″

(7.164b)

×∮
𝛽
Y∗

𝑙″𝑚″( ̂𝒓)Y𝑙𝑚( ̂𝒓)Y1𝑚′( ̂𝒓) d𝛺

= ∑
𝑙″𝑚″

∑
𝑙𝑚

𝑅2
𝛽 ∑

𝑖𝑚′

𝜁𝑖,𝑚′ ̂𝒆𝑖[𝜌
(0)
̊𝛽
(𝑅𝛽)]

𝜆(𝑙)
𝑐𝛽𝜆(𝑙)𝜇(𝑚)[𝛁

⊤𝑽 ∗(0)𝛽
ext (𝑅𝛽)]𝑙″𝑚″

𝐺𝑚″𝑚𝑚′

𝑙″ 𝑙 1 . (7.164c)

This is analogous to the surface integrals discussed in equation (7.54). But here, the lattice-

harmonic coefficients of the unperturbed-density are inserted (cf. equation (7.6c)).

Pulay Unit-Cell Integral Correction

Relative to equation (7.147), the IR integral is omitted according to equation (7.159). Fur-

thermore, the MT integrals containing the linear potential variations are alleviated as in

equation (7.156b). Finally, the first MT integral containing a gradient of the Hartree and

the xc (Hxc) potentials stems from mitigating the MT integrals in the HF contribution (see

equation (7.154f)). All in all, the Pulay-correction integral is reformulated to

𝐷𝛽𝛼
Pl,dp

= ∑
𝛾

∫
𝛾
𝝆∗(1)
𝛾,Pl(𝒓; 𝒒

+𝛽)[𝑽 (1)𝛾
eff

(𝒓; 𝒒+𝛼) + δ𝛾𝛼δ𝛽𝛼𝛁𝑉 (0)𝛾
eff

(𝒓)]
⊤
d3𝑟 , (7.165a)

which Neukirchen has spitted in the implementation to

= ∑
𝛾

∫
𝛾
𝝆∗(1)
𝛾,Pl,no𝛁(𝒓; 𝒒+𝛽)[𝑽 (1)𝛾

eff
(𝒓; 𝒒+𝛼) + δ𝛾𝛼δ𝛽𝛼𝛁𝑉 (0)𝛾

eff
(𝒓)]

⊤
d3𝑟 (7.165b)

−∑
𝛾

∫
𝛾
δ𝛽𝛾𝛁𝜌∗(0)𝛾 (𝒓)[𝑽 (1)𝛾

eff
(𝒓; 𝒒+𝛼) + δ𝛾𝛼δ𝛽𝛼𝛁𝑉 (0)𝛾

eff
(𝒓)]

⊤
d3𝑟 .
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In theses equations 𝝆∗(1)
𝛾,Pl(𝒓; 𝒒

+𝛽) is defined as the sum of the third, fourth and fifth lines in
equation (7.37a). In addition, 𝝆∗(1)

𝛾,Pl,no𝛁(𝒓; 𝒒+𝛽) denotes the sum of the third and fourth lines
in equation (7.37a).

Pulay Matrix-Elements Correction

OmittingResume the respective terms from equations (7.153d) and (7.159) within equation (7.149a)

yields

𝐷𝒌𝑛𝛽𝛼
Pu2b

(𝒒+−) (7.166a)

= ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

∑
𝑮′𝑮

{

(𝒛(1)
𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′(𝒒)i[𝒌 + 𝒒 +𝑮′]⊤)

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
[𝒌 +𝑮′][𝒌 +𝑮′]⊤⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 } .

Furthermore, equation (7.149b) simplifies to

𝐷𝒌𝑛𝛽𝛼
Pu2kO

(𝒒−+) (7.166b)

= ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

∑
𝑮′𝑮

{

(𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)i[𝒌 + 𝒒 +𝑮][𝒛(1)

𝑮 (𝒌, 𝑛;+𝒒𝛼)]
⊤

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
[𝒌 +𝑮][𝒌 +𝑮]⊤⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 } .

and equation (7.149c) to

𝐷𝒌𝑛𝛽𝛼
Pu1bk

(𝒒++) (7.166c)

= ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

∑
𝑮′𝑮

{

1
2
(𝑧(0)𝑮′(𝒌, 𝑛)𝑎

𝑮′𝒌𝛽
𝑙′𝑚′𝑝′i[𝒌 +𝑮′])

∗
⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤
𝑎𝑮𝒌𝛽
𝑙𝑚𝑝 (𝒒)

+ 1
2
(𝒛(1)

𝑮′(𝒌, 𝑛; 𝒒𝛽)𝑎𝑮
′𝒌𝛼

𝑙′𝑚′𝑝′(𝒒))
∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

i[𝒌 +𝑮]⊤𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

+ δ𝛼𝛽(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′i[𝒌 +𝑮′])

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 i[𝒌 +𝑮]⊤} .

According to equation (7.128a), equations (7.166a), (7.166b), and (7.166c) must be summed,

so

𝐷𝛽𝛼
Pl,bk

(𝒒) (7.166d)

≔ ∑
𝒌,𝑛

2𝑓 (0)
𝒌,𝑛(𝐷

𝒌𝑛𝛽𝛼
Pu2b

(𝒒+−) + 𝐷𝒌𝑛𝛽𝛼
Pu2kO

(𝒒−+) + 2𝐷𝒌𝑛𝛽𝛼
Pu1bk

(𝒒++))

= ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

∑
𝑮′𝑮

{ (7.166e)
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(𝒛(1)
𝑮′(𝒌+

bf
, 𝑛; 𝛽)𝑎𝑮

′𝒌+
bf
𝛼

𝑙′𝑚′𝑝′ i[𝒌+
bf
+𝑮′]⊤)

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

+ (𝒛(1)
𝑮′(𝒌+

bf
, 𝑛; 𝛽)𝑎𝑮

′𝒌+
bf
𝛼

𝑙′𝑚′𝑝′ )
∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

i[𝒌 +𝑮]⊤𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

+ (𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
i[𝒌+

bf
+𝑮][𝒛(1)

𝑮 (𝒌+
bf
, 𝑛; 𝛼)]

⊤
𝑎𝑮𝒌+

bf
𝛽

𝑙𝑚𝑝

+ (𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′i[𝒌 +𝑮′])

∗
⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
[𝒛(1)

𝑮 (𝒌+
bf
, 𝑛; 𝛼)]

⊤
𝑎𝑮𝒌+

bf
𝛽

𝑙𝑚𝑝

+ 2δ𝛼𝛽(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′i[𝒌 +𝑮′])

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 i[𝒌 +𝑮]⊤

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
[𝒌 +𝑮′][𝒌 +𝑮′]⊤⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
[𝒌 +𝑮][𝒌 +𝑮]⊤⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 } .

The last three lines can be further simplified by evaluating the outer products of the vectors

and cancelling all terms containing the vector 𝒌. This can be achieved by interchanging
those terms proportional to 𝒌(𝑮′)⊤ and 𝑮𝒌⊤ by their transposed complement, according to

equation (7.123). Since 𝛼 = 𝛽, the atom index is not interchanged so that finally

𝐷𝛽𝛼
Pl,bk

(𝒒) (7.166f)

= ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

∑
𝑮′𝑮

{

(𝒛(1)
𝑮′(𝒌+

bf
, 𝑛; 𝛽)𝑎𝑮

′𝒌+
bf
𝛼

𝑙′𝑚′𝑝′ )
∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

× i[𝒌 +𝑮− 𝒌 − 𝒒 −𝑮bf −𝑮′]⊤

+ i[𝒌 + 𝒒 +𝑮bf +𝑮− 𝒌−𝑮′]

× (𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
[𝒛(1)

𝑮 (𝒌+
bf
, 𝑛; 𝛼)]

⊤
𝑎𝑮𝒌+

bf
𝛽

𝑙𝑚𝑝

+ 2δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′𝑮′)

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 𝑮⊤

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′𝑮′𝑮′⊤)

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 𝑮𝑮⊤}

= ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

∑
𝑮′𝑮

{ (7.166g)

(𝒛(1)
𝑮′(𝒌+

bf
, 𝑛; 𝛽)𝑎𝑮

′𝒌+
bf
𝛼

𝑙′𝑚′𝑝′ )
∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

i𝑮⊤𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

+ (𝒛(1)
𝑮′(𝒌+

bf
, 𝑛; 𝛽)𝑎𝑮

′𝒌+
bf
𝛼

𝑙′𝑚′𝑝′ i[𝑮′ +𝑮bf + 𝒒]⊤)
∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

× (i𝑮′𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
[𝒛(1)

𝑮 (𝒌+
bf
, 𝑛; 𝛼)]

⊤
𝑎𝑮𝒌+

bf
𝛽

𝑙𝑚𝑝

× (𝑧(0)𝑮′(𝒌, 𝑛)𝑎
𝑮′𝒌𝛽
𝑙′𝑚′𝑝′)

∗
⟨�⃗�

̊𝛽
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
̊𝛽

𝑙𝑚𝑝⟩
𝛽
i[𝑮 + 𝒒 +𝑮bf][𝒛

(1)
𝑮 (𝒌+

bf
, 𝑛; 𝛼)]

⊤
𝑎𝑮𝒌+

bf
𝛽

𝑙𝑚𝑝

+ δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′𝑮′)

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 𝑮⊤

+ δ𝛽𝛼𝑧
(0)
𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝 𝑮(𝑧(0)𝑮′(𝒌, 𝑛)𝑎𝑮
′𝒌𝛼

𝑙′𝑚′𝑝′𝑮′)
†
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼
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− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′𝑮′𝑮′⊤)

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝

− δ𝛽𝛼(𝑧
(0)
𝑮′(𝒌, 𝑛)𝑎𝑮

′𝒌𝛼
𝑙′𝑚′𝑝′)

∗
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼
𝑙𝑚𝑝 𝑮𝑮⊤}

results. These are almost the equations which are implemented at the moment. Relative to

equations (7.128b), (7.128c), and (7.128d), the number of terms has significantly decreased.

ThisAssistance
received

statement also remains true if the derivation would begin from the formalism in

section 7.6.4, which I have initially programmed. In order to implement the reformulations

of section 7.6.5 and section 7.6.6, I have essentially deactivated already programmed terms.

However, since the optimizations described in section 7.6.7 again make many terms obsolete,

we decided that Neukirchen summarizes my routines of equations (7.149) in order to simplify

the source code [256]. His subroutine is used for the final dispersion relations in section 7.7.2.

Moreover,Symmetric
kinetic energy

we decided that only the IR kinetic energy operator is transformed from

a Laplacian form, acting on the right, into a symmetric form, acting on the left and right,

for a better numerical stability [68, 127, 256] (cf. section 5.11). Assuming Kohn–Sham

wave functions which are expanded in the LAPW basis, leads to an additional surface term,

stemming from the integration by parts [68]:

∫
𝛺
𝛹 ∗(0)
𝒌,𝑛 (𝒓)

⇀
∆𝛹 (0)

𝒌,𝑛(𝒓) d𝑉 (7.167a)

= ∫
IR

(𝛁𝛹†(0)
𝒌,𝑛 (𝒓))𝛁𝛹 (0)

𝒌,𝑛(𝒓) d𝑉 +∑
𝛾

∫
𝛾
𝛹 ∗(0)
𝒌,𝑛 (𝒓)

⇀
∆𝛹 (0)

𝒌,𝑛(𝒓) d𝑉

+∑
𝛾

∮
𝛾
𝛹 ∗(0)
𝒌,𝑛 (𝒓)

∂𝛹 (0)
𝒌,𝑛(𝒓)
∂𝑟

̂𝒓 d𝑆

= ∫
IR

(𝛁𝛹†(0)
𝒌,𝑛 (𝒓))𝛁𝛹 (0)

𝒌,𝑛(𝒓) d𝑉 +∑
𝛾

∫
𝛾
𝛹 ∗(0)
𝒌,𝑛 (𝒓)

⇀
∆𝛹 (0)

𝒌,𝑛(𝒓) d𝑉 (7.167b)

+ ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

∑
𝛾

𝐴∗𝒌𝛾𝑛
𝑙′𝑚′𝑝′𝐴

𝒌𝛾𝑛
𝑙𝑚𝑝 ∑

𝑠
𝑢𝛾𝑠
𝑙′𝑝′(𝑟𝜈�̊�)

∂𝑢𝛾𝑠
𝑙𝑝 (𝑟𝜈�̊�)
∂𝑟𝜈�̊�

∮
𝛾
Y𝑙′𝑚′( ̂𝒓�̊�)Y𝑙𝑚( ̂𝒓�̊�) ̂𝒓 d𝑆

= ∫
IR

(𝛁𝛹†(0)
𝒌,𝑛 (𝒓))𝛁𝛹 (0)

𝒌,𝑛(𝒓) d𝑉 +∑
𝛾

∫
𝛾
𝛹 ∗(0)
𝒌,𝑛 (𝒓)

⇀
∆𝛹 (0)

𝒌,𝑛(𝒓) d𝑉 (7.167c)

+ ∑
𝑙𝑚𝑝′𝑝

∑
𝛾

𝐴∗𝒌𝛾𝑛
𝑙𝑚𝑝′ 𝐴

𝒌𝛾𝑛
𝑙𝑚𝑝 ∑

𝑠
𝑢𝛾𝑠
𝑙′𝑝′(𝑟𝜈�̊�)

∂𝑢𝛾𝑠
𝑙𝑝 (𝑟𝜈�̊�)
∂𝑟𝜈�̊�

.

