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Abstract

A seller with commitment power sets prices over time. Risk-averse buyers arrive to the market

and decide when to purchase. We obtain that the optimal price path is a “regular” price, with

occasional episodes of sequential discounts that occur at random times. The optimal price path

has the property that the price a buyer ends up paying is independent of his arrival and purchase

times, and only depends on his valuation. Our theory accommodates empirical findings on the

timing of discounts.

JEL classification: D82
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1 Introduction

Durable goods prices at many retailers exhibit a distinct pattern that might seem difficult to square

with much of the theory on dynamic pricing. Prices tend to remain constant at the highest level —

often termed the “regular price” — apart from when they are occasionally discounted. Such patterns

have been noticed across a range of empirical work; e.g., Warner and Barsky (1995), Pesendorfer

(2002), Eichenbaum, Jaimovich, and Rebelo (2011), Kehoe and Midrigan (2015), and Chevalier and

Kashyap (2017).

A key reason these patterns seem difficult to reconcile with much of the theory is as follows. If

the sellers in the theoretical models do choose to reduce their prices at some dates, then the price
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(a) (b)

Figure 1: Illustration of typical price and quantity patterns (Figure 1 from Février and Wilner, 2016)
for two albums – ‘Brothers in arms’ by Dire Straits, and ‘Greatest hits’ by Janis Joplin – featuring
two focal prices (a high price and a discounted or sale price).

discounts are predictable. Strategic and forward-looking buyers therefore become less willing to

purchase at high prices as the date of a price discount approaches. In a range of models with flexible

prices, this means that the seller gradually reduces prices as the date with the steepest discount

draws near. Stokey (1979), Conlisk, Gerstner, and Sobel (1984), Sobel (1991), Board (2008), and

Garrett (2016) are but a few instances.

For an example of common empirical price patterns, consider Février and Wilner’s (2016) ana-

lysis of a French music retailer in the early 2000s. They observe that price discounts are typically

discrete rather than gradual and that purchases do not decline immediately before sizeable price

reductions (see Figure 1). Février and Wilner (2016) interpret the latter observation as indicating

that buyers are unable to foresee the timing of discounts. They find that demand at the regular price

is nonetheless sensitive to the frequency and size of price reductions, which is taken as evidence con-

sumers are forward-looking. The view of consumers as forward-looking but uncertain about future

prices is in common with much of the literature on dynamic demand estimation (see the discussions

in Gowrisankaran and Rysman, 2012, who consider camcorders, and in Hendel and Nevo, 2013, who

consider soft-drinks).

In this paper, we propose a novel theory of buyers’ failure to predict the timing of price reductions

based on optimal price discrimination by sellers. We show that setting random discounts is optimal

for a seller with commitment power who faces buyers that are forward-looking and risk averse, and

who arrive to the market over time.1,2 This contrasts with the optimality of constant prices in

1The assumption of full commitment seems useful for shedding light on pricing patterns adopted by sellers. Our
view is in line with Board and Skrzypacz (2016) who suggest that commitment “is reasonable with applications such
as retailing, online ads, and concerts in which the seller automates the pricing scheme and uses it repeatedly.”

2While not all price reductions are difficult to predict in practice (e.g., Black Friday and Christmas specials), many
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important benchmarks with risk-neutral buyers (see Stokey, 1979, and Conlisk, Gerstner, and Sobel,

1984).

While risk aversion is a commonly studied assumption in other allocation problems such as

auctions, its role has largely been overlooked in relation to dynamic pricing. There is, nevertheless,

evidence of risk aversion in markets for durable goods. For instance, Chen, Kalra, and Sun (2009)

document the widespread sale of warranties for electronic goods at much worse than fair prices. Also,

the presence of a “buy-it-now” price in online auctions on platforms such as Yahoo and eBay has

often been associated with buyer risk aversion (see Budish and Takeyama, 2001, and Reynolds and

Wooders, 2009).3

The seller in our model commits to the price path offered to buyers who arrive over time. We

show that a virtually optimal price path involves a constant regular price, with short-lived episodes

of discounting that are randomly timed, and which buyers in particular find unpredictable.4 Within

each discounting episode, the initial discount is small, and after each further discount there is a

positive probability that the price goes back to the regular price. The pricing policy is stationary

in that the future process for prices depends only on the current price (and not, for instance, on

calendar time).

An important feature of our pricing policy is that it implies virtually all the buyers with a

given valuation purchase at the same price. This is possible because buyers have the same beliefs

regarding the future evolution of prices. For instance, all highest valuation buyers have the same

incentive to accept the constant regular price instead of waiting for lower ones. Similarly, buyers

with intermediate values wait for the price to drop enough to purchase. Delaying purchase involves

the risk that the discounting episode ends and the price returns to the regular level. Each type of

the buyer arriving at a time where the regular price is offered ends up buying at a predictable price

but at a random time. The importance of buyers with the same valuation purchasing at the same

price is that this is efficient given buyer risk aversion. In essence, buyers are protected from pricing

risk associated with their time of arrival to the market, increasing the surplus the seller can extract.

