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Abstract High-fidelity pedestrian tracking in real-life conditions has been an important
tool in fundamental crowd dynamics research allowing to quantify statistics of relevant
observables including walking velocities, mutual distances and body orientations. As this
technology advances, it is becoming increasingly useful also in society. In fact, continued
urbanization is overwhelming existing pedestrian infrastructures such as transportation
hubs and stations, generating an urgent need for real-time highly-accurate usage data,
aiming both at flow monitoring and dynamics understanding. To successfully employ
pedestrian tracking techniques in research and technology, it is crucial to validate and
benchmark them for accuracy. This is not only necessary to guarantee data quality, but
also to identify systematic errors. Currently, there is no established policy in this context.

In this contribution, we present and discuss a benchmark suite, towards an open stan-
dard in the community, for privacy-respectful pedestrian tracking techniques. The suite
is technology-independent and it is applicable to academic and commercial pedestrian
tracking systems, operating both in lab environments and real-life conditions. The bench-
mark suite consists of 5 tests addressing specific aspects of pedestrian tracking quality,
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including accurate line-based crowd flux estimation, global density estimation, individual
position detection and trajectory accuracy. The output of the tests are quality factors ex-
pressed as single numbers. We provide the benchmark results for two tracking systems,
both operating in real-life, one commercial, and the other based on overhead depth-maps
developed at TU Eindhoven, within the Crowdflow topical group. We discuss the re-
sults on the basis of the quality factors and report on the typical sensor and algorithmic
performance. This enables us to highlight the current state-of-the-art, its limitations and
provide installation recommendations, with specific attention to multi-sensor setups and
data stitching.

Keywords High-fidelity pedestrian tracking - sensor benchmarking - crowd monitoring -
real-life pedestrian measurements - industrial and societal applications

1. Introduction

Growing population and continued urbanization puts urban infrastructures at large stress.
Moreover, over the next 10 years in densely populated European countries public trans-
port facilities such as, e.g. train or metro stations, expect a passenger growth as high as
40% [1]. Potentially dangerous crowd-capacity issues — possibly in combination with dis-
tancing requirements — increase by the day, and demand substantial crowd management
efforts. To unlock sustainable and scalable crowd management, maximizing comfort and
safety, real-time, high-accuracy, anonymous individual pedestrian tracking is a must. This
enables reliable usage monitoring and performance profiling, and, on a broader perspec-
tive, the possibility to develop a fundamental understanding of the motion of crowd flows.
Pedestrian dynamics researchers who, since the beginning of the millenium, mostly relied
on controlled laboratory experiments for data acquisition (see e.g. [2—8]), can now also
acquire fundamental knowledge in real-life environments collecting large-scale statistics
of observables such as walking velocities, mutual distances, body orientations and group
structures [9-14].

Optic-based tracking, leveraging on visual-like signals, is the most widespread technol-
ogy when (sub-)centimeter pedestrian positioning resolution is required. Raw signals are
generally acquired via arrays of color cameras (as CCTV) [2,5], stereo cameras [3, 14, 15]
or infrared depth-cameras [9, 16, 17]. Specifically, the last two technologies, hinged on
three-dimensional imaging, allow higher accuracy and will be considered in this paper.
After a calibration stage in which, among others, pixel-coordinates are matched to spatial
coordinates, raw signals are post-processed to yield pedestrian positions and trajectories.
Highly accurate, optical methods are generally limited in range by the visual cone of
the individual sensors. Note that, at the price of a substantial accuracy loss, Bluetooth-
based [18, 19] or Wi-Fi-based [20,21] tracking enable larger spatial coverage per sensor.

Optic-based tracking techniques become rapidly more affordable over time, this makes
high-accuracy pedestrian tracking accessible to a wide variety of users beyond academic
research. Over the last few years, for instance, managers of public transport facilities have
adopted pedestrian tracking technologies to gain valuable insights in the flow dynamics
through their facilities (see e.g. [14,22-24]).
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To successfully employ pedestrian tracking techniques in research and technology, it is
crucial to measure the level of performance and asses the quality of the output data. This
means establishing a benchmark as well as measuring the performance of the current
state-of-the-art. This is not only necessary to guarantee data quality, but also to identify
systematic errors, such as erroneous object-person recognition, and misaligned stitching.
To the best of our knowledge, there is no established tool in this context.

