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Abstract 

Electricity markets balance supply and demand with price. Historically, this price response has 
come almost entirely from supply. However, when much of supply is intermittent or inflexible, 
price responsive demand becomes essential for reliability and resiliency. We measure how 
responsive consumers are to price in Britain from July 2020 to July 2021 with half-hourly 
individual-household data. Our sample includes customers with a dynamic rate that tracks 
wholesale cost, as well as flat-rate customers used to control for weather and other factors. A 
one percent increase in price reduces demand by 0.26 percent. This elasticity is larger for 
consumers owning low-carbon technologies. This price response is sufficient to maintain system 
balance in extreme events even when most consumers are unresponsive. Regulators can 
encourage price responsive demand through retail choice and subsidize enabling technologies. 
Regulators can protect consumers with mandated hedging in dynamic plans. Low-income 
households benefit most from such policies. 

Introduction 

Households and businesses generally pay a flat rate per electricity kilowatt-hour irrespective of market 
conditions. A flat rate, say $0.15/kWh, is simple and limits variation in bills. Still, it is inefficient in today's 
electricity markets, where the social cost varies from -$0.02 to $9.00/kWh depending on time and 
location. Consumers do not see or feel this real-time generation cost. Supply must provide the flexibility 
to balance the system every second. The disconnect between retail rates and the real-time electricity 
price adversely affects reliability and system costs. The regulator must intervene to create short- and long-
term supply incentives to ensure resources offer sufficient flexibility. Focusing solely on supply is much 
like tying a knot with one hand. It is much easier to use both hands. A better solution is to let both supply 
and demand respond to price. Exposing some customers to the electricity price enables price responsive 
demand, which improves the electricity system's resiliency and accelerates and lowers the cost of the 
energy transition. 

Many markets have widespread adoption of smart meters, and some markets allow rates that track the 
wholesale electricity price. We use Britain customer-level data from Octopus Energy to estimate electricity 
demand response to day-ahead prices. We find that a one percent price increase reduces consumption 
by 0.26 percent. Also, the elasticity is larger for households owning low-carbon technologies, particularly 

 
1 Emmanuele Bobbio is a postdoctoral researcher in the Economics Department, University of Cologne. Simon 
Brandkamp is a doctoral candidate in the Economics Department, University of Cologne. Stephanie Chan is a data 
scientist at the Centre for Net Zero. Peter Cramton is a professor in the Economics Department, University of 
Cologne. David Malec is a research associate in the Economics Department, University of Maryland. Lucy Yu is the 
chief executive officer at the Centre for Net Zero. Funding from Deutsche Forschungsgemeinschaft (German 
Research Foundation) under Germany´s Excellence Strategy–EXC 2126/1–390838866 and the European Research 
Council under the European Union's Horizon 2020 research and innovation program, grant 741409. e-mail 
pcramton@gmail.com 

mailto:pcramton@gmail.com


2 
 

electric vehicles. While this effect may partly reflect self-selection, rapid innovation in demand-response 
technologies will likely increase adoption and enable greater price responsive demand going forward. 

Regulators can promote price responsive demand while benefitting consumers and society at large. Low-
income households would benefit most from dynamic rates but are more exposed to the financial risk of 
volatile bills and may lack the resources to invest in innovative home technologies. We argue that 
regulators should allow retail choice while monitoring consumer rate plans and mandating hedging. 
Hedging enables consumers to enjoy the upside of dynamic rates, protects consumers from the downside, 
and preserves incentives to act in a socially beneficial manner. Regulators can subsidize the adoption of 
innovative home technologies, particularly for low-income households. These policies support clean 
energy goals and the electrification of other sectors. 

Previous studies on the electricity consumption response to prices focused on industrial customers or 
residential pilot programs limited in duration and number of participants. Zhu et al. (2018) report a mean 
elasticity of -0.228 in a literature review for residential consumption. We use half-hourly data from actual 
residential contracts offered to Britain customers, including customers with a rate that tracks the 
wholesale cost. The large size of the sample allows us to study the effect of technology ownership. Both 
features are crucial to understanding the scope for price responsive demand in practice. 

Consumer engagement for reliability, resiliency, and the energy transition 

Electricity markets are organized for reliability. Power must be available whenever the end-user demands 
it. The spot market has features to ensure supply can respond to demand variations in almost all 
circumstances. For example, the system requires the availability of responsive reserves that can quickly 
balance supply and demand.  

At times, this supply response may be insufficient to match demand, resulting in controlled outages. 
Rolling outages are an administrative response to a shortage caused in part by end-users failing to reduce 
non-essential consumption, despite a social cost that is 300 times the typical electricity price. Rolling 
outages are coarse and produce pent-up demand exacerbating the need for rolling outages. A family 
without power cannot heat their home, whereas a family with power may over-heat their home, 
anticipating a rolling outage. By contrast, prices are a coordination mechanism directing electricity 
towards most critical social uses, heating both houses as necessary. 

The lack of price-responsive demand also produces long-term reliability issues. When supply and demand 
do not balance, the price is undefined. The price signal is absent precisely when it should convey the 
inadequacy of generation and storage resources. The lack of price formation leads to the so-called 
missing-money problem at the root of underinvestment in electricity markets (Joskow 2008). Regulators 
address this issue by defining an administrative shortage price and an administrative demand curve for 
reserves. These scarcity prices quickly approach the value of lost load as a market nears shortage (Hogan 
2013). Some markets go further and coordinate investments and retirement decisions by procuring 
capacity resources years in advance on behalf of load (Cramton et al. 2013). 

