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The Case of Taxi Drivers*

We examine the impact of Articial Intelligence (AI) on productivity in the context of taxi 

drivers. The AI we study assists drivers with finding customers by suggesting routes along 

which the demand is predicted to be high. We find that AI improves drivers’ productivity by 

shortening the cruising time, and such gain is accrued only to low-skilled drivers, narrowing 

the productivity gap between high- and low-skilled drivers by 14%. The result indicates that 

AI’s impact on human labor is more nuanced and complex than a job displacement story, 

which was the primary focus of existing studies.
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1 Introduction

Artificial Intelligence (AI) has the potential to drastically reshape employment (Bryn-

jolfsson et al. 2018). The distributional consequences of AI could be fundamentally different

from those of past technologies, such as IT and robotics, which are considered to be skill

augmenting and inequality enhancing.1 Whereas past technologies have replaced the rou-

tine and manual tasks of low-skilled workers, AI may replace non-routine cognitive tasks of

typical high-skilled workers (Webb 2020).

Prior works on the labor-market consequences of AI focus primarily on job displacement

across occupations–identifying the types of occupations that are more exposed and replace-

able by AI.2 To better understand the impacts of AI on the labor market, however, the

fundamental factor to consider is how productivity, which plays a crucial role in determin-

ing employment and wages, is affected by AI. Furthermore, past studies implicitly assume

that all workers within the occupation are uniformly affected by AI, missing substantial

within-occupation heterogeneity of skills for the tasks that can be replaced by AI.3

To fill the gap, we study the impact of AI on productivity across different worker skills

in the context of taxi drivers. Taxi drivers are an ideal case to answer this question. First,

a worker’s individual productivity is easily measured by the length of time it takes to catch

customers; each driver works independently and has considerable discretion as to how they

find customers. Our data show that over one half of drivers’ working time is devoted to

searching for (and the remaining to carrying) customers, excluding breaks. Thus, customer

search is among the most important tasks for taxi drivers. Second, the work environment of

taxi drivers offers a clean setting to study productivity, because all drivers work in a very

similar setting; taxi drivers utilize the same capital, charge the same prices, and face the

same input prices.

The particular AI we study is called “AI Navi,” which helps drivers find customers when

a taxi is cruising. The AI suggests routes based on predicted demand to maximize the prob-

ability of catching customers, given the current location. Therefore, this AI is expected to

improve the productivity of drivers by reducing search time. This type of AI, which increases

1E.g., Autor et al. (2003); Bartel et al. (2007); Acemoglu and Restrepo (2020, 2022).
2These studies are based on a task-based model of technology and labor (Acemoglu and Restrepo 2018),

where each occupation consists of various tasks and automation occurs at the task level. In this framework,
an occupation in which a high proportion of tasks can be replaced by AI is considered highly exposed to AI
(e.g., Felten et al. (2018, 2019); Frank et al. (2019); Webb (2020); Alekseeva et al. (2021).)

3The only exception, to our knowledge, is Grennan and Michaely’s (2020) study, which documents that
security analysts who cover stocks that are more exposed to AI are more likely to leave the profession, and
accurate analysts are even more likely to do so. The primary difference is that we study the impact on
productivity.
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the accuracy of prediction tasks from the patterns of data using machine learning technology,

is widely used in real business settings (Agrawal et al. 2018, 2019).4 Demand forecasting–the

process of predicting future customer demand–is one of many existing prediction tasks. To

the extent that this demand-forecasting skill is an important component of taxi drivers’ skill

set, the impact of AI on productivity may differ by drivers’ skill.

Our empirical strategy compares the hazard rate of finding customers when AI is turned

on and when it is turned off within the same drivers. To address the potential endogeneity

of the timing of AI usage, we control for rich sets of fixed effects (FEs) to account for

underlying demand, namely ward, and date-hour FEs. Our identifying assumption, thus, is

that turning on the AI is quasi-random after controlling for these granular sets of FEs, and

we empirically demonstrate the validity of this assumption. In addition, we use the drop-off

location of the previous customer as an instrument for the driver’s decision to turn on AI,

assuming that the customer’s destination choice is exogenous to the driver, and that the

degree of (un)familiarity of the drop-off location is correlated with the driver’s decision to

turn on AI that assists in finding customers.

We find that AI improves the productivity of taxi drivers by shortening the search time

by 5%, on average. Estimations with and without IV yields similar results, reassuring that

the endogeneity of AI usage is not a serious concern, given the rich sets of fixed effects.

Importantly, the productivity gain is concentrated on low-skilled drivers; the impact on

low-skilled drivers, where skill is defined by previous driving performance, is 7%, whereas

the impact on high-skilled drivers is nearly zero or even negative (albeit not statistically

significant). As a result, the AI narrows the productivity gap between high- and low-skilled

drivers by about 14%. These results indicate that the AI is a substitute for worker skill, at

least in this context.

Our result has implications for the distributional consequences of AI. Most extant studies

show that AI technologies predominately harm high-skilled occupations, as an AI substitutes

for tasks that require the types of skills that high-skilled workers possess (See, e.g., Webb

2020). Instead, we show that, within an occupation, an AI can potentially benefit low-

skilled workers while not affecting high-skilled workers much. While both results point out

AI’s potential to narrow the gap between high- and low-skilled workers, our result suggests

a different channel through which the productivity gap may be reduced. Overall, our case

indicates that the impact of AI on human labor is more nuanced and complex than a job

replacement story.

4“The current generation of AI provides tools for prediction and little else.” (Agrawal et al. 2018, p.
133).
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Of course, this is a case study, and our findings speak only to the case of taxi drivers.

Nonetheless, to the extent that the core skill of a job involves a prediction task from the

patterns of data, and the AI improves the accuracy of this prediction task, our results may

also be applicable to such occupations. For example, AI that reviews contracts for unusual

clauses and AI that detects cells within malignant tumors might improve the productivity

of low-skilled paralegals and low-skilled pathologists, respectively, more than those of their

high-skilled counterparts.

2 Background and Data

2.1 Setting

We study taxi drivers in Yokohama city, which is adjacent to Tokyo. Yokohama city has

a population of 3.77 million, the second largest in Japan after Tokyo. With an area of 435

km2 (about 7 times the area of Manhattan), Yokohama city is divided into 18 wards. As

of December 2019, there are 8,842 registered taxi drivers working for taxi-operating firms in

the city. Note that online ride-hailing services (e.g., Uber and Grab) were not permitted in

Japan during our sample period.

The same price schedule applies to most taxis in the city. The fare is the sum of the fixed

charge for the first 2 km (JPY740; JPY140 is approximately 1USD) and the variable charge

after the first 2 km, which is determined by distance and time, as in other usual settings

of taxi transportation. Taxi drivers in our data work for taxi-operating firms, and they are

paid a fixed percentage of the fares they collect (usually between 45 and 60% based on our

interviews with a random set of drivers), with a guaranteed baseline salary so that they will

not work below minimum wage. Drivers do not incur any variable costs (including gas).

2.2 AI Navi

AI Navi, developed by a tech company, is designed to help drivers find customers when the

taxi is cruising. Using a machine-learning technique, AI Navi’s demand-forecasting capacity

is based on recent driving records in Yokohama city.

More specifically, when turned on, AI Navi suggests routes for taxi drivers to maximize

the probability that a taxi will catch customers, given the location of the taxi. Thus, AI is

expected to improve the productivity of taxi drivers by reducing cruising time. Figure A1

displays a snapshot of AI Navi when it is turned on. AI Navi displays the suggested routes
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in green with a red arrow, given a taxi’s current location, and red dots indicate the locations

with potential customers.

We prefer search time as a productivity measure over conventional outcomes (e.g., daily

sales or hours worked), because existing studies on taxi drivers, such as Camerer et al.

(1997), demonstrate that taxi drivers may choose the hours worked depending on their

productivity (i.e., targeted income) and thus, such behavioral responses may contaminate

the measurement of productivity. Also, as mentioned above, more than one half (57.96%

from our data, excluding breaks) of a driver’s working time is devoted to cruising, and hence

improving the efficiency of search activities is critical for drivers. Finally, reducing search

time is the direct objective of this particular AI.

2.3 Data

Our data are provided by the tech company that developed AI Navi. To gather field data,

the company provided AI Navi to roughly 500 taxi drivers (≈ 6%) working for taxi-operating

firms in Yokohama city for free during the period of December 3 to 31, 2019 (29 days). Taxi

drivers who participated in this free trial received no reward or penalty for use or nonuse of

the application. Therefore, it was entirely up to the discretion of taxi drivers whether and

how often to use it. In addition, we have data for the period two months before the free trial

(i.e., October and November 2019), which we use to construct drivers’ skills based on their

productivity in this pre-period. Unfortunately, we do not have any information about the

drivers’ other characteristics, such as age, gender, and tenure.