Our analysis of the seller’s problem proceeds in two main steps. The first step (in Section 3)

involves analyzing a static allocation problem with a single (representative) buyer, with payments

made only in case the buyer receives the good. This analysis is closely connected to work on auctions

with risk-averse bidders such as Matthews (1983), Maskin and Riley (1984), and Moore (1984),

retailers discount products throughout the year but do not inform customers about the timing in advance. Since timely
advance information could be made available at little cost, it may be reasonable to infer that its absence is often part
of a deliberate policy.

3Some caution may be needed in interpreting buyers as risk averse when there are small stakes, given the implications
for gambles with larger stakes. However, risk-averse preferences might also be understood as capturing consumer loss
aversion; see Rabin (2000) who discusses loss aversion as a leading explanation of “small-scale” risk aversion that has
been observed empirically.

4The reason for considering price paths that are only “virtually optimal” relates to the impossibility of offering
different price discounts “within the same instant of time”. We show that this means there are cases where no optimal
price path exists, and we look at virtually optimal policies in these cases.
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although a key difference is the restriction to “winner pays” which necessitates separate analysis.

The unique optimal mechanism involves a type-dependent probability of receiving the good and a

non-stochastic payment for allocation.

The second step (in Section 4) is to consider a setting where buyers arrive over time, and where

the profits from the static mechanism provide a natural upper bound on the available profits per

buyer. We show that this upper bound can be attained — or approximated arbitrarily closely — by

a stochastic price path. As we explain below, the random price processes can be understood in terms

of a dynamic implementation of the optimal static allocations. The properties of the dynamic format

are therefore intimately related to those of the optimal static mechanism. For instance, the above

result that all buyers with the same valuation purchase at the same price in the dynamic format

follows from the same result for the static mechanism.

A final part of our analysis (in Section 5) relaxes the assumption that buyers observe the prices

posted before their arrival. We argue that this permits the theory to accommodate observed discount

patterns. Such analysis is relevant to empirical investigations of the topic in the macroeconomics

literature on price stickiness (see, e.g., Nakamura and Steinsson, 2008, Eichenbaum, Jaimovich, and

Rebelo, 2011, and Kehoe and Midrigan, 2015), and in industrial organization (e.g., Pesendorfer,

2002, Berck, Brown, Perloff, and Villas-Boas, 2008, and Février and Wilner, 2016). Other relevant

theories of price discounts are reviewed in Section 6.

2 Set-up

We consider a setting with a single seller and either one or many buyers. Buyers have unit demand

and are risk averse. The seller faces no capacity constraints, zero production costs, and is risk neutral.

Our setting is static in Section 3 and dynamic in Section 4. In the dynamic setting, time is

continuous and the horizon infinite, with time indexed by t ∈ [0,∞). Both the seller and buyers then

have a common discount rate r > 0. The arrival process for buyers is delayed to Section 4.

Buyers’ enjoyment of the good depends on their “types”. We label these types {θn|n=1, ..., N},
with θN >...>θ1>0. Values βn > 0 denote the probability of each type θn, with

∑N
n=1 βn = 1. In

the dynamic setting, types will be independent of the arrival date.

Any buyer can transact at most once with the seller; that is, allocation of the good and payment

must occur on the same date. Payments are made only if the buyer obtains the good, and the payoff

from not receiving the good is set to zero. For each type θn and payment p ∈ R+, we let vn(p) ∈ R
denote the utility of a purchase for this type and payment. Note that, in the dynamic setting of

Section 4, our assumptions imply that a type θn buyer’s intertemporal payoff is e−rtvn(pt) if the

good is purchased at price pt on date t, while it is equal to zero in case of never purchasing.

We restrict buyer preferences as follows. For each n, vn(·) is a strictly decreasing, strictly

concave, and twice continuously-differentiable function. We normalize by setting vn(θn) = 0 for each
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n, i.e. a buyer’s type corresponds to his valuation for the good. We make the following additional

assumptions.

Condition A.

A1 Higher types are “more eager”: For any n=1, ..., N−1 and p<θn,
−v′n+1(p)

vn+1(p) <
−v′n(p)
vn(p) .

A2 Higher types are less risk averse: For any n=1, ..., N−1 and p ∈ R+,
v′′n+1(p)

v′n+1(p)
≤ v′′n(p)

v′n(p) .

The role of Assumptions A1 and A2 will be explained further below. For now, note that they will

have important implications for the form of optimal static mechanism in Section 3, and consequently

for optimal stochastic price processes in Section 4. For instance, Assumptions A1 and A2 together

will ensure that higher types are more likely to receive the good and pay higher prices in the optimal

mechanism. A natural interpretation of higher types (see, for instance, Maskin and Riley, 1984) is

that they represent wealthier individuals, since risk aversion is generally believed to be decreasing in

wealth.

3 Optimal mechanisms in static environments

This section considers static mechanisms for a single buyer, anticipating the relevance for dynamic

pricing problems in the following section. The key reason for the connection will be that allocating

the good at price p after delay t generates the same expected payoffs for the players as immediate

allocation at the same price with probability e−rt.

By the revelation principle, it will be without loss of generality to consider direct mechanisms

which allocate a unit to each type θn with probability xn. In addition, these mechanisms stipulate

a potentially random price conditional on assignment, with distribution Hn : R+ → [0, 1] for each

type θn. In case xn = 0, we might as well set the payment deterministically to zero and we do so

below. A static mechanism can then be written as M = (xn, Hn)Nn=1.