In this contribution we propose a benchmark that consists of a minimal set of five tests
to quantify pedestrian detection accuracy and time-tracking reliability. The tests have
been iteratively improved over the past 3 years [22] and follow from a joint effort be-
tween academic research and large-scale public facility managers. The full benchmark,
designed to take limited time and resources, can be executed in less than 2 hours with
as few as 12 participants. During the test participants are asked to walk close to each
other. Due to short distances between first neighbors we are able to obtain instantaneous
high local densities despite low number of participants. The five distinct tests span from
macroscopic to increasingly microscopic observables of pedestrian dynamics. Consider-
ing finer and finer aspects of pedestrian dynamics, the tests get increasingly challenging
from a technological perspective. The tests output quality factors expressed as single
numbers. The first two tests probe large-scale observables by gauging reliability in es-
timating: 1. crowd fluxes (ped/min), and 2. local densities (ped/mz). Note that these
are averaged quantities, respectively over a time interval or over a surface, and therefore
benefit from error compensation, i.e. false negatives could counterbalance false positives.
In test 3, we focus on the significantly more challenging task of instantaneous individual
localization. In tests 4 and 5, we consider Lagrangian time-tracking proficiency over full
multi-sensor measurement domains.

We present the benchmark results for two pedestrian tracking setups operating in real-
life, one developed in-house at TU Eindhoven, and the other one commercially available.
This aims at reporting on the current state-of-the-art and providing a reference for new
pedestrian tracking setups.

This paper is structured as follows: In Sec. 2 we discuss the essentials of optic-based
pedestrian tracking. This is followed, in Sec. 3, by a description of the two experimental
setups we employ to validate our benchmark. In Sec. 4, we introduce the benchmark
suite and detail individual tests and their rationale. In Sec. 5, we report the benchmark
performance of our experimental setups. The discussion in Sec. 6 concludes the paper.

2. Essentials of 3D optic-based pedestrian tracking

In 3D optic-based tracking, visible-light or infrared 3D imaging data, acquired by camera-
like sensors, are processed to localize pedestrians in space and track them over time.
Three-dimensional imaging, richer in information than flat 2D pictures, substantially sim-
plifies and allows high accuracy in the tasks connected to tracking. At the core it is the
estimation of a depth-map of the scene, that encodes the position of each pixel in the
three-dimensional space [12, 16, 17]. This can be achieved via stereoscopic vision, scat-
tered infrared illumination e.g. [25], or time-of-flight sensors. For each pedestrian and
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each 3D-frame acquired, the tracking process yields quadruplets (x,y,?,id) where x and y
are spatial coordinates (a z-coordinate can be added if needed), ¢ is the frame acquisition
time, and id is an identifier unique to each pedestrian. This enables us to define the set
of recorded trajectories .7 = {4}, with ¥;4 the trajectory of the pedestrian with identifier
id.

The tracking process generally happens in two stages: localization and Lagrangian
time-tracking. In the localization stage, each frame is processed independently to single
out each pedestrian and estimate their position. To this purpose image processing and/or
machine learning models are used [13, 16,17,26]. Lagrangian time-tracking assigns an id
to each detection on the basis of continuity arguments. These two stages can also happen
simultaneously, e.g. using optical-flow like techniques [15].

Cameras or infrared sensors are generally mounted in overhead position, aimed per-
pendicularly to the floor to reduce mutual pedestrian occlusions. The scope of their view-
cone depends on, and in general, is limited to, the mounting height (typically the height
of the ceiling). Grids of sensors with partially overlapping view-cones can be combined
to enlarge the measurement domain [27]. During the installation, a calibration step which
establishes a global coordinate system across all the sensors is generally performed. Ad-
ditionally, background subtraction which removes stationary objects (e.g. benches) from
the image can be used to simplify the localization phase and increase its accuracy.

Despite its growing adoption, optic-based pedestrian tracking still features numerous
open technical challenges. First, localization algorithms can fail due to poor image qual-
ity, e.g. caused by impurities on the camera lenses, excessive or insufficient illumination,
or interference in the infrared spectrum (caused by direct sun exposure). Additionally,
objects in the scene such as luggage or bicycles can yield false positive detections. In-
stead, possible causes for false negatives are (partial) occlusions by other pedestrians or
infrastructural objects, e.g. trusses, signage, and lighting. Especially at the boundaries
of each sensors view-cone the acquired image can be distorted which also lowers the lo-
calization quality. False negatives in the localization process yield gaps over which the
time-tracking algorithm is unable to return continuous trajectories. As a consequence,
two or more “interrupted” trajectory pieces with distinct ids are returned.

Combining information from multiple sensors presents also challenges connected to
insufficient overlap or misalignment between the sensor view-cones (cf., e.g., the view-
cone stitching algorithm in [12]). These are typical causes for “interrupted” trajectories.

Our benchmark contains tests that are designed to recognize these bottlenecks, prob-
ing efficiently localization accuracy, geometric conformality, and the absence of tracking
artifacts such as misassigned ids.