Price responsive demand is critical for resiliency. Resiliency is the ability to withstand systemwide events 
disrupting supply and demand, such as extreme weather. The 2021 Texas cold snap caused widespread 
outages of conventional generation and a simultaneous demand spike, resulting in a gap of approximately 
30GW in a system with a winter peak of 58GW (Busby et al. 2021). The system operator ordered rolling 
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outages for four days. Hundreds of lives were lost; the economic loss was $130 billion. In Bobbio et al. 
(2021), we use the demand model estimated in this paper to show that if 44% of end-users had been price 
responsive, no outages would have been necessary. The $9/kWh shortage price would have induced 
households to reduce their energy consumption enough to balance supply and demand. Demand 
response is a powerful way to improve resiliency. 

Finally, price responsive demand is essential to speed the energy transition and lower its cost. A zero-
emission resource mix will have a high share of solar, wind, storage, and possibly nuclear. Solar and wind 
generation is highly variable. These intermittent resources require substantial flexibility from other 
resources. Nuclear has limited flexibility, hence the need for significant investments in storage. However, 
the demand side can be another source of flexibility. Unlike storage, enhancing price responsive demand 
is low-cost and improves the electricity system along other dimensions, reducing system costs while 
fostering reliability and resiliency.  

Promoting price responsive demand within a well-regulated framework will save consumers money, 
especially low-income households. It will incentivize the innovation and adoption of low-carbon 
technologies, like energy efficiency, smart homes, and electric vehicles. The complementarity with electric 
vehicles is fundamental. Steinberg et al. (2017) estimate electric vehicles will raise energy consumption 
by 25% by 2050. Smart charging is crucial to avoid overloading the grid. Passenger cars are parked most 
of the time. Electric vehicles could service the grid by storing excess energy and discharging when 
electricity demand is high relative to supply from intermittent resources. Deploying vehicle-to-grid (smart 
charging and discharging) would reduce dramatically the need to invest in transmission and utility-scale 
storage to operate a zero-emission grid reliably. It would also be low cost. However, end-users paying flat 
electricity rates have no incentives to engage in vehicle-to-grid. Exposing end-users to prices that reflect 
the electricity spot price is crucial to coordinate charging decisions and to motivate the socially efficient 
use of vehicle batteries to smooth intermittent generation. 

Empirical findings on the consumption response to prices from Britain household data 

We use household-level data from Octopus Energy to estimate how consumers who signed up for dynamic 
rates respond to electricity prices. These customers pay half-hourly retail rates based on the day-ahead 
wholesale price. Every day at about 16:00, they learn prices for the following day. We employ half-hourly 
smart meter readings that measure electricity consumption from July 2020 to July 2021. 

Our regression analysis includes time segment fixed effects to control periodicity and trends in electricity 
consumption. A time segment is defined as the combination of year, month, day of the week, and half-
hour interval. For example, consumption and prices on Mondays at 7:30 in March behave similarly, 
regardless of whether it is the first or second Monday of March 2021. We can, therefore, think of the joint 
distribution of prices and consumption as approximately stable for a particular time segment. We use the 
consumption of Octopus customers on flat-rate plans to control for demand shocks like the weather.  

Figure 1 displays the price elasticity coefficients of our baseline regression model. The coefficients 
describe how households react when electricity prices marginally increase in period 0h. The figure's x-axis 
shows the seventeen half-hourly periods before and after the price increase. The time lags and leads 
capture whether households shift consumption to adjacent periods in response to a price increase in 0h. 
The y-axis depicts the price elasticity of electricity consumption.  
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The left panel of Figure 1 reveals that a one percent price increase induces customers on a dynamic plan 
to reduce consumption by 0.265 percent in the same period. This behavior is in line with findings in 
previous studies on the demand elasticity to prices. Espey and Espey (2004) report a mean own-price 
elasticity of -0.35 and a median of -0.28 in their meta-analysis of 36 studies.  

The left side of Figure 1 suggests that customers modestly increase demand in adjacent periods when the 
price increases in period 0h. However, these cross-price elasticities are generally not statistically 
significant—see Table A-1 in the appendix. Thus, customers' willingness or ability to shift consumption 
over time appears to be limited. 

Table A-1 also reveals that customers' response to prices only moderately differs across seasons. Own-
price elasticities are slightly stronger in summer and winter when average consumption is higher than in 
spring and fall. In contrast, the consumption response varies substantially by time of day. Customers seem 
less willing to adjust their electricity usage in the morning and afternoon. Postponing electricity-
consuming activities during these times of day might be impractical and too costly due to fixed working 
hours. 

Low-carbon technologies 
Octopus Energy surveys customers who sign up for a dynamic plan and collects ownership information of 
low-carbon technologies (LCT). We use this data to analyze if customers with LCTs react more or less 
strongly to price changes. We consider five LCTs: 1) electric heating, 2) smart thermostats, 3) electric 
vehicles, 3) residential solar, and 4) battery storage. 

Figure 1: Consumption response due to price shock at period 0h 

 

The right graph of Figure 1 shows that customers owning at least one LCT are almost three times as price 
responsive as customers who do not own any LCT. No-LCT customers have an own-price elasticity 
of -0.101 compared to -0.282 for customers with at least one LCT.  

