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Abstract

We analyze the effect of employment-quota policies on the development of uncertainty

and stereotypes in a model of inaccurate statistical discrimination with ambiguity about

worker abilities. We show that, even if group characteristics are identical, higher uncer-

tainty about one group can result in discriminatory employment decisions. The success

of a quota in correcting the beliefs then depends crucially on the firm’s learning pro-

cess. In particular, we find that the more confident the firm is in its initial priors, the

longer a quota needs to be implemented until beliefs are sufficiently corrected such that

discriminatory behavior vanishes.
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1. Introduction

Underrepresentation of certain groups in specific types of jobs, especially at high levels in

firm hierarchies, is a prevalent topic of public debates and economic research.1 To address

the problem, quota policies have been proposed and implemented in many countries.2 While

the effects of quotas on labor-market outcomes have been studied extensively in the economic

literature, their introduction still provokes controversial debates among policy-makers and

researchers. In particular, once labor-market quotas are introduced, it is often not clear for

how long they should be implemented. With this article, we further enhance the under-

standing of why workers from different groups are underrepresented in certain types of jobs,

as well as providing hints for the determinants of the success of a quota, i.e., for how long a

quota needs to be implemented until discriminatory employment practices vanish such that

the quota becomes obsolete.

We propose a simple dynamic model of inaccurate statistical discrimination with ambi-

guity about worker abilities.3 There is a single firm that, for infinitely many periods, has to

fill open positions in each period with workers stemming from two groups. Decision-makers

in the firm are experienced with the first group, such that they know the distribution of

abilities across the group and, since the ability of individual workers (and thus their value

for the firm) is not observable, they face a decision under risk when employing a worker.

The second group, however, has been underrepresented in the past, such that the decision-

maker is more uncertain with such workers and potential stereotypes could not be corrected

by past experiences.4 Hence, decision-makers hold inaccurate beliefs, which are modeled as
1See Holzer and Neumark (2000), Lang and Lehmann (2012), Blau and Kahn (2017), and Neumark (2018)

for an overview.
2Several countries have implemented quotas governing the gender distribution of corporate boards or

election lists for their national parliament. See, for example, Law 120/2011 Golfo-Mosca in Italy, or Law
3/2007 on the Effective Equality between Women and Men in Spain.

3The term “inaccurate statistical discrimination” is borrowed from Bohren et al. (2019) and refers to
statistical discrimination with incorrect beliefs about the underlying probability distributions. This will be
explained in more detail when the model is introduced in Section 2.

4By using the term stereotypes, we refer to decision-makers having incorrect initial beliefs about the ability
distribution within a group.
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ambiguity about the distribution of worker abilities.

Our analysis provides three main results. First, we show that, without a quota, inaccu-

rate beliefs and discriminatory employment decisions can persist in the long run. Similar to

models of endogenous statistical discrimination (as, e.g., in Coate and Loury 1993), workers

belonging to an underrepresented group find themselves in a reputation trap they cannot

escape. They keep being excluded from the job as a result of the firm’s inexperience with

their group, which again leads to the firm remaining inexperienced and workers being un-

derrepresented.

Second, we show that a quota, in the long run, is successful in correcting ambiguous

beliefs. Since the quota forces the firm to observe individual characteristics of workers from

a group it initially is less experienced with, over time the firm learns about the distribution

across the group such that beliefs converge to the true distribution in the long run.

Third, we characterize determinants of the duration for which a quota needs to be imple-

mented in order to be successful. In contrast to a standard Bayesian model of uncertainty,

in our model of ambiguous beliefs the success of a quota depends crucially on the parame-

ters of the firm’s learning process. In particular, we find that the more confident the firm’s

decision-makers are about the initial beliefs (the “stickier” stereotypes are), the longer a

quota needs to be implemented.

Furthermore, to our knowledge, we are the first to introduce ambiguity into a model of

statistical discrimination. In particular given the recent findings in the literature on inaccu-

rate statistical discrimination (Bohren et al., 2019), we believe that it is important to bring

ambiguity to the traditional models of statistical discrimination both from a methodological

viewpoint, as well as verifying the robustness of the model’s implications.

Our analysis yields important results in light of many recent discussions about affirmative

action. For instance the “Legge Golfo - Mosca”, a law governing gender quotas for companies

listed on the Italian stock exchange, was recently revised.5 Like other types of affirmative
5See Ferrari et al. (2016) for a summary of the law.
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action, the Italian law aims at changing beliefs about the ability of women to work in high-

level positions. By being imposed temporarily, the idea is that employers will correct their

wrong beliefs after being exposed to females in high-level positions after a sufficiently long

period of time.6 However, lack of success led legislators to increase the quota and to extend

its mandatory compliance period.

There is ample empirical evidence that affirmative-action policies in form of quotas have

an impact on the development of beliefs about the abilities of individuals belonging to specific

groups to perform in certain positions.7 The most prominent example is the study by Beaman

et al. (2009). The paper provides evidence that repeated exposure to female chief councilors

in Indian villages improves voters’ perceptions about the ability of female politicians and

caused a weakening of existing stereotypes. Another example is the work of De Paola et al.

(2010), who find similar results for a reform reserving a percentage of the places in the party

lists in certain Municipal Council elections in Italy for female candidates. They find that,

even years later, female representation in politics is higher in these municipalities. Moreover,

they are able to trace the effect back to a reduction in negative stereotypes.

