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S U M M A RY

dynamical and statistical structure of spatially organized

neuronal networks

The cerebral cortex, the outer layer of mammalian brains, comprises a vast number
of neurons arranged and connected in a highly organized fashion. The likelihood of
neurons to be connected and how fast they may exchange signals depends, among
other properties, on their spatial distance. Cortical networks may be well described as
completely random networks on microscopic scales because cortical neurons have es-
sentially uniform connection probabilities within a few tens of micrometers. However,
the distance-dependence of neuronal connections certainly is important on mesoscopic
scales spanning several millimeters, where many neurons are most likely unconnected.
While the theory of random networks is already well-established, how such a spatial
organization affects a network’s activity is not yet fully understood. The objective
of this thesis is to provide an overview of the current analytical understanding of
spatially organized networks on a mesoscopic scale, as well as to advance this under-
standing with three studies covering complementary aspects of spatially organized
network theory.

A variety of experimental recordings in cortex reveals that neuronal activity is
coordinated across several millimeters: Multi-electrode-arrays covering a few square
millimeters, for example, provide access to the local field potential, a measure of
population activity, as well as single neuron spiking activity. While spiking activity
exhibits distance-dependent correlation characteristics, population activity shows
spatio-temporally coherent activity, like periodic patterns, waves, or bumps. In this
thesis we employ a combination of network models, analytical tools, and simulations
to gain an understanding of such findings. We particularly make use of mean-field
theory, which is a viable tool for investigating statistical properties of populations
made up of thousands of neurons, and it therefore may be utilized to gain a coarse-
grained description of network activity at large scales. In the first main part, we
present a Python package we developed to make previously developed analytical
results from neuronal network mean-field theory applicable to concrete network
models, giving access to estimates of model properties such as firing rates and power
spectra, as well as more elaborate tools that can support network modeling. In the
second study, we investigate how neurons may coordinate their activity dynamically
across large distances, without the need for highly correlated input or long-range
connections. In the third study, we explore how a temporal delay may affect pattern
formation in planar networks.

As we demonstrate, spatial organization is a critical network feature that does
not merely lead to obvious phenomena like spatially structured activity. On the
contrary, as we show in this thesis, spatial organization leads to a variety of interesting,
non-trivial effects, that on first sight might even seem counterintuitive, and this topic
certainly provides a multitude of intriguing research questions for the near future.





Z U S A M M E N FA S S U N G

dynamische und statistische struktur räumlich organisierter

neuronaler netzwerke

Der Kortex, die äußere Schicht des Großhirns, besteht aus einer großen Anzahl Neu-
ronen, die in einer hoch organisierten Weise angeordnet und verbunden sind. Die
Wahrscheinlickeit, mit der Neuronen miteinander verbunden sind und wie schnell sie
Signale austauschen können, hängt unter anderem von ihrem räumlichen Abstand
ab. Auf einer mikroskopischen Skala können kortikale Netzwerke gut als völlig
ungeordnete, zufällige Netzwerke beschrieben werden, da kortikale Neuronen inner-
halb einiger zehn Mikrometer im Wesentlichen einheitliche Verbindungswahrschein-
lichkeiten aufweisen. Auf einer mesoskopischen Skala, die sich über mehrere Mil-
limeter erstreckt, auf der viele Neuronen mit hoher Wahrscheinlichkeit nicht direkt
verbunden sind, spielt die Entfernungsabhängigkeit der neuronalen Verbindungen
allerdings sicherlich eine wesentliche Rolle. Während die Theorie zufälliger neuronaler
Netzwerke bereits gut entwickelt ist, ist noch nicht vollständig geklärt, wie sich eine
solche räumliche Organisation auf die Aktivität eines Netzwerkes auswirkt. Ziel
dieser Arbeit ist es, einen Überblick über das derzeitige analytische Verständnis räum-
lich organisierter neuronaler Netzwerke zu geben und dieses Verständnis durch drei
Studien zu erweitern, die komplementäre Aspekte der Theorie räumlich organisierter
Netzwerke abdecken.

Eine Vielzahl von Experimenten zeigt, dass kortikale neuronale Aktivität über
mehrere Millimeter hinweg koordiniert ist: Multi-Elektroden-Arrays, die sich über
einige Qudratmillimeter erstrecken, ermöglichen beispielsweise gleichzeitig sowohl
das lokale Feldpotential, ein Maß für die neuronale Populationsaktivität, als auch die
Aktionspotentiale einzelner Neurone aufzuzeichnen. Während die Aktionspotentiale
entfernungsabhängige Korrelationsmuster aufweisen, zeigt die Populationsaktivität
räumlich und zeitlich kohärente Aktivität in Form von periodischen Mustern, Wellen
oder räumlich begrenzten Anregungen. In dieser Arbeit nutzen wir eine Kombination
aus Netzwerkmodellen, analytischen Methoden und Simulationen, um ein besseres
Verständnis für derartige Beobachtungen zu entwickeln. Wir nutzen dazu insbeson-
dere Mean-Field Theorie (auch bekannt als Molekularfeldtheorie), die ein praktisches
Werkzeug zum Verständnis statistischer Eigenschaften neuronaler Populationen, die
aus Tausenden von Neuronen bestehen, darstellt und daher eine statistische Beschrei-
bung der Netzwerkaktivität auf großen Skalen erlaubt. Im ersten Hauptteil stellen
wir ein von uns entwickeltes Python-Paket, das es erlaubt, abstrakte analytische
Ergebnisse aus der Mean-Field Theorie neuronaler Netzwerke auf konkrete Netz-
werkmodelle anzuwenden. Das Paket enthält Methoden zu statistischen Schätzungen
von Modelleigenschaften wie Feuerraten und Leistungsspektren, sowie komplexere
Werkzeuge, die die Netzwerkmodellierung unterstützen und vereinfachen können.
In einer zweiten Studie untersuchen wir, wie Neuronen ihre Aktivität dynamisch



über große Entfernungen koordinieren können, ohne dass ein stark korrelierter In-
put oder langreichweitige Verbindungen erforderlich wären, während wir in einer
dritten Studie untersuchen, wie sich eine zeitliche Verzögerung bei der neuronalen
Signalübermittlung auf die Bildung von Aktivitätsmustern in planaren Netzwerken
auswirkt.

Wie wir im Verlauf dieser Arbeit zeigen, ist räumliche Organisation ein entscheiden-
des Netzwerkmerkmal, das nicht nur zu naheliegenden Phenomänen wie räumlich
strukturierter Aktivität führt. Ganz im Gegenteil führt räumliche Organisation zu
einer Vielzahl von interessanten, nicht-trivialen Effekten, die auf den ersten Blick
vielleicht sogar kontraintuitiv erscheinen, und das Thema bietet sicherlich eine Reihe
interessanter Fragestellungen für weitere Forschungsprojekte.
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1
I N T R O D U C T I O N

The brain could just be a blob of neurons connected in a seemingly random fashion.
Obviously, it is not. Even if one ignores the fact that the brain is a complex ensemble of
numerous components and one only considers cortex, the specifics of its organization
in space and time are overwhelming. But why is that? There are clearly various ways
of approaching this issue, ranging from an evolutionary perspective to biological,
space, and energy constraints, as well as functional considerations. In this thesis
we are studying this question with a focus on network activity: How does spatial
organization and a spatially structured network connectivity affect the network’s
activity? In particular, we have a look at cortical networks on the mesoscopic scale,
which spans several millimeters and is now accessible to a variety of technologies
enabling massively parallel recordings that can resolve single neuron activity. The
availability of such experimental methods has given rise to a number of intriguing
questions related to the spatial organization of network activity: How does the
activity of neuronal populations consisting of thousands of neurons distributed across
several millimeters arise from their microscopic connectivity properties? How do
these neurons coordinate their activity across large distances? How does coherent
population activity arise? These are the topics we address in the following chapters
with the help of network models, analytical tools, and simulations.

To this end, we employ three different approaches: we introduce a Python package
that implements a variety of analytical methods developed for estimating population
activity statistics from underlying model parameters, allowing them to be applied
for network model analysis (Chapter 2); we investigate how large-scale correlations
can arise dynamically in a network with only unstructured local connectivity and
without the need for strongly correlated input (Chapter 3); and we study how a
constant communication delay and the neuronal input-output function influence the
spontaneous emergence of spatio-temporally coherent population activity in planar
networks (Chapter 4). We discuss these projects in the context of spatial organization
and address why spatial structure is vital for understanding biological neuronal
networks (Chapter 5).

The remainder of this chapter is dedicated to introducing the required background
and concepts that occur throughout this thesis. Section 1.1 presents a brief overview
of cortical connectivity structure, with a focus on distance-dependent connection
probabilities on a local scale, as well as communication delays. Section 1.2 reviews
some literature on experimental results on activity on the mesoscopic scale, particularly
coherent population and spiking activity, to provide a notion of how cortical activity
on this scale looks like. Section 1.3 introduces the neuron and network models used

1



2 introduction

in the main parts of this thesis. Section 1.4 discusses analytical results for random
networks, which are well established, while in Section 1.5 we present some results
of the far less developed theory of spatially organized networks. Finally, Section 1.6
explains the scope of this thesis in detail and gives a brief overview of the three main
projects that constitute the core of this thesis and their different objectives.

1.1 the spatio-temporal connectivity of neocortex

The mammalian brain consists of several hierarchically organized components that
interact with each other to perform the manifold tasks of a brain. The organization
of the central nervous system is described in detail in Kandel et al. (2013, Part IV,
Chapter 15). In the following paragraphs, we only want to recapitulate the basics and
concepts required to comprehend the work conducted within the scope of this thesis.
Starting from the outside, the brain can be divided into tree parts: the cerebrum, the
largest component with its two hemispheres, a smaller part called cerebellum, and the
brain stem, which connects the brain to the spinal cord. In this thesis we focus on the
neocortex, which accounts for roughly 90 % of the cerebrum’s outer layer of neuronal
tissue, and is responsible for higher-order tasks like sensory perception, cognition,
or the generation of motor commands. In rodents, the neocortex is smooth, but in
primates and other large animals, it is folded, which increases its surface area. It can
be subdivided into four lobes with differing functionalities: the occipital lobe (e.g.,
vision), the temporal lobe (e.g., hearing), the parietal lobe (e.g., somatosensation), and
the frontal lobe (e.g., cognition and movement). A further division can be made on
the basis of cytoarchitecure (Brodmann, 1909).

Apart from other cells, the neocortex is made up of approximately 80 % excitatory
and 20 % inhibitory neurons, typically arranged in six horizontal layers. These differ in
the contained neuron types as well as the connectivity between the neurons. Whereas
here, we do not have a closer look at the different neuron types, the connectivity plays
a major role in this thesis. But what exactly is connectivity? There are three aspects
of neuronal interaction that fall into the category of connectivity: First, the synaptic
or structural connectivity. If the axon of a neuron comes close to the dendrites of
another neuron, a synapse may form, which determines the topography of the network.
Second, the strength of the connectivity, or functional connectivity, which describes
how strong the evoked post synaptic potential is, and this can be understood on top
of the topography. Third, there is the temporal aspect of the connectivity, determining
how long it takes for a neuron to communicate a signal to another neuron.

The connectivity of cortex is highly structured in space and time. We first consider
the spatial component: Connectivity of cortex can be understood in terms of horizontal
connectivity, parallel to the cortical surface, connecting nearby areas of cortex, vertical
connectivity, perpendicular to the surface, connecting different layers, and connectivity
through white matter, connecting distant areas and transmitting sensory input or
motor output. In this thesis we focus on the horizontal connectivity, for which it is
often useful to think in terms of local connectivity, within the range of a few hundred
micrometers, and non-local connectivity going beyond this range (for a review see
Voges et al., 2010; Binzegger et al., 2007). The non-local connectivity often is found to
be patchy with neurons projecting to groups of neurons, typically on a millimeter scale
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(Livingstone and Hubel, 1984; Bosking et al., 1997; Tanigawa et al., 2005; Buzás et al.,
2006; Binzegger et al., 2007; Voges et al., 2010). In this thesis, we will investigate the
effect of the local connectivity on network activity. On a local scale, neurons typically
connect with a certain connection probability which decays with the inter-neuronal
distance (Hellwig, 2000; Oswald et al., 2009; Boucsein et al., 2011; Markov et al., 2011;
Levy and Reyes, 2012; Jiang et al., 2015; Schnepel et al., 2015; Horvát et al., 2016).
The exact shape of the spatial connectivity profile is unclear: Markov et al. (2011) for
example report an exponential decay, while Levy and Reyes (2012) find a Gaussian
shape. The typical length scale on which the connection probability decays depends
on neuron types and layers (Packer and Yuste, 2011; Jiang et al., 2015; Schnepel et al.,
2015; Reimann et al., 2017), as well as on the brain area (Kätzel et al., 2011). Often,
excitatory neurons are reported to have a broader profile than inhibitory neurons:
Stepanyants et al. (2007) study the local potential connectivity in cat visual cortex by
examining locations where the axon of a neuron is close to the dendrite of another
neuron and find a broader distribution for excitatory than for inhibitory neurons.
Stepanyants et al. (2009) show that in a section of 500 µm radius of cat visual cortex
74 % of the excitatory synapses originate from neurons outside the section, while it
is only around 10 % for inhibitory neurons. Ohana et al. (2012) find that the mean
distance between pre- and postsynaptic somata are larger for excitatory connections
than for inhibitory ones in cat visual cortex. However, Levy and Reyes (2012) find
comparable ranges for the connection profiles for excitatory and inhibitory neurons
with only slightly longer ranges for excitatory neurons in mouse auditory cortex.
Reimann et al. (2017) provide extensive data on connection probability profiles of
different neuron types within and between different layers of cat visual cortex in their
supplementary material.

The temporal connectivity structure is given by the signal transmission delays be-
tween two neurons, which comprise two components: a distance-dependent delay due
to finite axonal conduction velocity, and a constant delay due to synaptic processing.
Experimental findings regarding axonal conduction delays are reviewed in Swadlow
and Waxman (2012). Axonal conduction velocities strongly depend on myelination
and can range from about 0.3 m/s to over 100 m/s. Measurements of local horizontal
axonal connections in cortex (Hirsch and Gilbert, 1991; Lohmann and Rörig, 1994)
indicate that those axons are largely non-myelinated, such that for our purposes the
lower end of conduction velocities may be more relevant (however, cf. discussion on
Kisvárday and Eysel (1992) in Swadlow and Waxman (2012)). Synaptic delays are
caused by neurotransmitter release, binding, and spike initiation and are estimated to
be in the range of 0.5− 1.0 ms (Katz and Miledi, 1965; Murakoshi et al., 1993; Kang
et al., 1994).

1.2 experimentally observed mesoscopic in vivo activity in cortex

Which experimental method is used to record neuronal activity in the neocortex
depends on the spatial and temporal scales and resolutions of interest, as well as
whether the activity is to be recorded in vivo or in vitro. In this thesis, we are
interested in understanding in vivo activity on the mesoscopic scale, covering cortical
areas of several square millimeters; both on a single neurons level as well as on
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a population level. Such recordings may be made using a variety of approaches,
including voltage sensitive dyes (Chemla and Chavane, 2010) and two-photon calcium
imaging (Grienberger and Konnerth, 2012). Another tool that naturally lends itself for
investigating these types of activity is multi-electrode arrays (Maynard et al., 1997),
which combine multiple micro-electrodes on a grid that covers an area of several
square millimeters. The Utah array (Blackrock Microsystems) that was used to record
the data presented in Chapter 3 had 10× 10 electrodes equally spaced on a grid of
4× 4 mm2 with an inter-electrode distance of 400 µm (Riehle et al., 2013, 2018; Brochier
et al., 2018; Dąbrowska et al., 2020). These devices can record with a high temporal
resolution, resolving the single-neuron activity of about a hundred neurons at the
same time. Electrode arrays can be implanted chronically in living animals and they
can be used to record from several cortical areas while the animal is performing a
task. The signal recorded is the extracellular potential that is caused by the electrical
activity of neurons close to and between the electrodes (Buzsáki et al., 2012). For
our purposes, there are especially two interesting signal components: the population
activity represented by the local field potential and the single neuron spiking activity.

For studying the population activity, the recorded signal usually is low-pass filtered
to remove the signal’s high frequency spike components, yielding the local field
potential (LFP), which is a composite signal including contributions from entire
populations of neurons (Buzsáki et al., 2012; Pesaran et al., 2018). The LFP observed
in cortex exhibits spatio-temporally coherent population activity across several square
millimeters: Activity can be oscillatory, where the recorded LFP collectively rises and
falls (Buzsáki and Draguhn, 2004; Wang, 2010), with frequencies covering several
frequency bands; from slow up- and down-state like activity ∼ 1 Hz to high-gamma
oscillations ≥ 80 Hz. The LFP signal can show planar traveling waves (Wu et al., 2008;
Nauhaus et al., 2009; Muller and Destexhe, 2012; Nauhaus et al., 2012; Sato et al., 2012;
Muller et al., 2018), with velocities ranging from 0.1− 0.8 m/s (Muller et al., 2018).
Even more complex forms have been observed, such as source- or sink-like radial
activity (Denker et al., 2018), or spirals (Townsend et al., 2015; Denker et al., 2018).
According to Muller et al. (2018, Figure 2), stimuli can also cause static bump-like
activity.

Extracting the spiking activity from electrode-array recordings is a little more intri-
cate and requires a procedure known as spike-sorting (Lewicki, 1998; Quian Quiroga,
2012). A typical recorded signal shows peaks associated with nearby spiking neurons.
To extract the spike times, the straightforward way is to use a simple threshold, but
there exist much more elaborate methods (Lewicki, 1998; Quian Quiroga, 2012). As
a single electrode can record spiking signals from multiple neurons in its vicinity,
each spike needs to be allocated to its source neuron. The most reliable way to
do this is a sorting by the typical spike wave forms (Bartho et al., 2004). This also
allows a categorization into putative excitatory and inhibitory neurons, as pyramidal
neurons typically have a broader spike width than inhibitory neurons (Csicsvari
et al., 1998). Cortical spiking activity is highly irregular (Softky and Koch, 1993) and
usually assumed to be Poisson-like (Tolhurst et al., 1983; Lee et al., 1998; Shadlen and
Newsome, 1998; Koch, 1999; Maynard et al., 1999). But, there are areas with other
spiking statistics (Maimon and Assad, 2009); even binary (DeWeese et al., 2003). Often
cortical spiking activity is reported to be more reliable than a Poisson process (Nawrot
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et al., 2008; Amarasingham et al., 2006; Kara et al., 2000; Gur et al., 1997). The typical
rate of spiking activity in cortex is layer-dependent and in the range of ∼ 0.3− 8 Hz
(Potjans and Diesmann, 2014, Table 6). Spiking activity has been reported to show
spatial organization as well: Sato et al. (2012) and Takahashi et al. (2015) find traveling
waves of spiking activity in cat visual cortex and macaque motor cortex. Smith and
Kohn (2008) investigate the spike count correlation in macaque visual cortex and
find a decay with inter-neuron distance. Hao et al. (2016) show that a single pulse
microstimulus can evoke spreading spiking activity across a multi-electrode array.
Finally, grid cells within entorhinal cortex in many different species are well-known
for their hexagonal spiking activity (Rowland et al., 2016; Nadasdy et al., 2017).

1.3 neuron and network models utilized in this thesis

For modeling neuronal behavior, or any system, there are essentially two opposing
approaches: One might aim for the most complete description, incorporating as many
details as possible. This may allow the model to fit real data with high accuracy,
but it also makes the model prone to overfitting and usually necessitates the use of
numerical methods. Alternatively, one may decide to develop a minimal model that
includes only what is required to explain the phenomena of interest. This naturally
limits the model’s explanatory power and may necessitate greater abstraction, but
it does allow for the use of analytical tools, which may results in a more intuitive
understanding of the system.

Applying the first approach to neurons yields biologically realistic neuron models,
like the Hodgkin-Huxley model, which gives an accurate description of the generation
of action potentials by modeling the behavior of different ion channels and the trans-
membrane voltage (Hodgkin and Huxley, 1952); or multi-compartment models that
incorporate the complex morphology of axons and dendrites (Rall, 1964).

However, in this thesis we focus on an analytical understanding of the models
utilized, therefore our models fall within the scope of the second approach. Here, we
introduce the models we used in our research in increasing order of abstractness.

leaky integrate-and-fire models Simplifying the dynamical equations of
the Hodgkin-Huxley model by employing simplifying assumptions regarding the ion
channel dynamics, one can arrive at integrate-and-fire models (Abbott and Kepler,
1990). These models describe the temporal dynamics of the membrane potential V by
ordinary differential equations like

τm
dV
dt

(t) = − f (V(t)) + RI(t) ,

with the membrane time constant τm, a potentially non-linear function f , the synaptic
input current I, and membrane resistance R (Stein, 1967; Tuckwell, 1988a). Such models
describe the integration of inputs RI(t) according to a dynamical rule determined by
− f (V(t)). They cannot produce action potentials. Instead, once a threshold voltage
Vth is reached, the voltage is reset to a fixed voltage V0, and the neuron is said to
have spiked once. As refractory behavior is not captured by this model, sometimes
a fixed refractory time τr is defined in which the membrane voltage is kept at the
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reset voltage after spiking. This is one of the simplest models of spiking neurons
including sub-threshold dynamics. There exist many versions of these types of neuron
models (Brunel and Latham, 2003; Fourcaud-Trocmé et al., 2003; Richardson, 2007,
2008; Grabska-Barwinska and Latham, 2014; Montbrió et al., 2015; Gerstner et al., 2014,
Part II), but we will focus on the leaky integrate-and-fire (LIF) neuron (Lapicque, 1907;
Stein, 1967), with linear sub-threshold dynamics

τm
dV
dt

(t) = − (V −V0) + RI(t) .

If the membrane voltage is excited, it will decay exponentially to the resting potential
V0.

As reviewed by Izhikevich (2004), due to its simplicity the LIF model only captures a
minimal set of biological properties of cortical spiking neurons; in particular, it cannot
emulate any kind of adaptive spiking activity, such as bursting behavior. However, it is
one of the simplest ordinary differential equation models for spiking neurons, making
it especially suitable for proving analytical results concerning network dynamics for
which single neuron dynamics may be neglected. Thus, it has become a standard
model in theoretical neuroscience, utilized to study a multitude of network properties,
for example reviewed by Burkitt (2006).

In networks of LIF neurons, each neuron has its own membrane potential Vi, labeled
by an index i ∈ {1, . . . , N}, with the total number of neurons N. The dynamical
equation becomes

τm
dVi

dt
(t) = − (Vi −V0) + RIi(t) .

For instantaneous synapses, also known as delta synapses, the synaptic input current to
neuron i has its simplest form, which is given by

Ii(t) = ∑
j

Jij ∑
k

δ
(

t− tk
j − dij

)
,

whereas for exponential synapses it is described by a differential equation in itself

τs
dIi

dt
(t) = −Ii(t) + ∑

j
Jij ∑

k
δ
(

t− tk
j − dij

)
,

with the synaptic time constant τs, the Dirac delta function δ, spike times tk
j of neuron

j, and delay dij from neuron j to neuron i. For the purposes of this thesis, one of
the most important aspects is the connectivity matrix J. It describes whether and how
strongly neuron j projects to neuron i. So when there is a non-zero entry Jij, neuron j
is connected to neuron i, and the post synaptic current is abstracted into the value of
Jij, called synaptic weight. The connectivity also determines the type of the neuron. A
neuron j only having negative values Jij for all values of i is inhibitory and vice versa.

Embedding spatial structure into these models requires adapting the connectivity
matrix. For example one can assign each neuron a place on a two dimensional grid
with positions r and assert a connection strength decaying with the inter-neuronal
distance on a length scale R, e.g.,

Jij = J
(∣∣ri − r j

∣∣) ∝ exp

(
−
∣∣ri − r j

∣∣
R

)
. (1.1)
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rate models If solely the statistics of the neuronal activity is of interest, and
modeling the behavior of spiking neuronal networks on short time-scales is not
relevant, one can go a step further and consider rate models (Wilson and Cowan,
1972; Dayan and Abbott, 2001; Gerstner et al., 2014, Chapter 15). Instead of modeling
every single spike, these models aim at describing the spike rate ν and hence offer a
statistical description of the neuron activity averaged across a short time interval. A
simple rate network model is described by

τ
dνi

dt
(t) = −νi(t) + ∑

j
Jijψ

(
νj
(
t− dij

))
,

where νi is the firing rate of neuron i, τ is the neuronal time constant, ψ(ν) is the
neurons’ non-linear input-output function. The first term on the right-hand side
describes the single neuron dynamics, while the second term represents the non-
linearly transformed recurrent input, capturing the fact that a neuron requires a
minimal input to fire and that the output rate saturates for high inputs. To account for
stochasticity, the model can be extended by adding an input or output noise term.

By construction, rate models cannot provide information on subthreshold dynamics
or accurate spike timings. Remarkably, they can yield similar findings as more intricate
models (Grytskyy et al., 2013; Heiberg et al., 2018), yet, because of their simplicity,
rate models lend themselves even better to the application of analytical methods than
LIF models.

neural field models When dealing with spatially organized networks with
distance dependent connectivities, such as in Eq. (1.1), a natural analytical step is
to take the continuum limit of the neuronal grid (Wilson and Cowan, 1973). This
means that the network is no longer assumed to be a grid of single neurons, but rather
a continuous excitable medium, known as neural field. Mathematically, taking the
continuum limit amounts to replacing the discrete neuron index i by a continuous
variable r ∈ Rn, the position on an n-dimensional spatial manifold Ω, and replacing
the sum over the synaptic inputs by an integral. The firing rate vector ν(t) is replaced
by a continuous function of space, the network’s activity X(r, t), as is the connectivity
matrix M (r). An example of a neural field equation for an excitatory and an inhibitory
population of neurons is

τ
∂X
∂t

(r, t) = −X(r, t) +
∫

Ω
dnr′ M(r− r′) · ψ

{
X
[
r′, t− d

(
r− r′

)]}
X(r, t) =

(
E(r, t)

I(r, t)

)
, M(r) =

(
MEE(r) MEI(r)

MIE(r) MII(r)

)
,

with a non-linearity ψ, and a possibly distance dependent delay d (r).
Neural field models do not describe single neuron properties, and, similar to rate

models, they neglect all effects associated with spiking dynamics. They have, however,
been employed successfully to analyze spatio-temporally coherent population activity
in cortical networks (Coombes, 2005; Bressloff, 2012; Coombes et al., 2014). We discuss
the literature in Section 1.5.
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1.4 mean-field theory of random networks

This section is partly based on the following publication’s introduction, for which
the author wrote the original draft (see chapter Chapter 4 for the full contributions
statement):

Moritz Layer, Johanna Senk, Simon Essink, Alexander van Meegen, Hannah Bos, &
Moritz Helias (2022), NNMT: Mean-field based analysis tools for neuronal network
models, Frontiers in Neuroinformatics, DOI: 10.3389/fninf.2022.835657

Biological neuronal networks are composed of large numbers of recurrently connected
neurons, with a single cortical neuron typically receiving synaptic inputs from thou-
sands of other neurons (Braitenberg and Schüz, 1998; DeFelipe et al., 2002). Although
the inputs of distinct neurons are integrated in a complex fashion, such large numbers
of weak synaptic inputs imply that average properties of entire populations of neurons
do not depend strongly on the contributions of individual neurons (Amit and Tsodyks,
1991). Based on this observation, it is possible to develop analytically tractable theories
of population properties, in which the effects of individual neurons are averaged out
and the complex, recurrent input to individual neurons is replaced by a self-consistent
effective input (reviewed, e.g., in Gerstner et al., 2014). In classical physics terms
(e.g., Goldenfeld, 1992), this effective input is called mean-field, because it is the self-
consistent mean of a field, which here is just another name for the input the neuron is
receiving. The term self-consistent refers to the fact that the population of neurons
that receives the effective input is the same that contributes to this very input in a
recurrent fashion: the population’s output determines its input and vice-versa. The
stationary statistics of the effective input therefore can be found in a self-consistent
manner: the input to a neuron must be set exactly such that the caused output leads
to the respective input.

To state the basic principle of mean-field theory more precisely: A cortical neuron
usually gets a large number of synaptic inputs. If those inputs are only weakly corre-
lated, the central limit theorem implies that the synaptic inputs can be approximated
as Gaussian white noise, with mean and noise intensity determined by the synaptic
weights, the number of inputs, and the average firing rates. If a network of N neurons
contains n populations of neurons with identical properties, a mean-field approxima-
tion reduces the original N dynamical equations to effectively n dynamical equations,
significantly simplifying the problem. In particular, for some neuron models this
simplification allows expressing the population firing rates as functions of the noise
properties, such that average firing rates and noise properties may be determined
self-consistently.

Mean-field theories have been developed for random networks, without any particu-
lar connectivity structure, for a variety of neuron models. They have been successfully
applied to study average population firing rates (van Vreeswijk and Sompolinsky,
1996, 1998; Amit and Brunel, 1997b), and the various activity states a random network
of spiking neurons can exhibit, depending on the network parameters (Amit and
Brunel, 1997a; Brunel, 2000a; Ostojic, 2014), as well as the effects that different kinds
of synapses have on firing rates (Fourcaud and Brunel, 2002; Lindner, 2004; Schuecker
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et al., 2015; Schwalger et al., 2015; Mattia et al., 2019). In combination with linear
response theory, they have been used to investigate how neuronal networks respond
to external inputs (Lindner and Schimansky-Geier, 2001; Lindner et al., 2005), and they
explain why neuronal networks can track external input on much faster time scales
than a single neuron could (van Vreeswijk and Sompolinsky, 1996, 1998). Mean-field
with linear-response theories allow studying correlations of neuronal activity (Se-
jnowski, 1976; Ginzburg and Sompolinsky, 1994; Lindner et al., 2005; Trousdale et al.,
2012), which can be generalized to correlations of higher orders (Buice and Chow,
2013), and they were able to reveal why pairs of neurons in random networks, despite
receiving a high proportion of common input, can show low output correlations (Hertz,
2010; Renart et al., 2010; Tetzlaff et al., 2012; Helias et al., 2014), which for example has
important implications for information processing. Mean-field theories were utilized
to show that neuronal networks can exhibit chaotic dynamics (Sompolinsky et al.,
1988; van Vreeswijk and Sompolinsky, 1996, 1998), in which two slightly different
initial states can lead to totally different network responses, which has been linked to
the network’s memory capacity (Toyoizumi and Abbott, 2011; Schuecker et al., 2018).
Most of the results mentioned above have been derived for networks of either rate,
binary, or spiking neurons of a linear integrate-and-fire type. But a multitude of other
models has been investigated with similar tools as well; for example, just to mention
a few, Hawkes processes, non-linear integrate-and-fire neurons (Brunel and Latham,
2003; Fourcaud-Trocmé et al., 2003; Richardson, 2007, 2008; Grabska-Barwinska and
Latham, 2014; Montbrió et al., 2015), or Kuramoto-type models (Stiller and Radons,
1998; van Meegen and Lindner, 2018). Additionally, there is an ongoing effort showing
that many of the results derived for distinct models are indeed equivalent and that
those models can be mapped to each other under certain circumstances (Grytskyy
et al., 2013; Ostojic and Brunel, 2011).

The mean-field approach is limited by the requirement for the central limit theorem
to hold, namely a large number of uncorrelated inputs. Assuming neurons do have a
large number of incoming connections, like in cortical networks, the validity of the
mean-field approach is determined by the correlation of the inputs. If the network ex-
hibits strongly correlated activity, for example caused by strong oscillations or external
input, the mean-field approximation breaks down, whereas small oscillations of the
population activity around a stationary state can be explained using linear-response
theory on top of the mean-field approximation (Lindner and Schimansky-Geier, 2001;
Lindner et al., 2005; Schuecker et al., 2015). The approximation particularly works well
for asynchronous, irregular network states (Brunel, 2000b). van Vreeswijk and Som-
polinsky (1996, 1998) demonstrate analytically that such activity arises dynamically in
large, sparsely connected networks of excitatory and inhibitory neurons if the synaptic
weights scale appropriately. Their argument is mainly based on an approximate
balance of excitation and inhibition, and these dynamics, known as balanced state, are
a very robust phenomenon that are found for a wide range of neuron models.



10 introduction

1.5 theory of spatially organized networks

The preceding section’s literature review demonstrates that random unstructured
network models have received a lot of attention, and their theory is well-established
by now. In a largely independent stream of research, neuronal networks with spa-
tially structured connectivities have been studied utilizing the continuous neural field
models introduced in Section 1.4, which neglect single neuron and spiking properties.
They have been used to investigate spatio-temporally coherent population activity in
cortical networks with great success. Wilson and Cowan (1973) were the first to study
global activity patterns, whereas Amari (1975, 1977) was the first to examine stable lo-
calized activity. Following that, neural field theories were able to explain hallucination
patterns (Ermentrout and Cowan, 1979; Bressloff et al., 2001) and oscillatory activity
observed in EEG and MEG recordings (Nunez, 1974; Jirsa and Haken, 1996, 1997).
Working memory (Laing et al., 2002; Laing and Troy, 2003), motion perception (Giese,
2012), cognition (Schöner, 2008) are just a few examples of phenomena that have
been modeled using neural field theories. The field is fairly extensive, and Chapter 4

discusses further neural field literature with a focus on delayed systems; for excellent
reviews, we recommend Coombes (2005), Bressloff (2012), and Coombes et al. (2014).

The neural field approach describes the activity of a continuous excitable medium.
Real neuronal networks, however, consist of distinct units, the neurons. The theory of
discrete models of spatially organized networks has received far less attention than
neural field theories or random network theory, and it has only lately seen some
progress.

Simulations reveal that two-dimensional networks of spiking neurons exhibit com-
plex, moving patches of activity, as well as regular periodic or wavelike activity,
depending on whether excitation and inhibition are balanced or not (Usher et al., 1995;
Keane and Gong, 2015). Bressloff and Coombes (1998, 2000) show that increasing the
coupling strength in spiking networks with Mexican hat connectivity can lead to a
desynchronization of firing times via a Turing-Hopf bifurcation. Murphy and Miller
(2009) explore a mechanism explaining the selective amplification of activity patterns
found in spontaneous visual cortex activity. Kriener et al. (2014) show that the critical
coupling strength that determines pattern formation in spiking networks strongly
depends on the input regime. Lim and Goldman (2014) investigate working memory
in a LIF ring model with distance dependent connectivity, demonstrating that these
networks can retain amplitude and spatial location of a stimulus. Pyle and Rosen-
baum (2017) study pattern formation and reservoir computation in two-dimensional
spiking networks and argue that, compared to random networks, including spatial
organization improves the network’s computational properties.

In addition to direct analytical analyses of discrete models, there is an ongoing
effort to map the parameters of more complex spiking models to simpler matching
rate or neural field models, allowing for the use of the well-developed neural field
theory; Senk et al. (2020) provide a review of such attempts.

Another focus of the literature on spatially organized networks is correlations and
their spatial configuration. Kriener et al. (2009) compare correlations in random, small
world, and ring networks and show that the latter two exhibit heavy tailed correlation
distributions. Rosenbaum and Doiron (2014) model the situation in sensory areas
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and derive conditions on the spatial spread of recurrent and external connections
for a stable balanced state in networks of integrate-and-fire neurons with distance-
dependent connectivity and common external input. They continue their research
in Rosenbaum et al. (2017), to study the distance-dependence of mean covariances
in such networks. Darshan et al. (2018) explain how neuronal activity may be both
temporally irregular and significantly spatially correlated by relating the strength of
pair-wise correlations to the architecture of a network of binary neurons. Smith et al.
(2018) demonstrate that anisotropy of connection profiles can result in long-range
correlations, akin to those observed in visual cortex in the context of orientation
tuning, from just short-range connections, and Huang et al. (2019) show that spatial
organization is required for a spiking network model to show asynchronous activity if
one incorporates that inhibitory synapses are slower than excitatory ones.

1.6 scope of this thesis

This thesis intends to advance the understanding of spatially organized networks
with a focus on the mesoscopic scale by means of analytical theory, its numerical
implementation, and simulations. To this end, we present three complementary
studies, each covering a different aspect of the theory of spatially organized networks.
In Chapter 2, we present a Python package we developed for collecting numerical
implementations of analytical tools based on mean-field theory (Section 1.4), which
enables the computation of population properties such as firing rates or power spectra
in concrete network model configurations. Continuing the investigation of the spatial
structure of correlations reviewed in Section 1.5, we study pair-wise spike count
correlations in Macaque motor cortex in Chapter 3 and present a network mechanism
that explains how the observed long-range correlations can emerge in networks
with short-range connectivity and uncorrelated input. In Chapter 4, we analytically
investigate global spatio-temporally coherent activity pattern formation in planar
two-dimensional networks with a constant synaptic delay.