Next, we consider specific combinations of LCTs. For conciseness, Figure 2 only shows the own-elasticity 
coefficients. Table A-1 in the appendix displays the complete estimation results. The left side of Figure 2 
indicates that low-carbon heating technologies do not increase customers' price responsiveness. The own-
price elasticities are nearly the same for customers with electric heating, or electric heating and smart 
thermostats (and no other LCT) as for customers without LCTs.  
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Figure 2: Consumption response by low-carbon technology ownership status  

On the right side of Figure 2, we focus on the effect of the remaining LCTs, namely electric vehicles, solar 
PV, and batteries.2 The own-price elasticity of customers who only have an electric vehicle (EV only) is 
more than three times larger than the elasticity of customers without any LCT. Electric cars require 
substantial amounts of energy, motivating consumers to charge when electricity is cheaper. Pairing 
electric vehicles with solar and batteries increases the price-responsiveness even further.  

Solar PV ownership also has a substantial effect on price responsiveness. Perhaps surprisingly, batteries 
alone do not make customers more price responsive than customers without any LCT. Moreover, 
customers who pair batteries with electric vehicles or solar PV are not significantly more price responsive 
than customers who only use an EV or a solar panel. Batteries are not yet endowed with software to take 
advantage of price changes because dynamic rates remain rare. 

Our findings add to the literature that examines how consumers respond to dynamic electricity prices 
(Dutta und Mitra 2017; Espey und Espey 2004). Most of this literature focuses on industrial and 
commercial customers since dynamic prices are only offered to business customers in many countries 
(Boisvert et al. 2007; Herriges et al. 1993; Taylor et al. 2005; Patrick und Wolak 2001). Empirical evidence 
on residential customers' price responsiveness largely relies on pilot programs and small-scale 
experiments (Allcott 2011; Faruqui and Sergici 2010). Some of these pilot studies also evaluate the effect 
of low-carbon technologies like smart thermostats (Faruqui and George 2005) and electric vehicles 
(Limmer 2019) on demand response. Our study contributes to this literature in three ways. First, we 
employ a large sample of observational household consumption data. Second, our large sample allows us 
to stratify our dataset by low-carbon technology (LCT) ownership to analyze the effects of different LCTs 
on price responsiveness. Third, we study how the combination of multiple LCTs influences customer 
behavior.  

 
2 To increase the size of our sub-samples, we do not control for ownership of the low-carbon heating technologies. 
For instance, "EV only" customers have an electric vehicle, no solar PV, and no battery, but they may have electric 
heating or own a smart thermostat. Low-carbon heating technologies do not have a significant effect on price 
responsiveness, as discussed above. 
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Policy levers and consumer protection 

Dynamic rates are beneficial to consumers. They allow households to shift their electricity consumption 
to times when supply is abundant relative to demand and electricity is cheap, thus saving money. Potential 
savings are particularly significant for low-income households who spend a larger share of their income 
on electricity. 

Dynamic rates are now feasible. Innovation in information technology has solved the problem of 
conveying real-time prices to consumers. Regulators are supporting the adoption of smart meters in many 
countries. Also, technical and social trends will increase the appeal of dynamic rates. Households will 
spend a larger share of their income on electricity due to electrification. Drivers who now drive to the 
cheapest pump along their daily commutes will select plans that allow them to charge their electric 
vehicles at the lowest price. Better user interfaces and algorithms will enable households to take 
advantage of real-time price variations at little cognitive cost. 

Regulators can take significant steps to promote price responsive demand. First, regulators should allow 
retail choice and encourage the adoption of dynamic rates. Sophisticated providers may take advantage 
of consumers, as is true in many markets. The solution is to regulate and monitor the plans that providers 
offer. While dynamic rates allow consumers to save on average, they can lead to steep bills when 
wholesale prices remain high for an extended period, as occurred during the 2021 Texas winter storm. 
Regulators often employ price caps to shield customers from high wholesale prices—£0.35/kWh in 
Britain—but price caps are problematic. They limit demand response when it is most socially valuable and 
increase providers' bankruptcy risk. 

Regulators should instead protect customers by mandating hedging of dynamic rates or making a certain 
level of hedging the default option. The provider purchases a household's expected consumption, say one 
month forward. The consumer pays the real-time price only for deviations from the expected 
consumption. Hedging reduces the risk of high bills while preserving incentives to respond to prices. If the 
real-time price is high, the household can reduce its consumption. The household automatically gets a 
credit equal to the price difference (real-time price minus forward price) times the reduction in quantity. 
With hedging, real-time price volatility is purely advantageous to consumers. A price cap becomes not 
only unnecessary but harmful to consumers, in addition to increasing providers' bankruptcy risk. 

Hedged dynamic rates do not require households to become sophisticated traders. The regulator could 
simply state that household rates be capped at double the rate in the same month of the previous year. 
The provider would then do the hedging on behalf of the consumer. The consumer would earn money by 
reducing consumption when the real-time price is high—and allow other households to have power for 
critical uses. The consumer would always have the option of a flat-rate plan. But many consumers would 
choose dynamic rates and receive compensation for the flexibility they provide to the system. 