Although equation (7.166g) only comprises MT terms, the symmetrization is assumed for

the complete formalism. Therefore, Neukirchen has programmed the last term in equa-

tion (7.167c) into each line of equation (7.166g). This means for example

⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
�̊�
𝑙𝑚𝑝⟩𝛼

→ ⟨�⃗��̊�
𝑙′𝑚′𝑝′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣�⃗�
�̊�
𝑙𝑚𝑝⟩𝛼

+∑
𝑠

𝑢𝛼𝑠
𝑙′𝑝′

∂𝑢𝛼𝑠
𝑙𝑝

∂𝑟
. (7.168)

InPerformance
optimization

particular for the formalism in section 7.6.4, it was absolutely necessary to only

calculate the small matching coefficients 𝑎 at both 𝒌 and 𝒌+
bf
with the recycled routine Abcof3

once. Then the different large matching coefficients are constructed by respective contractions,

instead of calculating all of them by employing the recycled routine Abcof, which has turned
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out to be a performance bottleneck [127, 251]. Although the formalism for the dynamical

matrix is now drastically simplified, it is still programmed in the aforementioned way.

Equation Further possible
optimization

(7.166g), including the kinetic energy correction (7.168), can further be

summarized. Since the dynamical matrix is self-adjoint in the end, the third and fifth lines of

the aforesaid equation can be replaced by their adjoint complement with 𝛼 and 𝛽 interchanged.
Then they equal the second and the fourth lines, respectively (vice versa is also possible). But,

this becomes relevant in the future for polyatomic systems.

Now, Matrix large
matching
coefficients

the matrix-like matching coefficients are introduced in order to achieve a com-

pacter notation

𝐴𝒌𝛼𝑛
𝑙𝑚𝑝 = ∑

𝐺
𝑮𝑮⊤𝑧(0)𝑮 (𝒌, 𝑛)𝑎𝑮𝒌𝛼

𝑙𝑚𝑝 (7.169a)

𝐴𝒌+
bf
𝛼𝑛

𝑙′𝑚′𝑝′(𝛽) = ∑
𝑮

𝒛(1)
𝑮 (𝒌+

bf
, 𝑛; 𝛽)[𝑮 +𝑮bf + 𝒒]⊤𝑎𝑮𝒌+

bf
𝛼

𝑙𝑚𝑝 . (7.169b)

Additionally, the vectorial and scalar matching coefficients in equations (7.36e), (7.36d),

(7.36a), and (5.30) are required.

As Final forma consequence, equation (7.166g) in combination with the substitution (7.168) can

be rewritten as

𝐷𝛽𝛼
Pl,bk

(𝒒) = ∑
𝑙′𝑚′𝑝′

∑
𝑙𝑚𝑝

⎧{
⎨{⎩

(7.170)

𝑨𝒌+
bf
𝛼𝑛∗

𝑙′𝑚′𝑝′ (𝛽)⎛⎜
⎝
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

+∑
𝑠

𝑢𝛾𝑠
𝑙′𝑝′

∂𝑢𝛾𝑠
𝑙𝑝

∂𝑟
⎞⎟
⎠
i[𝑨𝒌𝛼𝑛

𝑙𝑚𝑝 ]
⊤

+ i∗𝐴∗𝒌+
bf
𝛼𝑛

𝑙′𝑚′𝑝′ (𝛽)⎛⎜
⎝
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

+∑
𝑠

𝑢𝛾𝑠
𝑙′𝑝′

∂𝑢𝛾𝑠
𝑙𝑝

∂𝑟
⎞⎟
⎠
𝐴𝒌𝛼𝑛

𝑙𝑚𝑝

+ i∗[𝑨𝒌𝛽𝑛
𝑙′𝑚′𝑝′]

†⎛⎜
⎝
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛽

+∑
𝑠

𝑢𝛾𝑠
𝑙′𝑝′

∂𝑢𝛾𝑠
𝑙𝑝

∂𝑟
⎞⎟
⎠
𝑨𝒌+

bf
𝛽𝑛

𝑙𝑚𝑝 (𝛼)

+ 𝐴∗𝒌𝛽𝑛
𝑙′𝑚′𝑝′

⎛⎜
⎝
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛽

+∑
𝑠

𝑢𝛾𝑠
𝑙′𝑝′

∂𝑢𝛾𝑠
𝑙𝑝

∂𝑟
⎞⎟
⎠
i𝐴𝒌+

bf
𝛽𝑛

𝑙𝑚𝑝 (𝛼)

+ δ𝛽𝛼𝑨
∗𝒌𝛼𝑛
𝑙′𝑚′𝑝′

⎛⎜
⎝
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

+∑
𝑠

𝑢𝛾𝑠
𝑙′𝑝′

∂𝑢𝛾𝑠
𝑙𝑝

∂𝑟
⎞⎟
⎠
𝑨⊤𝒌𝛼𝑛

𝑙𝑚𝑝

+ δ𝛽𝛼𝑨
𝒌𝛼𝑛
𝑙𝑚𝑝 [𝑨

𝒌𝛼𝑛
𝑙′𝑚′𝑝′]

†⎛⎜
⎝
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

+∑
𝑠

𝑢𝛾𝑠
𝑙′𝑝′

∂𝑢𝛾𝑠
𝑙𝑝

∂𝑟
⎞⎟
⎠

− δ𝛽𝛼𝐴
∗𝒌𝛼𝑛
𝑙′𝑚′𝑝′

⎛⎜
⎝
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

+∑
𝑠

𝑢𝛾𝑠
𝑙′𝑝′

∂𝑢𝛾𝑠
𝑙𝑝

∂𝑟
⎞⎟
⎠
𝐴𝒌𝛼𝑛

𝑙𝑚𝑝

− δ𝛽𝛼𝐴
∗𝒌𝛼𝑛
𝑙𝑚𝑝

⎛⎜
⎝
⟨�⃗��̊�

𝑙′𝑚′𝑝′∣ℋ
(0) − 𝜖(0)𝒌,𝑛∣�⃗�

�̊�
𝑙𝑚𝑝⟩𝛼

+∑
𝑠

𝑢𝛾𝑠
𝑙′𝑝′

∂𝑢𝛾𝑠
𝑙𝑝

∂𝑟
⎞⎟
⎠
𝐴𝒌𝛼𝑛

𝑙𝑚𝑝

⎫}
⎬}⎭

.

This form is implemented at the moment [256].
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BeforePerformance
optimization

the various matching coefficients can be contracted with the parentheses in the

middle, the Hamiltonian and overlap matrix elements must be set up. The former decomposes

into a contribution with the spherical Hamiltonian and one containing the non-spherical

potential. Since they are similar in equation (7.167c) (only differ by their atom indices), they

are only calculated once before the loop over the 𝒌-points and the bands 𝑛. As a consequence,
within the aforementioned loops only dot products and matrix products are required for the

contraction with the aforementioned contracted large matching coefficients. These operations

are highly optimized on modern processor architectures, and therefore this implementation

scales well with the size of the 𝒌-set.

EvaluatingAlgorithm of
Hamiltonian part

the spherical Hamiltonian matrix element is exactly described by equa-

tion (5.60). The non-spherical part is basically equivalent to equations (5.62), as far as

the derivation of the formalism is concerned. However, we omit the definition of the inte-

grals 𝛴𝑝𝑝′𝛾
𝑙𝑙′𝑙″𝑚″ and the non-spherical 𝑡

full,𝑝𝑝′𝛾
𝜂(𝑙′𝑚′𝑙𝑚) matrices in contrast to the Sternheimer equa-

tion [127, 251]. This is due to performance and the natural integration of LOs at a later

point [251]. The routines which have been recycled for the Sternheimer self-consistency cycle

use mapping arrays, and only iterate over relevant index combinations. Basically, we iterate

over all indices, neglecting Gaunt coefficient selection rules. These rules were applied in earlier

days to avoid evaluating integrals which vanish anyway. For todays processor architectures,

it is highly disadvantageous to employ if-directives within inner loops, as they hinder the

compiler from implementing vectorization pragmas or other optimizations. Meanwhile, this

has been optimized in more modern versions of FLEUR [127, 260]. So, here the non-spherical
potential matrix element is calculated by evaluating the integral

∫
𝛾
d3𝑟𝜈�̊� ∑

𝑠
𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)𝑉 (0)𝛾

eff,nsph(𝒓𝜈�̊�)𝜑𝑠�̊�
𝑙𝑚𝑝(𝒓𝜈�̊�) (7.171)

= ∫
𝑅�̊�

0+
d𝑟𝜈�̊� ∑

𝑠
𝑟𝜈�̊�𝑢𝑠�̊�

𝑙′𝑝′(𝑟𝜈�̊�)(∑
𝑙″𝑚″

[𝑉 (0)𝛾
eff,nsph(𝑟𝜈�̊�)]

𝑙″𝑚″
𝑟𝜈�̊�𝑢𝑠�̊�

𝑙𝑝 (𝑟𝜈�̊�)𝐺𝑚′,𝑚″,𝑚
𝑙′, 𝑙″, 𝑙 ) .

Relative to equations (5.62), the effective potential is unsymmetrized. Therefore, it is given

in spherical instead of lattice harmonics, as well as for every atom instead of every atom type.

The term within the parentheses is evaluated first, before being projected onto the radial

solution. Moreover, complex integrations are performed by separate integrals for the real and

imaginary parts. This first becomes necessary here, because the overlap and the spherical

Hamiltonian matrix elements are real quantities.

TheAlgorithm of
overlap part

overlap integral, which must be multiplied by the Kohn–Sham energy, is already

discussed in detail within equation (5.57). However, guided by the principle of optimally

cancelling mutual errors (see section 7.1.2), we have decided to not completely follow the

evaluation presented in equation (5.57). The reason is that the overlap 𝑁 �̊�
𝑙𝑙′ constitutes a

byproduct of a differential equation solved in FLEUR. We found that this is in general not
precisely the same as the result that is calculated from [251]

∫
�̊�
d3𝑟𝜈�̊� ∑

𝑠
𝜑∗𝑠�̊�
𝑙′𝑚′𝑝′(𝒓𝜈�̊�)𝜑𝑠�̊�

𝑙𝑚𝑝(𝒓𝜈�̊�) = δ𝑙𝑙′δ𝑚𝑚′ ∫
𝑅�̊�

0+
d𝑟𝜈�̊� ∑

𝑠
𝑟𝜈�̊�𝑢𝑠�̊�

𝑙′𝑝′(𝑟𝜈�̊�)𝑟𝜈�̊�𝑢𝑠�̊�
𝑙𝑝 (𝑟𝜈�̊�) .(7.172)

To be consistent, we calculate this integral instead of using the aforementioned 𝑁 �̊�
𝑙𝑙′.
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Surface-Integrals Correction

For Final formthe final form of the surface integrals, the surface terms from equation (7.153a) and

equation (7.159) are omitted in equation (7.150b). Furthermore, the gradient in the xc terms

is applied, using the chain rule and the product rule. This results in

𝐷𝛽𝛼
sfO

(𝒒+) (7.173a)

= ∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
{−𝒛∗(1)

𝑮′ (𝒌, 𝑛; 𝒒𝛽)𝑧(0)𝑮 (𝒌, 𝑛)∮
∂𝛼

𝜙∗(0)IR
𝒌+𝒒,𝑮′(𝒓)(ℋ

(0) − 𝜖(0)𝒌,𝑛)𝜙
(0)IR
𝒌,𝑮 (𝒓) ̂𝒓⊤ d𝑆

− δ𝛽𝛼(i(𝒌 +𝑮′)𝑧(0)𝑮′(𝒌, 𝑛))
∗
𝑧(0)𝑮 (𝒌, 𝑛)∮

∂𝛼
𝜙∗(0)IR
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜖(0)𝒌,𝑛)𝜙
(0)IR
𝒌,𝑮 (𝒓) ̂𝒓⊤ d𝑆

−∮
∂𝛽

̂𝒓𝜙∗(0)IR
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜖(0)𝒌,𝑛)𝜙
(0)IR
𝒌+𝒒,𝑮(𝒓) d𝑆 𝑧∗(0)𝑮′ (𝒌, 𝑛)[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤

− ∮
∂𝛽

̂𝒓δ𝛽𝛼𝜙
∗(0)IR
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜖(0)𝒌,𝑛)(𝜙
(0)IR
𝒌,𝑮 (𝒓)) d𝑆 𝑧∗(0)𝑮′ (𝒌, 𝑛)i[𝒌 +𝑮]⊤𝑧(0)𝑮 (𝒌, 𝑛)}