These studies have the common objective of investigating network activity at the
millimeter scale, as observable using multi-electrode arrays like the Utah array (Section
1.2). While the toolbox of the first study is applicable to a wide range of spatially
organized, as well as random network models, the second and third study consider
very similar spatially organized network models: both analyze the spontaneous
activity of an excitatory and an inhibitory neuronal population with target-agnostic
connectivity and population specific spatially extended connectivity profiles on a two-
dimensional grid; the model in Chapter 4, however, includes a constant synaptic delay.
While in Chapter 3 we study pair-wise correlations in a spatially homogeneous but
almost critical balanced state, in Chapter 4 we investigate the spontaneous emergence
of spatio-temporally coherent periodic, oscillatory, or wavelike activity in slightly
super-critical networks. The two studies illustrate different network mechanisms that
lead to coordinated neuronal activity across scales that are much larger than the range
of typical direct connections between the neurons. The specific objectives of the three
studies are presented in the following paragraphs.
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nnmt : mean-field based analysis tools for neuronal network models

Chapter 2 presents an open-source, community centered Python package we developed
for collecting reusable implementations of analytical methods for neuronal network
model analysis based on mean-field theory. Because mean-field theories describe the
mean activity of thousands of neurons and provide a coarse-grained perspective of
brain dynamics, they are particularly important for understanding network activity
statistics on the mesoscopic scale. Until previously, analytical methods for analyzing
network models were implemented on a project-by-project basis, which meant that
they were frequently quite specific, making them rarely reusable for other purposes,
and they had not been collected and validated centrally. As we rely on correct
implementations of existing methods for developing new ones and cross-checking
them, we decided to introduce a well-tested reference collection. Therefore, we
generalized existing implementations, collected them in one common framework, and
developed a thorough testing procedure covering all included methods. We made this
toolbox publicly available and invited other researchers to contribute their methods as
well. This chapter describes the toolbox architecture, its features, and how to apply
the tools. We provide an illustrative example of how to analyze a microcircuit model.
We compare the package to other tools for network model analysis, explain limitations
and use-cases, and discuss what and how new methods can be added.

correlations in two-dimensional networks Chapter 3 investigates the
effect of lateral connectivity on the coordination of neurons across a mesoscopic scale
in motor cortex, leveraging a combination of electrode array recordings in Macaque
monkey, network model simulation, and network theory. Concretely, we demonstrate
that a heterogeneous non-patchy distance-dependent local connectivity on the range
of a few hundred micrometers can explain the experimentally observed long-range
coordination of neuronal activity across several millimeters. Furthermore, we explain
how the coordination pattern can be altered during behavior, allowing the network
to flexibly adapt which neurons are coordinated to respond to changing momentary
demands.

activity patterns in two-dimensional networks Chapter 4 examines
how a synaptic delay as well as the neurons’ non-linear input-output functions
influence spatio-temporal pattern formation in planar two-dimensional networks with
distance-dependent connectivity. Spatio-temporal activity patterns, such as oscillations
or waves, are ubiquitous in cortical recordings and can span large parts of cortex,
often involving long time constants (e.g., slow oscillations). Analyzing the critical
behavior of a respective neuronal network in two dimensions is a formidable task,
due to accompanying mathematical intricacies, but some previous work exists for
two-dimensional networks without a synaptic delay. A delay introduces additional
mathematical difficulties, as it requires the analysis of functional differential equations,
for which standard techniques are not applicable. However, we present a way to map
the network with delay to a non-delayed network, allowing a direct comparison of the
two systems and therefore clearly discerning the influence of the delay. We apply the
analysis to static patterns and show that a delay leads to longer transient time-scales.
We validate our analytical results using a simulation of rate neurons.



2
N N M T: M E A N - F I E L D B A S E D A N A LY S I S T O O L S F O R N E U R O N A L
N E T W O R K M O D E L S

This chapter is based on the following publication:

Moritz Layer, Johanna Senk, Simon Essink, Alexander van Meegen, Hannah Bos, &
Moritz Helias (2022), NNMT: Mean-field based analysis tools for neuronal network
models, Frontiers in Neuroinformatics, DOI: 10.3389/fninf.2022.835657

Author contributions:
Under the supervision of Johanna Senk and Moritz Helias, the author developed
and implemented the current version of the toolbox, including the test suite and the
online documentation. The author wrote the original draft of all sections this chapter
is based on (Sections 1, 2, 3.1, 3.2.2, and 4), except for the power spectra example,
which is included in this thesis for completeness. The example is partly based on
Section 3.3.2 of the aforementioned publication, for which Simon Essink wrote the
original draft, and it was finalized in close collaboration with the author. Panel C of
Figure 2.2 on page 19 was originally created by Hannah Bos in Bos et al. (2016) and
reproduced using NNMT by Simon Essink for the aforementioned publication. All
authors were involved in the design of the toolbox, made contributions to the toolbox,
and participated in writing the manuscript.

2.1 introduction

Section 1.4 demonstrates that analytical theories have clearly contributed to our
understanding of neuronal networks and they offer a plethora of powerful and
efficient methods for network model analysis. Comparing the predictions of analytical
theories to simulations, experimental data, or other theories necessitates a numerical
implementation applicable to various network models, depending on the research
question. Such an implementation is often far from straightforward and at times
requires investing substantial time and effort. Commonly, such tools are implemented
as the need arises, and their reuse is not organized systematically and restricted to
within a single lab. This way, not only are effort and costs spent by the neuroscientific
community duplicated over and over again, but also are many scientists deterred from
taking maximal advantage of those methods although they might open new avenues
for investigating their research questions.

13
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In order to make analytical tools for neuronal network model analysis accessible to
a wider part of the neuroscientific community, and to create a platform for collecting
well-tested and validated implementations of such tools, we have developed the
Python toolbox NNMT (Layer et al., 2021), short for Neuronal Network Mean-field
Toolbox. We would like to emphasize that NNMT is not a simulation tool; NNMT
is a collection of numerically solved mean-field equations that directly relate the
parameters of a microscopic network model to the statistics of its dynamics. NNMT
has been designed to fit the diversity of mean-field theories, and the key features
we are aiming for are modularity, extensibility, and a simple usability. Furthermore,
it features an extensive test suite to ensure the validity of the implementations as
well as a comprehensive user documentation. The current version of NNMT mainly
comprises tools for investigating networks of leaky integrate-and-fire neurons as well
as some methods for studying binary neurons and neural field models. The toolbox is
open-source and publicly available on GitHub1.

In the following, we present the design considerations that led to the structure
and implementation of NNMT as well as an illustrative use case. Section 2.2 first
introduces its architecture as well as the interfaces for accessing the tools. Section 2.3
then explains its usage by analyzing the cortical microcircuit model by Potjans and
Diesmann (2014) and reproducing previously published results from Bos et al. (2016).
Section 2.4 compares NNMT to other available toolboxes for neuronal network model
analysis, discusses its use cases from a more general perspective, indicates current
limitations and prospective advancements of NNMT, and explains how new tools can
be contributed.

2.2 workflows and architecture

� �
1 # basic workflow

result = nnmt.<submodule>.<_tool>(∗args, ∗∗kwargs)

# model workflow

my_model = nnmt.models.<model>(<network_params>, <analysis_params>)

6 result = nnmt.<submodule>.<tool>(my_model)� �
Listing 1: The two modes of using NNMT: In the basic workflow (top), quantities
are calculated by passing all required arguments directly to the underscored tool
functions available in the submodules of NNMT. In the model workflow (bottom),
a model class is instantiated with parameter sets and the model instance is passed
to the non-underscored tool functions which automatically extract the relevant
parameters.

What are the requirements a package for collecting analytical methods for neuronal
network model analysis needs to fulfill? To begin with, it should be adaptable and
modular enough to accommodate many and diverse analytical methods while avoiding
code repetition and a complex interdependency of package components. It should

1 https://github.com/INM-6/nnmt

https://github.com/INM-6/nnmt
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Figure 2.1: Structure and workflows of the Neuronal Network Mean-field Toolbox (NNMT).
(A) Basic workflow: individual mean-field based analysis methods are implemented
as functions, called _tools(), that can be used directly by explicitly passing the
required arguments. (B) Model workflow: to facilitate the handling of parameters
and results, they can be stored in a model class instance, which can be passed to a
tool(), which wraps the basic workflow of the respective _tool(). (C) Structure of
the Python package. In addition to the tool collection (red frame), containing the
tools() and the _tools(), and pre-defined model classes, the package provides
utility functions for handling parameter files and unit conversions, as well as
software aiding the implementation of new methods.
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enable the application of the collected algorithms to various network models in a
simple and transparent manner. It should make the tools easy to use for new users,
while also providing experts with direct access to all parameters and options. Finally,
the methods need to be thoroughly tested and well documented.

These are the main considerations that guided the development of NNMT. Panels A
and B of Figure 2.1 on page 15 illustrate how the toolbox can be used in two different
workflows, depending on the preferences and goals of the user. In the basic workflow
the individual method implementations called tools are directly accessed, whereas the
model workflow provides additional functionality for the handling of parameters and
results.

2.2.1 Basic workflow

The core of NNMT is a collection of low-level functions that take specific parameters
(or pre-computed results) as input arguments and return analytical results of network
properties. In Panel A of Figure 2.1 on page 15, we refer to such basic functions as
_tools(), as their names always start with an underscore. We term this lightweight
approach of directly using these functions the basic workflow. The top part of
Listing 1 demonstrates this usage; for example, the quantity to be computed could be
the mean firing rate of a neuronal population and the arguments could be parameters
which define neuron model and external drive. While the basic workflow gives full
flexibility and direct access to every parameter of the calculation, it remains the user’s
responsibility to insert the arguments correctly, e.g., in the right units.

2.2.2 Model workflow

The model workflow is a convenient wrapper of the basic workflow (Panel B of Figure
2.1 on page 15). A model in this context is an object that stores a larger set of parameters
and can be passed directly to a tool(), the non-underscored wrapper of the respective
_tool(). The tool() automatically extracts the relevant parameters from the model,
passes them as arguments to the corresponding core function _tool(), returns the
results, and stores them in the model. The bottom part of Listing 1 shows how a
model is initialized with parameters and then passed to a tool() function.

Models are implemented as Python classes and can be found in the submodule
nnmt.models. We provide the class nnmt.models.Network as a parent class and a few
child classes which inherit the generic methods and properties but are tailored to
specific network models; custom models can be created straightforwardly. The pa-
rameters distinguish network parameters, which define neuron models and network
connectivity, and analysis parameters; an example for an analysis parameter is a fre-
quency range over which a function is evaluated. Upon model instantiation, parameter
sets defining values and corresponding units are passed as Python dictionaries or yaml
files. The model constructor takes care of reading in these parameters, computing
dependent parameters from the imported parameters, and converting all units to SI
units for internal computations. Consequently, the parameters passed as arguments
and the functions for computing dependent parameters of a specific child class need to
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be aligned. This design encourages a clear separation between a concise set of base pa-
rameters and functionality that transforms these parameters to the generic (vectorized)
format that the tools work with. To illustrate this, consider the synaptic weight matrix
of a network of excitatory and inhibitory neuron populations in which all excitatory
connections have the same weight and all inhibitory ones another weight. As argument
one could pass just a tuple of two different weight values and the corresponding model
class would take care of constructing the full weight matrix. This happens in the exam-
ple presented in Section 2.3.2: The parameter file network_params_microcircuit.yaml

contains the excitatory synaptic weight and the ratio of inhibitory to excitatory weights.
On instantiation, the full weight matrix is constructed from these two parameters,
following the rules defined in nnmt.models.Microcircuit.

When a tool() is called, it checks whether the provided model object contains all
required parameters and previously computed results. Then the tool() extracts the
required arguments, calls the respective _tool(), and caches and returns the result. If
the user attempts to compute the same property twice, using identical parameters, the
tool() will retrieve the already computed result from the model’s cache and return
that value. Results can be exported to an HDF5 file and also loaded.

Using the model workflow instead of the basic workflow comes with the initial
overhead of choosing a suitable combination of parameters and a model class, but has
the advantages of a higher level of automation with built-in mechanisms for checking
correctness of input (e.g., regarding units), reduced redundancy, and the options to
store and load results. Both modes of using the toolbox can also be combined.

2.2.3 Structure of the toolbox

The structure of the Python package NNMT is depicted in Panel C of Figure 2.1 on
page 15. It is divided into submodules containing the tools (e.g., nnmt.lif.exp, or
nnmt.binary), the model classes (nnmt.models), helper routines for handling parameter
files and unit conversions, as well as modules that collect reusable code employed
in implementations for multiple neuron models (cf. Section 2.4.4). The tools are
organized in a modular, extensible fashion with a streamlined hierarchy. To give an
example, a large part of the currently implemented tools apply to networks of leaky
integrate-and-fire (LIF) neurons, and they are located in the submodule nnmt.lif.
The mean-field theory for networks of LIF neurons distinguishes between neurons
with instantaneous synapses, also called delta synapses, and those with exponentially
decaying post-synaptic currents. Similarly, the submodule for LIF neurons is split
further into the two submodules nnmt.lif.delta and nnmt.lif.exp. NNMT also
collects different implementations for computing the same quantity using different
approximations or numerics, allowing for a comparison of different approaches.

Apart from the core package, NNMT comes with an extensive online documenta-
tion2, including a quickstart tutorial, all examples presented in the original publication
(Layer et al., 2022), a complete documentation of all tools, as well as a guide for
contributors.

2 https://nnmt.readthedocs.io/

https://nnmt.readthedocs.io/
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Furthermore, we provide an extensive test suite that validates the tools by checking
them against previously published results and alternative implementations where
possible. This ensures that future improvements of the numerics do not break the
tools.

2.3 how to use the toolbox

In this section, we demonstrate the practical use of NNMT by replicating previously
published results. The example presented has been chosen to cover both stationary
and dynamic network features, as mean-field theory is typically divided into two parts:
stationary theory, which describes time-independent network properties of systems in
a stationary state, and dynamical theory, which describes time-dependent network
properties. The original paper (Layer et al., 2022) presents further examples, and all
examples, including the used parameter files, are part of the online documentation2.

2.3.1 Installation and setup

The toolbox can be either installed using pip:

pip install nnmt

or by installing it directly from the repository, which is described in detail in the
online documentation. After the installation, the module can be imported:

import nnmt

2.3.2 Usage example: analyzing a microcircuit model

the microcircuit model Here we show how to use the model workflow to
calculate the firing rates and power spectra of the cortical microcircuit model by
Potjans and Diesmann (2014). The circuit is a simplified point neuron network model
with biologically plausible parameters, which has been recently used in a number
of other works: for example, to study network properties such as layer-dependent
attentional processing (Wagatsuma et al., 2011), connectivity structure with respect to
oscillations (Bos et al., 2016), and the effect of synaptic weight resolution on activity
statistics (Dasbach, Tetzlaff, Diesmann, and Senk, 2021); to assess the performance of
different simulator technologies such as neuromorphic hardware (van Albada et al.,
2018) and GPUs (Knight and Nowotny, 2018; Golosio et al., 2021); to demonstrate
forward-model prediction of local-field potentials from spiking activity (Hagen et al.,
2016); and to serve as a building block for large-scale models (Schmidt et al., 2018).

The model consists of eight populations of LIF neurons (Section 1.3), corresponding
to the excitatory and inhibitory populations of four cortical layers: 2/3E, 2/3I, 4E, 4I,
5E, 5I, 6E, and 6I (see Panel A of Figure 2.2 on page 19). It defines the number of
neurons in each population, the number of connections between the populations, the
single neuron properties, and the external input. Simulations show that the model
yields realistic firing rates for the different populations as observed in particular in
the healthy resting-state of early sensory cortex (Potjans and Diesmann, 2014, Table 6).
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Figure 2.2: Cortical microcircuit model by Potjans and Diesmann (2014). (A) Network diagram
with nodes and edges according to the graphical notation proposed by Senk
et al. (2021); only the strongest connections are shown as in Figure 1 of the
original publication. (B) Simulation and mean-field estimate for average population
firing rates using the parameters from Bos et al. (2016). (C) Power spectrum of
the population spiking activity in population 2/3E of the microcircuit with the
parameters from Bos et al. (2016). The spiking activity of each population in a 10 s
simulation of the model is binned with 1 ms resolution and the power spectrum
of the resulting histogram is calculated by a fast Fourier transform (FFT; light
gray curves). In addition, the simulation is split into 500 ms windows, the power
spectrum calculated for each window and averaged across windows (gray curves).
Black curves correspond to analytical prediction obtained with NNMT.
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the implemented analytical results As explained in Section 1.4, the mean-
field approach approximates the input to a neuron of population a by Gaussian white
noise with mean µa and noise intensity σa, which in turn are determined by the
network properties. For LIF neurons one finds (Amit and Brunel, 1997b)

µa = τm ∑
b

JabKabνb , σ2
a = τm ∑

b
J2
abKabνb ,

where the sum runs over all populations, including external populations, and with
the average number of inputs Kab from population b to population a. The firing rate
of a LIF neuron with instantaneous synapses driven by such Gaussian white noise is
described by (Siegert, 1951; Tuckwell, 1988b; Amit and Brunel, 1997b)

φ(µ, σ) =

(
τr + τm

√
π
∫ Ṽth(µ,σ)

Ṽ0(µ,σ)
es2

[1 + erf(s)] ds

)−1

, (2.1)

with erf denoting the error function, and rescaled reset- and threshold-voltages

Ṽ0(µ, σ) =
V0 − µ

σ
, Ṽth(µ, σ) =

Vth − µ

σ
. (2.2)

The firing rates are then determined by the self-consistency equation

ν = φ (µ, σ) , (2.3)

which may be solved numerically, for example using one of two algorithms included
in our toolbox (Layer et al., 2022).

The LIF neurons in the microcircuit model, however, have exponentially shaped post-
synaptic currents. Fourcaud and Brunel (2002) developed a method for calculating the
firing rate for this synapse type. They have shown that, if the synaptic time constant τs

is much smaller than the membrane time constant τm, the firing rate for LIF neurons
with exponential synapses can be calculated using the results for delta neurons by
adjusting the shifted integration boundaries

Ṽ0(µ, σ) =
V0 − µ

σ
+

α

2

√
τs

τm
, Ṽth(µ, σ) =

Vth − µ

σ
+

α

2

√
τs

τm
, (2.4)

with α =
√

2 |ζ(1/2)| ≈ 2.07, where ζ(x) denotes the Riemann zeta function.
Based on the mean-field approximation, linear response theory allows computing

the power spectra depending on the network architecture, stationary firing rates, and
the neurons’ transfer function (Bos et al., 2016), which characterizes the network’s
response to oscillatory input. All of this can be readily computed using NNMT, which
we will demonstrate in the following paragraphs.

computation of firing rates The model nnmt.models.Microcircuit imple-
ments the microcircuit in NNMT. We here use the parameters of the circuit as published
in Bos et al. (2016), which is slightly differently parameterized than the original model
(Appendix Table A.1 on page 93). The parameters of the model are specified in a yaml

file, which uses Python-like indentation and a dictionary-style syntax. List elements
are indicated by hyphens, and arrays can be defined as nested lists. Parameters with
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units can be defined by using the keys val and unit, whereas unitless variables can be
defined without any keys. Listing 2 shows an example of how some of the microcircuit
network parameters used here are defined. Which parameters need to be provided in
the yaml file depends on the model used and is indicated in their respective docstrings.

� �
# membrane time constant

tau_m:

val: 10.0

4 unit: ms

# neuron numbers

N:

- 20683

9 - 5834

- 21915� �
Listing 2: Some microcircuit network parameters defined in a yaml file. A
dictionary-like structure with the keys val (value) and unit is used to define
the membrane time constant, which is the same across all populations. The num-
bers of neurons in each population are defined as a list. Only the numbers for the
first three populations are displayed.

Once the parameters are defined, a microcircuit model is instantiated by passing
the respective parameter file to the model constructor; the units are automatically
converted to SI units. Then the firing rates are computed. For comparison, we finally
load the simulated rates from Bos et al. (2016):

# create the network model using a network parameter yaml file

microcircuit = nnmt.models.Microcircuit(’network_params.yaml’,

’analysis_params.yaml’)

# calculate firing rates

firing_rates = nnmt.lif.exp.firing_rates(microcircuit)

# load simulated results

simulated_firing_rates = (

nnmt.input_output.load_h5(’Bos2016_results.h5’)[’rates’])

The simulated rates have been obtained by a numerical network simulation (for
simulation details see Bos et al., 2016) in which the neuron populations are connected
according to the model’s original connectivity rule: “random, fixed total number with
multapses (autapses prohibited)”, see Senk et al. (2021) as a reference for connectivity
concepts. The term multapses refers to multiple connections between the same pair
of neurons and autapses are self-connections; with this connectivity rule multapses
can occur in a network realization but autapses are not allowed. For simplicity,
the theoretical predictions assume a connectivity with a fixed in-degree for each
neuron. Dasbach et al. (2021) show that simulated spike activity data of networks
with these two different connectivity rules are characterized by differently shaped rate
distributions (“reference” in their Figures 3d and 4d). In addition, the weights in the
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simulation are normally distributed while the theory replaces each distribution by its
mean; this corresponds to the case Nbins = 1 in Dasbach et al. (2021). Nevertheless,
our mean-field theoretical estimate of the average population firing rates is in good
agreement with the simulated rates (Panel B of Figure 2.2 on page 19).

computation of power spectrum Starting with the previously defined mi-
crocircuit, the toolbox’s modular structure in combination with the model workflow
permits a step-by-step calculation of the power spectra:

# calculate required quantities

nnmt.lif.exp.working_point(microcircuit)

nnmt.lif.exp.transfer_function(microcircuit)

nnmt.network_properties.delay_dist_matrix(microcircuit)

nnmt.lif.exp.effective_connectivity(microcircuit)

# calculate power spectra

power_spectra = nnmt.lif.exp.power_spectra(microcircuit)

The inherent structure of the theory is emphasized in these steps: After instantiating
the network model class with given network parameters, we determine the working
point, which characterizes the statistics of the model’s stationary dynamics. It is
defined by the population firing rates, the mean, and the standard deviation of the
input to a neuron of the respective population. This is necessary for determining the
transfer functions. The calculation of the delay distribution matrix is then required
for calculating the effective connectivity and to finally get an estimate of the power
spectra. Panel C of Figure 2.2 on page 19 reproduces the top left panel of Figure 1E in
Bos et al. (2016) and shows the spectrum for population 2/3E of the adjusted version
of the microcircuit model.

The numerical predictions obtained from the toolbox largely coincide with simu-
lated data taken from the original publication (Bos et al., 2016) and reveal dominant
oscillations of the population activities in the low-γ range around 63 Hz. Further-
more, faster oscillations with peak power around 300 Hz are predicted with higher
magnitudes in the inhibitory populations 4I, 5I, and 6I.

The deviation between predicted and simulated power spectra seen at ∼ 130 Hz
in population 2/3E could be a harmonic of the correctly predicted, prominent 63 Hz
peak; a non-linear effect not captured in linear response theory. Furthermore, the
systematic overestimation of the power spectrum at large frequencies is explained by
the limited validity of the analytical approximation of the transfer function for high
frequencies.

further possibilities NNMT offers a lot more options for analyzing and devel-
oping a network model, and we present a variety of them in the original publication
Layer et al. (2022). For example, we show that using the included sensitivity measure
(Bos et al., 2016), which provides an analytical relation between the network model’s
connectivity and the peaks of the power spectra, we can systematically modify the
frequency and amplitude of the low-γ peak of the microcircuit model. Furthermore,
we demonstrate how the toolbox can be utilized to investigate a network model’s
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non-linear response behavior to external input (Sanzeni et al., 2020), and — worth
highlighting in the context of this thesis — we present a method for mapping a LIF
network model to a simpler rate network model (Senk et al., 2020), which allows
investigating spatio-temporal pattern formation properties with the help of neural
field theory, as done in Chapter 4.

2.4 discussion

Mean-field theory grants important insights into the dynamics of neuronal networks.
However, the lack of a publicly available numerical implementation for most meth-
ods entails a significant initial investment of time and effort prior to any scientific
investigations. In this chapter, we present the open-source toolbox NNMT, which
currently focuses on methods for LIF neurons but is intended as a platform for
collecting standard implementations of various neuronal network model analyses
based on mean-field theory that have been thoroughly tested and validated by the
neuroscientific community (Riquelme and Gjorgjieva, 2021). As an illustrative use
case, we examine the cortical microcircuit model of Potjans and Diesmann (2014),
compute its firing rates and power spectra using NNMT, and compare the findings to
known simulation results from the literature (Bos et al., 2016).

In the remainder of the discussion, we compare NNMT to other tools suited for
network model analysis. We expand on the different use cases of NNMT and also
point out the inherent limitations of analytical methods for neuronal network analysis.
We conclude with suggestions on how new tools can be added to NNMT and how the
toolbox may grow and develop in the future.

2.4.1 Comparison to other tools

There are various approaches and corresponding tools that can help to gain a better
understanding of a neuronal network model. There are numerous simulators that
numerically solve the dynamical equations for concrete realizations of a network
model and all its stochastic components, often focusing either on the resolution of
single-neurons, for example NEST (Gewaltig and Diesmann, 2007), Brian (Stimberg
et al., 2019), or Neuron (Hines and Carnevale, 2001), or on the population level, for
example TheVirtualBrain (Sanz Leon et al., 2013). Similarly, general-purpose dynamical
system software like XPPAUT (Ermentrout, 2002) can be used. Simulation tools, like
DynaSim (Sherfey et al., 2018), come with enhanced functionality for simplifying batch
analysis and parameter explorations. All these tools yield time-series of activity, and
some of them even provide the methods for analyzing the generated data. However,
simulations only indirectly link a model’s parameters with its activity: to gain an
understanding of how a model’s parameters influence the statistics of their activity,
it is necessary to run many simulations with different parameters and analyze the
generated data subsequently.

Other approaches provide a more direct insight into a model’s behavior on an
abstract level: TheVirtualBrain and the Brain Dynamics Toolbox (Heitmann et al.,
2018), for example, allow plotting a model’s phase space vector field while the
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parameters can be changed interactively, allowing for exploration of low-dimensional
systems defined by differential equations without the need for simulations. XPPAUT
has an interface to AUTO-07P (Doedel and Oldeman, 1998), a software for performing
numerical bifurcation and continuation analysis. It is worth noting that such tools are
limited to models that are defined in terms of differential equations. Models specified
in terms of update rules, such as binary neurons, need to be analyzed differently, for
example using mean-field theory.

A third approach is to simplify the model analytically and simulate the simplified
version. The simulation platform DiPDE3 utilizes the population density approach
to simulate the statistical evolution of a network model’s dynamics. Schwalger et al.
(2017) start from a microscopic model of generalized integrate-and-fire neurons and
derive mesoscopic mean-field population equations, which reproduce the statistical
and qualitative behavior of the homogeneous neuronal sub-populations. Similarly,
Montbrió et al. (2015) derive a set of non-linear differential equations describing the
dynamics of the rate and mean membrane potentials of a population of quadratic
integrate-and-fire (QIF) neurons. The simulation platform PyRates (Gast et al., 2019)
provides an implementation of this QIF mean-field model, and allows simulating
them to obtain the temporal evolution of the population activity measures.

However, mean-field and related theories can go beyond such reduced dynamical
equations: they can directly link model parameters to activity statistics, and they can
even provide access to informative network properties that might not be accessible
otherwise. The spectral bound (Rajan and Abbott, 2006) of the effective connectivity
matrix in linear response theory (Lindner et al., 2005; Pernice et al., 2011; Trousdale
et al., 2012) is an example of such a property. It is a measure for the stability of the
linearized system and determines, for example, the occurrence of slow dynamics and
long-range correlations, as we demonstrate in Chapter 3. Another example is the
sensitivity measure briefly mentioned at the end of Section 2.3.2, which directly links
a network model’s connectivity with the properties of its power spectrum. These
measures are not accessible via simulations. They require analytical calculation.

Similarly, NNMT is not a simulator. NNMT is a collection of mean-field equation
implementations that directly relate a model’s parameters to the statistics of its
dynamics or to other informative properties. It provides these implementations in
a format that makes them applicable to as many network models as possible. This
is not to say that NNMT does not involve numerical integration procedures; solving
self-consistent equations, such as in the case of the firing rates calculations in Section
2.3.2 is a common task, and a collection of respective solvers is part of NNMT.

2.4.2 Use cases

In Section 2.3.2, we present a concrete application of some of the tools available
in NNMT, and the original publication (Layer et al., 2022), as well as the online
documentation2, contain many more usage examples. Here, we consider such exam-
ples from a more general perspective to highlight the use cases NNMT lends itself to,
as well as provide some ideas for how the toolbox could be utilized in future projects.

3 http://alleninstitute.github.io/dipde

http://alleninstitute.github.io/dipde
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Analytical methods have the advantage of being fast, and typically they only require
a limited amount of computational resources. The computational costs for calculating
analytical estimates of dynamical network properties like firing rates, as opposed to
the costs of running simulations of a network model, are independent of the number
of neurons the network is composed of. This is especially relevant for parameter
space explorations, for which many simulations have to be performed. To speed
up prototyping, a modeler can first perform a parameter scan using analytical tools
from NNMT to get an estimate of the right parameter regimes and subsequently run
simulations on this restricted set of parameters to arrive at the final model parameters.
An example of such a parameter scan is given in Section 3.2.1 in Layer et al. (2022),
where the firing rates of a network are studied as a function of the external input.

Additionally to speeding up parameter space explorations, analytical methods may
guide parameter space explorations in another way: namely, by providing an analytical
relation between network model parameters and network dynamics, which allows a
targeted adjustment of specific parameters to achieve a desired network activity. The
prime example implemented in NNMT is the sensitivity measure briefly mentioned
in Section 2.3.2, which provides an intuitive relation between the network connectivity
and the peaks of the power spectrum (Panel C of Figure 2.2 on page 19) corresponding
to the dominant oscillation frequencies. As shown in the final part of Section 3.3.3 in
(Layer et al., 2022), the sensitivity measure identifies the connections which need to be
adjusted in order to modify the dominant oscillation mode in a desired manner. This
illustrates a mean-field method that provides a modeler with additional information
about the origin of a model’s dynamics, such that a parameter space exploration can
be restricted to the few identified crucial model parameters.

A modeler investigating which features of a network model are crucial for the emer-
gence of certain activity characteristics observed in simulations might be interested in
comparing models of differing complexity. The respective mappings can be derived in
mean-field theory, and one variant included in NNMT, which is presented in Section
3.4 in Layer et al. (2022), allows mapping a LIF network to a simpler rate network.
This is useful to investigate whether spiking dynamics is crucial for the observed
phenomenon.

On a general note, which kind of questions researchers pursue is limited by and
therefore depends on the tools they have at hand (Dyson, 2012). The availability of
sophisticated neural network simulators for example has lead to the development of
conceptually new and more complex neural network models, precisely because their
users could focus on actual research questions instead of implementations. We hope
that collecting useful implementations of analytical tools for network model analysis
will have a similar effect on the development of new tools and that it might lead to
new, creative ways of applying them.

2.4.3 Limitations

As a collection of analytical methods, NNMT comes with inherent limitations that
apply to any toolbox for analytical methods: it is restricted to network, neuron, and
synapse models, as well as observables, for which a mean-field theory exists, and
the tools are based on analytical assumptions, simplifications, and approximations,
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restricting their valid parameter regimes and their explanatory power, which we
expand upon in the next paragraphs. Analytical methods can provide good esti-
mates of network model properties, but there are limitations that must be considered
when interpreting results provided by NNMT: First of all, the employed numerical
solvers introduce numerical inaccuracies, but they can be remedied by changing
hyperparameters such as integration step sizes or iteration termination thresholds.
More importantly, analytical methods almost always rely on approximations, which
can only be justified if certain assumptions are fulfilled. Typical examples of such
assumptions are fast or slow synapses, or a random connectivity. If such assumptions
are not met, at least approximately, and the valid parameter regime of a tool is left,
the corresponding method is not guaranteed to give reliable results. Hence, it is
important to be aware of a tool’s limitations, which we aim to document as thoroughly
as possible.

An important assumption of mean-field theory is uncorrelated Poissonian inputs.
As discussed in Section 1.4, asynchronous irregular activity is a robust feature of
balanced networks, and mean-field theory is well-suited to describe the activity of such
models. However, if a network model features highly correlated activity, or strong
external input common to many neurons, approximating the input by uncorrelated
noise no longer holds and mean-field estimates become unreliable.

In addition to the breakdown of such assumptions, some approaches, like linear
response theory, rely on neglecting higher order terms. This restricts the tools’ explana-
tory power, as they cannot predict higher order effects, such as the presence of higher
harmonics in a network’s power spectrum. Addressing these deficiencies necessitates
using more elaborate analyses, and users should be aware of such limitations when
interpreting the results.

Finally, a specific limitation of NNMT is that it currently only collects methods
for LIF neurons. However, one of the aims of our publication (Layer et al., 2022) is
to encourage other scientists to contribute to the collection. In the next section, we
outline what sorts of contributions are suitable and how they can be made.

2.4.4 How to contribute and outlook

A toolbox like NNMT always is an ongoing project, and there are various aspects
that can be improved. In this section, we briefly discuss how available methods could
be improved, what and how new tools could be added, as well as the benefits of
implementing a new method with the help of NNMT.

First of all, NNMT in its current state is partly vectorized but the included methods
are not parallelized, e.g., using multiprocessing or MPI for Python (mpi4py). Vector-
ization relies on NumPy (Harris et al., 2020) and SciPy (Virtanen et al., 2020), which are
thread-parallel for specific backends, e.g., IntelMKL. With the tools available in the
toolbox at the moment, run-time only becomes an issue in extensive parameter scans,
for instance, when the transfer function needs to be calculated for a large range of
frequencies. To further reduce the runtime, the code could be made fully vectorized.
Alternatively, parallelization of many tools in NNMT is straightforward, as many of
them include for loops over the different populations of a network model and for

loops over the different analysis frequencies. A third option is just-in-time compilation,
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as provided by Numba (Lam et al., 2015). Another aspect to consider is the range of
network models a tool can be applied to. Thus far, the toolbox primarily supports
arbitrary block structured networks. Future developments could extend the class of
networks to even more general models.

Due to the research focus at our lab, NNMT presently mainly contains tools for
LIF neurons in the fast synaptic regime and networks with random connectivity.
Nonetheless, the structure of NNMT allows for adding methods for different neuron
types, like for example binary (Ginzburg and Sompolinsky, 1994) or conductance-
based neurons (Izhikevich, 2007; Richardson, 2007), as well as more elaborate network
models. Another way to improve the toolbox is adding tools that complement the
existing ones: As discussed in Section 2.4.3, many mean-field methods only give valid
results for certain parameter ranges. Sometimes, there exist different approximations
for the same quantity, valid in complementary parameter regimes. A concrete example
is the currently implemented version of the transfer function for leaky integrate-
and-fire neurons, based on Schuecker et al. (2015), which gives a good estimate for
small synaptic time constants compared to the membrane time constant τs/τm � 1. A
complementary estimate for τs/τm � 1 has been developed by Moreno-Bote and Parga
(2006). Similarly, the current implementation of the firing rates of leaky integrate-and-
fire neurons, based on the work of Fourcaud and Brunel (2002), is valid for τs/τm � 1.
Recently, van Vreeswijk and Farkhooi (2019) have developed a method accurate for all
combinations of synaptic and membrane time constants.

In the following, we explain how such implementations can be added and how us-
ing NNMT helps implementing new methods. Clearly, the implementations of NNMT
help implementing methods that build on already existing ones. An example is the
firing rate for LIF neurons with exponential synapses nnmt.lif.exp._firing_rates()

which wraps the calculation of firing rates for LIF neurons with delta synapses
nnmt.lif.delta._firing_rates(). Additionally, the toolbox may support the imple-
mentation of tools for other neuron models. As an illustration, let us consider adding
the computation of the mean activity for a network of binary neurons (included in
NNMT 1.1.0). We start with the equations for the mean input µa, its variance σ2

a , and
the vector of mean population activities m (Helias et al., 2014, Eqs. 4, 6, and 7)

µa (m) = ∑
b

Kab Jabmb ,

σ2
a (m) = ∑

b
Kab J2

abmb (1−mb) , (2.5)

ma (µa, σa) =
1
2

erfc
(

Θa − µa√
2σa

)
,

with indegree matrix Kab from population b to population a, synaptic weight matrix Jab,
and firing-threshold Θa. The sum ∑b may include an external population providing
input to the model. This set of self-consistent equations has the same structure as the
self-consistent equations for the firing rates of a network of LIF neurons Eq. (2.3): the
input statistics are given as functions of the rate, and the rate is given as a function
of the input statistics. Therefore, it is possible to reuse the firing rate integration
procedure for LIF neurons, providing immediate access to the two different integration
methods presented in Section 3.2.1 in Layer et al. (2022). Accordingly, it is sufficient to
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implement Eq. (2.5) in a new submodule nnmt.binary and apply the solver provided
by NNMT to extend the toolbox to binary neurons.

The above example demonstrates the benefits of collecting analytical tools for
network model analysis in a common framework. The more methods and correspond-
ing solvers the toolbox comprises, the easier implementing new methods becomes.
Therefore, contributions to the toolbox are highly welcome; this can be done via the
standard pull request workflow on GitHub (see the “Contributors guide” of the official
documentation of NNMT2). We hope that in the future, many scientists will contribute
to this collection of analytical methods for neuronal network model analysis, such
that, at some point, we will have tools from all parts of mean-field theory of neuronal
networks, made accessible in a usable format to all neuroscientists.
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This chapter is based on the following publication:
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Voges, Michael von Papen, Thomas Brochier, Alexa Riehle, Markus Diesmann, Sonja
Grün & Moritz Helias (2022), Global organization of neuronal activity only requires
unstructured local connectivity, eLife, 11, e68422, DOI: 10.7554/eLife.68422

Author contributions:
The author shares first authorship of this publication with David Dahmen. Under
the supervision of David Dahmen and Moritz Helias, the author carried out the
analytical investigation and the corresponding numerical validation, developed the
NEST simulation, and evaluated the simulated data, while David Dahmen focused
on the conceptualization and, jointly with Paulina Anna Dąbrowska, experimental
data analysis. All authors contributed to the conceptual work and the writing of the
manuscript.

3.1 introduction

As discussed in the introduction (Section 1.4), the theory of random networks is
well established, and the coordination of neuronal activity in such networks has
been explored extensively (Ginzburg and Sompolinsky, 1994; Renart et al., 2010;
Pernice et al., 2011; Tetzlaff et al., 2012; Grytskyy et al., 2013; Helias et al., 2014). In
unstructured random networks each pair of neurons may have a direct connection.
Introducing a distance-dependent connectivity, however, restricts the spatial range
within which a neuron is likely to form direct connections; realistically, to a range of a
few hundred micrometers (cf. Section 1.1). Nevertheless, neurons have to and clearly
do coordinate their activity across whole cortical areas spanning several millimeters.
The population coding paradigm (Georgopoulos et al., 1983), one of the early notions
of coding in neuronal networks, postulates that entire populations of similarly tuned
neurons behave coherently to encode information, necessitating a positive correlation
between the participating neurons. Moreover, recently evidence accumulated that
neuronal activity often evolves within complex low-dimensional manifolds, which
implies even more involved ways of neuronal activity coordination (Gallego et al.,
2017, 2018, 2020). The properties of such manifolds are determined by the structure
of the correlations (Abbott et al., 2011; Mazzucato et al., 2016). Yet, it is unclear
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how distant neurons that are unlikely to be connected may nonetheless be strongly
coordinated.