To define incentive compatibility, note that type θn’s expected payoff when reporting θk is

Un,k ≡ xk
∫
vn(p)dHk(p).

An incentive compatible direct mechanism is one where, for all n and k, Un,n ≥ Un,k. Apart from

being incentive compatible, the static mechanism should be individually rational, which requires

Un,n ≥ 0 for all n. We say that a mechanism has deterministic payments if Hn is degenerate for each

n. In this case, with an abuse of notation, we may write the mechanism as MD = (xn, pn)Nn=1. The

following result implies monotonicity of the allocation in mechanisms with deterministic prices.

Lemma 1. Consider any two types θk and θl with k < l, and consider two allocation probabilities

and (sure) prices (x′, p′) and (x′′, p′′) withx′ < x′′ and p′′≤θk. If x′′vk(p
′′)≥x′vk(p′), then x′′vl(p

′′)>

x′vl(p
′).
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Lemma 1 follows from Assumption A1, which provides a sense in which higher types are less price

sensitive or “more eager” to purchase at higher prices. The result (shown in Appendix I together with

the other proofs) also assumes deterministic payments. Our next result is that this is the relevant

case for optimal mechanisms, where we use now both Assumptions A1 and A2.

Lemma 2. Any optimal mechanism has deterministic payments.

The proof of Lemma 2 involves finding, for any mechanism with random payments, a mechanism

with deterministic payments and higher profits. This takes place in two steps. First, we consider

the mechanism in which each type is charged the certainty equivalent price, i.e. the sure price that

gives each type the same expected payoff when receiving the good as under the original mechanism.

While this mechanism is more profitable than the original if the buyer reports the truth, truth-

telling may not be incentive compatible. The second step then involves suppressing the option to

report certain types that are less profitable for the seller, determining a kind of indirect mechanism.5

Precisely, the new mechanism permits a report equal to the lowest type that obtains the good with

positive probability under the original mechanism. Other available reports are then determined in

an increasing sequence, allowing a type to be reported if and only if profits are greater than for all

lower available reports. We then establish that every type sends a message from the available options

which generates higher seller profits than for the truthful message in the original mechanism.

Let us briefly position Lemma 2 in the literature. First note that, in an auctions setting, Maskin

and Riley (1984) establish a sufficient condition for the optimality of deterministic mechanisms

using an optimal control argument (see their Theorem 9). As Moore (1984) observes, this sufficient

condition appears difficult to evaluate and depends on an endogenous variable (see Equation (45) in

Maskin and Riley). Moore therefore proposes, in a single-buyer setting with discrete types, sufficient

conditions on primitives guaranteeing optimality of deterministic payments. Unlike our model, those

of Maskin and Riley and Moore feature a payment also in case the buyer is not awarded the good.

Moore’s argument (see his Theorem 1) depends on payments by the losing buyer, so it does not

apply to our setting.6

Lemmas 1 and 2 permit further characterization of the optimal mechanism. We show the fol-

lowing result.

Proposition 1. The optimal mechanism is unique. It is fully characterized by a weakly increasing

sequence (x∗n, p
∗
n)Nn=1 of allocation probabilities and prices for each type such that x∗N =1. Downward

incentive constraints bind: for all n = 1, . . . , N , x∗nvn(p∗n)=x∗n−1vn(p∗n−1), where we put x∗0 = p∗0 = 0.

5Some types may send the same truthful message as under the original direct mechanism, but clearly others may
not.

6Note that Lemma 3 of Matthews (1983) establishes the optimality of deterministic payments for the winning
bidder in an auction, but does so only under preferences defined by constant absolute risk aversion.
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It is worth highlighting here the proof of uniqueness, which is new to the literature. It supposes

that there are two distinct optimal mechanisms, and then constructs a randomization over them

where a buyer reporting to the mechanism plays each of the original distinct mechanisms with a fixed

probability. The new mechanism is also optimal, and it involves randomized payments, contradicting

Lemma 2. Uniqueness is of interest here because it will be important for our discussion of optimal

price paths in the dynamic environment of Section 4.

Optimality of random mechanisms. We do not attempt a full characterization of the optimal

allocations (x∗n)Nn=1, but note that concavity of the agent’s preferences vn can imply the optimality

of random allocations: that is, it may be that x∗n ∈ (0, 1) for some n. To illustrate, consider first

the case where N = 2 so there is a low type and a high type. By Proposition 1, it is optimal to set

the probability of allocation to the high type equal to one. Also, letting x1 denote the probability of

allocation to the low type and p2 the price charged to the high type, we may assume v2(p2) = x1v2(θ1)

(i.e., indifference of the high type to the low type’s option). We then have that θ1 is the price charged

to the low type, and v−1
2 (x1v2(θ1)) the price charged to the high type, where v−1

2 is the inverse of

v2. We can therefore write the seller’s profits as:

β1x1θ1 + β2v
−1
2 (x1v2(θ1)) (1)

The optimal mechanism is then determined by maximizing the expression in Equation (1).7

Proposition 2. Suppose N=2 and consider the allocation probability to the low type in the optimal

mechanism, x∗1, which is the value maximizing the expression in Equation (1). There is an interval

(β, β̄), with 0<β < β̄ < 1, such that x∗1 is in (0, 1) if and only if β2 ∈ (β, β̄). If β2≤β, then x∗1 = 1,

and if β2≥ β̄, then x∗1 =0.