+∮
∂𝛽

δ𝛽𝛼 ̂𝒓(𝜌(0)𝛽 (𝛁⊤𝑉 (0)𝛽
eff

(𝒓)) − 𝜌(0)IR (𝒓)(𝛁⊤𝑉 (0)IR
eff

(𝒓)))d𝑆

+ δ𝛽𝛼 ∮
∂𝛽

[(𝛁𝜌(0)𝛽 (𝒓)(𝑉 (0)𝛽
xc (𝒓) − 𝑉 (0)𝛽

xc (𝒓))) + 𝜌(0)𝛽 𝛁⊤𝑉 (0)𝛽
xc (𝒓)

−𝛁(𝜌(0)IR (𝒓)(𝜖(0)IRxc (𝒓) − 𝑉 (0)IR
xc (𝒓))) − 𝜌(0)IR 𝛁⊤𝑉 (0)IR

xc (𝒓)] ̂𝒓⊤ d𝑆

+ δ𝛽𝛼 ∮
∂𝛽

̂𝒓[𝜌(0)𝛽 (𝒓)(2[𝑽 (1)𝛽
ext (𝒓; 𝒒+𝛼)]

⊤
+ [𝑽 (1)𝛽

Har (𝒓; 𝒒+𝛼)]
⊤
)

− 𝜌(0)IR (𝒓)(2[𝑽 (1)IR
ext (𝒓; 𝒒+𝛼)]

⊤
+ [𝑽 (1)IR

Har (𝒓; 𝒒+𝛼)]
⊤
)]d𝑆

+∑
𝒌,𝑛

𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
{𝒛∗(1)

𝑮′ (𝒌, 𝑛; 𝒒𝛽)𝑧(0)𝑮 (𝒌, 𝑛)∮
∂𝛼

𝜙∗(0)IR
𝒌+𝒒,𝑮′(𝒓)𝒱

(0)
eff

𝜙(0)IR
𝒌,𝑮 (𝒓) ̂𝒓⊤ d𝑆

+ δ𝛽𝛼(i(𝒌 +𝑮′)𝑧(0)𝑮′(𝒌, 𝑛))
∗
𝑧(0)𝑮 (𝒌, 𝑛)∮

∂𝛼
𝜙∗(0)IR
𝒌,𝑮′ (𝒓)𝒱

(0)
eff

𝜙(0)IR
𝒌,𝑮 (𝒓) ̂𝒓⊤ d𝑆

+∮
∂𝛽

̂𝒓𝜙∗(0)IR
𝒌,𝑮′ (𝒓)𝒱

(0)
eff

𝜙(0)IR
𝒌+𝒒,𝑮(𝒓) d𝑆 𝑧∗(0)𝑮′ (𝒌, 𝑛)[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤

+∮
∂𝛽

̂𝒓δ𝛽𝛼𝜙
∗(0)IR
𝒌,𝑮′ (𝒓)𝒱

(0)
eff

(𝜙(0)IR
𝒌,𝑮 (𝒓)) d𝑆 𝑧∗(0)𝑮′ (𝒌, 𝑛)i[𝒌 +𝑮]⊤𝑧(0)𝑮 (𝒌, 𝑛)

− 𝒛∗(1)
𝑮′ (𝒌, 𝑛; 𝒒𝛽)𝑧(0)𝑮 (𝒌, 𝑛)∮

∂𝛼
𝜙∗(0)𝛼
𝒌+𝒒,𝑮′(𝒓)𝒱

(0)
eff

𝜙(0)𝛼
𝒌,𝑮(𝒓) ̂𝒓⊤ d𝑆

− δ𝛽𝛼(i(𝒌 +𝑮′)𝑧(0)𝑮′(𝒌, 𝑛))
∗
𝑧(0)𝑮 (𝒌, 𝑛)∮

∂𝛼
𝜙∗(0)𝛼
𝒌,𝑮′ (𝒓)𝒱

(0)
eff

𝜙(0)𝛼
𝒌,𝑮(𝒓) ̂𝒓⊤ d𝑆

−∮
∂𝛽

̂𝒓𝜙∗(0)𝛽
𝒌,𝑮′ (𝒓)𝒱

(0)
eff

𝜙(0)𝛽
𝒌+𝒒,𝑮(𝒓) d𝑆 𝑧∗(0)𝑮′ (𝒌, 𝑛)[𝒛(1)

𝑮 (𝒌, 𝑛; 𝒒𝛼)]
⊤

−∮
∂𝛽

̂𝒓δ𝛽𝛼𝜙
∗(0)𝛽
𝒌,𝑮′ (𝒓)𝒱

(0)
eff

(𝜙(0)𝛽
𝒌,𝑮(𝒓)) d𝑆 𝑧∗(0)𝑮′ (𝒌, 𝑛)i[𝒌 +𝑮]⊤𝑧(0)𝑮 (𝒌, 𝑛)} .
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Additionally, in the last eight lines an “effective zero” is added, since these surface integrals

only contain almost continuous quantities, such as the unperturbed effective potential and the

LAPW basis functions [251]. Therefore, the sum of these surface terms is very small. Overall,

the preceeding equations simplify to

𝐷𝛽𝛼
sfO

(𝒒+) (7.173b)

= ∑
𝒌,𝑛

2𝑓 (0)
𝒌,𝑛 ∑

𝑮′𝑮
{−𝒛∗(1)

𝑮′ (𝒌+
bf
, 𝑛; 𝛽)𝑧(0)𝑮 (𝒌, 𝑛)∮

∂𝛼
𝜙∗(0)IR
𝒌+
bf
,𝑮′(𝒓)(

⇌
𝒯− 𝜖(0)𝒌,𝑛)𝜙(0)IR

𝒌,𝑮 (𝒓) ̂𝒓⊤ d𝑆

− δ𝛽𝛼(i(𝒌 +𝑮′)𝑧(0)𝑮′(𝒌, 𝑛))
∗
𝑧(0)𝑮 (𝒌, 𝑛)∮

∂𝛼
𝜙∗(0)IR
𝒌,𝑮′ (𝒓)(

⇌
𝒯− 𝜖(0)𝒌,𝑛)𝜙(0)IR

𝒌,𝑮 (𝒓) ̂𝒓⊤ d𝑆

−∮
∂𝛽

̂𝒓𝜙∗(0)IR
𝒌,𝑮′ (𝒓)(

⇌
𝒯− 𝜖(0)𝒌,𝑛)𝜙(0)IR

𝒌+
bf
,𝑮(𝒓) d𝑆 𝑧∗(0)𝑮′ (𝒌, 𝑛)[𝒛(1)

𝑮 (𝒌+
bf
, 𝑛; 𝛼)]

⊤

− ∮
∂𝛽

̂𝒓δ𝛽𝛼𝜙
∗(0)IR
𝒌,𝑮′ (𝒓)(

⇌
𝒯− 𝜖(0)𝒌,𝑛)(𝜙(0)IR

𝒌,𝑮 (𝒓)) d𝑆 𝑧∗(0)𝑮′ (𝒌, 𝑛)i[𝒌 +𝑮]⊤𝑧(0)𝑮 (𝒌, 𝑛)}

−∮
𝛼
𝝆∗(1)
𝛼,Sh(𝒓; 𝒒

+𝛽)𝑉 (0)𝛼
eff

(𝒓) ̂𝒓⊤ d𝑆

+∮
∂𝛽

̂𝒓[𝜌(0)𝛽 (𝒓)([𝑽 (1)𝛽
C

(𝒓; 𝒒+𝛼) + δ𝛽𝛼𝛁𝑉 (0)𝛽
C

(𝒓)]
⊤
+ [𝑽 (1)𝛽

ext (𝒓; 𝒒+𝛼)]
⊤
)

− 𝜌(0)IR (𝒓)([𝑽 (1)IR
C

(𝒓; 𝒒+𝛼) + δ𝛽𝛼𝛁𝑉 (0)IR
C

(𝒓)]
⊤
+ [𝑽 (1)IR

ext (𝒓; 𝒒+𝛼)]
⊤
)]d𝑆 .

TheAssistance and
algorithm

sixth line has been programmed by Neukirchen. Likewise, he substituted the

Hamiltonians by the kinetic energy 𝒯 within juPhon. While the evaluation of the last three
lines is analogous to equations (7.163b) and (7.164c), the terms containing the kinetic energy

operator must still be discussed. As the symmetric application of the IR kinetic energy is

already prepared in equation (7.170), it can be applied to the surface integrals. Doing this,

the phonon vector is also accounted for in the action of the kinetic energy. Therefore, the

second line in equation (7.173b) is evaluated as

∑
𝑮′𝑮

𝒛∗(1)
𝑮′ (𝒌+

bf
, 𝑛; 𝛽)𝑧(0)𝑮 (𝒌, 𝑛)∮

∂𝛼
𝜙∗(0)IR
𝒌+
bf
,𝑮′(𝒓)(

⇌
𝒯− 𝜖(0)𝒌,𝑛)𝜙(0)IR

𝒌,𝑮 (𝒓) ̂𝒓⊤ d𝑆 (7.174)

= i
4π𝑅2

�̊�
𝛺

∑
𝑮′𝑮

𝒛∗(1)
𝑮′ (𝒌+

bf
, 𝑛; 𝛽)𝑧(0)𝑮 (𝒌, 𝑛)(1

2
(𝒌+
bf
+𝑮′) ⋅ (𝒌 +𝑮) − 𝜖(0)𝒌,𝑛)j1(∣𝑮

″ −𝑮bf − 𝒒∣𝑅�̊�)

× ei(𝑮
″−𝑮bf−𝒒)⋅𝝉𝛼 ∑

𝑖𝑚
𝜁∗𝑖,𝑚 ̂𝒆⊤

𝑖 Y
∗
1𝑚(𝑮″ −𝑮bf − 𝒒
⋀

),

with 𝑮″ ≔ 𝑮−𝑮′ and 𝑮bf (cf. figure 7.2 for the latter), the third line as

∑
𝑮′𝑮

(i(𝒌 +𝑮′)𝑧(0)𝑮′(𝒌, 𝑛))
∗
𝑧(0)𝑮 (𝒌, 𝑛)∮

∂𝛼
𝜙∗(0)IR
𝒌,𝑮′ (𝒓)(

⇌
𝒯− 𝜖(0)𝒌,𝑛)𝜙(0)IR

𝒌,𝑮 (𝒓) ̂𝒓⊤ d𝑆 (7.175)

= i
4π𝑅2

�̊�
𝛺

∑
𝑮′𝑮

(i(𝒌 +𝑮′)𝑧(0)𝑮′(𝒌, 𝑛))
∗
𝑧(0)𝑮 (𝒌, 𝑛)(

(𝒌 +𝑮′) ⋅ (𝒌 +𝑮)
2

− 𝜖(0)𝒌,𝑛)j1(∣𝑮″∣𝑅�̊�)

× ei𝑮″⋅𝝉𝛼 ∑
𝑖𝑚

𝜁∗𝑖,𝑚 ̂𝒆⊤
𝑖 Y

∗
1𝑚( ̂𝑮″) ,
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the fourth line as

∑
𝑮′𝑮

∮
∂𝛽

̂𝒓𝜙∗(0)IR
𝒌,𝑮′ (𝒓)(

⇌
𝒯− 𝜖(0)𝒌,𝑛)𝜙(0)IR

𝒌+
bf
,𝑮(𝒓) d𝑆 𝑧∗(0)𝑮′ (𝒌, 𝑛)[𝒛(1)

𝑮 (𝒌+
bf
, 𝑛; 𝛼)]

⊤
(7.176)

= i
4π𝑅2

�̊�
𝛺

∑
𝑮′𝑮

⎛⎜
⎝

(𝒌 +𝑮′) ⋅ (𝒌+
bf
+𝑮)

2
− 𝜖(0)𝒌,𝑛

⎞⎟
⎠

∑
𝑖𝑚

𝜁∗𝑖,𝑚 ̂𝒆⊤
𝑖 j1(∣𝑮

″ +𝑮bf + 𝒒∣𝑅�̊�)

× ei(𝑮
″+𝑮bf+𝒒)⋅𝝉𝛼Y∗

1𝑚(𝑮″ +𝑮bf + 𝒒
⋀

)𝑧∗(0)𝑮′ (𝒌, 𝑛)[𝒛(1)
𝑮 (𝒌+

bf
, 𝑛; 𝛼)]

⊤
,

and the fifth line as

∑
𝑮′𝑮

∮
∂𝛽

̂𝒓δ𝛽𝛼𝜙
∗(0)IR
𝒌,𝑮′ (𝒓)(

⇌
𝒯− 𝜖(0)𝒌,𝑛)(𝜙(0)IR

𝒌,𝑮 (𝒓)) d𝑆 𝑧∗(0)𝑮′ (𝒌, 𝑛)i[𝒌 +𝑮]⊤𝑧(0)𝑮 (𝒌, 𝑛) (7.177)

= i
4π𝑅2

�̊�
𝛺

∑
𝑮′𝑮

(
(𝒌 +𝑮′) ⋅ (𝒌 +𝑮)

2
− 𝜖(0)𝒌,𝑛)j1(∣𝑮″∣𝑅�̊�)∑

𝑖𝑚
𝜁∗𝑖,𝑚 ̂𝒆⊤

𝑖

× ei𝑮″⋅𝝉𝛼Y∗
1𝑚( ̂𝑮″)𝑧∗(0)𝑮′ (𝒌, 𝑛)i[𝒌 +𝑮]⊤𝑧(0)𝑮 (𝒌, 𝑛) .