However, the empirical evidence evaluating the effect of job-market quotas on the beliefs

of employers or other stakeholders is far from vast. The reason is twofold. First, most of

these laws were introduced rather recently. As pointed out by Bertrand et al. (2019), quota

reforms are instruments which fully unfold their impact in the long run. Therefore, it is

likely too early to draw conclusions about the effect.8 Moreover, there are no large-scale
6Another timely example is the recent announcement of Friedrich Merz (Chairman of the Christian

Democratic Union in Germany) to introduce a temporary gender quota for public positions and mandates
of the party. The reform comprises a staggered increase of the strength of the quota for a total time period
of four years. According to party officials, the board expects that the accompanying cultural change will
resolve discussions about a permanent quota automatically (for further information, see a recent newspaper
article by Spreter 2022).

7There are other studies showing that a forced exposure (not necessarily due to a quota), to a certain
group can change attitudes and stereotypes against them in a positive way. Examples are Carrell et al.
(2019) and Schindler and Westcott (2020).

8Bertrand et al. (2019) empirically evaluate the impact on economic outcomes of women of the introduced
gender quota in Norway. They find that the quota has lowered the gender pay gap among board members.
Although they do not find that the quota has been beneficial for other women employed by the companies
subject to the quota, they suggest that the reform could have broader effects unfolding in the long run that
could be found by similar studies in the future.
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survey data available that measure the change in beliefs upon the introduction of a quota

reform. Second, quotas are usually imposed on all businesses with certain characteristics at

the same time, which makes their effects hard to identify. It is expected that the economic

literature will address this question in the future when data availability increases. In any

case, there is no reason to expect that mechanisms present in the political context are not

similarly prevalent in labor markets.

With our model, we provide important insights for policy-makers and economic research

alike, as it discusses mechanisms, optimal choice, as well as the interplay of different param-

eters of quota regulations. Therefore, our analysis provides guidance for the optimal design

of future affirmative-action policies in the form of quotas. Moreover, by introducing a new

modeling approach, our paper is a first step for future theoretical research in this area and

provides a framework for future empirical studies.

Our work is related to several strands of literature. First, we contribute to the literature

on (exogenous) statistical discrimination, rooted in Phelps (1972) and Aigner and Cain

(1977). More specifically, as we consider a dynamic model, our paper is related to the

work of Bjerk (2008) and Kim and Loury (2018). In particular, similar to how a lack of

experience leads to discriminatory employment practices in our model, Bjerk (2008) shows

that differential opportunities of workers to signal their individual ability lead to different

likelihoods of being promoted. Furthermore, since we depart from the assumption of decision-

makers having correct beliefs about group characteristics, our paper is most closely related

to Bohren et al. (2019), who introduced the notion of inaccurate statistical discrimination.

Second, we contribute to the theoretical literature on the effects of affirmative-action

policies, more specifically on the effects of employment quotas in firms. Thus, our work

builds on Welch (1976), Milgrom and Oster (1987), Coate and Loury (1993), Moro and

Norman (2003), Gürtler and Gürtler (2019) and Bijkerk et al. (2021).

Third, our model presents an application of existing concepts in the literature on ambi-

guity and Knightian Uncertainty that originated in Knight (1921). In particular, we build
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on the multiple-prior framework of Gilboa and Schmeidler (1989) to model ambiguous beliefs

and apply the learning process of Epstein and Schneider (2007) to our setting.9

The paper is organized as follows. Section 2 contains the description of the model, as

well as more elaborate explanations of how we bring the notion of ambiguity to a model of

statistical discrimination. In Section 3, we show that in such a model negative stereotypes

and discriminatory employment practices may persist in the long run. The subsequent

Section 4 analyzes the effects of a quota on the development of the firm’s stereotypes and

the determinants of the success of a quota. Section 5 concludes. Unless stated otherwise,

proofs are relegated to the Appendix.

2. Model

We consider a simple dynamic model of statistical discrimination in discrete time with an

infinite number of periods, indexed by t ∈ {0, 1, ...}. There are two groups of workers, A

and B, denoted as g ∈ {A, B}. The distribution of group-g workers’ individual abilities a is

given by the cumulative distribution function Fg and unchanged over time. In order to make

the analysis as intuitive and simple as possible, we restrict attention to binary probability

distributions, that is, a worker is either talented (a = ah) or untalented (a = al). Denoting

the fraction of talented workers in group g by θ̄g ∈ (0, 1), the probability mass functions fg

of the ability distributions are given by fg(ah) = θ̄g = 1 − fg(al).

There is one firm. In each period t, there are n ∈ N open positions for which the firm

needs to assign new workers. A worker’s value for the firm in that position is a strictly

increasing function y ∈ C0(R) of ability.10 The timing of the job-assignment process in each

period is as follows: The firm holds beliefs about the distribution of worker abilities. It

then decides on the number of workers it employs from each of the two groups. There are
9For the results in which we restrict attention to binary ability distributions, our model can be seen as

an extended application of the model of learning from ambiguous urns by Marinacci (2002).
10We also refer to a worker’s value for the firm as the worker’s productivity and use these terms inter-

changeably.
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sufficiently many workers in both groups, such that the firm could fill all open positions with

workers stemming from only one of the groups. At the end of the period, the firm observes

the individual productivity of each employed worker and uses the obtained information to

update its beliefs about the group characteristics. The updated belief is the firm’s belief in

the following period.11

Furthermore, we assume that, in the first period, t = 0, the firm knows the distribution

of group-A workers’ abilities perfectly, while its belief about the second group B is different

from the true distribution FB, since it is more uncertain about their abilities, in a sense

defined precisely below.12 The firm is aware of the fact that its belief about group-A abilities

is correct and that it is more uncertain about the second group. Therefore, it makes use of

all available information to update its belief about group B in each period.

Uncertainty. Standard models of statistical discrimination introduce uncertainty about

workers’ individual characteristics by means of probability distributions. Decision-makers

evaluate the expected value of a worker for the firm conditional on which group the worker

belongs to. An employment decision then is a decision under risk in the sense of standard

expected utility theory.