Note that it is the concavity of v2(·), or equivalently the concavity of v−1
2 (·), that explains why

we find an interior solution for a range of probabilities β2 of the high type, different to the case

where v2(·) is linear.8 Intuitively, when the probability of allocation to the low type (i.e., x1) is low,

the price charged to the high type is high, and so the high type is more price sensitive. Therefore,

raising x1 above the lower bound of zero requires reducing the price of the high type relatively little,

suggesting the profitability of the change. Conversely, when x1 is high, the price charged to the

high type is low, and so the high type is less price sensitive. Lowering x1 below the upper bound

of one permits increasing the price to the high type by a relatively large amount, which suggests

the profitability of the change. Indeed, for intermediate values of the probability of the high type

7Proposition 2 holds without Assumptions A1 and A2. This can be seen in a previous version of the paper.
8That is, when payoffs are linear in prices, we obtain the usual “no-haggling” result that it is optimal to make a

take-it-or-leave it offer to the buyer (see Riley and Zeckhauser, 1983, for this result in a dynamic setting with many
buyers).
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(namely β2 ∈ (β, β̄)), both the above adjustments are profitable, explaining why the optimal choice

of x1 is interior.

When it comes to consider many types, a key question which will be relevant for dynamic pricing

in Section 4 is whether we can now have a range of types receiving a random allocation. We aim here

to illustrate this possibility in a case inspired by the auctions literature, namely taking the constant

absolute risk aversion (CARA) preferences considered by Matthews (1983) and a continuum of types.9

We introduce preferences in the continuum setting by writing the valuation of type θ purchasing at

price p as v(p; θ) = 1 − e−R(θ−p), where R > 0 is the coefficient of absolute risk aversion. For any

discrete set of types, {θ1, ..., θN}, these preferences satisfy all the conditions of the model set-up,

including Assumptions A1 and A2.

We suppose types θ are distributed on a bounded interval [θ, θ̄], with θ ≥ 0, according to a twice

continuously differentiable distribution F . We denote the corresponding density by f . At a posted

price p, all types θ ≥ p find it optimal to purchase, so expected profit from a price p is p(1−F (p)).

Suppose F is such that this profit is uniquely maximized by a price p∗ ∈ (θ, θ̄). Noting that the

derivative of profits with respect to price is −f(p)p+1−F (p), a sufficient condition is that 1−F (p)
f(p) is

decreasing, and limp↓θ
1

f(p) > θ while limp↑θ̄
1−F (p)
f(p) < θ̄.

Proposition 3. Suppose the buyer has CARA preferences as just introduced, with types distributed

according to a cdf F satisfying the assumptions just stated. Then there is R̄ > 0 such that, for all

R>R̄, the seller obtains higher profit with a random mechanism than with the optimal deterministic

mechanism.

By Proposition 3, the seller may prefer a random mechanism, with random allocations for a

positive measure of types, to the optimal deterministic mechanism, which involves a posted price

to obtain a unit for sure. This occurs whenever the buyer is sufficiently risk averse. The random

mechanism we consider in the proof is a simple perturbation of the optimal posted price, introducing

an additional option for the buyer to obtain the good with probability one half. We show the

perturbed mechanism is more profitable whenever R is large enough. The same basic argument

can be applied to a fine grid of discrete types, with the comparison again being between the optimal

posted price (where profit approaches that in the continuum setting with the fineness of the grid) and

a perturbed mechanism. It is easy to see that existence of an optimal mechanism is obtained in the

setting with discrete types, so we have that the unique optimal mechanism can involve randomization.

The discrete environment is also amenable to numerical analysis, where we can observe the optimality

of assigning random allocations to a range of types for particular cases.10

9The difference in our environment relative to Matthews (1983) is that the buyer in his setting can make a payment
when not receiving the good. In the optimal mechanism of his model, indeed, buyers pay when they do not get the
good (see his Theorem 1).

10We approximate the uniform distribution on [0, 10] with N = 101 equiprobable and evenly spaced types. Letting
R = 1, we find that all types below 2.0 are given the good with probability zero, and all types above 8.5 are given the
good with probability one. All other types are given the good with an interior probability.
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4 Optimal price mechanisms in dynamic arrivals

This section considers dynamic pricing mechanisms, initially for a fixed arrival date and then for

buyers arriving over time. The optimal profits from the static mechanism studied in the previous

section, denoted Π∗, will be an upper bound on the profits attainable per buyer. Our main question

is whether and how a dynamic price path can generate profits equal or close to this bound.

The restriction implicit in the consideration of price paths is that one price is offered at any

instant. We view the seller as being able to fully commit to the path of prices, including to random

price paths, particular instances of which will be described below. Throughout this section, we refer

frequently to the values that characterize the optimal static mechanism, namely (x∗n, p
∗
n)Nn=1.