3. Tracking technologies and experimental setups

We discuss our benchmark considering two pedestrian tracking setups briefly described
below. The systems, which operate anonymously and in real-life conditions, leverage on
different optic-based tracking approaches. The first, developed in house at TU Eindhoven,
within the Crowdflow topical group, is based on depth reconstructed via scattered infrared
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illumination [25] and, the second, is based on depth reconstructed via stereoscopic vision.
In the following we shall refer to these systems, respectively, as “TU/e setup” and “com-
mercial setup”. We give a description of the pedestrian tracking systems in the paragraphs
below. Note that in both setups we did not apply any further processing of the raw images
nor post-processed the obtained trajectories. The performance of these tracking systems
can be enhanced by setup-specific manual operations e.g. smoothing or restitching of the
individual trajectories. This choice was deliberately made to focus on the bare, baseline,
tracking accuracy.

TU/e setup The tracking system developed in house at TU Eindhoven leverages on
overhead depth-map images, which represent the distance between pixels and the sensor
plane (colorized in shades of gray in the example of Fig. Ic). Localization occurs via
depth clustering (as in [12]), and time-tracking uses the Trackpy Python library [28]. The
same approach has been successfully used, e.g., in stations, streets, and museums [9, 12,
13,26]. The specific setup considered consists of a grid of 3 x 4 Microsoft Kinect™ [25]
depth sensors. The sensors are attached to the ceiling of a large public area within the
University campus in Eindhoven, the Netherlands, at a height of about 4.5 m (see Fig. 1a,
b). A staircase (visible in Fig. 1b) is located next to, but not part of, the measurement
setup. The grid records depth images (Fig. 1c) over an area of S = 150 m? with f = 30
frames per second.

Commercial setup The commercial system anonymously tracks pedestrian movements
using 3D stereoscopic images. The system consists of 3 commercial pedestrian tracking
sensors (Xovis™), used in e.g. train stations [14,22-24], to monitor complex crowd
flows. Every sensor records images at f = 10 frames per second and processes the stereo
images in real-time only storing pedestrian locations as X, y coordinate pairs. This system
is installed at real-life operational train station Breukelen, the Netherlands. The sensors
are mounted to the ceiling of a platform covering an area of 4m x 12.4m ~ 50m?. We
report an overview of the platform in Fig. 2.

Note that (most) commercial systems only return trajectories, whereas in custom setups
one can retain also the raw data which can be used to further improve the algorithms
and/or extracting additional features such as body orientations.

4. Pedestrian tracking benchmark

We describe here the five tests comprised in our benchmark, which is also resumed and
schematized in Tab. 1 encompassing an illustration and key features for the individual
tests. We additionally present advises on test duration, AT, and number of participants,
N, using a gray cell background.

Test 1: Line-based crowd flux estimation. We probe the accuracy in estimating crowd
fluxes, as count of pedestrians crossing a line in a predefined time window, 7o < t < t;.
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(b) (©)

Figure 1 TU/e measurement setup based on overhead depth sensors at Eindhoven University of Technol-
ogy, The Netherlands, during test 3. (a) Picture taken during test 3 of the benchmark. At the
top of the image part of the 3 x 4 sensor grid is indicated with red arrows. We guide partici-
pants during this test using taped markings on the floor. (b) Detail of one of the three arrays of
4 sensors, taken at sensor height. The sensors are attached to a truss near the ceiling pointing
downward, perpendicularly to the floor (c) Overhead depth image captured by the sensor grid
already encompassing merging and perspective correction [29]. The gray color in the depth-map
represents the distance to the camera plane. Bright shades are far from the sensor and darker
colors are closer to the sensor. In the depth-map we can distinguish silhouettes of pedestrians (as
seen from above) where the shoulders are a lighter tint of gray and the head is slightly darker.
The inset reports the silhouette of a single pedestrian. The trajectories of the pedestrians are
super-imposed and show the walking direction.

Train tracks

: Measurement
: m domain - =
Waiting ° === Entrance
area == Qates
- = IE

(a)

Figure 2 Experimental setup for the commercial tracking system at train station Breukelen, The Nether-
lands, visualized with a schematic floorplan. The train tracks are shown in the top and bottom
of the image. The dimensions of the measurement domain, with size 4 m x 12.4 m = 50 m2, is
highlighted with a red dashed rectangle.
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We compare counts automatically estimated, N (fo,?1), with the ground-truth, Nyeq;(fo,11),
manually evaluated. As a final score we retain the following indicator

Nreal(IO;tl)

which equals 100 in case of a correct count estimate and is lower otherwise. Commercial
systems generally include internal algorithms to compute line crossings, whereas in the
TU/e system we employ the algorithm described in App. A. To reach a challenging flux
of J4 =~ 100 ped/min, we ask participants to follow an elliptical path with a small circum-
ference (C ~ 10 m). The elliptical path is crossed twice by the straight line across which
the flux estimation occurs. The test takes AT ~ 5 minutes to complete.

