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1. Introduction 
 
The treatment effects literature deals with estimating the causal impact of an intervention. 
Ideally, one randomly divides a population into treatment and control groups. The difference 
in the average outcomes between the two constitutes the treatment effect. Whereas random 
assignment has emerged as the gold standard, evaluating public policies via random 
assignment is often unrealistic and frequently impossible, especially in observational settings. 
Also, in reality, especially for policy related issues, there are complications. First, treatments 
are not necessarily administered randomly. Nonrandom assignment typically leads to a 
selectivity bias. Second, simultaneous confounding shocks (as well as possible multiple 
concurrent treatments) are often assumed away. Third, random assignment cannot ensure one 
satisfies the stable unit treatment value assumption (SUTVA), namely that there are no 
spillovers such that the untreated group remains unaffected by the assignment of treatment 
to the treated.   
 
Standard instrumental variables (IV) methods are not always a panacea. First, IV approaches 
can identify a treatment effect when SUTVA is satisfied, but in actuality many applications 
violate the SUTVA assumption. Decreasing disease through inoculations indirectly protects 
the uninoculated because a disease spreads less easily in a sufficiently large vaccinated 
population; recipients of advanced education might transmit knowledge to others; and 
literally any policy intervention can run the risk of spillover externality effects. Second, the 
exclusion restriction in the IV approach requires the instrument to have a causal effect only 
on the treatment, but not on the outcome directly. As such, there can be no confounding effects 
of the instrument on the outcome, thereby implying the instrument must be uncorrelated with 
the error term. But for this reason, the validity of an exclusion restriction usually remains 
untested because the condition involves an unobservable error.1 Third, potential concomitant 
treatments are typically excluded since the instrument is assumed to affect one and only one 
treatment. Fourth, IV imposes a monotonicity requirement so that there are no defiers. Fifth, 
IV typically assumes no sorting on gains (essential heterogeneity), meaning that those opting 
into the treatment are the ones who benefit the most from treatment. Again, these latter three 
assumptions cannot be tested, and thus must be assumed. As such, any method that relies 
solely on the random assignments of treatment (e.g., DID IV, PSM, RDD) could yield biased 
estimates if these assumptions are not met. 
 
We examine an alternative method to identify a treatment effect. While also not perfect, it has 
the advantage of identifying the treatment effect, the selection bias, as well as possible SUTVA 
spillovers. The approach requires an intercession, defined by what can be called an antidotal 
variable (AV), if received, that nullifies the effect of the original treatment.  In addition, the 
approach encompasses a validity test, namely whether the antidotal variable is mean 
independent of the error. The approach removes potential confounding effects caused by 
other concurrent policies that are usually assumed away in most DID studies. As such, the 
treatment effect can be identified even in the presence another concomitant treatment. An 
attractive feature of the method is that neither the treatment nor the antidotal variable need 
be random, though in this case the antidotal variable needs be mean independent of the error, 
independent of the treatment, and mean independent of the parameters in the estimating 

                                                      
1 One exception is Madestam et al. (2013).  
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equation. Further, the approach can be used in a single cross-section either in an experimental 
or observational setting. Finally, the estimates can be bounded when the antidotal variable 
does not completely nullify the treatment effect. To our knowledge, this is the first formulation 
where the treatment effect, the SUTVA bias and the selection bias are identified within a 
unified framework.  
 
The logic is as follows: There are now four groups instead of two. First, the original treatment 
group comprises one group of the treated and a second group of those within the treated 
group that obtain the antidote. Because the antidote negates the effect of the treatment, the 
difference in outcome between these two groups constitutes the treatment effect.2 Second, the 
original control group now makes up one group that gets the antidote, and the second that 
does not. The difference in outcomes between those in this control group that get the antidote, 
and those that do not, yields the SUTVA bias because neither receives the treatment, and the 
antidote nullifies any treatment spillover effect from the treated to the untreated. But now, 
one can divide those getting the antidote into two groups: those that originally got the 
treatment (and also the antidote) and those that did not get the treatment (but got the 
antidote). The difference in outcomes for these is the selectivity bias, because neither group 
has a treatment effect, but one group (the one that originally got the treatment) is different 
from the group that originally did not get the treatment. 
 
As surveyed in Forastiere (2021) a recent literature is emerging on estimating treatment effects 
in the presence of SUTVA spillover externalities from the treated to the untreated, as earlier 
described by Cox (1958) and Rubin (1980). Among these, Van der Laan (2014), Aronow and 
Samii (2017) assume SUTVA interference externalities occur only for immediate neighbors, 
but diminish with distance based on a hypothetical assignment rule. Related, Tchetgen and 
VanderWeele (2012) propose inverse probability-weighted estimators based on group-level 
propensity scores. Liu et al. (2016) extend this by utilizing a joint propensity score based both 
on individual binary-treatment and neighborhood multivalued treatment propensity scores. 
These approaches do not use an antidotal variable, but instead assume an arbitrary function 
defining how spillovers relate to control group characteristics.  
 
Antidotal variables differ from traditional instrumental variables. A traditional instrument is 
related to the treatment, but unrelated to the error term and unrelated to the treatment effect. 
An antidotal variable is unrelated to the treatment, unrelated to the error term, but related to 
the treatment effect. Also, the approach differs from standard DID methods. Whereas the AV 
approach computes differences, they emanate from cross-sectional dissimilarities rather than 
from comparing changes in one group compared to another over time. We present an intuitive 
hypothetical example of this related to loud music in the next section, but given the available 
data, later in the paper we apply the approach to the California Paid Family Leave (CPFL) 
program. 
 

                                                      
2 If the antidotal variable and the treatment variable are mean independent of the parameters, this is 
the same average treatment effect (ATE) estimated in the treatment effects literature. It is the average 
treatment effect of the treated (ATT) if the treatment is not mean independent of the parameters, 
because the treated sample is innately different than the untreated sample. 
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The CPFL program became effective in 2004. California’s paid family leave allows parents to 
take up to six weeks paid leave to take care of young children.  A common analysis entails 
comparing utilization rates in California before and after passage of the law relative to 
utilization rates in other comparable states, also in years before and after California 
implemented the law. However, this DID approach has at least two potential biases. One is 
SUTVA, the fact that those in neighboring states might emigrate to California, and thus affect 
leave taking in the control states. Another, is selectivity which can potentially change with 
time, especially if there are confounding effects. The usual assumption is that the control states 
and California have a constant selectivity component before and after the introduction of the 
new law. However, in fact, many other policies may be implemented simultaneously with 
CPFL, either in California, or in other states, or in both. In such cases, the selectivity 
component will be different before and after the implementation of the law. For example, in 
2004 California enacted the Private Attorneys General Act (PAGA) designed to increase 
enforcement of the Labor Code, a law useful for low wage workers to enforce their labor rights 
by filing lawsuits on behalf of a group or “class” of employees who have suffered Labor Code 
violations.  
 
The antidotal variable method deals with both these SUTVA and selectivity issues. CPFL 
applies to the whole California population, but in reality, young childbearing aged women 
are the prime beneficiaries as they are the group predominantly taking advantage of the 
program, rather than older women with no young children (Rossin-slater, Ruhm, and 
Waldfogel, 2011; Baum and Ruhm, 2014). As such, the variable that identifies those aged 45-
55 can serve as an antidotal variable which may then be used to identify the average treatment 
effect along with the selectivity and SUTVA biases. We apply this antidotal variable approach 
(in Section 6) using two measures of leave utilization. We find a minimum of 50% increase in 
the probability of leave taking and an 80% increase in leave taking hours. This is independent 
of a selectivity bias indicating that Californians are in general about 40% less likely to take 
leave. We find no SUTVA bias, which is reasonable when we compare California to the rest 
of the country. Similarly, we find equivalent effects when comparing California to its three 
neighboring states, but now in this case we detect a negative SUTVA, meaning those in 
neighboring states reduce leave taking after CPFL was instituted. One reason may be because 
some of those prone to taking a leave emigrated to California.  
 
The paper progresses as follows. Section 2 presents a hypothetical example. Section 3 explains 
the mechanics of the approach. Section 4 discusses identification under various assumptions. 
Section 5 provides a simulation showing the effectiveness of the approach. Section 6 applies 
the approach to analyze the California Paid Family Leave program. Finally, Section 7 
concludes. 
 
 

2. A Hypothetical Example  
 
To lay a foundation for the antidotal variable approach, consider an intuitive hypothetical 
example.  
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Imagine one wants to determine the impact of loud music on mental stress.3 Individuals with 
high-medium stress, the treatment group (D=1), listen to loud music (the treatment) to reduce 
their stress. Others with low-medium stress, the control group (D=0), may not need to, but may 
find the resulting loud boombox music (to them noise) highly stressful. The difference in stress 
levels between these two groups, namely those who listen to the boombox music and those 
who do not intend to (low stress minus high stress), provides a biased estimate of the treatment 
effect for two reasons. The first stems from the sample selection process. Participants in the 
treatment group, those who listen to the music, have themselves selected into the treatment 
group, meaning their pre-treatment average stress level (high-medium) differs from the control 
group's (low-medium). The second results from violation of SUTVA. Control group members 
forced to listen to the loud music, but do not wish to do so, are adversely affected, thereby 
increasing their stress level from low-medium to high stress. These are illustrated in the first 
column of Figure 1.     
 

 
Figure 1 The Impact of Loud Boombox Music on Stress* 

 
 Antidote: Earplugs 
Treatment:  
Loud Music 

W=1 (no earplug) 
    No Antidote 

W=0 (earplug) 
    Antidote 

D=0  
No Treatment 
(no loud music) 

• Before: low-medium stress 
• No direct loud music (but 

overhears loud music from 
others), no earplugs 

• After: high stress 
• (Subsample: 𝑛2) 

• Before: low-medium stress 
• No loud music, earplugs 
• After: low-medium stress 
• (Subsample: 𝑛4) 

D=1  
Treatment  
(loud music) 

• Before: High-medium stress 
• Direct loud music, no earplug 
• After: Low stress 
• (Subsample: 𝑛1) 

• Before: High-medium stress 
• Direct loud music, earplugs 
• After: High-medium stress  
• (Subsample: 𝑛3) 

 * Subsample classifications n1,, n2, n3, and  n4 are defined in the text below. 

 
Now suppose earplugs were distributed randomly to a subsample of individuals, and 
everyone receiving them uses them.4 If earplugs negate the effect of the loud music, then those 
wearing earplugs are not affected by the loud music. As such, we consider earplugs to be an 
antidote to the loud music. We denote this antidotal variable as W=0 when one has earplugs, 
and W=1 when one does not have earplugs.5 This characterization results in four groups: First 
is the medium-high stressed group who listen to loud music to destress (subsample 𝑛1 in Figure 
1). They now have low stress. Second are low-medium stress individuals who do not 
intentionally listen, but now must endure the ambient loud music, what they consider noise 
(subsample 𝑛2 in Figure 1). Their stress level is now high. Third are high-medium stressed 

                                                      
3 Remember the overpowering boomboxes prevalent in the 1980s. This isn’t a farfetched example 
given the recent interest in noise pollution (e.g., Fried and Cohen, 2021). 
4 We deal with noncompliance later in the paper. 
5 This counterintuitive notation of setting “no antidote” to one and “receiving the antidote” to zero 
will be explained in the next section when we formally define an antidotal variable. 
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individuals who normally would have listened to the loud music, but are now wearing 
earplugs (subsample 𝑛3 in Figure 1). Their stress level remains the same (high-medium). Fourth 
are those with low-medium stress who do not listen to the loud music, but are wearing earplugs 
anyway (subsample 𝑛4 in Figure 1) to protect themselves from overhearing ambient loud 
music. They remain low-medium stressed.  
 
Now consider differences between the subsamples based on the antidotal variable approach. 
The difference in average stress levels between groups 𝑛1 and 𝑛3 (low and high-medium stress) 
is the effect of listening to loud music for those who listen to loud music. If distribution of 
earplugs is random, this difference would represent the average treatment effect (ATE). 
Group 𝑛3 and 𝑛4 do not hear loud music at all since they use earplugs. The difference in their 
stress levels would reflect the difference in their pre-treatment averages. This represents the 
selectivity bias (high-medium minus low-medium). Finally, the difference between groups 𝑛2 
and 𝑛4 is the SUTVA bias (high minus low-medium stress). This is because group 𝑛2 does not 
intentionally listen to the loud music, but instead is forced to, while group 𝑛4 is completely 
unaffected. Thus, this earplug intercession enables one to identify the treatment effect as well 
as both the selectivity and SUTVA biases. 
 
3.  The Mechanics  
 
A Potential Outcomes Framework Incorporating Selectivity and 𝑺𝑼𝑻𝑽𝑨 violations 
 
Suppose unit 𝑖 is seen in one of the two potential treatment states: treated and untreated. Let 
𝐷 indicate these two states so that 𝐷𝑖 = 1 when the unit receives the treatment and 𝐷𝑖 = 0 
when the unit remains untreated. Define 𝑖’s potential outcomes in these two states to be 𝑌(𝐷=1)𝑖 
if treated and 𝑌(𝐷=0)𝑖 if not treated. Let these potential outcomes be expressed as follows: 
 

𝑌(𝐷=1)𝑖 = 𝜇1 + 𝜔(𝐷=1)𝑖 + 𝜃�̃� (1𝑎) 
 

𝑌(𝐷=0)𝑖 = 𝜇0 + 𝜔(𝐷=0)𝑖 + 𝛿𝑖 (1𝑏) 
 
where 𝜇1 and 𝜇0 are constants reflecting average outcomes with and without the treatment; 
𝜔(𝐷=1)𝑖 and 𝜔(𝐷=0)𝑖 are deviations from respective average outcomes with 𝐸[𝜔(𝐷=1)𝑖] = 0 and 
𝐸[𝜔(𝐷=0)𝑖] = 0.  𝜃�̃� is person i’s unique additional gain from selecting into the treatment. As 
such, it represents the selectivity bias. 𝛿𝑖 is the additional outcome the untreated group reaps 
because of possible treatment spillovers from those choosing treatment. It represents the bias 
arising from a 𝑆𝑈𝑇𝑉𝐴 violation.6 
 
A priori, it is not known whether 𝑖 would ultimately be treated or not. Hence, 𝑖’s observed 
outcome at any given point in time can be expressed by a switching regression formulation 
(Quandt, 1958) as follows:  
 

𝑌𝑖 = 𝑌(𝐷=1)𝑖𝐷𝑖 + 𝑌(𝐷=0)𝑖(1 − 𝐷𝑖) (2) 

                                                      
6 Here we define a specific treatment spillover from the treated to the untreated. However, the approach 
can identify this treatment spillover even in the presence of other treatment spillovers, namely from the 
treated to the treated, and from the untreated to the untreated. 
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Rearranging (2) yields 
 

𝑌𝑖 = 𝑌(𝐷=0)𝑖 + (𝑌(𝐷=1)𝑖 − 𝑌(𝐷=0)𝑖)𝐷𝑖 (3) 
 
where (𝑌(𝐷=1)𝑖 − 𝑌(𝐷=0)𝑖) represents 𝑖’s total difference in outcome when moving between the 
non-treated and treated status. This difference constitutes the treatment effect plus any 
included biases comprising all the outcome differences that are not the effect of the treatment, 
namely selectivity and SUTVA violations.  
 