Deterministic price paths for fixed arrival date. Consider first a single buyer arriving at a

fixed date, say t = 0. There is a deterministic price path achieving profits Π∗. In this sense, the

restriction to a deterministic price path comes at no cost to the seller.

To determine an optimal deterministic price path, suppose the buyer purchases whenever indif-

ferent. We then choose prices so that the buyer makes any purchase at a date in T = {− log(x∗n)/r :

x∗n > 0}. For each x∗n > 0, we set the price at date t∗n = − log(x∗n)/r to p∗n. The prices at other

dates are immaterial, provided they are sufficiently high; for instance, it is enough to set them to

p∗N (the highest payment in the static mechanism). Prices fall over dates in T . If the buyer has

type θn, he waits for the price to fall to p∗n at date t∗n to purchase (assuming such a date exists).

The optimality of purchasing at date t∗n follows from the same incentive constraints respected by the

static mechanism (x∗n, p
∗
n)Nn=1. That is, for each n and k with n 6=k, Un,n≥Un,k guarantees type θn

does not gain by purchasing at date t∗k. Using Proposition 1, the set of purchase dates T , as well as

the prices at these dates, are unique across any optimal deterministic price path.

Suboptimality of deterministic price paths for dynamic arrivals. The above observations

hold equally for a single buyer and for a unit mass of buyers arriving at a fixed date. Suppose

now that a large population of buyers instead arrives to the market over time. Viewing buyers as

infinitesimal, we specify a finite arrival rate γ > 0. Normalize demand by setting
∫∞

0 γe−rtdt = 1

(i.e., γ=r), so that the seller’s total profits correspond to a per-buyer (weighted) average. The value

Π∗ is then an upper bound on the seller’s expected profits.

Consider now whether profits Π∗ are attainable with a deterministic price path. This turns

out not be possible if the optimal static mechanism involves x∗n ∈ (0, 1) for some n.11 To see this,

note that to maximize profit from buyers arriving at date t = 0, the price path must induce these

buyers to purchase at dates in T at the prices described above. However, using the aforementioned

uniqueness of the optimal static mechanism, profits cannot then be maximized for later cohorts.

The reason profits must be less for later cohorts can be seen by considering buyers who arrive a

11When there is no n with x∗n ∈ (0, 1), there is an optimal price path which is constant with the price equal to the
lowest type of buyer receiving the good in the optimal static mechanism.
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short time before the lowest price occurs. For any type arriving at such a time, the buyer optimally

purchases when the low price is charged or earlier, rather than with the delays specified above which

are necessary to achieve optimal profits.

Convenient dynamic revelation mechanisms. To begin understanding how a stochastic price

path can help, we next introduce a class of stochastic dynamic mechanisms where buyers are some-

times asked to report their types, and in which the seller obtains expected profits Π∗. Because this

is a combination of static revelation and dynamic formats, we refer to this as the Hybrid Mechanism.

From hereon, we assume there is some type θn such that the allocation probability in the static mech-

anism is xn ∈ (0, 1), as otherwise a deterministic and constant price path is optimal (see Footnote

11).

Let θn̄ then be the highest type for which x∗n̄ < 1. The mechanisms we examine set a constant

“buy-it-now” price that is to be accepted immediately by all types strictly above θn̄. Buyers who

have not purchased are then asked to play static and memoryless revelation mechanisms at random

times. That is, at randomly determined times, buyers are asked to send reports of their types and

the mechanism determines the allocation probability and price on this basis, but not on the basis of

previous reports. Buyers leave the market if they are awarded the good, but otherwise remain and

can report to future revelation mechanisms each time they occur.12

In selecting the Hybrid Mechanism, we are guided by the optimal static mechanism of the

previous section. Let the buy-it-now price equal p∗N , the price paid for allocation with certainty

in the static mechanism. Suppose revelation mechanisms occur at a Poisson rate λn̄ =
rx∗n̄

1−x∗n̄
. The

revelation mechanism awards the good with certainty to types at least θn̄ at price pn̄, and awards

it with probability x∗n
x∗n̄

1−x∗n̄
1−x∗n

to types θn below θn̄ at prices p∗n. The implication is that a buyer of

type θn ≤ θn̄ who continues to report truthfully in the revelation mechanisms receives the good at

a Poisson rate λn = rx∗n
1−x∗n

, and so the expected discounting until purchase is x∗n.13 Assuming types

greater than θn̄ purchase immediately at the buy-it-now price, and all other types report truthfully

in the revelation mechanisms, the expected payoff of each type is the same as in the optimal static

mechanism, and the seller earns expected profits Π∗.

It remains to check that buyers are willing to behave as prescribed. This is straightforward,

however, because stationarity of the mechanism implies the optimality of a stationary strategy for

each buyer. In a stationary strategy, a buyer of any type θn either purchases immediately at price

p∗N , or never takes the buy-it-now price and instead either (a) makes the same report θk in every

revelation mechanism, or (b) never reports to any revelation mechanism. The payoff from the buy-

it-now price is vn(p∗N ) and that from continuing to report θk (given that the revelation mechanism

is not currently available) is x∗kvn(p∗k). Therefore, verifying incentive compatibility and individual

rationality of the behavior prescribed for the buyer above involves checking the same inequalities as

12Since buyers have unit demand, they cannot benefit from participating after receiving the good.
13The calculation of the Poisson rate λn follows from standard formulae for Poisson thinning.
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guaranteed by the satisfaction of the incentive constraints for the static mechanism (x∗n, p
∗
n)Nn=1.