Test 2: Global density estimation. We target the accuracy in estimating pedestrian
densities. We consider the number of people Ni, N, N3, ... moving freely within virtual
regions S1, 52,53, ... determined by the tracking systems, and compare it with the ground-
truth. For simplicity, we keep the number of pedestrians in each virtual region constant,
N; real» and consider the following time-averaged relative error as the score

T N:(t) — N;
AQ) _ 1_1/ | z( ) t,real| dt ) -100. 2)
' T Jo Ni,real

With few participants we only target low average crowd densities in this test. However,
the localization task is very challenging due to short distances between first neighbors that
yield instantaneously local high densities. Additionally, (stationary) objects can be added
to the test area to validate the ability to differentiate between objects and people.

Test 3: Individual position detection. We target, in line with [22], the capability of
accurately determining individual positions. To bypass the need to manually establish
a ground-truth for point-wise comparisons, we ask participants to walk following simple
geometric patterns, specifically, a grid of straight lines (cf. markings in Fig. 1a). We score
how closely the measured trajectories agree, as an ensemble, with the geometric pattern,
i.e. they form thin and straight bands.

Operationally, for each collected trajectory, we isolate the portions that follow single
grid lines. For each grid line, we obtain a set of trajectory pieces of which we consider
averages. We either retain the best fitting straight line (linear regression) or we find a
piece-wise average in bins of Dp;,, = 5 cm (local regression). Naming, without loss of
generality, these fitting curves, respectively, Vi, = Viin(X) and y;oc = yioc(x), we quantify
the following (the segments naming is as in Tab. | third entry):

* spread of trajectories along each grid line, that should be comparable to the indi-
vidual pedestrians body sway amplitude (about 5 cm [30]). We consider for each
x-location parametrizing a line the quantity z;;,(x) = yrin(x) — y(x) where y(x) is a
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generic measurement of coordinate y at position x. Note that z(x) is approximately
zero-centered at each x. Our benchmark quantifies

3
Gl(in): std.dev. (zin(x)), 3)
measurements
at all x

likewise it holds for G

loc”

* distance between linear fits over parallel lines, that should be constant. We score
them with slopes, such as the following, for the case of segments AK, BL (for the
other segments the formula works similarly)

DB =100 — IDE|— |HI]Y 100; 4)
|DH |

* angles between linear fits over perpendicular lines, that should be 90°. For the angle
/DHI we score this as follows (generalization for the other angles is not reported)

/DHI — 90°
L®) = 100— <|9T9’) - 100. (5)

Test 4: Trajectory accuracy in controlled environment We target the capability of
tracking pedestrians for extended time periods and along complex trajectories. We di-
vide the measurement domain in regions Sy, 5>, 53, ..., and ask each participant, id, from
a set of N, pedestrians, to stand in a region Sf)d and walk to an assigned destination
SZ’, following an irregular path of choice taking roughly AT ~ 30 s. Origin and des-
tination regions are assigned exclusively to a single pedestrian. With few participants,
e.g2. Nyeq = 12, the average density is low during this test. However, instantaneously we
have extremely high densities due to short distances between first neighbors, this makes
tracking very challenging. A recorded trajectory is considered correct when its origin and
destination respectively lie within the boundaries of the assigned origin-destination pair
(Sﬁ,d7SZd ). The final score is the percentage of correct trajectories. To increase the diffi-
culty, (stationary) pedestrians standing outside all the regions S, 52,53, ..., can be added

to the measurement domain
AW = (N “’”) -100. (6)
N, real

Test 5: Trajectory accuracy in real-life environment Finally, we test in a real-life
environment the capability of tracking pedestrians without interruptions. We define an
inner region, S;,, in which no trajectory can physically start or terminate. Each trajectory
recorded in a time window AT > 1 day, that enters the domain S;,, is classified according
to its quality:

1. correct: neither the trajectories initial nor final point lay inside region S;,;

2. faulty termination: the trajectory terminates inside region Sj,;
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3. faulty origin: the trajectory originates inside region S;,.