The true treatment effect is the change in outcome absent any confounding effects caused by 
sample selection and 𝑆𝑈𝑇𝑉𝐴 biases. As such, 𝑖’s treatment effect can be expressed as  
 

�̃�𝑇𝑖 = (𝑌(𝐷=1)𝑖 − 𝑌(𝐷=0)𝑖 + 𝛿𝑖 − �̃�𝑖) = ( 𝜇1 − 𝜇0) + (𝜔(𝐷=1)𝑖 − 𝜔(𝐷=0)𝑖) (4) 
 
or,  

�̃�𝑇𝑖 = 𝛽𝑇 + 𝜂𝑖 (5) 
 
where 𝛽𝑇 = (𝜇1 − 𝜇0) is the constant gain caused by the treatment and 𝜂𝑖 = (𝜔(𝐷=1)𝑖 −
𝜔(𝐷=0)𝑖) is the idiosyncratic outcome gain caused by the treatment. The latter term is unit 
specific, hence carries an 𝑖 subscript. 
 
 
Substituting (5) and (1b) into (3) yields a simplified version of the observed outcome: 
 

𝑌𝑖 = 𝜇0 + [�̃�𝑇𝑖 − 𝛿𝑖 + 𝜃�̃�]𝐷𝑖  + 𝛿𝑖 + 𝜔(𝐷=0)𝑖 (6) 
 
Rearranging terms yields  
 

𝑌𝑖 = 𝜇0 + �̃�𝑇𝑖𝐷𝑖 + 𝛿𝑖(1 − 𝐷𝑖) + 𝜃�̃�𝐷𝑖 + 𝜔(𝐷=0)𝑖 (7) 
 
The observed outcome depends on the effect of the treatment (�̃�𝑇𝑖) and any biases from 
selectivity (𝜃�̃�) and 𝑆𝑈𝑇𝑉𝐴 violations (𝛿𝑖). 
 
 
Defining an Antidotal Variable 
 
We consider a design to identify the treatment effect, the selection bias, as well as the SUTVA 
violation bias in an integrated framework.  

Suppose one can devise a specific intervention that fully negates the effect of the treatment, 
without affecting any other concurrent treatments administered to the treatment group. Call 
this an antidote.7 Let 𝑊𝑖 be the antidotal variable. Assume application of the antidote 

                                                      
7 Because the antidote is not a treatment, it cannot have an independent effect on the outcome. It is only 
pertinent in that it nullifies the treatment effect and its spillovers for those who receive the antidote. 
Giving the antidote is not equivalent to withdrawing the treatment because the untreated without the 
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abrogates the effect of any treatment, either for those directly treated or for those indirectly 
affected through treatment spillover SUTVA violations. Also, let 𝑊𝑖 be independent of 𝐷𝑖 as 
well as mean independent of 𝛽𝑇𝑖.8 When the antidote is not applied, the treatment recipients 
continue to experience their regular treatment effect. As such, the antidotal variable can be 
thought of as creating another control group. For computational convenience we define 𝑊𝑖 =
0 when the antidote is applied, and 𝑊𝑖 = 1 when antidote is not applied.  

Based on this definition, we now present an integrated framework for the potential treatment 
effect and the potential SUTVA bias. 

 
The Potential Treatment Effect  
 
An antidotal variable nullifies the effect of a treatment. Thus, unlike the regular instrumental 
variable framework, which designates a variable to proxy potential treatment participation, the 
antidotal variable abrogates the potential effect of a treatment. As such, this approach differs 
from the standard IV method in that the antidotal variable represents the impact, that is the 
eradication of a treatment’s effect, but is not standing in for the treatment itself, as in standard 
IV. When 𝑊𝑖 = 1, the antidote is not administered and the treatment effect remains intact, 
assuming 𝑖 fully complies. When 𝑊𝑖 = 0 the antidote is administered and the treatment effect 
goes to zero, again assuming compliance. Thus, given full compliance, such that the unit has 
to take the antidote when administered, and would not take it when not administered, the 
potential treatment is specified as  
 

𝛽𝑇(𝑊=1)𝑖 = 𝛽𝑇𝑖 (8𝑎) 
 

𝛽𝑇(𝑊=0)𝑖 = 0 (8𝑏) 
 
 
The observed or effective treatment effect is 𝛽𝑇(𝑊=0)𝑖 = 0.9 As such, 
 

�̃�𝑇𝑖 = 𝛽𝑇(𝑊=1)𝑖𝑊𝑖 + 𝛽𝑇(𝑊=0)𝑖(1 − 𝑊𝑖) = 𝛽𝑇(𝑊=1)𝑖𝑊𝑖 = 𝛽𝑇𝑖𝑊𝑖 (9) 
 
 
Assumption 1: The assignment of the antidote is done independent of unit’s treatment effect 
𝛽𝑇𝑖 and treatment 𝐷𝑖, i.e., 𝑊𝑖 ⊥ 𝛽𝑇𝑖 and 𝑊𝑖 ⊥ 𝐷𝑖. This implies 𝑊𝑖 ⊥ 𝜂𝑖. 
 

                                                      
antidote still get the spillover from the treated with the antidote. (Those without earplugs hear the loud 
noise spilling over from of those with earplugs still playing loud music.)  
8 In the earlier boombox example (Figure 1), this means those not owning a boombox (the nontreated) 
do not hear the loud music when given earplugs (subsample n4). Similarly, given earplugs (group n3), 
those boombox owners hear no music. In the application used later in the paper, middle aged women, 
presumably with no new born children, are the antidotal group since they do not benefit from paid 
family leave either in California (group n3) or in other states (group n4).  
9 Note, in this framework we assume the antidotal variable completely nullifies the treatment effect. 
This includes all channels through which the treatment and spillovers operate. Shortly, we show how 
to bound 𝛽𝑇(𝑊=0)𝑖 when the antidote is partially effective. 
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With this assumption, (9) collapses to  
 

�̃�𝑇𝑖 = 𝛽𝑇𝑖𝑊𝑖 =  𝛽𝑇𝑊𝑖 + 𝜂𝑖𝑊𝑖 (10) 
 
where 𝜂𝑖 = (𝜔(𝐷=1)𝑖 − 𝜔(𝐷=0)𝑖). This means 𝐸[𝜂𝑖] = 0 since 𝐸[𝜔(𝐷=1)𝑖] = 0 and 𝐸[𝜔(𝐷=0)𝑖] = 0. 
  
 
 
The Potential 𝑺𝑼𝑻𝑽𝑨 Bias 
 
The SUTVA bias arises when the treatment effect spills over to the nontreated. But suppose 
the antidotal variable nullifies spillover effects in the same way it eradicates treatment effects 
of those directly treated. In the boombox loud music example, the (untreated) non-boombox  
owners who were assigned earplugs (the antidote) do not hear loud music. If such is the case, 
the antidote negates the effect of the spillover effect. As such, those untreated persons who 
receive the antidote will not experience the indirect treatment effects they receive as a result 
of the spillover. With this framework, spillover effects for those not receiving the antidote 
(𝑊𝑖 = 1) remain 𝛿𝑖 and are zero for those receiving the antidote (𝑊𝑖 = 0). Thus,  
 

𝛿(𝑊=1)𝑖 = 𝛿𝑖 (11𝑎) 
 

𝛿(𝑊=0)𝑖 = 0 (11𝑏) 
 
The observed 𝑆𝑈𝑇𝑉𝐴 bias is 
 

𝛿�̃� = 𝛿(𝑊=1)𝑖𝑊𝑖 + 𝛿(𝑊=0)𝑖(1 − 𝑊𝑖) = 𝛿𝑖𝑊𝑖 (12) 
 
Define 𝛿𝑖 = 𝛿 + 𝑣𝑖, where 𝑣𝑖 is a random shock component representing possible 
heterogeneity in the SUTVA bias, such that 𝐸[𝑣𝑖] = 0, transforms (12) into 
 

𝛿𝑖 = 𝛿𝑊𝑖 + 𝑣𝑖𝑊𝑖 (13) 
 
Assumption 2: The assignment of the treatment and antidote is independent of the unit’s 
SUTVA violation effect 𝛿𝑖. 
 
This assumption means that 𝑣𝑖 ⊥ 𝑊𝑖, 𝐷𝑖, i.e., 𝐸[𝑣𝑖|𝑊𝑖, 𝐷𝑖] = 0. 
 
 
The Corresponding Regression Framework 
 
We derive the final regression equation by substituting both the observed treatment effect (eq. 
10) and observed 𝑆𝑈𝑇𝑉𝐴 bias (eq. 13) in the observed outcome equation (eq. 7). 
 

𝑌𝑖 = 𝜇0 + (𝛽𝑇𝑊𝑖 + 𝜂𝑖𝑊𝑖)𝐷𝑖 + (𝛿𝑊𝑖 + 𝑣𝑖𝑊𝑖)(1 − 𝐷𝑖) + 𝜃�̃�𝐷𝑖  + 𝜔(𝐷=0)𝑖 (14) 
 
Rearranging terms yields 
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𝑌𝑖 = 𝜇0 + 𝛽𝑇𝑊𝑖𝐷𝑖 + 𝜃�̃�𝐷𝑖 + 𝛿𝑊𝑖(1 − 𝐷𝑖) + 𝜔(𝐷=0)𝑖 + 𝜂𝑖𝑊𝑖𝐷𝑖 +𝑣𝑖𝑊𝑖(1 − 𝐷𝑖) (15) 
 
Defining 𝜃�̃� = 𝜃 + 𝜙𝑖, where 𝐸[𝜙𝑖] = 0, one can rewrite the (15) as  
 

𝑌𝑖 = 𝜇0 + 𝛽𝑇𝑊𝑖𝐷𝑖 + 𝜃𝐷𝑖 + 𝛿𝑊𝑖(1 − 𝐷𝑖) + 𝜔(𝐷=0)𝑖 + 𝜙𝑖𝐷𝑖 + 𝜂𝑖𝑊𝑖𝐷𝑖 +𝑣𝑖𝑊𝑖(1 − 𝐷𝑖) (16) 
 
Assumption 3: The assignment of the treatment and antidote are independent of 𝜙𝑖, i.e. 𝜙𝑖 ⊥
𝑊𝑖, 𝐷𝑖. 
 
To further simplify, we define 𝑢𝑖 = 𝜔(𝐷=0)𝑖 + 𝜙𝑖𝐷𝑖 + 𝜂𝑖𝑊𝑖𝐷𝑖 +𝑣𝑖𝑊𝑖(1 − 𝐷𝑖), which when 
inserted into (16) yields 
 

𝑌𝑖 = 𝜇0 + 𝛽𝑇𝑊𝑖𝐷𝑖 + 𝜃𝐷𝑖 + 𝛿𝑊𝑖(1 − 𝐷𝑖) + 𝑢𝑖 (17) 
 
This is the regression equation we estimate to identify the three effects, namely the treatment 
effect, the selectivity bias and the bias due to 𝑆𝑈𝑇𝑉𝐴 violation. 
 
We now focus on 𝑢𝑖 to interpret the effects estimated from (17). As defined,  
 

𝑢𝑖 = 𝜔(𝐷=0)𝑖 + 𝜙𝑖𝐷𝑖 + 𝜂𝑖𝑊𝑖𝐷𝑖 +𝑣𝑖𝑊𝑖(1 − 𝐷𝑖) (18) 
 
 
Here 𝐸[𝜔(𝐷=0)𝑖] = 𝐸[𝜙𝑖] = 𝐸[𝜂𝑖] = 𝐸[𝑣𝑖] = 0, implying that 𝐸[𝑢𝑖] = 0. Whether 𝑢𝑖 is 
independent of 𝑊𝑖 and 𝐷𝑖, or not, depends on whether the components of 𝑢𝑖 are independent 
of 𝑊𝑖 and 𝐷𝑖. By Assumptions 1,2,3, 𝜔(𝐷=0)𝑖, 𝜂𝑖, 𝑣𝑖, 𝜙𝑖 ⊥ 𝑊𝑖, implying 𝑢𝑖 ⊥ 𝑊𝑖. Moreover, by 
construction, 𝜔(𝐷=0)𝑖 is a noise component, that is independent of the treatment 𝐷𝑖 i.e., 
𝜔(𝐷=0)𝑖 ⊥ 𝐷𝑖. Essential heterogeneity (selection on the gain) arises when 𝜂𝑖 and 𝐷𝑖 are not mean 
independent, implying 𝑢𝑖 and 𝐷𝑖 are not mean independent. For now we assume no essential 
heterogeneity, but later we relax this assumption. 
 