To answer this question, we combine the analytical investigation of a spatially orga-
nized neuronal network model with the analysis of parallel spiking data from macaque
motor cortex. We here quantify coordination by Pearson correlation coefficients and
pair-wise covariances, which measure how temporal fluctuations of the neurons’ ac-
tivities around their mean firing rates are correlated. We show that even with only
unstructured and short-range connections, strong covariances across distances of
several millimeters emerge naturally in balanced networks if their dynamical state
is within a critical regime which is caused by strongly heterogeneous local network
connections, like in cortical brain networks. Intuitively, heterogeneous connectivity
provides a large number of different indirect pathways linking two neurons, along
which activity might propagate, determining the neurons’ coordination. While mean
covariances are readily accessible by mean-field techniques and have been shown to
be small in balanced networks (Renart et al., 2010; Tetzlaff et al., 2012), explaining
covariances on the level of individual pairs requires methods from statistical physics
of disordered systems. With such a theory, here derived for spatially organized
excitatory-inhibitory networks, we show that large pair-wise covariances arise at all
distances if the network is close to the critical point. These predictions are confirmed
by recordings of macaque motor cortex activity. The long-range coordination found
in this study is not merely determined by the anatomical connectivity, but depends
substantially on the network state, which is characterized by the individual neurons’
mean firing rates. This allows the network to adjust the neuronal coordination pattern
in a dynamic fashion, which we demonstrate through simulations and by comparing
two behavioral epochs of a reach-to-grasp experiment.

In the remainder of this chapter, we first have a look at correlations in the macaque
data in Section 3.2, and give an intuitive explanation for the observed coordination
patterns in Section 3.3. In Section 3.4, we introduce our model and explain the results
of our analysis, which yields predictions that are confirmed in the data in Section 3.5.
The theory provides a second hypothesis, which is illustrated in Section 3.6 using a
simulation of a simpler network model, and probed in the data in Section 3.7. Finally,
we discuss our results in Section 3.8.

3.2 macaque motor cortex shows long-range coordination patterns

We first analyze data from motor cortex of macaques during rest, recorded with
4× 4 mm2, 100-electrode Utah arrays with 400 µm inter-electrode distance (Panel A of
Figure 3.1 on page 31). The resting condition of motor cortex in monkeys is ideal to
assess intrinsic coordination between neurons during ongoing activity. In particular,
our analyses focus on true resting state data, devoid of movement-related transients in
neuronal firing (see Methods). Parallel single-unit spiking activity of ≈ 130 neurons
per recording session, sorted into putative excitatory and inhibitory cells, shows strong
spike-count correlations across the entire Utah array, well beyond the typical scale of
the underlying short-range connectivity profiles (Panels B and D of Figure 3.1 on page
31). Positive and negative correlations form patterns in space that are furthermore
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Figure 3.1: Salt-and-pepper structure of covariances in motor cortex. (A) Sketch of 10× 10
Utah electrode array recording in motor cortex of macaque monkey during rest. (B)
Spikes are sorted into putative excitatory (blue triangles) and inhibitory (red circles)
single units according to widths of spike waveforms (see Appendix Section B.2).
Resulting spike trains are binned in 1 s bins to obtain spike counts. (C) Population-
resolved distribution of pairwise spike-count Pearson correlation coefficients in
session E2 (E-E: excitatory-excitatory, E-I: excitatory-inhibitory, I-I: inhibitory-
inhibitory). (D) Pairwise spike-count correlation coefficients with respect to the
neuron marked by black triangle in one recording (session E2, see Methods). Grid
indicates electrodes of a Utah array, triangles and circles correspond to putative
excitatory and inhibitory neurons, respectively. Size as well as color of markers
represent correlation. Neurons within the same square were recorded on the same
electrode.
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Figure 3.2: Correlations from direct and indirect connections. (A) Positive correlation (green
neuron i) follows from direct excitatory connection (top) or shared input (middle).
(B) Negative correlation (magenta) between two excitatory neurons cannot be
explained by direct connections: Neuronal interactions are not only mediated via
direct connections (n = 1; sign uniquely determined by presynaptic neuron type)
but also via indirect paths of different length n > 1. The latter may have any sign
(positive: green; negative: purple) due to intermediate neurons of arbitrary type
(triangle: excitatory, circle: inhibitory).

seemingly unrelated to the neuron types. All populations show a large dispersion of
both positive and negative correlation values (Panel C of Figure 3.1 on page 31).

The classical view on pairwise correlations in balanced networks (Ginzburg and
Sompolinsky, 1994; Renart et al., 2010; Pernice et al., 2011, 2012; Tetzlaff et al., 2012;
Helias et al., 2014) focuses on averages across many pairs of cells: average correlations
are small if the network dynamics is stabilized by an excess of inhibitory feedback;
dynamics known as the ’balanced state’ arise (van Vreeswijk and Sompolinsky, 1996;
Amit and Brunel, 1997b; van Vreeswijk and Sompolinsky, 1998): Negative feedback
counteracts any coherent increase or decrease of the population-averaged activity,
preventing the neurons from fluctuating in unison (Tetzlaff et al., 2012). Breaking this
balance in different ways leads to large correlations (Rosenbaum and Doiron, 2014;
Darshan et al., 2018; Baker et al., 2019). Can the observation of significant correlations
between individual cells across large distances be reconciled with the balanced state?
In the following, we provide an intuitive mechanistic explanation.

3.3 multi-synaptic connections determine correlations

Connections mediate interactions between neurons. Many studies therefore directly
relate connectivity and correlations (Pernice et al., 2011, 2012; Trousdale et al., 2012;
Brinkman et al., 2018; Kobayashi et al., 2019). From exclusively direct connections, one
would expect positive correlations between excitatory neurons, negative correlations
between inhibitory neurons, and a mix of negative and positive correlations only
for excitatory-inhibitory pairs. Likewise, a shared input from inside or outside the
network only imposes positive correlations between any two neurons (Panel A of



3.3 multi-synaptic connections determine correlations 33

Figure 3.2 on page 32). The observations that excitatory neurons may have negative
correlations (Panel D of Figure 3.1 on page 31), as well as the broad distribution of
correlations covering both positive and negative values (Panel C of Figure 3.1 on page
31), are not compatible with this view. In fact, the sign of correlations appears to be
independent of the neuron types. So how do negative correlations between excitatory
neurons arise?

The view that equates connectivity with correlation implicitly assumes that the
effect of a single synapse on the receiving neuron is weak. This view, however, regards
each synapse in isolation. Could there be states in the network where, collectively,
many weak synapses cooperate, as perhaps required to form low-dimensional neu-
ronal manifolds? In such a state, interactions may not only be mediated via direct
connections but also via indirect paths through the network (Panel B of Figure 3.2
on page 32). Such effective multi-synaptic connections may explain our observation
that far apart neurons that are most likely not connected directly display considerable
correlation of arbitrary sign.

Let us here illustrate the ideas first and corroborate them in subsequent sections.
Direct connections yield correlations of a predefined sign, leading to correlation
distributions with multiple peaks, e.g. a positive peak for excitatory neurons that
are connected and a peak at zero for neurons that are not connected. Multi-synaptic
paths, however, involve both excitatory and inhibitory intermediate neurons, which
contribute to the interaction with different signs (Panel B of Figure 3.2 on page 32).
Hence, a single indirect path can contribute to the total interaction with arbitrary sign
(Pernice et al., 2011). If indirect paths dominate the interaction between two neurons,
the sign of the resulting correlation becomes independent of their type. Given that
the connecting paths in the network are different for any two neurons, the resulting
correlations can fall in a wide range of both positive and negative values, giving rise
to the broad distributions for all combinations of neuron types in Panel C of Figure
3.1 on page 31. This provides a hypothesis why there may be no qualitative difference
between the distribution of correlations for excitatory and inhibitory neurons. In fact,
their widths are similar and their mean is close to zero (see Methods for exact values);
the latter being the hallmark of the negative feedback that characterizes the balanced
state. The subsequent model-based analysis will substantiate this idea and show that
it also holds for networks with spatially organized heterogeneous connectivity.

To play this hypothesis further, an important consequence of the dominance of
multi-synaptic connections could be that correlations are not restricted to the spatial
range of direct connectivity. Through interactions via indirect paths the reach of a
single neuron could effectively be increased. But the details of the spatial profile of
the correlations in principle could be highly complex as it depends on the interplay of
two antagonistic effects: On the one hand, signal propagation becomes weaker with
distance, as the signal has to pass several synaptic connections. Along these paths
mean firing rates of neurons are typically diverse, and so are their signal transmission
properties (De la Rocha et al., 2007). On the other hand, the number of contributing
indirect paths between any pair of neurons proliferates with their distance. With
single neurons typically projecting to thousands of other neurons in cortex, this leads
to involved combinatorics; intuition here ceases to provide a sensible hypothesis on
what is the spatial profile and range of coordination between neurons. Also it is
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unclear which parameters these coordination patterns depend on. The model-driven
and analytical approach presented in the next section will provide such a hypothesis.

3.4 almost unstable networks show shallow exponential decay of

covariances

We first note that the large magnitude and dispersion of pair-wise correlations in
the data and their spatial structure primarily stem from features in the underlying
covariances between neuron pairs (Appendix Figure B.1 on page 96). Given the close
relationship between correlations and covariances (Panels D and E of Appendix Figure
B.1 on page 96), we analyze covariances in the following, as these are less dependent
on single neuron properties and thus simpler to treat analytically.

To gain an understanding of the spatial features of intrinsically generated covari-
ances in balanced critical networks, we investigate a network of N excitatory and
inhibitory rate neurons on a two-dimensional sheet (Panel A of Figure 3.3 on page 35),
whose activity x ∈ RN is described by

τ
d
dt

x = −x + J ·ψ (x) + ξ ,

such that each neuron receives external uncorrelated Gaussian white noise input ξ,
〈ξi(t)〉 = µ,

〈
ξi(s)ξ j(t)

〉
= Diδijδ(s− t). The neuronal integration time constant is

τ, and ψ is the neurons’ non-linear input-output function. To allow for multapses,
multiple connections between pairs of neurons, the connections Jij between the neurons
are drawn from a binomial distribution, and the connection probability decays with
inter-neuronal distance on a characteristic length scale R (for more details see Methods
or Appendix Section B.4). We investigate the covariance statistics in this model by
help of linear-response theory, which has been shown to approximate spiking neuron
models well (Pernice et al., 2012; Trousdale et al., 2012; Tetzlaff et al., 2012; Helias
et al., 2013; Grytskyy et al., 2013; Dahmen et al., 2019). To that end, we linearize the
equation around the network’s working point x0, its stationary state, which yields a
description of the fluctuations δx = x− x0 around the working point

τ
d
dt

δx = −δx + W · δx + ξ′ ,

with 〈ξ ′i(t)〉 = 0,
〈

ξ ′i(s)ξ
′
j(t)
〉
= Diδijδ(s− t). Here we introduced the matrix Wij =

Jijψ
′ (x0,j

)
, in the following referred to as effective connectivity.

Previous studies have used linear-response theory in combination with methods
from statistical physics and field theory to gain analytic insights into both mean
covariances (Ginzburg and Sompolinsky, 1994; Lindner et al., 2005; Pernice et al.,
2011; Tetzlaff et al., 2012) and the width of the distribution of covariances (Dahmen
et al., 2019). Field-theoretic approaches, however, were so far restricted to purely
random networks devoid of any network structure and thus not suitable to study
spatial features of covariances. To analytically quantify the relation between the
spatial ranges of covariances and connections, we therefore here develop a theory for
spatially organized random networks with multiple populations. The randomness in
our model is based on the sparseness of connections, which is one of the main sources
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R
R

Figure 3.3: Spatially organized E-I network model. (A) Network model: space is divided
into cells with four excitatory (triangles) and one inhibitory (circle) neuron each.
Distance-dependent connection probabilities (shaded areas) are defined with re-
spect to cell locations. (B) Eigenvalues λ of effective connectivity matrix for network
in dynamically balanced critical state. Each dot shows the real part Re(λ) and
imaginary part Im(λ) of one complex eigenvalue. The spectral bound (dashed
vertical line) denotes the right-most edge of the eigenvalue spectrum. (C) Sim-
ulation: covariances of excitatory neurons over distance x between cells (blue
dots: individual pairs; cyan: mean; orange: standard deviation; sample of 150
covariances at each of 200 chosen distances). (D) Theory: Variance of covariance
distribution as a function of distance x for different spectral bounds of the effective
connectivity matrix. Inset: effective decay constant of variances diverges as the
spectral bound approaches one. (E) For large spectral bounds, the variances of EE,
EI, and II covariances decay on a similar length scale. Spectral bound ρ = 0.95.
Other parameters see Appendix Table B.3 on page 131.
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of heterogeneity in cortical networks in that it contributes strongly to the variance of
connections (see Appendix Section B.15).

Our aim is to find an expression for mean and variance of the covariances as
functions of distance between two neurons. The detailed derivation is presented in
Appendix Section B.4–Section B.12; a summary of the extensive derivation is provided
in the Methods. Here we simply state the main results: Field-theoretic methods,
combined with linear-response theory, allow us to obtain expressions for the mean
covariance c and variance of covariance δc2

c = [1−M]−1 D
1− ρ2 [1−M]−T , (3.1)

δc2 = [1− S]−1
(

D
1− ρ2

)2

[1− S]−T ,

with identity matrix 1, input noise strength D, and the effective connectivity’s spectral
bound ρ, the largest real part among all eigenvalues of W (Panel B of Figure 3.3 on
page 35). The matrices M and S represent the mean and variance of the random
effective connectivity matrix W , and hence contain the information about the distance-
dependent connectivity statistics. Because the analysis of mean and variance of the
covariances is identical, we just look at the variances here. Leveraging the symmetries
S inherits from the connectivity, taking the continuum limit, and using approximations
for large spectral radii ρ . 1, allows us to diagonalize the expressions. This reveals
the spatial dependency of the variances of the covariance

δc2(x) =
(

D
1− ρ2

)2

[δ(|x|) + B(x) + (B ∗ ∗B)(x)] ,

with

B(x) ∝ K0

(
− |x|

Reff

)
|x|→∞

∝
exp(−|x|/Reff)√

|x|
,

where K0(x) denotes the modified Bessel function of second kind and zeroth order
(Olver et al., 2010). The effective decay constant Reff is given by

Reff

R
∼
√

ρ2

1− ρ2 + const.� 1 . (3.2)

The equivalent results for the mean covariances come with different constants and pref-
actors, and the spectral bound replaced by the population eigenvalue, which corresponds
to the all-ones eigenvector (Panel B of Figure 3.3 on page 35).

The analytical results show that despite the complexity of the various indirect
interactions, both the mean and the variance of covariances follow simple exponential
laws in the long-distance limit. These laws are universal in that they do not depend on
details of the spatial profile of connections, as long as the profile decays with distance.
Our theory shows that the associated length scales are strikingly different for means
and variances of covariances. They each depend on the reach of direct connections
and on specific eigenvalues of the effective connectivity matrix. These eigenvalues
summarize various aspects of network connectivity and signal transmission into a
single number: Each eigenvalue belongs to a “mode”, a combination of neurons that
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act collaboratively, rather than independently, coordinating neuronal activity within a
one-dimensional subspace. To start with, there are as many such subspaces as there
are neurons. But if the spectral bound in Panel B of Figure 3.3 on page 35 is close
to one, only a relatively small fraction of them, namely those close to the spectral
bound, dominate the dynamics; the dynamics is then effectively low-dimensional.
Additionally, the eigenvalue quantifies how fast a mode decays when transmitted
through a network. The eigenvalues of the dominating modes are close to one,
which implies a long lifetime. The corresponding fluctuations thus still contribute
significantly to the overall signal, even if they passed by many synaptic connections.
Therefore, indirect multi-synaptic connections contribute significantly to covariances
if the spectral bound is close to one, and in that case we expect to see long-range
covariances.

To quantify this idea, for the mean covariance c̄ we find that the dominant behavior
is an exponential decay c ∼ exp(−x/R) on a length scale R. This length scale is
determined by the population eigenvalue, corresponding to the mode in which all
neurons are excited simultaneously. Its position solely depends on the ratio between
excitation and inhibition in the network and becomes more negative in more strongly
inhibition-dominated networks (Panel B of Figure 3.3 on page 35). We show in
Appendix Section B.9.4 that this leads to a steep decay of mean covariances with
distance. The variance of covariances, however, predominantly decays exponentially
on a length scale Reff that is determined by the spectral bound ρ (Panels B and D
of Figure 3.3 on page 35). In inhibition-dominated networks, ρ is determined by
the heterogeneity of connections. For ρ . 1 we obtain the effective length scale
Eq. (3.2). What this means is that precisely at the point where ρ is close to one, when
neural activity occupies a low-dimensional manifold, the length scale Reff on which
covariances decay exceeds the reach of direct connections by a large factor (Panel D of
Figure 3.3 on page 35). As the network approaches instability, which corresponds to
the spectral bound ρ going to one, the effective decay constant diverges (Panel D inset
of Figure 3.3 on page 35) and so does the range of covariances. A distance-resolved
histogram of the covariances in a concrete instance of the spatially organized E-I
network close to the critical point confirms this prediction: Panel C of Figure 3.3 on
page 35 shows that the mean covariance is close to zero but the width or variance of
the covariance distribution stays large, even for large distances.

Our population-resolved theoretical analysis, furthermore, shows that the larger the
spectral bound the more similar the decay constants between different populations,
with only marginal differences for ρ . 1 (Panel E of Figure 3.3 on page 35). This holds
strictly for target-agnostic connectivity, in which the connection weights only depend
on the type of the presynaptic neuron but not on the type of the postsynaptic neuron.
Moreover, we find a relation between the squared effective decay constants and the
squared anatomical decay constants of the form

R2
eff,E − R2

eff,I = const. ·
(

R2
E − R2

I
)

. (3.3)

This relation is independent of the eigenvalues of the effective connectivity matrix, as
the constant of order O(1) does only depend on the choice of the connectivity profile.
For ρ ' 1, this means that even though the absolute value of both effective length
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Figure 3.4: Long-range covariances in macaque motor cortex. Variance of covariances as a
function of distance. (A) Population-specific exponential fits (lines) to variances of
covariances (dots) in session E2, with fitted decay constants indicated in the legend
(I-I: putative inhibitory neuron pairs, I-E: inhibitory-excitatory, E-E: excitatory pairs).
Dots show the empirical estimate of the variance of the covariance distribution for
each distance. Size of the dots represents relative count of pairs per distance and
was used as weighting factor for the fits to compensate for uncertainty at large
distances, where variance estimates are based on fewer samples. Mean squared
error 2.918. (B) Population-specific exponential fits (lines) analogous to (A), with
slopes constrained to be identical. This procedure yields a single fitted decay
constant of 1.029 mm. Mean squared error 2.934. (C) Table listing decay constants
fitted as in (B) for all recording sessions and the ratios between mean squared
errors of the fits obtained in procedures B and A.

scales on the left hand side is large, their relative difference is small because it equals
the small difference of anatomical length scales on the right hand side.

3.5 pairwise covariances in motor cortex decay on a millimeter

scale

To check if these predictions are confirmed by the data from macaque motor cortex,
we first observe that, indeed, covariances in the resting state show a large dispersion
over almost all distances on the Utah array (Figure 3.4 on page 38). Moreover, the
variance of covariances agrees well with the predicted exponential law: Performing
an exponential fit reveals length constants above one millimeter. These large length
constants have to be compared to the spatial reach of direct connections, which is
about an order of magnitude shorter, in the range of 100− 400 µm (Schnepel et al.,
2015), so below the 400 µm inter-electrode distance of the Utah array (Section 1.2).
The shallow decay of the variance of covariances is, next to the broad distribution
of covariances, a second indication that the network is in the dynamically balanced
critical regime, in line with the prediction by Eq. (3.2).

The population-resolved fits to the data show a larger length constant for excitatory
covariances than for inhibitory ones (Panel A of Figure 3.4 on page 38). This is
qualitatively in line with the prediction of Eq. (3.3) given the — by tendency —
longer reach of excitatory connections compared to inhibitory ones, as derived from
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morphological constraints (Section 1.1). In the dynamically balanced critical regime,
however, the predicted difference in slope for all three fits is practically negligible.
Therefore, we performed a second fit where the slope of the three exponentials is
constrained to be identical (Panel B of Figure 3.4 on page 38). The error of this fit is
only marginally larger than the ones of fitting individual slopes (Panel C of Figure
3.4 on page 38). This shows that differences in slopes are hardly detectable given the
empirical evidence, thus confirming the predictions of the theory given by Eq. (3.2)
and Eq. (3.3).

3.6 firing rates alter connectivity-dependent covariance patterns

Since covariances measure the coordination of temporal fluctuations around the
individual neurons’ mean firing rates, they are determined by how strong a neuron
transmits such fluctuations from input to output (Abeles, 1991). To leading order this
is explained by linear-response theory (Ginzburg and Sompolinsky, 1994; Lindner
et al., 2005; Pernice et al., 2011; Tetzlaff et al., 2012): How strongly a neuron reacts to
a small change in its input depends on its dynamical state, foremost the mean and
variance of its total input, which determine the network’s working point. If a neuron
receives almost no input, a small perturbation in the input will not be able to make the
neuron fire. If the neuron receives a large input, a small perturbation will not change
the firing rate either, as the neuron is already saturated. Only in the intermediate
regime the neuron is susceptible to small deviations of the input. Mathematically, this
behavior is described by the gain of the neuron, which is the derivative of the neuron’s
input-output function ψ′ (x0) at the working point (Abeles, 1991). Due to the non-
linearity of the input-output function, the gain is vanishing for very small and very
large inputs and non-zero in the intermediate regime. How strongly a perturbation
in the input to one neuron affects one of the subsequent neurons therefore not only
depends on the synaptic weight J but also on the gain ψ′ (x0) and thereby the working
point. This relation is captured by the effective connectivity Wij = Jijψ

′ (x0,j
)
. What

is the consequence of the dynamical interaction among neurons depending on the
working point? Can it be used to reshape the low-dimensional manifold, the collective
coordination between neurons?

The first part of this study reveals that long-range coordination can be achieved in a
network with short-range random connections if effective connections are sufficiently
strong. Alteration of the working point, for example by a different external input level,
can affect the covariance structure: The pattern of coordination between individual
neurons can change, even though the anatomical connectivity remains the same. In
this way, routing of information through the network can be adapted dynamically on
a mesoscopic scale. This is a crucial difference of such coordination as opposed to
coordination imprinted by complex but static connection patterns.

Here we first illustrate this concept by simulations of a network of 2000 sparsely
connected threshold-linear (ReLU) rate neuron models that receive Gaussian white
noise inputs centered around neuron-specific non-zero mean values (see Methods and
Appendix Section B.14 for more details). The ReLU activation function thereby acts as
a simple model for the vanishing gain for neurons with too low input levels. Note
that in cortical-like scenarios with low firing rates, neuronal working points are far
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Figure 3.5: Changes in effective connectivity modify coordination patterns. (A) Visualiza-
tion of effective connectivity: A sparse random network with given structural
connectivity (left network sketch) is simulated with two different input levels for
each neuron (depicted by insets), resulting in different firing rates (grayscale in
right network sketches) and therefore different effective connectivities (thickness
of connections) in the two simulations. Parameters can be found in Appendix
Table B.4 on page 131. (B1) Histogram of input currents across neurons for the two
simulations (N1 and N2). (B2) Scatter plot of inputs to subset of 1500 correspond-
ing neurons in the first and the second simulation (Pearson correlation coefficient
r = 0.90). (C) Correlation coefficients of rates and of covariances between the two
simulations (b, black) and within two epochs of the same simulation (w, gray).
(D) Correlation coefficient of rates (gray) and covariances (black) between the two
simulations as a function of the spectral bound ρ. (E1) Distribution of rates in the
two simulations (excluding silent neurons with |rate| < 10−3). (E2) Scatter plot of
rates in the first compared to the second simulation (Pearson correlation coefficient
r = 0.81). (F1) Distribution of covariances in the two simulation (excluding silent
neurons). (F2) Scatter plot of sample of 5000 covariances in first compared to the
second simulation (Pearson correlation coefficient r = 0.40). Here silent neurons
are included (accumulation of markers on the axes). Other parameters: number of
neurons N = 2000, connection probability p = 0.1, spectral bound for panels B, C,
E, F is ρ = 0.8.
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away from the high-input saturation discussed above, which is therefore neglected by
the choice of the ReLU activation function. For independent and stationary external
inputs covariances between neurons are solely generated inside the network via the
sparse and random recurrent connectivity. External inputs only have an indirect
impact on the covariance structure by setting the working point of the neurons.

We simulate two networks with identical structural connectivity and identical
external input fluctuations, but small differences in mean external inputs between
corresponding neurons in the two simulations (Panel A of Figure 3.5 on page 40).
These small differences in mean external inputs create different gains and firing rates
and thereby differences in effective connectivity and covariances. Since mean external
inputs are drawn from the same distribution in both simulations (Panel B of Figure
3.5 on page 40), the overall distributions of firing rates and covariances across all
neurons are very similar (Panels E1 and F2 of Figure 3.5 on page 40). But individual
neurons’ firing rates do differ (Panel E2 of Figure 3.5 on page 40). For the simple
ReLU activation used here, we in particular observe neurons with vanishing firing
rate in one simulation and non-zerofiring rate in the other simulation. This resulting
change of working points substantially affects the covariance patterns (Panel F2 of
Figure 3.5 on page 40): Differences in firing rates and covariances between the two
simulations are significantly larger than the differences across two different epochs of
the same simulation (Panel C of Figure 3.5 on page 40). The larger the spectral bound,
the more sensitive are the intrinsically generated covariances to the changes in firing
rates (Pane D of Figure 3.5 on page 40). Thus, a small offset of individual firing rates
is an effective parameter to control network-wide coordination among neurons. As
the input to the local network can be changed momentarily, we predict that in the
dynamically balanced critical regime coordination patterns should be highly dynamic.

3.7 coordination patterns in motor cortex depend on behavioral

context

In order to test the theoretical prediction in experimental data, we analyze parallel
spiking activity from macaque motor cortex, recorded during a reach-to-grasp experi-
ment (Brochier et al., 2018; Riehle et al., 2013). In contrast to the resting state, where
the animal was in an idling state, here the animal is involved in a complex task with
periods of different cognitive and behavioral conditions (Panel A of Figure 3.6 on page
42). We compare two epochs in which the animal is requested to wait and is sitting
still but which differ in cognitive conditions. The first epoch is a starting period (S),
where the monkey has self-initiated the behavioral trial and is attentive because it
is expecting a cue. The second epoch is a preparatory period (P), where the animal
has just received partial information about the upcoming trial and is waiting for the
missing information and the GO signal to initiate the movement.

Within each epoch, S or P, the neuronal firing rates are mostly stationary, likely
due to the absence of arm movements which create relatively large transient activities
in later epochs of the task, which are not analyzed here (see Appendix Section B.3).
The overall distributions of the firing rates are comparable for epochs S and P , but
the firing rates are distributed differently across the individual neurons: Panel C of
Figure 3.6 on page 42 shows one example session of monkey N, where the changes in
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Figure 3.6: Behavioral condition reshapes mesoscopic neuronal coordination. (A) Trial
structure of the reach-to-grasp experiment (Brochier et al., 2018). Blue segments
above the time axis indicate data pieces at trial start (dark blue: S (S1+S2)) and
during the preparatory period (light blue: P (P1+P2)). (B) Salt-and-pepper structure
of covariance during two different epochs (S1 and P1) of one recording session
of monkey N (151 trials, 106 single units, cf. Figure 3.1 on page 31 for recording
setup). For some neurons the covariance completely reverses, while in the others
it does not change. Inhibitory reference neuron indicated by black circle. (C1)
Distributions of firing rates during S1 and P1. (C2) Scatter plot comparing firing
rates in S1 and P1 (Pearson correlation coefficient r = 0.69). (D1/D2) Same as
panels C1/C2, but for covariances (Pearson correlation coefficient r = 0.40). (E)
Correlation coefficient of firing rates across neurons in different epochs of a trial
for eight recorded sessions. Correlations between sub-periods of the same epoch
(S1-S2, P1-P2; within-epoch, gray) and between sub-periods of different epochs
(Sx-Py; between-epochs, black). Data shown in panels B-D is from session 8. Box
plots to the right of the black dashed line show distributions obtained after pooling
across all analyzed recording sessions per monkey. The line in the center of each
box represents the median, box’s area represents the interquartile range, and the
whiskers indicate minimum and maximum of the distribution (outliers excluded).
Those distributions differ significantly (Student t-test, two-sided, p � 0.001). (F)
Correlation coefficient of covariances, analogous to panel E. The distributions of
values pooled across sessions also differ significantly (Student t-test, two-sided,
p� 0.001). For details of the statistical tests, see Methods. Details on number of
trials and units in each recording session are provided in Appendix Table B.1 on
page 99.
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firing rates between the two epochs are visible in the spread of markers around the
diagonal line in panel C2. To assess the extent of these changes, we split each epoch,
S and P, into two disjoint sub-periods, S1/S2 and P1/P2 (Panel A of Figure 3.6 on
page 42). We compute the correlation coefficient between the firing rate vectors of
two sub-periods of different epochs (“between” markers in Panel E of Figure 3.6 on
page 42) and compare it to the correlation coefficient between the firing rate vectors of
two sub-periods of the same epoch (“within” markers): Firing rate vectors in S1 are
almost perfectly correlated with firing rate vectors in S2 (r ≈ 1 for all of the five/eight
different recording sessions from different recording days for monkey E/N, similarly
for P1 and P2), confirming stationarity investigated in Appendix Section B.3. Firing
rate vectors in S1 or S2, however, show significantly lower correlation to firing rate
vectors in P1 and P2, confirming a significant change in network state between epochs
S and P (Panel E of Figure 3.6 on page 42).

The mechanistic model in the previous section shows a qualitatively similar scenario
(Panels C and E of Figure 3.5 on page 40). By construction it produces different firing
rate patterns in the two simulations. While the model is simplistic and in particular
not adapted to quantitatively reproduce the experimentally observed activity statistics,
its simulations and our underlying theory make a general prediction: Differences in
firing rates impact the effective connectivity between neurons and thereby evoke even
larger differences in their coordination if the network is operating in the dynamically
balanced critical regime (Panel D of Figure 3.5 on page 40).

To check this prediction, we repeat the correlation analysis between the two epochs,
which we described above for the firing rates, but this time for the covariance patterns.
Despite similar overall distributions of covariances in S and P (Panel D1 of Figure
3.6 on page 42), covariances between individual neuron pairs are clearly different
between S and P: Panel B of Figure 3.6 on page 42 shows the covariance pattern for
one representative reference neuron in one example recording session of monkey N.
In both epochs, this covariance pattern has a salt-and-pepper structure, similar to
the resting state data in Panel D of Figure 3.1 on page 31. Yet, neurons change their
individual coordination: a large number of neuron pairs even changes from positive
covariance values to negative ones and vice versa. These neurons fire cooperatively
in one epoch of the task while they show antagonistic firing in the other epoch. The
covariances of all neuron pairs of that particular recording session are shown in Panel
D2 of Figure 3.6 on page 42. Markers in the upper left and lower right quadrant
show neuron pairs that switch the sign of their coordination (45 % of all neuron pairs).
The extent of covariance changes between epochs is again quantified by correlation
coefficients between the covariance patterns of two sub-periods (Panel F of Figure
3.6 on page 42). As for the firing rates, we find rather large correlations between
covariance patterns in S1 and S2 as well as between covariance patterns in P1 and P2.
Note, however, that correlation coefficients are around 0.8 rather than 1, presumably
since covariance estimates from 200 ms periods are noisier than firing rate estimates.
The covariance patterns in S1 or S2 are, however, significantly more distinct from
covariance patterns in P1 and P2, with correlation coefficients around 0.5 (Panel F of
Figure 3.6 on page 42).

This more pronounced change of covariances compared to firing rates is predicted by
a network whose effective connectivity has a large spectral bound, in the dynamically



44 correlations in two-dimensional networks

balanced critical state. In particular, the theory provides a mechanistic explanation for
the different coordination patterns between neurons on the mesoscopic scale (range
of a Utah array), which are observed in the two states S and P (Panel B of Figure 3.6
on page 42). The coordination between neurons is thus considerably reshaped by the
behavioral condition.

3.8 discussion

In this chapter, we investigate covariance patterns of many neurons across mesoscopic
distances analytically and in macaque motor cortex. We show that these patterns
have a salt-and-pepper structure, which can be explained by a network model with a
spatially dependent random connectivity operating in a dynamically balanced critical
state. In this state, cross-covariances are shaped by a large number of parallel, multi-
synaptic pathways, leading to interactions reaching far beyond the range of direct
connections. Strikingly, this coordination on the millimeter scale is only visible if
covariances are resolved on the level of individual neurons; the population mean of
covariances quickly decays with distance and is overall very small. In contrast, the
variance of covariances is large and predominantly decreases exponentially on length
scales of up to several millimeters, even though direct connections typically only reach
a few hundred micrometers.

Since the observed coordination patterns are determined by the effective connectivity
of the network, they are dynamically controllable by the network state; for example,
due to modulations of neuronal firing rates. Parallel recordings in macaque motor
cortex during resting state and in different epochs of a reach-to-grasp task confirm
this prediction. Simulations indeed exhibit a high sensitivity of coordination patterns
to weak modulations of the individual neurons’ firing rates, providing a plausible
mechanism for these dynamic changes.

the dynamically balanced critical state Models of balanced networks
have been investigated before (van Vreeswijk and Sompolinsky, 1996; Brunel, 2000a;
Renart et al., 2010; Tetzlaff et al., 2012) and experimental evidence for cortical networks
operating in the balanced state is overwhelming (Okun and Lampl, 2008; Reinhold
et al., 2015; Dehghani et al., 2016). Excess of inhibition in such networks yields
stable and balanced population-averaged activities as well as low average covariances
(Tetzlaff et al., 2012). Recently the notion of balance has been combined with criticality
in the dynamically balanced critical state that results from large heterogeneity in the
network connectivity (Dahmen et al., 2019). Here we focus on the spatial organization
of cortical networks and study the interplay between balance, criticality, and spatial
connectivity in networks of excitatory and inhibitory neurons. We show that in such
networks, heterogeneity generates disperse covariance structures between individual
neurons on large length-scales with a salt-and-pepper structure.

relation to previous studies Spatially organized balanced network models
have been investigated before in the limit of infinite network size, as well as under
strong and potentially correlated external drive, as is the case, for example, in primary
sensory areas of the brain (Rosenbaum et al., 2017; Baker et al., 2019). In this scenario,
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intrinsically generated contributions to covariances are much smaller than external
ones. Population-averaged covariances then fulfill a linear equation, called the “balance
condition” (van Vreeswijk and Sompolinsky, 1996; Hertz, 2010; Renart et al., 2010;
Rosenbaum and Doiron, 2014) that predicts a non-monotonous change of population-
averaged covariances with distance (Rosenbaum et al., 2017). In contrast, we here
consider covariances on the level of individual cells in finite-size networks receiving
only weak inputs. While we cannot strictly rule out that the observed covariance
patterns in motor cortex are a result of very specific external inputs to the recorded
local network, we believe that the scenario of weak external drive is more suitable
for non-sensory brain areas, such as, for example, the motor cortex in the resting
state conditions studied here. Under such conditions, covariances have been shown
to be predominantly generated locally rather than from external inputs: Helias et al.
(2014) investigated intrinsic and extrinsic sources of covariances in ongoing activity of
balanced networks and found that for realistic sizes of correlated external populations
the major contribution to covariances is generated from local network interactions
(Fig. 7a in Helias et al., 2014). Dahmen et al. (2019) investigated the extreme case,
where the correlated external population is of the same size as the local population
(Fig. S6 in Dahmen et al., 2019). Despite sizable external input correlations projected
onto the local circuit via potentially strong afferent connections, the dependence of
the statistics of covariances on the spectral bound of the local recurrent connectivity is
predicted well by the theory that neglects correlated external inputs (see supplement
section 3 in Dahmen et al., 2019).

Our analysis of covariances on the single-neuron level goes beyond the balance
condition and requires the use of field-theoretical techniques to capture the hetero-
geneity in the network (Dahmen et al., 2019; Helias and Dahmen, 2020). It relies
on linear-response theory, which has previously been shown to faithfully describe
correlations in balanced networks of nonlinear (spiking) units (Tetzlaff et al., 2012;
Trousdale et al., 2012; Pernice et al., 2012; Grytskyy et al., 2013; Helias et al., 2013;
Dahmen et al., 2019). These studies mainly investigated population-averaged correla-
tions with small spectral bounds of the effective connectivity. Subsequently, Dahmen
et al. (2019) showed the quantitative agreement of this linear-response theory for
covariances between individual neurons in networks of spiking neurons for the whole
range of spectral bounds, including the dynamically balanced critical regime. The
long-range coordination studied in the current chapter requires the inclusion of spa-
tially non-homogeneous coupling to analyze excitatory-inhibitory random networks
on a two-dimensional sheet with spatially decaying connection probabilities. This
new theory allows us to derive expressions for the spatial decay of the variance of
covariances. We primarily evaluate these expressions in the long-range limit, which
agrees well with simulations for distances r > 2R ∼ O(1 mm), which is fulfilled for
most distances on the Utah array (cf. Figure 3.3 on page 35, Appendix Figure B.7 on
page 129). For these distances we find that the decay of covariances is dominated by a
simple exponential law. Unexpectedly, its decay constant is essentially determined by
only two measures, the spectral bound of the effective connectivity, and the length
scale of direct connections. The length scale of covariances diverges when approaching
the breakdown of linear stability. In this regime, differences in covariances induced by
differences in length scales of excitatory and inhibitory connections become negligible.



46 correlations in two-dimensional networks

The predicted emergence of a single length scale of covariances is consistent with our
data.

other possible mechanisms for long-range coordination This study
focuses on local and isotropic connection profiles to show that long-range coordination
does not rely on specific connection patterns but can result from the network state
alone. Alternative explanations for long-range coordination are based on specifically
imprinted network structures: Anisotropic local connection profiles have been studied
and shown to create spatio-temporal sequences (Spreizer et al., 2019). Likewise,
embedded excitatory feed-forward motifs and cell assemblies via excitatory long-
range patchy connections DeFelipe et al. (1986) can create positive covariances at
long distances (Diesmann et al., 1999; Litwin-Kumar and Doiron, 2012). Yet these
connections cannot provide an explanation for the large negative covariances between
excitatory neurons at long distances (see e.g. Panel D of Figure 3.1 on page 31).
Long-range connectivity, for example arising from a salt-and-pepper organization
of neuronal selectivity with connections preferentially targeting neurons with equal
selectivity (Ben-Yishai et al., 1995; Hansel and Sompolinsky, 1998; Roxin et al., 2005;
Blumenfeld et al., 2006), would produce salt-and-pepper covariance patterns even
in networks with small spectral bounds where interactions are only mediated via
direct connections. However, in this scenario one would expect that neurons which
have similar selectivity would throughout show positive covariance due to their
mutual excitatory connections and due to the correlated input they receive. Yet, when
analyzing two different epochs of the reach-to-grasp task, we find that a large fraction
of neuron pairs actually switches from being significantly positively correlated to
negatively correlated and vice versa (see Panel D2 of Figure 3.6 on page 42, upper left
and lower right quadrant). This state-dependence of covariances is in line with the
here suggested mechanism of long-range coordination by indirect interactions: Such
indirect interactions depend on the effective strengths of various connections and can
therefore change considerably with network state. In contrast, correlations due to
imprinted network structures are static, so that a change in gain of the neurons will
either strengthen or weaken the specific activity propagation, but it will not lead to a
change of the sign of covariances that we see in our data. The static impact of these
connectivity structures on covariances could nevertheless in principle be included in
the presented formalism.