Regulators should support the adoption of dynamic rates with grants for low-income households to 
purchase energy-efficient and smart electric devices. These investments often are beneficial, yet low-
income households lack the resources to pay the upfront costs. Some electric vehicles already have a 
lower total user cost than the cheapest gas alternatives (Miotti et al. 2016), but the purchase price remains 
substantially higher. These technologies produce environmental benefits directly, enable consumers to 
respond to real-time prices, and strengthen the response, bringing many social benefits as discussed in 
section two. Thus, it is socially efficient for regulators to subsidize their development and adoption.  
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Conclusions 

Price responsive demand is fundamental for reliable and resilient electricity. It should also be part of any 
least-cost strategy to decarbonize the electricity sector and reduce emissions in other sectors of the 
economy. It supports investments in intermittent renewable resources and nuclear power. It is a 
precondition for smart charging and discharging of electric vehicles that support clean energy investments 
and transport decarbonization. Electricity, heat, and transport account for over 60% of global emissions 
(EPA 2021). Price responsive demand strengthens incentives to adopt home low-carbon technologies. 

Using Britain customer-level data, we showed that households' electricity consumption responds to 
wholesale prices. The price elasticity of demand is -0.265, which is sufficient for electricity markets to be 
resilient to extreme storms, even when most consumers are unresponsive. Ownership of low-carbon 
technologies is associated with an even stronger response, particularly in the case of electric vehicles, 
suggesting that price responsive demand will be increasingly important as these technologies improve. 

Regulators need to take an active stance to make dynamic rates attractive for consumers while enhancing 
retail competition. 

Data Sources 

UK Octopus Energy provided anonymized, half-hour electricity smart meter customer readings on three 
types of pricing rates: Flat-rate, dynamic (wholesale-linked), and electric vehicle (EV) plans.  

Our sample of 15,000 customers consists of approximately 5,000 consumers randomly sampled from each 
plan type. All had smart meters since at least July 2020. Each consumer is associated with up to one year 
of smart meter readings from July 2020 to July 2021. As users are free to switch plans across this period, 
users may belong to multiple groups across the whole period. For instance, a user on a dynamic plan may 
choose to migrate onto an EV plan at any point. A small proportion of users participate in export plans, 
which are structured as separate plans. A user may be in multiple plans at the same point in time in this 
instance. 

Dynamic plan 
The dynamic plan reflects day-ahead auction prices for electricity. The final price also reflects distribution 
costs and a peak-time premium, as explained in this blog. Octopus designed the plan to encourage 
consumers to shift their consumption outside the 4-7 pm peak. Customers have forward notice of these 
half-hourly prices, which are made available every evening between 4-8 pm for the next day. A negative 
wholesale price can result in a negative customer price, known as plunge pricing. However, a cap at 
35p/kWh—roughly double a flat-rate plan—protects customers from surge pricing.  

EV plan 
EV plans offer electricity at two rates: an off-peak price during fixed charging hours, such as 00:30 - 04:30, 
and otherwise a peak price approximately three times higher. Pricing depends slightly on geographic 
location. Octopus designed the plan to incentivize consumers to charge their electric vehicles in the off-
peak window. 

For our analysis above, we only focus on customers on dynamic and flat-rate plans. 

https://octopus.energy/blog/agile-pricing-explained/
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Low-carbon technology ownership survey data  
When users sign up for a dynamic plan, Octopus Energy asks them to complete a survey to indicate their 
ownership of various low-carbon technologies (LCTs). The survey queries information on four LCTs: 1) 
smart thermostats, 2) electric vehicles, 3) residential solar, and 4) battery storage. Boolean flags indicate 
the stated ownership of these technologies. In addition, we add information on electric heating ownership 
that is not survey-based but inferred from the lack of a gas contract with Octopus Energy—households 
generally purchase electricity and gas from the same provider in Britain.3  

Table 1 shows the number of customers on dynamic and flat-rate plans by ownership of low-carbon 
technologies (LCTs). We only have information on LCT ownership for a subsample of households since 
many households did not participate in the survey.  

Table 1: Number of customers by customer groups and plan types  

 Customer groups Dynamic tariff Fixed tariff 
1 All customers 4148 5904 
3 At least one LCT 2593 647 
2 No LCT 99 12 
4 Inferred electric heating only  414 162 
5 Inferred electric heating + smart thermostat  411 94 
6 EV only  1025 352 
7 Solar only  138 27 
8 Battery only 49 12 
9 EV + solar  280 45 

10 EV + battery  66 16 
11 Solar + battery 124 21 
12 EV + solar + battery  177 20 

 

Methodology 

We employ a time segment fixed effects regression model to estimate price elasticities of electricity 
demand. A time segment is defined as the combination of year, month, day of the week, and half-hour 
interval.  

The fixed effects control for periodicity and trends. They capture how consumption and prices move 
relative to one another after accounting for their characteristic values in a particular time segment. 
Electricity consumption and prices are positively correlated and vary systematically across years, seasons, 
and throughout the day. Consumption and prices are higher in the early morning than at night, and the 
afternoon peak occurs later in the summer than in the winter. However, their joint distribution is likely 
approximately stable for a particular time segment. For example, consumption and prices on Monday at 

 
3 Our indicator of electric heating ownership is relatively imprecise. Some customers who do not have a gas contract 
with Octopus Energy might purchase gas from another supplier or might use oil heating. Therefore, we might falsely 
assume some gas heating owners use electric heating. This imprecision will likely lead to a downward bias of our 
estimates for electric heating ownership because gas heating owners are arguably less responsive to electricity prices 
than electric heating owners. 
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7:30 behave similarly, regardless of whether it is the first or second Monday of March 2021. In essence, 
we can view each time segment as a repeated experiment where we draw four or five consumption-price 
pairs—depending on the number of weeks in a month.  