The Common Regression Framework 
 
The typical regression model is a special case of the generalized potential outcome model. 
Consider the case in which 𝛿𝑖 = 0 and 𝜃�̃� = 0. With these modifications, (17) reduces to  
 

𝑌𝑖 = 𝜇0 + 𝛽𝑇𝑊𝑖𝐷𝑖 + 𝑢𝑖
′ (19) 

 
where 𝑢𝑖

′ = 𝜔(𝐷=0)𝑖 + 𝜂𝑖𝑊𝑖𝐷𝑖  
 
Conditions 𝛿𝑖 = 0 and 𝜃�̃� = 0 indicate no selection at the level and no SUTVA violation. 
However, OLS regression based on (19) cannot identify 𝛽𝑇 if these parameters take non-zero 
values. 
 
Identification 
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To distinguish the antidotal variable (AV) from traditional IV identification strategies, we first 
examine how treatment effects are defined. In the absence of selectivity and SUTVA the 
average treatment effect is 
 

𝐴𝑇𝐸 = 𝐸[𝛽𝑇 + 𝜂𝑖] = 𝐸[𝛽𝑇] + 𝐸[𝜂𝑖] = 𝛽𝑇 
 
In this case the 𝜂𝑖 is the individual specific component which causes heterogeneity of 
treatment effect across units. When treatment selection is based on 𝜂𝑖, i.e., selection on the 
gains (essential heterogeneity), 𝐸[𝜂𝑖|𝐷𝑖 = 1] ≠ 𝐸[𝜂𝑖|𝐷𝑖 = 0]. When limited to using data only 
on the treated, 𝐸[𝛽𝑇𝑖|𝐷𝑖 = 1], 
 

𝐴𝑇𝑇 = 𝐸[(𝛽𝑇 + 𝜂𝑖)|𝐷𝑖 = 1] = 𝐸[𝛽𝑇|𝐷𝑖 = 1] + 𝐸[𝜂𝑖|𝐷𝑖 = 1] = 𝛽𝑇 + 𝐸[𝜂𝑖|𝐷𝑖 = 1] 
 
Similarly, the antidotal variable method can identify both 𝐴𝑇𝐸 and 𝐴𝑇𝑇 depending on the 
presence of essential heterogeneity. To see how, consider the four subpopulations defined 
earlier. We specify mean outcomes in each, then derive the treatment effects based on 
appropriate differencing of outcomes between the groups.  
 
The first group consists of those units that received treatment without receiving an antidote 
(𝐷𝑖 = 1;𝑊𝑖 = 1). Let 𝑛1be the number of units in this group. The second group includes units 
which are neither treated nor treated with an antidote (𝐷𝑖 = 0;𝑊𝑖 = 1). The number of units 
in the second group is 𝑛2. The third group consists of units that receive both the antidote and 
treatment (𝐷𝑖 = 1;𝑊𝑖 = 0). The size of this group is 𝑛3. The fourth group is made up of units 
that do not receive the treatment, but receive the antidote (𝐷𝑖 = 0;𝑊𝑖 = 0).  The size of this 
group is 𝑛4.10 
 
The main challenge of identification emerges from the structure of the error 𝑢𝑖. As (18) shows, 
𝑢𝑖 comprises the random shock 𝜔(𝐷=0)𝑖 and various heterogeneity components (i.e., 𝜂𝑖, 𝜙𝑖, 𝑣𝑖).  
Identification of the 𝐴𝑇𝐸, the selectivity and 𝑆𝑈𝑇𝑉𝐴 biases depend on the relationships 
between these heterogeneity components and 𝐷𝑖 and 𝑊𝑖. To see this, consider the mean of 𝑢𝑖 
for each of these four subgroups. The conditional mean of 𝑢𝑖 can be expressed as 𝐸[𝑢𝑖|𝐷𝑖,𝑊𝑖] 
 
Expanding this using (18) we obtain 
 

𝐸[𝑢𝑖|𝐷𝑖,𝑊𝑖] = 𝐸[{𝜔(𝐷=0)𝑖 + 𝜙𝑖𝐷𝑖 + 𝜂𝑖𝑊𝑖𝐷𝑖 +𝑣𝑖𝑊𝑖(1 − 𝐷𝑖)}|𝐷𝑖,𝑊𝑖] 
 
Rearranging terms yields 
 

                                                      
10 The AV approach should not be confused with a DID with multiple control groups. In our case the 
whole population is subject to spillover effects, but only one segment of the population is subject to 
spillovers in the multiple control DID case. More specifically, in the AV approach the 𝐷𝑖 = 1;𝑊𝑖 = 0 
group (which we denote as n3 in our earlier example) yields spillover effects because it gets the 
treatment, whereas this group would not induce spillovers in a multiple control setting since it would 
not get the treatment. Thus, the multiple control DID may bias the SUTVA spillover estimate. Further, 
whereas in the AV approach the selectivity bias can be identified, one cannot identify the selectivity 
bias if this group does not get the treatment.  
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𝐸[𝑢𝑖|𝐷𝑖,𝑊𝑖] = 𝐸[𝜔(𝐷=0)𝑖|𝐷𝑖,𝑊𝑖] + 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖,𝑊𝑖] + 𝐸[𝜂𝑖𝑊𝑖𝐷𝑖|𝐷𝑖,𝑊𝑖] +𝐸[𝑣𝑖𝑊𝑖(1 − 𝐷𝑖)|𝐷𝑖,𝑊𝑖] 
 
The mean of the composite error 𝑢𝑖 in subgroup 𝑛1 is 
 

𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] = 𝐸[𝜔(𝐷=0)𝑖 |𝐷𝑖 = 1,𝑊𝑖 = 1] + 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 1,𝑊𝑖
= 1] + 𝐸[𝜂𝑖𝐷𝑖𝑊𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] 

 
The assumption 𝜔(𝐷=0)𝑖 ⊥ 𝐷𝑖,𝑊𝑖,implies 𝐸[𝜔(𝐷=0)𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] = 𝐸[𝜔(𝐷=0)𝑖] = 0. Thus,   
 

𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] = 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] + 𝐸[𝜂𝑖𝑊𝑖𝐷𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] (20𝑎) 
 
Similarly, the mean of the composite error 𝑢𝑖 for subgroup 𝑛2 is 
 

𝐸[𝑢𝑖|𝐷𝑖 = 0,𝑊𝑖 = 1]
= 𝐸[𝜔(𝐷=0)𝑖 |𝐷𝑖 = 0,𝑊𝑖 = 1] + 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 0,𝑊𝑖 = 1]
+ 𝐸[𝜂𝑖𝑊𝑖𝐷𝑖|𝐷𝑖 = 0,𝑊𝑖 = 1]+𝐸[𝑣𝑖𝑊𝑖(1 − 𝐷𝑖)|𝐷𝑖 = 0,𝑊𝑖 = 1] 

 
By construction 𝐸[𝜔(𝐷=0)𝑖|𝐷𝑖] = 0 and by assumption 𝐸[𝜔(𝐷=0)𝑖|𝑊𝑖] = 0 jointly imply 
 

𝐸[𝑢𝑖|𝐷𝑖 = 0,𝑊𝑖 = 1] = 𝐸[𝑣𝑖𝑊𝑖(1 − 𝐷𝑖)|𝐷𝑖 = 0,𝑊𝑖 = 1] (20𝑏) 
 
The mean of the composite error 𝑢𝑖 for subgroups 𝑛3 
 

𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0]
= 𝐸[𝜔(𝐷=0)𝑖 |𝐷𝑖 = 1,𝑊𝑖 = 0] + 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0]
+ 𝐸[𝜂𝑖𝑊𝑖𝐷𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0]+𝐸[𝑣𝑖𝑊𝑖(1 − 𝐷𝑖)|𝐷𝑖 = 1,𝑊𝑖 = 0] 

 
𝐸[𝜔(𝐷=0)𝑖|𝐷𝑖] = 0 and 𝐸[𝜔(𝐷=0)𝑖|𝑊𝑖] = 0 and assumption 3 jointly imply 
 

𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0] = 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0] = 0 (20𝑐) 
 
 
The mean of the composite error 𝑢𝑖 for subgroups 𝑛4 
 

𝐸[𝑢𝑖|𝐷𝑖 = 0,𝑊𝑖 = 0]
= 𝐸[𝜔(𝐷=0)𝑖 |𝐷𝑖 = 0,𝑊𝑖 = 0] + 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 0,𝑊𝑖 = 0]
+ 𝐸[𝜂𝑖𝑊𝑖𝐷𝑖|𝐷𝑖 = 0,𝑊𝑖 = 0]+𝐸[𝑣𝑖𝑊𝑖(1 − 𝐷𝑖)|𝐷𝑖 = 0,𝑊𝑖 = 0] 

 
Again since 𝐸[𝜔(𝐷=0)𝑖|𝐷𝑖] = 0 and 𝐸[𝜔(𝐷=0)𝑖|𝑊𝑖] = 0,  
  

𝐸[𝑢𝑖|𝐷𝑖 = 0,𝑊𝑖 = 0] = 0 (20𝑑) 
 
 
Group Averages 
 
Given the above conditional 𝑢𝑖 average and regression equation (17), we now formulate the 
average outcome 𝑌 for each group.  
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Under the independence assumptions, the average of observed outcomes for the first group 
(𝐷𝑖 = 1;𝑊𝑖 = 1) is defined as �̅�1 where  
 

�̅�1 = 𝐸[𝑌𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] = 𝜇0 + 𝛽𝑇 + 𝜃 + 𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1]  
 
Substituting conditional expectations 𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] from (20a) yields  
 

�̅�1 = 𝜇0 + 𝛽𝑇 + 𝜃 + 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] + 𝐸[𝜂𝑖𝐷𝑖𝑊𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] (21𝑎) 
 
where 𝑖 ∈ 𝑛1. 
 
For the second group, where (𝐷𝑖 = 0;𝑊𝑖 = 1), define the average �̅�2 as  
 

�̅�2 = 𝐸[𝑌𝑖|𝐷𝑖 = 0,𝑊𝑖 = 1] = 𝜇0 + 𝛿 + 𝐸[𝑢𝑖|𝐷𝑖 = 0,𝑊𝑖 = 1]  
 
Substituting conditional expectations 𝐸[𝑢𝑖|𝐷𝑖 = 0,𝑊𝑖 = 1] from (20b) 
 

�̅�2 = 𝐸[𝑌𝑖|𝐷𝑖 = 0,𝑊𝑖 = 1] = 𝜇0 + 𝛿 + 𝐸[𝑣𝑖𝑊𝑖(1 − 𝐷𝑖)|𝐷𝑖 = 0,𝑊𝑖 = 1] (21𝑏) 
 
where 𝑖 ∈ 𝑛2. 

      
 
For the third group, where (𝐷𝑖 = 1;𝑊𝑖 = 0), specify the average �̅�3 as 
 

�̅�3 = 𝐸[𝑌𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0] = 𝜇0 + 𝜃 + 𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0]  
 
Substituting conditional expectations 𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0] from (20c) 
 

�̅�3 = 𝐸[𝑌𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0] = 𝜇0 + 𝜃 + 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0] (21𝑐) 
where 𝑖 ∈ 𝑛3.      
 
For the fourth group, where (𝐷𝑖 = 0;𝑊𝑖 = 0), let the average be �̅�4 where 
 

�̅�4 = 𝐸[𝑌𝑖|𝐷𝑖 = 0,𝑊𝑖 = 0] = 𝜇0 + 𝐸[𝑢𝑖|𝐷𝑖 = 0,𝑊𝑖 = 0]  
 
Substituting conditional expectations 𝐸[𝑢𝑖|𝐷𝑖 = 0,𝑊𝑖 = 0] from (20d) 
  

�̅�4 = 𝐸[𝑌𝑖|𝐷𝑖 = 0,𝑊𝑖 = 0] = 𝜇0 + 0 (21𝑑) 
where 𝑖 ∈ 𝑛4.      
 
Identifying Parameters: 
 
Proposition 1: In absence of essential heterogeneity, the difference between �̅�1 − �̅�3 identifies 
average treatment effect (𝐴𝑇𝐸). 
 
By definition 

𝐴𝑇𝐸 = 𝐸[𝛽𝑇𝑖] = 𝐸[𝛽𝑇 + 𝜂𝑖] = 𝛽𝑇 + 𝐸[𝜂𝑖] = 𝛽𝑇 
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Collecting all components from (21a) and (21c) yields 
 

�̅�1 − �̅�3 = (𝜇0 + 𝛽𝑇 + 𝜃 + 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] + 𝐸[𝜂𝑖𝐷𝑖𝑊𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1])
−(𝜇0 + 𝜃 + 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0]) (22𝑎) 

 
In the absence of essential heterogeneity 𝐸[𝜂𝑖|𝐷𝑖 = 1] = 𝐸[𝜂𝑖|𝐷𝑖 = 0] = 0. Since 𝜂𝑖 and 𝑊𝑖 are 
independent by assumption, 𝐸[𝜂𝑖𝐷𝑖𝑊𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] = 0.  Similarly, since 𝜙𝑖, 𝐷𝑖 and 𝑊𝑖 are 
pairwise independent by assumption 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] = 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0] =
𝐸[𝜙𝑖] = 0. Substituting these terms into the above equations yields 
 

�̅�1 − �̅�3 = (𝜇0 + 𝛽𝑇 + 𝜃 + 0 + 0) − (𝜇0 + 𝜃 + 0) = 𝛽𝑇 = 𝐴𝑇𝐸 
 
Proposition 2: In the presence of essential heterogeneity, the difference �̅�1 − �̅�3 identifies the 
average treatment effect on the treated (𝐴𝑇𝑇). 
 
In the presence of heterogeneity 𝐸[𝜂𝑖|𝐷𝑖 = 1] no longer equals 𝐸[𝜂𝑖|𝐷𝑖 = 0], nor is it equal to 
0. Given that 𝐸[𝜙𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] = 𝐸[𝜙𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0] = 0, (22a) reduces to  
 

�̅�1 − �̅�3 = (𝜇0 + 𝛽𝑇 + 𝜃 + 𝐸[𝜂𝑖𝐷𝑖𝑊𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1])
−(𝜇0 + 𝜃)  

 
or,  
 

�̅�1 − �̅�3 = 𝛽𝑇 + 𝐸[𝜂𝑖𝐷𝑖𝑊𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] = 𝛽𝑇 + 𝐸[𝜂𝑖|𝐷𝑖 = 1] = 𝐴𝑇𝑇 
 
Proposition 3: The difference between �̅�3 − �̅�4 identifies the average selection bias. 
 