7.6.9 Tests

Test 33 and test 34 focus on the step function, which is vital for the evaluation of the IR

integrals. Furthermore, the volume integrals (IR and MT spheres) can be checked analogous

to test 22. Test 35 and test 36 deal with the Pulay matrix elements. Finally, test 37, test 38,

and test 39 are concerned with the surface integrals.

Test 33: Converged Parameter for Interstitial Step Function

The integrity of the warping process and the quality of basis parameters such as 𝐺max can be
tested by comparing the results of a FFT and a “double-sum method” [127, 251]. For example,

in the integral

∫
𝛺
𝜌(0)IR (𝑮)𝑉 (0)

eff
(𝑮) d3𝑟 = ∑

𝑮′𝑮
𝜌(0)IR (𝑮′)𝑉 (0)

eff
(𝑮)∫e−i(𝑮′−𝑮)⋅𝒓Θ(𝒓) d3𝑟 (7.178a)

= 𝛺 ∑
𝑮′𝑮

𝜌(0)IR (𝑮′)𝑉 (0)
eff

(𝑮)Θ(𝑮′ −𝑮)d3𝑟 , (7.178b)

the sums over the reciprocal lattice vectors 𝑮 and 𝑮′ can be evaluated. The Fourier coef-

ficients of the step function coefficients are given in equation (5.48b). Alternatively, the

effective potential can be warped, and the result summed with the charge density as in

equation (7.161b).

Test 34: Converged Parameter for Convolution of Potential and Step Function

We defined one criterion for the FFT mesh so that it is large enough [127]. Within FLEUR,
the IR effective potential expanded in stars is convoluted with the step function, exploiting

the underlying symmetry. Therefore, errors of the FFT cancel each other and the warping
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is not so sensitive with respect to aliasing effects [127, 278]. The unwarped potential is

stored in a file, and so is the warped potential (the latest names can be extracted from the

documentation). Within this check, the effective unwarped potential is taken from this FLEUR
file and translated from the star into the plane-wave representation. Then it is warped with

the juPhon routine that has been written for unsymmetrized quantities. Its output is compared
with the warped effective IR potential from FLEUR, which has been parsed from the respective
file and translated into the plane-wave representation. The parameters k1d, k2d, and k3d
must be large enough for this test to work. Organically, this is achieved by increasing 𝐺max.

Test 35: Cross-checking the MT Hamiltonian and Overlap Matrix Element

The approaches to calculate the integral in equation (5.56), the expression (5.60b), and

equation (7.171) either for the Sternheimer equation or the dynamical matrix are different.

For the Sternheimer equation mainly subroutines from FLEUR are recycled. But for the
dynamical matrix, I have programmed a more modular and versatile algorithm for satisfying

the implementation demands of the dynamical matrix. Details of both methods can be found

in section 7.4.3 and section 7.6.8. With these approaches, a matrix element as given in

equation (5.53) is calculated. This check compares the results of both methods, which should

be the same. In the future, only one Hamiltonian and overlap subroutine will be employed,

making this test obsolete.

Test 36: Adding the IR part to the MT Hamiltonian and Overlap Matrix Element

As a supplement to test 35 an IR matrix element as in equation (5.49) can be added. The result

of this sum should be zero to fulfill the Schrödinger equation of the Kohn–Sham Hamiltonian.

Test 37: Cross-Checking with Sternheimer Surface Integral

Two algorithms are employed in juPhon to calculate the surface integrals, which are of the
form given in section 7.4.4. However, for the dynamical matrix the bands are equal (see

section 7.6.8). So in the first implementation, I have written a simplified surface integral

subroutine to avoid errors. Still, the general and the specified subroutine should deliver the

same result, which is checked here. In the future, these two approaches will be unified.

Test 38: Cross-Checking of Surface Integrals with Almost Continuous Integrands

If the integrand is composed of quantities which are almost continuous, an IR surface integral

should be almost the same as minus the MT sphere integral. The difference of them should

be not significantly larger than the continuity of the quantities in the integrands. This check

is not programmed in an separate subroutine, but intrinsically given by evaluating the last

two lines of equation (7.173b).
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Test 39: Analytical Goldstone Solution for Correction Terms

The second, third, fourth, and fifth lines in equation (7.166g) as well as the second, third,

fourth, and fifth lines in equation (7.173b) are already checked by test 33, and test 34.

However, the correct implementation of the wave-function expansion-coefficient contraction

can also be tested by setting the first-order variation of the wave-function expansion coefficients

to equation (7.30).

7.7 Phonon Dispersions

Although Outlinethe formalism of Klüppelberg [88] is mainly correct, its dynamical-matrix part still

comprises many terms that cancel each other analytically but not numerically. In this section,

the impressive evolution of the phonon dispersions shall be shown, while reformulating his

approach. Therefore, in section 7.7.1 examples for fcc Ne and fcc Al are given, essentially
based on the equations until (i) section 7.6.4 and (ii) section 7.6.5. The latest phonon

dispersions according to the approach in section 7.6.8 are finally presented in section 7.7.2.

In addition to fcc Ne and fcc Al, the materials bccMo, fcc Au, fcc Ar, and fcc Cu are discussed
there.

Within Calculation
setups

all dispersion relations, my DFPT calculations from juPhon are compared to
FD benchmarks generated by Alexander Neukirchen. Since I generated the DFPT results

employing the nowadays crude X𝛼 xc-potential approximation, contrasting these frequencies
with experimental outcomes would be less informative. But, selecting the FD method as the

benchmark enables me to start with the same input parameters and allows for basing both the

FD and the DFPT approach upon the input data from the FLEUR code. The juPhon results are
the acoustic modes of fourteen 𝒒-values, which are incorporated in an 8 × 8 × 8 Γ-centered
discrete 𝒒-mesh. These 𝒒-vectors lie on characteristic high-symmetry points of fcc and bcc
structures (see also table 7.8 for their definition) or on paths between them. I use the FLEUR
version specified on page 112 to optimize the lattice constant of all discussed systems by

a Birch–Murnaghan fit (see section 7.1.6). Overall, (i) for the aforementioned fit, (ii) for

generating the input data for juPhon, and (iii) for the juPhon calculation itself, I employ
an 8 × 8 × 8 Γ-centered discrete 𝒌-mesh. Furthermore, mainly I have converged the remaining
input parameters for the fcc Ne and for the fcc Al systems. The parameters (except for the
lattice constants) of bcc Mo, fcc Ar, and fcc Cu have been optimized by Neukirchen. Further-
more, he improved some nuances in the fcc Ne and fcc Al input parameters. All employed
FLEUR input-generator input files can be found in appendix B. As far as the FD computations
are concerned, Neukirchen employs phonopy [164] (version 2.9.3), which utilizes the output
of a more modern FLEUR30 code, still based on the aforementioned input-generator input
files. It is important to know that in the aforesaid modern FLEUR version, the variable storing
the constant for the speed of light is analogously increased by three orders of magnitude

(cf. section 7.1.4). Additionally, it has proven sufficient to use only a 4 × 4 × 4 Γ-centered
discrete 𝒌-mesh for the FD calculations [256]. The FD frequencies are interpolated and
depicted as curves in the following dispersion relations. Furthermore, it must be considered

30 This employed version can be found using the hash 0253eee4277e8dcd39a6940032373ba78f418441 within
the FLEUR repository.
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that phonopy corrects the frequencies in the end so that its Goldstone modes always vanish.
Essentially, all frequencies are plotted in the unit cm−1 (1 cm−1 ≈ 0.124meV [8]).

7.7.1 Evolution

RewritingResults after
section 7.6.4

the original dynamical-matrix approach of Klüppelberg [88] makes an impressive

impact on the phonon dispersion-relations. Since it has turned out very early in the devel-

opment that outer products of gradients are numerically hard or impossible to control, we

decided against generating dispersion relations with this formalism [127]. However, I have

calculated31 the first dispersion relations for the approach explained in section 7.6.4. They

are shown in figure 7.22 and figure 7.23 for fcc Ne and fcc Al, respectively. In general, it can
be seen that the benchmark frequencies clearly differ from those calculated with juPhon. Still,
it must be emphasized that the Goldstone condition (frequencies vanish) for Ne is already
excellently fulfilled. The eigenvalues of the dynamical matrix from juPhon are at the order of
magnitude 10−6 which is one order more than possible with the accuracy of the integration

routines. Hence, it is in principle numerically zero, as expected for the Goldstone modes.

However, forAl this is not the case. The frequencies at 𝒒 = 𝟎 are imaginary and about 4.8meV.
But, the degeneracy and splitting of the transversal modes (red and green) can already be seen

for both systems. Nevertheless, for Ne the longitudinal mode (blue) is not as smooth as the
transversal modes. Moreover, all juPhon frequencies for this system are imaginary, predicting
material instabilities for every phonon vector. In contrast, some of the frequencies for Al
are positive and from Γ to L the transversal modes are more consistent with the benchmark.

Finally, the longitudinal mode is smoother relative to Ne.

AvoidingResults after
section 7.6.5

also gradients of wave functions, as explained in section 7.6.5 leads to the

phonon dispersions of Ne and Al in figure 7.24 and figure 7.25, respectively32. The transversal
modes are now completely real (except for the Goldstone modes), whereas the longitudinal

modes are still partially imaginary. Given Ne, the former match already perfectly with the
benchmark on the path Γ to X, whereas the transversal modes of Al are at least closer to the
benchmark curves. However, the Ne Goldstone modes worsen and are about 1.26meV now,
while those for aluminium do not change significantly and are still imaginary. In addition,

the degeneracies of neon are well reproduced on Γ – X but poorly at W and especially on the

path Γ – L (the colors have been chosen such that the path Γ – X, which appears more reliable,

fits better). In contrast, the degeneracies of aluminium are as good as in figure 7.23. Still, the

splitting is not as large as in the benchmark and smaller than in the aforementioned figure.

IfResults after
section 7.6.6

moreover the MT integrals are alleviated as expounded on in section 7.6.6, the modes

of Ne deteriorate by becoming imaginary again. For Al, the longitudinal mode partly becomes

31 The employed version can be found in the repository juPhon, when searching for the commit with the hash
21e11d729f64a934d403e768e4c1185773982c88. The cutoff of the reciprocal energies in the Sternheimer
equation that is discussed in section 7.4.1, is set to 1 ⋅ 10−7 Eh, since there was no experience about its

optimal value at this time. Finally, the outcome is divided by two, since this factor two in equation (7.123h)

has not been considered for this commit, but it accounted for in the dispersion relations of section 7.7.2

[127, 256].
32 The used version is given in the juPhon with the hash df7f597115ec3d672ea18ff38a951575decf431b. In

order to profit from the experiences of Neukirchen, the reciprocal-energies cutoff is set to 5 ⋅ 10−3 Eh in this

commit (cf. section 7.4.1) [256]. Furthermore, also here the dynamical matrices are divided by two, as

already discussed in the previous footnote.
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Figure 7.22: Dispersion relation of juPhon for fcc Ne according to section 7.6.4. My DFPT
calculation with juPhon is conducted at 𝒒-points (internal units) which are part of a
discrete Γ-centered 8 × 8 × 8 reciprocal mesh. These points lie on paths connecting
the high-symmetry points defined in table 7.8, and are not interpolated (since this

is not yet implemented). The curves show the results of a benchmark calculation by

Alexander Neukirchen, employing the Finite Displacement implementation phonopy
[164]. Both the juPhon and phonopy calculation use the same FLEUR input-generator
input file provided in appendix B. However, the juPhon calculation utilizes an
8 × 8 × 8 𝒌-set, while a 4 × 4 × 4 𝒌-set proves to be sufficient for the FD calculation
[256]. Moreover, the input of juPhon is from the old FLEUR version specified on
page 112, while the FD calculation is based on a more modern FLEUR code (see
page 261). Finally, 𝜔2 and 𝜔3 of phonopy is interchanged for the sake of a smoother
dispersion between their two crossings close to W and K [119, 127]. This holds true

for for all fcc dispersion relations in this subsection. In general, the DFPT frequencies

deviate from the FD benchmark values and are imaginary. Still, the Goldstone modes

already numerically vanish and the symmetry-dictated degeneracies and a splitting

of the transversal modes are already reproduced.
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Figure 7.23: Dispersion relation of juPhon for fcc Al according to section 7.6.4. The details of
calculating selected DFPT frequencies as well as the interpolated FD benchmark

curves are already described in the caption of figure 7.22. The DFPT frequencies

are different from the FD benchmark values, which is also the case for the Gold-

stone modes (4.8meV too large and imaginary). But relative to figure 7.22, some
frequencies are real and the path Γ to L is more consistent with the benchmark.