Using fixed effects for these time segments, we estimate the following model by OLS: 

 1

16
( )
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ln( ) ln( ) ln( )d s t f

t j t j t t
j

C c P Cγ ε+
=−

= + + +∑
 

t denotes time in half-hour increments. C is the average consumption of households on dynamic plans 
(superscript d) and flat-rate plans (superscript f); P is the average retail price paid by households on 
dynamic rates. cs(t) denotes the fixed effect for time segment s(t). ε is the error term, which we assume is 
independently and identically distributed and uncorrelated with regressors P and C f. 

The specification assumes that the demand curve is isoelastic—if the price increases by x%, consumption 
varies by γ × x% regardless of the consumption and price level. Households may respond to a higher price 
by shifting consumption to other time intervals when the price is lower—run the dishwasher or charge 
the electric vehicle earlier or later. At 16:00, households on dynamic plans learn prices for the following 
day. Thus, the model includes the contemporaneous price and earlier and later prices, spanning a ±8-hour 
window for a total of 33 elasticity coefficients γj, j = -16,…, +16. 

The model includes the average consumption of households on a flat rate as a control for demand shocks. 
A positive demand shock increases the price, affecting households' consumption on dynamic plans both 
directly and indirectly—via the price. Failure to control for demand shocks positively biases the 
contemporaneous elasticity coefficient. Interestingly, the response to prices turns out to be sufficiently 
strong; estimating the model without control delivers a statistically and economically significant negative 
coefficient. As expected, introducing the control increases the coefficient's magnitude in absolute value. 
Finally, the estimated coefficient on the control is not statistically different from one, indicating that 
demand shocks similarly affect customers on dynamic and flat-rate plans. 

Our analysis first examines how households on dynamic plans respond to prices. Then, we stratify the 
analysis by low-carbon technology (LCT) ownership status. For example, we estimate the model by 
restricting attention to households that own electric vehicles. 

One drawback of our analysis is that many households did not participate in the LCT survey. Moreover, 
only customers who switched to a dynamic rate were asked to fill the survey. Therefore, we only have LCT 
information for households on flat-rate plans if they switch to a dynamic plan at some point in time. These 
customers on flat-rate plans might differ from flat-rate plan customers who never switched to a dynamic 
plan.  

We drop all households without LCT ownership information for all regressions that analyze the effect of 
owning an LCT. This filtering leaves only a few observations for some LCTs, especially flat-rate plans (see 
Table 1). For example, we only have twelve customers on flat-rate plans that have no LCTs. Thus, we 
estimate the model using a generic control group with all 5,904 households on flat-rate plans, irrespective 
of LCT ownership status. As a robustness check, we also run the model using smaller LCT-group-specific 
control groups. Our results are robust to using these narrower control groups compared to using the 
generic group. Results for the LCT-group-specific controls are available upon request. 
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Appendix 

Table A-1: Fixed effects regression results  

Regressors All customers winter spring summer fall night (0-6) 
morning (6-

12) 
afternoon 

(12-18) 
evening 
(18-24) 