By definition 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = 𝐸[𝜃𝑖] = 𝐸[𝜃 + 𝜙𝑖] = 𝜃 + 𝐸[𝜙𝑖] = 𝜃 
 
The difference 
 

�̅�3 − �̅�4 = (𝜇0 + 𝜃 + 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0]) − (𝜇0) = 𝜃 + 𝐸[𝜙𝑖𝐷𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0] 
 
The assumption that 𝜙𝑖, 𝐷𝑖 and 𝑊𝑖 are mutually independent and 𝐸[𝜙𝑖] = 0 imply 
𝐸[𝜙𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0] = 0, which means    
 

�̅�3 − �̅�4 = 𝜃 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑏𝑖𝑎𝑠 
 
Proposition 4: The difference between �̅�2 − �̅�4 identifies the average 𝑆𝑈𝑇𝑉𝐴 bias. 
 
The difference is 
 

�̅�2 − �̅�4 = (𝜇0 + 𝛿 + 𝐸[𝑣𝑖𝑊𝑖(1 − 𝐷𝑖)|𝐷𝑖 = 0,𝑊𝑖 = 1]) − (𝜇0) 
= 𝛿 + 𝐸[𝑣𝑖𝑊𝑖(1 − 𝐷𝑖)|𝐷𝑖 = 0,𝑊𝑖 = 1] 

 
The assumption that 𝑣𝑖, 𝐷𝑖 and 𝑊𝑖 are mutually independent and 𝐸[𝑣𝑖] = 0, imply 
𝐸[𝑣𝑖𝑊𝑖(1 − 𝐷𝑖)|𝐷𝑖 = 0,𝑊𝑖 = 1] = 𝐸[𝑣𝑖] = 0. This implies    
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�̅�2 − �̅�4 = 𝛿 + 0 = 𝛿 = 𝑆𝑈𝑇𝑉𝐴 𝑏𝑖𝑎𝑠 

 
Note that the presence of essential heterogeneity does not impact the identification of the 
selection or 𝑆𝑈𝑇𝑉𝐴 biases. 
 
The Imperfect Antidote Case 
 
An antidote may sometimes be imperfect. As such, the antidote need not completely nullify 
the effects of treatment. In our prior example, a defective earplug fails to provide complete 
noise protection. 
 
Here, the point estimates of the treatment effect, the selection bias, and the SUTVA violations 
cannot be identified. However, by using additional assumptions, one can bound the effects 
(Manski (1997) and Manski and Pepper (2000). We employ two widely used sets of 
assumptions and present the resultant bounds.   
 
Assumption Set 1: Positive Monotone Treatment Response (MTR) and 𝑌𝑖 ≥ 0 
 
The assumption 𝑌 ≥ 0 asserts the outcome cannot be negative. This assumption holds 
true for a wide variety of applications that measure outcomes as a positive number. 
As a result, 
 

𝐸[𝑌𝑖|𝐷,𝑊] ≥ 0 
 
The positive MTR assumption asserts the treatment cannot lower 𝑌 whether the 
subject is in the treatment group or the control group. As such, 
 

𝐸[𝑌𝑖(𝑇 = 1)|𝐷,𝑊] ≥ 𝐸[𝑌𝑖(𝑇 = 0)|𝐷,𝑊] 
 
This relationship applies to milder versions of the treatment, for instance when the 
treatment is caused by a spillover or partially weakened by antidotes. 
 
Assumption Set 2: Monotone Treatment Selection (MTS) and Optimal Treatment Selection 
(OTS) 
 
The MTS assumption asserts that 𝐸[𝑌(𝑇 = 1)|𝐷 = 1] ≥ 𝐸[𝑌(𝑇 = 1)|𝐷 = 0] and 
𝐸[𝑌(𝑇 = 0)|𝐷 = 1] ≥ 𝐸[𝑌(𝑇 = 0)|𝐷 = 0]. This means the treatment group achieves better 
outcomes than the control group either when both receive treatment or when both 
remain untreated. 
 
The OTS assumption posits the treatment group selects treatment because these group 
members gain from the treatment, whereas the control group does not select treatment 
because control group members lose from the treatment. This means, 
 

𝐸[𝑌𝑖(𝑇 = 1)|𝐷 = 1] ≥ 𝐸[𝑌𝑖(𝑇 = 0)|𝐷 = 1] 
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𝐸[𝑌𝑖(𝑇 = 0)|𝐷 = 0] ≥ 𝐸[𝑌𝑖(𝑇 = 1)|𝐷 = 0] 
 
The bounds based on these assumptions are given in Figure 2 and formally derived in 
Appendix B.11 
 
 
 
Figure 2: Assumptions and identified bounds 

Assumptions Bounds 
Positive 𝑀𝑇𝑅  and 𝑌 ≥ 0 
Positive 𝑀𝑇𝑅:  
 𝐸[𝑌𝑖(1)|𝐷 = 1] ≥ 𝐸[𝑌𝑖(0)|𝐷 = 1] 
 𝐸[𝑌𝑖(1)|𝐷 = 0] ≥ 𝐸[𝑌𝑖(0)|𝐷 = 0] 

𝛽𝑇: UB= 𝐸[𝑌𝑖(𝑇 = 1)|𝐷 = 1,𝑊 = 1] 
              
LB=[𝑌𝑖(𝑇 = 1)|𝐷 = 1,𝑊 = 1] −
          𝐸[𝑌𝑖(�̂� = 1)|𝐷 = 1,𝑊 = 0] 
 
𝛿: UB= 𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] 
     LB=𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] − 

𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] 
 
𝜃: UB= 𝐸[𝑌𝑖(�̂� = 1)|𝐷 = 1,𝑊 = 0] 
     LB= Not identified 
 

 𝑀𝑇𝑆 and 𝑂𝑇𝑆: 
 
𝑀𝑇𝑆:  
 𝐸[𝑌𝑖(1)|𝐷 = 1] ≥ 𝐸[𝑌𝑖(1)|𝐷 = 0] 
 𝐸[𝑌𝑖(0)|𝐷 = 1] ≥ 𝐸[𝑌𝑖(0)|𝐷 = 0] 
 
𝑂𝑇𝑆:  
 𝐸[𝑌𝑖(1)|𝐷 = 1] ≥ 𝐸[𝑌𝑖(0)|𝐷 = 1] 
 𝐸[𝑌𝑖(0)|𝐷 = 0] ≤ 𝐸[𝑌𝑖(0)|𝐷 = 0] 

𝛽𝑇: UB=𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1] − 
𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] 

 
𝐿𝐵 =  [𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1]

− 𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] 
 
𝛿:UB=𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] − 

𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] 
     LB= 𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] − 

𝐸[𝑌(�̂� = 1)|𝐷 = 1,𝑊 = 0] 
 
𝜃: UB= 𝐸[𝑌𝑖(�̂� = 1)|𝐷 = 1,𝑊 = 0] − 

𝐸[𝑌𝑖(�̅� = 1)|𝐷 = 0,𝑊 = 0] 
     LB= Not identified 
 

Notes: 𝑀𝑇𝑅: Monotone Treatment Response; 𝑀𝑇𝑆: Monotone Treatment Selection; 𝑂𝑇𝑆: Optimum 
Treatment Selection. 
 
 
 
Testing Whether the Antidote Assignment (𝑾) is Random 
 

                                                      
11 Other assumptions could also be used to construct bounds, but these are the most common. Thus, 
we limit ourselves to the two sets of assumptions presented. 
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If 𝑊𝑖 is not mean independent of 𝑢𝑖, one generally cannot identify the treatment effect (𝛽𝑇), 
the selectivity bias (𝜃), and the bias arising from a SUTVA violation (𝛿) from a single cross-
section. However, the advantage of the antidotal variable method is that it is flexible enough 
to allow one to test whether 𝑊𝑖 is correlated with 𝑢𝑖. If one can obtain data on the same 
variables for just another pre-treatment cross-section, one can test this correlation by checking 
whether the average 𝑌𝑖 for 𝑊𝑖 = 1 differs from average 𝑌𝑖 for 𝑊𝑖 = 0. If these averages do not 
differ, one can apply the antidotal variable method and successfully retrieve the parameter 
estimates. If they do, one should be careful to see which parameters are identified and which 
ones are not.  
 
Consider two subsamples, 𝑛1 and 𝑛3 before the treatment is assigned. Since treatment is not 
assigned,  
 

�̅�1 − �̅�3 = 𝐸[𝑌𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0]
= (𝜇0  + 𝜃 + 𝐸[𝑢𝑖|𝐷 = 1,𝑊 = 1]) − (𝜇0  + 𝜃 + 𝐸[𝑢|𝐷 = 1,𝑊 = 0]) 

 
Since 𝐷𝑖 = 1 in both subsamples, the above expression reduces to  
 

�̅�1 − �̅�3 = 𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] − 𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0] 
 
In this context mean independence of 𝑢𝑖 and 𝑊𝑖 implies that 𝐸[𝑢|𝐷𝑖 = 1,𝑊𝑖 = 1] = 𝐸[𝑢𝑖|𝐷𝑖 =
1,𝑊𝑖 = 0], so that these terms cancel each other. Thus, with mean independence of 𝑊𝑖, and 
with no essential heterogeneity, the identification in the post treatment period arises from the 
following equation 
 

𝛽𝑇 = 𝐸[𝑌𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0] 
 
When 𝑊𝑖 is not mean independent of 𝑢𝑖, 𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] ≠ 𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0], meaning 
𝐸[𝑌𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] − 𝐸[𝑌𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0] = 𝛽𝑇 + (𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] −
𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0]) ≠ 𝛽𝑇. Since 𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1]  − 𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0] is unknown, 𝛽𝑇 
is not identified.  With just one cross-section this problem cannot be solved. 
 
However, if one has a cross-section from the pre-treatment period, one can test the mean 
independence assumption of 𝑊𝑖. Consider two subsamples who will be treated and not 
treated (i.e., 𝐷𝑖 = 1 and 𝐷𝑖 = 0) once the treatment rolls out. Because it is the pre-treatment 
period, 𝛽𝑇 = 0. Thus, the difference in mean of 𝑌𝑖 for 𝑊𝑖 = 1 and 𝑊𝑖 = 0 is only due to the 
difference between 𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 1] and 𝐸[𝑢𝑖|𝐷𝑖 = 1,𝑊𝑖 = 0] or 𝐸[𝑢𝑖|𝐷𝑖 = 0,𝑊𝑖 = 1] and 
𝐸[𝑢𝑖|𝐷𝑖 = 0,𝑊𝑖 = 0]. Thus, whether these means are different, or not, can be tested with the 
simple regressions within the treated/untreated groups below  
 

𝑌𝑖(𝐷=1) = 𝛾0(𝐷=1) + 𝛾1(𝐷=1)𝑊𝑖(𝐷=1) + 𝜁𝑖(𝐷=1) (26𝑎) 
 

𝑌𝑖(𝐷=0) = 𝛾′0(𝐷=0) + 𝛾′1(𝐷=0)𝑊𝑖(𝐷=0) + 𝜁′𝑖(𝐷=0)  (26𝑏) 
 
If the regression results suggest that 𝛾1𝐷=1 = 0 and 𝛾′1𝐷=0 = 0, one can infer that non-
randomness of 𝑊𝑖 does not affect the parameter identification. Hence, one can proceed with 
the identification as outlined above. If 𝛾1𝐷=1 ≠ 0 and 𝛾′1𝐷=0 = 0, then one identifies the bias 
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from a SUTVA violation (𝛿) only. The treatment effect and selectivity bias (𝛽𝑇 and 𝜃) cannot 
be identified. Conversely, if 𝛾1𝐷=1 = 0 and 𝛾′1𝐷=0 ≠ 0, then one identifies 𝛽𝑇, but cannot 
identify the SUTVA bias (𝛿) and the selectivity bias (𝜃). If (𝛾1𝐷=1 ≠ 0 and 𝛾1𝐷=0 ≠ 0, then none 
of the parameters of interest are identified.12  
 

4. Antidote Compliance 
 
There is an important difference between a typical instrument and an antidotal variable. 
Standard instruments, those correlated with the treatment but not the outcome, require 
monotonicity, a framework where no defiers are assumed in the data.13 14 Yet defiers can, and 
often, readily exist with good reason, especially when the treatment recipient’s motivations 
differ based on anticipated effects of the treatment. For example, using two-children of the 
same sex as an instrument for having more children, might fail for those families with either 
boy or girl preferences (Dahl and Moretti, 2008) as these families would not be motivated to 
continue childbirth. Yet as de Chaisemartin (2017) and Swanson et al. (2015) show, there are 
numerous other examples.  
 
Antidotal variables are different. They are not linked to the treatment, but instead to 
eradicating the treatment’s impact. Thus they negate the effect of a treatment, rather than the 
treatment itself. As such, there is a smaller susceptibility to defy because there is less incentive 
to do so.  
 
Take the loud music example considered earlier. Defiers would comprise those who would 
seek earplugs to nullify the effect of the noise if not given them and would not use earplugs if 
they were received. Although those choosing treatment (D = 1) who are given earplugs (W = 
0) likely will seek not to use them, since the earplugs keeps them at high-medium stress 
instead of low stress; those choosing loud music (the treated where D = 1) have no incentive 
to seek earplugs, as earplugs will make them worse off (high-medium stress with earplugs 
versus low stress without earplugs). Thus, there likely should be no defiers among the treated.  
 
Also, there are likely no defiers among the non-treated. Those not choosing the boombox 
treatment (D = 0) might seek out earplugs in order to attain low-medium rather than high 
stress if they were not given them (W = 1). However, those among the non-treated who were 
given earplugs (D = 0 and W = 1) presumably will always use them, again to lower stress. 
Thus, here too, there are likely no defiers among the non-treated.  
 