Additionally, the longitudinal mode is smoother. Finally, the degeneracy and splitting

of the transversal modes already results.
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Figure 7.24: Dispersion relation of juPhon for fccNe according to the formalism after section 7.6.5.
The details of calculating selected DFPT frequencies as well as the interpolated FD

benchmark curves are already described in the caption of figure 7.22. Relative to

figure 7.22, the transversal modes are now real and especially between Γ – X very

close to the benchmark curves. But, the Goldstone modes have an offset of roughly

1.26meV and the degeneracies worsen, in particular on the path Γ – L.
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Figure 7.25: Dispersion relation of juPhon for fccAl according to the formalism after section 7.6.5.
The details of calculating selected DFPT frequencies as well as the interpolated FD

benchmark curves are already described in the caption of figure 7.22. Compared

to figure 7.23, the transversal modes are now real and considerably smoother.

However, they overestimate the benchmark curves, while the longitudinal modes

are still imaginary and thus far off.
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real, but the transversal modes are again imaginary. Furthermore, the transversal frequencies

are not as smooth as in figure 7.25. Thus, it has been necessary to improve the accuracy even

further.

7.7.2 Status Quo

Implementing Calculation setupthe optimized framework from section 7.6.8 leads to significantly better phonon

dispersion-relations. Overall, the juPhon calculations are very well in line with the FD bench-
mark results by Neukirchen. Details about the setup of the computations are already given

in the introduction of this section. Furthermore, it is stated there that phonopy corrects the
Goldstone modes so that they vanish. For the sake of an optimal comparison, the dynamical

matrices from juPhon for finite 𝒒-values are subtracted by the one for 𝒒 = 𝟎, before they are
diagonalized [256]. Furthermore, determining the frequencies from the eigenvalues is based

on the same natural constants and unit conversion factors as employed by phonopy [256].
I follow these steps, from the correction of the dynamical matrices to the final juPhon fre-
quencies shown in the following, using a post-processing script by Neukirchen [256]. Still

the Goldstone modes that result from juPhon are provided in the captions of the figures
to reveal the true quality of the juPhon calculation (or its input). Due to the arrangement
of some equations in the programmed DFPT approach, I expect that inaccuracies of the

Goldstone modes are also visible for finite 𝒒-values. Furthermore, the core-tail corrections
are deactivated, because they corrupt some degeneracies at the moment [256].

In Copperfigure 7.26, the phonon dispersion-relation of fcc Cu is displayed. Although the
juPhon calculations almost perfectly correspond to the benchmark computations, overall
the former overestimate the latter a bit, however, on average only by a few µeV. Moreover,

Goldfigure 7.27 displays the dispersion relation of Au. Relative to copper, the DFPT results
overestimate the benchmark a little more, in particular at X and L (about 2.8meV). Still,
the curvature and the degeneracies, which are governed by the intrinsic symmetry, are very

consistent. The Aluminiumphonon dispersion-relation of fcc Al with a smaller over-estimation of the
benchmark is shown in figure 7.28. One can see that the frequencies at the X point are

roughly 6.2meV larger than the benchmark, but this can also be found from FD and DFPT
calculations with the Elk code [256]. Relative to copper, the consistency on the path X – W,
at the point K, and on the path K – Γ is a bit poorer. However, the overall correspondence on

the paths Γ – X and Γ – L, including the degeneracies, is comparable to the excellent results of

copper. On the former path, the transversal modes perform better than the longitudinal ones,

while on the latter the longitudinal modes are superior.

In Molybdenumcontrast to the previous fcc structures, figure 7.29 depicts the outcomes of bcc Mo.
Before discussing this dispersion relation, it must be stated that the unperturbed wave-function

expansion coefficients of the FLEUR calculation, preceding juPhon, are corrected, i.e., only
their real parts are used. This is legitimate, because actually the coefficients must be real for

materials featuring inversion symmetry, such as bcc Mo [127]. In this case, a special version
of FLEUR is normally employed, ensuring real wave-function expansion coefficients, while the
version I use is more general. Its diagonalization routine sometimes delivers wave-function

expansion coefficients with the same real part but with an imaginary part, which is too

large due to an aborted convergence (runtime optimization) [127]. Despite the imaginary

part, the same charge density results and therefore this usually does not cause problems.
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Figure 7.26: Final juPhon dispersion relation for fcc Cu compared with FD data. The outcome
of juPhon is almost perfectly in line with the benchmark, it only deviates by about
some µeV on average. Additionally, the degeneracy of the transversal modes along
the Γ – X and Γ – L paths is excellently fulfilled. Between the two crossings of 𝜔2 and

𝜔3, the resulting (sorted) frequencies both for juPhon and for the FD benchmark
are interchanged to achieve a smooth dispersion [119, 127]. This is done for all

fcc dispersion relations in this subsection. The implemented formalism of juPhon is
given in section 7.6.8. Furthermore, my DFPT calculation is performed at 𝒒-points
(internal units) which are part of a discrete Γ-centered 8 × 8 × 8 reciprocal mesh.
These points lie on paths connecting the high-symmetry points defined in table 7.8,

and are not interpolated (since this is not yet implemented). The curves show the

results of a benchmark calculation by Alexander Neukirchen, employing the FD

implementation phonopy [164]. Both the juPhon and the phonopy calculation use
the same FLEUR input-generator input file, provided in appendix B. However, the
juPhon calculation utilizes an 8 × 8 × 8 𝒌-set, while a 4 × 4 × 4 𝒌-set proves to be
sufficient for the FD calculation [256]. Moreover, the input of juPhon is from the old
FLEUR version specified on page 112, while the FD calculation is based on a more
modern FLEUR code (see page 261). It must be emphasized that the eigenvalues of
the dynamical matrices from juPhon are corrected by their difference from zero at
𝒒 = 𝟎, employing a post-processing script of Neukirchen. This causes a correction of
the dispersion relation. However, it enables us a better comparison with the FD data,

which is intrinsically corrected by phonopy so that forces sum rules are obeyed [256]
and the Goldstone modes vanish. The original energy of the Goldstone frequencies

from juPhon is at 2.81meV.
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Figure 7.27: Final juPhon phonon dispersion-relation for fcc Au, compared with FD data. The
details of calculating selected DFPT frequencies as well as the interpolated FD

benchmark curves are already described in the caption of figure 7.26. Compared to

copper, the DFPT frequencies overestimate the benchmark data a little, culminating at

high-symmetry points, such as X and L. However, the curvature and the degeneracies

are overall very consistent and the degeneracies along the Γ – X and Γ – L paths are

perfectly reproduced. Finally, the original Goldstone frequencies of juPhon are at
8.82meV.
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Figure 7.28: Final juPhon phonon dispersion-relation for fcc Al, compared with FD data. The
details of calculating selected DFPT frequencies as well as the interpolated FD bench-

mark curves are already described in the caption of figure 7.26. The longitudinal

mode along the path Γ – X is overestimated, to the largest extent at the X point

(a few meV). The transversal modes on this path are better in line with the FD
calculation, but also a bit too large at the X-point. In contrast, on the path Γ – L the

longitudinal mode is very conform with the benchmark, whereas the transversal

frequencies are little larger than the benchmark. The consistency on the path X – W,

at K and on the path K – Γ is overall a little poorer compared to figure 7.26. But,

on Γ–X and Γ–L, the degeneracies are very well reproduced. Finally, the original

Goldstone frequency of juPhon is at 3.49meV.
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Figure 7.29: Final juPhon phonon dispersion-relation for bccMo, compared with FD and experi-
mental reference data. The details of calculating selected DFPT frequencies as well

as the interpolated FD benchmark curves are already described in the caption of

figure 7.26. Apart from that, the imaginary parts of the input unperturbed wave-

function expansion coefficients from FLEUR are set to zero. Moreover, it is important
to note that we substituted the high-symmetry point 𝒒 = (−1/2, 1/2, 1/2)⊤a−1

0 by

𝒒 = (1/2, 1/2, 1/2)⊤a−1
0 , since negative 𝒒 values are not realizable by juPhon at the

moment. In addition, on H – Γ the juPhon frequencies are identified as transversal
(red and green), provided they are degenerate, and longitudinal (blue) otherwise

[127]. Relative to the fcc plots, the consistency with the benchmark (upper plot) is

poorer. Especially, the longitudinal mode considerably differs. Furthermore, on Γ –

N the degenerated transversal DFPT frequencies split, whereas the FD data does not

show this, or only very poorly. But, it must explicitly be stressed that the consistency

of the DFPT frequencies with experimental data is much better [127, 298]. In order

to allow for a better comparison, the data of juPhon is converted to THz (lower
plot), again using the post-processing script of Neukirchen. Although, the input

data of FLEUR is provisionally fixed, and a non-realistic xc potential is utilized, the
frequencies are very good line. In particular the two transversal modes between Γ –

N are reproduced by the experiment. The original Goldstone frequencies of juPhon
are 8.51meV.

7.7 Phonon Dispersions
271



Likewise, the impact of the imaginary noise on the dispersion relations of other systems

shown here seems not very relevant [256]. Nevertheless, Neukirchen found that for Mo it
is enormous, e.g. at 𝒒 = (1/8, 0, 0)⊤a−1

0 frequencies of about 1.7 ⋅ 105 cm−1 result [256]. But

ignoring the imaginary part of the wave-function expansion-coefficients input, leads to the

DFPT frequencies shown in figure 7.29. However, this can only be a quick-fix solution, because

doing so causes slight inconsistencies, implying for example Kohn–Sham wave functions which

are not perfectly orthogonal to each other. Still, the resulting frequencies are fairly consistent

with the FD benchmark. But, it must be emphasized at this point that the FD benchmark does

not perform very well. Although the DFPT frequencies are only based on a 𝑋𝛼 potential and
despite the aforementioned correction of the input, they are significantly better in line with

experimental results [127, 298]. In order to facilitate the comparison with the experiment,

the DFPT frequencies are converted to THz in figure 7.29 (again using the aforesaid post-
processing script of Neukirchen). The DFPT frequencies conform quantitatively very well

with the experiment and especially the splitting of the transversal modes on the path Γ – N is

predicted (this can not or only very poorly be seen in the FD benchmark). Furthermore, the

longitudinal mode on the path Γ – N is larger than the transversal degenerate modes in the

experiment which conforms better with the DFPT than with the FD results.

InNeon figure 7.30, the dispersion relation for fcc Ne can be found. It becomes obvious
that especially close to the Γ point on the path Γ – X, the longitudinal mode (blue) diverges
significantly from the benchmark (also for denser 𝒒-meshes [256]). But this is not the case
for the path Γ – L. We suppose that polarization effects could not sufficiently be taken into

account, since Ne is an insulator [127]. Apart from that, the remaining frequencies are fairly
good, and the degeneracies very well comparable with the reference calculation. But in

contrast to the previous fcc systems in this subsection, the benchmark is underestimated

instead of overestimated, for example regarding the longitudinal mode at the X and the L

point (the latter does likewise not fit well to the curvature of the path). However, I indicate

in particular the excellent realization of the Goldstone modes at an accuracy that is naturally

given by the precision of the utilized integration routines. Finally,Argon the dispersion relation

for fcc Ar is provided in figure 7.31. In contrast to fcc Ne in figure 7.30, there is no rapid
change of the frequencies on the path Γ – X anymore. All in all, the juPhon frequencies lie
very close to the interpolated FD curves. The Goldstone modes are again numerically perfect,

analogously to fcc Ne. Relative to the other systems shown here, the phonon frequencies of
the loosely bonded Ar and Ne are smaller. Therefore, the calculation must be more precise
for reliable results. Particularly Ar with the smallest frequencies shown here substantiates
that such results are possible with the juPhon implementation.
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Figure 7.30: Final juPhon phonon dispersion-relation for fcc Ne, compared with FD data. The
details of calculating selected DFPT frequencies as well as the interpolated FD

benchmark curves are already described in the caption of figure 7.26. In contrast

to aluminum, the benchmark is a bit underestimated. Furthermore, the curvature

of the longitudinal mode at the L point is not well reproduced. Still, the overall

consistency is fairly good, except for the longitudinal mode at 𝒒 = (0, 1/8, 1/8)⊤a−1
0 .

We suppose that polarization effects are not sufficiently considered for this insulator

[127]. Apart from that, the degeneracy on the paths Γ – X and Γ – L are very good

in line. Finally, it must be emphasized that the juPhon frequencies at Γ perfectly
vanish within the best-possible numerical accuracy.