Long-range coordination can also be created from short-range connections with
random orientations of anisotropic local connection profiles (Smith et al., 2018). This
finding can be linked to the emergence of tuning maps in the visual cortex. The
mechanism is similar to ours in that it uses nearly linearly unstable modes that are
determined by spatial connectivity structures and heterogeneity. Given the different
source of heterogeneity, the modes and corresponding covariance patterns are dif-
ferent from the ones discussed here: Starting from fully symmetric networks with
corresponding symmetric covariance patterns, Smith et al. (2018) found that increasing
heterogeneity (anisotropy) yields more randomized, but still patchy regions of positive
and negative covariances that are in line with low-dimensional activity patterns found
in visual cortex. In motor cortex we instead find salt-and-pepper patterns that can
be explained in terms of heterogeneity through sparsity. We provide the theoretical
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basis and explicit link between connectivity eigenspectra and covariances and show
that heterogeneity through sparsity is sufficient to generate the dynamically balanced
critical state as a simple explanation for the broad distribution of covariances in motor
cortex, the salt-and-pepper structure of coordination, its long spatial range, and its
sensitive dependence on the network state. Note that both mechanisms of long-range
coordination, the one studied in Smith et al. (2018) and the one presented here, rely on
the effective connectivity for the network to reside in the dynamically balanced critical
regime. The latter regime is, however, not just one single point in parameter space, but
an extended region that can be reached via a multitude of control mechanisms for the
effective connectivity, for example by changing neuronal gains (Salinas and Sejnowski,
2001a,b), synaptic strengths (Sompolinsky et al., 1988), and network microcircuitry
(Dahmen et al., 2020).

functional implications What are possible functional implications of the
coordination on mesoscopic scales? Recent work demonstrated activity in motor
cortex to be organized in low-dimensional manifolds (Gallego et al., 2017, 2018, 2020).
Dimensionality reduction techniques, such as PCA or GPFA (Yu et al., 2009), employ
covariances to expose a dynamical repertoire of motor cortex that is comprised of neu-
ronal modes. Previous work started to analyze the relation between the dimensionality
of activity and connectivity (Aljadeff et al., 2015, 2016; Mastrogiuseppe and Ostojic,
2018; Dahmen et al., 2019, 2020; Hu and Sompolinsky, 2020), but only in spatially
unstructured networks, where each neuron can potentially be connected to any other
neuron. The majority of connections within cortical areas, however, stems from local
axonal arborizations (Schnepel et al., 2015). Here we add this biological constraint
and demonstrate that these networks, too, support a dynamically balanced critical
state. This state in particular exhibits neural modes which are spanned by neurons
spread across the experimentally observed large distances. In this state a small subset
of modes that are close to the point of instability dominates the variability of the
network activity and thus spans a low-dimensional neuronal manifold. As opposed to
specifically designed connectivity spectra via plasticity mechanisms (Hennequin et al.,
2014) or low-rank structures embedded into the connectivity (Mastrogiuseppe and
Ostojic, 2018), the dynamically balanced critical state is a mechanism that only relies
on the heterogeneity which is inherent to sparse connectivity and abundant across all
brain areas.

While we here focus on covariance patterns in stationary activity periods, the
majority of recent works studied transient activity during motor behavior (Gallego
et al., 2017). How are stationary and transient activities related? During stationary
ongoing activity states, covariances are predominantly generated intrinsically (Helias
et al., 2014). Changes in covariance patterns therefore arise from changes in the
effective connectivity via changes in neuronal gains, as demonstrated here in the
two periods of the reach-to-grasp experiment and in our simulations for networks
close to criticality (Panel D of Figure 3.5 on page 40). During transient activity, on
top of gain changes, correlated external inputs may directly drive specific neural
modes to create different motor outputs, thereby restricting the dynamics to certain
subspaces of the manifold. In fact, Elsayed et al. (2016) reported that the covariance
structures during movement preparation and movement execution are unrelated and
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corresponding to orthogonal spaces within a larger manifold. Also Luczak et al.
(2009) studied auditory and somatosensory cortices of awake and anesthetized rats
during spontaneous and stimulus-evoked conditions and found that neural modes
of stimulus-evoked activity lie in subspaces of the neural manifold spanned by the
spontaneous activity. Similarly, visual areas V1 and V2 seem to exploit distinct
subspaces for processing and communication (Semedo et al., 2019), and motor cortex
uses orthogonal subspaces capturing communication with somatosensory cortex or
behavior-generating dynamics (Perich et al., 2020). Gallego et al. (2018) further showed
that manifolds are not identical, but to a large extent preserved across different motor
tasks due to a number of task-independent modes. This leads to the hypothesis that
the here described mechanism for long-range cooperation in the dynamically balanced
critical state provides the basis for low-dimensional activity by creating such spatially
extended neural modes, whereas transient correlated inputs lead to their differential
activation for the respective target outputs. The spatial spread of the neural modes
thereby leads to a distributed representation of information that may be beneficial to
integrate information into different computations that take place in parallel at various
locations. Further investigation of these hypotheses is an exciting endeavor for the
years to come.

3.9 methods

Experimental design and statistical analysis

Two adult macaque monkeys (monkey E - female, and monkey N - male) are recorded
in behavioral experiments of two types: resting state and reach-to-grasp. The record-
ings of neuronal activity in motor and pre-motor cortex (hand/arm region) are
performed with a chronically implanted 4x4 mm2 Utah array (Blackrock Microsys-
tems). Details on surgery, recordings, spike sorting and classification of behavioral
states can be found in (Riehle et al., 2013, 2018; Brochier et al., 2018; Dąbrowska et al.,
2020). All animal procedures were approved by the local ethical committee (C2EA
71; authorization A1/10/12) and conformed to the European and French government
regulations.

Resting state data

During the resting state experiment, the monkey is seated in a primate chair without
any task or stimulation. Registration of electrophysiological activity is synchronized
with a video recording of the monkey’s behavior. Based on this, periods of “true
resting state” (RS), defined as no movements and eyes open, are chosen for the analysis.
Eye movements and minor head movements are included. Each monkey is recorded
twice, with a session lasting approximately 15 and 20 min for monkeys E (sessions E1

and E2) and N (sessions N1 and N2), respectively, and the behavior is classified by
visual inspection with single second precision, resulting in 643 and 652 s of RS data
for monkey E and 493 and 502 s of RS data for monkey N.
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Reach-to-grasp data

In the reach-to-grasp experiment, the monkeys are trained to perform an instructed
delayed reach-to-grasp task to obtain a reward. Trials are initiated by a monkey closing
a switch (TS, trial start). After 400 ms a diode is illuminated (WS, warning signal),
followed by a cue after another 400 ms(CUE-ON), which provides partial information
about the upcoming trial. The cue lasts 300 ms and its removal (CUE-OFF) initiates a
1 s preparatory period, followed by a second cue, which also serves as GO signal. Two
epochs, divided into 200 ms sub-periods, within such defined trials are chosen for
analysis: the first 400 ms after TS (starting period, S1 and S2), and the 400 ms directly
following CUE-OFF (preparatory period, P1 and P2) (cf. Panel A of Figure 3.6 on
page 42). Five selected sessions for monkey E and eight for monkey N provide a total
of 510 and 1111 correct trials, respectively. For detailed numbers of trials and single
units per recording session see Appendix Table B.1 on page 99.

Separation of putative excitatory and inhibitory neurons

Offline spike-sorted single units (SUs) are separated into putative excitatory (broad-
spiking) and putative inhibitory (narrow-spiking) based on their spike waveform
width (Bartho et al., 2004; Kaufman et al., 2010, 2013; Peyrache et al., 2012; Peyrache
and Destexhe, 2019). The width is defined as the time (number of data samples)
between the trough and peak of the waveform. Widths of all average waveforms
from all selected sessions (both resting state and reach-to-grasp) per monkey are
collected. Thresholds for “broadness” and “narrowness” are chosen based on the
monkey-specific distribution of widths, such that intermediate values stay unclassified.
For monkey E the thresholds are 0.33 ms and 0.34 ms, and for monkey N 0.40 ms and
0.41 ms. Next, a two step classification is performed session by session. Firstly, the
thresholds are applied to average SU waveforms. Secondly, the thresholds are applied
to SU single waveforms and a percentage of single waveforms pre-classified as the
same type as the average waveform is calculated. SU for which this percentage is
high enough are marked classified. All remaining SUs are grouped as unclassified.
We verify the robustness of our results with respect to changes in the spike sorting
procedure in Appendix Section B.2.

Synchrofacts, i.e., spike-like synchronous events across multiple electrodes at the
sampling resolution of the recording system (1/30 ms) (Torre et al., 2016), are removed.
In addition, only SUs with a signal-to-noise ratio (Hatsopoulos et al., 2004) of at least
2.5 and a minimal average firing rate of 1 Hz are considered for the analysis, to ensure
enough and clean data for valid statistics.

Statistical analysis

All RS periods per resting state recording are concatenated and binned into 1 s bins.
Next, pairwise covariances of all pairs of SUs are calculated according to the following
formula:

COV(i, j) =
〈bi − µi, bj − µj〉

l − 1
, (3.4)



50 correlations in two-dimensional networks

with bi, bj - binned spike trains, µi, µj being their mean values, l the number of
bins, and 〈x, y〉 the scalar product of vectors x and y. Obtained values are broadly
distributed, but low on average in every recorded session: in session E1 E-E pairs:
0.19± 1.10 (M±SD), E-I: 0.24± 2.31, I-I: 0.90± 4.19, in session E2 E-E: 0.060± 1.332,
E-I 0.30± 2.35, I-I 1.0± 4.5, in session N1 E-E 0.24± 1.13, E-I 0.66± 2.26, I-I 2.4± 4.9,
in session N2 E-E 0.41± 1.47, E-I 1.0± 3.1, I-I 3.9± 7.3.

To explore the dependence of covariance on the distance between the considered
neurons, the obtained values are grouped according to distances between electrodes
on which the neurons are recorded. For each distance the average and variance of the
obtained distribution of cross-covariances is calculated. The variance is additionally
corrected for bias due to a finite number of measurements (Dahmen et al., 2019). In
most of cases, the correction does not exceed 0.01%.

In the following step, exponential functions y = a e−
x
R are fitted to the obtained

distance-resolved variances of cross-covariances (y corresponding to the variance and
x to distance between neurons), which yields a pair of values (a, R). The least squares
method implemented in the Python scipy.optimize module (SciPy v.1.4.1) is used.
Firstly, three independent fits are performed to the data for excitatory-excitatory,
excitatory-inhibitory, and inhibitory-inhibitory pairs. Secondly, analogous fits are
performed, with the constraint that the decay constant R should be the same for all
three curves.

Covariances in the reach-to-grasp data are calculated analogously but with different
time resolution. For each chosen sub-period of a trial, data are concatenated and
binned into 200 ms bins, meaning that the number of spikes in a single bin corresponds
to a single trial. The mean of these counts normalized to the bin width gives the
average firing rate per SU and sub-period. The pairwise covariances are calculated
according to Eq. (3.4). To assess the similarity of neuronal activity in different periods
of a trial, Pearson product-moment correlation coefficients are calculated on vectors
of SU-resolved rates and pair-resolved covariances. Correlation coefficients from all
recording sessions per monkey are separated into two groups: using sub-periods
of the same epoch (within-epoch), and using sub-periods of different epochs of a
trial (between-epochs). These groups are tested for differences with significance level
α = 0.05. Firstly, to check if the assumptions for parametric tests are met, the normality
of each obtained distribution is assessed with a Shapiro-Wilk test, and the equality of
variances with an F-test. Secondly, a t-test is applied to compare within- and between-
epochs correlations of rates or covariances. Since there are two within and four between
correlation values per recording session, the number of degrees of freedom equals:
d f = (Nsessions · 2− 1) + (Nsessions · 4− 1), which is 28 for monkey E and 46 for monkey
N. To estimate the confidence intervals for obtained differences, the mean difference
between groups m and their pooled standard deviation s are calculated for each
comparison

m = mwithin −mbetween ,

s =

√
(Nwithin − 1)s2

within + (Nbetween − 1)s2
between

Nwithin + Nbetween − 2
,
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with mwithin and mbetween being the mean, swithin and sbetween the standard devia-
tion and Nwithin and Nbetween the number of within- and between-epoch correlation
coefficient values, respectively.

This results in 95% confidence intervals m± t(d f ) · s of 0.192± 0.093 for rates and
0.32± 0.14 for covariances in monkey E and 0.19± 0.14 for rates and 0.26± 0.17 for
covariances in monkey N.

For both monkeys the within-epoch rate-correlations distribution does not fulfill
the normality assumption of the t-test. We therefore perform an additional non-
parametric Kolmogorov-Smirnov test for the rate comparison. The differences are
again significant; for monkey E D = 1.00, p = 6.66 · 10−8; for monkey N D = 1.00, p =

8.87 · 10−13.
For all tests we use the implementations from the Python scipy.stats module (SciPy

v.1.4.1).

Mean and variance of covariances for a two-dimensional network model with excitatory and
inhibitory populations

The mean and variance of covariances are calculated for a two-dimensional network
consisting of one excitatory and one inhibitory population of neurons. The connectivity
profile p(x), describing the probability of a neuron having a connection to another
neuron at distance x, decays with distance. We assume periodic boundary conditions
and place the neurons on a regular grid (Panel A of Figure 3.3 on page 35), which
imposes translation and permutation symmetries that enable the derivation of closed-
form solutions for the distance-dependent mean and variance of the covariance
distribution. These simplifying assumptions are common practice and simulations
show that they do not alter the results qualitatively.

As mentioned in Section 3.4, our aim is to find an expression for the mean and
variance of covariances as functions of distance between two neurons. While the theory
in Dahmen et al. (2019) is restricted to homogeneous connections, understanding the
spatial structure of covariances here requires us to take into account the spatial
structure of connectivity. We start with the equations for mean and variance of the
covariances of the network model Eq. (3.1)

c = [1−M]−1 D
1− ρ2 [1−M]−T ,

δc2 = [1− S]−1
(

D
1− ρ2

)2

[1− S]−T ,

and use that M and S have a similar structure, such that mean and variance can be
derived in the same way, which is why we only consider variances in the following.

To simplify Eq. (3.1), we need to find a basis in which S, and therefore also A = 1− S,
is diagonal. Due to invariance under translation, the translation operators T and
the matrix S have common eigenvectors, which can be derived using that translation
operators satisfy T N = 1, where N is the number of lattice sites in x- or y-direction
(see Appendix Section B.8). Projecting onto a basis of these eigenvectors shows that
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the eigenvalues sk of S are given by a discrete two-dimensional Fourier transform of
the connectivity profile

sk ∝ ∑
x

p(x)e−ikx .

Expressing A−1 in the eigenvector basis yields A−1(x) = 1 + B(x), where B(x) is a
discrete inverse Fourier transform of the kernel sk/(1− sk). Assuming a large network
with respect to the connectivity profiles allows us to take the continuum limit

B(x) =
1

(2π)2

∫
d2k

s(k)
1− s(k)

eikx .

As we are only interested in the long-range behavior, which corresponds to |x| → ∞,
or |k| → 0, respectively, we can approximate the Fourier kernel around |k| ≈ 0 by a
rational function, quadratic in the denominator, using a Padé approximation. This
allows us to calculate the integral which yields

B(x) ∝ K0(−|x|/Reff) ,

where K0(x) denotes the modified Bessel function of second kind and zeroth order
(Olver et al., 2010), and the effective decay constant Reff is given by Eq. (3.2). In the
long-range limit the modified Bessel function behaves like

B(x)
|x|→∞

∝
exp(−|x|/Reff)√

|x|
.

Writing Eq. (3.1) in terms of B(x) gives

δc2(x) =
(

D
1− ρ2

)2

[δ(|x|) + B(x) + (B ∗ ∗B)(x)] ,

with the double asterisk denoting a two-dimensional convolution. (B ∗ ∗B)(x) is a
function proportional to the modified Bessel function of second kind and first order
(Olver et al., 2010), which has the long-range limit

(B ∗ ∗B)(x)
|x|→∞

∝
√
|x| exp(−|x|/Reff) .

Hence, the effective decay constant of the variances is given by Reff. Note that further
details of the above derivation can be found in the Appendix Section B.4–Section B.12.

Network model simulation

The explanation of the network state dependence of covariance patterns presented
in the main text is based on linear-response theory, which has been shown to yield
results quantitatively in line with non-linear network models, in particular networks
of spiking leaky integrate-and-fire neuron models (Tetzlaff et al., 2012; Trousdale et al.,
2012; Pernice et al., 2012; Grytskyy et al., 2013; Helias et al., 2013; Dahmen et al., 2019).
The derived mechanism is thus largely model independent. We here chose to illustrate
it with a particularly simple non-linear input-output model, the rectified linear unit
(ReLU). In this model, a shift of the network’s working point can turn some neurons
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completely off, while activating others, thereby leading to changes in the effective
connectivity of the network. In the following, we describe the details of the network
model simulation.

We performed a simulation with the neural simulation tool NEST (Jordan et al.,
2019) using the parameters listed in Appendix Table B.4 on page 131. We simulated a
network of N inhibitory neurons (threshold_lin_rate_ipn, Hahne et al., 2017), which
follow the dynamical equation

τ
dzi

dt
= −zi + ∑

j
Jijνj + µext,i + ξi

√
τσnoise,i , (3.5)

where zi is the input to neuron i, ν the output firing rate with (threshold linear
activation function)

ν = φ(z) =

0 for z ≤ 0

z for z > 0
,

time constant τ, connectivity matrix J, a constant external input µext,i, and un-
correlated Gaussian white noise 〈ξi(t)〉 = 0, 〈ξi(s)ξ j(t)〉 = δijδ(s − t), with noise
strength

√
τσnoise,i. The neurons were connected using the fixed_indegree connec-

tion rule, with connection probability p, indegree K = p · N, and delta-synapses
(rate_connection_instantaneous) of weight w.

The constant external input µext,i to each neuron was normally distributed, with
mean µext, and standard deviation σext. It was used to set the firing rates of neurons,
which, via the effective connectivity, influence the intrinsically generated covariances
in the network. The two parameters µext and σext were chosen such that, in the
stationary state, half of the neurons were expected to be above threshold. Which
neurons are active depends on the realization of µext,i and is therefore different for
different networks.

To assess the distribution of firing rates, we first considered the static variability of
the network and studied the stationary solution of the noise-averaged input 〈z〉noise,
which follows from Eq. (3.5) as

〈zi〉noise = ∑
j

Jij
〈
νj
〉

noise + µext,i . (3.6)

Note that
〈
νj
〉

noise =
〈
φ(zj)

〉
noise, through the nonlinearity φ, in principle depends

on fluctuations of the system. This dependence is, however, small for the chosen
threshold linear φ, which is only nonlinear in the point z = 0.

The derivation of µext is based on the following mean-field considerations: according
to Eq. (3.6) the mean input to a neuron in the network is given by the sum of external
input and recurrent input

µ = µext + µrecurrent = µext + KwMean(ν) .

The variance of the input is given by

σ2 = σ2
ext + σ2

recurrent = σ2
ext + Kw2Var(ν) .
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The mean firing rate can be calculated using the diffusion approximation (Tuckwell,
1988a; Amit and Tsodyks, 1991), which is assuming a normal distribution of inputs
due to the central-limit theorem, and the fact that a linear threshold neuron only fires
if its input is positive

Mean(ν) =
∫ ∞

−∞
dνP

(
µ, σ2, ν

)
ν

=
∫ ∞

−∞
dzN

(
µ, σ2, z

)
φ(z)

=
∫ ∞

0
dzN

(
µ, σ2, z

)
z

=
σ√
2π

exp
(
− µ2

2σ2

)
+

µ

2

[
1 + erf

(
µ√
2σ

)]
,

where P denotes the probability density of the firing rate ν. The variance of the firing
rates is given by

Var(ν) =Mean(ν2)−Mean(ν)2

=
µ2

4

[
1− erf2

(
µ√
2σ

)]
+

σ2

2

[
1− 1

π
exp

(
−µ2

σ2

)
+ erf

(
µ√
2σ

)]
+

µσ√
2π

erf
(

µ√
2σ

)
.

The number of active neurons is the number of neurons with a positive input, which
we set to be equal to N/2

N
2

!
= N

∫ ∞

0
dzN

(
µ, σ2, z

)
=

N
2

[
1 + erf

(
µ√
2σ

)]
,

which is only fulfilled for µ = 0. Inserting this condition simplifies the equations
above and leads to

µext = −
Kwσ√

2π
.

For the purpose of relating synaptic weight w and spectral bound ρ, we can view the
nonlinear network as an effective linear network with half the population size (only
the active neurons). In the latter case, we obtain

w = − ρ√
N
2 p(1− p)

.

For a given spectral bound ρ, this relation allows us to derive the value

µext =

√
Np

π(1− p)− (π − 1)ρ2

√
σ2

extρ , (3.7)
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that, for a arbitrarily fixed σext (here σext = 1), makes half of the population being
active. We were aiming for an effective connectivity with only weak fluctuations in
the stationary state. Therefore, we fixed the noise strength for all neurons to the
small value σnoise = 0.1 � σext compared to the external input, such that the noise
fluctuations did not have a large influence on the calculation above that determines
which neurons were active.

To show the effect of a change in the effective connectivity on the covariances, we
simulated two networks with identical connectivity, but supplied them with slightly
different external inputs. This was realized by choosing

µ
(α)
ext,i = µext,i + µ

(α)
ext,i ,

with

µext,i ∼ N
(
µext, [1− ε] σ2

ext
)

,

µ
(α)
ext,i ∼ N

(
0, εσ2

ext
)

,

ε � 1, and α ∈ {1, 2} indexing the two networks. The main component µext,i of the
external input was the same for both networks. But, the small component µ

(α)
ext,i was

drawn independently for the two networks. This choice ensures that the two networks
have a similar external input distribution (Panel B1 of Figure 3.5 on page 40), but
with the external inputs distributed differently across the single neurons (Panel B2

of Figure 3.5 on page 40). How similar the external inputs are distributed across the
single neurons is determined by ε.

The two networks have a very similar firing rate distribution (Panel E1 of Figure 3.5
on page 40), but, akin to the external inputs, the way the firing rates are distributed
across the single neurons differs between the two networks (Panel E2 of Figure 3.5 on
page 40). As the effective connectivity depends on the firing rates

Wij = Jijφ
′(νj) ,

this leads to a difference in the effective connectivities of the two networks and
therefore to different covariance patterns, as discussed in Figure 3.5 on page 40.

We performed the simulation for spectral bounds ranging from 0.1 to 0.9 in incre-
ments of 0.1. We calculated the correlation coefficient of firing rates and the correlation
coefficient of time-lag integrated covariances between Nsample neurons in the two net-
works (Panel D of Figure 3.5 on page 40) and studied the dependence on the spectral
bound.

To check whether the simulation was long enough to yield a reliable estimate of
the rates and covariances, we split each simulation into two halves, and calculate
the correlation coefficient between the rates and covariances from the first half of the
simulation with the rates and covariances from the second half. They were almost
perfectly correlated (Panel C of Figure 3.5 on page 40). Then, we calculated the
correlation coefficients comparing all halves of the first simulation with all halves of
the second simulation, showing that the covariance patterns changed much more than
the rate patterns (Panel C of Figure 3.5 on page 40).
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4.1 introduction

As discussed in Section 1.2, experimental recordings in cortex show a wide range
of spatio-temporally coherent population activity patterns across mesoscopic scales,
including oscillations (Buzsáki and Draguhn, 2004), standing and traveling waves (Wu
et al., 2008; Nauhaus et al., 2009; Muller and Destexhe, 2012; Nauhaus et al., 2012; Sato
et al., 2012; Muller et al., 2018), hexagonal activity (Rowland et al., 2016; Nadasdy et al.,
2017), spirals, or more complex patterns (Townsend et al., 2015; Denker et al., 2018).
Analytically, pattern formation in neuronal networks has often been investigated in the
neural field framework, introduced in Section 1.3. A neural field is an approximation
of the activity of large populations of neurons that neglects the discrete nature of the
neuronal network and assumes the network to be a continuous excitable medium
instead. In contrast to theories on a discrete grid, describing the network’s activity as
a function of a continuous space variable has the advantage of making the equations
amenable to standard analysis methods like differentiation or Fourier transforms, and
hence they frequently allow deriving analytical results explicitly.

Nevertheless, analytical investigation typically entails simplifying assumptions. In
the case of pattern formation in neuronal networks, common simplifications include:
studying one-dimensional ring networks rather than sheetlike or three-dimensional
networks; only including a single neuronal population, while representing the effects
of excitation and inhibition via an effective connectivity; selecting a simple non-
linearity for representing the neurons’ input-output curves; or assuming instantaneous
recurrent input, ignoring any signal transmission delays.

Clearly, neurons do not communicate instantaneously. Actually, neuronal networks
have multiple sources of signal transmission delays, and from a modeling perspective
they are often separated into two categories: a distance dependent delay due to finite
axonal signal propagation speed, and a constant delay representing finite synaptic
processing times. It is well know that delays can cause complex behavior in dynamical
systems. In particular, delays can induce oscillations and the emergence of waves.

57
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Therefore, neglecting delays appears to be a simplification that might lead to major
limitations of a network model.

However, studying delayed systems analytically is much more difficult than study-
ing systems with instantaneous interactions. As a results, pattern formation was ini-
tially studied using neural field theories without delays in one-dimensional networks,
e.g. Wyller et al. (2007); Folias and Ermentrout (2012), but also in two-dimensional
networks: In their seminal paper, Ermentrout and Cowan (1979) present an analysis
of lattice periodic patterns, providing an explanation for different types of reported
visual hallucinations. Tass (1995) performs a weakly non-linear analysis to derive
amplitude equations, explaining which of multiple possible static patterns develop
in a network on a square, and expands the theory in Tass (1997) to study stationary
oscillatory patterns. While Tass restricts his analysis to non-linearities with only cubic
contributions, Ermentrout (1998) reports the amplitude equations for non-linearities
with quadratic and cubic contributions. Bressloff et al. (2001) extend the work of
Ermentrout and Cowan by incorporating orientation tuning into their model of visual
cortex, and Rule et al. (2011) investigate the influence of periodic stimuli on pattern
formation.

Nunez (1974) was the first to include a distance-dependent delay in an attempt to
model activity observed in EEG recordings. However, only in the last two decades
has there been a surge of interest in investigating delayed neural field theories. Roxin
et al. (2005) conduct a comprehensive bifurcation analysis of a network model with a
single constant delay and extend their work in Roxin and Montbrió (2011), focusing
on the influence of the non-linear input-output function. Venkov et al. (2007) analyze
the selection of standing over traveling waves in a one-dimensional network with
finite transmission velocity using a weakly non-linear analysis approach. In a series
of papers (Faye and Faugeras, 2010; Veltz and Faugeras, 2011, 2013), Faugeras and
colleagues establish the groundwork for applying methods from functional differential
equation theory (Hale and Lunel, 1993; Diekmann et al., 1995) to delayed neural field
equations. Similarly, van Gils et al. (2012) show that delayed neural fields can be
studied as abstract delay differential equations using sun-star calculus. Together these
works offer the foundation for applying standard methods like linear stability analysis,
center manifold reduction and normal form calculation to delayed neural fields, which
we make use of in this chapter as well. Applying these tools to a scalar neural field
model, Veltz (2013) studies the relative roles of constant delays and space dependent
delays on neural field dynamics, and Dijkstra et al. (2015) investigate a Pitchfork-Hopf
bifurcation in a network with transmission delays analytically. There is much more
work on one-dimensional delayed neural fields that we cannot discuss here in detail
(Liley et al., 2002; Hutt et al., 2003; Hutt and Atay, 2005, 2007; Coombes et al., 2007;
Hutt, 2008; Coombes and Laing, 2009; Visser et al., 2012; Fang and Faye, 2016; Senk
et al., 2020; Spek et al., 2020); instead, we would like to refer to Ermentrout (1998);
Coombes (2005, 2010); Bressloff (2012); Coombes et al. (2014) for excellent reviews of
the neural field literature.

There are also some papers studying pattern formation in two-dimensional delayed
networks: Visser et al. (2017) use linear stability analysis and center manifold reduction
via sun star calculus to investigate a neural field with sigmoidal non-linearity, wizard
hat connectivity, and distance dependent delay on a sphere. Daini et al. (2020) study
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a comparable network with homogeneous and heterogeneous connectivity, and use
spherical harmonics and perturbation theory to derive amplitudes equations, which
they then integrate numerically. Spek et al. (2022) examine a scalar neural field
with distance-dependent delay, sum of exponentials connectivity, and bounded non-
linearity on a rectangle by transforming the delay differential equation’s characteristic
integral equation into a linear partial differential equation with boundary conditions.

A natural next step is combining the work of Ermentrout and Cowan (1979) and
Tass (1995, 1997) with the tools established for assessing delayed neural field theories
(Faye and Faugeras, 2010; Veltz and Faugeras, 2011; van Gils et al., 2012; Veltz and
Faugeras, 2013) to examine pattern formation in two-dimensional planar networks,
a setting that is particularly relevant for understanding experimentally accessible
patterns on mesoscopic scales (cf. Section 1.2). Therefore, in this chapter, we study
spontaneous global pattern formation in a two-dimensional sheetlike E-I network
with target-agnostic isotropic connectivity, constant synaptic delay, and arbitrary non-
linearity analytically and with simulations. We focus on the analytical similarities and
differences between one-dimensional and two-dimensional networks, as well as the
influence of delay and the neurons’ input-output curve on the selection of stationary
patterns.

The chapter is structured as follows: First, we describe the network model, as
well as the concepts required to comprehend the analysis. Then, we derive the
distinct conditions for different types of patterns to emerge, discuss the key difference
between one-dimensional and two-dimensional networks, consider the effects of the
neuron grid, and provide an in depth examination of pattern formation conditions
in networks with Gaussian connectivity profiles. Next, we introduce the analytical
methods required to examine the interaction of distinct pattern components, followed
by our simulation approach, and a detailed analysis of static pattern formation. Finally,
we discuss the assumptions of the presented analysis and provide an outlook.

4.2 the model

As motivated in the introduction, we are analyzing a network model with an excitatory
and an inhibitory population of neurons on a two-dimensional plane, in which the
populations receive non-linearly transformed recurrent input with a fixed delay. To
account for the distance-dependence of the connectivity, we assume that a neuron’s
number of outgoing connections decays with the inter-neuron distance and that
neurons connect equally in all directions. The model’s connectivity is a statistical
representation of this connectivity profile. That is, the model is not described in terms
of single neurons and a corresponding matrix defining the connections between all
neuron pairs. Instead, the connectivity is the synaptic input strength multiplied with
the probability of two neurons being connected given their distance. This is equivalent
to a network in which all neurons are connected to one another and the synaptic input
strength decays with inter-neuron distance. We assume that the spatial spread of the
connectivity profiles is solely determined by the source population.

Such a network will have a certain working point, a homogeneous stationary activity
state exhibited by the network in the absence of external influences. In the following
sections, we study how and what types of spatially coherent activity patterns can
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emerge spontaneously around this working point, without any external input. Here,
we define the model mathematically, and we perform a Fourier transform of the
activity to get a description in terms of a convenient base for characterizing activity
patterns.

We start with the equation describing the dynamics of the activity

X(r, t) =

(
E(r, t)

I(r, t)

)
of an excitatory population E(r, t) and an inhibitory population I(r, t) at position
r ∈ R2 and time t around the working point

τ
∂

∂t
X(r, t) = −X(r, t) + [M ∗ ∗ψ(X)] (r, t− d)

= −X(r, t) +
∫

d2r′ M(r− r′) ·ψ(X(r′, t− d)) (4.1)

=

(
−E(r, t) +

∫
d2r′ {ME (r− r′)ψ [E (r′, t− d)] + MI (r− r′)ψ [I (r′, t− d)]}

−I(r, t) +
∫

d2r′ {ME (r− r′)ψ [E (r′, t− d)] + MI (r− r′)ψ [I (r′, t− d)]}

)
,

(4.2)

where the first term on the right side forces fluctuations of the population activity
around the working point to decay exponentially, while the second term represents
the recurrent input to each population, which arrives with the constant delay d. The
symbol ∗∗ denotes the two-dimensional convolution (Baddour, 2011). The target-
agnostic but source-specific connectivity matrix is given by

M(r) =

(
ME(r) MI(r)

ME(r) MI(r)

)
,

and we assume the connectivity of the source populations a ∈ {E, I} to be isotropic
and to decay with the inter-neuron distance r = |r|

Ma (r) = Ma (r) ,

lim
r→∞

Ma (r) = 0 .

The function ψ is represents the neurons’ non-linear input-output function, often
simply referred to as non-linearity, and we assume ψ (0) = 0 because we are studying
the activity around the working point.

Clearly, the homogeneous steady state X0 = 0 is a fixed-point solution of Eq. (4.2),
and we can expand the non-linearity around the homogeneous solution in a Taylor
series

ψ(X) =

(
ψ′(0)E(r, t)

ψ′(0)I(r, t)

)
+

1
2

(
ψ′′(0)E2(r, t)

ψ′′(0)I2(r, t)

)
+

1
6

(
ψ′′′(0)E3(r, t)

ψ′′′(0)I3(r, t)

)
+ . . .

≡ β1

(
E(r, t)

I(r, t)

)
+ β2

(
E2(r, t)

I2(r, t)

)
+ β3

(
E3(r, t)

I3(r, t)

)
+ ...

≡ β1X + β2X�2 + β3X�3 + ... ,
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where X�n denotes the elementwise n-th power of X. This yields the dynamical
equation

τ
∂

∂t
X(r, t) =− X(r, t) + β1 [M ∗ ∗X] (r, t− d)

+ β2
[
M ∗ ∗X�2] (r, t− d) + β3

[
M ∗ ∗X�3] (r, t− d) .

We perform a two-dimensional Fourier transform in the space variable to get rid of
the convolution in the term linear in the fields

τ
∂

∂t
X(k, t) =−X(k, t) + β1M̃ (k) · X(k, t− d)︸ ︷︷ ︸

linear part

(4.3)

+β2M̃ (k) · [X ~~ X] (k, t− d) + β3M̃ (k) · [X ~~ X ~~ X] (k, t− d)︸ ︷︷ ︸
non-linear part

,

with k = |k|, and ~~ denoting the two-dimensional, elementwise convolution

[X ~~ X] (k, t) =
∫

d2k′
(

E (k, t) E
(
k′ − k, t

)
I (k, t) I

(
k′ − k, t

) ) =
∫

d2k′X (k, t)� X
(
k′ − k, t

)
,

and the elementwise product �.
How can Eq. (4.3) be understood? It is a differential equation describing the

temporal behavior of the model’s Fourier modes X(k, t), which are illustrated in Panel
A of Figure 4.1 on page 62. Two-dimensional Fourier modes are planar waves of
wavelength 2π/ |k|, along the direction of wavevector k. The neural field activity
X (r, t) is a sum of the Fourier modes weighted by their amplitudes, which describe
how strongly a Fourier mode contributes to the activity (Panel B of Figure 4.1 on
page 62). Eq. (4.3) defines how the Fourier mode amplitudes change over time. The
equation can be understood intuitively by considering its two parts separately:

The linear part describes how each Fourier mode develops in the absence of all
other Fourier modes and therefore determines the mode’s stability. If the amplitude
of a mode decays to zero after it has been excited, for example by an initial stimulus,
the mode is said to be stable. If its amplitude grows after being excited, it is called
unstable. The mode is said to be critical if it is on the cusp of being stable or unstable,
in which case the linear part is no longer sufficient to explain the mode’s behavior
and the non-linear part has to be studied instead.

The non-linear part describes how distinct Fourier modes interact with one another.
Distinct modes can excite or suppress one another, and the non-linear interaction
determines under which conditions different modes compete or coexist.

Because Eq. (4.3) comprises terms that enter the equation with a constant delay d,
it is a delayed differential equation, which means that the dynamics of the Fourier
mode amplitudes at time t depend on the activity at time t− d. In the following, we
pay special attention to how this delayed feedback affects the dynamics of pattern
formation.
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Figure 4.1: Fourier modes: a convenient base for describing activity patterns. (A) Different
Fourier modes on a square of side length 2π. A mode’s wavevector k determines
its properties: the spatial frequency and the direction. (B) Different activity
patterns are composed of several Fourier modes. Hexagonal: k1 = 4 (1, 0) , k2 =
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)
. Square: k1 = (3, 0) , k2 = (0, 3). Rhombic:

k1 = (2, 5) , k2 = (−2, 5).
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4.3 conditions for patterns to emerge

We would like to understand what types of activity patterns the introduced network
model supports depending on its parameters: the connectivity, the non-linearity,
and the delay. Therefore, we need to analyze the model’s bifurcations: abrupt
qualitative changes of the model’s activity caused by small changes in the model’s
parameters, such as the emergence of oscillations or waves from a homogeneous steady
state following a modification of the model’s delay. To identify possible bifurcation
points, we investigate for which model configurations the homogeneous steady state
X (r, t) = 0 is a stable solution of Eq. (4.2). This is the case if none of the Fourier
modes X(k, t) is unstable.

Therefore, we perform a linear stability analysis, investigating the dynamics of the
Fourier modes determined by the linear part of Eq. (4.3)

τ
∂

∂t
X(k, t) = −X(k, t) + β1M̃ (k) · X(k, t− d) .