In this sense, as long as treatment selection is endogenous, the antidotal approach has weaker 
underlying assumptions than the traditional instrumental variables approach, since no 

                                                      
12 Typical IV validity cannot be tested in the same way using pre-treatment data because there cannot 
be any change in the IV. Any change in the pre-treatment IV would imply a weak instrument.   
13 Angrist, Imbens, and Rubin (1996). JASA 
14 There are exceptions. For example, de Chaisemartin (2017) shows one can obtain a local average 
treatment effect (LATE) by replacing the no-defiers condition by a “compliers-defiers” condition in 
which “a subgroup of compliers accounts for the same percentage of the population as defiers and has 
the same LATE” (p. 368). Dahl et al (2019) uses a strictly weaker local monotonicity condition to identify 
LATE for compliers and defiers.  
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monotonicity type assumption is needed to interpret the estimates. With full compliance, 
when neither always affected groups and never affected groups exist, the antidotal procedure 
yields an average treatment effect (ATE). With always affected and/or never affected groups, 
the procedure identifies the effects for those participants bound by the antidote, what we call 
the binding average treatment effect (BATE). BATE is similar to the traditional IV local 
average treatment effect (LATE). 
 
 

5. Simulations 
 
To validate the approach and test for consistency, we conduct several simulation exercises. 
First, we simulate data based on a process where   𝑊 = 0,1 is randomly assigned.  We generate 
the treatment variable 𝐷 through a uniform distribution. A value of 𝐷 = 1 indicates the unit 
receives the treatment, and 𝐷 = 0 indicates no treatment. Similarly, we independently create 
the antidotal variable 𝑊 through a uniform distribution. The value 𝑊 = 0 indicates the 
antidotal intervention nullifies the effect of the treatment, and 𝑊 = 1 indicates no antidotal 
intervention so that the treatment remains effective. This process essentially divides the 
sample into four subsamples: {𝐷 = 1,𝑊 = 1}, {𝐷 = 0,𝑊 = 1}, {𝐷 = 1,𝑊 = 0}, and {𝐷 =
0,𝑊 = 0}. Based on these we generate the outcome variable 𝑦 in the following manner:    
 

𝑦𝑖 = 𝛽0𝑖 + 𝛽𝑇𝑖𝑊𝑖𝐷𝑖 + 𝜃𝑖𝐷𝑖 + 𝛿𝑖𝑊𝑖(𝐷𝑖 − 1) + 𝑢𝑖 
 
where the parameters 𝛽0𝑖, 𝛽𝑇𝑖, 𝜃𝑖, 𝛿𝑖 and 𝑢𝑖 are as previously defined. To keep the simulation 
simple, we assume these parameters follow normal distributions with different means and 
standard deviations. Thus, each individual receives an assigned value based on random 
draws. This process ensures parameter heterogeneity as well as no essential heterogeneity.  
We experiment with various parameter values to check the generality of the results. First, we 
generate data based on the following schemes: 𝛽0𝑖 =  N(.3, .1); 𝛽𝑇𝑖 =  N(.7, .2); 𝜃𝑖 =  N(.4, .4); 
𝛿𝑖 =  N(.8, .3). Then, we replicate the same exercise with 𝛽0𝑖 =  N(.3, .1); 𝛽𝑇𝑖 =  N(.2, .2); 𝜃𝑖 =
 N(.15, .4); 𝛿𝑖 =  N(.35, .3). We then estimate the parameters from the simulated data for 
different number of observations (100, 1000, 10000, 100000, 1000000).  
 
Table 1 reports the results. As can be seen, the estimates are close to the parameter values used 
to create the data, more so when the number of observations is large. All three estimates, the 
treatment effect, the selectivity bias, and the bias due to 𝑆𝑈𝑇𝑉𝐴 violation approach to the true 
parameter values when the sample size increases. Thus the simulation exercise confirms the 
consistency property of the estimators. A similar set of results emerges when we alter the 
parameter values while creating the data.  
 
 
 

6. An Application 
 
For illustrative purposes, to demonstrate the antidotal variable method, we examine take-up 
rates for the California’s paid family leave (CPFL) program. Initiated in 2004, CPFL allows 
employees to take up to 6 weeks of paid leave, usually for child care responsibilities, though 
it could be used for taking care of ailing parents. Past analyses used difference-in-differences 
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(DID) techniques to estimate CPFL’s effect on leave take-up (Rossin-Slater et al., 2013; Baum 
and Ruhm, 2014; and Das and Polachek, 2015). Typically, this type analysis estimated the 
difference in take-up from before to after the law in California relative to a control.15 We 
replicate this type analysis, and then present results based on an antidotal variable approach. 
In the process, we point out how the antidotal variable approach alleviates a number of the 
biases inherent in DID. 
 
We utilize data from CPS-AESC rounds from 2001-2006 collected in March of each year. The 
CPS-AESC is nationally representative and includes information on individuals’ 
demographics, work and other characteristics. We focus on two measures of leave taking: (1) 
leave hours and (2) leave incidence.16 
 
We divide the data into two time periods: 2004-06, the period when CPFL was in effect; and 
2001-2003, the period before CPFL’s implementation.17 Table 2 presents the summary statistics 
for leave taking hours before and after CPFL became effective. In 2004-2006, women in 
California took less leave than their counterparts in other states (1.21 hours in 2001-03 vs 1.59 
hours). However, in 2004-2006 after CPFL became effective, women in California took more 
leave (2.06 hours in 2001-03 vs 1.91 hours). This increase predominated in the younger age 
group, as leave increased for young employees in California, whereas it decreased for all other 
groups in California as well as in the other states (2.11 versus 1.93 for the young in other states 
and 1.5 versus 1.06 for the old in California and 1.98 versus 1.88 for the young in other states). 
 
Table 3 presents the summary statistics for leave taking incidence before and after CPFL 
became effective. This table shows a very similar pattern as observed in Table 2. California’s 
incidence of leave taking rises to 3.3 percent in 2004-06 from 2.7 percent in 2001-03. Other 
states experience a decline (3.8 percent in 2004-06 from 4.1 percent in 2001-03). As before, only 
young women in California experienced an increase in leave taking.  
 
In Tables 2 and 3 we denote California as receiving treatment D = 1 and the other states as 
untreated D = 0. Since CPFL primarily addresses the leave taking need of women of 
childbearing age, we assume older women 45-55 are unaffected by the paid family leave 

                                                      
15 Rossin-Slater et al. (2013) define their treatment group to be California mothers with children less 
than 1 year old compared to a control of all others in California. Baum and Ruhm (2014) use a triple 
difference to compare California mothers before and after paid family leave relative to those in other 
states, and Das and Polachek (2015) use a quadruple difference approach to compare young women in 
California to older women and men in California and the rest of the country before and after the 
program’s implementation. 
16 The actual measures are (1) the difference in a worker’s usual weekly work hours and her actual 
hours of work, and (2) whether a worker has a job but is on leave at the time of interview. It is a 
binary/dummy variable which takes value 0 if at work, and 1 if on leave. We also consider employment 
status, gender, and age, and hold constant number of children below 15 years of age and years of 
completed education. We drop the respondents engaged in military services from this dataset. 
17 Technically the law was implemented in July 2004. However, the law actually passed the state 
legislature in 2002, both employers and employees most likely anticipated the change and changed 
their leave taking behaviour earlier in 2004 slightly before the enactment date. Hence, the effect on leave 
taking may start appearing even before the July 2004, which is why we include 2004 in the post-policy 
period. 



21 
 

because they typically do not have young children and hence are unlikely to take family 
leave.18 We assign W = 0 for women between 45-55 years of age since it is unlikely that women 
in that age group have young children. We denote W = 1 for those women 25-40.19 The 45-55 
year old W = 0 group is important because the antidotal approach requires a group which is 
unaffected by the paid family leave. It is likely that this group fits the bill. 
 
DID estimates CPFL’s effect by computing the before and after differences between California 
and the rest of the US. This ATE amount to 0.46 for hours and a 0.009 increase in the incidence 
of taking a leave. 20 
 
The antidotal variable approach entails four groups. Group 1 (D = 1 and W = 1) are those who 
receive treatment and do not have the antidote (age 25-40). Group 2 (D = 0 and W = 1) 
constitute those not receiving the antidote (age 25-40) and those in the control states. Group 3 
(D = 1 and W = 0) comprise those receiving treatment but getting the antidote (age 45-55). 
Finally, group 4 (D = 0 and W = 0) are those in the control group who get the antidote (are 45 
– 55). Define the mean values of leave-taking hours and leave incidence for each group as �̅�1, 
�̅�2, �̅�3, and �̅�4. Based on Table 2 (hours of leave), �̅�1 = 1.97, �̅�2  = 1.93, �̅�3 = 1.06, and �̅�4 = 1.88.  

Based on Table 3 (the incidence of leave), these values are �̅�1 = 0.039, �̅�2 = 0.039, �̅�3 = 0.025, and 
�̅�4 = 0.037. The antidotal variable approach defines the average treatment effect as �̅�1 - �̅�3, the 
selectivity bias as �̅�3 - �̅�4, and the SUTVA bias as �̅�2 - �̅�4. Thus, the average treatment effect is 
0.91 hours, the selectivity bias is -0.82 hours, and the SUTVA bias is -0.05 hours. For incidence, 
the values are 0.014, -0.012, and 0.02 respectively. 
 
Several differences between the two approaches are noteworthy. First, the DID approach 
requires two cross-sections spanning two time periods (2001-2003 and 2004-2006) and 
identifies only one parameter. The antidotal approach requires only one cross-section in one 
time period (2004-2006) and identifies three parameters. Second, the DID approach assumes 
that in the absence of treatment, the unobserved differences between treatment and control 
groups are the same overtime. In our example, this means nothing else should change 
between California and the control states except paid family leave; otherwise these other 
interventions can affect the result as new confounders. Changing confounders between the 
two periods manifest themselves as changes in selectivity, which can be identified in the 
antidotal variable approach by comparing group mean values �̅�3 and �̅�4 in the earlier 2001-
2003 time period. Third, DID assumes no SUTVA violations. In our example, this means 
California’s paid family leave cannot affect the leave taking behavior in the control states. 
 
Interestingly, the average treatment effect we just found differs between the two approaches. 
The DID estimate (0.46) is about half the antidotal variable estimate (0.91) for hours leave, and 

                                                      
18 Biases in our estimates could result to the extent older women actually take leave to look after older 
parents, but according to Wettstein and Zulkarnain (2017), this is more confined to those over 55, which 
as noted later we drop from the sample. Further, the incidence and amount of parent-motivated leave 
taking for 45-55 and 25-40 year old adult children is similar. This implies little if any estimation bias, 
given the antidotal variable technique exploits differences in outcomes between these two groups. 
19 We drop respondents above 55 years of age as they might take leave for other reasons such as 
decaying general health condition. 
20 The computations are: (1.59-1.21) - (1.91-2.06) = 0.46 and (0.033-0.027) - (0.038-0.041) = 0.09 
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about 2/3 the size based on incidence (0.009 versus 0.014). The DID approach assumes the 
selectivity bias remains constant across both periods so that no other policy or comparable 
changes occur in California relative to the control states once the policy is implemented. In 
short, there cannot be changes in the confounding effects. Typically, most DID studies spend 
much time trying to justify this, but do so by relying on institutional considerations, typically 
without hard evidence. However possible confoundedness can bias the estimates.21 
Evaluating �̅�3 - �̅�4 in 2001-2003 yield -.63 in hours and -.009 in incidence probability. 
Noteworthy, these are higher than the -.82 and -.012 values in 2004-2006, thus implying 
changes in the confounding effects. Indeed, these changes in confounding effects explain 
upwards of 60% of the discrepancy when considering incidence.22 As we will show shortly, 
we observe no statistically significant treatment or SUTVA effects when examining 2001-2003, 
an expected placebo test.  
 
While these statistics indicate that young women in California take more leave, other 
unincluded covariates can affect the results. For this reason, we now use a regression 
framework to apply the antidotal variable approach in a more rigorous way based on (17). 
However, to do so, we first test whether the antidotal variable 𝑊 is mean independent of 𝑢. 
Mean independence implies we can obtain unbiased estimates of selectivity and SUTVA 
violations. We utilize hours and incidence of leave as dependent variables in an OLS 
regression on W using 2001-03 data, the period prior to the policy implementation. For each 
dependent variable we run an OLS regression on  𝑊, once for California and once for the other 
states. Table 4 presents the results. An insignificant coefficient implies mean independence 
between the antidotal variable W and the error term 𝑢.  As illustrated, the coefficients for the 
antidotal variable 𝑊 are insignificant in each of these regressions.23 Thus, the results suggest 
that 𝑊 is mean independent of 𝑢. Based on this finding we proceed to estimate the treatment 
effect, the selection bias, and bias emanating from violation of 𝑆𝑈𝑇𝑉𝐴 using the antidotal 
variable method. 
 
Table 5 presents the causal effect of CPFL on weekly leave taking hours obtained from 
regressions based on (17). Young women in California take 0.91 hours more leave.24 Including 
control variables household size (to get at the presence of children) and schooling level 
(education) did not change the coefficients appreciably. The table also shows that the selection 
bias is in the range of 0.82. As before, we find little evidence of any bias arising from violation 
of 𝑆𝑈𝑇𝑉𝐴. This might be expected since California’s policy change is unlikely to have 
significant effect on the rest of the country’s labor market.   
 
As indicated earlier, one can bound the estimates if one believes older age (45-55) serves as an 
imperfect antidote. MTR and 𝑌𝑖 ≥ 0 are satisfied because leave incidence and leave 

                                                      
21 Suppose other factors change in California and the control states. These could be specific elected 
officials, new laws in either state, or any number of other variables. Such observed changes between 
California and the rest of the country are subsumed in the selectivity bias. The AV approach can detect 
changes in how California differed from the control group from before to after the policy change.  
22 Computed as (-.009-(-.012))/(.009-.014)=0.60. 
23 Adding covariates does not alter this result. 
24 Note this is the same as previously computed because with no covariates this regression simply 
reports differences in mean values between the four groups. 
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taking exceed zero and paid family leave does not lower leave taking when 
implemented. Accordingly, we construct the following bounds on the ATE, the 
SUTVA bias, and the selectivity bias using these assumptions along with the means of 
various subsamples: 0.91 ≤ 𝛽𝑇 ≤ 1.97,  0.05 ≤ 𝛿 ≤ 1.93, and  −1.88 ≤ 𝜃 ≤ 1.06. The results 
mean that the ATE and the SUTVA bias are identified, but the selectivity bounds span zero. 
 