const -0.002*** -0.001 -0.001 -0.000 -0.004*** -0.003** -0.001 -0.001 -0.001 
  (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.001) (0.001) (0.001) 
-8h 0.042*** 0.017 0.026* 0.040** 0.057*** 0.037*** 0.011 0.004 0.005 
  (0.007) (0.011) (0.016) (0.016) (0.011) (0.011) (0.011) (0.011) (0.011) 
-7.5h 0.014* 0.024* 0.012 0.027 0.009 -0.001 0.003 0.001 0.014 
  (0.008) (0.014) (0.020) (0.019) (0.014) (0.014) (0.013) (0.013) (0.012) 
-7.0h -0.000 -0.000 -0.008 -0.009 0.001 0.001 -0.002 -0.001 -0.004 
  (0.008) (0.014) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012) 
-6.5h 0.015* 0.008 0.024 -0.004 0.015 0.019 0.010 0.007 0.014 
  (0.008) (0.014) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012) 
-6h 0.003 0.009 0.005 -0.034* 0.000 -0.006 -0.003 0.005 0.037*** 
  (0.008) (0.015) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012) 
-5.5h 0.001 0.004 0.023 0.009 -0.002 0.017 -0.009 0.015 0.019 
  (0.008) (0.015) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012) 
-5.0h 0.010 0.003 0.032 0.008 -0.000 0.009 0.016 -0.001 0.011 
  (0.008) (0.015) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012) 
-4.5h 0.005 0.012 -0.013 0.011 0.004 0.013 0.004 0.004 -0.008 
  (0.008) (0.015) (0.020) (0.020) (0.014) (0.014) (0.013) (0.014) (0.012) 
-4h 0.017** 0.015 0.001 0.014 0.013 0.024* 0.007 0.006 -0.001 
  (0.008) (0.015) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012) 
-3.5h 0.002 0.014 -0.005 -0.007 0.007 0.003 0.011 0.022 -0.000 
  (0.008) (0.015) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012) 
-3.0h 0.003 0.006 -0.006 -0.003 0.004 0.019 0.011 0.004 0.000 
  (0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.013) (0.012) 
-2.5h 0.011 0.017 0.029 0.016 0.008 0.015 0.008 0.018 -0.004 
  (0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.013) (0.012) 
-2h -0.000 0.003 0.008 0.002 0.000 0.003 0.009 0.010 -0.012 
  (0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012) 
-1.5h 0.005 -0.000 -0.012 -0.001 -0.004 0.004 0.007 0.022 -0.013 
  (0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012) 
-1.0h 0.002 0.012 0.029 -0.003 0.002 0.021 0.020 0.020 0.010 
  (0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012) 
-0.5h -0.018** -0.006 -0.035* 0.003 -0.029** -0.007 0.025* -0.011 -0.022* 
  (0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012) 
0h -0.265*** -0.273*** -0.246*** -0.297*** -0.223*** -0.302*** -0.154*** -0.157*** -0.240*** 
  (0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012) 
0.5h -0.030*** -0.030** -0.035* 0.017 -0.029** -0.060*** 0.006 -0.020 0.046*** 
  (0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012) 
1.0h -0.002 -0.007 -0.004 0.027 0.002 0.003 0.022* 0.022 0.026** 
  (0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012) 
1.5h 0.013 0.010 -0.002 0.016 0.016 -0.011 -0.003 0.001 0.032** 
  (0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012) 
2h 0.017** 0.008 0.019 0.026 0.005 0.030** 0.002 0.010 0.042*** 
  (0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012) 
2.5h 0.018** 0.021 0.001 0.019 0.012 0.019 0.024* 0.009 0.004 
  (0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012) 
3.0h 0.012 0.001 0.052** 0.006 0.015 0.009 0.016 0.018 0.003 
  (0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.013) (0.012) 
3.5h 0.019** 0.018 0.025 0.026 0.028* 0.012 -0.001 0.007 0.016 
  (0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.013) (0.012) 
4h 0.018** 0.005 0.001 0.044** 0.019 0.011 -0.007 -0.004 0.019 
  (0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012) 
4.5h 0.010 0.014 0.017 -0.003 0.003 0.005 0.001 -0.001 0.010 
  (0.008) (0.015) (0.020) (0.020) (0.015) (0.014) (0.013) (0.014) (0.012) 
5.0h 0.015* 0.026* 0.003 -0.011 0.010 -0.019 0.014 -0.012 0.017 
  (0.008) (0.014) (0.020) (0.020) (0.014) (0.014) (0.013) (0.014) (0.012) 
5.5h 0.009 0.004 -0.009 -0.009 0.003 -0.022 0.004 0.001 0.018 
  (0.008) (0.014) (0.020) (0.020) (0.014) (0.014) (0.013) (0.014) (0.012) 
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6h 0.002 0.003 0.011 -0.013 -0.000 0.002 -0.022* 0.019 0.007 
  (0.008) (0.014) (0.020) (0.020) (0.014) (0.014) (0.013) (0.014) (0.012) 
6.5h 0.001 -0.001 0.013 -0.013 0.003 0.003 0.010 -0.005 -0.005 
  (0.008) (0.014) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012) 
7.0h 0.008 -0.000 -0.010 0.023 0.012 -0.001 -0.013 0.005 0.007 
  (0.008) (0.014) (0.020) (0.020) (0.014) (0.014) (0.013) (0.013) (0.012) 
7.5h 0.003 -0.004 -0.003 -0.013 0.014 0.012 0.012 0.016 -0.009 
  (0.008) (0.014) (0.020) (0.019) (0.014) (0.014) (0.013) (0.013) (0.012) 
8h 0.008 0.033*** -0.005 -0.010 -0.006 0.015 0.035*** 0.003 -0.001 
  (0.007) (0.011) (0.016) (0.016) (0.011) (0.011) (0.011) (0.011) (0.011) 
delta_ln_wa
tt_fixed 1.008*** 1.226*** 1.043*** 0.838*** 0.804*** 0.568*** 1.112*** 1.055*** 0.899*** 
  (0.009) (0.016) (0.015) (0.021) (0.022) (0.031) (0.014) (0.009) (0.020) 
Observation
s 17,105 4,200 4,247 4,295 4,263 4,233 4,257 4,260 4,257 
R2 0.484 0.657 0.570 0.354 0.362 0.434 0.628 0.784 0.415 
Adjusted R2 0.483 0.655 0.567 0.348 0.357 0.429 0.625 0.782 0.410 
Residual 
Std. Error 

0.070 
(df=17070) 

0.063 
(df=4165) 

0.061 
(df=4212) 

0.054 
(df=4260) 

0.090 
(df=4228) 

0.098 
(df=4198) 

0.054 
(df=4222) 

0.042 
(df=4225) 

0.062 
(df=4222) 

F Statistic 
(omitting all 
regressors) 

471.336***
 (df=34; 
17070) 

235.063***
 (df=34; 
4165) 

164.230***
 (df=34; 
4212) 

68.553*** 
(df=34; 
4260) 

70.542*** 
(df=34; 
4228) 

94.636*** 
(df=34; 
4198) 

209.497***
 (df=34; 
4222) 

451.391***
 (df=34; 
4225) 

88.134*** 
(df=34; 
4222) 

F Statistic 
(omitting time 
leads and lags) 

58.241** 
(df=32; 
17070) 

21.934** 
(df=32; 
4165) 

10.757** 
(df=32; 
4212) 

6.900** 
(df=32; 
4260) 

13.258** 
(df=32; 
4228) 