7.7 Phonon Dispersions
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Figure 7.31: Final juPhon phonon dispersion-relation for fcc Ar, compared with FD data. The
details of calculating selected DFPT frequencies as well as the interpolated FD

benchmark curves are already described in the caption of figure 7.26. Relative to

the outcome for fcc Ne in figure 7.30, the results are significantly better practically
perfectly in line with the benchmark calculations. Furthermore, the degeneracies

are well reproduced. Especially, the longitudinal mode close to the Γ point on the

path Γ – X does not diverge. Again, the Goldstone modes of juPhon are with respect
to the possible precision perfectly fulfilled.

7 Implementation and Results
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Chapter 8
Conclusion

This thesis presents the necessary concepts and reformulations of the theoretical framework,

and provides all details about the algorithm including its input in order to realize a successful

implementation of the Density-Functional Perturbation Theory (DFPT) within the Density-

Functional Theory (DFT) by means of the all-electron Full-Potential Linearized Augmented

Plane-Wave (FLAPW) electronic-structuremethod for accurately calculating phonon dispersion-

relations of solids from first-principles. This implementation is accomplished in the open-

source code juPhon, which meets modern software-engineering standards (a link to its
repository is given on page 112). The juPhon program is part of the FLEUR code family [69],
since juPhon utilizes related subroutines and features an interface to the FLEUR program. The
FLEUR framework is one particular realization of the FLAPW method, but juPhon can also be
employed in combination with other FLAPW-method implementations, provided adequate

interfaces are developed.

Although, currently, phonon spectra are only calculated in the harmonic approximation,

for solids with one atom per unit cell, and for Slater’s X𝛼 approximation to the DFT exchange-
correlation energy functional [123–125], all numerical and conceptual difficulties of juPhon
have been resolved. This opens up the vista of calculating phonon spectra for complex

solids with unit cells incorporating many atoms, which are arbitrary chemical elements of

the periodic table. The juPhon implementation is a numerical realization of the DFPT [87]
formalism within the FLAPW method formulated by Klüppelberg [88]. By means of juPhon, I
have calculated the phonon dispersion-relations of fcc Cu, fcc Au, fcc Al, bcc Mo, fcc Ne, as
well as fcc Ar and have compared them with experimental data and reference calculations,
using the Finite Displacement method based on the output of the FLEUR code. We obtain
consistent and reliable results.

Calculating phonon dispersion-relations from dynamical matrices, which are the second-

order total energy changes with respect to infinitesimal displacements of the ion positions,

is a significant challenge. We must compute the linear variations of (i) the wave-functions,

(ii) the charge density, (iii) the Hartree, and (iv) the exchange-correlation potentials, each of

them expanded in a section-wise defined LAPW basis set. The different definitions of the basis

functions in different spatial regions of the unit cell, which are constructed to match at the

muffin-tin (MT) sphere boundary, as well as the fact that the basis set is incomplete in the case

of undergoing variations are ultimately the reason that determining the aforesaid quantities
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proves as a formidable task. Altogether, it simply adds up to many terms, the discussion and

consideration of which makes the dissertation thesis a bit lengthy. Reaching the necessary

accuracy for such a complex basis set has been the key to success, because the phonon

energy per atom is about seven orders of magnitude smaller than the electronic energy. This

was achieved by (i) analytically rearranging and reformulating terms featuring large values,

such that they cancel analytically [88], (ii) simplifying the formalism [256], (iii) calculating

correction terms like the Pulay contributions, (iv) taking into account discontinuities of

linear and higher order at the MT sphere boundary, especially when atoms are moved,

or (v) evaluating the Sternheimer equation in a Kohn–Sham wave-function representation

instead of the LAPW basis-function one, which circumvents a costly and probably numerically-

imprecise matrix inversion. As an example of simplification, significantly enhancing the

numerical robustness, I have reformulated the equations of the dynamical matrix such that

Hessian matrices are circumvented. For the new expressions, I have additionally proven that

the dynamical matrix analytically vanishes for the Goldstone modes.

In general, testing is an important issue. Therefore, I have programmed a large test

suite, which ensures the integrity of intermediate results. At the same time, it allows for

flexibly adding new features to juPhon without corrupting old ones. For instance, since
juPhon is compatible with the input of FLEUR, synergies will emerge from extending the
former code to magnetic materials in the future. Finally, the correctness of the second-order

ion–ion (nucleus–nucleus) interaction is verified for fcc Al and bcc Na by cross-checking it
with a differing Ewald-type method, implemented in the ABINIT code.

In summary, this dissertation lays the computational and algorithmic foundations for

analyzing the vibrational properties of electronically, structurally and chemically complex

solids from first-principles by means of the all-electron FLAPW method.

8 Conclusion
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Chapter 9
Outlook

The linear response of the charge density upon a change of an external parameter is a rather

general issue in the DFT. So apart from phonons, the implementation of the Sternheimer

equation and the entailed concepts may in the future be transferred to different perturbations

(e.g. electric field). Due to the modular concept of juPhon, which permeates its complete
structure, I consider this to be a straightforward project. Prospectively, the versatility of

juPhon can be extended in various directions:

1. To including more realistic and powerful exchange and correlation functionals. This

can be realized by updating the interface of juPhon to the latest FLEUR version (see
reference [69]), because access to the libxc library is then automatically given.

2. To calculating more complex materials systems with more atoms per unit cell and semi-core

states. Without great effort, calculations of (non-metallic) systems with a polyatomic

basis can be made possible, now that the fundamental computational issues have

been resolved. In the case of polyatomic metals, terms related to variations in the

electron occupation numbers must be added, which have already been derived by

Neukirchen [256].

Adding local orbitals (LO) to the basis set allows the inclusion of advanced materials

with semi-core states or states, which require more variational flexibility in the MT

sphere. It can substitute for basis corrections beyond the Pulay terms (on condition that

they should be necessary) [68, 88, 224].

3. To relativistic, spin–orbit phenomena. By checking the relativistic corrections, the treat-

ment of heavy elements can be made useful as well as the treatment of phonon-induced

spin-flip scattering and spin life-time effects.

4. To magnetic systems. The spin polarization and non-collinear magnetism should be

implemented to investigate the magnon-phonon interaction and the Dzyaloshinskii–

Moriya interaction in centro-symmetric systems.

5. To lifting the frozen-core and the frozen-augmentation approximations of the radial basis

functions. It could be beneficial for the performance and accuracy of the Sternheimer

equation to reflect the justification of these approximations. Relaxing them in the

long-term will necessitate the core-electron response from a simplified Sternheimer

277



equation (no basis corrections are required for the pointwise core-electron wave func-

tions) [251]. Maybe it is likewise possible to find well-educated guesses for the starting

density-variations of the Sternheimer equation (apart from its analytical solution for

the Goldstone modes) [251].

6. To include symmetry rules. In addition, reduced symmetry optimizations can be rein-

troduced for phonons and an interpolation of the phonon-dispersions can be realized.

Further accuracy could be obtained from symmetrically arranging the 𝒌- and 𝒒-vectors
around the Γ-point so that contributions numerically better cancel each other [127].
It is also possible to calculate an arbitrary 𝒒-point beyond the given 𝒌-set, but then
additional 𝒌-points must be added [251].

7. To implement parallelization strategies. Many sub-algorithms are ready to unleash their

performance potential through a rigorous parallelization.

9 Outlook
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Appendix A
Installing and Employing juPhon

The Installingprogram juPhon can be compiled by executing make in the console and then be found
in the build folder. At the moment, some version of ifort [262] and the Intel Math
Kernel Library (MKL) [296] are required, but open-source options will be provided very
soon. Furthermore, the FFTW3 [291] library should be installed. In general, the usage and
installation of juPhon dynamically changes during its development. The latest requirements
and manuals can thus be found in the README.md file.

For Practical remarksthe systems that have been investigated yet, the input parameters from the FLEUR
input-file generator have almost been sufficient. But, in order to set an optimal 𝐺max for the
preceding FLEUR calculation and to avoid errors in the FFT routines of juPhon, test 34 must
be executed. It passes as soon as 𝐺max is large enough. Moreover, numerical problems are
prevented, if the IR is not chosen too small. Some tests are very sensitive and require a well-

converged FLEUR calculation. Therefore, I recommend a few more iterations after the FLEUR
calculation has converged according to its log file. In addition, the size of the 𝒒-point mesh
within each dimension should be a factor of the respective 𝒌-point mesh size, and the non-
spherical 𝑙max,�̊� must have the same value as the spherical 𝑙max,�̊�. Finally, the lattice constant
should be optimally set (Birch–Murnaghan fit as described in section 7.1.6). Apart from that,

the continuity of the unperturbed and perturbed quantities should be comparable [127, 251].
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Appendix B
Applied Input Files

FLEUR input-generator input file employed for generating figure 7.3, figure 7.4, figure 7.10,
figure 7.12, figure 7.14, figure 7.16, figure 7.22, figure 7.24, and figure 7.30 [256].

1 Ne f c c

2

3 0.0 1.0 1.0 ! a1

4 1.0 0.0 1.0 ! a2

5 1.0 1.0 0.0 ! a3

6 7.926224801 ! aa

7 0.5 0.5 0.5 ! s c a l e

8

9 1 ! num atoms

10 10.1 0.0 0.0 0.0

11

12 &atom element='Ne' id=10.1 rmt=2.5 dx=0.012 j r i =925 lmax=10

lnonsph=10 /

13 &comp kmax=4.0 gmax=15.7 gmaxxc=13.0/

14 &exco xctyp='x-a' /

15 &kpt div1=8 div2=8 div3=8 tkb=0.005 /

16 &end /

FLEUR input-generator input file of representative unit-cell for generating the juPhon part of
figure 7.7, figure 7.8, and figure 7.9 [127].

1 sc Ne 1x1x1

2

3 &input f i lm=f /

4

5 & l a t t i c e l a t s y s=cP a0=1.0000000 a=5.12 /

6

7 1

8 10 0.0 0.0 0.0

9
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10 &atom element='Ne' rmt=2.5 dx=0.012 j r i =925 lmax=10 lnonsph=10 /

11 &comp kmax=4.0 gmax=15.7 gmaxxc=13.0 /

12 &exco xctyp='x-a' /

13 &kpt div1=8 div2=8 div3=8 /

14

15 &end /

FLEUR input-generator input file of reference supercell for figure 7.7 and figure 7.9 [127].

1 tP Ne 1x1x4 re f e rence

2

3 &input f i lm=f /

4

5 & l a t t i c e l a t s y s=tP a0=1.0000000 a=5.12 c=20.48 /

6

7 4

8 10.000 0.0 0.0 0.0

9 10.001 0.0 0.0 0.25

10 10.002 0.0 0.0 0.5

11 10.003 0.0 0.0 0.75

12

13 &atom element='Ne' rmt=2.5 dx=0.012 j r i =925 lmax=10 lnonsph=10 /

14 &comp kmax=4.0 gmax=15.7 gmaxxc=13.0 /

15 &exco xctyp='x-a' /

16 &kpt div1=8 div2=8 div3=2 /

17

18 &end /

FLEUR input-generator input file of supercell with displaced atoms for figure 7.7 and fig-
ure 7.9 [127].

1 tP Ne 1x1x4 d i sp laced

2

3 &input f i lm=f /

4

5 & l a t t i c e l a t s y s=tP a0=1.0000000 a=5.12 c=20.48 /

6

7 4

8 10.000 0.0 0.0 0.00001

9 10.001 0.0 0.0 0.25

10 10.002 0.0 0.0 0.49999

11 10.003 0.0 0.0 0.75

12

13 &atom element='Ne' rmt=2.5 dx=0.012 j r i =925 lmax=10 lnonsph=10 /

14 &comp kmax=4.0 gmax=15.7 gmaxxc=13.0 /

15 &exco xctyp='x-a' /

16 &kpt div1=8 div2=8 div3=2 /

17

18 &end /

B Applied Input Files
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FLEUR input-generator input file of reference supercell for figure 7.8 and figure 7.9 [127].

1 oP Ne 1x4x2 re f e rence

2

3 &input f i lm=f /

4

5 & l a t t i c e l a t s y s=oP a0=1.0000000 a=5.12 b=20.48 c=10.24 /

6

7 8

8 10.0 0.0 0.0 0.0

9 10.0001 0.0 0.0 0.5

10 10.0002 0.0 0.25 0.0

11 10.0003 0.0 0.25 0.5

12 10.0004 0.0 0.5 0.0

13 10.0005 0.0 0.5 0.5

14 10.0006 0.0 0.75 0.0

15 10.0007 0.0 0.75 0.5

16

17 &atom element='Ne' rmt=2.5 dx=0.012 j r i =925 lmax=10 lnonsph=10 /

18 &comp kmax=4.0 gmax=15.7 gmaxxc=13.0 /

19 &exco xctyp='x-a' /

20 &kpt div1=8 div2=2 div3=4 /

21

22 &end /

FLEUR input-generator input file of supercell with displaced atoms for figure 7.8 and fig-
ure 7.9 [127].