As we have argued in the introduction, we believe that uncertainty about group char-

acteristics stemming from a lack of experience plays an important role in decision-makers’

stereotypes and employment decisions. Therefore, we differentiate between the employment

decision being – as a decision that uses information about the distribution of worker charac-

teristics across the whole group as a proxy for the individual ability – a decision under risk,

and the additional uncertainty about the distribution of characteristics in the group itself.

We bring this to the model by distinguishing between measurable risk and unmeasurable
11The updating process will be explained in more detail later in this section.
12Throughout the paper, we reason the assumption of incorrect beliefs by higher uncertainty due to a

lack of experience with group-B workers. The model applies more generally, though in any context that
justifies assuming that a firm is more uncertain about a specific group. Furthermore, our model includes
equally uncertain, but inaccurate, beliefs about the second group B as a special case. Such a situation can
be interpreted as the firm having (negative or positive) stereotypes about the second group.
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ambiguity (or uncertainty in the Knightian sense).13

To clarify this distinction between risk and uncertainty in the Knightian sense, consider

first group A. We assume that the firm has employed many group-A workers in the past.

Therefore, it is very experienced with their abilities and views the distribution of abilities

within the group to be FA. When employing a group-A worker, the firm now faces a decision

under risk, as it uses the distribution across the whole group as a proxy for the unobserved

individual ability, and calculates the expected productivity EYA of a worker with respect to

the group’s ability distribution FA, that is,

EYA =
∫

y(a)dFA(a). (1)

The firm compares the expected productivity to a threshold ȳ ∈ R and decides to employ

group-A workers whenever EYA ≥ ȳ, that is, whenever the expected productivity exceeds

the threshold.14 This is a decision under risk, there is no ambiguity regarding the individual

ability of group-A workers.

Next, consider the underrepresented group B. We assume that the firm has not employed

any (or at least very few) such workers in the past and, thus, it is not perfectly informed

about the ability distribution of these workers. Hence, in addition to the risk in the decision

of employing a worker whose individual ability is unobserved, the firm is uncertain about the

distribution of abilities in the group and therefore faces a decision under risk and (Knigh-

tian) uncertainty. We bring ambiguity to the model by following Gilboa and Schmeidler

(1989), and we assume that the decision-maker at the firm does not face a single probability

distribution (the distribution of abilities across the group), but a set of probability distribu-

tions. Hence, the firm’s belief in period t about an individual worker’s ability is given by a

set Ct
B of probability distributions, that is, the decision-maker sees all distributions within

13This notion of uncertainty has also been termed severe uncertainty or deep uncertainty. In this paper,
we keep referring to it as ambiguity or Knightian uncertainty.

14Assuming that the decision-maker compares the expected productivity to an exogenous threshold ȳ ∈ R
is mainly for convenience. If instead we assumed that the firm compares the groups with each other, our
main results on the development of beliefs and the comparative statics would remain unchanged.

8



the set Ct
B as possible distributions of abilities across the second group B. Since the firm

cannot assign probabilities across the elements of Ct
B, it cannot form an expectation about a

group-B worker’s ability as it does for the first group. Therefore, we need to define how the

firm evaluates its beliefs and on which value it bases the information whether employing a

group-B worker is “expected” to be profitable. We follow Gilboa and Schmeidler (1989) who

axiomatize preferences of an ambiguity-averse decision-maker, which leads to the notion of

maxmin expected utility. This means, in our setting, that the firm evaluates the expected

productivity of a worker for every prior F t
B in Ct

B separately, and then it compares the worst

value with the threshold. Hence, the “expected” productivity EY t
B of a group-B worker in

period t is given by

EY t
B = inf

F t
B∈Ct

B

∫
y(a)dF t

B(a). (2)

Although EY t
B is not an expectation in the usual sense, we slightly abuse the terminology

and refer to EY t
B as group-B workers’ expected productivity. Again, the firm decides to

employ a worker whenever EY t
B ≥ ȳ, that is, whenever the expected productivity exceeds

the threshold. Clearly, the firm’s decision now is one under ambiguity. Furthermore, it should

be noted that the employment decision is based only on the payoff in the current period and

that the decision-maker acts upon the currently available information. In particular, the

decision-maker does not try to gather additional information at the expense of a loss in

current payoff in order potentially to overcompensate the loss with future profits.15

Development of stereotypes. To model the development of the firm’s belief over

time, we apply the model of learning under ambiguity of Epstein and Schneider (2007) to

our setting.16

15This assumption to consider one-step-ahead acts, as they have been termed in the literature (see, e.g.,
Marinacci 2002), is only required for Proposition 1, and relaxing the assumption would not change any
other results qualitatively. Furthermore, assuming that firm’s decision-makers do not voluntarily employ
workers from underrepresented groups to develop the own perception of that group’s ability distribution
seems reasonable in light of the observation that, as discussed in the introduction, quotas are seen to be
necessary instruments to address discriminatory employment practices by policy-makers in many countries.

16Since ability distributions are binary and the firm is only interested in the fraction of talented workers,
our setting is similar to the model of learning from ambiguous urns in Marinacci (2002).
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Ambiguity in the first period t = 0 is then modeled as a compact set C0
B ⊂ ∆(Θ) of prior

probability distributions over a finite set Θ ⊂ (0, 1). It is further assumed that θ̄B ∈ Θ and

that, for all µ0 ∈ C0
B, it holds that µ0(θ̄B) > 0. This assumption ensures that for all priors

the true fraction of talented workers has a positive probability.17 The expected productivity

of a group-B worker can then be written as

EY 0
B = min

µ0∈C0
B

∫ ∫
y(a)dF (a|θ)dµ0(θ), (3)

with the probability mass functions f(.|θ) : {al, ah} → [0, 1] given by f(ah|θ) = θ for all

θ ∈ Θ.18

If the firm decides to employ nt ∈ N workers from group B, it learns about the group’s

ability distribution by independently drawing nt times from the true distribution FB.19

We denote the vector of draws in period t by xt = (xt
1, ..., xt

nt). Then, the vector st−1 =

(x0, ..., xt−1) contains all information the firm has obtained when deciding which workers to

assign to the open positions in period t.