18.206**  
(df=32; 
4198) 

9.938** 
(df=32; 
4222) 

11.865** 
(df=32; 
4225) 

11.228**  
(df=32; 
4222) 

Note: *p<0.1; **p<0.05; ***p<0.01          
 

 

 

Regressors No LCT 
At least one 

LCT 
Inf. electric 

heating only 

Inf. electric 
heating + 

smart 
thermostat EV only Solar only Battery only EV + solar 

const -0.001 -0.002*** -0.001** -0.001* -0.002** -0.003 -0.001 -0.003** 
  (0.001) (0.001) (0.000) (0.000) (0.001) (0.002) (0.001) (0.001) 
-8h -0.003 0.046*** 0.011* -0.003 0.060*** 0.028 0.011 0.087*** 
  (0.013) (0.007) (0.006) (0.006) (0.010) (0.022) (0.018) (0.018) 
-7.5h 0.017 0.011 -0.005 0.014** 0.004 0.024 0.015 0.009 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
-7.0h -0.008 -0.001 -0.003 -0.012* -0.002 0.004 0.033 0.007 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
-6.5h 0.011 0.015* 0.002 0.003 0.012 0.010 -0.007 0.030 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
-6h 0.023 0.003 0.004 0.008 0.010 -0.027 -0.026 0.020 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
-5.5h 0.005 0.001 -0.002 -0.007 0.008 -0.006 0.017 -0.004 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
-5.0h 0.004 0.011 -0.000 0.015** 0.010 0.009 0.003 0.027 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
-4.5h 0.010 0.006 -0.002 -0.001 0.011 0.012 -0.001 -0.001 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
-4h -0.026 0.020** 0.010 -0.014* 0.029** 0.015 0.001 0.029 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
-3.5h -0.015 0.003 -0.003 0.002 -0.001 0.001 -0.018 0.011 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
-3.0h 0.022 -0.000 0.002 0.014** -0.008 0.014 0.021 -0.007 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
-2.5h 0.016 0.010 0.009 0.006 0.005 0.020 0.026 0.021 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
-2h 0.017 0.000 0.000 -0.001 -0.001 0.013 -0.010 0.001 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
-1.5h -0.018 0.006 -0.002 -0.005 0.003 0.011 0.024 0.014 
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  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
-1.0h 0.003 0.002 -0.000 0.001 -0.002 0.033 -0.005 -0.009 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
-0.5h 0.006 -0.020** -0.014* -0.008 -0.022* -0.006 -0.039* -0.044** 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
0h -0.101*** -0.282*** -0.070*** -0.079*** -0.368*** -0.263*** -0.114*** -0.435*** 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
0.5h -0.024 -0.031*** -0.007 -0.028*** -0.018 -0.060** -0.041* -0.047** 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
1.0h 0.014 -0.004 -0.001 -0.002 -0.012 0.026 0.006 -0.001 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
1.5h 0.014 0.014 0.018** 0.000 0.002 0.050* 0.017 0.027 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
2h 0.006 0.017* 0.003 0.013* 0.008 0.043 0.030 0.027 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
2.5h 0.004 0.018** 0.001 0.005 0.016 0.046 0.013 0.033 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
3.0h 0.018 0.012 -0.005 0.000 0.007 0.021 0.056** -0.005 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
3.5h 0.015 0.019** 0.003 0.003 0.023* 0.021 0.030 0.028 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
4h 0.016 0.019** 0.007 -0.004 0.031** 0.007 0.012 0.023 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
4.5h -0.011 0.012 0.007 0.011 0.017 -0.007 0.003 0.023 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
5.0h -0.002 0.017* 0.008 0.001 0.014 0.019 0.005 0.025 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
5.5h 0.014 0.009 -0.003 0.009 0.014 0.016 -0.009 0.020 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
6h 0.008 0.001 -0.011 -0.003 0.005 -0.011 0.024 -0.008 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
6.5h 0.018 -0.001 -0.005 -0.009 -0.002 -0.015 0.022 0.004 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
7.0h -0.024 0.009 -0.001 -0.003 0.018 0.010 0.013 0.002 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
7.5h 0.005 0.002 -0.006 -0.002 0.005 -0.013 -0.010 -0.004 
  (0.016) (0.009) (0.008) (0.007) (0.013) (0.028) (0.022) (0.022) 
8h 0.010 0.007 0.013** 0.005 0.017* -0.048** 0.017 -0.012 
  (0.013) (0.007) (0.006) (0.006) (0.010) (0.022) (0.018) (0.018) 
delta_ln_watt_
fixed 1.331*** 0.965*** 0.766*** 0.716*** 0.709*** 2.176*** 2.223*** 1.183*** 
  (0.017) (0.009) (0.008) (0.008) (0.014) (0.030) (0.023) (0.024) 
Observations 17,049 17,105 17,054 17,105 17,096 17,105 17,049 17,105 
R2 0.286 0.455 0.335 0.354 0.266 0.245 0.361 0.193 
Adjusted R2 0.285 0.454 0.334 0.353 0.264 0.243 0.360 0.191 
Residual Std. 
Error 

0.128 
(df=17014) 

0.073 
(df=17070) 

0.065 
(df=17019) 

0.059 
(df=17070) 

0.106 
(df=17061) 

0.233 
(df=17070) 

0.181 
(df=17014) 

0.183 
(df=17070) 