1 oP Ne 1x4x2 d i sp laced

2

3 &input f i lm=f /

4

5 & l a t t i c e l a t s y s=oP a0=1.0000000 a=5.12 b=20.48 c=10.24 /

6

7 8

8 10.0 0.0 0.0 0.00001

9 10.0001 0.0 0.0 0.49999

10 10.0002 0.0 0.25 0.0

11 10.0003 0.0 0.25 0.5

12 10.0004 0.0 0.5 −0.00001

13 10.0005 0.0 0.5 0.50001

14 10.0006 0.0 0.75 0.0

15 10.0007 0.0 0.75 0.5

16

17 &atom element='Ne' rmt=2.5 dx=0.012 j r i =925 lmax=10 lnonsph=10 /

18 &comp kmax=4.0 gmax=15.7 gmaxxc=13.0 /

19 &exco xctyp='x-a' /

20 &kpt div1=8 div2=2 div3=4 /
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21

22 &end /

FLEUR input-generator input employed for generating figure 7.5, figure 7.6, figure 7.11, figure 7.13,
figure 7.14, figure 7.16, figure 7.18, figure 7.20, figure 7.23, figure 7.25, figure 7.28.

1 Al f c c

2

3 0.0 1.0 1.0 ! a1

4 1.0 0.0 1.0 ! a2

5 1.0 1.0 0.0 ! a3

6 7.727075649 ! aa

7 0.5 0.5 0.5 ! s c a l e

8

9 1 ! num atoms

10 13.1 0.0 0.0 0.0

11

12 &atom element="Al" id=13.1 rmt=2.38 lmax=10 lnonsph=10 dx=0.017

j r i =885 /

13 &comp kmax=4.2 gmax=16.3 gmaxxc=14.5 /

14 &exco xctyp='x-a' /

15 &kpt div1=8 div2=8 div3=8 tkb=0.005 /

16 &end /

FLEUR input-generator input employed for generating figure 7.19 and figure 7.21 [127].

1 Na bcc

2

3 &input f i lm=f /

4

5 & l a t t i c e l a t s y s='bcc' a=4.2343794101 a0=1.8897161646320724 /

6

7 1

8 11 0.0 0.0 0.0

9

10 &atom element="na" id=11 rmt=2.6 lmax=10 lnonsph=10

econf ig="[Ne] | 3s1"/
11 &exco xctyp='x-a' /

12 &comp kmax=3.7 gmax=13.0 gmaxxc=10.5 /

13 &kpt div1=8 div2=8 div3=8 /

14

15 &end /

FLEUR input-generator input employed for generating figure 7.26 [256].

1 Cu f c c

2

3 0.0 1.0 1.0 ! a1

4 1.0 0.0 1.0 ! a2
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5 1.0 1.0 0.0 ! a3

6 6.839983331 ! aa

7 0.5 0.5 0.5 ! s c a l e

8

9 1 ! num atoms

10 29.1 0.0 0.0 0.0

11

12 &atom element="Cu" id=29.1 rmt=2.28 j r i =981 lmax=10 lnonsph=10 /

13 &comp kmax=4.2 gmaxxc=12.5 gmax=21.0 /

14 &exco xctyp='x-a' /

15 &kpt div1=8 div2=8 div3=8 tkb=0.005 /

16 &end /

FLEUR input-generator input employed for generating figure 7.27 [256].

1 Au f c c

2

3 0.0 1.0 1.0 ! a1

4 1.0 0.0 1.0 ! a2

5 1.0 1.0 0.0 ! a3

6 8.221320368 ! aa

7 0.5 0.5 0.5 ! s c a l e

8

9 1 ! num atoms

10 79.1 0.0 0.0 0.0

11

12 &atom element="Au" id=79.1 rmt=2.3 j r i =981 lmax=10 lnonsph=10 /

13 &comp kmax=4.35 gmaxxc=12.5 gmax=20.0 /

14 &exco xctyp='x-a' /

15 &kpt div1=8 div2=8 div3=8 tkb=0.005 /

16 &end /

FLEUR input-generator input employed for generating figure 7.29.

1 Mo bcc

2

3 −1.0 1.0 1.0 ! a1

4 1.0 −1.0 1.0 ! a2

5 1.0 1.0 −1.0 ! a3

6 5.9679326711 ! aa

7 0.5 0.5 0.5 ! s c a l e

8

9 1 ! num atoms

10 42.1 0.0 0.0 0.0

11

12 &atom element="Mo" id=42.1 rmt=2.5 j r i =981 lmax=10 lnonsph=10 /

13 &comp kmax=4.0 gmaxxc=13.0 gmax=20.0 /

14 &exco xctyp='x-a' /
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15 &kpt div1=8 div2=8 div3=8 tkb=0.005 /

16 &end /

FLEUR input-generator input employed for generating figure 7.31.

1 Ar f c c

2

3 0.0 1.0 1.0 ! a1

4 1.0 0.0 1.0 ! a2

5 1.0 1.0 0.0 ! a3

6 9.818181106 ! aa

7 0.5 0.5 0.5 ! s c a l e

8

9 1 ! num atoms

10 18.1 0.0 0.0 0.0

11

12 &atom element="Ar" id=18.1 rmt=2.5 j r i =981 lmax=10 lnonsph=10 /

13 &comp kmax=4.0 gmaxxc=11.0 gmax=16.5 /

14 &exco xctyp='x-a' /

15 &kpt div1=8 div2=8 div3=8 tkb=0.005 /

16 &end /

B Applied Input Files
286



Appendix C
Gradient of a Muffin-Tin Function

This derivation is based on the diploma thesis of Betzinger [299], and essentially provided by

him for me [251]. From equations (6.27) and (6.27c), the coordinate transformation
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can be deduced. Inverting the Jacobian matrix leads to the inverse coordinate transformation
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from the cartesian coordinates 𝑥𝑖 to the so-called natural coordinates 𝑧𝑚″. The Jacobian 𝔍 in
equation (C.2) is likewise (almost) provided in Klüppelberg [88, equation (4.16)]. However,

he has forgotten the minus sign before the imaginary unit in 𝔍32 [261].

In order to elucidate the action of a cartesian gradient on a general function 𝔤(𝒛), the
chain rule is employed so that
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results. This matrix 𝑇 can also (almost) be found in Klüppelberg [88, equation (4.18)], but
he forgets again two minus signs in 𝑇21 and 𝑇23 before the imaginary unit [261]. Using the
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inverse of 𝑇, the relation
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holds true. Equations (C.2) as well as (C.4) and reference [299, equations (4.3.25)–(4.3.30)]

are conform with each other.

After having elucidated the relation between the gradient in cartesian and natural

coordinates, the focus changes to the action of the latter on a general function in spherical

coordinates
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which is expanded in spherical harmonics (the MT part of the LAPW basis set). Expressing

the cartesian gradient in spherical coordinates

⎛⎜⎜⎜
⎝

∂𝑥1

∂𝑥2

∂𝑥3

⎞⎟⎟⎟
⎠

= ⎛⎜⎜
⎝

sin 𝜃 cos 𝜙
sin 𝜃 sin 𝜙

cos 𝜃

⎞⎟⎟
⎠

∂𝑟 +
1
𝑟
⎛⎜⎜
⎝

cos 𝜃 cos 𝜙
cos 𝜃 sin 𝜙
− sin 𝜃

⎞⎟⎟
⎠

∂𝜃 +
1

𝑟 sin 𝜃
⎛⎜⎜
⎝

−sin 𝜙
cos 𝜙
0

⎞⎟⎟
⎠

∂𝜙 , (C.6)

while assuming
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⎞⎟⎟
⎠

, (C.7)

the components of𝛁𝔫 can be determined exploiting equations (C.4) and (C.6). This leads to

∂𝑧−1
= 1√

2
(sin 𝜃 ei𝜙∂𝑟 +

1
𝑟
ei𝜙(cos 𝜃 ∂𝜃 +

i
sin 𝜃

∂𝜙)) (C.8a)

∂𝑧0
= cos 𝜃 ∂𝑟 −

1
𝑟
sin 𝜃 ∂𝜃 (C.8b)

∂𝑧1
= − 1√

2
(sin 𝜃 e−i𝜙∂𝑟 +

1
𝑟
e−i𝜙(cos 𝜃 ∂𝜃 −

i
sin 𝜃

∂𝜙)) , (C.8c)

and allows for an application to the aforementioned general function, which is expanded in

spherical harmonics. Restricting to one summand with general orbital quantum number 𝑙 and
magnetic quantum number 𝑚 reads

∂𝑧−1
[𝔤(𝑟)]𝑙𝑚Y𝑙𝑚(𝜃, 𝜙) = 1√

2
sin 𝜃 ei𝜙Y𝑙𝑚(𝜃, 𝜙)(

∂[𝔤(𝑟)]𝑙𝑚
∂𝑟

) (C.9a)

+ 1√
2
ei𝜙[cos 𝜃 ∂𝜃 +

i
sin 𝜃

∂𝜙]Y𝑙𝑚(𝜃, 𝜙)
[𝔤(𝑟)]𝑙𝑚

𝑟
∂𝑧0

[𝔤(𝑟)]𝑙𝑚Y𝑙𝑚(𝜃, 𝜙) = cos 𝜃Y𝑙𝑚(𝜃, 𝜙)∂𝑟[𝔤(𝑟)]𝑙𝑚 (C.9b)

− sin 𝜃 (∂𝜃Y𝑙𝑚(𝜃, 𝜙))
[𝔤(𝑟)]𝑙𝑚

𝑟

C Gradient of a Muffin-Tin Function
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∂𝑧1
[𝔤(𝑟)]𝑙𝑚Y𝑙𝑚(𝜃, 𝜙) = − 1√

2
sin 𝜃 e−i𝜙Y𝑙𝑚(𝜃, 𝜙)∂𝑟[𝔤(𝑟)]𝑙𝑚 (C.9c)

− 1√
2
e−i𝜙[cos 𝜃 ∂𝜃 −

i
sin 𝜃

∂𝜙]Y𝑙𝑚(𝜃, 𝜙)
[𝔤(𝑟)]𝑙𝑚

𝑟
.

The angular parts can be reformulated, exploiting recursion relations that involve spheri-

cal harmonics and Legendre polynomials. These are for example given in Betzinger [299,

equations (4.3.31) – (4.3.36)] (who refers to [300]), and read

1√
2
sin 𝜃 ei𝜙Y𝑙𝑚(𝜃, 𝜙) = 𝜂−1

𝑙𝑚Y𝑙+1,𝑚+1(𝜃, 𝜙) (C.10a)

+ 𝜐−1
𝑙𝑚Y𝑙−1,𝑚+1(𝜃, 𝜙)

− 1√
2
sin 𝜃 e−i𝜙Y𝑙𝑚(𝜃, 𝜙) = 𝜂1𝑙𝑚Y𝑙+1,𝑚−1(𝜃, 𝜙) (C.10b)

+ 𝜐1
𝑙𝑚Y𝑙−1,𝑚−1(𝜃, 𝜙)

cos 𝜃Y𝑙𝑚(𝜃, 𝜙) = 𝜂0𝑙𝑚Y𝑙+1,𝑚(𝜃, 𝜙) (C.10c)

+ 𝜐0
𝑙𝑚Y𝑙−1,𝑚(𝜃, 𝜙)

− sin 𝜃 ∂𝜃Y𝑙𝑚(𝜃, 𝜙) = −𝑙𝜂0𝑙𝑚Y𝑙+1,𝑚(𝜃, 𝜙) (C.10d)

+ (𝑙 + 1)𝜐0
𝑙𝑚Y𝑙−1,𝑚(𝜃, 𝜙)

1√
2
ei𝜙[cos 𝜃 ∂𝜃 +

i
sin 𝜃

∂𝜙]Y𝑙𝑚(𝜃, 𝜙) = −𝑙𝜂−1
𝑙𝑚Y𝑙+1,𝑚+1(𝜃, 𝜙) (C.10e)

+ (𝑙 + 1)𝜐−1
𝑙𝑚Y𝑙−1,𝑚+1(𝜃, 𝜙)

− 1√
2
e−i𝜙[cos 𝜃 ∂𝜃 −

i
sin 𝜃

∂𝜙]Y𝑙𝑚(𝜃, 𝜙) = −𝑙𝜂1𝑙𝑚Y𝑙+1,𝑚−1(𝜃, 𝜙) (C.10f)

+ (𝑙 + 1)𝜐1
𝑙𝑚Y𝑙−1,𝑚−1(𝜃, 𝜙) .