One advantage of the antidotal approach is the ability to do a placebo test using the 2001-2003 
data. Given CPFL did not occur until 2004, we rerun (17) for 2001-3. We should find no effect 
of CPFL and no SUTVA bias as neither is present in 2001-3 prior to the policy’s 
implementation. As can be seen in columns (1) and (3), the coefficients of DW (treatment 
effect) and W(1-D) (SUTVA bias) are both statistically insignificant. However, noteworthy, as 
seen above, the selectivity coefficient remains significant, but smaller, likely because of 
changing confounding variables between the two time periods.  
 
Table 6 presents the results on the incidence of leave taking. As before simply looking at the 
means, young women in California take 1.4 percentage points more leave than young women 
in the other states. This amounts to 50 percent increase in the probability of leave taking. The 
selectivity bias in this case is about -1 to – 1.2 percentage points, i.e., young women in 
California are 40 – 48 percent less likely to take leave than young women in the other states.  
Again, the SUTVA bias is insignificantly different from zero. Also, as above, both the 
treatment effect and selectivity bias estimates are zero in the pre-treatment period.  
 
One reason for a virtually zero SUTVA bias is comparing California to the rest of the nation. 
In the case of a policy like CPFL, one would expect the SUTVA bias, if it exists, to arise because 
women in the control states move to California to take advantage of the new policy. Typically, 
those potentially benefiting the most, immigrate. Those remaining would have lower leave 
taking behavior, thus negating the SUTVA bias. Given moving costs, the direct and the 
information acquisition costs, one would expect migrants to comprise those living close by, 
most likely, from neighboring states. Utilizing all states but California as the controls possibly 
led to no SUTVA bias. For this reason, we repeat the analysis, this time limiting our control 
states to the three states bordering California: Arizona Nevada and Oregon.  
 
Table 7 and 8 present these results. As before, we observed a positive treatment effect, 
essentially the same magnitude as before (0.91 for hours and 0.13 for incidence). Selectivity is 
larger (-1.41 for hours and -.38 for incidence) meaning California differs more from its 
neighboring states than from the whole US. And as suspected, there is a negative SUTVA 
effect (-.84 for hours and -.04 for incidence)25 meaning neighboring states reduce leave taking 
after the CPFL was instituted. Notably, all coefficients are insignificant in 2001-03 when there 
was no treatment. Somewhat surprisingly, this includes the coefficient for selectivity. This 
essentially zero coefficient implies the possibility of other unobserved factors, thus 
exacerbating the difference between California and its neighbors.  

 

The findings with respect to the incidence of leave taking are similar to that of hours work. 

The treatment effect and SUTVA bias are zero before CPFL came into effect. The zero 

                                                      
25 Note a positive coefficient implies a negative SUTVA because (12) has a −𝛿𝑊 coefficient. 
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selectivity during 2001-03 also suggests that California, Arizona. Oregon and Nevada are 

similar in terms of their workers’ leave taking. However, in 2004-06, all three are statistically 

significant. The bias due to SUTVA violation is significant supporting the results obtained for 

hours of leave taking. 

 
 

7. Conclusion 

The fundamental problem of treatment effect identification is each observation can only be 
seen in one of two states: treated or untreated. Counterfactual outcomes are not observed. The 
industry standard strategy to overcome this shortcoming is primarily through random 
assignment of treatment, but this is not always possible, especially in observational settings. 
This led to a number of fixes such as IV, DID, RDD, RCT and other methods, but essentially 
all these solutions are designed to make the treatment and control groups as similar as 
possible, thereby mimicking randomization as best as can be done. Nevertheless, the threat of 
a potential SUTVA violation remains. Moreover, these approaches cannot identify the 
treatment effect in the presence of concomitant treatments.  

In this paper we examine another approach. We introduce an antidotal variable (AV) to both 
treatment and control groups that negates the impact of the treatment for this set of individual 
observations. Abrogating the treatment effect, as such, separates the sample into four groups, 
instead of two. From these four groups, we identify the treatment effect, as well as selectivity 
and SUTVA violation biases. The only requirement is that the antidotal variable be 
independent of the treatment and mean independent of the outcome variable, which can be 
tested using pre-treatment data. This is a weaker assumption than standard IV approaches, 
which require a variable related to the treatment but unrelated to the dependent variable, a 
condition that for the most part one cannot test. 

Despite the power of the antidotal variable approach, there are limitations. First, one needs to 
find an antidotal variable that abrogates the treatment effect for a subsample of the data. This 
could be a direct intervention nullifying the treatment or a characteristic of a subsample of 
observations for which the effect of the treatment is nullified. In some applications, antidotal 
variables may be difficult to find. Second, the antidotal variable should be independent of 
treatment effects before the application of the antidote. This likely holds if the antidote is 
randomly administered. It also holds if the non-antidoted group would have behaved 
similarly to the antidoted group if they did not receive the antidote, a weaker condition. Third, 
the antidote is assigned to both treated and untreated groups. Violation of this latter 
assumption simply makes it impossible to identify the SUTVA bias. Fourth, the antidote needs 
to abrogate the treatment spillover effects. Finally, we rule out any spillovers from the treated 
to others in the treated group.  

To validate the approach and test for consistency, we simulated data based on randomly 
assigning treatment and antidotes. In all cases estimated coefficients converged relatively 
quickly to the true parameter values.  
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Also, we applied the approach to estimate the impact of paid family leave. A simple DID 
approach found CPFL increased leave taking by about ½ hour per week and leave incidence 
by about 1 percentage point. The antidotal variable approach yielded about 0.9 hours and 
1.4%, most of the differences arising because of selectivity. DID assumes selectivity (the 
difference between California and the other states) remain constant from before and to after 
the law’s implementation. But the antidotal variable approach showed this not to be the case, 
as it was able to pick up other factors, such as California’s simultaneously implemented 2004 
Private Attorneys General Act (PAGA), that could affect leave taking. In addition, the 
approach showed SUTVA spillover effects between California and its neighboring states 
Arizona, Nevada, and Oregon, arising after the law’s implementation, possibly implying 
some migration to California by those inclined towards leave taking. 

Whereas we apply the AV technique to analyze the California Paid Family Leave program, it 
potentially has applications beyond this example. 
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Table 1: Estimates from the simulated data (random W) 

  

Actual 
Value  

𝛽𝑇 = 0.7 

Actual 
Value  
θ=0.4 

Actual 
Value  
δ = 0.8   

Actual 
Value 
𝛽𝑇=0.2 

Actual  
Value  

θ = 0.15 

Actual  
Value  

δ = 0.35 

 Estimated values  Estimated values 
No. of 

obs 𝛽𝑇 θ δ   𝛽𝑇 θ δ 
100 0.48 0.62 0.82  -0.02 0.37 0.37 

1000 0.67 0.52 0.80  0.17 0.27 0.35 
10000 0.68 0.40 0.81  0.18 0.15 0.36 

100000 0.69 0.40 0.79  0.19 0.15 0.34 
1000000 0.70 0.40 0.80   0.20 0.15 0.35 

Source: Simulated data and authors’ own computations. 
 
 
 
 
Table 2:  Hours of Leave Taking (The number of hours worked less than usual hours) 
  2001-2003  2004-2006 
  W=0 W=1   W=0 W=1  

D  45-55 25-40 ALL  45-55 25-40 ALL 
0 Other states 1.98 2.11 2.06  1.88 1.93 1.91 
1 Calif 1.35 1.12 1.21  1.06 1.97 1.59 
         
 Total 1.91 1.99 1.96  1.79 1.93 1.87 

Source: IPUMS-CPS (AESC rounds); authors computations. 
 
  

 
         

Table 3: Incidence of leave 

  
 2001-2003  2004-2006 

   W=0 W=1   W=0 W=1  

D   45-55 25-40 ALL  45-55 25-40 ALL 

0  Other states 0.040 0.042 0.041  0.037 0.039 0.038 
1  Calif 0.031 0.025 0.027  0.025 0.039 0.033 
          
  Total 0.039 0.040 0.040  0.036 0.039 0.038 

Source: IPUMS-CPS (AESC rounds); authors computations. 
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Table 4: 2001-03 Testing mean independence of the antidotal variable W 
 (1) (2) (3) (4) 
VARIABLES Hrsabsnt 

D=1 
Hrsabsnt 
D=0 

Dleave 
D=1 

Dleave 
D=0 

     
W -0.229 0.131 -0.00590 0.00275 
 (0.284) (0.0994) (0.00555) (0.00201) 
Constant 1.348*** 1.978*** 0.0306*** 0.0396*** 
 (0.231) (0.0750) (0.00454) (0.00151) 
     
Observations 3,809 49,173 4,082 52,973 
R-squared 0.000 0.000 0.000 0.000 

   Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
 
 

Table 5: Regression results for the United States 
 (1) (2) (3) (4) 
VARIABLES hrsabsnt 

2001-03 
hrsabsnt 
2004-06 

hrsabsnt 
2001-03 

hrsabsnt 
2004-06 

     
DW -0.229 0.908*** -0.274 0.888*** 
 (0.284) (0.287) (0.285) (0.288) 
D -0.630*** -0.821*** -0.644*** -0.819*** 
 (0.243) (0.223) (0.244) (0.222) 
W(1-D) -0.131 -0.0475 -0.0929 -0.0268 
 (0.0994) (0.0943) (0.101) (0.0960) 
Household Size   0.0432** 0.00947 
   (0.0205) (0.0204) 
Education   0.00727*** 0.00766*** 
   (0.00217) (0.00201) 
Constant 1.978*** 1.879*** 1.231*** 1.179*** 
 (0.0750) (0.0707) (0.207) (0.194) 
     
Observations 52,982 53,416 52,982 53,416 
R-squared 0.001 0.000 0.001 0.001 

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
 
  



28 
 

 

Table 6: Regression Results for the United States 
 (1) (2) (3) (4) 
VARIABLES dleave 

2001-03 
dleave 
2004-06 

dleave 
2001-03 

dleave 
2004-06 

     
DW -0.00590 0.0139** -0.00732 0.0131** 
 (0.00555) (0.00577) (0.00556) (0.00579) 
D -0.00899* -0.0120*** -0.00949** -0.0125*** 
 (0.00479) (0.00426) (0.00480) (0.00427) 
W(1-D) -0.00275 -0.00184 -0.00152 -0.000831 
 (0.00201) (0.00191) (0.00202) (0.00194) 
Household Size   0.00144*** 0.000844** 
   (0.000417) (0.000425) 
Education   0.000224*** 0.000186*** 
   (4.30e-05) (3.99e-05) 
Constant 0.0396*** 0.0372*** 0.0164*** 0.0187*** 
 (0.00151) (0.00141) (0.00423) (0.00392) 
     
Observations 57,055 57,748 57,055 57,748 
R-squared 0.001 0.000 0.001 0.001 

       Robust standard errors in parentheses 
       *** p<0.01, ** p<0.05, * p<0.1 
 
 

Table 7: Regression Results for California and Neighboring States 
 (1) (2) (3) (4) 
VARIABLES Hrsabsnt 

2001-03 
Hrsabsnt 
2004-06 

Hrsabsnt 
2001-03 

Hrsabsnt 
2004-06 

     
DW -0.229 0.908*** -0.243 0.903*** 
 (0.284) (0.287) (0.290) (0.294) 
D -0.0563 -1.403*** -0.0576 -1.408*** 
 (0.394) (0.437) (0.397) (0.437) 
W(1-D) -0.574 0.833* -0.577 0.839* 
 (0.436) (0.467) (0.441) (0.470) 
Household Size   0.0102 0.00957 
   (0.0489) (0.0543) 
Education   0.00369 -0.000633 
   (0.00498) (0.00474) 
Constant 1.404*** 2.461*** 1.056* 2.490*** 
 (0.319) (0.383) (0.552) (0.577) 
     
Observations 6,172 5,927 6,172 5,927 
R-squared 0.001 0.003 0.001 0.003 

               Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 
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Table 8: Regression Results for California and Neighboring States 

 (1) (2) (3) (4) 
VARIABLES       dleave 

2001-03 
dleave 

2004-06 
Dleave 

2001-03 
dleave 

2004-06 
     
DW -0.00590 0.0139** -0.00644 0.0133** 
 (0.00555) (0.00578) (0.00557) (0.00585) 
D -0.000968 -0.0379*** -0.00139 -0.0383*** 
 (0.00784) (0.00967) (0.00793) (0.00970) 
W(1-D) -0.000185 0.0300*** 0.000358 0.0306*** 
 (0.00811) (0.0103) (0.00820) (0.0104) 
Household Size   0.000656 0.000851 
   (0.000951) (0.00111) 
Education   3.28e-05 2.62e-05 
   (9.18e-05) (9.78e-05) 
Constant 0.0316*** 0.0631*** 0.0271** 0.0584*** 
 (0.00639) (0.00880) (0.0106) (0.0123) 
     
Observations 6,663 6,447 6,663 6,447 
R-squared 0.000 0.003 0.000 0.004 

         Robust standard errors in parentheses: *** p<0.01, ** p<0.05, * p<0.1 
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APPENDIX 
A. The Antidotal Variable Model 
 
The econometric model 
 

𝑌𝑖 = 𝜇0 + 𝛽𝑇𝑊𝑖𝐷𝑖 + 𝜃𝐷𝑖 + 𝛿𝑊𝑖(1 − 𝐷𝑖) + 𝑢𝑖 (𝐴. 1) 
 
where 𝑢𝑖 = 𝜔(𝐷=0)𝑖 + 𝜙𝑖𝐷𝑖 + 𝜂𝑖𝑊𝑖𝐷𝑖 +𝑣𝑖𝑊𝑖(1 − 𝐷𝑖) 
 
 

Define 𝑧𝑖 = [

1
𝑊𝑖𝐷𝑖
𝐷𝑖

𝑊𝑖(𝐷𝑖 − 1)

] and Γ = [

𝜇0
𝛽𝑇
𝜃
𝛿

] 

 
With this, (A.1) can be expressed as  
 

𝑌𝑖 = 𝑧𝑖
′Γ + 𝑢𝑖 (𝐴. 2) 

 

Define  𝑌 = [

𝑌1
𝑌2
.