(Virtual) optimality of random price paths. Next, note that there is a strategically equivalent

implementation of the Hybrid Mechanism which is a format closer in appearance to a price path.

At each instant a revelation mechanism would take place, there is instead an episode of “price

discounting” that takes place instantaneously. At such a time, the good is initially offered for sale at

price pn̄. Then, for n ≤ n̄, if the price pn has been offered, the price drops to pn−1 with probability
x∗n−1

x∗n

1−x∗n
1−x∗n−1

, where recall that we put x∗0 ≡ 0.14 With complementary probability, the episode of

price discounting ends and the good remains available only at the buy-it-now price p∗N until the next

discounting episode arrives at Poisson rate λn̄. Buyers with types above θn̄ purchase immediately,

while buyers with types θn ≤ θn̄ either wait until the price hits p∗n, or never purchase if x∗n = 0.

Recall that a price path requires one price to be offered at each instant. The dynamic pricing

format just described generally fails to be a price path, because different discounted prices may be

offered on the same date. It turns out then that a price path can nevertheless approximate the

suggested mechanism arbitrarily closely, so we obtain the following result.

Proposition 4. Suppose buyers arrive over time as specified above. For any ε > 0, there is a (possibly

random) price path such that the seller’s expected profits are at least Π∗ − ε.

Our approach to show the approximation of profits Π∗ is, in essence, to spread episodes of

sequential discounts over intervals of short duration. The proof of Proposition 4 constructs a Markov

price process where the price equals p∗N in the “regular” state. At arrival rate λn̄ =
rx∗n̄

1−x∗n̄
the state

transitions to the first discount state, where the price is p∗n̄ (so the expected discounting until p∗n̄ is

offered is x∗n̄). Shortly after, either the state transitions back to the regular state or transitions to

the second discount state. The transition probability is such that, in the regular state, the second

discount state is first reached at a Poisson rate λn̄′ =
rx∗

n̄′
1−x∗

n̄′
, where x∗n̄′ is the largest value satisfying

x∗n̄′ < x∗n̄. The price at the second discount state is p∗n̄′ . Importantly, the second discount state is only

reached after the first discount state. The process features as many discount states as different values

of x∗n∈(0, 1), each lower discount state reached with some probability shortly after the previous one.

Figure 2 depicts a realization of the price path for N = 3 when 0 < x∗1 < x∗2 < x∗3 = 1.

By restricting attention to stationary strategies (as for the Hybrid Mechanism above) we show

that a θn-buyer arriving at the regular state buys at the same price p∗n and with the same expected

discounting x∗n as in the Hybrid Mechanism. Buyers resolve a trade-off between purchasing and

waiting for further discounts. For example, in Figure 2, type θ2 accepts the discounted price p∗2

because, even though he knows that the price may be further discounted soon, it may also go back

to the regular price, and hence he will have to wait a while for another discount.

When the duration of discount states is short, most buyers arrive when the state is regular.

Hence, the expected profits per buyer from cohorts arriving at these times equal Π∗. The only loss

14If x∗n−1 = x∗n, the same price p∗n is offered again with certainty. This “re-offering” is clearly immaterial and could
equivalently be dropped from the description of the mechanism.
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Figure 2: Example of a realization of a price path for N = 3 when 0 < x∗1 < x∗2 < x∗3 = 1. In the
example, there are four discount episodes from the regular price p∗3. In the first and the last, only p∗2
is offered before p∗3 is offered again. In the other two discount episodes a second discount at price p∗1
occurs after the first discount.

in profits arises from buyers arriving during the episodes of price reductions. For instance, a buyer

of type θN arriving during these episodes purchases at a price below the price p∗N prescribed by the

optimal static mechanism. By the uniqueness of the optimal static mechanism, such a purchase is

inconsistent with profit maximization. Still, the episodes of price reductions can be chosen as short

as desired. Hence, there are price processes with profits arbitrarily close to Π∗.

Proposition 4 leaves open the question of whether profits Π∗ can be exactly attained. In Appendix

II, we prove that there exists a price process attaining Π∗ if and only if there are no two values

x∗n′ , x
∗
n′′ ∈ (0, 1) with x∗n′ 6= x∗n′′ . An example is where N = 2. If β2 belongs to the interval (β, β̄)

identified in Proposition 2 so that x∗1 ∈ (0, 1), then x∗1 is the only allocation probability in (0, 1),

since recall x∗2 = 1. Then the seller achieves the optimal profits Π∗ through a constant regular price

of p∗2 that is occasionally discounted to price p∗1 = θ1 at Poisson rate
rx∗1

1−x∗1
.