We report the percentage of trajectories correctly tracked A(5), approximating the total
number of trajectories as the correct trajectories plus interrupted trajectories. In formulas

this reads
correct

AB) —
correct + interrupted

) -100, (7)

where interrupted trajectories are interrupted paths consisting of two or more trajectory
pieces. Because one trajectory piece must enter domain S;, and another must leave this
domain we can approximate interrupted trajectories as

faulty termination + faulty origin

interrupted = > (8)
Features Ilustration Description
Test Crowd-flux Participants walk along.an ellip—
estimation § tical path, Fhereby crossing a vir-
« & tual line (in red). The test re-
Metric | A (Eq. 1) : : ¢ ports for every minute the er-
AT 5 . v’ ' A ror between the sensor estimated
X 1 min |
! and the ground-truth crowd-flux
N 12 ' ‘.->$> v across the (red) virtual line.
Test De'nsity. T.he number of participgnts in-
estimation . - side a predefined area is kept
,,,,,,,,,,,,,,,,,,, ‘ constant (e.g. N = 8). The
Metric | €? (Eq. 2) e 8 test reports the relative error be-
AT A s¢ 5 it . - 1 Y tween the estimated, N(t), anq
‘ : ground-truth number of pedestri-
N 12 . ”””””” P ans, N,,,;, inside the area.
Test erili:ilsr?al Part‘icipagts walk in a row in a
detection straight line. The test reports
the standard deviation in the dis-
o) (Eq. 3) ﬁ Local B tance between the recorded data
. _ 2 regression L. point and the local and linear re-
Metrics | D) (Eq. 4) =2 ErF gressions. Additionally, we re-
L® (Eq. 5) ¥ duincar | port the angles and distances be-
G=H | =] tween the linear regressions to
AT 2 x5 min K [ identify distortions in the mea-
N 12 surement setup.
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Participants walk in an irregu-
lar path from a predefined ori-
gin to a predefined destination,
passing in close proximity from

Trajectory
accuracy

Test

Metric | A®¥ (Eq. 6)

A
I

We define a domain, well within

B C
L D

each other. The test reports the
AT 4 x 1 min K‘A‘E percentage of trajectories that is
accurately tracked from origin to

H G

Test Trajectory s

€s accuracy / / the sensor range, where no tra-
, jectory should originate or ter-

destination without interruption.
: 5 . .
Metric | A®) (Eq. 7) ( ! minate. The test reports in real-

life conditions the percentage of
trajectories that is continuously
AT > 1 day tracked through that domain.

Env Real-life

Table 1 Synthetic description of the benchmark tests including key features and an illustration. The metric
used to score the test which we supplemented with advised quantities for the test duration, AT,
and number of participants, N, is included. Cells with advised quantities have a gray background.

5. Benchmark results on the considered systems

In this section we report and elaborate on the benchmark results for the pedestrian track-
ing systems introduced in Sec. 3. We iteratively improved each test by trying different
methods and variants. This optimization process, in combination with the ever-changing
nature of the real-life testing environments, caused, minor, non-essential, differences be-
tween the two setups. For each test, we report synthetic results plus illustrations taken
from either setup.

Test 1: Line-based crowd flux estimation. In Fig. 3a we report a sample of captured
trajectories and the results, in graph form, for the TU/e measurement setup. Specifically,
in Fig. 3b we report the minute-by-minute estimation accuracy (blue bars), the cumu-
lative pedestrian count (red line), and the average crowd flux (black slope). Synthetic
results for both setups are in Tab. 2, which includes, in time windows 5 < ¢t < t; of 1
minute, the ground-truth pedestrians count, N, (f,t1), the crowd flux estimation error,
N(to,t1) — Nyear(t0,11), and the estimation accuracy, AW (Eq. 1). For the TU/e system,
we employ N = 12 participants walking an elliptical path with circumference C ~ 10 m,
whereas for the commercial setup N = 11 participants walk an ellipse with circumference
C ~ 22 m. As a consequence of the different path lengths, C, the commercial setup is
tested with an average crowd flux of J4 ~ 30 ped/min, whereas the TU/e measurement
setup is tested with a more challenging J4 ~ 100 ped/min. Results of the TU/e and com-
mercial setups are A =95% and AV = 100% respectively.




Benchmarking Pedestrian Tracking for Research and Crowd Monitoring 11
Accuracy 1 Sensor Manual
125 500
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= ] A ]
Lf 75 2 4 300 =
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S 50} &‘&Q// J200 =
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25 L Y ~4 100
A 0
60 120 180 240 300
t[s]
(a) (b)

Figure 3 (a) Trajectories captured during test 1 by the TU/e setup, superimposed to the schematic illustra-
tion from Tab. 1. (b) Results of test 1 for the TU/e setup. Blue bars report the accuracy, AW on
a minute-by-minute basis, red lines indicate measured (dark) and ground-truth (light) pedestrian
count, N(¢), and a black line indicates the slope i.e. the average crowd flux, J4 ~ 100 ped/min.