Our unit of observation is each cruise during which drivers are searching for customers.

Formally, we define a cruise as the time between when a cruise starts (i.e., dropping off the

previous customer) and when it ends (i.e., picking up the next customer) on the street.

The original data consist of 67,111 cruises in December 2019. We make the following

sample restrictions. First, we exclude the cruises of drivers whose pre-period data do not

exist to construct our skill measures (N = 2,044). Second, following Haggag et al. (2017),

cruises over 60 minutes are considered as being on a break and thus are excluded (N =

2,758). The final sample consists of 62,309 cruises of 520 drivers.

Among the 62,309 cruises, the number of cruises when AI is turned on and off is 3,127

(5.0%) and 59,182 (95.0%), respectively. Out of a total of 520 drivers, 201 (39%) used AI

at least once and 319 (61%) never used it during the trial period. Thus, while the overall

utilization of AI is quite low, nearly 40% of drivers at least experimented with it. We call

the sample of all drivers the “full” sample and the sample of drivers who used AI at least
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once during the trial period the “Navi users” sample. Generally, our results are robust to

the use of either dataset.

Figure A2 shows the distributions of cruising time separately for (a) when AI is turned

on, and (b) when AI is turned off. Both the mean and median cruising times are higher when

AI is turned on than when it is turned off; the mean(median) time when AI is turned on is

15.6(11.4) minutes, whereas the time when it is turned off is 11.7(7.95) minutes, suggesting

that drivers are more likely to turn on AI when it is difficult to find customers. This selective

usage of AI indicates that a simple comparison of the average cruising time between when

AI is turned on and off is problematic, because it reflects the difference in the underlying

demand for the taxi rather than the effect of AI. We discuss how we address this selection

issue in the next section.

3 Empirical strategy

3.1 Hazard model

Our empirical strategy is still comparing the cruising time when AI is turned on and off.

As discussed earlier, however, we cannot simply compare the average cruising time between

AI usage and non-usage, because the timing of AI usage could be endogenous. Thus, we

compare the cruising time between when AI is turned on and when it is turned off within

the same drivers by including driver FE while controlling for rich sets of fixed effects to

account for underlying demand, namely 18 ward FE, and 696 date-hour FE (=29 days×24

hours/day). Our identifying assumption, thus, is that turning on the AI is quasi-random

after controlling for these sets of FEs. In the next subsection, we will examine the validity

of this assumption empirically.

We estimate a hazard model to allow for AI being turned on during a cruise. We assume

that the duration of the cruise (in minutes), T , follows a Weibull distribution. The survival

function, S(t) = Pr(T > t), which is the probability that drivers cannot find a customer

until time t, by driver i in ward j at date hour h for cruise s is:

Sijhs(t) = exp(−λijhs(t) · tp)

where

λijhs(t) = exp{−p(α · AI usageijhs,t + driver FEi + ward FEj + date-hour FEh)}. (1)
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AI usage is a dummy variable that takes the value of one after AI is turned on, and zero

otherwise. The incidental parameter problems due to estimating numerous fixed effects in a

non-linear model is addressed in Appendix Section B; the bias is considered small. Parameter

p captures the duration dependence of the baseline hazard, where p = 1 implies the absence

of duration dependence, p > 1 (log(p) > 0) implies positive duration dependence, and p < 1

(log(p) < 0) implies negative duration dependence.

This model can be interpreted as

log(cruising timeijhs) = α·AI usageijhs,t+driver FEi+ward FEj+date-hour FEh+εijhs (2)

where ε follows an extreme-value distribution (Wooldridge 2010, p. 998). Our coefficient of

interest is α, which corresponds to the percentage change in cruising time. We test whether

AI usage reduces the time to find a customer (α < 0).

To consider the effects of driver skill and the demand condition, we construct two indices:

a driver skill index and a vacancy index. Both indices are constructed using cruise data from

October and November—a period before the trial period.

The driver skill index is constructed in the following way. First, we estimate the hazard

model of equation (1) without a dummy of AI usage, regressing the cruising time onto driver,

ward, and date-hour FEs. Then, we flip the sign of the estimated driver FE, so that a higher

skill index reflects more skilled drivers, and then standardize it to the mean of 0 with a

standard deviation of 1. Figure A3 shows the distribution of the skill index. This index

essentially captures each driver’s skill in finding customers. Because our skill measure is

constructed based on the worker productivity of the same drivers using past records, this

index better reflects the actual skill of workers than commonly used alternatives, such as

education and experience (e.g., Autor et al. 2008). Importantly, because this skill measure

captures not only the demand-forecasting skill but also other skills necessary to shorten

search time, such as driving skills,5 it is not obvious a priori whether AI is more beneficial

for more or less skilled drivers.

Similarly, we construct a vacancy index by estimating a hazard model similar to equation

(1), regressing cruising time onto driver and ward-day-hour FEs. The estimated ward-day-

hour FE–which capture the average demand for a taxi at each ward at each day-hour (e.g.,

10 pm on Wednesday at Ward 1)–is our vacancy index. A higher vacancy index means more

time to catch a customer, indicating a lower demand for a taxi at the ward-day-hour level,

5Driving skills include skills to stop in front of other cars at red traffic lights to be more visible to customers
and avoid driving immediately after another vacant taxi, as doing so lowers probability of catching customers.
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on average.

3.2 Credibility of the underlying assumption

Recall that our identifying assumption is that turning on the AI is as good as random

within the same driver in similar demand conditions, that is, after controlling for ward FE

and date-hour FE, in addition to driver FE. To assess the plausibility of this assumption,

we estimate a logistic regression, where the outcome is a dummy that takes one when AI

is turned on, and zero otherwise, on the driver skill index, the vacancy index, and their

interaction with and without the same sets of FEs as those in equation (1), namely, ward,

date-hour, and driver FEs.

Table 1 shows the results. Column (1) shows that without the above-mentioned set of

FEs, the skill index is negative (albeit not statistically significant), indicating that low-skilled

drivers are more likely to use AI. More importantly, the vacancy index is positive and highly

statistically significant (p< 0.01), suggesting that drivers are more likely to turn on AI when

the demand is low. Once we add ward and date-hour FEs in column (2), however, the

vacancy index is no longer statistically significant, nor is it economically large. This result

suggests that once we properly control the demand, whether to turn on or off AI is considered

as good as random. This is plausible, because none of the drivers had been exposed to this

application before, and thus they were likely to randomly experiment with it by turning it

on and off.

Columns (3) and (4) in Table 1 repeat the same exercise for only those drivers who use

AI at least once during the trial period (“Navi users” sample) and find similar patterns.

Finally, column (5) adds driver FE to column (4), and the estimate on the vacancy index is

again small.

3.3 Instrumental variable approach

The previous subsection shows that although AI is more likely to be used when demand

is low, this underlying demand condition can be well-controlled by including a rich set of

FEs. One may be still concerned, however, that unobserved demand conditions that are not

fully controlled by FEs affect both the driver’s decision to turn on AI and also the time to

find the customer. To account for the remaining concern about the endogeneity of AI usage,

we employ an instrumental variable (IV) approach. Specifically, we use two IVs: the drop-off

location of the previous customer and the frequency of past AI usage.

The first IV is the drop-off location of the previous customer. The idea behind is that the
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customer’s destination choice is arguably exogenous to the driver, and that dropping off a

customer (=starting a cruise) in an unfamiliar place induces the driver to turn on AI to assist

their search. To measure the unfamiliarity, we calculate the share of cruises starting from

each of 18 wards for each driver in the pre-trial period (October and November). Then, we

call one minus this past share at each ward j for each driver i as the unfamiliarity index—the

higher the more unfamiliar the location is for the driver. Then, we assign this index for any

cruises s starting from ward j for driver i in December as an instrument.6 To the extent that

driver is more likely to turn on AI at unfamiliar locations, this IV can have predictive power

of driver’s decision to turn on AI (i.e., relevance).7 Here, if starting from unfamiliar places

directly affects the length of search time regardless of AI usage, the IV violates the exclusion

restriction. To address this, we always control for the average cruising time for each driver

i at ward j using the pre-trial period (called the Cruising time index, hereafter)8 in this IV

approach, which turns out not to be empirically important. The second IV is simply the

number of AI usages until the current cruise s for each driver i. The idea is that drivers

should accumulate experience of AI usage by past quasi-random events, and thus past AI

usage induces current AI usage.