5 Timing of discounts

As mentioned in the Introduction, work in macroeconomics and industrial organization has been

interested to understand patterns of price discounts. For instance, Pesendorfer (2002), Février and

Wilner (2016) and Lan, Lloyd, and Morgan (2016) find an increasing hazard rate for discounts: a

long spell without a price discount predicts that one will occur relatively soon. In contrast, our

findings above predict Poisson discounts, meaning a constant hazard rate. In this section, we limit

the price information available to consumers by supposing that they observe prices only from their

arrival to the market and argue that this permits our theory to better accommodate the empirical

patterns.

We specialize for convenience to the case with two types, assuming that β2 belongs to the
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interval (β, β̄) identified in Proposition 2. An initial observation is that, when the purchase decisions

of buyers are measurable only with respect to the information generated by prices since arrival,

Poisson discounting remains optimal. As before, the price is set at p∗2 (identified in the optimal static

mechanism) except at discount dates when it drops to p∗1 = θ1. Also, the rate of price discounting

is
rx∗1

1−x∗1
, as identified in the previous section (recalling that x∗1 is the probability of allocation to low

types in the optimal static mechanism). Since profits from each cohort are already maximized by

this policy, there is no scope for the seller to profit from buyers’ ignorance of past prices.

There are now also other optimal price processes, with the regular price set at p∗2 and discounted

to price θ1. Suppose these discount dates are determined by a simple point process. Low types can

be assumed to purchase at discount dates, while optimality requires that all but possibly measure

zero of high types are induced to purchase immediately at price p∗2. For any arrival time t, let τ̃ t1 be

the random purchase time of a low type arriving to the market at date t. As observed in the previous

section, optimality calls for the expected discounting until time of purchase for the low type to equal

the probability of allocation in the static mechanism. In particular, for almost all t, we must have

E
[
e−r(τ̃

t
1−t)

]
= E

[
e−r(τ̃

t
1−t)

∣∣τ̃ t1 > t
]

= x∗1. (2)

When (2) holds, a high type who arrives to the market at date t and has no information about

past prices expects the same payoff purchasing immediately at arrival (paying price p∗2 almost surely)

or, alternatively, waiting and purchasing at the next price discount. A buyer who delays purchase,

however, is not restricted to purchasing at a discounted price, so the condition (2) is not sufficient to

guarantee immediate purchase. The condition for immediate purchase can be expressed as one on

the point process for price discounting, which we state next.

Proposition 5. Suppose that buyers arrive over time, but observe prices only since arrival to the

market. Suppose a “regular price” p∗2 is posted except at moments when the price is discounted to θ1

with the first discount date after t given by τ̃ t1. For any t such that (2) holds, high types arriving

at t are willing to purchase immediately if and only if, for all s > t such that τ̃ t1 > s with positive

probability,

E
[
e−r(τ̃

t
1−s)

∣∣τ̃ t1>s] ≥ x∗1. (3)

To interpret Condition (3), suppose it is satisfied for a buyer arriving at a given date t. If he

delays purchase until s > t and observes no price discount (i.e., τ̃ t1 > s), then this absence of a price

discount is effectively “good news” in that he expects the next discount relatively sooner at date s

than at date t (as measured in terms of expected discounting). This means that if it is optimal for a

high type buyer to delay purchase, it is optimal to keep on delaying. Condition (2) then ensures that

the high type is not willing to delay purchase. Note that the condition accommodates the empirical

patterns discussed above, where the hazard rates for price discounts are increasing.
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The multiplicity of optimal price processes when buyer information is restricted suggests sellers

might pick among them according to different criteria. One consideration may be limiting the max-

imum inventory size to avoid stocking out. More evenly spaced discounts lead to less accumulation of

low types, which limits demand peaks. An extreme case is where price discounts occur a fixed time

∆ > 0 apart. A price process satisfying our conditions is obtained by supposing the initial discount

is uniformly distributed on [0,∆]. Buyers arriving at date t with no information on past prices then

believe the next discount is uniformly distributed on [t, t+ ∆]. The appropriate choice of ∆ satisfies∫ ∆

0

e−rs

∆
ds = x∗1.

Recall our demand normalization that buyers arrive at rate r. We then observe that no more than

measure β1∆r buyers purchase at any date, so the capacity required to store the inventory is limited.

6 Alternative theories for discounting and further discussion

We conclude by comparing our theory of price discounting with several others in the literature,

highlighting possible advantages of our theory. An early explanation for price discounting is mixed-

strategy pricing by competing firms, as for instance in Shilony (1977) and Varian (1980). Such

theories assume that not all consumers in the market can access the same price offers. Hence,

any offered price may be the only one a given customer receives, or it may be one of many among

which the customer can choose. When taken to a dynamic context (as, for instance, in Fershtman and

Fishman, 1992), these theories typically generate too much price variation relative to the considerable

price stability that has been observed empirically.15 The reason is that the more frequently firms

are permitted to choose prices, the more often they randomize. Our theory generates in contrast

a regular price that is only sporadically discounted, even though the continuous-time environment

permits price changes at any time. While Heidhues and Kőszegi (2014) also account for the prevalence

of regular prices in a theory of price dispersion based on consumer loss aversion, their theory is not

explicitly dynamic which forestalls an investigation of the timing of discounts such as the one in the

previous section.