The procedure is the same as in one-dimensional networks (Senk et al., 2020), with
the only difference that one-dimensional Fourier transforms are substituted by their
two-dimensional counterparts. We insert a Laplace ansatz X (k, t) = eλtX (k) and find

0 = ∆ · X(k) ,

≡
(

λτ + 1− β1M̃ (k) e−λd
)
· X(k) , (4.4)

which only has non-trivial solutions for X(k) if det ∆ = 0, yielding the characteristic
equation

0 = (λτ + 1) eλd
[
(λτ + 1) eλd − β1c (k)

]
, (4.5)

with the eigenvalue of the Fourier transformed connectivity matrix, in the following
referred to as effective profile,

c(k) = M̃E (k) + M̃I (k) . (4.6)

This gives two types of temporal characteristic values for each Fourier mode:

λs = −
1
τ

, (4.7)

and an infinite number of solutions

λb (k) = −
1
τ
+

1
d

Wb

[
β1c (k)

d
τ

ed/τ

]
, (4.8)

where Wb denotes branch b of the multi-valued Lambert-W function (Corless et al.,
1996). Demanding mutual orthonormality, the characteristic vector and its adjoint
corresponding to λs are

vs (k) =

 − M̃I(k)
M̃E(k)

1

 , ws (k) =
1

1 + M̃I(k)
M̃E(k)

(
−1 1

)
, (4.9)
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and for λb(k) we find

vc =

(
1

1

)
, wc (k) =

1

1 + M̃E(k)
M̃I(k)

(
M̃E(k)
M̃I(k)

1
)

. (4.10)

The temporal behavior and therefore the stability of the system is determined by
the characteristic values λs and λb (k). As long as the real parts of these are negative
for all wavevectors k, the homogeneous activity state is stable. λs is always negative,
hence the subscript “s” for stable. However, depending on the effective profile c(k),
the real part of λb(k) might vanish or be positive at certain values k, rendering the
corresponding Fourier modes critical or unstable. Therefore, the structure of the
network’s connectivity determines whether the network activity displays patterns and
which frequency components contribute to the patterns.

Furthermore, the analysis reveals that each Fourier mode can be understood in
terms of two independent components, an always stable component corresponding to
vs and a potentially critical component corresponding to vc

X (k, t) = Xc (k, t) vc + Xs (k, t) vs (k) .

These components determine how the activity of the two neuronal populations is
correlated. The stable vector vs is part of the null-space of the Fourier transformed
connectivity M̃ (k), implying that the feedback via the recurrent connectivity vanishes
for the respective component, reducing the amplitude Xs (k, t) to decay exponentially.
Accordingly, the observable activity is described by vc, and the excitatory and the
inhibitory population will display identical dynamics; a result of the target-agnostic
structure of the connectivity, because of which the two populations receive precisely
the same input.

In a network in which multiple Fourier modes are unstable simultaneously, the
non-linear part of Eq. (4.3) determines how the distinct modes interact and therefore
what a possible activity pattern can look like. To improve our understanding of this
interaction, we study the model configuration in which the smallest possible number
of Fourier modes becomes unstable simultaneously. This corresponds to the critical
case, in which the real part of λb(k) on the largest branch of the Lambert-W function,
the principal branch b = 0 (Senk et al., 2020, Appendix A3), vanishes for only a single
value of k. There are two different scenarios for the real part of λ0(k) to vanish at a
single critical value of k = kc:

1. The static case or Pitchfork bifurcation: The effective profile c(k) has a maximum
at kc such that

β1cmax ≡ β1c (kc)
!
= 1 . (4.11)

The modes with |k| = kc are critical, and the temporal characteristic value
λ (kc) = 0 vanishes, which implies that activity patterns emerging via this
bifurcation do not oscillate but are static once the network reaches a stationary
state.
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2. The dynamic case or Hopf bifurcation: The effective profile has a minimum at kc,
and the delay d assumes a critical value dc such that (Helias et al., 2013, Eq. (10))

β1cmin ≡ β1c (kc)
!
≤ −1 , (4.12)

d !
= dc ≡ τ

π − arctan
(√

β2
1c2

min − 1
)

√
β2

1c2
min − 1

. (4.13)

The temporal characteristic value is non-zero and given by the imaginary pair
λ (kc) = ±iω, which implies that activity patterns emerging via this bifurcation
oscillate with a temporal frequency ω once the network reaches a stationary
state.

Clearly, it is possible that an effective profile fulfills both conditions simultaneously
(Pitchfork-Hopf bifurcation, e.g. investigated in Veltz (2013); Dijkstra et al. (2015)), but
we will restrict our analysis to a scenario in which only one of the two conditions is
met.

4.3.1 Comparison of one- and two-dimensional networks

With the help of the analysis so far, we can understand why patterns formation in
two-dimensional networks is much richer than pattern formation in one-dimensional
systems. For simplicity, we consider the static case, even though the following
arguments similarly hold in the dynamic case.

The situation in a one-dimensional system is shown in Panel A1 of Figure 4.2 on
page 66. The effective profile β1c (k) is has maxima that just touch the critical value 1.
Below the curve the critical wavevectors kmax are marked. Due to the one-dimensional
nature of the system, only two Fourier modes corresponding to kmax and −kmax are
critical. As the activity has to be real, the Fourier amplitudes corresponding to the
two critical k-values have to be complex conjugates. Hence, the problem reduces to
studying the behavior of one critical mode.

The situation for two-dimensional systems is shown in Panel A2 of Figure 4.2 on
page 66. The two-dimensional effective profile corresponds to the one-dimensional
version, rotated around the origin. Accordingly, not only two Fourier modes are
critical simultaneously, but a continuum of modes with k-values on the circle |k| =
kmax. Fully understanding the behavior of the system therefore requires studying an
infinite number of critical modes interacting non-linearly, which cannot be done using
standard methods.

4.3.2 The effect of the neuron grid

The origin of this problem is the assumption of a homogeneous continuous neural
field that is invariant with respect to arbitrary rotations and shifts. Neuronal networks,
however, are made up of separate neurons distributed in space. Introducing a grid
of neurons breaks the symmetries of the continuous system. In natural neuronal
networks, neurons might be distributed arbitrarily, but we here assume the neurons
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Figure 4.2: Comparison of effective profile in one- and two-dimensional, continuous and
discrete networks for the static case. (A) Continuous network: (A1) Effective profile
(blue), supported wavevectors (black), and critical wavevectors (orange) in one
dimension. (A2) Effective profile (background) and critical wavevectors (orange)
in two dimensions. (A3) One-dimensional projection of the peak of the effective
profile in a weakly super-critical state, showing stable (blue) and unstable (orange)
modes. (B) Discrete network: (B1) Effective profile (blue), supported wavevectors
(black), and critical wavevectors (orange) in one dimension. (B2) Effective profile
(background), supported wavevectors (black), and critical wavevectors (orange)
in two dimensions. (B3) One-dimensional projection of the peak of the effective
profile in a weakly super-critical state, showing stable (blue) and unstable (orange)
modes.
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to be arranged on a regular grid. A grid of neurons given by R = n1a1 + n2a2,
with lattice vectors a1, a2, only supports Fourier modes with wavevectors on the
respective grid in Fourier space K = k1b1 + k2b2, with ai · bj = 2πδij, and Kronecker
delta δij. A square grid of neurons is therefore mapped to a square grid in Fourier
space, a hexagonal grid to a hexagonal grid, and a rhombic grid to a rhombic grid.
For simplicity, we assume the neurons to be on a square grid, although other grid
geometries work similarly.

Mathematically, introducing a grid of neurons corresponds to replacing the Fourier
transform and convolutions in Eq. (4.3) by their discrete counterparts. Clearly, this
also affects the shape of the effective profile, which contains the Fourier transformed
connectivity profiles. Yet, as long as the neuron grid is dense enough and therefore
samples the continuous connectivity profile sufficiently well, the continuous effective
profile provides a decent approximation of the discrete version.

Introducing a neuronal grid in a one-dimensional system has no effect on the
number of critical modes, as illustrated in Panel B1 of Figure 4.2 on page 66. In
two-dimensional networks, however, the continuum of critical k-modes is reduced to a
discrete subset of modes, depicted in Panel B2 of Figure 4.2 on page 66. The symmetry
of the lattice allows only fixed numbers of k-modes to become critical simultaneously.
Assuming a grid spacing such that all k’s are given by integers, we distinguish the
following possibilities:

1. The zero-mode at the origin kc = (0, 0) becoming unstable corresponds to a
global instability. In the static case, this leads to the emergence of a global up-
or down-state, whereas in the dynamic case the populations show oscillating
activity.

2. If the critical wavevector kc is non-zero, the number of solutions to k2
c = k2

x + k2
y

determines how many modes are critical simultaneously. The critical modes
always occur in opposing pairs

(
ki, kj

)
, with ki = −kj. A four-mode instability

is illustrated in Panel B2 of Figure 4.2 on page 66. The number of solutions can
be four (e.g., (±2, 0) and (0,±2)), eight (e.g. (±1,±3) and (±3,±1)), twelve
(e.g. (±5, 0), (0,±5), (±3,±4), and (±4,±3)), or more. The critical modes
represent planar waves of activity with similar spatial frequency kc/2π, but
different directions. In the static case, these waves are standing, whereas in
the dynamic case they are oscillating with a temporal frequency ω/2π, moving
along the direction of their wavevector with velocity ω/kc. As explained in
4.2, the emerging activity pattern is given by a combination of these critical
modes with different amplitudes (and phases in the dynamic case), which are
determined by the way the modes interact with one another.

Introducing a grid is not the only solution to the issue of infinitely many critical
modes: Ermentrout and Cowan (1979) circumvent the problem, by restricting their
analysis to doubly-periodic solutions that tessellate the two-dimensional plane. The
fact that all interacting modes have the same wavelength, as |ki| = kc, restricts the
solutions to either hexagonal, square, or rhombic symmetries (Panel B of Figure 4.1 on
page 62). Tass (1995, 1997) instead study the system on a square and assume periodic
boundary conditions. This breaks the symmetry of the system because the continuous
two-dimensional Fourier transforms of the connectivity profiles in c(k) are replaced by
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Figure 4.3: Gaussian bifurcation profile. (A) Possible types of patterns for given peak values
cmin and cmax of the effective profile 4.6. (B) Transition curve determining at which
network parameters τ and d delay-induced oscillations occur for a given value of
cmin. (C) Transition curves indicating which types of patterns can develop when
the homogeneous solution looses its stability given the connectivity weights and
spatial spreads.

the Fourier transform over the square, which is not invariant with respect to rotations,
leading to a finite number of simultaneously critical modes, similar to our ansatz.

Introducing a grid of neurons, however, has another advantage: We are interested
in studying the behavior of the network at the critical point. In a simulation, however,
it is impossible to target this point precisely. Instead, the network parameters have
to be adjusted to bring the network close to the critical point such that only a small
number of modes is slightly super-critical, meaning that c(k) is slightly above the
critical value of one. An illustration of what happens in this weakly super-critical
state in a continuous and a discrete system is shown in Panels A3 and B3 of Figure 4.2
on page 66. Whereas in the continuous case an infinite number of modes around the
critical mode kc becomes critical as well, in the discrete case the vertical distance of the
discrete values of c(k) allows systematically adjusting the network parameters such
that the maximum of c(k) is lowered until only the critical mode kc remains critical.
As a result, studying the network on a grid allows us to investigate the weakly-super
critical state without the additional complication of unstable neighboring modes.

4.3.3 Example: Gaussian connectivity profiles

For understanding the results of the analysis so far, it is helpful to consider a concrete
example for the network connectivity: a Gaussian connectivity profile

Ma(r) =
wa

2πR2
a

exp
(
− r2

2R2
a

)
,
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with connectivity weight wa and the spatial spread of the connectivity Ra for each
pre-synaptic population a ∈ {E, I}. This yields the effective profile

c (k) = wE exp
(
−R2

Ek2

2

)
+ wI exp

(
−R2

I k2

2

)
, (4.14)

given by the sum of two Gaussians with standard deviations 1/Ra. One example of
this connectivity profile is shown in Panel A2 of Figure 4.2 on page 66, or Panel A1

for its one-dimensional projection. As explained above, the network’s bifurcations are
governed by the position of the extrema of the effective profile, which are determined
by the spatial spread and connectivity weights. Studying the conditions determining
the peak positions and their relative values, we can derive a bifurcation profile, shown
in Figure 4.3 on page 68, similar to FIG. 4(e)–(g) in Senk et al. (2020). The details are
presented in Appendix Section C.1.

What types of patterns may develop depending on the values of the effective profile
peaks cmin and cmax is determined by the stability conditions Eq. (4.11) and Eq. (4.12),
which are illustrated in Panel A of Figure 4.3 on page 68. For cmax < 1 and cmin > −1,
the network exhibits homogeneous steady activity. Static patterns may emerge if
cmax > 1 and cmin > −1, and dynamic patterns require cmax < 1 and cmin < −1. If
both, cmax > 1 and cmin < −1, a Pitchfork-Hopf bifurcation may occur, which we will
not discuss here (Veltz, 2013; Dijkstra et al., 2015). The minimum delay required for
dynamic patterns to occur for a given cmin, described by Eq. (4.13), can be read off
Panel B of Figure 4.3 on page 68. Finally, which weights and spatial spreads of the
connectivities lead to which types of patterns when the homogeneous solution looses
its stability is depicted in Panel C of Figure 4.3 on page 68. It shows that static patterns
with multiple interacting Fourier modes need a broader inhibition than excitation,
whereas dynamic patters with multiple unstable modes require a wider excitation.
Furthermore, global up- or down-states necessitate a dominant excitation; global
oscillations a dominant inhibition. Note that, contrary to Panels A and B of Figure
4.3 on page 68, the results in Panel C of Figure 4.3 on page 68 depend on the details
of the connectivity profile. Senk et al. (2020), e.g., used a boxcar-shaped connectivity
profile, which leads to qualitatively similar, but slightly different transition curves in
their FIG. 4(g).

4.4 studying the interaction of fourier modes

Our aim is to figure out what kind of stationary patterns emerge after a possible
transitory period, which is governed by how unstable Fourier modes interact with
one another. To that end, we have to investigate the non-linear part of Eq. (4.3) in the
discretized system, in which the convolutions and Fourier transforms are substituted
by their discrete counterparts. The difficulty in understanding the interaction stems
from the fact that the convolutions

[X ~~ X] (k, t) = ∑
k′

X (k, t)� X
(
k′ − k, t

)
result in interactions between all Fourier modes, critical and stable. Furthermore,
because Eq. (4.3) is a delayed differential equation, standard methods for studying
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differential equations are not applicable. To proceed with the analysis, we apply
a center manifold reduction (Hale and Lunel, 1993; Carr, 2006; Campbell, 2009)
to the dynamical equation Eq. (4.3). In a nutshell, a center manifold reduction
allows expressing the stable mode amplitudes as functions of the critical mode
amplitudes, resulting in a dynamical equation of the critical modes only. Additionally,
the center manifold reduction for delayed differential equations maps the system of
delayed differential equations onto a system of ordinary differential equations with
topologically equivalent bifurcation behavior, in which the delay is a simple parameter.
As we want to study the behavior of the network around the critical point, not just at
the critical point, we apply the center manifold reduction for systems with parameters
(Qesmi et al., 2006, 2007; Guo and Man, 2011).

To develop an intuition for the center manifold reduction for delay differential
equations (DDEs) with parameters, we discuss the center manifold reduction for
ordinary differential equations (ODEs), then explain how to deal with parameters,
and finally consider DDEs.

4.4.1 Center manifold reduction for ODEs

Performing a center manifold reduction around the fixed point z = 0 of ordinary
differential equations of the form

dz
dt

(t) = L · z(t) + F (z(t)) ,

with z ∈ Rn, matrix L, and non-linearity F with F(0) = 0 and Jacobian DF(0) = 0,
requires determining the eigenvalues Λ of L and an eigenbasis (φ1, . . . , φn) such that

L ·φi = λiφi ,

and finding an orthonormal adjoint basis (ψ1, . . . , ψn). We assume, the set of eigen-
values comprises c critical eigenvalues, which are defined to lie on the imaginary axis;
the other s eigenvalues having negative real parts. In the following we will distinguish
the matrices Φ = (φ1, . . . , φc) and Ψ = (ψ1, . . . , ψc)

T, collecting the eigenvectors
and adjoint eigenvectors corresponding to the critical eigenvalues, and their stable
counterparts Φs and Ψs. Projecting the differential equation onto the adjoint basis
yields two separate equations for the critical modes x = Ψ · z ∈ Rc and the stable
modes y = Ψs · z ∈ Rs

ẋ(t) = Lc · x(t) + f (x(t), y(t)) ,

ẏ(t) = Ls · y(t) + g (x(t), y(t)) , (4.15)

where Lc, the first c× c-block of the projection of L onto the adjoint basis, only has
eigenvalues on the imaginary axis, and Ls, the last s× s-block of the projection of L
onto the adjoint basis, has only eigenvalues with negative real parts.

Given that the the growth or decay of the modes near the origin is primarily
determined by the real parts of the eigenvalues of the linear operators, we can see that
the critical modes have slow dynamics around the origin, whereas the stable modes
show a relatively fast decay towards a value determined by the stable mode equation.
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As a result, the interesting dynamics near the origin are essentially imposed by the
critical modes.

This is formalized by the center manifold theorem, which states that there exists
a local center manifold Wc(0) = { (x, y) ∈ Rc ×Rs| y = h(x), h(0) = 0, Dh(0) = 0}
around (x, y) = (0, 0), which is tangential to the critical subspace of L and whose
shape is determined by the non-linearity F. The dynamics restricted to the center
manifold is described by

u̇(t) = B · u(t) + f [u(t), h (u(t))] , (4.16)

with u ∈ Rc, as long as u is sufficiently small; for ODEs B = Lc and f = Ψ · F.
Furthermore, the center manifold theorem states that the stability properties of the
zero solution of the differential equation reduced to the center manifold are the same
as for the full differential equation, and if z(t) = (x(t), y(t)) is a solution of the full
ODE, with z(0) = (x(0), y(0)) being sufficiently small, there exists a solution u(t),
such that as t→ ∞

x(t) = u(t) + O
(
e−γt) ,

y(t) = h (u(t)) + O
(
e−γt) ,

with some constant γ. In the literature two different ways of defining h are found:
the definition above, which highlights that the center manifold expresses the stable
modes in terms of the critical ones, and a convenient definition that allows a more
compact representation of the reduced dynamical equations, which we will use in the
following. Therefore, we redefine h ∈ Rs as h ∈ Rn, such that we can write

z(t) = Φ · u(t) + h (u (t)) + O
(
e−γt) , (4.17)

with
Ψ · h (u (t)) = 0 ,

which does not affect the center manifold reduction. Inserting a polynomial ansatz,
h (u(t)) = ∑ij aijui(t)uj(t) +O

(
|u|3

)
with aij ∈ Rn, into Eq. (4.15) and applying the

chain rule using Eq. (4.16) yields the center manifold at the critical point to lowest
order.

4.4.2 Center manifold reduction for ODEs with parameters

If the linear part L of the differential equation depends on some parameters α, such
that the system’s eigenvalues are critical for vanishing α, the above procedure only
holds for α = 0. However, we would like to study interacting Fourier modes in the
weakly super-critical regime, which corresponds to non-vanishing α. To generalize the
center manifold reduction to differential equations with parameters, the differential
equation is rewritten

dz
dt

(t) = L (0) · z(t)︸ ︷︷ ︸
new linear part

+ [L (α)− L (0)] · z(t) + F (z(t))︸ ︷︷ ︸
new non-linear part

,
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and the linear and non-linear parts are reinterpreted. Consequently, z needs to be
redefined

z̃(t) =

(
z(t)

α(t)

)
,

with

L̃ =

(
L (0)

0

)
, F̃ (z̃) =

(
[L (α)− L (0)] · z(t) + F (z(t))

0

)
,

where we used that parameters do not change with time, dα
dt = 0. Similarly, the

polynomial ansatz for the center manifold must be modified to include the parameters
α. With these definitions, the center manifold reduction for ODEs can be performed,
and the reduced dynamical equation for the critical mode amplitudes u becomes

du
dt

(t) =B · u(t) + Ψ(0) · (L(α)− L(0)) · [Φ · u + h (u(t))]

+ Ψ(0) · F [Φ · u + h (u(t))] .

4.4.3 Center manifold reduction for DDEs

A delayed differential equation of the form

d
dt

z (t) = L0z (t) +
M

∑
i=i

Liz (t− di) + F [z (t) , z (t− d1) , . . . , z (t− dM)] ,

with matrices Li, i ∈ {0, . . . , M}, a non-linear vector function F, and temporal delays
0 < d1 < · · · < dM ≡ d, maps an initial condition defined on an initial interval [−d, 0]
to the dynamics at a future time t, in contrast to ODEs which describe a system’s
evolution given an initial condition at a single time point t0. As the linear part in such
a case may no longer be described by a single matrix, but may instead contain multiple
terms for several delays, the standard procedure for center manifold reduction no
longer can be applied. Instead, the trick here is to introduce

zt(θ) = z (t + θ) , −d ≤ θ ≤ 0 ,

and to interpret the DDE as a functional differential equation

d
dt

zt (θ) =

 d
dθ zt (θ) , −d ≤ θ < 0 ,

Lzt + F (zt) , θ = 0 ,
(4.18)

with linear functional operator L, and non-linear functional operator F, and solutions
zt in the Banach space of continuous mappings C ([−d, 0] , Rn). Note that the first part
of the functional differential equation merely represents the correct evolution on the
initial time interval. In our model the linear operator has the form (cf. Eq. (4.3))

Lzt = L0zt (0) + Ldzt (−d) .

The characteristic equation that can be derived after making a Laplace ansatz (cf.
Eq. (4.4)), ∆ (λc)φ = 0, plays the role of the eigenvalue equation in the ODE case.
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The important difference here is that the eigenvectors Φ (θ) are no longer vectors
in Rn, but vectors in the Banach space of continuous mappings C ([−d, 0] , Rn), and
thus functions of θ. The choice of eigenvectors depends on the critical characteristic
values and therefore the studied bifurcation type (Hale and Lunel, 1993, Chapter 7.4).
Similarly to the ODE procedure, one then defines a bilinear form

〈ψ, φ〉 = ψ ·φ +
∫ 0

−d
ψ (σ + d) Ldφ(σ)dσ , (4.19)

analogous to the standard scalar product, finds respective adjoint eigenvectors Ψ (θ),
and uses them to project the DDE into a critical and a stable subspace. Finally, a
corresponding center manifold theorem guarantees the existence of a center manifold
(Hale and Lunel, 1993, Chapter 10.2), coming with a reduced dynamical equation for
the critical modes u. Determining the center manifold itself is a little different, as the
polynomial ansatz is replaced by

h (u(t), θ) = ∑
ij

aij (θ) ui(t)uj(t) +O
(
|u|3

)
, (4.20)

with functions aij (θ) ∈ Rn. Inserting the ansatz into the first line of Eq. (4.18) deter-
mines a set of linear ODEs, which determines the functions aij (θ) up to integration
constants; the second line of Eq. (4.18) is then used to fix the free constants.

In order to apply the center manifold reduction to our network model Eq. (4.3), we
combine the presented approach for ODEs with parameters with the approach for
DDEs, in which case the reduced dynamical equation is given by

du
dt

(t) =B · u(t) + Ψ (0) · [L (α)− L (0)] (Φ · u(t) + h (u(t), α)) (4.21)

+ Ψ(0) · F (Φ · u(t) + h (u(t), α)) .

More details can be found in Appendix Section C.4.

4.5 simulation

To validate our results, we numerically simulate an E-I network using the simulator
NEST (Hahne et al., 2021). For this purpose, we implemented a custom neuron type
polynomial_rate_ipn, which is based on the provided rate neuron implementation
(Hahne et al., 2017), but allows setting the polynomial coefficients of the non-linearity
explicitly. We set the neuron model’s external noise input to zero (mu=0., sigma=0.),
and linear_summation=FALSE, and choose the synapse type rate_connection_delayed,
such the dynamic equation for the rate Xi of neuron i is given by

τ
dXi

dt
(t) = −Xi(t) + ∑

j
Jijψ

[
Xj (t− d)

]
,

with the custom non-linearity

ψ (X) = β1X + β2X2 + β3X3 .

We define NI inhibitory neurons I and NE = nNI excitatory neurons E . The
inhibitory neurons are distributed across a two-dimensional regular grid, and n
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excitatory neurons are are placed on the same grid point as one inhibitory neuron,
respectively. We define the connectivity to be all-to-all, including self-connections
(autapses), but no multiple connections between the same neurons (multapses), with
Gaussian weights defined by

Jij =

pijwE , if j ∈ E
pijwI , if j ∈ I

, pij =


p̃ij

∑j∈E p̃ij
, if j ∈ E

p̃ij

∑j∈I p̃ij
, if j ∈ I

p̃ij =


exp

(
− (ri−r j)

2

2R2
E

)
, if j ∈ E

exp
(
− (ri−r j)

2

2R2
I

)
, if j ∈ I

taking into account the doubly periodic boundary conditions in the inter-neuronal
distance ri − r j. The weights are normalized such that each neuron receives synapses
with a total weight ∑j pijwj = wE + wI. At the beginning of the simulation, we set
the initial mode amplitudes aj corresponding to wavevector kj by fixing the activity
during an initial period to

X (r) = ∑
j

aj · sin
(
kj · r

)
.

All simulation parameters and their chosen values are listed in Appendix Section C.2.
The results of the simulations are presented in the following section.

4.6 static patterns

In this section, we finally investigate which static patterns the model can display
close to the critical point β1c (kmax) = β1cmax = 1. We introduce the parameter
ε = β1cmax − 1, which is determined by the network’s connectivity, and measures the
network’s distance to the critical point: ε > 0 corresponds to the super-critical state,
ε = 0 to the critical, and ε < 0 to the sub-critical state.

For simplicity, we restrict our analysis to the case of four simultaneously unstable
modes. The investigation of a scenario with more critical modes does not change the
analysis, it merely makes it more laborious. To prepare the center manifold reduction
(Section 4.4) of our network model Eq. (4.3), we first analyze the non-linear interaction
using the results of the center manifold theorem to identify the dynamical equations
of the critical and the involved stable modes.

One of the consequences of the center manifold theorem is that stable mode ampli-
tudes are much smaller than critical mode amplitudes, as long as the critical mode
amplitudes are not too large. This allows us to simplify the dynamical equations to
identify the modes which we need to calculate the center manifold for. A detailed anal-
ysis (Appendix Section C.3) shows that the cubic non-linearity primarily introduces
couplings between the critical modes, whereas the quadratic non-linearity introduces
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a coupling between critical and stable modes. The simplified dynamical equations for
the critical mode amplitudes xi(t) = vc · u (ki, t) are given by

τ
∂

∂t
xi(t) =− xi(t) + β1c (kc) xi(t− d) (4.22)

+ 2β2c (kc)

[
xi(t− d)y0(t− d) + ∑

j 6=i
xj(t− d)yij(t− d)

]
+ 3β3c (kc) xi(t− d) [2x1(t− d)x3(t− d) + x2(t− d)x4(t− d)] +O

(
|x|4
)

,

where we introduced the short-hand notations for the zero-mode amplitude y0(t) =
vc · u (0, t) and the difference mode amplitudes yij(t) = vc · u

(
ki − kj, t

)
. The dynami-

cal equations for the stable modes appearing in Eq. (4.22) are

τ
∂

∂t
y0(t) =− y0(t) + β1c (0) y0(t− d)

+ 2β2c (0) [x1(t− d)x3(t− d) + x2(t− d)x4(t− d)] +O
(
|x|3
)

,

(4.23)

τ
∂

∂t
yi(i+1)(t) =− yi(i+1)(t) + β1c

(√
2kc

)
yi(i+1)(t− d)

+ 2β2c
(√

2kc

)
xi(t− d)xi+1(t− d) +O

(
|x|3
)

, (4.24)

τ
∂

∂t
yi(i+2)(t) =− yi(i+2)(t) + β1c (2kc) yi(i+2)(t− d)

+ β2c (2kc) x2
i (t− d) +O

(
|x|3
)

, (4.25)

where we assume periodic indices i + 4 ≡ i. As discussed in Section 4.3, the stable
components z(k, t) = vs (k) · u (k, t) decay exponentially

τ
∂

∂t
z(k, t) = −z(k, t) . (4.26)

4.6.1 Interaction of static spatial waves

The center manifold reduction presented in Section 4.4 can now be applied to
Eq. (4.22)–Eq. (4.26). The calculation is fairly extensive, which is why we make
use of the symbolic mathematics Python library SymPy (Meurer et al., 2017). The
details are presented in Appendix Section C.4.

In the four-mode instability scenario the center manifold reduction results in four
reduced dynamic equations. However, because the activity of the populations must
be a real quantity, we know that the amplitudes of the critical mode pairs ki and
ki+2 = −ki must be complex conjugates. Consequently, it is sufficient to study the
dynamics of two of the four modes. The reduced dynamic equations for the two
critical mode amplitudes are

(τ + β1d) u̇1 = u1

[
ε +

(
A |u1|2 + B |u2|2

)]
, (4.27)

(τ + β1d) u̇2 = u2

[
ε +

(
B |u1|2 + A |u2|2

)]
, (4.28)
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Figure 4.4: Static patterns for four-mode instability: Numerically integrated reduced dynamic
equations and illustrative snapshots of the inhibitory activity at three different time
points of a corresponding NEST simulation using the same network configuration
(squares). The fixed parameters are listed in Appendix Section C.2. (A) Competing
mode configuration with β2 = 0.075 and initial mode amplitudes 2.03e− 3 and
1.98e − 3. Simulation at 640 ms, 2000 ms, and 3000 ms. (B) Coexisting modes
configuration with β2 = 0.15 and initial mode amplitudes 4.00e− 3 and 0.40e− 3.
Simulation at 640 ms, 850 ms, and 3000 ms. (C) Coexisting mode configuration for
three different delays d = 0, d = 3, d = 10.
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with

A = β2
2 [2Λ (0) + Λ (2kc)] + 3β3 , (4.29)

B = β2
2

[
2Λ (0) + 4Λ

(√
2kc

)]
+ 6β3 , (4.30)

Λ(k) =
c(k)

1− β1c(k)
, (4.31)

where u1 and u2 represent the amplitudes of two spatial waves orthogonal to each
other.

The reduced dynamical equations have three types of stationary solutions:

1. The homogeneous zero-solution u1(t) = u2(t) = 0 .

2. A static wave along one direction: one mode amplitude is non-zero ui(t) =

±√− ε
A , and the other one vanishes (Panel A of Figure 4.4 on page 76).

3. A static checkerboard pattern: both mode amplitudes are non-zero with the
same amplitudes u1(t) = u2(t) = ±

√
− ε

A+B (Panel B of Figure 4.4 on page 76).

In the sub-critical state, ε < 0 , the zero-solution is stable. In the super-critical state,
ε > 0 , the zero-solution is unstable, and one of the other solutions describes the
stationary pattern — which one is determined by A and B: |A| < |B| results in a
winner-takes-all system, in which only one mode survives; for |A| > |B| the modes
coexist.

In Figure 4.4 on page 76 we integrated the reduced dynamic equations numerically
for different network parameters and show corresponding snapshots of the inhibitory
activity of a network with identical parameters simulated with NEST (Section 4.5).
The excitatory population shows similar behavior. We set the initial amplitude of
one mode to be slightly higher than the amplitude of the second one. In Panel A of
Figure 4.4 on page 76 the network shows winner-takes-all dynamics and only the
strongest mode survives, leading to the emergence of vertical stripes. In Panel B of
Figure 4.4 on page 76 the network is in the cooperating state, the two modes coexist,
and a checkerboard pattern develops.

effect of the delay As seen on the left hand side of Eq. (4.27) and Eq. (4.28), the
delay merely enters the reduced dynamic equations as a modification of the network’s
integration time constant. Therefore, in the static case, its sole effect is a slowing down
of the transient dynamics, as illustrated in Panel C of Figure 4.4 on page 76, where we
integrate the reduced dynamical equations for three different delays. This is consistent
with findings in one-dimensional systems (Veltz, 2013), and it is expected intuitively
for static patterns, as time-independent activity patterns should not depend on the
delay once the network has reached the stationary state.

Setting d = 0 reproduces the results found for non-delayed two-dimensional systems
(Tass, 1995; Ermentrout, 1998).

effect of the non-linearity The reduced dynamic equations unravel the
influence of the individual components of the non-linearity on the network dynamics.
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The linear slope β1 occurs in a few places: Most significantly, it enters ε and therefore
directly controls the network’s criticality, that is whether activity patterns emerge or
the network remains in a homogeneous state. Similarly, it determines the absolute
value of the stationary amplitudes. Furthermore, β1 enters Eq. (4.27) and Eq. (4.28)
in combination with the delay and therefore enhances or decreases the effect of the
delay. Finally, as a part of Λ (k), β1 has a non-trivial influence on the interaction of
the critical modes.

If the non-linearity only has a cubic part β3, the network always exhibits winner-
takes-all dynamics, implying that the cubic part promotes a competitive interaction of
the modes (Panel A of Figure 4.4 on page 76). The network can only produce patterns
with multiple coexisting modes when the non-linearity features a quadratic part β2

(Panel B of Figure 4.4 on page 76). Eq. (4.23)–Eq. (4.25) demonstrate that, unlike the
cubic component, the quadratic part of the non-linearity leads to an excitation of
stable modes, which in turn excite the critical modes. Thus, β2 introduces an indirect
coupling of the critical modes via the stable modes. The indirect quadratic interaction
may be able to overcome the competitive cubic interaction if it supports a cooperation
of the critical modes; this is determined by the connectivity.

effect of the connectivity First and foremost, the connectivity determines
which modes are unstable and therefore the spatial frequency of the static patterns, as
discussed in Section 4.3.3. However, Eq. (4.29)–Eq. (4.31) show that the connectivity,
or rather its Fourier transforms in the effective profile c(k), also determine the nature
of the indirect interaction induced by the quadratic non-linearity. Depending on the
values of the effective profile at 0,

√
2kc, and 2kc, the indirect interaction is either

competitive or cooperative. Thus, the connectivity is critical in determining which
static patterns the network can support.

effect of homogeneous input Adding a homogeneous input to the network
amounts to assigning a finite value to the non-linearity at zero input ψ (0) 6= 0, which
modifies the working point around which the network dynamics are linearized and
therefore affects the values of β1, β2, and β3. We have demonstrated that the stability
of the homogeneous stationary solution is determined by the effective profile and the
slope β1 of the neurons’ input-output function at the working point. As a result, a
homogeneous rise of the external input may push a network across a critical point,
such that patterns may form; yet, if the external input drives the network into a regime
in which the neuron activity saturates, it may also stabilize the homogeneous steady
state. Depending on the particular shape of the neurons’ input-output functions, a
working point change may even affect the way unstable modes interact with each
other by modifying the relative strength of the quadratic and cubic contributions, β2

and β3, at the working point.

4.6.2 Excitation of stable modes

As a part of the center manifold reduction (Section 4.4), the stable mode amplitudes
are expressed in terms of the unstable mode amplitudes. We find the amplitudes for
the zero mode and the difference modes as functions of the unstable mode amplitudes
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Figure 4.5: Critical and excited stable modes for four-mode instability: Effective profile (back-
ground), supported wavevectors (black), critical wavevectors (orange), and excited
wavevectors (red). The red dot corresponds to k = 0, the red squares to k = 2kc,
and the red diamonds to k =

√
2kc.

ui , i ∈ {1, 2, 3, 4}, to lowest order in the quadratic non-linearity β2, the distance to
criticality ε, and the critical modes ui

h0 (u1, u2, u3, u4, ε) =
2β2c (0)

1− β1c (0)
(u1u3 + u2u4) , (4.32)

hi(i+2) (u1, u2, u3, u4, ε) =
β2c (2kc)

1− β1c (2kc)
u2

i , (4.33)

hi(i+1) (u1, u2, u3, u4, ε) =
2β2c

(√
2kc

)
1− β1c

(√
2kc

)uiui+1 . (4.34)

The results reveal that the critical modes excite certain stable modes due to the
quadratic non-linearity (illustrated in Figure 4.5 on page 79). Each critical mode pair
excites the zero-mode proportionally to the strength of the quadratic non-linearity
and depending on the value of the effective profile at k = 0. Similarly, the critical
modes excite the difference modes, which correspond to the wavevectors k = 2kc and
k =
√

2kc, proportionally to the quadratic non-linearity and dependent on the effective
profile at the respective k-values.

Eq. (4.32) indicates that when a static spatial wave develops from a homogeneous
state, the overall activity level increases or decreases a little bit, depending on the sign
of the prefactor in Eq. (4.32). The other two equations describe the two-dimensional
counterparts to higher harmonics in simple oscillators: Eq. (4.33) shows that static
spatial waves always excite corresponding spatial waves with twice the spatial fre-
quency, and Eq. (4.34) demonstrates the emergence of spatial waves diagonal to the
two critical mode directions.
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The center manifold reduction provides equal results as an adiabatic approximation:
Around the critical point, the dynamics of the critical modes will be very slow
— a universal phenomenon known as critical slowing down. As a result, we can
assume that the much faster stable modes always relax to their equilibrium value.
Assuming temporarily fixed values for the critical modes, solving Eq. (4.23)–Eq. (4.25)
for their stationary solutions, by setting ∂/∂ty(t) = 0 and ignoring the delay, yields
solutions that are identical to those obtained by applying the center manifold reduction
Eq. (4.32)–Eq. (4.34). However, an adiabatic approximation cannot explain the role of
the delay, which does not appear in the amplitudes for the stable modes but does occur
in the reduced dynamical equation for the critical modes Eq. (4.27) and Eq. (4.28).

4.7 discussion

In this chapter, we have shown how to investigate global pattern formation in a
two-dimensional sheetlike E-I network with target-agnostic isotropic connectivity,
constant synaptic delay, and arbitrary non-linearity analytically and with simula-
tions. We demonstrated that the conditions for pattern formation are identical in
one-dimensional and two-dimensional networks, and we explored the key differ-
ence between the two, namely the inevitable occurrence of multiple, simultaneously
unstable, interacting Fourier modes in two-dimensional networks. We discussed
how a neuron grid limits the number of simultaneously unstable modes, and we
presented a detailed analysis of the conditions for pattern formation in a network
with Gaussian connectivity profiles. Then we studied the non-linear interaction of
simultaneously unstable modes for static patterns, and discussed how the network
parameters influence the network’s pattern formation behavior. We could show that
the quadratic part of the non-linearity leads to an excitation of stable modes, which
mediates an indirect coupling between the critical modes, determining whether the
network exhibits winner-takes-all dynamics or cooperative dynamics. Additionally,
we demonstrated that the delay merely slows down the transient activity. Finally, we
compared our findings to a numerical network simulation using NEST in combination
with a newly implemented rate neuron non-linearity.