Table 2 Synthetic results of test 1 for both pedestrian tracking setups. We report, on a minute-by-minute
basis, the ground-truth number of pedestrians, N,.,;, the error in the count, N — N,., and the
estimation accuracy, A("). While testing the TU/e setup, the participants maintained an average
mutual distance of d,,¢ ~ 0.8 m yielding a crowd flux of J4 = 100 ped/min, whereas in the com-
mercial case a far less challenging crowd flux of J4 = 30 ped/min was maintained due to the
larger average distance between first neighbors d,,¢ ~ 2 m. Therefore, the test of the commercial
system can be considered relatively less difficult.

TU/e Commercial

J4 ~ 100 ped/min Ja ~ 30 ped/min
Minute || davg = 0.8 m davg =2 m

Nreal N_Nreal A(l) Nreal N_Nreal A(l)
1 105 | 4 9% || 17 0 100%
2 96 2 98% || 38 0 100%
3 90 8 91% || 37 0 100%
4 98 6 94% || 29 0 100%
5 103 | 4 96% || NA | NA NA
Total 492 | 24 95% || 121 | O 100%
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1.5

1.25

0.75

p [ped/m?]

0.5

0.25

120 125 130
60 120 180 240
t[s]

(b)

Figure 4 (a) Measurement domain for the commercial setup. Red domains indicate regions S; and S, both
with an area 6.2 m?. (b) Results of test 2 for the commercial setup. The figure reports for all
repetitions, (A — D), the measured pedestrian count, N(¢). A color matching mark on the left y-
axis indicates the ground-truth pedestrian count N, for each repetition. Additionally, we report
for A and C a systematic error corrected pedestrian count denoted A, and C, respectively. The
left y-axis indicates pedestrian count whereas the right y-axis shows the corresponding crowd
density p inside the 6.2 m? region. The inset shows an enlarged view of the graph part inside
the black box.

Test 2: Global density estimation. We report, for the commercial setup, the test layout
in Fig. 4a and the test results in Fig. 4b. For the commercial setup we define two regions
S1,5> (cf. Fig. 4a), both with an area of 6.2 m?. In the case of the TU/e setup we employed
only one larger region S = 150 m?. To improve test reliability, we perform multiple runs
for each setup, thereby realizing four density estimations each A — D, see Tab. 3. In the ta-
ble we report also the ground-truth region occupation, N,.,;, the density, p = 1%, and the
estimation accuracy A® (Eq. 2). The commercial setup shows a systematic error in the
density estimation of region Sy, most likely related to false positive detection of 2 station-
ary objects. Therefore, in Tab. 3, we include an additional column containing a corrected
estimate AEZ), for which the systematic error is removed by reducing the pedestrian count,
N(t), by 2.

Among all four tests the commercial setup sustained an average density of
p = 0.85 ped/m?, whereas the density across the TU/e measurement domain is a fac-
tor 10 lower. Throughout run D, the infrared sensor of the TU/e setup is overexposed by
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excessive sunlight. Reduced image quality causing false negatives results, for this run, in
a lower density estimation accuracy.

Test 3: Individual position detection. We report in Fig. 5a, for the commercial setup,
the recorded trajectories during test 3. We fit a straight line (linear regression) for ev-
ery isolated set of trajectory pieces. The regressions accurately reconstruct the geometric
structure that is followed by the participants i.e. closely resemble a grid of straight lines.
We added the angles and distances between the grid lines to emphasize the correspon-
dence. Fig. 5b provides the isolated set of trajectory pieces belonging to grid line BE. We
fit a local (blue) and linear (red) regression through the trajectory pieces. Additionally,
we report the spread along the grid line with histograms for z;;,(x) (top) and z;,. (bottom)

annotated with test scores 6(3) and 6(3)

) 3) lin loc
Glin and Gloc

sway amplitude i.e. 6©) =5 cm. The test is relatively more challenging for the TU/e
setup which needs more sensors for the large measurement domain. In Tab. 5 we report
the correspondence to the grid geometry in terms of the distance between trajectories on
parallel grid lines D), and the angle between trajectories on perpendicular grid lines
L™ . The grid geometry is reconstructed with high accuracy as the angles and the mutual
distances in the recorded trajectories agree up to 99% with the original grid structure.