Furthermore, the firm does not keep all priors in each period, but decides on which

distributions to keep based on a likelihood-ratio test, that is, the firm tests all priors µ0

against the one with the largest likelihood and only keeps those that fulfill the following

condition:20

α ≤
∫

f(st−1|θ)dµ0(θ)
maxµ̂0∈C0

B

∫
f(st−1|θ)dµ̂0(θ) . (4)

The set of posteriors µt(.) = µ0(.|st−1) is given by updating each of these priors by Bayes’
17A prior that assigns zero probability mass to the true parameter would not converge to the true distri-

bution. Hence, as will be discussed in more detail later in this section, in this case the full Bayesian updating
rule would lead to no convergence of the firm’s beliefs to the true distribution. This is equivalent to the
assumption of the true parameter being in the “strong support” of the set of priors in Marinacci (2002).

18The functions F (.|θ) and f(.|θ) denote the distribution function and probability mass function, respec-
tively, of a binary ability distribution with the fraction of talented workers being θ.

19Note that, since y is a strictly increasing function of a worker’s ability a, the firm, by observing a worker’s
output y(a), also observes the individual ability.

20Here we abuse notation slightly and denote by f(.|θ) the probability mass function of the product
measure, that is the probability of a multidimensional vector of draws.

10



rule. Hence, the firm’s belief in period t is given by

Ct
B(st−1, α) = {µt(.) = µ0(.|st−1) ∈ ∆(Θ) | µ0 ∈ C0

B,∫
f(st−1|θ)dµ0(θ) ≥ α max

µ̂0∈C0
B

∫
f(st−1|θ)dµ̂0(θ)}.

(5)

The parameter α ∈ [0, 1] can be interpreted as a measure for the confidence the firm

has in its initial beliefs C0
B. The larger α is, the more priors are discarded, that is, the

less confident the firm was about the initial beliefs before any information was available. In

particular, it holds that if α1 > α2, then Ct
B(st−1, α1) ⊂ Ct

B(st−1, α2). Another interpretation

is that the smaller α is, the more hesitant the firm is about dissolving the initial uncertainty

and the more “sticky” the stereotypes are about group B. Two special cases are included in

this updating rule: If α = 0, all priors pass the likelihood-ratio test. Therefore, the firm does

not discard any priors and updates all of them using Bayes’ rule. This rule has been termed

Full-Bayesian updating in the literature. On the other hand, if α = 1, the firm only keeps the

priors that yield the maximum likelihood, hence this corresponds to the Maximum-Likelihood

updating.

Finally, the expected productivity EY t
B of a group-B worker in period t, given the updated

beliefs based on observing the individual abilities st−1 of previously employed workers and

confidence α, can then be written as

EY t
B(st−1, α) = min

µt∈Ct
B(st−1,α)

∫ ∫
y(a)dF (a|θ)dµt(θ). (6)

3. Persistence of uncertainty

In this section, we show that, given the larger uncertainty about group-B workers’ abilities,

the firm might not be willing to employ any of those workers such that they find themselves

in a reputation trap and, even in the long run, keep being excluded from the job.

Suppose that the decision-maker’s belief in the first period t = 0 is such that EYA > EY 0
B.
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This is a reasonable assumption in the sense that it is fulfilled whenever the firm’s belief

about the second group B is not too optimistic. To illustrate this point, assume for a moment

that EYA ≤ EY 0
B. Then, by definition, all priors the firm sees as possible distributions of

abilities within group B lead to a larger expected productivity, that is, in other words, the

firm is less experienced with group-B workers, but the optimism completely overcompensates

the additional uncertainty for an ambiguity-averse decision-maker. In particular, all priors

the firm sees as possible are at least as “good” as the known distribution FA of the other

group. Whenever the set of priors includes at least one “worse” prior, we obtain EYA > EY 0
B.

Now, additionally, suppose that the firm’s productivity threshold ȳ ∈ R is such that EYA >

ȳ > EY 0
B. Then, in period t = 0, the firm fills all n open positions with workers stemming

from group A. By the assumption that the firm is aware that it already knows the ability

distribution in group A perfectly, and since it does not get any additional information about

group-B workers’ abilities, the belief remains unchanged and is identical in the next period,

that is, C1
B = C0

B. This argument applies iteratively in each period t ∈ N. Therefore, the

firm does not employ any group-B workers and stays uncertain about the ability distribution

over time. Hence, the following Proposition 1 can be stated without further proof.

Proposition 1. Suppose that in the initial period t = 0 the firm’s belief is such that EYA >

ȳ > EY 0
B. Then, it holds that Ct

B = C0
B for all t ∈ N.

Proposition 1 implies that, if in the initial situation stereotypes lead to the firm expect-

ing group-B workers not to be profitable hires, the firm employs only group-A workers and

stereotypes remain unchanged in all future periods. The intuition for the result is clear. If

the firm’s uncertainty about group B, stemming from a lack of experience with such workers,

is severe enough, it is unlikely to be willing to employ any group-B workers in the short run.

This implies that the firm does not get any further information about the group charac-
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teristics and stays uninformed in the long run.21 Therefore, workers keep being excluded

from the job as a result of the firm’s inexperience with their group, which again leads to the

firm remaining uncertain about the group. Workers are trapped in their disadvantageous

group reputation.22 Note that this argument holds even if the true ability distributions are

identical in both groups, since the firm’s decisions are based on its belief about the workers’

abilities rather than actual group characteristics.