Recall that our model of interest is a survival model with a time-varying binary treatment

variable that considers the hazard of finding a customer, given cruising time. Thus, we need

the predicted probability of turning on AI that varies with cruising time. To approximate

this time-varying probability, we estimate the Tobit model where the dependent variable is

time to turn on AI where the upper bound is the end of cruise.9 We then transform the

predicted time of turning on AI from the Tobit into the time-varying probability of turning

6For simplicity, suppose that there are only three wards and that driver i’s share of the cruises starting
from Wards 1, 2, and 3 in October and November are 0.7, 0.2, and 0.1, respectively. Then, for any cruises
s starting from Wards 1, 2, and 3 in December for driver i, we assign 0.3, 0.8, and 0.9 (= 1-past share),
respectively. The relevance of such an IV means that driver i is more likely to turn on AI when the cruise
starts in Ward 3 (= 0.9) than in Ward 1 (= 0.3).

7One concern is that the most drivers pick up and drop off within very limited locations, and thus we
may lack statistical power. However, Figure A4 plots the distribution of the share of cruises stating from
the Naka Ward (the share is the highest at 37.1%) at the driver level and reveals substantial variation across
drivers. Consequently, the Herfindahl-Hirschman index (HHI) of the unfamiliarity index in Figure A5 is
widely dispersed.

8More precisely, we regress cruising time on driver-ward FE and date-hour FE using data from October
and November and use the estimated driver-ward FE as the Cruising time index.

9To capture the probability of turning on AI at any given time, one may think that a competing hazard
model with two terminal points, turning on AI and finding customers, may be a proper model. We do not
take this avenue, however, because strictly speaking, our case does not fit the standard competing hazard
model, in that a cruise continues even after AI is turned on; thus an end-point event (= finding a customer)
follows after another end-point event (= turning on AI). Moreover, estimating a competing hazard model
with many fixed effects is computationally not feasible.
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on AI.10

Table 2 shows the results of our first-stage Tobit regression where we regress the log of

time until AI is turned on on two IVs in columns (1) and (2), and further their interaction

in columns (3) and (4). As expected, both IVs are negative and statistically significant,

indicating that drivers turn on AI faster at unfamiliar locations, and as they are more

experienced with AI Navi. To be sure, the shorter time to turn on AI implies a higher

probability of turning on AI at any given time.

The practical challenge for our IV approach is that, to our knowledge, there is no standard

way of adopting IVs in a non-linear model like the Weibull hazard model. Thus, we take a

rather ad hoc approach and add the residual from Table 2 to equation (1), in the spirit of the

control function approach. Here, we assume that the residual of the Tobit model (i.e., the

variation of time to turn on AI not explained by IV) captures the endogeneous variation of

AI usage.11 It turns out that the specifications with and without this residual control yield

similar results (as shown below), implying that the remaining endogenity does not appear

to be a major concern.

4 Results

4.1 Overall productivity

Table 3 reports the main result of estimating equation (1). Column (1) shows that AI

reduces the time spent on cruising by 5.1% using the full sample. We show graphically the

fitness of our hazard model. Figure A6 compares the estimated survival curve of column (1)

of Table 3 (solid) and the Kaplan-Meier curve (dash). The extent of the fit is reasonably

high, suggesting that the Weibull distribution captures the underlying hazard well. Column

(2) limits the sample to AI Navi users and finds similar results.12 To account for the low uti-

lization rate of AI, we trim the sample based on the propensity score in column (3), to ensure

sufficient overlap in characteristics between cruises with and without AI usage. Specifically,

we calculate the propensity score to turn on AI from the logistic regression of the AI usage

10First, the time at which AI is turned on for each cruise is predicted from the Tobit model in Table 2.
Second, the “AI turn-on probability” at the predicted timing in the first step is set to 0.5 and the probability
at the start of the cruise is set to 0. Third, each cruise is divided into 1-minute segments, and “AI turning-on
probability” is linearly interpolated and extrapolated for each segment of each cruise.

11The difference between the “AI turning-on probability” and the (actual) AI usage dummy becomes the
residual. We always use this 1-minute split sample in the IV approach.

12This is expected, because our source of variation for identification is within drivers, and thus the drivers
who never used the AI (who are included in column (1) but not in column (2)) contribute only to the
precision of ward and date-hour FEs.
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dummy on driver, ward, and date-hour FEs. Column (3) limits the sample in column (2)

to cruises whose propensity score lies between 0.1 and 0.9 (Imbens 2015).13 Although the

number of observations substantially decreases, it is reassuring that the estimate in column

(3) is very similar to those in columns (1) and (2). The positive estimates of log(p) in all

specifications imply positive duration dependence, reflecting that drivers tend to move to

locations where catching customers is easier.

Column (4) in Table 3 reports the results of the IV approach using the full sample

where we control for the residuals calculated from the predicted time-varying AI turning-

on probability from column (3) of Table 2. We are reassured that the IV approach yields

similar estimates as those in column (1) without such residual controls, implying that role of

remaining endogeneity is limited. Column (5) reports the estimate of IV approach using the

Navi user sample, and again yields similar estimates as column (2) without residual controls.

4.2 Productivity gain by skills

We now report the productivity improvement by skill level. Figure 1 plots the estimated

value of AI Navi effects by skill where we add the interactions of AI usage and the skill index

and the square of skill index to equation (1). The figure shows that the estimate of AI usage

on cruising time is constantly negative for a wide range of the low skill index, suggesting

that productivity gains are concentrated on low-skilled drivers. In contrast, the estimates

on high-killed drivers are not statistically distinguishable from zero, and possibly positive.

Figure A7 reports similar results when the interaction of AI usage and cubic is added to the

equation (1), suggesting that our results are not driven by the particular parametric form of

the skill index.14

To quantify the magnitudes of productivity improvement by skill level, Table 4 reports

the estimates from the specification, where the skill index that is divided by median, tertile,

and quartile, respectively, is interacted with the AI usage dummy. Consistent with Figure 1,

productivity gains are concentrated on low-skilled drivers. For example, column (2) of Table

4 shows that while AI reduces cruising time by 7.4% and 6.1% for the low- and middle-skilled

tertiles, the corresponding gain for the high-skilled tertile is essentially zero (with large SE),

suggesting that productivity gains are mostly accrued to drivers at the bottom two-thirds

13Crump et al. (2009) suggest dropping the observations with a propensity score outside the range between
0.1 and 0.9 as a close approximation of the optimal rule and demonstrate that the rule effectively resolves
problems arising from the lack of a sufficient overlap of the observable characteristics for a wide range of
distributions. This method is widely used for the robustness check in various empirical papers, including
Currie and Walker (2011) and Gibson and McKenzi (2014).

14See Table A1 for the corresponding estimates of square and cubic specifications.
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of the skill index. As a result, the AI narrows the productivity gap between high- and low-

skilled tertiles by 14%.15 Nonetheless, the AI did not completely eliminate the productivity

gap, implying that there is an unobserved skill component of high-skilled drivers that cannot

be fully replaced by AI, at least at this stage of technological development. Again, we are

reassured that columns (4)-(6) with the IV approach yield similar results to columns (1)-(3)

without residual controls.

5 Supplementary analysis

Compliance.— One remaining concern could be that even though the AI would also

have benefited high-skilled drivers, these drivers simply did not follow the navigation routes

suggested by the AI. Since AI Navi assists with only a prediction task but not a decision

task, it is up to drivers to decide whether to follow the AI’s prediction.16 High-skilled drivers

may trust AI less, because they may have high self-confidence in their own judgments and/or

they may be more likely to spot the imperfections of AI.

To test this possibility, we control for the “Navi compliance rate,” which is the fraction

of the AI’s suggested routes that drivers did follow, calculated for each cruise.17 Table A2

presents the results. Odd-numbered columns replicate Table 4 for ease of comparison. Even-

numbered columns add the interaction of the AI usage dummy and the Navi compliance rate

to adjacent odd-numbered columns. Whereas the interaction term is negative, as expected

(i.e., higher compliance reduces the search time), our coefficient of interest (“AI usage × skill

index”) is hardly changed. Therefore, it is unlikely that our results are driven by compliance.

The impact of AI over time.— We also investigate whether the impact of AI evolves

over time. We split the sample period into the first two weeks and the second two weeks.

Table A3 shows that AI’s positive impact is immediate and observed already in the first

two weeks, which is reassuring, because drivers are more likely to randomly experiment

with turning it on and off at the beginning of the trial period, mitigating the concern that

the timing of switching on AI could be endogenous to local demand. We do not see any

improvement in the last two weeks (labeled “AI usage × 3rd/4th weeks”), suggesting that

learning is limited in this setting, probably due to the short duration of the trial period.

15The difference of estimates between low- and high-skilled tertiles (-0.074-(-0.002)) from column (2) of
Table 4) is divided by the difference of the average driver FE for low- and high-skilled tertiles (0.661-0.151)).