In the remainder of this section, we elaborate on the assumptions of the used model
and how some of them might be overcome. Finally, we discuss how the presented
analysis can be used to study dynamic patterns.

four mode instability For the sake of simplicity, we have only considered the
case in which four Fourier modes become unstable simultaneously. Nonetheless, the
presented analysis works similarly for scenarios involving more unstable modes. The
next higher number of simultaneously unstable modes for a square grid would be
eight. The cubic non-linearity leads to an equal interaction between all Fourier mode
pairs (cf. Tass, 1995, eq.5.3 for case without delay), as does the indirect coupling via the
stable zero mode. But the indirect coupling via the difference modes introduces terms
including the effective profile at all difference modes ki − k j. So, while networks with
a purely cubic non-linearity will still show winner-takes-all dynamics, the quadratic
non-linearity might introduce more interesting interactions, like groups of cooperating
modes.
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global patterns While the presented analysis can explain lattice periodic pat-
terns, it cannot deal with localized activity such as bumps, breathers, or spirals.
Analyzing them necessitates explicitly constructing a localized solution and subse-
quently evaluating its stability properties. Often these types of patterns are explored
in network models that include synaptic adaption or external input breaking the
translation symmetry of the model. Bressloff (2012, Section 4) provides an excellent
introduction to the subject.

regular grid & homogeneous connectivity When developing the simula-
tion for this chapter, we observed that the simulations do not display the anticipated
patterns as long as the network has any random component that introduces hetero-
geneity. Instead, the observed activity exhibited small patches of wavelike activity
with the predicted spatial frequencies but varying sizes and orientations. This might
suggest that the theory holds locally but fails to capture the global behavior due to
the occurrence of small patches with preferred directions that violate the assumption
of isotropy. However, this requires further investigation.

target-agnostic connectivity Our model assumes a target-agnostic connec-
tivity, which means that neurons do not distinguish the types of neurons they are
projecting to. As a result, both the excitatory and the inhibitory population receive the
same input, and the neural field is effectively scalar. This assumption was introduced
to allow us to focus solely on the effect of a synaptic delay. As demonstrated in Section
4.3, the delay can induce oscillatory activity. However, oscillations can also be caused
by the network’s connectivity, namely by I-I and E-I loops, two mechanisms known as
Interneuron Network Gamma (ING) and Pyramidal Interneuron Network Gamma
(PING) (Whittington et al., 2010). Pattern formation in two-dimensional networks
with source- and target-specific connectivity has been studied without taking into
account the synaptic delay (Tass, 1995, 1997). Including such a connectivity and a
delay results in an intricate interaction of the two oscillation mechanisms. This is
illustrated mathematically by the fact that in such a model, the effective profile c(k)
in the condition for the emergence of dynamic patterns Eq. (4.12) is no longer a real
function, but a complex function. So, in this case, analyzing the conditions for pattern
formation necessitates a complex analysis of the Lambert W function, and performing
a bifurcation analysis as in Section 4.3.3 requires a categorization of the complex
effective profile in terms of all parameters wEE, wEI, wIE, wII, REE, REI, RIE, RII, and d.
This is an interesting approach that might be investigated in future studies.

sheetlike network topology In the presented analysis, we assume a sheetlike
network topology, which means that we assume an infinitely large flat network.
This allows us to use standard two-dimensional Fourier modes as base functions
for categorizing the patterns. In the course of our analysis, we introduce a neuron
grid, and the minimum distance between the neurons puts a high frequency limit on
the supported Fourier modes. Investigating a finite patch of network models like in
Tass (1995, 1997) works analogously. However, the finite size of the patch puts a low
frequency limit on the Fourier modes. As we can only simulate a finite network patch
containing a finite number of neurons, we see both limitations in the simulation.
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Aside from network size, boundary conditions can play an important role in shaping
the details of stationary patterns beyond their frequency and type. We neglect the
boundary conditions in our analysis, although we use periodic boundary conditions
in the simulation. The analyzed network topology might be a good approximation
of pattern formation on the mesoscopic range of a few square millimeters, as real
neuronal networks are almost sheetlike on this scale and typically extend much further.

However, the large scale topology of cortex can be essential, especially when
investigating large scale activity, as seen in EEG recordings. In this context, we would
like to highlight Visser et al. (2017) , who put special emphasis on the role of a
spherical topology in pattern formation. They explore a scalar neural field with delay
on the sphere using methods very similar to those presented in this chapter: they
use a combination of linear stability analysis, center manifold reduction, albeit using
the slightly different sun-star calculus (Diekmann et al., 1995), and simulations of
the neural field model on a mesh, opposed to the simulation of discrete neurons
performed here. On the sphere, spherical harmonics, rather than two-dimensional
Fourier modes, are the natural option for describing patterns (Daini et al., 2020).

single delay The network model we examined has only a single constant delay.
Yet, realistic neuronal networks have at least two sources of delays: a finite synaptic
processing time and a distance dependent delay due to a finite signal transmission
speed. However, because neurons within a cortical area are fairly close, the delay
due to limited transmission speed may be neglected or absorbed into the constant
delay for analyzing pattern formation on a mesoscopic scale. Using a single constant
delay has the advantage of permitting an analytical derivation that begins with the
network model equations and ends with the reduced dynamical equations that clearly
illustrate the influence of the delay.

Nevertheless, the key steps of the presented analysis should hold for multiple and
even distance dependent delays. In this case, the characteristic equation Eq. (4.5)
gets more complicated and can only be solved numerically for the characteristic
value determining the stability of the homogeneous steady state. The conditions
for bifurcations are defined implicitly by inserting either λ = 0 or λ = ±iω into
the characteristic equation Eq. (4.5). This strategy is pursued by Veltz (2013) and
Visser et al. (2017). Finally, for static patterns, the delay enters the reduced dynamical
equations only through the normalization of the adjoint eigenbasis, where it appears
as a numerically solvable integral. Therefore, as expected intuitively, the finding that a
constant delay only slows down the transient phase of the formation of static patterns
should hold true for multiple and even for distance dependent delays, which confirms
earlier findings in one-dimensional networks (Veltz, 2013).

next step : investigating dynamical patterns The logical next step in
developing our analysis is to apply the developed procedure for investigating interac-
tions of simultaneously unstable modes to examine dynamic patterns. This requires
choosing a different eigenbasis for the center manifold reduction, but the analysis
remains the same. As dynamic modes have two free parameters, amplitude and phase,
the analysis provides twice the number of reduced dynamic equations. The interplay
of amplitudes and phases complicates the investigation of the corresponding unstable
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modes’ interactions. However, employing the developed network simulation and
configuring the parameters in such a way that the criterion for a dynamic bifurcation
is met, we observed the expected global oscillations, traveling waves, or blinking
rolls, as reported by Tass (1997) for delay free networks. What stationary patterns the
network exhibits depending on the network model parameters will be investigated in
a future project.





5
D I S C U S S I O N

The previous three chapters present the different studies that constitute the heart
of this thesis. In this final chapter, we conclude the thesis by summarizing the
results of each study, putting the studies in the context of the topic of this thesis —
spatial organization — and discussing the assumptions the presented analyses rely on.
Finally, we address the relevance of spatial organization to neuronal network theory
and provide an outlook.

5.1 conclusions

a toolbox for mean-field based network model analysis tools Chap-
ter 2 presents a Python package we developed for collecting and providing easily-
usable, well-tested, and well-documented implementations of mean-field results that
can be applied to analyze a variety of network models. Mean-field theory and related
methods like linear-response theory describe the activity statistics of entire popula-
tions of neurons (Section 1.4). While the respective analytical results themselves are
insightful about underlying network mechanisms that shape the activity dynamics,
these tools may be leveraged even further by numerically solving corresponding
model-specific equations. Developing the required implementations, however, can be
challenging and time-consuming. Thus, the aim of the presented toolbox is to collect
such numerical implementations and to make them accessible to the neuroscientific
community. In Chapter 2, we present the modular and extensible architecture of the
toolbox and the different workflows for using the tools, showcase how to compute
the mean-field estimates of a microcircuit model’s firing rates and power spectra,
compare the toolbox to other tools for network model analysis, and discuss use-cases,
limitations, and how to contribute new tools.

We argue that employing mean-field techniques for network model analysis comes
with considerable advantages, especially for network model development. Performing
parameter explorations with simulations requires running multiple simulations with
different network model instances to infer the network activity statistics and to find a
suitable model configuration. Depending on the network size, this might take a long
time and demand a lot of computer power. The numerical computation of analytical
estimates, on the other hand, is independent of the number of neurons as long as the
theories’ assumptions are met. Furthermore, they can guide parameter explorations,
as they directly link a model’s parameters to its activity statistics, allowing for sys-
tematic adjustments of network parameters to adapt a network’s behavior to one’s
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demands. That being said, applying mean-field tools always requires considering their
limitations, since they provide unreliable estimates outside of their valid parameter
regimes. Currently, the applicability of the toolbox is limited by the fact that so far
primarily methods for the commonly used LIF neuron model have been implemented.
Nevertheless, having such a freely accessible package in the first place may foster the
development of new methods that can take advantage of the toolbox’s solvers and use
existing tools as building blocks.

covariances in two-dimensional networks Chapter 3 studies the spatial
structure of spike count covariances in networks with distance-dependent connection
probability profiles. Resting state data in macaque motor cortex reveal a salt-and-
pepper organization of spike count correlations and covariances with strong positive as
well as negative covariances between pairs of neurons separated by several millimeters,
independent of the putative neuron types. We demonstrate analytically that such
long-range covariance patterns with quickly decaying mean covariances and slowly
decaying variance of covariances across several millimeters can be explained by a
model with heterogeneous, short-range connectivity. The heterogeneity puts the
network into an almost critical regime in which a large number of indirect paths
between pairs of neurons effectively influences their coordination. We predict that
in this regime the anatomical differences of the spread of excitatory and inhibitory
connections should be irrelevant for the spread of the covariances and verify this in
the macaque data. Furthermore, we predict that the described dynamically emerging
covariance patterns may be adjusted effectively by a shift of the mean network input,
which we illustrate using a simple network model simulation. We observe such a
significant modification of the covariance structure in two distinct recording epochs
that correspond to different attentive states of the monkey.

The proposed coordination mechanism does not require any specific imprinted
network connection structure, which would yield less flexible covariance patterns, or
any correlated shared external input, which would only result in positive correlations.
It is worth noting that this is only one possible explanation for strong correlations.
The theory assumes uncorrelated input, making the network mechanism less suitable
for understanding sensory areas, which receive strongly correlated external inputs.
Rosenbaum et al. (2017), for example, have shown that such networks may exhibit
non-monotonously decaying correlations. Smith et al. (2018) demonstrate that a
different type of heterogeneity can lead to long range patchy correlations, as seen in
visual cortex, whereas the mechanism presented here can explain the salt-and-pepper
correlation structure seen in motor cortex and is particularly applicable to resting state
activity.

activity patterns in two-dimensional networks Chapter 4 studies the
effects of a constant synaptic delay and the different neuronal input-output func-
tion components on pattern formation and selection in a planar two-dimensional
E-I network. A linear stability analysis confirms that the conditions on the network
parameters for spatio-temporally structured activity to emerge from homogeneous ac-
tivity are the same as in the one-dimensional case, and we perform a detailed analysis
of the conditions in networks with Gaussian connectivity profiles. However, due to
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the continuous rotation symmetry in two-dimensional neural fields, a continuum of
Fourier modes becomes critical simultaneously when the homogeneous state looses its
stability, and we discuss that this number is finite for discrete networks. We present a
center manifold reduction that allows studying the non-linear interaction of the critical
modes despite the temporal delay and apply the method to study stationary pattern
formation. This results in a set of simplified ordinary differential equations for the
mode amplitudes, which clearly discern how the different model components affect
pattern formation: the delay primarily slows down the transient dynamics, and the
input-output function determines whether the critical modes show winner-takes-all
or cooperative dynamics. We integrate the equations numerically and show that a
matching network simulation displays the predicted patterns. Finally, we discuss
non-linear phenomena related to stable mode excitation.

5.2 sub-projects in the context of spatial organization

The three sub-projects of this thesis cover complementary aspects of spatially organized
neuronal networks:

The package introduced in Chapter 2 provides tools for computing network prop-
erties that only indirectly depend on spatial organization, although some methods
required for studying pattern formation are included as well. Mean-field estimates
of properties such as average firing rates for asynchronous irregular network states
are dependent on the number of inputs but otherwise are exclusively determined
by single neuron properties; very similar to the transfer function. However, such
population properties are crucial for understanding spatially organized networks:
as shown in Chapter 3, the spatial covariance structure is dictated by the effective
connectivity, which in turn is determined by the neurons’ average firing rates and
transfer functions. Apart from that, mean-field theory describes network activity
averaged over thousands of neurons, providing a coarse-grained perspective of brain
dynamics; particularly relevant on the millimeter scale. Furthermore, as mentioned in
Section 2.4.2, the toolbox provides a method for mapping a spiking network model to
a corresponding rate network model. Such mappings enable the use of results from
neural field theory, such as those presented in Chapter 4, to support the analysis of
pattern formation in spatially organized spiking networks.

Clearly, the other two sub-projects are related to spatially organized networks, since
they study spatial phenomena. They both study spontaneous activity in the absence
of any structured external input with a focus on the mesoscopic scale. They do,
however, address complementary aspects, namely the spatial structure of covariances
in spiking activity in an almost critical regime and coherent population activity in
slightly super-critical networks. While the covariance project is clearly tied to the
spiking component of multi-electrode recordings, the pattern formation project might
be seen in the context of the LFP component. However, many of the ideas of the
pattern formation analysis performed in Chapter 4 certainly are transferable to pattern
formations in spiking activity. Just to give an example, hexagonal spiking patterns
(Rowland et al., 2016; Nadasdy et al., 2017) similarly might be understood in terms of
three simultaneously unstable interacting Fourier modes. That is also why we place
a major emphasis on the effect of the different components of the non-linearity on
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the dynamics: spiking neurons in a realistic regime show an expansive non-linearity,
as demonstrated by Roxin et al. (2011), implying a strong influence of the quadratic
component on pattern formation in realistic spiking networks.

5.3 overarching assumptions in this thesis

Here we discuss assumptions that were introduced to simplify the analyses or render
them possible in the first place.

mean-field assumptions The mean-field approach clearly plays a major role in
the first two sub-projects. The core idea of mean-field analyses is based on the central
limit theorem, which allows approximating the recurrent synaptic input by Gaussian
noise as long as a neuron receives a large number of uncorrelated inputs. Hence,
the mean-field approach is particularly suitable to describe asynchronous irregular
activity, which is often observed in cortex (Softky and Koch, 1993; Shadlen and
Newsome, 1998) and naturally emerges in networks with a balance between excitation
and inhibition (van Vreeswijk and Sompolinsky, 1996, 1998). Small fluctuations and
oscillations of network activity around an asynchronous irregular stationary state can
be understood in terms of linear-response theory (Lindner and Schimansky-Geier,
2001; Lindner et al., 2005). Strong input correlations, as occurring in sensory areas,
and other strongly correlated network states, such as synchronized activity, however,
violate the assumptions of mean-field theory and require using different approaches
(see e.g., Rosenbaum et al., 2017). A uniform increase of the external input to an entire
network, on the other hand, can be understood within the described frameworks, as
already discussed in the corresponding chapters. A homogeneous external input does
affect the network’s working point and therefore its dynamics: It may alter the spatial
coordination pattern in the sub-critical regime described in Section 3.6, and it can have
multiple effects on spontaneous pattern formation as discussed in Section 4.6.1.

monotonously decaying isotropic horizontal connectivity In this
thesis we focus on the effects of an isotropic local horizontal connectivity. On the
range of a few hundred micrometers the connection probability decays monotonously
(see discussion of literature in Section 1.1), and we demonstrate in this thesis that even
such a simple spatial structure leads to interesting non-trivial dynamics. That said,
biological networks feature much more elaborate horizontal connectivity, including
anisotropic patchy and long range connections (McDonald and Burkhalter, 1993;
Livingstone and Hubel, 1984; Bosking et al., 1997; Budd and Kisvárday, 2001; Lewis
et al., 2002; Tanigawa et al., 2005; Buzás et al., 2006; Voges et al., 2010; Boucsein
et al., 2011). Such long range connectivity leads to increased coupling across larger
distances and can induce a non-monotonous distance dependence of correlations,
as seen in distributed orientation specific networks in visual cortex (Hubel and
Wiesel, 1959). However, such specific connectivity is not required for long-range
correlations as shown in Chapter 3; not even for patchy correlations as demonstrated
by Smith et al. (2018), who study the effect of an anisotropic spatial connectivity
profile. Incorporating a more complex connectivity in the pattern formation analysis
of Chapter 4 is straightforward. This will only affect the concrete shape of the effective
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profile, possibly resulting in simultaneously unstable Fourier modes with various
frequencies. Breaking the isotropy amounts to breaking the rotation symmetry, which
may result in preferred directions of stationary periodic patterns and traveling waves.
Note that we implicitly neglect the vertical connectivity between different cortical
layers by studying two-dimensional networks and limiting our analyses to only two
populations.

target-agnostic connectivity Both Chapter 3 and Chapter 4 at some point
make the assumption of a target-agnostic but source-specific connectivity, which
means that we assume neurons do not differentiate between the types of neurons to
which they connect, but excitatory neurons’ connectivity can differ from inhibitory
neurons’ connectivity. Stepanyants et al. (2004, 2008) indeed report that excitatory
neuron axons show no structural specificity towards their targets; inhibitory neurons,
however, seem to connect target-specific. Assuming spatial spreads to only depend on
the source neuron is in line with experimental results (Levy and Reyes, 2012, Table
3) and (Ohana et al., 2012, Table 1). A source- and target-specific connectivity does
not introduce any fundamental difficulties in Chapter 3, since we first obtain the
full results for a source- and target-specific connectivity and make the simplifying
assumption solely to be able to study the long-range limit analytically. In Chapter 4,
however, a source- and target-specific connectivity introduces another potential origin
of oscillations, additional to the delay. We discuss a possible approach for studying
such systems in Section 4.7. Here, we make this simplification to be able to clearly
discern the effects of the delay.

mesoscopic scale In this thesis, we focus on the mesoscopic scale covering a
few millimeters. The specifics of this scale are highlighted by comparing it to the
characteristics of other scales: On the microscopic scale of few hundred micrometers,
the distance dependence of the connection probability is irrelevant, and a microscopic
network may be well described by a model with random connectivity with uniform
connection probabilities. The distance-dependent axonal delay should be insignificant
due to the short distances and might be combined with the constant synaptic delay.
On the macroscopic scale, which might cover several centimeters up to the entire brain,
long-range connectivity and the brain’s overall topology play a much more important
role. Visser et al. (2017), for example, argue for the importance of suitable boundary
conditions for understanding EEG, which might be taken into account by considering
a spherical network topology. Furthermore, due to large distances between different
parts of the brain, finite axonal transmission speeds may be the dominant contributors
to communication delays. The mesoscopic scale is somewhere in the middle of these
two extremes. Mesoscopic networks are large enough that the distance-dependence of
connection probabilities has to be considered; however, long-range connections may be
negligible on this scale. As a local approximation, a planar topology is appropriate for
describing a few square millimeters of cortical networks. Whether or not the axonal
delay has to be taken into account in addition to the synaptic delay is determined by
the local axonal propagation velocities and hence the local myelination (Swadlow and
Waxman, 2012).
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5.4 relevance of spatial organization

In this section, we discuss why spatially organized connectivity is an important
property worth investigating.

Obviously, including spatial organization is essential for explaining spatial phenom-
ena like traveling waves or spatially periodic activity, reviewed in Section 1.2; only
spatially structured networks can exhibit spatially organized activity.

However, spatial organization is more than merely a feature that may be considered
for studying spatial phenomena and ignored otherwise: Keane and Gong (2015),
for example, show that propagating waves exhibited by spatially extended balanced
spiking neuronal networks result in individual neurons receiving highly synchronized
synaptic inputs when the waves travel across the network; they discuss that this
has been proposed as an alternative explanation for highly variable spiking activity
(Stevens and Zador, 1998) that is consistent with non-Gaussian input distributions as,
for example, observed in auditory cortex (DeWeese and Zador, 2006), and that can
explain experimentally recorded cross-correlations of nearby pairs of cortical neurons
(Okun and Lampl, 2008). These two observations are inconsistent with the mean-field
assumption of uncorrelated, Gaussian input distributions, but can be understood by
incorporating spatial organization. In a similar vein, Huang et al. (2019) demonstrate
that a model with slower inhibition than excitation, as observed in experiments (Salin
and Prince, 1996; Geiger et al., 1997; Xiang et al., 1998; Angulo et al., 1999), displays
pathologic levels of rhythmic synchronization unless a spatially organized connectivity
is incorporated, resulting in asynchronous spiking activity. The presented examples,
such as non-Gaussian input distributions and asynchronous activity despite slower
inhibition than excitation, highlight experimental findings that do not have a clear
link to spatial organization but may be explained by taking it into account.

Networks with spatially structured connectivity are strongly related to networks
with functionally structured connectivity, such as visual cortex (Hubel and Wiesel,
1959). In models of orientation selectivity, for example, the connectivity depends on
the distance in a functional space, e.g., the orientation ranging from −π/2 to π/2,
rather than the spatial distance (Ben-Yishai et al., 1995; Hansel and Sompolinsky, 1998;
Blumenfeld et al., 2006); they even can be combined, as in the model of visual cortex
by Bressloff et al. (2001). For studying such networks the same approaches can be
used. Incorporating organization in (functional) space, however, is not the only way
of structuring networks: networks can be clustered (Litwin-Kumar and Doiron, 2012),
feature feed-forward structures (Diesmann et al., 1999), or have low-rank connectivity
(Mastrogiuseppe and Ostojic, 2018), to name a few examples.

In general, connectivity — and especially structured connectivity — leads to a certain
redundancy in the activity and hence reduces the activity’s dimensionality, which
indicates the minimal number of independent latent variables, or neuronal modes, that
describe most of the activity’s variability. Due to the availability of massively parallel
recording methods, there has been a recent surge of interest in the dimensionality of
brain activity (Yu et al., 2009; Cunningham and Byron, 2014), and cortical activity has
been observed to be on low-dimensional activity manifolds (Gallego et al., 2017, 2018,
2020) or high-dimensional manifolds (Stringer et al., 2019a,b) depending on brain area,
task, and stimulus. The occurrence of such activity manifolds requires the structured
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coordination of neurons, and as already discussed in Section 3.8, investigating spatially
structured networks is crucial for understanding how neurons can coordinate their
activity across large distances in the first place. Recent studies have investigated the
connection between connectivity and dimensionality in recurrent networks (Recanatesi
et al., 2019; Dahmen et al., 2020; Hu and Sompolinsky, 2020) in more detail. Together
with other types of structured connectivity, the spatial organization determines the
global structure of the activity manifold. Different submanifolds may then be explored
in the course of different tasks: Elsayed et al. (2016), for example, find that motor
cortex uses orthogonal subspaces for movement preparation and movement execution;
Luczak et al. (2009) demonstrate that stimulus evoked activity lies on submanifolds of
the manifold explored by spontaneous activity; and Stringer et al. (2019a) find that
the dimensionality in visual cortex depends on the dimensionality of the input signal.
So, while the global structure of the manifold may be determined by the connectivity,
the activity may be restricted dynamically to lower-dimensional subspaces to perform
different tasks. However, how the connectivity shapes the structure of the global
manifold is an open question that should be explored in future studies.

5.5 outlook

This thesis explores the theory of spatially organized networks. We demonstrate that
spatial structure is a critical feature of biological neuronal networks that needs to be
taken into account for understanding a wide range of phenomena observed in real
brains, including large-scale coordination, spatio-temporal activity patterns, experi-
mentally observed variability of spiking activity, and network activity dimensionality.
We introduce a Python package that allows utilizing the coarse-grained perspective
of analytical mean-field results to investigate neuronal network models, we explain
how long-range covariances on a mesoscopic scale naturally arise from short-range
connectivity, and we investigate the effects of synaptic delays as well as the neuronal
input-output function on pattern formation in two-dimensional networks.

As highlighted in the preceding discussions, spatially organized networks, and
particularly the theory of spatially organized spiking networks, constitute rich fields
of research, the latter of which only recently has gained traction. Future research will
certainly establish closer ties between the neural field and the spiking literature, and
we expect that the relation between spatial organization and properties of spiking
networks, as well as how spatially organized connectivity affects the properties of
activity manifolds, will be explored in greater depth. Additionally, we hope to see
studies of the effects of more intricate and long-range connectivities on network
activity, which would allow studying networks on an intermediate scale at which
brain topology may start playing a role. To conclude, the spatial organization of
networks and its impact on network activity pose a variety of intriguing questions
that will provide plenty of research opportunities for the foreseeable future.
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a.1 microcircuit parameters

Symbol Value
PD14

Value
B16

Description

K4E,4I 795 675 In-degree from 4I to 4E

K4E,ext 2100 1780 External in-degree to 4E

D(ω) none truncated
Gaussian

Delay distribution

de ± δde 1.5± 0.75 ms 1.5± 1.5 ms Mean and standard deviation of
excitatory delay

di ± δdi 0.75± 0.375 ms 0.75± 0.75 ms Mean and standard deviation of
inhibitory delay

Table A.1: Parameter adaptions used here are introduced by Bos et al. (2016) (B16) compared
to original microcircuit model. Kij denotes the in-degrees from population j to
population i. The delays in the simulated networks were drawn from a truncated
Gaussian distribution with the given mean and standard deviation. The mean-field
approximation of the microcircuit by Potjans and Diesmann (2014) (PD14) assumes
the delay to be fixed at the mean value, which is specified in the toolbox by setting
the parameter delay_dist to none.
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L O N G R A N G E C O R R E L AT I O N S

b.1 correlations and covariances

A typical measure for the strength of neuronal coordination is the Pearson correlation
coefficient, here applied to spike counts in 1 s bins. Correlation coefficients, however,
comprise features of both auto- and cross-covariances. From a theoretical point of view,
it is simpler to study cross-covariances separately. Indeed, linear-response theory has
been shown to faithfully predict cross-covariances in spiking leaky integrate-and-fire
networks (Tetzlaff et al., 2012; Trousdale et al., 2012; Pernice et al., 2012; Grytskyy
et al., 2013; Helias et al., 2013; Dahmen et al., 2019). Figure B.1 on page 96 justifies the
investigation of cross-covariances instead of correlation coefficients for the purpose of
this study. It shows that the spatial organization of correlations closely matches the
spatial organization of cross-covariances.

95
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Figure B.1: Correlations and covariances. The shown data is taken from session E2. (E-
E: excitatory-excitatory, E-I: excitatory-inhibitory, I-I: inhibitory-inhibitory). (A)
Population-resolved distribution of pairwise spike-count Pearson correlation coeffi-
cients. Same data as in Figure 3.1 on page 31C. (B) Population-resolved distribution
of pairwise spike-count covariances. (C) Population-resolved distribution of vari-
ances. (D) Pairwise spike-count correlation coefficients with respect to the neuron
marked by black triangle. Grid indicates electrodes of a Utah array, triangles and
circles correspond to putative excitatory and inhibitory neurons, respectively. Size
as well as color of markers represent correlation. Neurons within the same square
were recorded on the same electrode. Same data as in Figure 3.1 on page 31D.
(E) Pairwise spike-count covariances with respect to the neuron marked by black
triangle.
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b.2 robustness to e/i separation

Figure B.2: Distance-resolved variance of covariance: robustness of decay constant estima-
tion. Exponential fits (lines) to variances of covariances (dots) analogous to Figure
3.4 on page 38A,B (columns 1&3 and 2&4, respectively) for all analyzed resting
state sessions. The two sets of plots differ in E/I separation consistency values cho-
sen during data preprocessing. Panels a-h: default (lowest) required consistency
(∼ 0.6), used throughout the main analysis; panels i-p: c = 0.75. The values of the
obtained decay constants are listed in Appendix Table B.1 on page 99.

The analysis of the experimental data involves a number of preprocessing steps,
which may affect the resulting statistics. In our study one such critical step is the
separation of putative excitatory and inhibitory units, which is partially based on
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setting thresholds on the widths of spike waveform, as described in the Methods
section. We tested the robustness of our conclusions with respect to these thresholds.

As mentioned in Methods, two thresholds for the width of a spike waveform are
chosen, based on all SU average waveforms: A width larger than the “broadness”
threshold indicates a putative excitatory neuron. A width lower than the “narrowness”
threshold indicates a putative inhibitory neuron. Units with intermediate widths are
unclassified. Additionally, to increase the reliability of the classification, we perform
it in two steps: first on the SU’s average waveform, and second on all its single
waveforms. We calculate the percentage of single waveforms classified as either type.
Finally, only SUs showing a high enough percentage of single waveforms classified
the same as the average waveform are sorted as the respective type. The minimal
percentage required, referred to as consistency c, is initially set to the lowest value
which ensures no contradictions between average- and single-waveform thresholding
results. While the “broadness” and “narrowness” thresholds are chosen based on all
available data for a given monkey, the required consistency is determined separately
for each recording session. For monkey N c is set to 0.6 in all but one sessions: In
resting state session N1 it is increased to 0.62. For monkey E the values of c equals
0.6 in the resting state recordings and take the following values in five analyzed
reach-to-grasp sessions: 0.6, 0.89, 0.65, 0.61, 0.64.

The only step of our analysis for which the separation of putative excitatory and
inhibitory neurons is crucial is the fitting of exponentials to the distance-resolved
covariances. This step only involves resting state data. To test the robustness of our
conclusions, we manipulate the required consistency value for sessions E1, E2, N1, and
N2 by setting it to 0.75. Figure B.2 on page 97 and Table B.1 on page 99 summarize
the resulting fits.

It turns out that increasing c to 0.75, which implies disregarding about 20− 25
percent of all data, does not have a strong effect on the fitting results. The obtained
decay constants are smaller than for a lower c value, but they stay in a range about an
order of magnitude larger than the anatomical connectivity. We furthermore see that
fitting individual slopes to different populations in some sessions leads to unreliable
results (cf. yellow lines in Panel A and I of Figure B.2 on page 97 and blue lines in
Panels C, D, K, and L of Figure B.2 on page 97). Therefore, the data is not sufficient
to detect differences in decay constants for different neuronal populations. Fitting
instead a single decay constant yields trustworthy results (cf. yellow lines in Panels E
and M of Figure B.2 on page 97 and blue lines in Panels G, H, O, and P of Figure B.2
on page 97). Our data thus clearly expose that decay constants of covariances are in
the millimeter range.

b.3 stationarity of behavioral data

The linear-response theory, with the aid of which we develop our predictions about the
covariance structure in the network, assumes that the processes under examination are
stationary in time. However, this assumption is not necessarily met in experimental
data, especially in motor cortex during active behavioral tasks. For this reason we
analyzed the stationarity of average single unit firing rate and pairwise zero time-
lag covariance throughout a reach-to-grasp trial, similarly to Dahmen et al. (2019).
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c E1 E2 N1 N2

0.6 (default)

#exc/#inh 56/50 67/56 76/45 78/62

unclassified 0.078 0.075 0.069 0.091

relative error 1.1157 1.0055 1.0097 1.0049

1-slope fit 1.674 1.029 1.676 4.273

I-I 1.919 0.996 1.647 4.156

I-E 0.537 1.206 2.738 96100.688

E-E 1.642 1.308 80308.482 94096.871

0.75

#exc/#inh 45/42 47/48 70/36 74/48

unclassified 0.24 0.28 0.18 0.21

relative error 1.1778 1.0141 1.0102 1.0090

1-slope fit 1.357 0.874 1.420 2.587

I-I 1.794 0.809 1.394 2.550

I-E 0.496 1.123 3.682 40.852

E-E 1.390 1.199 80548.500 10310.780

Table B.1: Summary of exponential fits to distance-resolved variance of covariance. For
each value of E/I separation consistency c the numbers of sorted putative neurons
and the percentages of unclassified units, and therefore not considered for fitting
SUs, are listed per resting state session, along with the resulting fits (cf. Figure 3.4
on page 38)

Figure B.3: Rate and covariance stationarity during a reach-to-grasp trial: monkey E. Black
line indicates population mean and gray area +/- 1 population standard deviation
of single unit firing rate (left column) and pairwise zero time-lag covariance (right
column) during trial of a given session (row). Blue bars indicate starting (S) and
preparatory (P) periods used in the analysis (cf. Figure 3.6 on page 42). First,
second and fourth dashed lines indicate visual signals lighting up and the third
dashed line indicates the removal of a visual cue and beginning of a waiting period.
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Figure B.4: Rate and covariance stationarity during a reach-to-grasp trial: monkey N. Anal-
ogous to Figure B.3 on page 99.

Although the spiking activity becomes highly non-stationary during the movement,
those epochs that are chosen for the analysis in our study (S and P) show only
moderate variability in time (Figure B.3 on page 99). An analysis on the level of
single-unit resolved activity also shows that the majority of neurons has stationary
activity statistics within the relevant epochs S and P, especially when comparing to
their whole dynamic range that is explored during movement transients towards the
end of the task (Figure B.5 on page 101). Figure B.6 on page 102 shows that there
are, however, a few exceptions (e.g. units 11, 84 in this session) that show moderate
transients also within an epoch. Nevertheless, these transients are small compared to
changes between the two epochs S and P.

Thus both the population-level and single-unit level analyses are in line with the
second test for stationarity that we show in Panels E and F of Figure 3.6 on page
42. There we compare the firing rate and covariance changes between two 200 ms
segments of the same epoch to the firing rate and covariance changes between two
200 ms segments of different epochs. If the neural activity was not stationary within
an epoch then we would not obtain correlation coefficients of almost 1 between firing
rates in Panel E of Figure 3.6 on page 42 and correlation coefficients up to 0.9 between
covariance patterns within one epoch in Panel F of Figure 3.6 on page 42. In summary,
the analyses together make us confident that assuming stationarity within an epoch is
a good approximation to show that there are significant behaviorally related changes
in covariances across epochs of the reach-to-grasp experiment.
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Figure B.5: Stationarity of single-unit activity during a reach-to-grasp trial (monkey N, ses-
sion i140627-001). Black lines indicate mean and gray areas +/- 1 standard devi-
ation across trials of single unit activity in each panel (sliding window analysis
with 5 ms step size and 100 ms window length). Blue bars indicate starting (S)
and preparatory (P) periods used in the analysis (cf. Figure 3.6 on page 42). First,
second and fourth dashed lines (marked with stars) indicate visual signals lighting
up and the third dashed line indicates the removal of a visual cue and beginning
of a waiting period.
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Figure B.6: Stationarity of single-unit activity during a reach-to-grasp trial (monkey N, ses-
sion i140704-001). Analogous to Figure B.5 on page 101.
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session Ntrials Nsingle units

e161212-002 108 129

e161214-001 99 118

e161222-002 102 118

e170105-002 101 116

e170106-001 100 113

i140613-001 93 137

i140617-001 129 155

i140627-001 138 145

i140702-001 157 134

i140703-001 142 142

i140704-001 141 124

i140721-002 160 96

i140725-002 151 106

Table B.2: Numbers of trials and single units per reach-to-grasp recording session. Session
names starting with “e” correspond to monkey E and session names starting with
“i” to monkey N.

b.4 network model

We are considering neuronal network models with isotropic and distance-dependent
connection profiles. Ultimately, we are interested in describing cortical networks with
two-dimensional sheet-like structure. But, for developing the theory, we first consider
the simpler case of a one-dimensional ring and subsequently develop the theory on
a two-dimensional torus, ensuring periodic boundary conditions in both cases. N
equidistantly distributed neurons form a grid on these manifolds. The position of
neuron i ∈ {1, ..., N} is described by the vector ri ∈ RD, D ∈ {1, 2}. The connections
Wij from neuron j to neuron i are drawn randomly with a connection probability
that decays with distance between neurons

∣∣ri − r j
∣∣, described by the normalized

connectivity profile p(r),
∫

p(r)dDr = 1, which we assume to obey radial symmetry.
The connection probability decays on a characteristic length scale R. As we are working
on discrete lattices, we introduce the probability of two neurons being connected pij,
which is defined by the relation p(ri − r j) = lima→0 pij/a, with lattice spacing a. We
set the synaptic weights for connections of a single type to a fixed value w, but allow
for multiple connections between neurons, that is Wij ∈ {0, w, 2w, ...} = nij · w for all
sending neurons j of a given type, where nij is binomially distributed. Such multapses
are required to simultaneously meet biological constraints on neuronal indegrees,
neuron densities, and spatial ranges of connections. If instead one assumed Bernoulli
connectivity, an analysis analogous to Senk et al. (2018, see Eq. 7) would yield a
connection probability exceeding unity.

We introduce two populations of neurons, excitatory (E) and inhibitory (I) neurons.
The number of neurons of a given population a ∈ {E, I} is Na, and their ratio is
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q = NE/NI, which, for convenience, we assume to be an even number (see permutation
symmetry below). The connection from population b to population a has the synaptic
weight wab and characteristic decay length of the connectivity profile Rab. The average
number of inputs drawn per neuron is fixed to Kab. In order to preserve translation
symmetry, q excitatory neurons and one inhibitory neuron are put onto the same
lattice point, as shown in Panel A of Figure 3.3 on page 35.

Linear-response theory has been shown to faithfully capture the statistics of fluc-
tuations in asynchronous irregular network states (Lindner et al., 2005). Here we
follow Grytskyy et al. (2013), who show that different types of neuronal network
models can be mapped to an Ornstein-Uhlenbeck process and that the low-frequency
limit of this simple rate model describes spike count covariances of spiking models
well (Tetzlaff et al., 2012). In particular, Dahmen et al. (2019) showed quantitative
agreement of linear-response predictions for the statistics of spike-count covariances
in leaky integrate-and-fire networks for the full range of spectral bounds ρ ∈ [0, 1).
Therefore, we consider a network of linear rate neurons, whose activity x ∈ RN is
described by

τ
d
dt

x = −x + Wx + ξ ,

with uncorrelated Gaussian white noise ξ, 〈ξi(t)〉 = 0,
〈
ξi(s)ξ j(t)

〉
= Diδijδ(s− t). The

solution to this differential equation can be found by multiplying the whole equation
with the left eigenvectors uα of W

τ
d
dt

yα = −yα + λαyα + ξα , (B.1)

where yα = uα · x, ξα = uα · ξ and λα is denoting the corresponding eigenvalue of W .
Neglecting the noise term, the solutions are given by

yα(t) ∝ Θ(t) exp
[
− t

τ
(1− λα)

]
, (B.2)

with Heaviside function Θ(t). These are the eigenmodes of the linear system and they
are linear combinations of the individual neuronal rates

yα =
N

∑
i=1

(uα)i xi .