Given this result, it is natural to think of a quota as a fitting policy, as one would expect

it not only to address the underrepresentation of group-B workers in the specific job in

the short run, but also to force the firm to learn about the underrepresented group, thus

diminishing uncertainty and correcting stereotypes in the long run. We analyze the effects

of a quota and the determinants of its success in the following Section 4.

4. Effects of a quota

While so far the firm could freely choose which workers to employ, we now enrich the model

by introducing a quota that requires the firm for a number of periods to assign at least some

of the jobs to workers of each of the groups.

Definition 1. A quota is a tuple (q, T ) ∈ (0, 1) × N that specifies the fraction q ∈ (0, 1)

of vacant jobs the firm has to fill with workers belonging to the underrepresented group in

each period, as well as the number of periods T ∈ N the firm has to fulfill the quota.

Intuitively, one would expect that now, since the quota forces the firm to employ workers

from the underrepresented group, the firm learns about group-B workers such that its belief
21While this result seems rather extreme, it qualitatively mirrors situations in which specific groups keep

being underrepresented such that quotas are justified as a necessary affirmative action. Considering a model
that, without a quota being implemented, allows for a small exogenously determined number of group-
B workers being employed would leave our results on the belief development and the comparative statics
qualitatively unchanged.

22Note that this is different from the reputation trap in (dynamic) models of endogenous statistical dis-
crimination such as Coate and Loury (1993) and Kim and Loury (2018), since in our model the workers have
no actions to make (as, e.g., investing in qualification) and the group reputation is solely based on the firm’s
beliefs and experiences.
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converges to the true distribution of worker abilities in the group.23 The following Proposition

2 confirms this intuition.

Proposition 2. Let δθ̄B
denote the Dirac measure in θ̄B. Then, for all q ∈ (0, 1) and all

α ∈ [0, 1], beliefs converge to the singleton {δθ̄B
}, that is, it almost surely24 holds that

sup
µ∈CT

B(sT −1,α)

{
max
X⊂Θ

|µ(X) − δθ̄B
(X)|

}
T →∞−→ 0. (7)

Furthermore, the expected productivity of group-B workers with respect to the firm’s belief in

period T , given by

EY T
B (sT −1, α) = min

µT ∈CT
B(sT −1,α)

∫ ∫
y(a)dF (a|θ)dµT (θ), (8)

for T → ∞ converges almost surely to the true average productivity

EYB =
∫

y(a)dFB(a) =
∫ ∫

y(a)dF (a|θ)dδθ̄B
(θ) (9)

of group-B workers. Hence, ambiguity fades away and stereotypes are corrected in the long

run.

While Proposition 2 states that a quota, if implemented for a sufficiently long time, even-

tually will be successful in correcting stereotypes, an essential question in policy is for how

long exactly a quota needs to be implemented in order to have an impact on discriminatory

employment practices after it has been removed again. Hence, the remainder of this section

is devoted to analyzing the determinants of a quota’s effect on resolving uncertainty and

correcting stereotypes.

The answer to whether a quota is successful depends on the individual abilities of em-
23Note that, since q > 0 and n > 0, the firm in each period at least has to employ at least qn > 0 workers.

Hence, each period yields a strictly positive number of draws from which the firm learns about the group’s
ability distribution.

24The convergence is almost sure with respect to the infinite product measure such that the coordinate
draws are independent with the true distribution, that is, the true fraction θ̄B of talented group-B workers.
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ployed workers, which are randomly drawn from the distribution of abilities across the set

of workers. Hence, we have to define precisely what we mean by a quota’s success from an

ex-ante point of view.

Definition 2. A quota is successful with probability p ∈ (0, 1), if, by the end of its

implementation, the firm with probability p voluntarily employs group-B workers, that is, if

P[EY T
B ≥ ȳ] ≥ p.25

We denote by T ∗
p ∈ N ∪ {∞} the first period for which the quota is successful with

probability p ∈ (0, 1).26 Clearly, T ∗
p depends on the number n ∈ N of vacant jobs in

each period and the quota parameter q ∈ (0, 1). Furthermore, since T ∗
p depends on the

development of the firm’s belief, it also depends on the measure α of the firm’s confidence

in its initial belief. Hence, T ∗
p is a function of these parameters and given by T ∗

p (q, n, α) =

inf
{
T ∈ N : P[EY T

B ≥ ȳ] ≥ p
}

. In the following, we show how T ∗
p depends on these variables,

or, in other words, how the minimum duration for which a quota needs to be implemented

in order to be successful depends on the specifics of the learning process.

Proposition 3. If EYB > ȳ, then for all p ∈ (0, 1) it holds that T ∗
p (q, n, α) is finite for all

q ∈ (0, 1), n ∈ N and α > 0, and is decreasing in q and n.

Proposition 3 states that the more strict a quota is and the larger the number of open

positions in each period is, the sooner a quota will be successful. This result is intuitive.

If, given the initial belief in period t = 0, it is not expected to be profitable for the firm

to employ group-B workers, the firm hires as many workers as to comply exactly with the

quota, that is, it employs exactly qn group-B workers.27 Hence, the number of observations
25We slightly abuse notation and denote by P the one-dimensional probability measure as well as the

product measure. As it should be clear from the context which measure is denoted, this should cause no
confusion.

26Note that this does not necessarily mean that the firm will be voluntarily employing group-B workers
in all future periods, if the quota is removed in T ∗

p . Even if at that point in time beliefs are sufficiently
good, the decision-maker keeps learning and updating beliefs such that a number of negative draws could
potentially lead to worse beliefs again.