16Agarwal et al. (2018, 2019) consider a decision task distinct from a prediction task, where a prediction is
an input to a decision task. In this framework, AI saves time and improves accuracy in generating predictions,
which allows more nuanced decisions by reducing uncertainty in predictions.

17In fact, the compliance rate for the high-skilled half and the low-skilled half are very similar (64.1% and
62.1%, respectively)). This rate is calculated by the tech company based on their definition.
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Other model.—Appendix Section C reports the estimates of the Cox Proportional

hazard model to allow for a non-parametric baseline hazard. We are reassured that the

estimates from this model are almost identical to those of our baseline Weibull hazard model,

suggesting that our results are not driven by the particular choice of hazard.

Another productivity measure.—Thus far, we use the length of search time as a mea-

sure of productivity, but another natural candidate would be sales. Whereas the reduction

in search time leads to an increase in the number of rides, the fare per ride might decrease

if the AI directs drivers to locations with customers who take short rides. This might hap-

pen, because AI Navi is designed to maximize the probability of catching customers and is

not designed to find customers with potentially long rides. Appendix Section D reports the

results of the OLS regression on fare per ride. Overall, we do not find an economically large

or statistically significant effect overall, nor by skill level, suggesting that AI does not seem

to direct (low-skilled) drivers to locations with low-hanging fruit.

6 Discussion and Conclusion

We investigate the impact of AI on worker productivity in the context of taxi drivers.

We find that AI improves productivity, measured by the length of search time, with all gains

concentrated on low-skilled drivers. To the extent that productivity is reflected by wages

(which we do not observe in our data), AI has the potential to reduce wage inequality across

workers within the same occupation.

This study faces several limitations. First, while we show that low-skilled drivers benefit

from AI, one puzzle is that the utilization rate of AI is low even among low-skilled drivers

(5.2%).18 One possibility is that the productivity gain of 7%—which translates into a re-

duction of search time by 0.96 minutes—is not large enough to make drivers recognize the

improvement, especially because those low-skilled drivers may be inexperienced. Relatedly,

more than one half of drivers who have the opportunity to use the application for free never

bother to try it. In fact, 48.6% of these never-users are low-skilled drivers who would have

benefited if they had used it.19 While identifying the reasons for aversion to AI is beyond

the scope of this study, drivers may simply be reluctant to adopt new technology. Second,

we can speak little about the general equilibrium effect: What if all drivers in the area adopt

this AI technology? One concern is that taxi drivers in the area would compete for the

18The corresponding figure for high-skilled drivers is 4.8%.
19Note that since we construct the skill index using the full sample, we can classify non-users into high-

and low-skilled drivers.
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same customers and end up engaging in business stealing if the market size stays constant.

Consumers benefit, however, from the shorter time to find a taxi. To the extent that this

improved convenience stimulates further demand for taxis, the market could expand and

social welfare might improve.

Finally, one might wonder if our finding can be generalized beyond the case of taxi

drivers.20 Agarwal et al. (2019) classify the type of AI usage in our setting as “augmenting

labor on decision tasks,” where the automation of prediction through AI can improve human

decision making and consequently the productivity of labor. To the extent that the core skill

of jobs involves a prediction task from patterns of data, such as paralegals to identify unusual

clauses and pathologists to detect malign tumors, our results may also be applicable to such

occupations. Whether our finding can be generalized to other settings is left for future

research.

20Although taxi drivers as an occupation might be completely displaced once self-driving cars with demand-
forecasting AI is achieved, such a drastic transformation may take time, because the information required
for driving tasks, such as the road environment, is much less regularized than information required for
demand-forecasting tasks, such as passengers’ location. As Autor (2015) points out, automating a task is
much costlier under a non-regularized environment than a regularized environment, and the cost is likely to
exceed the wage saving.
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Figures and tables

Figure 1: AI effects by skill

Note: This figure plots the estimated value of AI Navi effects by skill with 90% confidence intervals in the
shaded areas. The Weibull hazard regression, where the interactions of AI usage dummy and skill index
and square of skill index are added to equation (1), is estimated. See column (1) of Table A1 for the
corresponding estimates. The outcome is cruising time. The negative estimate indicates that AI usage
reduces the search time. Higher skill index indicates more skilled drivers. Figure A3 displays the
distribution of the skill index. Drivers whose skill index ranges from -1.5 to 1.5 cover 92.4% of all cruises.
The “full” sample with all drivers is used.
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Table 1: Determinants of AI usage

(1) (2) (3) (4) (5)
Outcome: AI usage dummy
Sample: Full Full Navi users Navi users Navi users

Skill index -0.194 -0.183 -0.190 -0.172
(0.138) (0.144) (0.116) (0.118)

Vacancy index 0.110∗∗∗ -0.037 0.102∗∗∗ -0.027 -0.033
(0.034) (0.032) (0.035) (0.035) (0.056)

Driver FE X
Ward FE X X X
Date-hour FE X X X
N 62,182 55,408 28,310 25,415 25,259
N of drivers 520 520 201 201 199
Log-likelihood -12,338 -10,971 -9,773 -8,455 -5,066

Note: Estimates from the logistic regression are reported. The outcome is AI usage, which is a dummy
that takes one when AI Navi is turned on. “Full” in columns (1)-(2) is the sample of all drivers, and “Navi
users” in columns (3)-(5) is the sample of drivers who used AI at least once during the trial period. Higher
skill index indicates more skilled drivers. Table A3 displays the distribution of skill index. Higher vacancy
index indicates less demand for taxis at the ward-day-hour level. Sample sizes are not identical to those of
other tables due to observations with missing vacancy index and observations that are dropped by
including fixed effects. Standard errors clustered on drivers are reported in parentheses. ***, **, and *
denote 10%, 5%, and 1% significance levels, respectively.
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Table 2: First stage—AI usage

(1) (2) (3) (4)
Outcome: ln(Time until AI is Turned On)
Sample: Full Navi users Full Navi users

Unfamiliar index -0.541∗ -0.550∗ -0.761∗∗ -0.800∗∗

(= 1 - Past share of starting ward) (0.324) (0.333) (0.354) (0.363)

# of AI usage -0.028∗∗∗ -0.029∗∗∗ -0.035∗∗∗ -0.037∗∗∗

(0.004) (0.004) (0.007) (0.007)

Unfamiliar index × # of AI usage 0.010 0.011
(0.008) (0.008)

Cruising time index 0.008 0.011 0.008 0.011
(0.011) (0.011) (0.011) (0.011)

Driver FE X X X X
Ward FE X X X X
Date-hour FE X X X X
N 62,309 28,369 62,309 28,369
N of drivers 520 201 520 201
Log-likelihood -10,916 -10,688 -10,915 -10,687
F-stat F(2, 61783) F(2, 28159) F(3, 61789) F(3, 28162)

= 21.71 = 24.61 = 14.23 = 16.01
p-value <0.0001 <0.0001 <0.0001 <0.0001

Note: Estimates from the Tobit regression are reported. The outcome is logged time until AI is turned on.
The unfamiliar index is one minus the “past share of ending ward,” which is the past share of the cruises
that started at each of 18 wards in the pre-trial period (October and November 2019) for each driver. “#
of AI usage” is the number of AI usages till the current cruise for each driver. The “Cruising time index” is
the average cruising time at each ward for each driver using data from the pre-trial period to control for
the mechanical correlation between unfamiliar location and longer cruising time. “Full” in columns (1) and
(3) is the sample of all drivers, and “Navi users” in columns (2) and (4) is the sample of drivers who used
AI at least once during the trial period. Standard errors clustered on drivers are reported in parentheses.
***, **, and * denote 10%, 5%, and 1% significance levels, respectively.
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Table 3: Overall AI effect

(1) (2) (3) (4) (5)
Sample: Full Navi users Navi users Full Navi users
Specification: - - - IV IV

0.1 ≤ PS ≤ 0.9

AI usage -0.051∗∗ -0.046∗∗ -0.067∗∗ -0.047∗∗ -0.040∗

(0.022) (0.023) (0.027) (0.021) (0.022)

Residual -0.005∗∗∗ -0.005∗∗∗

(0.001) (0.001)

Cruising time index 0.021∗∗∗ 0.020∗∗∗

(0.001) (0.002)

log(p) 0.179∗∗∗ 0.186∗∗∗ 0.247∗∗∗ 0.183∗∗∗ 0.191∗∗∗

(0.005) (0.007) (0.011) (0.005) (0.007)

Driver FE X X X X X
Ward FE X X X X X
Date-hour FE X X X X X
N 62,309 28,369 6,412 62,309 28,369
N of drivers 520 201 173 520 201
Log-likelihood -85,505 -38,776 -8,464 -85,282 -38,681