F Statistic 
(omitting all 
regressors) 

200.905***
 (df=34; 
17014) 

419.567***  
(df=34; 
17070) 

252.189***  
(df=34; 
17019) 

274.979***  
(df=34; 
17070) 

181.800***  
(df=34; 
17061) 

162.757***  
(df=34; 
17070) 

282.433***  
(df=34; 
17014) 

119.738*** 
 (df=34; 17070) 

F Statistic 
(omitting time 
leads and lags) 

6.026**  
(df=32; 
17014) 

56.016** 
 (df=32; 
17070) 

2.351** 
 (df=32; 
17019) 

3.605** 
 (df=32; 
17070) 

35.602**  
(df=32; 
17061) 

6.944** 
 (df=32; 
17070) 

10.674** 
 (df=32; 
17014) 

20.466**  
(df=32; 17070) 

Note: *p<0.1; **p<0.05; ***p<0.01 
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Regressors 
EV + 

battery 
Solar + 
battery 

EV + solar + 
battery 

const -0.002 -0.003 -0.003* 
  (0.001) (0.002) (0.002) 
-8h 0.029 0.065*** 0.073*** 
  (0.019) (0.023) (0.021) 
-7.5h 0.007 0.015 0.070*** 
  (0.023) (0.028) (0.026) 
-7.0h 0.015 0.025 0.010 
  (0.023) (0.028) (0.026) 
-6.5h 0.031 0.026 0.021 
  (0.023) (0.028) (0.026) 
-6h -0.006 -0.019 0.013 
  (0.023) (0.029) (0.027) 
-5.5h 0.015 -0.006 -0.005 
  (0.023) (0.029) (0.027) 
-5.0h -0.004 0.014 0.010 
  (0.023) (0.029) (0.027) 
-4.5h 0.010 -0.008 -0.010 
  (0.023) (0.029) (0.027) 
-4h 0.015 0.005 0.030 
  (0.023) (0.029) (0.027) 
-3.5h 0.011 -0.006 0.003 
  (0.023) (0.029) (0.027) 
-3.0h 0.015 -0.004 0.017 
  (0.023) (0.029) (0.027) 
-2.5h 0.005 0.047 0.018 
  (0.023) (0.029) (0.027) 
-2h -0.004 0.024 0.016 
  (0.023) (0.029) (0.027) 
-1.5h 0.010 0.022 -0.001 
  (0.023) (0.029) (0.027) 
-1.0h 0.014 0.066** 0.036 
  (0.023) (0.029) (0.027) 
-0.5h -0.044* -0.035 -0.019 
  (0.023) (0.029) (0.027) 
0h -0.266*** -0.357*** -0.561*** 
  (0.023) (0.029) (0.027) 
0.5h -0.066*** -0.046 -0.069** 
  (0.023) (0.029) (0.027) 
1.0h 0.013 0.051* 0.045* 
  (0.023) (0.029) (0.027) 
1.5h 0.016 0.032 0.053** 
  (0.023) (0.029) (0.027) 
2h 0.029 0.045 0.043 
  (0.023) (0.029) (0.027) 
2.5h 0.040* 0.037 0.074*** 
  (0.023) (0.029) (0.027) 
3.0h 0.059** 0.086*** 0.065** 
  (0.023) (0.029) (0.027) 
3.5h 0.028 0.009 0.049* 
  (0.023) (0.029) (0.027) 
4h 0.020 -0.012 -0.000 
  (0.023) (0.029) (0.027) 
4.5h 0.011 0.026 -0.003 
  (0.023) (0.029) (0.027) 
5.0h 0.016 0.023 0.027 
  (0.023) (0.029) (0.027) 
5.5h 0.015 -0.022 0.014 
  (0.023) (0.029) (0.027) 
6h 0.002 -0.003 -0.012 
  (0.023) (0.029) (0.027) 
6.5h 0.000 0.014 0.000 
  (0.023) (0.028) (0.026) 
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7.0h 0.002 0.015 0.008 
  (0.023) (0.028) (0.026) 
7.5h 0.003 0.030 -0.014 
  (0.023) (0.028) (0.026) 
8h 0.004 -0.042* -0.006 
  (0.019) (0.023) (0.021) 
delta_ln_watt_
fixed 1.357*** 2.516*** 1.987*** 
  (0.025) (0.031) (0.028) 
Observations 17,101 17,105 17,105 
R2 0.174 0.304 0.267 
Adjusted R2 0.172 0.302 0.266 
Residual Std. 
Error 

0.193 
(df=17066) 

0.237 
(df=17070) 

0.220 
(df=17070) 

F Statistic 
(omitting all 
regressors) 

105.696***
 (df=34; 
17066) 

218.937***  
(df=34; 
17070) 

183.060*** 
 (df=34; 
17070) 

F Statistic 
(omitting time 
leads and lags) 

16.329** 
 (df=32; 
17066) 

15.527**  
(df=32; 
17070) 

28.579**  
(df=32; 
17070) 

Note: *p<0.1; **p<0.05; ***p<0.01 
    

 


	Foliennummer 1
	Introduction
	Consumer engagement for reliability, resiliency, and the energy transition
	Empirical findings on the consumption response to prices from Britain household data
	Low-carbon technologies

	Policy levers and consumer protection
	Conclusions
	Data Sources
	Dynamic plan
	EV plan
	Low-carbon technology ownership survey data

	Methodology
	References
	Appendix