27In general, the product qn is not a natural number. In that case, the firm is required to employ at least
⌈qn⌉ workers. To simplify notation, we assume parameters to be such that qn ∈ N.
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the firm learns from in each period is increasing in the required fraction q and the number

of vacancies n in the firm. Therefore, since beliefs converge to the true ability distribution,

for which the group-B workers’ expected value is sufficiently large, the threshold is sooner

met the larger q and n are.

Proposition 4. If EYB > ȳ, for all p ∈ (0, 1), it holds that T ∗
p (q, n, α) is decreasing in α.

Proposition 4 states that the more confident (the smaller α) the firm is in its initial

beliefs, the longer a quota needs to be implemented in order to be successful.28 This result,

too, is intuitive. The more hesitant the firm is to discard initially biased priors (stereotypes),

the slower it updates its belief about the underrepresented workers’ abilities and the more

observations, thereby the more periods, it takes until beliefs are sufficiently corrected and

group-B workers are expected to be of sufficient value to the firm.

Finally, in Example 1 in the Appendix, we numerically and graphically illustrate the

results. In addition to exemplifying our general results on the determinants of a quota’s suc-

cess, we also consider how the degree of initial uncertainty affects the success of a quota. As

intuition suggests, we find that the more uncertain (ambiguous) the decision-maker initially

is, the longer the quota needs to be implemented in order to be successful.

5. Conclusion

In this paper, we have analyzed the effects of a quota on the development of uncertainty

and learning behavior of a firm in a dynamic model of inaccurate statistical discrimination.

In particular, we have combined a model of statistical discrimination with the literature on

ambiguity to model that a firm is less experienced with a group as a result of underrepresen-

tation of workers in the past. The model yields a number of results. First, we have shown

that, even if the groups’ true ability distributions are identical, uncertainty and stereotypes,
28Note that such a result could not be obtained in a standard Bayesian model, as the updating rule is

unique and leaves no room for parameters such as the confidence in initial beliefs that characterize the
decision-maker’s uncertainty beyond a single probability distribution.
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which are a result of a firm’s lack of experience with one of the groups, can persist in the long

run such that workers belonging to the underrepresented group, due to the negative group

reputation, keep being excluded from the job in the long run. Second, we have found that a

quota, if it is implemented for a sufficiently long time, resolves the decision-makers’ uncer-

tainty such that the firm voluntarily employs workers who have been discriminated against

before. Third, the length of time a quota needs to be in place in order to be successful in

correcting beliefs in the long run has been shown to depend on a number of determinants.

In particular, the more confident a firm is in its initial priors, the longer the quota needs to

correct the initial beliefs sufficiently.

In practice, quotas are often implemented for top-level jobs. It is typically argued that

better representation of initially underrepresented groups in high levels of a firm’s hierarchy

also affects employment and promotion decisions in lower levels through a trickle-down effect.

In our model, we have shown that a quota could have an additional effect, as it forces decision-

makers to gain experience with workers’ value for the firm, and thus it resolves uncertainty

and eliminates stereotypes. These theoretical predictions are in line with findings of previous

empirical studies, e.g., Beaman et al. (2009) and De Paola et al. (2010), which demonstrated

that quotas influence beliefs and may lead to a reduction of existing stereotypes.

Throughout the paper, we imposed the assumption that the distribution of abilities within

each group is exogenous and invariant over time. This ensures that ambiguity fades away

in the long run and stereotypes are corrected eventually. While an analysis of exogenously

time-varying distributions involves technical difficulties that are beyond the scope of this

paper, it would also be interesting to consider a model in which workers can influence their

own ability, and thus the reputation of their group.

Furthermore, it is important to complement the research of Beaman et al. (2009) and

De Paola et al. (2010) by investigating the impact of job quotas on belief development and

stereotypes empirically, as this will help to understand better the magnitude of the suggested

theoretical effects, as well as being of great importance for policy-makers in improving the
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design of quota policies in the future.
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6. Appendix

Example 1. Let the production function y = idR be the identity. In each period, the firm has

n ∈ N open positions. Workers are either talented (a = ah = 1) or untalented (a = al = 0).

In each group, two thirds of the workers are talented, that is, θ̄A = θ̄B = θ̄ = 2/3. The

firm’s productivity threshold is given by ȳ = 6/10. Initially, the firm believes that the

fraction of talented workers is either 1/3 or 2/3, that is, Θ = {1/3, 2/3}. Priors are given by

C0
B = {µ0 ∈ ∆(Θ) | µ0(θ̄) = η, η ∈ [ε, 1]} with ε > 0.

We start to analyze the firm’s employment decisions. Note that the group-A ability

distribution is sufficiently good such that an individual worker’s expected productivity, given

that the firm uses the group’s distribution as a proxy, meets the employment threshold, that

is, EYA = 2/3 > 6/10 = ȳ. The firm’s initial belief C0
B about group-B abilities in the first

period t = 0, on the other hand, is such that the productivity threshold for the employment

decision is not met, since, for ε > 0 sufficiently small, it holds that

EY 0
B = min

µ0∈C0
B

∫ ∫
a dF (a|θ)dµ0(θ) = min

η∈[ε,1]

{1 − η

3 + 2η

3

}
= 1 + ε

3 <
6
10 = ȳ. (10)

Hence, we have EYA > ȳ > EY 0
B, and therefore Proposition 1 applies. The firm does not

employ any group-B workers in the first period, it does not update its beliefs, and it keeps

excluding them for all periods t ∈ N.