Note: Estimates from the Weibull hazard regression of equation (1) are reported. The outcome is cruising
time. “Full” in columns (1) and (4) is the sample of all drivers, and “Navi users” in columns (2), (3), and
(5) is the sample of drivers who used AI at least once during the trial period. Column (3) further limits the
sample in column (2) to cruises whose propensity score (PS) is between 0.1 and 0.9. PS is computed by
predicting the probability after logistic regression of AI usage dummy on driver, ward, and date-hour FEs.
Column (4) controls for residuals calculated from the predicted AI turning-on probability from column (3)
of Table 2, and column (5) controls for the residual from column (4) of Table 2. The “Cruising time
index,” which is the average cruising time at each ward for each driver using the pre-trial period data, is
also controlled. Standard errors clustered on drivers are reported in parentheses. ***, **, and * denote
10%, 5%, and 1% significance levels, respectively.
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Table 4: Heterogeneous AI effects by skill

(1) (2) (3) (4) (5) (6)
Sample Full Full Full Full Full Full
Specification - - - IV IV IV

AI usage×Low-skilled half -0.072∗∗∗ -0.067∗∗∗

(0.026) (0.025)

AI usage×High-skilled half -0.025 -0.023
(0.035) (0.034)

AI usage×Low-skilled tertile -0.074∗∗ -0.067∗∗

(0.030) (0.029)

AI usage×Middle-skilled tertile -0.061 -0.062
(0.040) (0.038)

AI usage×High-skilled tertile -0.002 0.006
(0.040) (0.040)

AI usage×Lowest-skilled quartile -0.070∗ -0.065∗

(0.038) (0.037)

AI usage×Low-skilled quartile -0.074∗∗ -0.069∗∗

(0.036) (0.035)

AI usage×High-skilled quartile -0.048 -0.050
(0.042) (0.041)

AI usage×Highest-skilled quartile 0.035 0.047
(0.059) (0.057)

Residual -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗

(0.001) (0.001) (0.001)

Cruising time index 0.021∗∗∗ 0.021∗∗∗ 0.021∗∗∗

(0.001) (0.001) (0.001)

log(p) 0.179∗∗∗ 0.179∗∗∗ 0.179∗∗∗ 0.183∗∗∗ 0.183∗∗∗ 0.183∗∗∗

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Driver FE X X X X X X
Ward FE X X X X X X
Date-hour FE X X X X X X
N 62,309 62,309 62,309 62,309 62,309 62,309
N of drivers 520 520 520 520 520 520
Log-likelihood -85,504 -85,504 -85,503 -85,281 -85,281 -85,280

Note: Estimates from the Weibull hazard regression, where the interaction of AI usage dummy and skill
index is included to equation (1) instead of the AI usage dummy alone, are reported. The outcome is
cruising time. Low- and high-skilled halves in columns (1) and (4) are dummies for drivers whose skill
index is below the median and above the median, respectively. Low-, middle-, and high-skilled tertiles in
columns (2) and (5) are dummies for drivers whose skill index is below the first tertile, between the first
tertile and second tertile, and above the second tertile, respectively. The skill index dummies for each
quartile in columns (3) and (6) are similarly constructed. Columns (4)-(6) control for residuals calculated
from the predicted AI turning-on probability from column (3) of Table 2. The “Cruising time index,”
which is the average cruising time at each ward for each driver using the pre-trial period data, is also
controlled. The “full” sample with all drivers is used. Standard errors clustered on drivers are reported in
parentheses. ***, **, and * denote 10%, 5%, and 1% significance levels, respectively.
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A. Additional figures and tables

Figure A1: Snapshot of AI Navi

Note: The figure displays a snapshot of AI Navi when it is turned on. AI Navi shows the suggested routes
in green with a red arrow given a taxi’s current location, and red dots indicate the locations with potential
customers. c© Zenrin c© Mapbox
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Figure A2: Histogram of cruising time when AI is turned on/off

(a) AI is turned on (b) AI is turned off

Note: These figures show the distributions of cruising time in the sample period (a) when AI is turned on,
and (b) when AI is turned off separately. The mean(median) time (a) when AI is turned on is 15.6(11.4)
minutes, whereas (b) when AI is turned off it is 11.7(7.95) minutes. The “full” sample with all drivers is
used. The number of observations for (a) and (b) are 3,127 and 59,182, respectively.
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Figure A3: Histogram of the skill index

Note: This figure plots the distribution of driver’s skill index at the cruise level. The skill index is
constructed as follows. First, we estimate the Weibull hazard model of equation (1) without an AI usage
dummy, regressing the cruising time onto driver, ward, and date-hour FEs. Then, we flip the sign of the
estimated driver FE, so that a higher skill index reflects more skilled drivers, and then standardize it to the
mean of 0 with a standard deviation of 1.
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Figure A4: Histogram of the share of cruises starting from Naka Ward

Note: The figure plots the distribution of the share of cruises that starts from Naka Ward, using data from
the pre-trial period (October and November 2019). The unit of observation is driver (N= 520). The value
of one indicates that all the cruises in the period for the driver start from Naka Ward, while the value of
zero indicates that none of the cruises in the period for the driver start from Naka Ward. Among 18 wards
in Yokohama-city, Naka Ward has the largest numbers of cruises that start from there (the share of 37.1%).
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Figure A5: Histogram of the HHI of the shares of starting wards

Note: This figure plots the distribution of the Herfindahl-Hirschman Index (HHI) of the past share of the
cruises starting at each ward. The unit of observation is driver (N= 520). Higher index indicates higher
concentration of the cruises that starts from particular wards.
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Figure A6: Model Prediction vs. Kaplan-Meier Curve

Note: The figure compares the estimated survival curve from column (1) of Table 3 (solid) from the
Weibull hazard regression of equation (1), and the Kaplan-Meier curve (dash).
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Figure A7: Heterogeneous AI effects by skill (cubic specification)

Note: This figure plots the estimated value of AI Navi effects by skill with 90% confidence intervals in the
shaded areas. The Weibull hazard regression, where the interactions of AI usage dummy and skill index,
square of skill index, and cubic of skill index are added to equation (1), is estimated. See column (2) of
Table A1 for corresponding estimates. The outcome is cruising time. A negative estimate indicates that AI
usage reduces the search time. A higher skill index indicates more skilled drivers. Table A3 displays the
distribution of skill index. The drivers whose skill index ranges from -1.5 and 1.5 cover 92.4% of all cruises.
The “full” sample with all drivers is used.
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Table A1: AI effects by skill—Polynomials

(1) (2)
Sample: Full Full
Specification: IV IV

AI usage -0.062∗∗ -0.072∗∗

(0.026) (0.029)

AI usage×skill index 0.056∗ 0.022
(0.032) (0.042)

AI usage×skill index2 0.043∗ 0.069∗

(0.025) (0.037)

AI usage×skill index3 0.025
(0.022)

Residual -0.005∗∗∗ -0.005∗∗∗

(0.001) (0.001)

Cruising time index 0.021∗∗∗ 0.021∗∗∗

(0.001) (0.001)

log(p) 0.183∗∗∗ 0.183∗∗∗

(0.005) (0.005)

Driver FE X X
Ward FE X X
Date-hour FE X X
N 62,309 62,309
N of drivers 520 520
Log-likelihood -85,280 -85,279

Note: Estimates from the Weibull hazard regression, where the interactions of the AI usage dummy and
the square polynomial of skill index are added in column (1) and the interactions of the AI usage dummy
and the cubic polynomial of skill index are added in column (2) to equation (1), are reported. The outcome
is cruising time. Higher skill index indicates more skilled drivers. Table A3 displays the distribution of skill
index. Both columns control for residuals calculated from the predicted AI turning-on probability from
column (3) of Table 2. The “Cruising time index,” which is the average cruising time at each ward for each
driver using the pre-trial period data, is also controlled. The “full” sample with all drivers is used.
Standard errors clustered on drivers are reported in parentheses. ***, **, and * denote 10%, 5%, and 1%
significance levels, respectively.
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Table A2: AI effects by skill—Controlling for Navi compliance

(1) (2) (3) (4) (5) (6)
Sample: Full Full Full Full Full Full
Specification: IV IV IV IV IV IV

AI usage×Low-skilled half -0.067∗∗∗ -0.071∗∗∗

(0.025) (0.027)

AI usage×High-skilled half -0.023 -0.028
(0.034) (0.035)

AI usage×Low-skilled tertile -0.067∗∗ -0.071∗∗

(0.029) (0.031)

AI usage×Middle-skilled tertile -0.062 -0.067∗

(0.038) (0.040)