Note that the weights (uα)i of these linear combinations depend on the details of
the effective connectivity matrix W . The stability of an eigenmode is determined by
the corresponding eigenvalue λα. If Re (λα) < 1, the eigenmode is stable and decays
exponentially. If Re (λα) > 1, the eigenmode is unstable and grows exponentially. If
Im (λα) 6= 0, the eigenmode is oscillatory with an exponential envelope. Re (λα) = 1 is
here referred to as the critical point. This type of stability is also called linear stability
to stress that these considerations are only valid in the linear approximation. Realistic
neurons have a saturation at high rates, which prevents activity from diverging
indefinitely. A network is called linearly stable if all modes are stable. This is
determined by the real part of the largest eigenvalue of W , called spectral bound ρ. In
inhibition-dominated networks, the spectral bound is determined by the heterogeneity
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in connections and ρ / 1 defines the dynamically balanced critical state (Dahmen
et al., 2019).

The different noise components ξα excite the corresponding eigenmodes of the
system and act as a driving force. A noise vector ξ that is not parallel to a single
eigenvector uα excites several eigenmodes, each with the corresponding strength ξα.

Note that the different eigenmodes do not interact, which is why the total activity x
is given by a linear combination, or superposition, of the eigenmodes

x =
N

∑
α=1

yαvα ,

where vα denotes the α-th right eigenvector of the connectivity matrix W .

b.5 covariances

Time-lag integrated covariances cij =
∫

dτ
〈

xi(t)xj(t + τ)
〉
− 〈xi(t)〉

〈
xj(t + τ)

〉
can

be computed analytically for the linear dynamics Eq. (B.1). They follow from the
connectivity W and the noise strength D as (Lindner et al., 2005; Pernice et al., 2011;
Trousdale et al., 2012; Grytskyy et al., 2013)

c = [1−W ]−1D[1−W ]−T, (B.3)

with identity matrix 1. These covariances are equivalent to covariances of spike
counts in large time windows, given by the zero-frequency component of the Fourier
transform of x (sometimes referred to as Wiener-Khinchin theorem (Gardiner, 1985);
even though the theorem proper applies in cases where the Fourier transforms of the
signals x do not exist). Spike count covariances (cf. Panel B of Figure 3.1 on page
31) can be computed from trial-resolved spiking data (Dahmen et al., 2019). This
equivalence allow us to directly relate theoretical predictions for covariances to the
experimentally observed ones.

While equation (B.3) provides the full information on covariances between any two
neurons in the network, this information is not available in the experimental data.
Only a small subset of neuronal activities can be recorded such that inference of
connectivity parameters from Eq. (B.3) is unfeasible. Dahmen et al. (2019) recently
proposed to instead consider the statistics of covariances as the basis for comparison
between models and data. Using Eq. (B.1) and Eq. (B.3) as a starting point, field
theoretical techniques allow the derivation of equations for the mean c and variance
δc2 of cross-covariances in relation to the mean M and variance S of the connectivity
matrix W (Dahmen et al., 2019):

c = [1−M]−1Dr[1−M]−T, (B.4)

δc2 = [1− S]−1D2
r [1− S]−T. (B.5)

M and S are defined in the subsequent section. The renormalized input noise strength
is given by

Dr = D + diag
[

D (1− S)−1 S · I
]

, (B.6)
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with input noise covariance D, and the all-ones vector I = (1, . . . , 1)T ∈ RN . Note that
Eq. (B.5) only holds for cross-covariances (i 6= j). The diagonal terms

[
δc2
]

ii
, i.e. the

variance of auto-covariances, do get a second contribution, which is negligible for the
cross-covariances considered here.

b.6 cumulant generating function of connectivity matrix

For calculating the mean and variance of the covariances of the network activity
(Eq. (B.4) and Eq. (B.5)) we need mean M and variance S of connectivity W . In the
following, we derive the cumulant generating function (Gardiner, 1983) of Wij.

The number of connections n from neuron j to neuron i is a binomial random
variable with K trials with the probability of success given by pij (in the following, for
brevity, we ignore the index i, pij ≡ pj)

Probj(n) =
(

K
n

)
pn

j
(
1− pj

)K−n .

The average number of connections from neuron j to neuron i is Kj = pjK, which
assures the correct average total indegree

∑
j

Kj = K ∑
j

pj = K .

The moment generating function of a connectivity matrix element Wj ≡ Wij ∈
{0, w, 2w, ...} is given by

ZWj (k) =
K

∑
n=0

(
K
n

)
pn

j
(
1− pj

)K−n enwk .

In a realistic network, K is very large. In the limit K → ∞, while keeping Kp = const.,
the binomial distribution converges to a Poisson distribution and we can write

ZWj(k) ≈
K

∑
n=0

Kn
j

n!
e−Kj enwk

=
K

∑
n=0

(
Kjewk)n

n!
e−Kj

K→∞−−−→ exp
[
Kj

(
ewk − 1

)]
.

Taking the logarithm leads to the cumulant generating function

GWj (k) ≈ pjK
(

ewk − 1
)

,

and the first two cumulants

Mij =
∂

∂k
GWj (k)

∣∣∣∣
k=0

= pjKw = p
(∣∣xi − xj

∣∣)Kw ,

Sij =
∂2

∂k2 GWj (k)
∣∣∣∣
k=0

= pjKw2 = p
(∣∣xi − xj

∣∣)Kw2 .
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b.7 note on derivation of variance of covariances

Note that M and S have an identical structure determined by the connectivity profile
and the structure of the covariance equation is identical for the mean Eq. (B.4) and
variance Eq. (B.5) as well. This is why in the following we only derive the results for
the mean of covariances. The results for the variance of covariances is obtained by
substituting w by w2 and Dr by D2

r . As we show, divergences in expressions related to
the mean covariances arise if the population eigenvalue λ0 of the effective connectivity
matrix approaches one. In expressions related to the variance of covariances, the
divergences are caused by the squared spectral bound ρ2 being close to one. In general
expressions, we sometimes write ζ in order to denote either the population eigenvalue
or the spectral bound, corresponding to the context of mean or variance of covariances.

b.8 utilizing symmetries to reduce dimensionality

For real neuronal networks, the anatomical connectivity is never known completely, let
alone the effective connectivity. This is why we are considering disorder-averaged sys-
tems. They are described by the mean M and variance S of the connectivity. The latter
inherit the underlying symmetries of the network, like for example the same radially
symmetric connectivity profile for all neurons of one type. As neuronal networks are
high dimensional systems, calculating covariances from Eq. (B.4) and Eq. (B.5) first
seems like a daunting task. But, leveraging the aforementioned symmetries similarly
as in Kriener et al. (2014) allows for an effective reduction of the dimensionality of the
system, thereby rendering the problem manageable.

As a demonstrative example of how this is done, consider a random network of N
neurons on a one-dimensional ring, in which a neuron can form a connection with
weight w to any other neuron with probability p0. In that case, M is a homogeneous
matrix, with all entries given by the same average connectivity weight

M =


p0w p0w . . . p0w

p0w p0w . . . p0w
...

...
. . .

...

p0w p0w . . . p0w

 .

This corresponds to an all-to-all connected ring network. Due to the symmetry of the
system, moving all neurons by one lattice constant does not change the system. The
translation operator T, representing this operation mathematically, is defined via its
effect on the vector of neuron activity x

Tx = T


x1

x2
...

xN

 = T


xN

x1
...

xN−1

 .

Applying T N-times yields the identity operation

T N = 1 .
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Hence, its eigenvalues are given by complex roots of one

e−i2πl/N = e−i2πla/L = e−ikl a , l ∈ {0, 1, ..., N − 1} ,

with L = Na denoting the circumference of the ring. This shows that T has N
one-dimensional eigenspaces. Since the system is invariant under translation, M is
invariant under the transformation

T MT−1 = M ,

and thus M and T commute. As M leaves eigenspaces of T invariant (if v is an
eigenvector of T , Mv is an eigenvector with the same eigenvalue, so they need to be
multiples of each other), all eigenvectors of T must be eigenvectors of M. Accordingly,
knowing the eigenvectors of T allows diagonalizing M. The normalized (left and
right) eigenvectors of T are given by

vkl =
1√
N



1

eikl a

ei2kl a

...

ei(N−1)kl a


.

We get the eigenvalues of M by multiplying it with the eigenvectors of T

mkl = v†
kl

Mvkl

=
1
N

p0wv†
kl
·


∑N−1

j=0 eikl aj

∑N−1
j=0 eikl aj

...

∑N−1
j=0 eikl aj

 ,

which is always zero, except for l = 0, which corresponds to the population eigenvalue
λ0 := mk0 = Np0w of W (Panel C of Figure 3.3 on page 35). Now, we can simply write
down the diagonalized form of M

λ0 0 . . . 0

0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

 ,

and we effectively reduced the N-dimensional to a one dimensional problem. Inverting
A := 1−M in Eq. (B.4) is straightforward now, since it is diagonal in the new basis.
Its eigenvalues can be written as

ak = 1−mk ,
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where we suppressed the index l. Therefore its inverse is given by

A−1
ij = ∑

k
a−1

k (vk)i

(
v†

k

)
j

=
1
N ∑

k

1
1−mk

eik(xi−xj)

=
1
N ∑

k

(
1 +

mk

1−mk

)
eik(xi−xj)

= δij +
1
N

λ0

1− λ0
.

The renormalized noise can be evaluated using that the all-ones vector occurring in
equation Eq. (B.6) is the eigenvector v0 of S. After identifying the eigenvalue s0 with
the squared spectral bound ρ2, we find

Dr = diag
(

D
1− ρ2

)
,

which allows us to express the mean cross-covariances c (see Eq. (B.4)) and the
variance of cross-covariances δc2 (see Eq. (B.5)) in terms of the eigenvectors of M and
S respectively

c =
D

1− ρ2

{
2λ0

N (1− λ0)
+

[
λ0

N (1− λ0)

]2

N

}
,

δc2 =

(
D

1− ρ2

)2
{

2ρ2

N (1− ρ2)
+

[
ρ2

N (1− ρ2)

]2

N

}
.

b.9 one-dimensional network with one population

The simplest network with spatial connectivity is a one-dimensional ring of neurons
with one population of neurons. Following Section B.6, the mean connectivity matrix
has the form

M = Kw


p11 p12 . . . p1N

p21 p22 . . . p2N
...

...
. . .

...

pN1 pN2 . . . pNN

 .

As pij only depends on the distance of two neurons, the rows in M are identical, but
shifted by one index.
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b.9.1 Dimensionality reduction

We follow the procedure developed in Section B.8, as the system is invariant under
translation as well. Suppressing the subscripts of k, we get the eigenvalues of M

mk =
1
N

Kw
(

1, e−ika, ..., e−i(N−1)ka
)


∑N−1
j=0 p1(j+1)eikaj

∑N−1
j=0 p2(j+1)eikaj

...

∑N−1
j=0 pN(j+1)eikaj


= Kw

N−1

∑
j=0

p(j+1)e
ikaj

= Kwa ∑
x

p(x)e−ikx ,

where the sum over x denotes a sum over all lattice sites. We used the translational
symmetry from the first to the second line. The change of sign in the exponential from
line two to three is due to the fact that we are summing over the second index of pij.
Thus, the eigenvalues are effectively given by the discrete Fourier transform of the
connectivity profile. Expressing A−1 using the eigenvectors vk of M leads to

A−1
ij =

1
N ∑

k

1
1−mk

eik(xi−xj)

=
1
N ∑

k

(
1 +

mk

1−mk

)
eik(xi−xj)

= δij +
1
N ∑

k

mk

1−mk
eik(xi−xj)

≡ δij + µij , (B.7)

where we extracted an identity for later convenience, and we defined µij.
Next, we consider the renormalized noise, which is given by Eq. (B.6). Using that

the all-ones vector I in the second term is the eigenvector of S corresponding to k = 0,
we get

D (1− S)−1 S · v0 = D
s0

1− s0
.

Again, we identify s0 with the spectral bound ρ2, and find

Dr = D + D
ρ2

1− ρ2 =
D

1− ρ2 . (B.8)

Inserting Eq. (B.7) and Eq. (B.8) into Eq. (B.4) yields

cij =
D

1− ρ2

(
δij + 2µij + ∑

k
µikµkj

)
.
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b.9.2 Continuum limit

As we assume the lattice constant to be small, we know that the connectivity profile is
sampled densely, and we are allowed to take the continuum limit. Therefore, we write

mk = Kw ∑
j

p(j+1)e
ikaj

= Kw ∑
j

a
p(j+1)

a
eikaj

a→0−−→ Kw
∫ L/2

−L/2
dx p(−x)eikx

= Kw
∫ L/2

−L/2
dx p(x)e−ikx .

Note that lima→0 ∑j pj/a = lima→0 ∑j p(xi − xj)/a =
∫

dx p(−x), because we are
summing over the second index j. If the decay constant R of the connectivity profile is
small compared to the size of the network L, we can take L to infinity and finally end
up with

m(k) = Kw
∫

dx p(x)e−ikx . (B.9)

Analogously, we find

A−1(x) = δ(x) +
1

2π

∫
dk

m(k)
1−m(k)

eikx ≡ δ(x) + µ(x) , (B.10)

where we defined

µ(x) =
1

2π

∫
dk µ(k)eikx , (B.11)

with

µ(k) =
m(k)

1−m(k)
. (B.12)

Finally, we get

c(x) =
D

1− ρ2 [δ(x) + 2µ(x) + (µ ∗ µ) (x)] , (B.13)

where the asterisk denotes the convolution.

b.9.3 Prediction of exponential decay of covariance statistics

Note that the integral in equation Eq. (B.11) can be interpreted as an integral in the
complex plane. According to the residue theorem, the solution to this integral is a
weighted sum of exponentials, evaluated at the poles of [1−m(k)] −1. As µ(x) appears
in the equation for the mean covariances, and the convolution of two exponentials is
an exponential with the prefactor (const. + |x|), we expect the dominant behavior to
be an exponential decay in the long-range limit, with decay constants given by the
inverse imaginary part of the poles. The poles which are closest to zero are the ones
which lead to the most shallow and thereby dominant decay. A real part of the poles
leads to oscillations in µ(x).



112 long range correlations

b.9.4 Long-range limit

We cannot expect to solve the integral in Eq. (B.10) for arbitrary connectivity profiles.
To continue our analysis, we make use of the Padé method, which approximates
arbitrary functions as rational functions (Basdevant, 1972). We approximate µ(k)
around k = 0 using a Padé approximation of order (0,2)

µ(k) ≈ m(0)

1−m(0)− m′′(0)
2m(0) k2

,

with

m(0) = Kw
∫

dx p(x) = Kw = λ0 , (B.14)

m′′(0) = −Kw
∫

dx x2 p(x) = −Kw
〈

x2〉 .

This allows us to calculate the approximate poles of µ(k)

k0 = ±
√

2m(0)
m′′(0)

[1−m(0)] . (B.15)

As 2m(0)/m′′(0) will be negative, due to factor i2 from the second derivative of the
Fourier integral, we write

k0 = ±i

√
−2m(0)

m′′(0)
[1−m(0)] .

Closing the integral contour in Eq. (B.11) in the upper half plane for x > 0, and in the
lower half plane for x < 0, we get

µ(x) = −m(0)2

m′′(0)

√
−m′′(0)

2m(0)
1

1−m(0)
exp

− |x|√
−m′′(0)

2m(0)
1

1−m(0)


≡ −m(0)2

m′′(0)
R exp

(
−|x|

R

)
,

where we defined the effective decay constant for the mean covariances

R =

√
−m′′(0)

2m(0)
1

1−m(0)
=

√
〈x2〉

2
1

1− λ0
,

with m(0) = λ0 and m′′(0) = λ0〈x2〉, since m(k) is the Fourier transform of the
connectivity profile Eq. (B.9). Note that λ0 = Kw again is the population eigenvalue
of the effective connectivity matrix W . For evaluating Eq. (B.4) and Eq. (B.5), we need
to calculate the convolution of µ with itself

(µ ∗ µ) (x) =
∫

dy µ(x− y)µ(y) =
m(0)4

m′′(0)2 R2 (R + |x|
)

exp
(
−|x|

R

)
.
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The final expression for the mean covariances is

c(x) =
D

1− ρ2

{
δ(x) +

[(
m(0)4

m′′(0)2 R2 − 2
m(0)2

m′′(0)

)
R +

m(0)4

m′′(0)2 R2 |x|
]

exp
(
−|x|

R

)}
.

Equivalently, for the variance of covariances we obtain the final result

δc2(x) =
(

D
1− ρ2

)2{
δ(x) +

[(
s(0)4

s′′(0)2 R2
eff − 2

s(0)2

s′′(0)

)
Reff +

s(0)4

s′′(0)2 R2
eff |x|

]
exp

(
− |x|

Reff

)}
,

where
s(k) = Kw2

∫
dx p(x)e−ikx .

Note that the quality of the Padé approximation depends on the outlier eigenvalue
and the spectral bound. For the variances, the approximation works best for spectral
bounds ρ close to 1. The reason for this is that we are approximating the position of
the poles in the complex integral Eq. (B.11). We make an approximation around k = 0
and Eq. (B.15) shows that the position of the complex poles moves closer to k = 0 as
s(0) ≡ ρ2 → 1.

general results : Using Eq. (B.14)

m(0) = Kw = λ0 , m′′(0) = −Kw
〈

x2〉 ,

we find

c(x) =
D

1− ρ2

{
δ(x) +

[
Kw (1− 3Kw)

2 〈x2〉 (1− Kw)
R +

(Kw)2

〈x2〉2
R2 |x|

]
exp

(
−|x|

R

)}
,

with

R =

√∣∣∣∣ 〈x2〉
2

1
1− λ0

∣∣∣∣ .

For the variance we use

s(0) = Kw2 = ρ2 , s′′(0) = −Kw2 〈x2〉 ,

to get

δc2(x) =
D2

(1− ρ2)2

{
δ(x) +

[
Kw2 (1− 3Kw2)
2 〈x2〉 (1− Kw2)

Reff +

(
Kw2)2

〈x2〉2
R2

eff |x|
]

exp
(
− |x|

Reff

)}
,

with

Reff =

√∣∣∣∣ 〈x2〉
2

1
1− ρ2

∣∣∣∣ .
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exponential connectivity profile : Using an exponential connectivity profile
given by

p(x) =
1

2R
e−|x|/R ,

we find
〈

x2〉 = 2R2 and

R =

√∣∣∣∣ 1
1− λ0

∣∣∣∣R , Reff =

√∣∣∣∣ 1
1− ρ2

∣∣∣∣R ,

with λ0 = Kw for the mean, and ρ2 = Kw2 for the variance.

gaussian connectivity profile : Analogously, using a Gaussian connectivity
profile given by

p(x) =
1√

2πR2
e−x2/(2R2) ,

we find
〈

x2〉 = R2, and get

R =

√∣∣∣∣12 1
1− λ0

∣∣∣∣R , Reff =

√∣∣∣∣12 1
1− ρ2

∣∣∣∣R . (B.16)

b.10 one-dimensional network with two populations

Realistic neuronal network consist of excitatory and inhibitory neurons. So we need
to introduce a second population to our network. Typically, there are more excitatory
than inhibitory neurons in the brain. Therefore, we introduce q excitatory neurons
for each inhibitory neuron. We place q excitatory neurons and one inhibitory neuron
together in one cell. The cells are distributed equally along the ring. For convenience,
we define N ≡ NI.

The structure of the connectivity matrix depends on the choice of the activity vector
x. For later convenience we choose

x =



x(E)1

x(I)1

x(E)2

x(I)2
...

x(E)N

x(I)N


,
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where x(E)i is a q-dimensional vector denoting the activity of the q excitatory neurons
in cell i. M is a (q + 1)N × (q + 1)N-matrix, which qualitatively has the structure

M =



EE11 EI11 EE12 EI12 · · · EE1N EI1N

IE11 II11 IE12 II12 · · · IE1N II1N

EE21 EI21 EE22 EI22 · · · EE2N EI2N

IE21 II21 IE22 II22 · · · IE2N II2N
...

...
...

...
. . .

...
...

EEN1 EIN1 EEN2 EIN2 · · · EENN EINN

IEN1 IIN1 IEN2 IIN2 · · · IENN IINN


. (B.17)

Note that EEij are q× q matrices, EIij are q× 1 matrices, IEij are 1× q matrices and IIij
are 1× 1 matrices. The entries abij describe the connectivities from population b in
cell j to population a in cell i. The entries are given by

abij =

 1
q wabKab (pab)ij if b = E

wabKab (pab)ij if b = I
.

The difference stems from the fact that we have q times as many excitatory neurons.
As the total number of indegrees from excitatory neurons should be given by KaE, we
need to introduce a reducing factor of 1/q, as the connection probability is normalized
to one.

b.10.1 Dimensionality reduction

In the following, we will reduce the dimensionality of M as done before in the case
with one population. First, we make use of the symmetry within the cells. All entries
in M corresponding to connections coming from excitatory neurons of the same cell
need to be the same. For that reason, we change the basis to

e(E)i =
1√
q



0

0
...

I
...

0


, e(I)i =



0

0
...

1
...

0


, (B.18)

where I denotes a q-dimensional vector containing only ones. For a full basis, we need
to include all the vectors with I being replaced by a vector containing all possible
permutations of equal numbers of ±1. In this basis M is block diagonal(

M ′ 0

0 0

)
,
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and M ′ is an 2N × 2N matrix, which has the same qualitative structure as shown in
Eq. (B.17), but the submatrices (ab)ij are replaced by

abij =



wEEKEE (pEE)ij if ab = EE
√

qwEIKEI (pEI)ij if ab = EI

wIEKIE (pIE)ij /
√

q if ab = IE

wIIKII (pII)ij if ab = II

.

Next, we use translational symmetry of the cells. The translation operator is defined
by

Tx = T



x(E)1

x(I)1

x(E)2

x(I)2
...

x(E)N

x(I)N


=



x(E)N

x(I)N

x(E)1

x(I)1
...

x(E)N−1

x(I)N−1


.

As the system is invariant under moving each cell to the next lattice site, M ′ is invariant
under the transformation

T M ′T−1 = M ′ .

Again, the eigenvalues of T can be determined using T N = 1 and they are the same
as in the case of one population. But, note that here the eigenspaces corresponding to
the single eigenvalues are two dimensional. The eigenvectors

v(E)
k =

1√
N



1

0

eika

0
...

ei(N−1)ka

0


, v(I)

k =
1√
N



0

1

0

eika

...

0

ei(N−1)ka


,

belong to the same eigenvalue. In this basis, M ′ is block diagonal, with each block
consisting of a 2× 2 matrix, corresponding to one value of kl =

2πl
L , l ∈ {0, ..., N − 1}

M ′ =


Mk0 0 · · · 0

0 Mk1 · · · 0
...

...
. . .

...

0 0 · · · MkN−1

 .
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Since all block matrices can be treated equally, we further reduced the problem to
diagonalizing a 2× 2 matrix. The submatrices take the form

Mk =

(
mEE(k)

√
qmEI(k)

mIE(k)/
√

q mII(k)

)
,

with the discrete Fourier transform

mab(k) = Kabwab

Na/2

∑
x=−Na/2

pab(x)e−ikx . (B.19)

Note that x and k are still discrete here, but we could take the continuum limit at this
point. The eigenvalues of Mk are given by

m±(k) =
1
2
(mEE(k) + mII(k)) (B.20)

± 1
2

√
mEE(k)2 + mII(k)2 − 2mEE(k)mII(k) + 4mEI(k)mIE(k) .

The corresponding eigenvectors are

v1,2(k) = N±
( √

qmEI(k)

m±(k)−mEE(k)

)
, (B.21)

with normalization N±. The eigenvectors written in the Fourier basis are given by

v±(k) = N±
[√

qmEI(k)v
(E)
k + (m±(k)−mEE(k)) v(I)

k

]
, (B.22)

and we can get the eigenvectors ṽ±(k) in the basis we started with by extending
v(E)

k and v(I)
k to vectors similar to Eq. (B.18), where the elements corresponding to

excitatory neurons are repeated q-times. Note that the normalization of the original
basis leads to an additional factor 1/

√
q in the first term of Eq. (B.22).

Analogously, we can find the left eigenvectors of M by conducting the same steps
with the transpose of M

u±(k) = N±
[
mIE(k)v

(E)
k

†/
√

q + (m±(k)−mEE(k)) v(I)
k

†
]

, (B.23)

and the vectors in the original basis ũ±(k) are obtained similarly to the right eigenvec-
tors. The normalization N± is chosen such that

ũ+(k) · ṽ+(k) = 1 ,

ũ+(k) · ṽ−(k) = 0 ,

ũ−(k) · ṽ+(k) = 0 ,

ũ−(k) · ṽ−(k) = 1 ,

which leads to
N± =

√
mEI(k)mIE(k)− (m±(k)−mEE(k))

2 .
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Now, we can express A−1 in terms of the eigenvalues and eigenvectors of M

A−1 = 1 + ∑
k

(
m+(k)

1−m+(k)
ṽ+(k) · ũ+(k) +

m−(k)
1−m−(k)

ṽ−(k) · ũ−(k)
)

, (B.24)

which leads to

A−1
ij = δij +

1
N ∑

k
µij(k)eik|xi−xj| , (B.25)

where we defined µ(k) similar to Eq. (B.12). Let E and I be the sets of indices referring
to excitatory or inhibitory neurons respectively. We find

µij(k) ≡



µEE(k) for i, j ∈ E

µEI(k) for i ∈ E, j ∈ I

µIE(k) for i ∈ E, j ∈ I

µII(k) for i, j ∈ I

,

with

µEE(k) =
1
q

mEE(k) + mIE(k)mEI(k)−mEE(k)mII(k)
1− ζ(k)

,

µEI(k) =
mEI(k)

1− ζ(k)
, (B.26)

µIE(k) =
1
q

mIE(k)
1− ζ(k)

,

µII(k) =
mII(k) + mIE(k)mEI(k)−mEE(k)mII(k)

1− ζ(k)
,

and

ζ(k) = mEE(k) + mII(k) + mEI(k)mIE(k)−mEE(k)mII(k) .

b.10.2 General results

The renormalized noise is evaluated using the same trick as in the one population
case. We express the all-ones vector using eigenvectors of the variance matrix S

I = aṽ+(0) + bṽ−(0) .

Evaluating the coefficients a and b and inserting the corresponding solutions into
Eq. (B.6) yields

Dr = diag

D(E)
r , . . . , D(E)

r︸ ︷︷ ︸
q−times

, D(I)
r , D(E)

r , . . . , D(E)
r︸ ︷︷ ︸

q−times

, D(I)
r , . . . , D(E)

r , . . . , D(E)
r︸ ︷︷ ︸

q−times

, D(I)
r

︸ ︷︷ ︸
N(q+1)−entries

 ,

(B.27)
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with

D(E)
r = D

[
1 +

sEE(0) + sEI(0) + sEI(0)sIE(0)− sEE(0)sII(0)
1− ρ2

]
,

D(I)
r = D

[
1 +

sIE(0) + sII(0) + sEI(0)sIE(0)− sEE(0)sII(0)
1− ρ2

]
,

with the eigenvalues sab(k) of S. We again identified the spectral bound

ρ2 = sEE(0) + sII(0) + sEI(0)sIE(0)− sEE(0)sII(0) . (B.28)

The mean covariances can be written as

c = Dr + µDr + Drµ
T + µDrµ

T ,

where µ = µ(x). We can distinguish three different kinds of covariances depending
on the type of neurons involved

cij ≡


cEE(x) for i, j ∈ E

cEI(x) for i ∈ E, j ∈ I or i ∈ E, j ∈ I

cII(x) for i, j ∈ I

.

with

cEE(x) = D(E)
r δ(x) + 2D(E)

r µEE(x) + D(E)
r q (µEE ∗ µEE) (x) + D(I)

r (µEI ∗ µEI) (x) ,

cEI(x) = D(E)
r µIE(x) + D(I)

r µEI(x) + D(E)
r q (µEE ∗ µIE) (x) + D(I)

r (µII ∗ µEI) (x) ,

cII(x) = D(I)
r δ(x) + 2D(I)

r µII(x) + D(E)
r q (µIE ∗ µIE) (x) + D(I)

r (µII ∗ µII) (x) .

b.10.3 Long-range limit

From here on, we consider the special case in which the synaptic connections only
depend on the type of the presynaptic neuron and not on the type of the postsynaptic
neuron. This is in agreement with network parameters used in established cortical
network models (Potjans and Diesmann, 2014; Senk et al., 2018), in which the connec-
tion probabilities to both types of target neurons in the same layer are usually of the
same order of magnitude. In that case, all expressions become independent of the first
population index Aab ≡ Ab, and the only expressions we need to evaluate become

µa(k) = γa
ma(k)

1− ζ(k)
,

with

ζ(k) = mE(k) + mI(k) ,

and

γa =

1 if a = I

1/q if a = E
. (B.29)



120 long range correlations

After taking the continuum limit, we can make a (0,2)-Padé approximation again

µa(k) ≈
γama(0)

1− ζ(0)−
[

ζ ′′(0)
2 + (1− ζ(0)) m′′a (0)

2ma(0)

]
k2

,

which leads to the poles

k0 = ±
√[

ζ ′′(0)
2ζ(0)

ζ(0)
1− ζ(0)

+
m′′a (0)
2ma(0)

]−1

,

or the effective decay constant of the mean covariances

Ra = Im(k0)
−1 =

√
− ζ ′′(0)

2ζ(0)
ζ(0)

1− ζ(0)
− m′′a (0)

2ma(0)
.

Using

ζ ≡ ζ(0) = wEKE + wIKI ,

ζ ′′ ≡ ζ ′′(0) = −wEKE
〈

x2〉
E − wIKI

〈
x2〉

I ,

ma(0) = waKa ,

m′′a (0) = −waKa
〈

x2〉
a ,

we get

Ra =

√
wEKE 〈x2〉E + wIKI 〈x2〉I

wEKE + wIKI

ζ

1− ζ
+
〈x2〉a

2

=

√
(ωκη̃2 + 1)

ωκ + 1
ζ

1− ζ

〈x2〉I
2

+
〈x2〉a

2
,

after introducing relative parameters

ω =
wE

wI
, κ =

KE

KI
, η̃2 =

〈
x2〉

E
〈x2〉I

, η =
λE

λI
.

The renormalized noise Eq. (B.6) reduces to

Dr =
D

1− ρ2 . (B.30)

The mean covariances are

cEE(x) = Dr [δ(x) + 2µE(x) + q (µE ∗ µE) (x) + (µI ∗ µI) (x)] ,

cEI(x) = Dr [µE(x) + µI(x) + q (µE ∗ µE) (x) + (µI ∗ µI) (x)] ,

cII(x) = Dr [δ(x) + 2µI(x) + q (µE ∗ µE) (x) + (µI ∗ µI) (x)] ,

with

µa(x) = γa
ma(0)

2(1− ζ)Ra
exp

(
−|x|

Ra

)
,
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and

(µa ∗ µa) (x) =
(

γa
m(0)

2 (1− ζ) Ra

)2 (
Ra + |x|

)
exp

(
−|x|

Ra

)
.

Note that expressions coming from both populations contribute to each kind of
covariance. Therefore, all mean covariances contain a part that decays with either
of the decay constants we just determined. If, for example, the inhibitory decay
constant is much larger than the excitatory one, cEI(x) will decay with the largest
decay constant in the long-range limit

exponential connectivity profile : Just as in Section B.9.4 we get

Ra =

√
(ωκη2 + 1)

ωκ + 1
λ0

1− λ0
R2

I + R2
a , Reff,a =

√
(ω2κη2 + 1)

ω2κ + 1
ρ2

1− ρ2 R2
I + R2

a ,

with λ0 = wEKE + wIKI for the decay constant of the mean covariances, and ρ2 =

w2
EKE + w2

I KI for the decay constant of the variances.

gaussian connectivity profile : And similar to Section B.9.4 we get

Ra =

√
(ωκη2 + 1)

ωκ + 1
λ0

1− λ0

R2
I

2
+

R2
a

2
, Reff,a =

√
(ωκη2 + 1)

ωκ + 1
ρ2

1− ρ2
R2

I
2

+
R2

a
2

.

b.11 two-dimensional network with one population

In the following, we are considering two-dimensional networks, which are supposed to
mimic a single-layered cortical network. Neurons are positioned on a two-dimensional
lattice (Nx × Ny grid) with periodic boundary conditions in both dimensions (a torus).
We define the activity vector to be of the form

x =



x1,1

x1,2
...

x1,Ny

x2,1
...

x2,Ny
...

xNx ,1
...

xNx ,Ny



.

The connectivity matrix is defined correspondingly.
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b.11.1 Dimensionality reduction

In two dimensions we have to define two translation operators that move all neurons
either one step in the x-direction, or the y-direction, respectively. They are defined via
their action on x

Txx =



xNx ,1

xNx ,2
...

xNx ,Ny

x1,1
...

x1,Ny
...

xNx−1,1
...

xNx−1,Ny



, Tyx =



x1,Ny

x1,1
...

x1,Ny−1

x2,Ny
...

x2,Ny−1
...

xNx ,Ny
...

xNx ,Ny−1



. (B.31)

Similar reasoning as in one dimension leads to the eigenvalues

e−ik(x)
l a , k(x)

l =
2π

Lx
l , l ∈ {0, 1, ..., Nx − 1} ,

and similar for the y-direction. The eigenvectors can be inferred from the recursion
relations

Txv = e−ik(x)
l av ⇒ v(α+1)β = eik(x)

l avαβ ,

Tyv = e−ik(y)l av ⇒ vα(β+1) = eik(y)l avαβ ,

where entries vαβ of the vector v are defined analogously to Eq. (B.31). The eigenvectors
are given by

vk =
1√

Nx Ny


v(x)

eik(y)av(x)

...

e−ik(y)av(x)

 , v(x) =



1

eik(x)a

...

ei Nx−1
2 k(x)a

e−i Nx−1
2 k(x)a

...

e−ik(x)a


,

where we suppressed the subscripts of k(x) and k(y) again. Using that these eigenvec-
tors are eigenvectors of M as well, yields the eigenvalues of M

mk = v†
k Mvk = Kw ∑

x
∑
y

p(|x|)e−ik·x .
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In the continuum limit, this becomes the two-dimensional Fourier transform

m(k) = Kw
∫

d2x p(x)e−ik·x . (B.32)

The inverse of A is given by

A−1(x) = δ(x) + µ(x) , (B.33)

with the inverse two-dimensional Fourier transform

µ(x) =
1

(2π)2

∫
d2k

m(k)
1−m(k)

eik·x . (B.34)

The expression for the renormalized noise is the same as in the one-dimensional case
with one population. Hence, the mean covariances are given by

c(x) =
D

1− ρ2 [δ(x) + 2µ(x) + (µ ∗ ∗µ) (x)] , (B.35)

which is the one-dimensional expression, except for the convolution, which is replaced
by its two-dimensional analogon denoted here by the double asterisk.

b.11.2 Long-range limit

Employing the symmetry of the connectivity kernel, we rewrite the integral in µ(x)
using polar coordinates

µ(x) =
1

(2π)2

∫ ∞

0
dk

∫ 2π

0
dϕ k

m(k)
1−m(k)

eikr cos(ϕ) , (B.36)

with r = |x|, and make a Padé approximation of order (0,2) of the integration kernel

µ(x) =
1

(2π)2

∫ ∞

0
dk
∫ 2π

0
dϕ k

m(0)

1−m(0)− m′′(0)
2m(0) k2

eikr cos(ϕ) . (B.37)

Following Goldenfeld (1992, p.160f), we can interpret this as calculating the Green’s
function of the heat equation[

1−m(0) +
m′′(0)
2m(0)

∇2
]

µ(x) = m(0)δ(r) , (B.38)

which can be solved, using the fact that µ(x) can only be a function of the radial
distance r, due to the given symmetry of the kernel. Rewriting leads to[

−1
r

d
dr

(
r

d
dr

)
+ R−2

]
µ(r) = Γδ(r) ,

with the effective decay constant

R =

√
−m′′(0)

2m(0)
1

1−m(0)
, (B.39)
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and Γ = −2m(0)2/m′′(0). Defining r̃ ≡ r/R, µ̃ (r̃) ≡ µ
(
r̃/R

)
, and using δ

(
r̃R
)
=

R−2
δ (r̃), we get [

−1
r̃

d
dr̃

(
r̃

d
dr̃

)
+ 1
]

µ̃ (r̃) = Γδ (r̃) .

The solution to this equation is given by the modified Bessel function of second kind
and zeroth order K0

µ̃ (r̃) =
Γ

2π
K0 (r̃) .

Reinserting the defined variables yields

µ(r) = − m(0)2

πm′′(0)
K0

(
r
R

)
. (B.40)

Note that the modified Bessel functions of second kind decay exponentially for long
distances

Ki

(
r
R

)
r→∞−−→

√
πR
2r

e−r/R . (B.41)

But, consider that the inverse square root of the distance appears in front of the
exponential. Formally, this is the one-dimensional result. The only difference here is,
that m(k) is a two-dimensional Fourier transform instead of a one-dimensional one
and µ(r) contains modified Bessel functions of second kind instead of exponentials.

In order to evaluate the expression for the mean covariances Eq. (B.35), one needs
to calculate the two-dimensional convolution of a modified Bessel function of second
kind with itself, for which we use the following trick

(K0 ∗ ∗K0)

(
r
R

)
= F−1

[
K̃0 · K̃0

] ( r
R

)
=

1
2π
H−1

[
1

(β + k2)2

] (√
βr
)

= − 1
2π

d
dβ
H−1

[
1

β + k2

] (√
βr
)

= − 1
2π

d
dβ

Ko

(√
βr
)

=
Reff,µr

4π
K1

(
r
R

)
,

where F denotes the Fourier transform,H denotes the Hankel transform, and β = R−2.
The last step can be found in Abramowitz and Stegun (1964, 9.6.27).