Now, a quota is introduced. The firm is required to assign to the n open positions at

least a fraction q ∈ (0, 1) of group-B workers in each period t ∈ {0, 1, ..., T} and observes

their abilities. Hence, in each period, the firm learns about the group-B ability distribution

by independently drawing at least qn times from a Bernoulli distribution with parameter

(unknown by the firm) θ̄ = 2/3. Therefore, the information st−1 is a vector of N t := qnt

independent draws from Ber(θ̄). Accordingly, the firm’s beliefs in period t are given by the
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set

Ct
B(st−1, α) = {µt(.) = µ0(.|st−1) ∈ ∆(Θ) | µ0 ∈ C0

B,∫
f(st−1|θ)dµ0(θ) ≥ α max

µ0∈C0
B

∫
f(st−1|θ)dµ0(θ)},

(11)

where, by Bayes’ rule, for each µ0 ∈ CB
0 , and hence for all η ∈ [ε, 1], it holds

µt
(2

3 |η
)

=

(
2
3

)Mt (
1
3

)Nt−Mt

η(
2
3

)Mt (
1
3

)Nt−Mt

η +
(

1
3

)Mt (
2
3

)Nt−Mt

(1 − η)
, (12)

with M t = ∑t−1
i=0

∑qn
j=1 X i

j denoting the sum of all observations. Since ah = 1 = 1 − al, the

variable M t ∼ Binom(N t, 2/3) equals the number of workers who are talented, out of the

N t employed workers.

The expected productivity of a group-B worker in period t as a function of the confidence

in beliefs is then given by

EY t
B(st−1, α) = min

µt∈Ct
B(st−1,α)

{2
3µt(2/3) + 1

3µt(1/3)
}

. (13)

Note that, by Bayes’ rule, for each µ0 ∈ CB
0 , and hence for all η ∈ [ε, 1], it holds

µt
(2

3 |η
)

= Pη

[
θ = 2

3 |st−1
]

=
P

[
st−1|θ = 2

3

]
Pη

[
θ = 2

3

]
P

[
st−1|θ = 2

3

]
Pη

[
θ = 2

3

]
+ P

[
st−1|θ = 1

3

]
Pη

[
θ = 1

3

]

=

(
Nt

Mt

) (
2
3

)Mt (
1
3

)Nt−Mt

η(
Nt

Mt

) (
2
3

)Mt (
1
3

)Nt−Mt

η +
(

Nt

Mt

) (
1
3

)Mt (
2
3

)Nt−Mt

(1 − η)

=

(
2
3

)Mt (
1
3

)Nt−Mt

η(
2
3

)Mt (
1
3

)Nt−Mt

η +
(

1
3

)Mt (
2
3

)Nt−Mt

(1 − η)
,
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with

M t =
t−1∑
i=0

qn∑
j=1

X i
j

denoting the sum of all observations.

The expected productivity of a group-B worker in period t as a function of the confidence

in beliefs is then given by

EY t
B(st−1, α) = min

µt∈Ct
B(st−1,α)

∫ ∫
a dL(a|θ) dµt(θ)

= min
µt∈Ct

B(st−1,α)

∫
ahθ + al(1 − θ) dµt(θ)

= min
µt∈Ct

B(st−1,α)

∫
θ dµt(θ)

= min
µt∈Ct

B(st−1,α)

{2
3µt(2/3) + 1

3µt(1/3)
}

.

In the following, we graphically illustrate how, for a population with ability distribution

Fθ̄, the minimum number T ∗ of periods varies with different parameters of the model.29

First, we consider the implications of Proposition 3, which states that the larger the firm

is (the larger n) and the more strict a quota is (the larger q), the sooner the quota will be

successful. Figure 1 illustrates these findings by showing the graph of the minimum time T ∗

a quota needs to be implemented in order to be successful as a function of the firm size n in

the left panel and as a function of the quota parameter q in the right panel.
29Parameters are chosen such that all but the running variable are held constant at n = 5, q = 0.2, α = 0.3,

ε = 10−2 and p = 0.99. The values of the function T ∗() that are shown in the graphs are calculated as
follows: For each combination of parameters we simulate the development of beliefs 1000 times by drawing
random sequences from the ability distribution. The number T ∗() is then calculated as the smallest time
period such that the quota has been successful for a share of p = 0.99 of the 1000 simulations.

24



0 10 20 30 400

2

4

6

8

T ∗(n)

n

T

0 0.2 0.40

5

10

T ∗(q)

q

T

Figure 1: Graph of T ∗ as a function of the firm size n and the quota parameter q

Clearly, T ∗ is decreasing in both parameters, that is, the larger the firm size or the

stricter the quota, the sooner uncertainty is resolved sufficiently, such that the quota becomes

obsolete.

Second, we illustrate the results on the dependence of a quota’s success on the decision-

maker’s confidence α in initial beliefs. The corresponding Proposition 4 states that T ∗ is

decreasing in α, that is, the more confident the firm is in its initial beliefs, the longer a quota

needs to be implemented in order to be successful. Figure 2 shows the simulation results

for T ∗ as a function of the confidence parameter α. As the graph of minimum period T ∗ is

decreasing in α, this simulation is in line with the results of Proposition 4.
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Figure 2: Development of required time T as function of the confidence parameter α
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Third, although we have not provided any formal results on this effect, we illustrate how

the amount of uncertainty affects the quota’s success. Figure 3 shows the graph of T ∗ as

a function of ε. In this example, the parameter ε is a measure of uncertainty, as for any

ε1 > ε2 it holds that C0
B(ε1) ⊂ C0

B(ε2). Hence, the smaller ε is, the larger is the set of initial

beliefs the decision-maker considers to be possible.

0 0.2 0.4 0.6 0.8 10
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4

6

T ∗(ε)

ε

T

Figure 3: Development of required time T as function of the uncertainty parameter ε

We can see that, as one would intuitively expect, the less uncertain the decision-maker

initially is (the larger ε), the sooner the quota is successful in resolving uncertainty and

correcting stereotypes.