AI usage×High-skilled tertile 0.006 -0.000
(0.040) (0.040)

AI usage×Lowest-skilled quartile -0.065∗ -0.069∗

(0.037) (0.039)

AI usage×Low-skilled quartile -0.069∗∗ -0.072∗∗

(0.035) (0.035)

AI usage×High-skilled quartile -0.050 -0.052
(0.041) (0.042)

AI usage×Highest-skilled quartile 0.047 0.037
(0.057) (0.057)

AI usage×Navi compliance rate -0.075 -0.074 -0.070
(0.052) (0.052) (0.052)

Residual -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.005∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Cruising time index 0.021∗∗∗ 0.020∗∗∗ 0.021∗∗∗ 0.020∗∗∗ 0.021∗∗∗ 0.020∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

log(p) 0.183∗∗∗ 0.183∗∗∗ 0.183∗∗∗ 0.183∗∗∗ 0.183∗∗∗ 0.183∗∗∗

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)

Driver FE X X X X X X
Ward FE X X X X X X
Date-hour FE X X X X X X
N 62,309 62,309 62,309 62,309 62,309 62,309
N of drivers 520 520 520 520 520 520
Log-likelihood -85,281 -85,280 -85,281 -85,279 -85,280 -85,279

Note: Odd-numbered columns replicate the results in columns (4)-(6) of Table 4 for ease of comparison.
Even-numbered columns add the interaction of AI usage dummy and Navi compliance rate to
odd-numbered columns. “Navi compliance rate” is the fraction of AI’s suggested routes that drivers did
follow, calculated for each cruise. All columns control for residuals calculated from the predicted AI
turning-on probability from column (3) of Table 2. The “Cruising time index,” which is the average
cruising time at each ward for each driver using the pre-trial period data, is also controlled. The “full”
sample with all drivers is used. Standard errors clustered on drivers are reported in parentheses. ***, **,
and * denote 10%, 5%, and 1% significance levels, respectively.
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Table A3: AI’s effects over time

(1) (2) (3)
Sample: Full Full Full
Specification: IV IV IV

- low-skilled high-skilled

AI usage -0.042 -0.075∗∗ -0.019
(0.026) (0.034) (0.038)

AI usage×3rd/4th weeks -0.014 0.012 -0.031
(0.037) (0.052) (0.056)

Residual -0.005∗∗∗ -0.003∗∗∗ -0.008∗∗∗

(0.001) (0.001) (0.002)

Cruising time index 0.021∗∗∗ 0.018∗∗∗ 0.025∗∗∗

(0.001) (0.002) (0.002)

log(p) 0.183∗∗∗ 0.190∗∗∗ 0.193∗∗∗

(0.005) (0.006) (0.008)

Driver FE X X X
Ward FE X X X
Date-hour FE X X X
N 62,309 34,228 28,081
N of drivers 520 260 260
Log-likelihood -85,282 -46,848 -37,971

Note: Estimates from the Weibull hazard regression, where the interaction of AI usage dummy and
3rd/4th week dummy is added to equation (1), are reported. The outcome is cruising time. Low- and
high-skilled in columns (2) and (3) are drivers whose skill index is below the median and above the median,
respectively. “AI usage” captures the impact of AI in the first two weeks, and “AI usage × 3rd/4th weeks”
captures the additional impact of AI in the last two weeks. Both columns control for residuals calculated
from the predicted AI turning-on probability from column (3) of Table 2. The “Cruising time index,”
which is the average cruising time at each ward for each driver using pre-trial period data, is also
controlled. The “full” sample with all drivers is used. Standard errors clustered on drivers are reported in
parentheses. ***, **, and * denote 10%, 5%, and 1% significance levels, respectively.
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B. Incidental parameters problem

We address the incidental parameters problem due to estimating numerous fixed effects

(FEs), specifically driver, date-hour, and ward FEs, in our non-linear model. The incidental

parameters problem occurs because the number of observations within a fixed effect is small.

To overcome this problem, we take three alternative approaches. Overall, we find that the

bias on our estimates seems limited.

The first approach is to drop the fixed effects with a small number of observations,

because the bias arising from these FEs is more severe. By dropping these observations, we

can gauge the degree of bias arising from the incidental parameters problem. Specifically,

we drop the observations involving FEs with a number of observations less than the 10th

percentile of the numbers of observations for driver, ward, and date-hour FEs.21

The second approach is to employ Mundlak (1978) to impose distributional assumptions

on the fixed effects to reduce the number of parameters. More specifically, we assume

that driver FEi = γAI usagei + ci, ward FEj = δAI usagej + dj, and date-hour FEh =

θAI usageh +eh, where AI usagei is the mean of AI usage dummy for driver i, and AI usagej

and AI usageh are analogously defined. The error terms ci, dj, and eh are assumed to be

strictly exogenous and are treated as random effects. The estimated parameters γ, δ, and θ

indicate the direction and degree of selection.

The third approach is to draw on the bias correction using split samples. Conceptually,

the bias arising from the incidental parameters problem approaches zero when the number

of observations used to estimate each fixed effect approaches infinity. Thus, when the panel

data is equally split into two samples by period, the bias of estimators using the split sample

becomes larger than the bias of estimators using the full sample. Denote the estimator using

the full sample as θ̂, the estimators using the first-half sample and second-half sample as θ̂11/2
and θ̂21/2. In the case of balanced panel data, Dhaene and Jochmans (2015) demonstrate that

the estimator 2θ̂− 1
2
(θ̂11/2 + θ̂21/2) is an unbiased estimator because the biases cancel out. Our

data are not a balanced panel, and our model includes fixed effects other than driver fixed

effects; thus the bias correction formula of Dhaene and Jochmans (2015) does not strictly

apply to our case. Regardless, we calculate the bias corrected estimator proposed by Dhaene

and Jochmans (2015) as an approximation.

Table B1 reports the results. Column (1) replicates the baseline estimate (column (4)

in Table 3) for ease of comparison. Column (2) drops observations whose sample size of

21For example, for 520 drivers FE, we count the number of observations for each driver, rank them from
top to bottom, and drop the observations of drivers in the lowest 10th percentile. We do the same for ward
and date-hour FEs.
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the fixed effects is less than 10% for driver, ward, and date-hour FEs, respectively. Column

(3) replaces fixed effects by AI usagei, AI usageh and AI usagej. Columns (4) and (5) use

only the first two weeks of the sample period and the last two weeks of the sample period,

respectively. We are reassured that estimates are quantitatively similar to each other.

Overall, these exercises suggest that the bias due to the incidental parameters problem

is fairly limited in our context. The primary reason is that the number of total observations

(62,309) is large relative to the number of fixed effects.
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Table B1: Incidental parameter problem

(1) (2) (3) (4) (5)
Sample: Full Full Full Full Full
Specification: IV IV IV IV IV

- Drop ≤10% FEs Average usage ratio 1st and 2nd weeks 3rd and 4th weeks

AI usage -0.047∗∗ -0.044∗∗ -0.029 -0.044 -0.055∗

(0.021) (0.022) (0.020) (0.030) (0.032)

AI usagei 0.136
(0.103)

AI usageh 2.842∗∗∗

(0.165)

AI usagej -1.807∗∗

(0.840)

Residual -0.005∗∗∗ -0.005∗∗∗ -0.004∗∗∗ -0.004∗∗∗ -0.010∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.003)

Cruising time index 0.021∗∗∗ 0.021∗∗∗ 0.040∗∗∗ 0.019∗∗∗ 0.022∗∗∗

(0.001) (0.001) (0.001) (0.002) (0.002)

log(p) 0.183∗∗∗ 0.182∗∗∗ 0.130∗∗∗ 0.186∗∗∗ 0.191∗∗∗

(0.005) (0.005) (0.005) (0.006) (0.006)

Driver FE X X X X
Ward FE X X X X
Date-hour FE X X X X
N 62,309 60,255 62,309 27,303 35,006
N of drivers 520 471 520 509 500
Log-likelihood -85,282 -82,474 -88,131 -37,408 -47,565

Note: Column (1) replicates the baseline estimate (column (4) in Table 3) for ease of comparison. Column
(2) drops observations whose sample size of the fixed effects is less than 10% for driver, ward, and
date-hour FEs, respectively. Column (3) replaces fixed effects by AI usagei, AI usageh and AI usagej .