. We refer to Tab. 4 for the standard deviations,

, for both setups. All standard deviations are the same order as typical body

Test 4: Trajectory accuracy in controlled environment. In Fig. 6, we report side-by-
side the trajectories recorded by the TU/e measurement setup during the three runs of
test 4. Correct trajectories have a green and faulty trajectories a red color. Tab. 6 re-
ports the test results for both setups indicating, for each run, the number of trajectories,
Nyeaql, the number of correct trajectories, N..r, and the trajectory accuracy, A® . The
participants experience high instantaneous densities with almost body-to-body contact.
Minimum mutual distances in the order 20 cm are recorded several times over the lifes-
pan of their trajectories. Some tests of the commercial setup also contained additional
stationary pedestrians to increase the global density, this is represented in the table with
an extra column N,;;. The TU/e setup records, over an area of § = 150 m?, 22 correct
from a total of 30 trajectories whereas the commercial setup, on a much smaller area
S =50 m?, scores 49 out of 64 trajectories. Both setups report a trajectory accuracy in the
order of A®) ~ 75% (Eq. 6). This shows that in conditions with highly entangled trajec-
tories tracking procedures can be imperfect, as only 75% of the trajectories are captured
properly.

Test 5: Trajectory accuracy in real-life environment. In Fig. 7 we report all trajecto-
ries, recorded during AT = 1 day, partitioned in subsets: correct, faulty termination, and
faulty origin (cf. Sec. 4) using an inner domain S;, ~ 38 m?. The first row of figures re-
ports, per subset, the raw trajectories and the second row reports all the origins (red) and
destinations (blue) of trajectories in the corresponding subsets. The percentage accurately
tracked trajectories, A(S), 1s determined to be 79%, which is in the same order as the tra-
jectory accuracy test in controlled conditions. This shows that under normal operational
conditions 79% of the trajectory recordings is interrupted and broken into smaller pieces.
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Table 3 Synthetic results of test 2 for both tracking setups. We report for the repetitions A — D the ground-
truth number of pedestrians, N, the estimated density, p and the estimation error, £®. The
TU/e setup estimates density over an area of S = 150m? whereas the commercial setup considers
much smaller regions of S = 6.2m?. Due to the lower crowd density the test of the TU/e setup
can be considered relatively less difficult. For the commercial setup we report additionally the

. . . . 2
estimation error after correction for systematic errors AE )

TU/e Commercial
Test S=150m> AT ~300s | S=62m> AT =300s

Nrea | p [ped/m?] | A® || Npow | p [ped/m?] | A AEZ)
A 10 | 0.07 9% || 7 1.13 71% | 100%
B 8 0.05 9% | 4 0.65 99% | 99%
C 11 |0.07 98% || 5 0.81 60% | 100%
D 12 |0.08 94% | 5 0.81 99% | 99%
Total || 41 | 0.07 97% || 21 | 0.85 83% | 100%

Table 4 Synthetic results of test 3 for both tracking setups. The table reports for each grid line, the number
of overhead sensors, Nj.,s, and the standard deviation with respect to the local, oy, and to the
linear, oy;;,, regression.

TU/e Commercial
Test ; 5

Nens 01(03 [cm] Gl(in) [em] || Nsens | Ooc [cm] | Oy [cm]
AK 4 6.0 8.7 3 5.0 5.1
BL 4 4.9 5.5 3 5.1 5.2
CF 3 3.0 5.6 1 3.8 3.8
GJ 3 5.8 8.5 1 3.5 3.5
Average || 3.5 4.9 7.1 2 4.4 4.4
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Figure 5 (a) Recorded trajectories by the commercial setup during test 3. The figure reports a linear fit
for every set of trajectory pieces. The regressions reconstruct the geometric structure followed
by the participants. Additionally, we report the distances between parallel fits and the angles
between perpendicular fits. (b) Isolated trajectory pieces for grid line BL. We fitted a linear (red)
and local (blue) regression through the trajectory pieces. Additionally, we report the histograms
of zji,(x) (top) and z;,.(x) bottom including a Gaussian fit (pink).

Table 5 Synthetic results of test 3 for both setups. The table reports how accurate the recorded trajectories
agree with the grid geometry. In particular, we report the accuracy in reconstructing parallel grid
lines, D), and the accuracy in reconstructing perpendicular grid lines, L©3).

Test || TU/e Commercial

D) || 98.8% || 98.8 %

L3 | 98.9% || 99.4 %
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() (b) ©

Figure 6 Trajectories captured by the TU/e setup during test 4. Green lines indicate correct trajectories
whereas red lines indicate faulty trajectories. Trajectory origins and destinations are indicated
with spheres and crosses respectively.

Table 6 Synthetic results of test 4 for both setups. We report for runs A — D the number of participants,
Nyeal, the number of correctly tracked trajectories, N,,,, and the test accuracy, AW, Additionally
we report for the commercial setup the number of (stationary) objects, Nyp ;.