The left-hand sides of these equations can be expressed as products of spherical harmonics

1√
2
sin 𝜃 ei𝜙Y𝑙𝑚(𝜃, 𝜙) = −√4π

3
Y11(𝜃, 𝜙)Y𝑙𝑚(𝜃, 𝜙) (C.11a)

− 1√
2
sin 𝜃 e−i𝜙Y𝑙𝑚(𝜃, 𝜙) = −√4π

3
Y1,−1(𝜃, 𝜙)Y𝑙𝑚(𝜃, 𝜙) (C.11b)

cos 𝜃Y𝑙𝑚(𝜃, 𝜙) = √4π
3
Y10(𝜃, 𝜙)Y𝑙𝑚(𝜃, 𝜙) . (C.11c)

These products of spherical harmonics can be expanded in the spherical-harmonic basis:

1√
2
sin 𝜃 ei𝜙Y𝑙𝑚(𝜃, 𝜙) = −√4π

3
𝐺𝑚+1,𝑚,1

𝑙+1, 𝑙, 1Y𝑙+1,𝑚+1(𝜃, 𝜙) (C.12a)

−√4π
3
𝐺𝑚+1,𝑚,1

𝑙−1, 𝑙, 1Y𝑙−1,𝑚+1(𝜃, 𝜙)

− 1√
2
sin 𝜃 e−i𝜙Y𝑙𝑚(𝜃, 𝜙) = −√4π

3
𝐺𝑚−1,𝑚,−1

𝑙+1, 𝑙, 1Y𝑙+1,𝑚+1(𝜃, 𝜙) (C.12b)

−√4π
3
𝐺𝑚−1,𝑚,−1

𝑙−1, 𝑙, 1Y𝑙+1,𝑚−1(𝜃, 𝜙)
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cos 𝜃Y𝑙𝑚(𝜃, 𝜙) = √4π
3
𝐺𝑚, 𝑚, 0

𝑙+1, 𝑙, 1Y𝑙+1,𝑚(𝜃, 𝜙) (C.12c)

+√4π
3
𝐺𝑚, 𝑚, 0

𝑙+1, 𝑙, 1Y𝑙+1,𝑚(𝜃, 𝜙)

where many terms vanish because of the Gaunt selection rules addressed in section 7.3.1.

Therefore, it is possible to identify

𝜂−1
𝑙′𝑚′ = −√4π

3
𝐺𝑚+1,𝑚,1

𝑙+1, 𝑙, 1 𝜐−1
𝑙𝑚 = −√4π

3
𝐺𝑚+1,𝑚,1

𝑙−1, 𝑙, 1 (C.13a)

𝜂0𝑙′𝑚′ = √4π
3
𝐺𝑚, 𝑚, 0

𝑙+1, 𝑙, 1 𝜐0
𝑙𝑚 = √4π

3
𝐺𝑚, 𝑚, 0

𝑙+1, 𝑙, 1 (C.13b)

𝜂1𝑙′𝑚′ = −√4π
3
𝐺𝑚−1,𝑚,−1

𝑙+1, 𝑙, 1 𝜐1
𝑙𝑚 = −√4π

3
𝐺𝑚−1,𝑚,−1

𝑙−1, 𝑙, 1 , (C.13c)

when comparing equations (C.10a), (C.10b), and (C.10c) with (C.12). All in all,

𝛁𝔤(𝒓) = 𝑇
1

∑
𝑚″=−1

̂𝒆𝑚″(−1)𝑚″√4π
3

∑
𝑙𝑚

Y𝑙𝑚( ̂𝒓) ∑
𝑙″|𝑙″∈{−1,1}

𝐺𝑚,𝑚+𝑚″, −𝑚″

𝑙, 𝑙+𝑙″, 1 (C.14)

× ⎡
⎢
⎣

∂[𝔤(𝑟)]𝑙+𝑙″,𝑚′+𝑚″

∂𝑟
−⎛⎜⎜

⎝
−𝑙″𝑙 +

(i
√
3)𝑙

″+1𝑙″ − 1
2

⎞⎟⎟
⎠

[𝔤(𝑟)]𝑙+𝑙″,𝑚′+𝑚″

𝑟
⎤
⎥
⎦

results, where the indices have been shifted according to 𝑙 ≔ 𝑙′ + 𝑙″ and 𝑚 ≔ 𝑚′ −𝑚″, the

unit vectors ̂𝒆″
𝑚 span the natural basis (coordinates 𝑧𝑚″), and 𝜃 and 𝜙 have been expressed by

the unit vector ̂𝒓.
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Appendix D
Analytical Solution of the Monoatomic
Sternheimer Equation for 𝒒 = 𝟎

Markus Betzinger suggested that the analytical solution of the Sternheimer equation for 𝒒 = 𝟎
is given by equation (7.30). Consequently, equation (7.148) can be generalized according to

the arguments around it, to cover the complete unit cell of monoatomic systems

𝑽 (1)
eff

(𝒓; 𝟎+𝛼) = −𝛁𝑽 (0)
eff

(𝒓) . (D.1)

Hence, in order to prove the hypothesis of Betzinger for systems with a monoatomic

lattice basis, equation (7.86a) can be rewritten for 𝒒 = 𝟎, leaving out the third line (which is
zero), and utilizing equations (7.30) as well as (D.1) [251]:

−∑
𝑮

⟨𝜙(0)
𝒌,𝑮′∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣𝜙
(0)
𝒌,𝑮⟩

𝛺
i(𝒌 +𝑮)𝒛(0)

𝑮 (𝒌, 𝑛) (D.2a)

= −∑
𝑮

{−⟨𝜙(0)
𝒌,𝑮′∣𝛁𝒱 (0)

eff
− δ𝒒𝟎𝜖

(1)
𝒌,𝑛(𝟎

+𝛼)∣𝜙(0)
𝒌,𝑮⟩

𝛺

− ⟨𝛁 ⃗𝜙(0)
𝒌,𝑮′∣ℋ − 𝜖(0)𝒌,𝑛∣ ⃗𝜙(0)

𝒌,𝑮⟩
𝛼
− ⟨ ⃗𝜙(0)

𝒌,𝑮′∣ℋ
(0) − 𝜀(0)𝒌,𝑛∣𝛁 ⃗𝜙(0)

𝒌,𝑮⟩
𝛼

+ i(𝒌 +𝑮− 𝒌 −𝑮′)⟨ ⃗𝜙(0)
𝒌,𝑮′∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣ ⃗𝜙(0)
𝒌,𝑮⟩

𝛼

+∮
∂𝛼

⃗𝜙∗(0)𝛼
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜀(0)𝒌,𝑛) ⃗𝜙(0)𝛼
𝒌,𝑮(𝒓) d𝑺

− ∮
∂𝛼

𝜙∗(0)IR
𝒌,𝑮′ (ℋ

(0) − 𝜀(0)𝒌,𝑛)𝜙
(0)IR
𝒌,𝑮 d𝑺}𝑧(0)𝑮 (𝒌, 𝑛) .

Now, a different supplementary zero is introduced by extending the matrix elements in the

third and fourth lines from the displaced atom 𝛼 to the complete unit cell 𝛺

−∑
𝑮

⟨𝜙(0)
𝒌,𝑮′∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣𝜙
(0)
𝒌,𝑮⟩

𝛺
i(𝒌 +𝑮)𝒛(0)

𝑮 (𝒌, 𝑛) (D.2b)

= −∑
𝑮

{−⟨𝜙(0)
𝒌,𝑮′∣𝛁𝒱 (0)

eff
− δ𝒒𝟎𝜖

(1)
𝒌,𝑛(𝟎

+𝛼)∣𝜙(0)
𝒌,𝑮⟩

𝛺

− ⟨𝛁 ⃗𝜙(0)
𝒌,𝑮′∣ℋ

(0) − 𝜖(0)𝒌,𝑛∣ ⃗𝜙(0)
𝒌,𝑮⟩

𝛺
− ⟨ ⃗𝜙(0)

𝒌,𝑮′∣ℋ
(0) − 𝜀(0)𝒌,𝑛∣𝛁 ⃗𝜙(0)

𝒌,𝑮⟩
𝛺
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+ i(𝒌 +𝑮− 𝒌 −𝑮′)⟨ ⃗𝜙(0)
𝒌,𝑮′∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣ ⃗𝜙(0)
𝒌,𝑮⟩

𝛺

+∮
∂𝛼

⃗𝜙∗(0)𝛼
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜀(0)𝒌,𝑛) ⃗𝜙(0)𝛼
𝒌,𝑮(𝒓) d𝑺

− ∮
∂𝛼

𝜙∗(0)IR
𝒌,𝑮′ (ℋ

(0) − 𝜀(0)𝒌,𝑛)𝜙
(0)IR
𝒌,𝑮 d𝑺}𝑧(0)𝑮 (𝒌, 𝑛) .

Using the divergence theorem in the IR and the MT analogously to equation (7.153c), subtract-

ing the contribution on the left-hand side of equation (D.2b) on both sides of it, and ignoring

the first-order variation of the Kohn–Sham energy, because it vanishes for monoatomic systems,

leads to

0 = −∑
𝑮

{−∮
∂𝛼

⃗𝜙∗(0)𝛼
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜀(0)𝒌,𝑛) ⃗𝜙(0)𝛼
𝒌,𝑮(𝒓) d𝑺 (D.2c)

+∮
∂𝛼

𝜙∗(0)IR
𝒌,𝑮′ (ℋ

(0) − 𝜀(0)𝒌,𝑛)𝜙
(0)IR
𝒌,𝑮 d𝑺

− i(𝒌 +𝑮′)⟨ ⃗𝜙(0)
𝒌,𝑮′∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣ ⃗𝜙(0)
𝒌,𝑮⟩

𝛺

+∮
∂𝛼

⃗𝜙∗(0)𝛼
𝒌,𝑮′ (𝒓)(ℋ

(0) − 𝜀(0)𝒌,𝑛) ⃗𝜙(0)𝛼
𝒌,𝑮(𝒓) d𝑺

− ∮
∂𝛼

𝜙∗(0)IR
𝒌,𝑮′ (ℋ

(0) − 𝜀(0)𝒌,𝑛)𝜙
(0)IR
𝒌,𝑮 d𝑺}𝑧(0)𝑮 (𝒌, 𝑛)

or evaluated to

0 = ∑
𝑮

i(𝒌 +𝑮′)⟨ ⃗𝜙(0)
𝒌,𝑮′∣ℋ

(0) − 𝜀(0)𝒌,𝑛∣ ⃗𝜙(0)
𝒌,𝑮⟩

𝛺
𝑧(0)𝑮 (𝒌, 𝑛) (D.2d)

so that according to equation (2.3a)

0 = 0 . � (D.2e)

D Analytical Solution of the Monoatomic Sternheimer Equation for 𝒒 = 𝟎
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Appendix E
Outer-Product Divergence Theorem

In section 7.6.3, I introduce the relation

∫
𝔇
𝛁(𝔨𝛁⊤𝔤) d𝑉 = ∫

∂𝔇
𝔨�̂�𝛁⊤𝔤 d𝑆 , (E.1)

in order to employ it throughout my dissertation. The following proof of equation (E.1) has

completely been developed by Fabian Lux, who afterwards provided it for me [294].

In his proof, Lux starts with the general matrix element

[𝛁(𝔨𝛁⊤𝔤)]
𝑖𝑗
= ∂𝑖(𝔨∂𝑗𝔤) (E.2)

of the left-hand side integrand in equation (E.1), and deduces an indexed differential form

𝜔𝑖𝑗 =
1
2
𝔨 ∂𝑗𝔤 ϵ𝑖𝑘𝑙 d𝑥𝑘 ∧ d𝑥𝑙 , (E.3)

the exterior derivative of which reads

d𝜔𝑖𝑗 = ∂𝑖(𝔨 ∂𝑗𝔤) d𝑉 , (E.4)

where

d𝑉 = d𝑥 ∧ d𝑦 ∧ d𝑧 (E.5)

is the volume form in a 3D Euclidian space. Moreover, it is important to know that equation

(E.3) can be reformulated to

𝜔𝑖𝑗 = 𝔨∂𝑗𝔤 d𝑆𝑖 (E.6)

with the 𝑖-th surface area form

d𝑆𝑖 =
1
2
ϵ𝑖𝑘𝑙 d𝑥𝑘 ∧ d𝑥𝑙 . (E.7)

Now, he exploits Stoke’s theorem for differential forms based on equations (E.4) as well as

(E.6), and reformulates the resulting relations so that

∫
𝔇
∂𝑖(𝔨 ∂𝑗𝔤) d𝑉 = ∫

𝔇
d𝜔𝑖𝑗 (E.8a)
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= ∫
∂𝔇

𝜔𝑖𝑗 (E.8b)

= ∫
∂𝔇

𝔨 ∂𝑗𝔤 d𝑆𝑖 (E.8c)

= ∫
∂𝔇

(𝔨 ̂𝒆𝑖∂𝑗𝔤) ⋅ d𝑺 (E.8d)

= ∫
∂𝔇

(𝔨 ̂𝒆𝑖∂𝑗𝔤) ⋅ �̂� d𝑆 (E.8e)

= ∫
∂𝔇

(𝔨 ( ̂𝒆𝑖 ⋅ �̂�)∂𝑗𝔤) d𝑆 (E.8f)

= ∫
∂𝔇

(𝔨 �̂�𝑖∂𝑗𝔤) d𝑆 (E.8g)

= ∫
∂𝔇

[𝔨 �̂�𝛁𝔤]𝑖𝑗 d𝑆 . � (E.8h)

Since the left-hand side of equation (E.8a) equals the right-hand side of (E.8h) and equation

(E.2) holds true, equation (E.1) can be implied.

E Outer-Product Divergence Theorem
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