𝑌𝑁

] ,  Z = [

𝑧1
′

𝑧2
′

.
𝑧𝑁

′

] and 𝑢 = [

𝑢1
𝑢2
.

𝑢𝑁

] 

 
Based on these, matrix representation is  
 

𝑌 = 𝑍Γ + 𝑢 (𝐴. 3) 
 
 
The OLS estimator of the parameters is  
 

Γ̂ = (Z′𝑍)−1𝑍′𝑌 (𝐴. 4) 
 
Unbiasedness 
 
Proof: 
 
The expected value of the estimator E[Γ̂] 
 

𝐸[Γ̂] = 𝐸[𝑍′𝑍]−1𝑍′(𝑍Γ + 𝑢) 
= 𝐸[(Z′𝑍)−1𝑍′𝑍Γ + (Z′𝑍)−1𝑍′𝑢 

= Γ + (Z′𝑍)−1𝐸[𝑍′𝑢] (𝐴. 5) 
 
 
As such, 𝑍′𝑢 can be expressed as  
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𝑍′𝑢 = [

1 1
𝑊1𝐷1 𝑊2𝐷2

𝐷1 𝐷2
𝑊1𝐷1 − 𝑊1 𝑊2𝐷2 − 𝑊2

…

1 1
𝑊𝑛−1𝐷𝑛−1 𝑊𝑛𝐷𝑛
𝐷𝑛−1 𝐷𝑛

𝑊𝑛−1𝐷𝑛−1 − 𝑊𝑛−1 𝑊𝑛𝐷𝑛 − 𝑊𝑛

] [

𝑢1
𝑢2
. .
𝑢𝑛

] 

 
Simplifying  
 

𝑍′𝑢 =

[
 
 
 
 
 
 
 
 
 ∑𝑢𝑖

𝑖

∑𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

∑𝐷𝑖𝑢𝑖
𝑖

∑𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

−  ∑𝑊𝑖𝑢𝑖
𝑖 ]

 
 
 
 
 
 
 
 
 

 (𝐴. 6) 

 
 
Taking expectation on both sides 
 

𝐸[𝑍′𝑢] = 𝐸

[
 
 
 
 
 
 
 
 
 ∑𝑢𝑖

𝑖

∑𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

∑𝐷𝑖𝑢𝑖
𝑖

. .

∑𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

− ∑𝑊𝑖𝑢𝑖
𝑖 ]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 𝐸[∑𝑢𝑖

𝑖

]

𝐸[∑𝑊𝑖𝐷𝑖𝑢𝑖]
𝑖

𝐸[∑𝐷𝑖𝑢𝑖
𝑖

]

𝐸[∑𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

] −  𝐸[∑𝑊𝑖𝑢𝑖]
𝑖 ]

 
 
 
 
 
 
 
 
 

 

 
With further simplification 
 

𝐸[𝑍′𝑢] = 𝐸

[
 
 
 
 
 
 
 
 
 ∑𝑢𝑖

𝑖

∑𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

∑𝐷𝑖𝑢𝑖
𝑖

. .

∑𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

− ∑𝑊𝑖𝑢𝑖
𝑖 ]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 ∑𝐸[𝑢𝑖

𝑖

]

∑𝐸[𝑊𝑖𝐷𝑖𝑢𝑖]
𝑖

∑𝐸[𝐷𝑖𝑢𝑖
𝑖

]

∑𝐸[𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

] − ∑𝐸[𝑊𝑖𝑢𝑖]
𝑖 ]

 
 
 
 
 
 
 
 
 

 

 
 
When 𝑊𝑖 and 𝐷𝑖 and 𝑢𝑖 are pairwise and jointly mean independent, by the law of iterated 
expectations the above matrix simplifies to  
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𝐸[𝑍′𝑢] =

[
 
 
 
 
 
 
 
 
 ∑𝐸[𝑢𝑖

𝑖

]

∑𝐸𝑊𝐷[𝑊𝑖𝐷𝑖𝐸[𝑢𝑖|𝑊𝑖𝐷𝑖]]
𝑖

∑𝐸𝐷[𝐷𝑖𝐸[𝑢𝑖|𝐷𝑖]
𝑖

]

∑𝐸𝑊𝐷[𝑊𝑖𝐷𝑖𝐸[𝑢𝑖|𝑊𝑖𝐷𝑖]]
𝑖

− ∑𝐸𝑊[𝑊𝑖𝐸[𝑢𝑖|𝑊𝑖]]
𝑖 ]

 
 
 
 
 
 
 
 
 

  

 
 
With 𝐸[𝑢𝑖] = 0, 𝐸[𝑢𝑖|𝑊𝑖] = 0, 𝐸[𝑢𝑖|𝐷𝑖] = 0, and 𝐸[𝑢𝑖|𝑊𝑖𝐷𝑖] = 0 since 𝜙𝑖, 𝜂𝑖 and 𝑣𝑖 are 
independent of 𝑊𝑖 and 𝐷𝑖, and 𝐸[𝜙𝑖] = 0, 𝐸[𝜂𝑖] = 0, 𝐸[𝑣𝑖] = 0, each of the element in the above 
matrix is reduces to zero, meaning,  
 

𝐸[𝑍′𝑢] = 0 (𝐴. 7) 
 
Substituting 𝐸[𝑍′𝑢] = 0 in (A.6) into (A.4) 
 

𝐸[Γ̂] = Γ + (Z′𝑍)−1𝐸 × 0 = Γ (𝐴. 8) 
 
Hence, under the mean independence assumption, 𝐸[Γ̂] = Γ, i.e., unbiased.… Q.E.D. 
 
 
Consistency 
 
Proof: 

𝑝𝑙𝑖𝑚 Γ̂ = 𝑝𝑙𝑖𝑚 Γ + 𝑝𝑙𝑖𝑚[ (
Z′𝑍
𝑁

)
−1

(𝑍′𝑢/𝑁)] 

By the product rule of probability limit 

= 𝑝𝑙𝑖𝑚 Γ + 𝑝𝑙𝑖𝑚 (
Z′𝑍
𝑁

)
−1

𝑝𝑙𝑖𝑚 (
𝑍′𝑢
𝑁

) (𝐴. 9) 

 

Here Z′𝑍 is a positive definite matrix. Thus, consistency requires 𝑝𝑙𝑖𝑚 (𝑍′𝑢
𝑁

) = 0 

 
As shown above  
 

𝑍′𝑢 =

[
 
 
 
 
 
 
 
 
 ∑𝑢𝑖

𝑖

∑𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

∑𝐷𝑖𝑢𝑖
𝑖

. .

∑𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

− ∑𝑊𝑖𝑢𝑖
𝑖 ]

 
 
 
 
 
 
 
 
 

 

Thus,  
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𝑍′𝑢
𝑁

=
1
𝑁

[
 
 
 
 
 
 
 
 
 ∑𝑢𝑖

𝑖

∑𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

∑𝐷𝑖𝑢𝑖
𝑖

. .

∑𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

− ∑𝑊𝑖𝑢𝑖
𝑖 ]

 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 

1
𝑁

∑𝑢𝑖
𝑖

1
𝑁

∑𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

1
𝑁

∑𝐷𝑖𝑢𝑖
𝑖

. .

1
𝑁

∑𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

−  
1
𝑁

∑𝑊𝑖𝑢𝑖
𝑖 ]

 
 
 
 
 
 
 
 
 
 

 

 
 

  
When 𝑁 → ∞, and 𝑍′ and 𝑢 are i.i.d draws, by the weak law of large numbers one can write 
 

𝑝𝑙𝑖𝑚 

[
 
 
 
 
 
 
 
 
 
 

1
𝑁

∑𝑢𝑖
𝑖

1
𝑁

∑𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

1
𝑁

∑𝐷𝑖𝑢𝑖
𝑖

. .

1
𝑁

∑𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

− 
1
𝑁

∑𝑊𝑖𝑢𝑖
𝑖 ]

 
 
 
 
 
 
 
 
 
 

= 𝐸[𝑍′𝑢] (𝐴. 10) 

 
 
Since 𝐸[𝑍′𝑢] = 0 in (A.7), and 𝐸 (𝑍′𝑍)−1is finite, they imply  
 

𝑝𝑙𝑖𝑚 Γ̂ =  Γ 
 
Hence, Γ̂ is a consistent estimator of Γ 
 
QED 
 
Asymptotic normality 
 
As already shown,   

Γ̂ = Γ + (Z′𝑍)−1(𝑍′𝑢) 
 
or  

Γ̂ − Γ = (Z′𝑍)−1(𝑍′𝑢) 
 
 

√𝑁(Γ̂ − Γ) = (
Z′𝑍
𝑁

)
−1

(𝑍′𝑢/√𝑁) 
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The matrix Z′𝑍 is positive definite, thus invertible. Hence the asymptotic distribution of (Γ̂ −
Γ) depends on the limiting properties of (𝑍′𝑢/√𝑁) 
 
As such (𝑍′𝑢/√𝑁) can be expressed as  
 

𝑍′𝑢
√𝑁

=
1

√𝑁

[
 
 
 
 
 
 
 
 
 ∑𝑢𝑖

𝑖

∑𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

∑𝐷𝑖𝑢𝑖
𝑖

. .

∑𝑊𝑖𝐷𝑖𝑢𝑖
𝑖

− ∑𝑊𝑖𝑢𝑖
𝑖 ]

 
 
 
 
 
 
 
 
 

 

 
Since 𝑢𝑖 is mean independent of 𝑊𝑖, 𝐷𝑖, by the weak law of large numbers, when 𝑁 → ∞, 

𝑝𝑙𝑖𝑚 1
𝑁

∑ 𝑢𝑖 = 𝐸[𝑢𝑖]𝑖 ; 𝑝𝑙𝑖𝑚 1
𝑁

∑ 𝑊𝑖𝐷𝑖𝑢𝑖 = 𝐸[𝑊𝑖𝐷𝑖𝑢𝑖]𝑖 ; 𝑝𝑙𝑖𝑚 1
𝑁

∑ 𝐷𝑖𝑢𝑖 = 𝐸[𝐷𝑖𝑢𝑖]𝑖 ; 

𝑝𝑙𝑖𝑚 1
𝑁

∑ 𝑊𝑖𝑢𝑖 = 𝐸[𝑊𝑖𝑢𝑖]𝑖  and 𝑝𝑙𝑖𝑚 (𝑍′𝑍
𝑁

)
−1

= 𝐸[𝑍′𝑍]−1.  

 
Since, as shown above, 𝐸[𝑢𝑖] = 0, 𝐸[𝑊𝑖𝐷𝑖𝑢𝑖] = 0, 𝐸[𝐷𝑖𝑢𝑖] = 0, 𝐸[𝑊𝑖𝑢𝑖] = 0, by Lindeberg-
Feller central limit theorem one can write  
 

√𝑁(Γ̂ − Γ)  →d 𝑁[0, E[Z′𝑍]−1Var[𝑍′𝑢]E[Z′𝑍]−1] (𝐴. 11) 
 
 
B: The imperfect antidote case 
 
An imperfect antidote does not completely negate the effects of the treatment and its spillover 
effects. Consequently, 𝛽𝑇, 𝜃 and 𝛿 are not generally identified. The parameters can, however, 
be set-identified with additional assumptions. To illustrate, we first redefine the treatment 
and spillover statuses as follows: 
 
𝑇 = 0 : Treatment not received (not observed in any subsample) 
�̅� = 1 : Treatment not received, but there is a spillover with an imperfect antidote (subsample 
n4) 
�̃� = 1 : Treatment not received, but there is a spillover without antidote (subsample n2) 
𝑇 = 1 : Received treatment without antidote (subsample n1) 
�̂� = 1 : Received treatment with an imperfect antidote (subsample n3) 
 
Consider the regression equation (17) 
 

𝑌𝑖 = 𝜇0 + 𝛽𝑇𝑊𝑖𝐷𝑖 + 𝜃𝐷𝑖 + 𝛿𝑊𝑖(1 − 𝐷𝑖) + 𝑢𝑖 (𝐵. 1) 
 
where 𝑢𝑖 = 𝜔(𝐷=0)𝑖 + 𝜂𝑖𝑊𝑖𝐷𝑖 + 𝜙𝑖𝐷𝑖 + 𝑣𝑖𝑊𝑖(1 − 𝐷𝑖) 
 
Recall the original model assumptions 
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A.B1) 𝑊𝑖 ⊥ 𝑢𝑖 meaning 𝑊𝑖 ⊥ 𝜔(𝐷=0)𝑖,𝑊𝑖 ⊥ 𝜂𝑖, 𝑊𝑖 ⊥ 𝜙𝑖, 𝑊𝑖 ⊥ 𝑣𝑖. 
A.B2) 𝐷𝑖 ⊥ 𝜔(𝐷=0)𝑖, 𝐷𝑖 ⊥ 𝜙𝑖, 𝐷𝑖 ⊥ 𝑣𝑖. 
A.B3) 𝑊𝑖 ⊥ 𝐷𝑖. 
A.B4) Also, 𝜔(𝐷=0)𝑖, 𝜂𝑖, 𝜙𝑖, 𝑣𝑖 are mutually pairwise independent. 
 
As outlined in the text, we make two sets of additional assumptions in order to deal with the 
imperfect antidote. Below we show the bounds for each of these set of assumptions. Before 
going any further, it is useful to express 𝐴𝑇𝐸, 𝑆𝑈𝑇𝑉𝐴 and selection bias in terms of the 
regression parameters. 
 