TU/e Commercial
Test || S=150m? S =50 m?
diin ~ 20 cm dmin ~ 20 cm

Nyear | Neor A(4) Nreal Nobj Neor A(4)

10 7 70% || 16 0 12 | 75%

10 8 80% || 16 0 12 | 75%

10 7 70% || 16 3 11 | 69%

ol |w | »

NA |NA | NA | 16 4 14 | 88%

Total || 30 22 | 73% || 64 7 49 | T7%
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Figure 7 The recorded trajectories by the commercial setup during test 5. The upper row with figures
reports the trajectories, partitioned per subset, and the bottom row reports the corresponding
origin-destinations pairs. The black rectangle indicates the inner domain, S;,.

6. Discussion

In this contribution we presented a benchmarking suite for pedestrian tracking systems.
The suite is light-weight and easily reproducible as it only contains a minimal set of 5
tests. The developed tests are tailored to take minimal efforts, taking typically less than
two hours in total, while requiring only a dozen participants. Each test accurately tar-
gets the validation of one of the following key components of pedestrian tracking: line-
based crowd flux estimation, global density estimation, individual position detection, and
trajectory accuracy. The tests output quality factors expressed as single numbers. The
combination of tests focuses on error-prone features like person-object recognition, and
multi-sensor stitching. From a civil engineering standpoint, the tests reflect observables
connecting with immediate awareness of a facility (1. instantaneous usage, 2. crowd-
ing distribution), as well as with longer-term efficiency and design (3. localization, 4-5.
tracking, i.e. usage modes). Facility usage and crowd distributions can indicate poten-
tially hazardous capacity issues and overcrowding in an early stage, while localization
and tracking enable efficiency improvements such as separation of usage modes.

Together with the benchmarking suite we presented the benchmark results of two real-
life pedestrian tracking systems, one commercial and one developed in academia. These
test results, synthesized in Tab. 7, are meant as a reference of the state-of-the-art for new
tracking installations and as a standard for novel tracking technologies. The higher accu-
racy of the commercial setup can be easily explained by its smaller measurement setup
using fewer sensors. The high error in the density estimation test for the commercial
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Table 7 Synthetic results of all tests for both tracking setups. We report for tests 1-5 the name, the metrics,
and the scores of both setups. Additionally, we report underneath each score the conditions that
impact the score the most.

Test Name Metric | TU/e setup | Commercial setup
Line-based crowd flux (1) 95% 100%
1. L. A at J, = 100 ped/m at J, = 30 ped/m
estimation and dgye = 0.8 m and dgyy =2 m
2 Global density AQ) 97 % 82%
) estimation at p = 0.07 ped/m? at p = 0.85 ped/m?
e 7.1 cm 4.4cm
lin with Nyeps = 12 with Nyeps =3
o - e 4.9 cm 4.4 cm
3 Individual position loc With Nyens = 12 With Nyens = 3
detection D) | 98.8% 98.8%
with Nyeps = 12 with Nyeps =3
j46) 98.9% 99.4%
with Nyeps = 12 with Nyens = 3
4. Trajectory accgracy in ne) Ztng)lso 2 ZZZ"SO 2
controlled environment and dyy, =~ 20 cm and dyy, ~ 20 cm
5. Traje?tory accuracy in A0 NA 79% .
real-life environment at Sj, =38 m

setup is most likely caused by a systematic error due to faulty person-object differenti-
ation. This emphasizes the great importance of background removal and proper sensor
calibration. The benchmark results show us that optic-based tracking systems can esti-
mate crowd fluxes and densities, and localize pedestrians with high accuracy. The biggest
open challenge is Lagrangian time-tracking in case of complex and highly intertwined
trajectories by pedestrians walking in close proximity. In this case the system were about
75% accurate.
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A. Counting algorithm

In this appendix we describe the algorithm that we used to quantify the number of pedes-
trians crossing a line in the TU/e setup for test 1.

A naive counting algorithm could verify whether two consecutive measurements land
on opposite sides of a (virtual) reference line (see Fig. 8a). Such an approach is highly
sensitive to measurement noise and could yield miscounts. In our test, we adopted a more
robust approach determining a line crossing event based on multiple samples before and
after the line. Specifically, we consider pairs of measurements along the same trajectory
that are AT = 1 s apart (i.e. 30 samples). A line crossing event was triggered when, within
the AT time interval, the majority of pairs were located on different sides of the line (see
Fig. 8b).

Position before
crossing line

/TN

Position after
crossing line

1=0.03

Position before
crossing line

¢ o o ¢ o
=0
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(a) (b)

Figure 8 Conceptual sketch of algorithms detecting the crossing of a virtual line (in red). Black dots indi-
cate position measurements. (a) Conventional counting algorithm probing for two consecutive
measurements on either side of the (virtual) crossing line. At f = 30 frames per seconds the
measurements are AT = 0.03 s apart. (b) Procedure to determine line crossings that we used in
the TU/e setup for test 1. See explanation in App. A.
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