AI usagei means average AI usage time ratio for all observations of the same driver. AI usageh and
AI usagej are defined similarly. Columns (4) and (5) use only the first two weeks of the sample period and
the last two weeks of the sample period, respectively. All columns control for residuals calculated from the
predicted AI turning-on probability from column (3) of Table 2. The “Cruising time index,” which is the
average cruising time at each ward for each driver using the pre-trial period data is also controlled. The
“full” sample with all drivers is used. Standard errors clustered on drivers are reported in parentheses. ***,
**, and * denote 10%, 5%, and 1% significance levels, respectively.
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C. Cox Proportional hazard model

We report the estimates of the Cox Proportional hazard model to allow for a non-

parametric baseline hazard. To make them comparable to the estimates of our baseline

Weibull hazard model, columns (1) and (2) of Table C1 convert the estimates in Table 3

to hazard ratios. Note here that estimates greater than one mean that the probability of

picking up a customer increases as the corresponding independent variable increases, while

estimates less than one means that the probability decreases. Columns (3) and (4) report

the estimates from Cox Proportional hazard model. The estimates from the two models are

almost identical. Table C2 repeats the same exercise for Table 4, and again the estimates

from the two models are very similar, suggesting that our results are not driven by the

particular choice of hazard models.
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Table C1: Overall AI effect—Weibull vs. Cox Proportional hazard (hazard ratio)

(1) (2) (3) (4)
Model: Weibull Weibull Cox Cox
Sample: Full Navi users Full Navi users
Specification: IV IV IV IV

AI usage 1.058∗∗ 1.049∗ 1.067∗∗∗ 1.058∗∗

[0.027] [0.075] [0.009] [0.031]

Residual 1.006∗∗∗ 1.006∗∗∗ 1.004∗∗∗ 1.005∗∗∗

[0.000] [0.000] [0.002] [0.000]

Cruising time index 0.976∗∗∗ 0.976∗∗∗ 0.977∗∗∗ 0.978∗∗∗

[0.000] [0.000] [0.000] [0.000]

log(p) 1.200∗∗∗ 1.210∗∗∗

[0.000] [0.000]

Driver FE X X X X
Ward FE X X X X
Date-hour FE X X X X
N 62,309 28,369 62,309 28,369
N of drivers 520 201 520 201
Log-likelihood -85,282 -38,681 -621,671 -260,573

Note: Columns (1) and (2) convert the results from Table 3 into hazard ratios, so that they are comparable
to the estimates from the Cox Proportional hazard regression reported in columns (3) and (4). Since the
estimates here indicate hazard ratios, estimates greater than one mean that the probability of picking up a
customer increases as the corresponding independent variable increases, while estimates less than one mean
that the probability decreases. Columns (1) and (3) control for residuals calculated from the predicted AI
turning-on probability from column (3) of Table 2, and columns (2) and (4) control for residuals from
column (4) of Table 2. The “Cruising time index,” which is the average cruising time at each ward for each
driver using the pre-trial period data is also controlled. The “full” sample with all drivers is used in
columns (1) and (3), and the “Navi users” sample is used in columns (2) and (4). P-values for the null
hypothesis of 1 are reported in brackets. ***, **, and * denote 10%, 5%, and 1% significance levels,
respectively.
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Table C2: AI effects by skill—Weibull vs. Cox Proportional hazard (hazard ratio)

(1) (2) (3) (4) (5) (6)
Model: Weibull Weibull Weibull Cox Cox Cox
Sample: Full Full Full Full Full Full
Specification: IV IV IV IV IV IV

AI usage×Low-skilled half 1.084∗∗∗ 1.095∗∗∗

[0.008] [0.003]

AI usage×High-skilled half 1.028 1.033
[0.508] [0.402]

AI usage×Low-skilled tertile 1.084∗∗ 1.091∗∗

[0.021] [0.014]

AI usage×Middle-skilled tertile 1.077 1.090∗

[0.105] [0.051]

AI usage×High-skilled tertile 0.993 1.001
[0.886] [0.991]

AI usage×Lowest-skilled quartile 1.081∗ 1.098∗∗

[0.079] [0.032]

AI usage×Low-skilled quartile 1.086∗∗ 1.093∗∗

[0.047] [0.035]

AI usage×High-skilled quartile 1.062 1.060
[0.226] [0.210]

AI usage×Highest-skilled quartile 0.945 0.966
[0.409] [0.580]

Residual 1.006∗∗∗ 1.006∗∗∗ 1.006∗∗∗ 1.005∗∗∗ 1.005∗∗∗ 1.005∗∗∗

[0.000] [0.000] [0.000] [0.002] [0.002] [0.002]

Cruising time index 0.976∗∗∗ 0.976∗∗∗ 0.976∗∗∗ 0.977∗∗∗ 0.977∗∗∗ 0.977∗∗∗

[0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

log(p) 1.200∗∗∗ 1.200∗∗∗ 1.200∗∗∗

[0.000] [0.000] [0.000]

Driver FE X X X X X X
Ward FE X X X X X X
Date-hour FE X X X X X X
N 62,309 62,309 62,309 62,309 62,309 62,309
N of drivers 520 520 520 520 520 520
Log-likelihood -85,281 -85,281 -85,280 -621,670 -621,670 -621,670

Note: Columns (1)-(3) convert the results from Table 4 into hazard ratios, so that they are comparable to
the estimates from the Cox Proportional hazard regression reported in columns (4)-(6). Since the estimates
here indicate hazard ratios, estimates greater than one mean that the probability of picking up a customer
increases as the corresponding variable increases, while estimates less than one mean that the probability
decreases. All columns control for residuals calculated from the predicted AI turning-on probability from
column (3) of Table 2. The “Cruising time index,” which is the average cruising time at each ward for each
driver using the pre-trial period data, is also controlled. The “full” sample with all drivers is used.
P-values for the null hypothesis of 1 are reported in brackets. ***, **, and * denote 10%, 5%, and 1%
significance levels, respectively. 38



D. Effects on Fare

We use the length of search time as a primary measure of productivity and find that AI

boosts the productivity on this dimension for low-skilled drivers. Another natural candidate

for the productivity measure, however, is sales. Whereas the reduction in search time leads

to an increase in the number of rides, the fare per ride might decrease if the AI directs drivers

to locations with customers who take short rides. This might happen, because AI Navi is

designed to maximize the probability of catching customers and is not designed to increase

fares.

We have data on fare per ride. Figure D1 shows the distribution of fare per ride separately

for rides of customers who are found (a) when AI is turned on, and (b) when AI is turned off.

Because of missing data in fares, the sample size is roughly 80% of the sample used in Table

3.22 Both the mean and the median of fare per ride are slightly lower for rides of customers

found (a) when AI is turned on (N= 2,465) than (b) when AI is turned off (N= 47,833); the

mean(median) fare of the former is JPY1,358(920), whereas that of latter is JPY1,456(990).

JPY140 is roughly 1USD.

Tables D1 reports the results of the OLS regression on fare per ride, using the full sample

with all drivers. Specifically, we regress fare per ride on the same sets of fixed effects included

in equation (1), namely, ward, date-hour, and driver FEs. Note that we include driver FE,

and thus the comparison is again within the same driver.23

Column (1) of Table D1 shows that the rides of customers found when AI is turned on

are slightly cheaper by JPY46.7 per ride than the rides of customers found when AI is turned

off. The estimates are not statistically significant at the conventional level, however, and the

magnitude of reduction in fare is rather small (3.2%), which does not offset the reduction in

cruising time (5.1% from column (1) of Table 3). Column (2) takes the log as the outcome

and shows that the difference is around 1.6% (not statistically significant). Columns (3)-(8)

report the differential effects by skill level. Again, we do not find any discernible effects at

any of the skill levels.

22Tables D3 and D4 verifies that our main results reported in Tables 3 and 4 hold in this limited sample
as well.