Average treatment effect (𝛽𝑇) 
 
Based on (22a) in the text, without any essential heterogeneity, one can show that the 𝐴𝑇𝐸 
(𝛽𝑇) is 
 

𝛽𝑇 = 𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] (𝐵. 2) 
 
With a fully effective antidote, 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] = 𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0]. By 
substituting 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] with 𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] (which is observed) 
into (B.2), one obtains the 𝐴𝑇𝐸. 
 
Average bias due to SUTVA violation(𝛿) 
 
Similarly, Proposition 4 in the text implies that the average bias due to 𝑆𝑈𝑇𝑉𝐴 violation or 𝛿 
is 
 

𝛿 = 𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] (𝐵. 3) 
 
With a fully effective antidote, 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] = 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0]. By 
substituting 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] with 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] (which is observed) 
into (B.3), one obtains the 𝛿. 
 
Selectivity bias (𝜃) 
 
Similarly, Proposition 3 in the text implies that the average selectivity bias (𝜃) is 
 

𝜃 = 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] (𝐵. 4) 
 
With a fully effective antidote, 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] = 𝐸[𝑌𝑖(�̂� = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] and  
𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] = 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0]. Note that both 
𝐸[𝑌𝑖(�̂� = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] and 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] are observed. As such 
substituting 𝐸[𝑌𝑖(�̂� = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] and 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] into (B.4), one 
obtains the 𝜃. 
 
Case 1: Imperfect antidote with no essential heterogeneity, 𝑀𝑇𝑅 and 𝑌 ≥ 0 
 
Bounds on 𝛽𝑇 
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When the antidote is not fully effective, 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] ≠
𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0]. Thus, (B.2) no longer identifies 𝛽𝑇. However, with 𝑀𝑇𝑅 and 𝑌 ≥
0 one can put bounds on 𝛽𝑇.  
 
Lower Bound of 𝛽𝑇 
 
The 𝑀𝑇𝑅 and 𝑌 ≥ 0 assumptions imply that  
 

𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] ≥ 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] (𝐵. 5) 
 
However, with a less effective antidote, the treatment ( �̂� = 1) is a milder version of the 
original treatment. Due to this property, one can write 
 

𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] ≥ 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] (𝐵. 6) 
 
where both 𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] and 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0]  are non-negative. 
 
As such, this inequality shows that 𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] is the upper bound estimate 
of 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0]. This upper bound provides the lower bound estimate of 𝛽𝑇, 
that is 
 

𝛽𝑇 ≥ 𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] (𝐵. 7) 
 
Upper bound of 𝛽𝑇 
 
The assumption that 𝑌𝑖 ≥ 0 also implies that [𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] ≥ 0 . This provides a 
lower bound estimate for 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0]. This condition therefore implies that the 
upper bound estimate of 𝛽𝑇 is 
   

𝛽𝑇 ≤ 𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1] (𝐵. 8) 
 
 
Thus, the bounds for 𝛽𝑇 are  
 

𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] 
≤ 𝛽𝑇 ≤ 

𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1] (𝐵. 9) 
 
Bounds on 𝛅 
 
When the antidote is not fully effective, 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] ≠
𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0]. Thus, (B.3) no longer identifies 𝛿. However, with 𝑀𝑇𝑅 and 𝑌𝑖 ≥
0, one can bound 𝛿.  
 
Lower Bound of 𝛿 
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The 𝑀𝑇𝑅 and 𝑌 ≥ 0 assumptions imply that  
 

𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] ≥ 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] (𝐵. 10) 
 
However, with a less effective antidote the treatment spillover ( �̅� = 1) is a milder version of 
the original treatment. Because of this, one can write 
 

𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] ≥ 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] (𝐵. 11) 
 
where both 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] and 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0]  are non-negative, 
i.e., 𝑌𝑖 ≥ 0. 
 
 
As such, this inequality shows that 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] is the upper bound lower 
bound estimate of 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0]. This upper bound estimates provides the lower 
bound estimate of 𝛿, that is 
 

𝛿 ≥ 𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] (𝐵. 12) 
 
Upper bound of 𝛿 
 
The assumption that 𝑌𝑖 ≥ 0 also implies that [𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] ≥ 0 . This provides a 
lower bound estimate for 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0]. This condition therefore implies that the 
upper bound estimate of 𝛿 is 
   

𝛿 ≤ 𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] (𝐵. 13) 
 
 
Thus, the bounds for 𝛿 are  
 

𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] 
≤ 𝛿 ≤ 

𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] (𝐵. 14) 
 
Bounds on 𝜽 
 
As per (B.4)  
 

𝜃 = 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] 
 
In this case, neither 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] nor 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] are observed. 
However, derivations above shows the upper bounds and lower bounds for each of these 
terms,  
 

0 ≤ 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] ≤ 𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] (𝐵. 15𝑎) 
0 ≤ 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] ≤ 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] (𝐵. 15𝑏) 
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Lower bound of 𝜃 
The lower bound estimate of 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] and upper bound estimate of 
𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] provides the lower bound estimate of 𝜃, i.e.,  
 

−𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] ≤ 𝜃 
 
Upper bound of 𝜃 
The upper bound estimate of 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] and lower bound estimate of 
𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] provides the upper bound estimate of 𝜃, i.e., 
 

𝜃 ≤ 𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] 
 
Thus, the bounds for 𝜃 are  
 

−𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] ≤ 𝜃 ≤ 𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] (𝐵. 16) 
 
 
Case 2: Imperfect antidote with no essential heterogeneity, 𝑀𝑇𝑆, 𝑂𝑇𝑆, 𝑌𝑖 ≥ 0 and bigger 𝑌𝑖 is 
preffered 
 
Bounds on 𝛽𝑇 
 
As per (B.2),   

𝛽𝑇 = 𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] (𝐵. 17) 
 
The problem of identification is that 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] is not observed (see in Case 1 
above). 
 
Lower Bound of 𝛽𝑇 
 
Under the OTS assumption, the  treatment group prefers the treatment over no-treatment. 
Because (�̂� = 1) represents a milder version of the treatment, we assume that the treatment 
group would also prefer this over no-treatment. In other words, 
 

𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] ≥ 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] (𝐵. 18) 
 
Hence (B.2) can be re written as  
 
 

𝛽𝑇 = {𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0]}
+ {𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0]} 

 
so that 

𝛽𝑇 − {𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0]}
= 𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] (𝐵. 19)
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Equation (B.8) implies 
 

{𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0]} ≥ 0 
 
Thus, (B.19) can be re-written as  
 

𝛽𝑇 ≥ 𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] (𝐵20) 
 
Both 𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1] and 𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] are observed. Hence the 
lower bound of 𝛽𝑇 is identified. 
 
Upper bound of 𝛽𝑇 
 
By the MTS assumption  
 

𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] ≥ 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] (𝐵. 21) 
 
Because treatment spillover (�̅� = 1) is a milder version of treatment (𝑇 = 1), the OTS 
assumption implies 
 

𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] ≥ 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] (𝐵. 22) 
 
Combining (B.21) and (B.22) 
 

𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] ≥ 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0]  
or  
 

0 ≥ 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] (𝐵. 23) 
 
 
Now consider (B.2) again, i.e.,  
 

𝛽𝑇 = 𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] (𝐵. 24) 
 
Rewriting (B.24) 
 

𝛽𝑇 = {𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0]}
+ {𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0]} 

or, 
 

𝛽𝑇 − {𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0]}
= 𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] (𝐵. 25) 

 
 
By (B.23) and (B.24) one then can write 
 

𝛽𝑇 ≤ 𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] (𝐵. 26) 
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The bounds on 𝛽𝑇 are  
 

𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(�̂� = 1)|𝐷𝑖 = 1,𝑊𝑖 = 0] 
≤ 𝛽𝑇 ≤ 

𝐸[𝑌𝑖(𝑇 = 1)|𝐷𝑖 = 1,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] (𝐵. 27) 
 
 
Bounds on 𝜹 
 
Consider (B.3) again 
 

𝛿 = 𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0]  
 
 
Here as well, the problem of identification arises because 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] is not 
observed.  
 
Upper bound of 𝛿 
 
The OTS assumption implies that those who chose no-treatment, are worse off with treatment 
than without treatment. Since �̅� = 1 represents a milder version of the actual treatment, the 
observed average outcome of 𝑛4 with �̅� = 1 is smaller than the average outcome of 𝑛4 without 
treatment, i.e.,  
 

𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] ≥ 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] (𝐵. 28) 
 
Now rewrite (B.3) as 
 

𝛿 = {𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0]}
+{𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] }

 

 
Simplifying 

𝛿 − {𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] } 
= 𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] (𝐵. 29) 

 
 
Note, by (B.28), 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0]  ≤ 0, which implies 
 

𝛿 ≤ 𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] (𝐵. 30)  
 
Lower bound of 𝛿 
 
By the MTS assumption again, 
 

𝐸[𝑌(𝑇 = 0)|𝐷 = 1,𝑊 = 0] ≥ 𝐸[𝑌(𝑇 = 0)|𝐷 = 0,𝑊 = 0] (𝐵. 31) 
 
By OTS assumption with partial treatment  �̂� = 1 
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𝐸[𝑌(�̂� = 1)|𝐷 = 1,𝑊 = 0] ≥ 𝐸[𝑌(𝑇 = 0)|𝐷 = 1,𝑊 = 0] (𝐵. 32) 

 
Combing (B.31) and (B.32)  
 

𝐸[𝑌(�̂� = 1)|𝐷 = 1,𝑊 = 0] ≥ 𝐸[𝑌(𝑇 = 0)|𝐷 = 0,𝑊 = 0] (𝐵. 33) 
 
Rearranging (B.3) 
 

𝛿 = 𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] − 𝐸[𝑌(�̂� = 1)|𝐷 = 1,𝑊 = 0]
+𝐸[𝑌(�̂� = 1)|𝐷 = 1,𝑊 = 0] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] (𝐵. 34)

 

or,  
 

𝛿 − {𝐸[𝑌(�̂� = 1)|𝐷 = 1,𝑊 = 0] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0]} 
= 𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] − 𝐸[𝑌(�̂� = 1)|𝐷 = 1,𝑊 = 0] 

 
 
Note, by (B.33),  
 

{𝐸[𝑌(�̂� = 1)|𝐷 = 1,𝑊 = 0] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0]} ≥ 0,  
 
yielding 
 

𝛿 ≥ 𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] − 𝐸[𝑌(�̂� = 1)|𝐷 = 1,𝑊 = 0] (𝐵. 35) 
 
Thus, the bounds for 𝛿  
 

𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] − 𝐸[𝑌(�̂� = 1)|𝐷 = 1,𝑊 = 0] 
≤ 𝛿 ≤ 

𝐸[𝑌𝑖(�̃� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 1] − 𝐸[𝑌𝑖(�̅� = 1)|𝐷𝑖 = 0,𝑊𝑖 = 0] (𝐵. 36) 
 
 
Bounds of 𝜽 
To examine the selectivity with imperfect antidote, consider (B.4), which states  
 

𝜃 = 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] − 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0]  
 
As stated above, neither 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 1,𝑊𝑖 = 0] nor 𝐸[𝑌𝑖(𝑇 = 0)|𝐷𝑖 = 0,𝑊𝑖 = 0] are 
observed when antidote is imperfect and there is a treatment spillover.  
 
Upper bound of 𝜃 
 
The OTS assumption implies 
 

𝐸[𝑌(𝑇 = 0)|𝐷 = 0,𝑊 = 0] ≥ 𝐸[𝑌(�̅� = 1)|𝐷 = 0,𝑊 = 0] (𝐵. 37) 
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because the control group ideally prefers no treatment over the full treatment 𝑇. If this 
preference is true, then the control group would also prefer no-treatment over a milder 
version of the treatment �̅� = 1.   
 
By the same OTS logic, the treatment group would like treatment over no-treatment. Thus, 
the treatment group would prefer even a partially effective treatment ( �̂� = 1)  than no 
treatment. Thus 
 

𝐸[𝑌(𝑇 = 0)|𝐷 = 1,𝑊 = 0] ≤ 𝐸[𝑌(�̂� = 1)|𝐷 = 1,𝑊 = 0] (𝐵. 38) 
 
Now rewrite (B.4) 
 

𝜃 = 𝐸[𝑌(𝑇 = 0)|𝐷 = 1,𝑊 = 0] −  𝐸[𝑌(�̂� = 1)|𝐷 = 1,𝑊 = 0] + 𝐸[𝑌(�̂� = 1)|𝐷 = 1,𝑊 = 0]
− 𝐸[𝑌(�̅� = 1)|𝐷 = 0,𝑊 = 0] + 𝐸[𝑌(�̅� = 1)|𝐷 = 0,𝑊 = 0]
− 𝐸[𝑌(𝑇 = 0)|𝐷 = 0,𝑊 = 0] 

 
implying 
 

𝜃 − {𝐸[𝑌(𝑇 = 0)|𝐷 = 1,𝑊 = 0] −  𝐸[𝑌(�̂� = 1)|𝐷 = 1,𝑊 = 0]}
− {𝐸[𝑌(�̅� = 1)|𝐷 = 0,𝑊 = 0] − 𝐸[𝑌(𝑇 = 0)|𝐷 = 0,𝑊 = 0]} 

= 𝐸[𝑌(�̂� = 1)|𝐷 = 1,𝑊 = 0] − 𝐸[𝑌(�̅� = 1)|𝐷 = 0,𝑊 = 0] (𝐵. 39) 
 
 
Combining (B.39) with (B.37) and (B.38) yields 
 

𝜃 − (≤ 0) − (≤ 0) = [𝑌(�̂� = 1)|𝐷 = 1,𝑊 = 0] − 𝐸[𝑌(�̅� = 1)|𝐷 = 0,𝑊 = 0] 
In other words, the upper bound of 𝜃 is 
 

𝜃 ≤ 𝐸[𝑌(�̂� = 1)|𝐷 = 1,𝑊 = 0] − 𝐸[𝑌(�̅� = 1)|𝐷 = 0,𝑊 = 0] (𝐵. 40) 
 
The lower bound for 𝜃 is not identified since upper bound of 𝐸[𝑌(𝑇 = 0)|𝐷 = 0,𝑊 = 0] is 
not identified with the OTS assumption and treatment spillover.  
 
 
 