The mean covariances are given by

c(r) =
D

1− ρ2

[
δ(r)− 2

m(0)2

πm′′(0)
K0

(
r
R

)
+

m(0)4

m′′(0)2
Rr

4π3 K1

(
r
R

)]
r→∞−−→ D

1− ρ2

δ(r)− m(0)2

m′′(0)

√
2R
πr

e−r/R +
m(0)4

m′′(0)2

√
R3r

32π5 e−r/R

 .
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Using

m(0) = Kw ≡ ζ , m′′(0) = −Kw
〈
r2〉 , (B.42)

we get the effective decay constant

R =

√
1

1− ζ

〈r2〉
2

R . (B.43)

exponential connectivity profile : Using a two-dimensional exponential
connectivity profile

p(x) =
1

2πR2 e−|x|/R ,

leads to
〈
r2〉 = 6R2, and we get

R =

√
3

1− λ0
R , Reff =

√
3

1− ρ2 R ,

with λ0 = Kw, and ρ2 = Kw2.

gaussian connectivity profile : Using a two-dimensional Gaussian connec-
tivity profile

p(x) =
1

2πR2 e−x2/(2R2) ,

leads to
〈
r2〉 = 2R2, and we get

R =

√
1

1− λ0
R , Reff =

√
1

1− ρ2 R .

b.11.3 Note on higher order approximation

While the (0,2)-Padé approximation seems to yield good results for the one-dimensional
cases, in two dimensions the results only coincide for large spectral radii (Figure B.7
on page 129). One can extract a higher order approximation of the poles of the
integration kernel of µ(x) and thereby the effective decay constant Reff using the
DLog-Padé-method, for which one calculates an (n, n + 1)-Padé approximation of the
logarithmic derivative of the integration kernel around zero (Pelizzola, 1994). Using a
(1,2)Padé approximation leads to

R =

√
−3(2m(0)− 1)m′′(0)2 + (1−m(0))m(0)m′′′′(0)

6m′′(0)m(0)(1−m(0))
,

which coincides with our previous results in the limit m(0) → 1, and thus for large
spectral radii. Note that this expression contains the fourth moment of the connectivity
kernel m′′′′(0) = wK〈x4〉.
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b.12 two-dimensional network with two populations

Finally, we consider a two-dimensional network with two populations of neurons.
As in the one dimensional case, the neurons are gathered in cells, which contain one
inhibitory and q excitatory neurons. Again, they are placed on a two-dimensional
lattice with periodic boundary conditions. The activity vector takes the form

x =



x(E)1,1

x(I)1,1

x(E)1,2

x(I)1,2
...

x(E)1,Ny

x(I)1,Ny

x(E)2,1

x(I)2,1
...

x(E)Nx ,Ny

x(I)Nx ,Ny



, (B.44)

where x(E)i,j denotes a q-dimensional vector.

b.12.1 Dimensionality reduction

We apply the procedure developed so far, which leads to the results we found in the
one-dimensional case with two populations, with Fourier transforms and convolutions
replaced by their two-dimensional analogons and modified Bessel functions of second
kind instead of exponentials. So, we end up with

cEE(x) = D(E)
r δ(x) + 2D(E)

r µEE(x) + D(E)
r q (µEE ∗ ∗µEE) (x) + D(I)

r (µEI ∗ ∗µEI) (x) ,

cEI(x) = D(E)
r µIE(x) + D(I)

r µEI(x) + D(E)
r q (µEE ∗ ∗µIE) (x) + D(I)

r (µII ∗ ∗µEI) (x) ,

cII(x) = D(I)
r δ(x) + 2D(I)

r µII(x) + D(E)
r q (µIE ∗ ∗µIE) (x) + D(I)

r (µII ∗ ∗µII) (x) ,

and µab(x) given by Eq. (B.26) and the two-dimensional Fourier transform

mab(k) = Kabwab

∫
d2x pab(x)e−ik·x .

The renormalized noise is given by Eq. (B.27) with spectral bound Eq. (B.28), with the
eigenvalues sab(k) replaced by the two-dimensional Fourier transforms sab(k).
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b.12.2 Long-range limit

Again, considering the special case in which the synaptic connections only depend on
the type of the presynaptic neuron and not on the type of the postsynaptic neuron,
the expressions simplify to

µa(k) =
ma(k)

1− ζ(k)
, (B.45)

with

ζ(k) = mE(k) + mI(k) .

Padé approximation of the Fourier kernel, integration using Goldenfeld (1992, p.160f)
and suppressing the zero arguments of ζ and ma leads to

µa(r) = − γawaKa

2π (1− ζ) R2
a

K0

(
r

Ra

)
(B.46)

r→∞−−→ −γawaKa

(1− ζ)

√
1

8πrR3
a

e−r/Ra ,

with

Ra =

√
− ζ ′′

2ζ

ζ

1− ζ
− m′′a

2ma
.

After introducing the same relative parameters as in Section B.10.3, we find

Ra =

√
(ωκη̃2 + 1)

ωκ + 1
ζ

1− ζ

〈x2〉I
2

+
〈x2〉a

2
. (B.47)

The two-dimensional convolutions are given by

(µa ∗ ∗µa) (r) =

[
γawaKa

4 (1− ζ)

]2 1

π3R3
a

K1

(
r

Ra

)
(B.48)

r→∞−−→
[

γawaKa

4 (1− ζ)

]2√ 1

2π5R5
ar

e−r/Ra .

The renormalized noise simplifies to Eq. (B.30). The mean covariances are given by

cEE(x) = Dr [δ(x) + 2µE(x) + q (µE ∗ ∗µE) (x) + (µI ∗ ∗µI) (x)] ,

cEI(x) = Dr [µE(x) + µI(x) + q (µE ∗ ∗µE) (x) + (µI ∗ ∗µI) (x)] ,

cII(x) = Dr [δ(x) + 2µI(x) + q (µE ∗ ∗µE) (x) + (µI ∗ ∗µI) (x)] . (B.49)

Remember that the result for the variances of the covariances is obtained by substitut-
ing Dr by its square, and wa, or ω respectively, by its square and setting ζ = ρ2.

Eq. (3.3) can be proven by inserting the result for Ra

R2
E − R2

I =

〈
x2〉

E
2
−
〈

x2〉
I

2
= const. ·

(
R2

E − R2
I
)

.

Using an exponential connectivity profile yields const. = 3, a Gaussian connectivity
profile yields const. = 1.
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exponential connectivity profile : Using the results from B.11.2, we find

Ra =

√
3
[
(ωκη2 + 1)

ωκ + 1
λ0

1− λ0
RI + Ra

]
, Reff,a =

√
3
[
(ω2κη2 + 1)

ω2κ + 1
ρ2

1− ρ2 RI + Ra

]
,

with λ0 = wEKE + wIKI, and R2 = w2
EKE + w2

I KI.

gaussian connectivity profile : Using the results from B.11.2, we find

Ra =

√
(ωκη2 + 1)

ωκ + 1
λ0

1− λ0
RI + Ra , Reff,a =

√
(ω2κη2 + 1)

ω2κ + 1
ρ2

1− ρ2 RI + Ra .

b.12.3 Higher order approximation

Using a (1,2)-DLog-Padé method as in B.11.3 yields

Ra =

√
− (1− ζ)2 (mam′′′′a − 3m′′2a ) + m2

a [(1− ζ)ζ ′′′′ + 3ζ ′′2]
6ma(1− ζ) [(1− ζ)m′′a + mζ ′′]

, (B.50)

which again contains the fourth moments of the connectivity kernels.
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b.13 validation of theory

Figure B.7: Comparison of simulation and theory. (A) Variance of EE, EI, and II covariances
as a function of distance. Darker dots are the results of the simulation. Lighter
ones are the prediction of the discrete theory. (B) Variance of EE covariances as
a function of distance (Eq. (B.49) for variances). The lightest blue dots are the
predictions of the discrete theory (µa replaced by the discrete Fourier transform of
Eq. (B.45), taking into account Section B.7), the medium blue line is the (0,2)-Padé
prediction (µa replaced by its Padé approximation Eq. (B.46), taking into account
Section B.7), and the dark blue line is the higher order (1,2)-DLog-Padé prediction
(µa replaced by its Padé approximation Eq. (B.46), using Eq. (B.50), and taking
into account Section B.7). (C) Fitted slope of linear regions in panel B for different
spectral bounds ρ (light blue: discrete theory, medium blue: Padé approximation,
dark blue: higher order Padé approximation).

In order to validate our results, we performed simulations, in which an effective
connectivity matrix W of a two-dimensional network was drawn randomly, and
covariances were calculated using the result from Lindner et al. (2005); Pernice et al.
(2011); Trousdale et al. (2012)

c(W) = (1−W)−1 D (1−W)−T .

The elements of the different components W ab of the effective connectivity matrix,
similar to Eq. (B.17), were drawn from a binomial distribution with Kb trials and
a success probability of γb pb(|x|), with γb given by Eq. (B.29) and |x| denoting the
distance between the neurons.

We compared the results to the predictions by our discrete theory, continuum theory,
and the long-range limit. We did this for all cases presented above: one dimension
with one population, one dimension with two populations, two dimensions with one
population, and two dimensions with two populations. In the cases of two populations
we solely considered the special case of synaptic connections only depending on the
type of the presynaptic neuron. The first three cases are not reported here. We
simulated several sets of parameters, varying the number of neurons, the number of
inputs, the decay constants and the spectral bound, of which we only report the one
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using the parameters listed in Table B.3 on page 131, because the results do not differ
qualitatively. Using

ρ2 = s(0) = KEw2
E + KIw2

I ,

and choosing
wI

wE
= −NE

NI
= −q ,

we calculated the synaptic weights

wE =
ρ√

KE + q2KI
, wI = −

qρ√
KE + q2KI

.

The comparison of simulation and discrete theory is shown in Panel A of Figure B.7
on page 129. Simulation and theory match almost perfectly. The continuum theory,
which is shown in Panels D and E of Figure 3.3 on page 35, matches as well as the
discrete theory (not shown here). The slight shift in y-direction in Panel A of Figure
B.7 on page 129 is due to the fact that in the random realization of the network the
spectral bound is not exactly matching the desired value, but is slightly different for
each realization and distributed around the chosen value. This jittering around the
real spectral bound is more pronounced as ρ→ 1. Note that the simulated networks
were small compared to the decay constant of the connectivity profile, in order to
keep simulation times reasonable. This is why the variances do not fall off linearly in
the semi-log plot. The kink and the related spreading starting around x/R = 1.5 is a
finite size effect due to periodic boundary conditions: The maximal distance of two
neurons along the axes in units of spatial decay constants is (N/2)/R ≈ 1.5. Because
of the periodic boundary conditions, the covariances between two neurons increases
once the distance between them exceeds the maximal distance along an axis. This,
together with the fact that the curve is the result of the discrete Fourier transform
of Eq. (B.45), implies a zero slope at the boundary. This holds for any direction in
the two dimensional plane, but the maximal distances between two neurons is longer
for directions not aligned with any axis and depends on the precise direction, which
explains the observed spreading.

In order to validate the long-range limit, we compared our discrete theory with
the result from the Padé approximation at large distances (Panel B of Figure B.7 on
page 129). We do not expect the Padé approximation to hold at small distances. We
are mainly interested in the slope of the variance of covariances, because the slope
determines how fast typical pairwise covariances decay with increasing inter-neuronal
distance. The slope at large distances for the (0,2)-Padé approximation is smaller than
the prediction by our theory, but the higher order approximation matches our theory
very well (Panel C of Figure B.7 on page 129). In the limit ρ→ 1 both Padé predictions
yield similar results. The absolute value of the covariances in the Padé approximation
can be obtained from a residue analysis. The (0,2)-Pade approximation yields absolute
values with a small offset, analogous to the slope results. Calculating the residues for
the (1,2)-DLog Padé approximation would lead to a better approximation. Note that
for plotting the higher order prediction in Panel B of Figure B.7 on page 129, we just
inserted Eq. (B.50) into Eq. (B.46) and Eq. (B.48).
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Fig. 3.3B,C Fig. 3.3D,E Fig. B.7A Fig. B.7B

Nx 61 201 61 1001 # neurons in x-direction

Ny 61 201 61 1001 # neurons in y-direction

q 4 4 4 4 Ratio of E to I neurons

KE 100 100 100 100 # E inputs per neuron

KI 50 50 50 50 # I inputs per neuron

RE 20 20 20 20 Spatial spread of E conn.

RI 10 10 10 10 Spatial spread of I conn.

D 1 1 1 1 Squared noise amplitude

ρ 0.95 0.95 0.8 0.95 Spectral bound

exp exp exp exp Connectivity kernel

Table B.3: Parameters used to create theory figures. Decay consts. in units of lattice const. a.

b.14 parameters of nest simulation

Network Parameters

N 2000 Number of neurons

p 0.1 Connection probability

τ 1 ms Time constant

σµ 1 Hz Standard deviation of external input

σnoise 0.1 Hz Standard deviation of noise

ρ [0.1, 0.2, ..., 0.9] Spectral bound

ε 0.1 Parameter controlling difference of two simulations

Simulation Parameters

dt 0.1 ms Simulation step size

tinit 100 ms Initialization time

tsim 2000000 ms Simulation time without initialization time

tsample 1 ms Sample resolution at which rates where recorded

Analysis Parameters

Nsample 200 Sample size

T 100 ms Correlation time window

Table B.4: Parameters used for NEST simulation and subsequent analysis.

b.15 sources of heterogeneity

Sparseness of connections is a large source of heterogeneity in cortical networks. It
contributes strongly to the variance of effective connection weights that determines the
spectral bound, the quantity that controls stability of balanced networks (Sompolinsky
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et al., 1988; Dahmen et al., 2019): Consider the following simple model Wij =Wijζij
for the effective connection weights Wij, where ζij ∈ {0, 1} are independent Bernoulli
numbers, which are 1 with probability p and 0 with probability 1− p, and Wij are
independently distributed amplitudes. The ζij encode the sparseness of connections
and theWij encode the experimentally observed distributions of synaptic amplitudes
and single neuron heterogeneities that lead to different neuronal gains. SinceWij and
ζij are independent, the variance of Wij is

Var
(
Wij
)
= p ·Var

(
Wij
)
+ p(1− p) ·Mean

(
Wij
)2 .

For low connection probabilities as observed in cortex (p(1− p) ≈ p), assessing the
different contributions to the variance thus amounts to comparing the mean and
standard deviation ofWij. Even though synaptic amplitudes are broadly distributed
in cortical networks, one typically finds that their mean and standard deviation are of
the same magnitude (see e.g. Sayer et al., 1990, Tab.1; Feldmeyer et al., 1999, Tab. 1;
Song et al., 2005, Fig.1; Lefort et al., 2009, Tab.2; Ikegaya et al., 2013, Fig.1; Loewenstein
et al., 2011, Fig. 2). Sparseness of connections (second term on the right hand side) is
thus one of the dominant contributors to the variance of connections. For simplicity,
the other sources, in particular the distribution of synaptic amplitudes, are left out
in this study. They can, however, be straight-forwardly added in the model and the
theoretical formalism, because it only depends on Var(Wij).
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c.1 transition curves in network with gaussian connectivity

Here, we derive the transition curves plotted in Panel C of Figure 4.3 on page 68.
We start with the effective profile for a network with Gaussian connectivity profiles
Eq. (4.14). Introducing the dimensionless parameters

κ = ρEk , χ =
RI

RE
, η = − wI

wE
,

we find the dimensionless effective profile

c̃(κ) =
c (κ/RE)

wE
= exp

(
−κ2

2

)
− η exp

(
−χ2κ2

2

)
.

The bifurcations of the system are determined by the position and value of the extrema
of the effective profile, which are at

κ0 = 0 , κ± = ±
√

2 ln (ηχ2)

χ2 − 1
.

The transition curves indicate which types of patters emerge when the network
parameters are modified such that the homogeneous steady state looses its stability.
The first transition curve separates the parameter subspaces into static and dynamic
patterns. The second separates the subspaces for an unstable zero-mode kc = 0 from
multiple unstable modes kc 6= 0.

Eq. (4.11) and Eq. (4.12) show that the homogeneous steady state might become
unstable if either cmax = 1, or cmin = −1. Hence,

|c̃min| = |c̃max|

determines the first transition curve, as the system undergoes a Hopf bifurcation
for |c̃min| > |c̃max|, and a Pitchfork bifurcation otherwise. Using the positions of the
extrema, we find

|c̃ (κ0)| = |c̃ (κ±)| ,

⇒ |1− η| = η−1/(χ2−1)χ−2χ2/(χ2−1)|1− χ2| ,

which implicitly determines η(χ). We solve this equation numerically using
scipy.optimize.fsolve (Virtanen et al., 2020).

133
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The first transition curve determines whether the instability is caused by the max-
imum or minimum of the effective profile, whereas the second transition curve
determines whether or not the respective extremum is at the origin. Because the effec-
tive profile is a sum of two Gaussian functions, we know that one of the extrema will
be a minimum while the other will be a maximum as long as the non-zero extremum
κ± exists. Thus, the second transition curve is determined by

d2

dκ2 c̃ (κ)
∣∣∣∣
κ=0

!
= 0 .

For d2

dκ2 c̃ (κ)
∣∣∣
κ=0

< 0 the maximum will be at the origin and vice versa. This yields

η (χ) =
1

χ2 .

As one can show, the conditions for the non-zero extremum κ± to exists are always
fulfilled in the parameter subspaces in which the relevant extremum is not at the
origin.
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c.2 nest simulation parameters

Symbol Value Description

Lx × Ly 2π × 2π Area of simulated patch

NI 28× 28 Number of inhibitory neurons

NE 28× 28 Number of excitatory neurons

KI 400 Number of inhibitory inputs

KE 400 Number of excitatory inputs

τ 1.0 Model time constant

d 1.0 Delay

RI 0.9 Inhibitory spatial spread

RE 0.5 Excitatory spatial spread

wI −2.37 Inhibitory input weight

wE 2.45 Excitatory input weight

β0 0 Non-linearity offset ψ(0)

β1 1 Non-linearity slope ψ′(0)

β3 −0.083 Cubic non-linearity

T 3000 Simulation time

dt 0.1 Simulation time step

use_wfr True Use wavefront relaxation method

wfr_comm_interval 1.0 Wavefront communication interval

k1, k2 (2, 0) , (0, 2) Initial mode wavevectors

Table C.1: Parameters that are fix across all simulations.
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c.3 analysis of the convolutions in the non-linearity

Assuming a four mode instability with critical modes k1 = −k3 and k2 = −k4,
kc ≡ |k1| = |k2| = |k3| = |k4|, K = {k1, k2, k3, k4}, we write the activity using the
characteristic vectors (Eq. (4.9) and Eq. (4.10))

X (k, t) =

x (k, t) vc + z (k, t) vs (k) , k ∈ K ,

y (k, t) vc + z (k, t) vs (k) , k /∈ K .
(C.1)

According to the center manifold theorem, y and z are at least of order O
(
x2). We

want to derive the dynamical equation for the critical x modes up to lowest order in
the non-linearity. Therefore, we insert Eq. (C.1) into the dynamical equation Eq. (4.3)
and project the result onto the adjoint characteristic vector wc (kc), which yields

τ
∂

∂t
xi(t) =− xi(t) + β1c (kc) xi(t− d)

+ β2c (kc)wc (kc) · [u ~~ u] (ki, t− d)

+ β3c (kc)wc (kc) · [u ~~ u ~~ u] (ki, t− d) ,

with
c (k) = wc (k) · M̃ (k) = M̃E (k) + M̃I (k) .

Next, we need to consider the convolutions to lowest order in x:[
X~~ X

]
(ki, t)

=
∫

d2k′ X
(
ki − k′, t

)
� X

(
k′, t

)
= 2

4

∑
j=1

X
(
ki − kj, t

)
� X

(
kj, t

)
= 2

4

∑
j=1

[
y
(
ki − kj, t

)
vc + z

(
ki − kj, t

)
vs
(
ki − kj

)]
�
[
x
(
kj, t

)
vc + z

(
kj, t

)
vs
(
kj
)]

= 2
4

∑
j=1

[
x
(
kj, t

)
y
(
ki − kj, t

)
vc + x

(
kj, t

)
z
(
ki − kj, t

)
vs
(
ki − kj

)]
+O

(
x4
)

.

Projection onto wc (kc) yields

wc (kc) · [X ~~ X] (ki, t)

= 2
4

∑
j=1

[
x
(
kj, t

)
y
(
ki − kj, t

)]
+O

(
x4
)

= 2

[
x (ki, t) y (0, t) + ∑

j 6=i
x
(
kj, t

)
y
(
ki − kj, t

)]
+O

(
x4
)

≡ 2

[
xi (t) y0 (t) + ∑

j 6=1
xj (t) yij (t)

]
+O

(
x4
)

,
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where we introduced the shorthand notation

x (ki, t) ≡ xi (t) , y (0, t) ≡ y0 (t) , y
(
ki − kj, t

)
≡ yij (t) .

Note that some of these modes are equivalent: for our analysis, we only use

y0, y13, y24, y31, y42, y12, y23, y34, y41 ,

as
y14 = y23, y43 = y12, y32 = y41, y21 = y34 .

The convolution coming from the third order non-linearity yields

wc (kc) · [X ~~ X ~~ X] (ki, t− d)

= wc (kc) ·
∫

d2k′d2k′′ X
(
ki − k′, t

)
� X

(
k′ − k′′, t

)
� X

(
k′′, t

)
= 3xi (t) xi (t) xi+2 (t) + 6xi (t) xi+1 (t) xi+3 (t) +O

(
x4
)

,

where we assumed periodic indices i + 4 ≡ i. The convolutions in the dynamical
equations of the zero- and difference-modes can be analyzed similarly and lead to
Eq. (4.23), Eq. (4.24), and Eq. (4.25).

c.4 center manifold reduction for static patterns

For performing the center manifold reduction, we take the critical modes, including
the distance to criticality, to be

ũ = (u1, u2, u3, u4, ε) .

The tilde serves as a reminder that all operators and vectors take into account the
critical parameter ε in addition to the critical modes. We define the linear operator
components and their actions on φ (θ) ∈ C

(
[−d, 0] , RN) with the number of neuron

grid points N

L̃0φ = − 1
τ

φ(0) ,

L̃d (ε)φ =
β1

τ
diag

[
1 + ε, 1 + ε, 1 + ε, 1 + ε,

c (0) , c (2kc) , c (2kc) , c (2kc) , c (2kc) ,

c
(√

2kc

)
, c
(√

2kc

)
, c
(√

2kc

)
, c
(√

2kc

)
,

0, . . . , 0
]
·φ (−d) .
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Using the results Eq. (4.22)–Eq. (4.26) and c (kc) = 1 + ε, we can define the non-linear
operator to lowest order

F̃ (u, h) =
β2

τ



u1h0 (−d) + u2h12 (−d) + u3h13 (−d) + u4h23 (−d)

u1h34 (−d) + u2h0 (−d) + u3h23 (−d) + u4h24 (−d)

u1h31 (−d) + u2h41 (−d) + u3h0 (−d) + u4h12 (−d)

u1h41 (−d) + u2h42 (−d) + u3h12 (−d) + u4h0 (−d)

2c (0) (u1u3 + u2u4)

c (2kc) u2
1

c (2kc) u2
2

c (2kc) u2
3

c (2kc) u2
4

2c
(√

2kc

)
u1u2

2c
(√

2kc

)
u2u3

2c
(√

2kc

)
u3u4

2c
(√

2kc

)
u1u4

0
...

0



,

where we suppressed the ũ dependence of h̃ (θ, ũ) and used the same index notation
as for the zero and difference modes in 4.6. As the characteristic value for static
bifurcations is λ = 0, we find

B̃ = diag (0, 0, 0, 0, 0) .
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Due to the vanishing characteristic value, the eigenvectors do not depend on θ in the
static case, and we define the eigenvectors

Φ̃ =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
...

...
...

...
...

0 0 0 0 1



,

and the adjoint basis

Ψ̃0 =



1 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 1 0 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 1 0 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 1 0 0 0 0 0 0 0 0 0 · · · 0

0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 1


,

which we make orthonormal using the bilinear form Eq. (4.19)

Ψ̃ =
[〈

Ψ̃0, Φ̃
〉]−1

· Ψ̃0 .

Next, we make a polynomial ansatz for the center manifold

h (θ, ũ) = ∑
i≤j

hij (θ) ũiũj .

In the following, we will drop the tilde notation for clarity. We insert the ansatz into
(cf. Campbell (2009, Eq. 31), Qesmi et al. (2006, Eq. 2.7), or Qesmi et al. (2007, Eq. 3.5))

∂h
∂θ

(θ, u) =
∂h
∂u

(θ, u) · B · u +
∂h
∂u

(θ, u)Ψ (0) · [L (ε)− L (0)] Φ · u(t)
+ Φ (θ)Ψ (0) · F (Φ · u(t) + h (Φ · u(t)))
+ Φ (θ)Ψ (0) · [L (ε)− L (0)] [Φ · u(t) + h (θ, u(t))] + O

(
|u|3

)
,
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which we get from inserting Eq. (4.17) into the second line of Eq. (4.18) and applying
the chain rule in the derivative of h using Eq. (4.21). This yields the ODEs that
determine the functions in the center manifold ansatz up to integration constants. For
fixing the constants, we use the second line of Eq. (4.18) (cf. Campbell (2009, Eq. 32),
Qesmi et al. (2006, Eq. 2.8), or Qesmi et al. (2007, Eq. 3.6))

L (h (θ, u)) + F (Φ · u) =
{

∂h
∂u

(θ, u) · B · u +
∂h
∂u

(θ, u)Ψ(0) · (L(ε)− L (0))Φ · u

+ Φ(θ)Ψ(0) · (L(ε)− L (0)) [Φ · u + h (θ, u(t))]

+ Φ(θ)Ψ(0) · F (Φ · u)
}∣∣∣∣

θ=0
.

The calculations are performed with SymPy (Meurer et al., 2017). The results of the
analysis are presented in Section 4.6.1 and 4.6.2.



B I B L I O G R A P H Y

L F Abbott, K Rajan, and H Sompolinsky. Interactions between intrinsic and stimulus-
evoked activity in recurrent neural networks. In The Dynamic Brain: An Exploration
of Neuronal Variability and its Functional Significance, pages 65–82, 2011.

LF Abbott and Thomas B Kepler. Model neurons: from Hodgkin-Huxley to Hopfield.
In Statistical mechanics of neural networks, pages 5–18. Springer, 1990.

Moshe Abeles. Corticonics: Neural Circuits of the Cerebral Cortex. Cambridge University
Press, Cambridge, 1st edition, 1991.

M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions, volume 55 of
Applied Mathematics Series. National Bureau of Standards, Washington, 1964.

Johnatan Aljadeff, David Renfrew, Marina Vegué, and Tatyana O Sharpee. Low-
dimensional dynamics of structured random networks. Phys. Rev. E, 93(2):022302,
2016.

Johnatan Aljadeff, Merav Stern, and Tatyana Sharpee. Transition to chaos in random
networks with cell-type-specific connectivity. Phys. Rev. Lett., 114:088101, Feb 2015.
URL http://link.aps.org/doi/10.1103/PhysRevLett.114.088101.

Asohan Amarasingham, Ting-Li Chen, Matthew T Harrison, and David L Sheinberg.
Spike count reliability and the poisson hypothesis. Journal of Neuroscience, 26(4):
801–809, January 2006.

Shun-Ichi Amari. Homogeneous nets of neuron-like elements. Biol. Cybern., 17(4):
211–220, 1975. ISSN 1432-0770.

Shun-Ichi Amari. Dynamics of pattern formation in lateral-inhibition type neural
fields. Biol. Cybern., 27(2):77–87, 1977. URL https://doi.org/10.1007/bf00337259.

D. J. Amit and M. V. Tsodyks. Quantitative study of attractor neural network retrieving
at low spike rates I: Substrate – spikes, rates and neuronal gain. Network, 2:259,
1991.

Daniel J. Amit and Nicolas Brunel. Dynamics of a recurrent network of spiking
neurons before and following learning. Network: Comp. Neural Sys., 8(4):373–404,
1997a. URL https://doi.org/10.1088/0954-898x_8_4_003.

Daniel J. Amit and Nicolas Brunel. Model of global spontaneous activity and local
structured activity during delay periods in the cerebral cortex. Cereb. Cortex, 7:
237–252, Apr. 1997b. URL https://doi.org/10.1093/cercor/7.3.237.

MC Angulo, J Rossier, and E Audinat. Postsynaptic glutamate receptors and in-
tegrative properties of fast- spiking interneurons in the rat neocortex. Journal of
Neurophysiology, 82(3):1295–302, Sep 1999.

141

http://link.aps.org/doi/10.1103/PhysRevLett.114.088101
https://doi.org/10.1007/bf00337259
https://doi.org/10.1088/0954-898x_8_4_003
https://doi.org/10.1093/cercor/7.3.237


142 bibliography

Natalie Baddour. Two-dimensional fourier transforms in polar coordinates. In Advances
in Imaging and Electron Physics, pages 1–45. Elsevier, 2011. URL https://doi.org/

10.1016/b978-0-12-385861-0.00001-4.

Cody Baker, Christopher Ebsch, Ilan Lampl, and Robert Rosenbaum. Correlated
states in balanced neuronal networks. Phys. Rev. E, 99:052414, May 2019. URL
https://link.aps.org/doi/10.1103/PhysRevE.99.052414.

Peter Bartho, Hajime Hirase, Lenaic Monconduit, Michael Zugaro, Kenneth D. Harris,
and György Buzsaki. Characterization of neocortical principal cells and interneurons
by network interactions and extracellular features. Journal of Neurophysiology, 92:
600–608, 2004.

JL Basdevant. The padé approximation and its physical applications. Fortschritte der
Physik, 20(5):283–331, 1972.

R. Ben-Yishai, R.L. Bar-Or, and H. Sompolinsky. Theory of orientation tuning in visual
cortex. Proceedings of the National Academy of Sciences, 92:3844, 1995.

Tom Binzegger, Rodney J. Douglas, and Kevan A. C. Martin. Stereotypical bouton
clustering of individual neurons in cat primary visual cortex. Journal of Neuroscience,
27(45):12242–12254, Nov. 2007. URL https://doi.org/10.1523/jneurosci.3753-07.

2007.

Barak Blumenfeld, Dmitri Bibitchkov, and Misha Tsodyks. Neural network model of
the primary visual cortex: From functional architecture to lateral connectivity and
back. Journal of computational neuroscience, 20(2):219, 2006.

Hannah Bos, Markus Diesmann, and Moritz Helias. Identifying anatomical origins
of coexisting oscillations in the cortical microcircuit. PLOS Comput. Biol., 12(10):
e1005132, Oct. 2016. URL http://doi.org/10.1371%2Fjournal.pcbi.1005132.

William H. Bosking, Yiang Zhang, Brett Schofield, and David Fitzpatrick. Orientation
selectivity and the arrangement of horizontal connections in tree shrew striate
cortex. Journal of Neuroscience, 17(6):2112–2127, 1997. URL https://doi.org/10.

1523/jneurosci.17-06-02112.1997.

Clemens Boucsein, Martin Nawrot, Philipp Schnepel, and Ad Aertsen. Beyond the
cortical column: abundance and physiology of horizontal connections imply a
strong role for inputs from the surround. Front. Neurosci., 5:32, Apr 2011. URL
https://doi.org/10.3389/fnins.2011.00032.

Valentin Braitenberg and Almut Schüz. Cortex: Statistics and Geometry of Neuronal
Connectivity. Springer-Verlag, Berlin, 2nd edition, 1998. ISBN 3-540-63816-4.

P. C. Bressloff and S. Coombes. Spike train dynamics underlying pattern formation in
integrate-and-fire oscillator networks. Phys. Rev. Lett., 81(11):2384–2387, Sep. 1998.
URL https://doi.org/10.1103/physrevlett.81.2384.

P. C. Bressloff and S. Coombes. A dynamical theory of spike train transitions in
networks of integrate-and-fire oscillators. SIAM Journal on Applied Mathematics, 60

(3):820–841, Jan. 2000. URL https://doi.org/10.1137/s0036139998339643.

https://doi.org/10.1016/b978-0-12-385861-0.00001-4
https://doi.org/10.1016/b978-0-12-385861-0.00001-4
https://link.aps.org/doi/10.1103/PhysRevE.99.052414
https://doi.org/10.1523/jneurosci.3753-07.2007
https://doi.org/10.1523/jneurosci.3753-07.2007
http://doi.org/10.1371%2Fjournal.pcbi.1005132
https://doi.org/10.1523/jneurosci.17-06-02112.1997
https://doi.org/10.1523/jneurosci.17-06-02112.1997
https://doi.org/10.3389/fnins.2011.00032
https://doi.org/10.1103/physrevlett.81.2384
https://doi.org/10.1137/s0036139998339643


bibliography 143

Paul C. Bressloff. Spatiotemporal dynamics of continuum neural fields. Journal of
Physics A: Mathematical and Theoretical, 45(3):033001, 2012. URL https://doi.org/

10.1088/1751-8113/45/3/033001.

Paul C. Bressloff, Jack D. Cowan, Martin Golubitsky, Peter J. Thomas, and Matthew C.
Wiener. Geometric visual hallucinations, euclidean symmetry and the functional
architecture of striate cortex. Phil. Trans. R. Soc. B, 356(1407):299–330, Mar. 2001.
URL https://doi.org/10.1098/rstb.2000.0769.

Braden A. W. Brinkman, Fred Rieke, Eric Shea-Brown, and Michael A. Buice. Predict-
ing how and when hidden neurons skew measured synaptic interactions. PLOS
Comput. Biol., 14(10):e1006490, oct 2018. URL https://doi.org/10.1371/journal.

pcbi.1006490.

Thomas Brochier, Lyuba Zehl, Yaoyao Hao, Margaux Duret, Julia Sprenger, Michael
Denker, Sonja Grün, and Alexa Riehle. Massively parallel recordings in macaque
motor cortex during an instructed delayed reach-to-grasp task. Scientific Data, 5:
180055, Apr. 2018. URL https://doi.org/10.1038/sdata.2018.55.

Korbinian Brodmann. Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien
dargestellt auf Grund des Zellenbaues. Johann Ambrosius Barth, Leipzig, 1909.

Nicolas Brunel. Dynamics of sparsely connected networks of excitatory and inhibitory
spiking neurons. Journal of Computational Neuroscience, 8(3):183–208, 2000a. URL
https://doi.org/10.1023/a:1008925309027.

Nicolas Brunel. Dynamics of sparsely connected networks of excitatory and inhibitory
spiking neurons. Journal of Computational Neuroscience, 8(3):183–208, 2000b. URL
https://doi.org/10.1023/a:1008925309027.

Nicolas Brunel and Peter Latham. Firing rate of the noisy quadratic integrate-and-fire
neuron. Neural Comput., 15(10):2281–2306, 2003.

Julian M. Budd and Zoltán F. Kisvárday. Local lateral connectivity of inhibitory clutch
cells in layer 4 of cat visual cortex (area 17). Exp. Brain Res., 140(2):245–250, Jul. 2001.
URL https://doi.org/10.1007/s002210100817.

Michael A Buice and Carson C Chow. Beyond mean field theory: statistical field
theory for neural networks. Journal of Statistical Mechanics: Theory and Experiment,
2013(03):P03003, 2013.

A. N. Burkitt. A review on the integrate-and-fire neuron model: I. homogenous
synaptic input. Biol. Cybern., 95(1):1–19, 2006.

P. Buzás, K. Kovács, A. S. Ferecskó, J. M. L. Budd, U. T. Eysel, and Z. F. Kisvárday.
Model-based analysis of excitatory lateral connections in the visual cortex. J. Comp.
Neurol., 499:861–881, 2006. URL https://doi.org/10.1002/cne.21134.

György Buzsáki, Costas A. Anastassiou, and Christof Koch. The origin of extracellular
fields and currents – EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci., 13(6):407–427,
June 2012. URL https://doi.org/10.1038/nrn3241.

https://doi.org/10.1088/1751-8113/45/3/033001
https://doi.org/10.1088/1751-8113/45/3/033001
https://doi.org/10.1098/rstb.2000.0769
https://doi.org/10.1371/journal.pcbi.1006490
https://doi.org/10.1371/journal.pcbi.1006490
https://doi.org/10.1038/sdata.2018.55
https://doi.org/10.1023/a:1008925309027
https://doi.org/10.1023/a:1008925309027
https://doi.org/10.1007/s002210100817
https://doi.org/10.1002/cne.21134
https://doi.org/10.1038/nrn3241


144 bibliography

György Buzsáki and Andreas Draguhn. Neuronal oscillations in cortical networks.
Science, 304:1926–1929, 2004.

Sue Ann Campbell. Calculating centre manifolds for delay differential equations
using maple™. In Delay Differential Equations, pages 1–24. Springer US, 2009. URL
https://doi.org/10.1007/978-0-387-85595-0_8.

Jack Carr. Center manifold. Scholarpedia, 1(12):1826, 2006. URL https://doi.org/10.

4249/scholarpedia.1826.

S. Chemla and F. Chavane. Voltage-sensitive dye imaging: Technique review and
models. J. Physiol. (Paris), 104(1-2):40–50, Jan. 2010. URL https://doi.org/10.1016/

j.jphysparis.2009.11.009.

S. Coombes. Waves, bumps, and patterns in neural field theories. Biological Cybernetics,
93:91–108, Jul. 2005. URL https://doi.org/10.1007/s00422-005-0574-y.

S. Coombes. Large-scale neural dynamics: Simple and complex. NeuroImage, 52(3):
731–739, Sep. 2010. URL https://doi.org/10.1016/j.neuroimage.2010.01.045.

S. Coombes, N. A. Venkov, L. Shiau, I. Bojak, D. T. J. Liley, and C. R. Laing. Modeling
electrocortical activity through improved local approximations of integral neural
field equations. Phys. Rev. E, 76(5), Nov. 2007. URL https://doi.org/10.1103/

physreve.76.051901.

Stephen Coombes, Peter bei Graben, Roland Potthast, and James Wright. Neural Fields.
Theory and Applications. Springer-Verlag Berlin Heidelberg, 2014.

Stephen Coombes and Carlo Laing. Delays in activity-based neural networks. Philosoph-
ical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,
367(1891):1117–1129, Feb. 2009. URL https://doi.org/10.1098/rsta.2008.0256.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the
lambert w function. Advances in Computational Mathematics, 5(1):329–359, 1996. URL
https://doi.org/10.1007/BF02124750.

Jozsef Csicsvari, Hajime Hirase, Andras Czurko, and György Buzsáki. Reliability and
state dependence of pyramidal cell–interneuron synapses in the hippocampus: an
ensemble approach in the behaving rat. Neuron, 21(1):179–189, 1998.

John P. Cunningham and M. Yu Byron. Dimensionality reduction for large-scale neural
recordings. Nat. Neurosci., 17(11):1500–1509, Aug. 2014. URL https://doi.org/10.

1038/nn.3776.
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