23Table D2 reports the results of using the Navi users sample, yielding very similar results.
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Figure D1: Histogram of fare per ride when AI Navi is turned on/off

(a) AI is turned on (b) AI is turned off

Note: These histograms show the distribution of fare per ride (in JPY) in the sample period for customers
who are found (a) when AI Navi is turned on, and (b) when AI Navi is turned off separately. JPY140 is
roughly 1USD. The mean(median) fare per ride (a) when AI Navi is turned on is JPY1,358(920), whereas
(b) when AI Navi is turned off it is JPY1,456(990). The “full” sample is used. Number of observations for
(a) and (b) are 2,465 and 47,833, respectively.
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Table D1: OLS regression on fare per ride (Full sample)

(1) (2) (3) (4) (5) (6) (7) (8)
Sample: Full Full Full Full Full Full Full Full
Outcome: fare log(fare) fare log(fare) fare log(fare) fare log(fare)
Model: OLS OLS OLS OLS OLS OLS OLS OLS

AI usage -46.721 -0.017
(32.093) (0.012)

AI usage×Low-skilled half -45.486 -0.022
(39.368) (0.014)

AI usage×High-skilled half -48.507 -0.008
(50.251) (0.018)

AI usage×Low-skilled tertile -68.832 -0.039∗∗

(51.507) (0.017)

AI usage×Middle-skilled tertile -50.525 -0.017
(51.381) (0.017)

AI usage×High-skilled tertile -0.816 0.025
(55.877) (0.025)

AI usage×Lowest-skilled quartile -42.053 -0.034
(65.372) (0.023)

AI usage×Low-skilled quartile -48.540 -0.012
(45.902) (0.017)

AI usage×High-skilled quartile -57.112 -0.023
(64.817) (0.021)

AI usage×Highest-skilled quartile -27.173 0.029
(59.757) (0.030)

Mean fare of non-AI usage 1,456 1,456 1,456 1,456
Driver FE X X X X X X X X
Ward FE X X X X X X X X
Date-hour FE X X X X X X X X
N 50,298 50,298 50,298 50,298 50,298 50,298 50,298 50,298
N of drivers 418 418 418 418 418 418 418 418
Adj. R2 0.105 0.134 0.105 0.134 0.105 0.134 0.105 0.134

Note: The “full” sample with all drivers is used. The OLS estimates are reported. The outcome is level or
log of fare per ride in JPY. JPY140 is roughly 1USD. Low- and high-skilled halves are dummies for drivers
whose skill index is below the median and above the median, respectively. Low-, middle-, and high-skilled
tertiles are dummies for drivers whose skill index is below the first tertile, between the first tertile and
second tertile, and above the second tertile, respectively. The skill index dummy for each quartile is
similarly constructed. Standard errors clustered on drivers are reported in parentheses. ***, **, and *
denote 10%, 5%, and 1% significance levels, respectively.
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Table D2: OLS regression on fare per ride (Navi users sample)

(1) (2) (3) (4) (5) (6) (7) (8)
Sample: Navi users Navi users Navi users Navi users Navi users Navi users Navi users Navi users
Outcome: fare log(fare) fare log(fare) fare log(fare) fare log(fare)
Model: OLS OLS OLS OLS OLS OLS OLS OLS

AI usage -39.585 -0.015
(35.354) (0.013)

AI usage×Low-skilled half -41.509 -0.021
(45.378) (0.015)

AI usage×High-skilled half -37.180 -0.007
(50.126) (0.020)

AI usage×Low-skilled tertile -46.021 -0.033∗

(55.646) (0.019)

AI usage×Middle-skilled tertile -71.295 -0.015
(54.118) (0.018)

AI usage×High-skilled tertile 16.667 0.012
(56.387) (0.026)

AI usage×Lowest-skilled quartile -17.111 -0.027
(61.784) (0.022)

AI usage×Low-skilled quartile -73.120 -0.011
(63.414) (0.021)

AI usage×High-skilled quartile -46.908 -0.019
(58.670) (0.022)

AI usage×Highest-skilled quartile -21.140 0.014
(78.714) (0.033)

Mean fare of non-AI usage 1,493 1,493 1,493 1,493
Driver FE X X X X X X X X
Ward FE X X X X X X X X
Date-hour FE X X X X X X X X
N 21,266 21,266 21,266 21,266 21,266 21,266 21,266 21,266
N of drivers 149 149 149 149 149 149 149 149
Adj. R2 0.104 0.128 0.104 0.128 0.104 0.128 0.104 0.128

Note: The “Navi users” sample is used. The OLS estimates are reported. The outcome is level or log of
fare per ride in JPY. JPY140 is roughly 1USD. Low- and high-skilled halves are dummies for drivers whose
skill index is below the median and above the median, respectively. Low-, middle-, and high-skilled tertiles
are dummies for drivers whose skill index is below the first tertile, between the first tertile and second
tertile, and above the second tertile, respectively. The skill index dummy for each quartile is similarly
constructed. Standard errors clustered on drivers are reported in parentheses. ***, **, and * denote 10%,
5%, and 1% significance levels, respectively.
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Table D3: Replication of Table 3 using sample with existing fare data

(1) (2) (3) (4) (5)
Sample: Full Navi users Navi users Full Navi users
Specification: - - - IV IV

0.1 ≤ PS ≤ 0.9

AI usage -0.066∗∗∗ -0.056∗∗ -0.085∗∗∗ -0.062∗∗ -0.050∗∗

(0.025) (0.026) (0.031) (0.024) (0.025)

Residual -0.006∗∗∗ -0.006∗∗∗

(0.002) (0.001)

Cruising time index 0.019∗∗∗ 0.018∗∗∗

(0.001) (0.002)

log(p) 0.185∗∗∗ 0.198∗∗∗ 0.252∗∗∗ 0.188∗∗∗ 0.202∗∗∗

(0.006) (0.008) (0.011) (0.006) (0.008)

Driver FE X X X X X
Ward FE X X X X X
Date-hour FE X X X X X
N 50,298 21,266 5,298 50,298 21,266
N of drivers 418 149 132 418 149
Log-likelihood -68,668 -28,812 -6,965 -68,521 -28,752

Note: The sample is limited to cruises with fare data available. Estimates from the Weibull hazard
regression of equation (1) are reported. The outcome is cruising time. “Full” in columns (1) and (4) is the
sample of all drivers, and “Navi users” in columns (2), (3), and (5) is the sample of drivers who used AI at
least once during the trial period. Column (3) further limits “Navi users” to cruises whose propensity score
(PS) is between 0.1 and 0.9. PS is computed by predicting the probability after logistic regression of AI
usage dummy on driver, ward, and date-hour FEs. Column (4) controls for residuals calculated from the
predicted AI turning-on probability from column (3) of Table 2 and column (5) controls for that from
column (4) of Table 2. The “Cruising time index,” which is the average cruising time at each ward for each
driver using the pre-trial period data, is also controlled. Standard errors clustered on drivers are reported
in parentheses. ***, **, and * denote 10%, 5%, and 1% significance levels, respectively.
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Table D4: Replication of Table 4 using sample with existing fare data

(1) (2) (3) (4) (5) (6)
Sample: Full Full Full Full Full Full
Specification: - - - IV IV IV

AI usage×Low-skilled half -0.093∗∗∗ -0.087∗∗∗

(0.028) (0.027)

AI usage×High-skilled half -0.029 -0.028
(0.042) (0.041)

AI usage×Low-skilled tertile -0.092∗∗∗ -0.085∗∗∗

(0.032) (0.031)

AI usage×Middle-skilled tertile -0.083∗ -0.086∗∗

(0.045) (0.044)

AI usage×High-skilled tertile 0.007 0.016
(0.048) (0.047)

AI usage×Lowest-skilled quartile -0.079∗ -0.073∗

(0.042) (0.041)

AI usage×Low-skilled quartile -0.107∗∗∗ -0.100∗∗∗

(0.036) (0.035)

AI usage×High-skilled quartile -0.052 -0.056
(0.052) (0.051)

AI usage×Highest-skilled quartile 0.022 0.036
(0.068) (0.066)

Residual -0.006∗∗∗ -0.006∗∗∗ -0.006∗∗∗

(0.002) (0.002) (0.002)

Cruising time index 0.019∗∗∗ 0.019∗∗∗ 0.019∗∗∗

(0.001) (0.001) (0.001)

log(p) 0.185∗∗∗ 0.185∗∗∗ 0.185∗∗∗ 0.188∗∗∗ 0.188∗∗∗ 0.188∗∗∗

(0.006) (0.006) (0.006) (0.006) (0.006) (0.006)

Driver FE X X X X X X
Ward FE X X X X X X
Date-hour FE X X X X X X
N 50,298 50,298 50,298 50,298 50,298 50,298
N of drivers 418 418 418 418 418 418
Log-likelihood -68,667 -68,666 -68,666 -68,520 -68,519 -68,519

Note: The sample is limited to cruises with fare data available. Estimates from the Weibull hazard
regression, where the interaction of AI usage dummy and skill index is included in equation (1) instead of
the AI usage dummy alone, are reported. The outcome is cruising time. Low- and high-skilled halves in
columns (1) and (4) are dummies for drivers whose skill index is below the median and above the median,
respectively. Low-, middle-, and high-skilled tertiles in columns (2) and (5) are dummies for drivers whose
skill index is below the first tertile, between the first tertile and second tertile, and above the second tertile,
respectively. The skill index dummies for each quartile in columns (3) and (6) are similarly constructed.
Columns (4)-(6) control for residuals calculated from the predicted AI turning-on probability from column
(3) of Table 2. The“Cruising time index,” which is the average cruising time at each ward for each driver
using the pre-trial period data, is also controlled. The “full” sample with all drivers is used. Standard
errors clustered on drivers are reported in parentheses. ***, **, and * denote 10%, 5%, and 1% significance
levels, respectively.
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