Proof of Proposition 2. Before we proceed to prove the convergence results in the Proposi-

tion, observe that the convergence with respect to the number of periods is implied by a

convergence with respect to the number of draws the decision-maker observes from the true

ability distribution, since the quota requires the firm to employ, in each period t ∈ {1, ..., T},

at least ⌈qn⌉ ≥ 1 group-B workers. Hence, for all T ∈ N, the decision-maker observed at

least T realizations of draws from the true ability distribution, and therefore T can be seen

as the minimal number of observations in period T .

We begin by proving the convergence in equation (7), that is, we want to show that

sup
µ∈CT

B

{
max
X⊂Θ

|µ(X) − δθ̄B
(X)|

}
T →∞−→ 0, (14)
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where δθ̄B
denotes the Dirac measure in θ̄B and the convergence is P-almost surely.

Suppose for now that α = 0. By assumption, for every µ0 ∈ C0
B it holds that µ0(θ̄B) > 0.

In other words, the true parameter θ̄B is an element of the strong support of the set of priors

C0
B. Hence, the convergence in equation (14) follows immediately by Lemma 1 of Marinacci

(2002).

Now, consider the case α > 0. While in case of α = 0 posteriors are formed for all priors

µ0 ∈ C0
B, the updating process in the general case is defined in equation (5) and given by

Ct
B(st−1, α) = {µt(.) = µ0(.|st−1) ∈ ∆(Θ) | µ0 ∈ C0

B,∫
f(st−1|θ)dµ0(θ) ≥ α max

µ0∈C0
B

∫
f(st−1|θ)dµ0(θ)}.

Hence, for all α > 0 and all t ∈ N, it holds that Ct
B(st−1, α) ⊂ Ct

B(st−1, 0). Therefore, we

obtain

0 ≤ sup
µ∈CT

B(sT −1,α)

{
max
X⊂Θ

|µ(X) − δθ̄B
(X)|

}
≤ sup

µ∈CT
B(st−1,0)

{
max
X⊂Θ

|µ(X) − δθ̄B
(X)|

}
T →∞−→ 0.

Hence, the convergence in equation (14) follows for all α > 0 almost surely.

Next, we show the convergence of the expected productivity of group-B workers, given

by equation (8) to the true productivity, that is, we show that, for T → ∞, it holds that

EY T
B (sT −1, α) = min

µT ∈CT
B(sT −1,α)

∫ ∫
y(a)dF (a|θ)dµT (θ)

−→
∫ ∫

y(a)dF (a|θ)dδθ̄B
(θ) = EYB

(15)

almost surely with respect to the probability measure P.

Consider first the case α = 0. Since C0
B is compact and θ̄B is, as argued before, an

element of the strong support of C0
B, the convergence in equation (15) follows immediately

from Theorem 1 in Marinacci (2002).

Suppose now that α > 0. Then, by again noting that for all α > 0 and all T ∈ N, it
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holds that CT
B(sT −1, α) ⊂ CT

B(sT −1, 0), the result follows from the former case.

Proof of Proposition 3. By Proposition 2, for all α ∈ [0, 1] it holds that EY T
B (sT −1, α) →

EYB almost surely for T → ∞. Hence, since the convergence is almost surely with respect

to the probability measure P, the variable EY T
B (sT −1, α) also converges to EYB in probability

with respect to that measure, that is, for all ε > 0, it holds that

lim
T →∞

P
[
|EY T

B (sT −1, α) − EYB| ≥ ε
]

= 0.

Since, by assumption, EYB > ȳ, it thus follows that

lim
T →∞

P
[
EY T

B (sT −1, α) ≥ ȳ
]

= 1,

that is, for every p ∈ (0, 1), there exists a Tp > 0 such that for every T > Tp it holds that

P
[
EY T

B (sT −1, α) ≥ ȳ
]

≥ p. Denoting, for each p ∈ (0, 1), the smallest such Tp ∈ N by T ∗
p ,

we obtain

T ∗
p = T ∗

p (q, n, α) = min
{
T ∈ N : P[EY T

B (sT −1, α) ≥ ȳ] ≥ p
}

.

Clearly, T ∗
p (q, n, α) is finite for all q ∈ (0, 1), n ∈ N and α > 0.

By the definition of the quota, the minimum number of draws (that is, the length of the

information vector sT −1) the firm has to learn from in each period is given by ⌈qn⌉ ∈ N. Since

q ∈ (0, 1) and n ∈ N, the product qn > 0 is strictly increasing in both factors. Therefore, for

each T ∈ N, it holds that P
[
EY T

B (sT −1, α) ≥ ȳ
]

is increasing in q and n. Hence, T ∗
p (q, n, α)

is decreasing in both parameters.

Proof of Proposition 4. Since EYB > ȳ, by analogous arguments as in the proof of Proposi-

tion 3, for every p ∈ (0, 1) there exists a Tp > 0, such that for every T > Tp it holds that

P
[
EY T

B (sT −1, α) ≥ ȳ
]

≥ p, and the smallest such Tp is given by

T ∗
p (q, n, α) = min

{
T ∈ N : P[EY T

B (sT −1, α) ≥ ȳ] ≥ p
}

.
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Fix parameters n ∈ N and q ∈ (0, 1) and let α1, α2 ∈ [0, 1] with α1 > α2. Then, for all

T ∈ N, it holds that CT
B(sT −1, α1) ⊂ CT

B(sT −1, α2). Since

EY T
B (sT −1, α) = min

µT ∈CT
B(sT −1,α)

∫ ∫
y(a)dF (a|θ)dµT (θ),

for every T ∈ N it therefore must hold that EY T
B (sT −1, α1) ≥ EY T

B (sT −1, α2). Hence,

T ∗
p (q, n, α) is decreasing in α.
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