A leading set of competing theories of price discounting (to which we contribute) are those

based on intertemporal price discrimination. For instance, it could be that buyer values change

deterministically over time as in Stokey (1979), or they could change randomly over time as in

Garrett (2016). Another idea is that different cohorts of buyers have different demand elasticities as

in Board (2008). Or, it could be that buyers are more impatient than the seller as in Landsberger

15This point is emphasized in a recent paper by Ronayne and Myatt (2019) who suggest a dynamic variant with a
first-stage choice of a “list price” and a subsequent discounting decision. While this theory accounts for stickiness of
the list price, discounting of the list price does not occur in equilibrium.
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and Meilijson (1985).16 None of these papers, however, predict that the seller can profit from random

price discounting. In the work of Garrett and Board, respectively, the optimality of deterministic

pricing can be seen from the maximization of virtual surpluses which are linear in the probability

of allocation, so that optimal allocations are “bang bang” (i.e., allocation probabilities are corner

solutions and thus either zero or one). Related to Landsberger and Meilijson’s setting, Correa,

Escobar, and Perlroth (2019) consider a model with multiple buyers and different discount rates and

argue that deterministic dynamic mechanisms are optimal (they do not consider dynamic arrivals,

however).17

A possible message regarding work on intertemporal price discrimination, then, is that it is

not enough to suggest a rationale for price discounting. There should also be a theory to account

for randomization. In our theory based on buyer risk aversion and dynamic arrivals, random price

discounts are needed, paradoxically, to shield buyers from pricing risk. Randomization is needed to

ensure that (virtually) all consumers with the same valuation purchase at the same price irrespective

of when they arrive. Some other papers on risk-averse buyers such as Liu and van Ryzin (2008)

and Bansal and Maglaras (2009) have noted that risk aversion could give rise to theories of price

discrimination. But these papers do not consider dynamic arrivals and so did not uncover the

important role of random price discounts.

A still further class of theories worth mentioning is where random prices arise due to exogenous

uncertainty that is realized over time. Examples include Hörner and Samuelson (2011), Board

and Skrzypacz (2016), Gershkov, Moldovanu, and Strack (2017) and Dilmé and Li (2019) (which

feature demand uncertainty) and Ortner (2017) (which features cost uncertainty). The patterns of

price fluctuations are varied, and mainly quite different from the patterns uncovered in this paper.

A further crucial difference is that the environment of the present paper is deterministic: in the

dynamic setting on which we focus, there are infinitesimal buyers and so no demand uncertainty.

Corroborating our theory therefore suggests looking for evidence of deliberate randomization by

sellers that is not simply a response to shocks in the environment.

16Related, it could also be that buyers with high valuations are myopic as in Pesendorfer (2002). See Chevalier and
Kashyap (2017), for an application of Pesendorfer (2002)’s model. The myopia assumption, however, seems too strong
in many markets; see the evidence that buyers are forward looking as suggested by Chevalier and Goolsbee (2009) and
Février and Wilner (2016).

17Öry (2017) shows that, when buyers cannot observe their arrival time and can be contacted through some costly
(email/text) notification, a seller without commitment sets a constant regular price with evenly spaced discrete dis-
counts. Our work emphasizes that holding sales at random times (at least from the perspective of buyers) can be a
fully-optimizing choice for sellers with commitment, even when consumers can fully monitor prices.
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Appendix I: Proofs of the formal results

Proof of Lemma 1

Proof. Suppose that x′′vk(p′′) ≥ x′vk(p′). Note that x′′vl(p
′′) > x′vl(p

′) is immediate if p′′ ≤ p′ or if x′ = 0.

Hence, we may assume x′ > 0 and p′ < p′′ < θk. Then,

x′′vl(p
′′) ≥ x′vl(p′)

vk(p′)

vk(p′′)

vl(p
′′)

vl(p′)

= x′vl(p
′)e

∫ p′′
p′

((
− v
′
k(p)

vk(p)

)
−
(
− v
′
l(p)

vl(p)

))
dp

> x′vl(p
′), (4)

where the strict inequality follows from Assumption A1.

Proof of Lemma 2.

Proof. Consider an arbitrary (incentive compatible and individually rational) mechanism M = (xn, Hn)Nn=1

that assigns a non-degenerate price distribution Hn to at least one type θn. Then, for each n with xn > 0, let

pn be the unique (certainty equivalent) price satisfying

vn(pn) =

∫
vn(p)dHn(p).

This determines a mechanism with deterministic prices MD = (xn, pn)Nn=1. Note that (by Jensen’s inequality

and strict concavity of each vn) this is strictly more profitable than the original mechanism M if the buyer

reports the truth. As mentioned in the main text, however, truth-telling may not be incentive compatible.

The remainder of the proof then involves constructing an indirect mechanism which, when the buyer follows

an optimal strategy, generates profits at least as high as if the buyer were truthful in MD.

For each n, let πn = pnxn be the seller’s expected profit if type θn reports truthfully in MD. We can

construct a set of types J of cardinality J ≡ |J | along which expected profit strictly increases. We begin

by letting θn1
be the lowest type assigned the good with strictly positive probability in MD. Then, having

determined θnj , we let θnj+1
be the next smallest type such that profits exceed those for θnj . That is, for each

j ≥ 1, we let nj+1 = min{n : n > nj , πn > πnj} if the set is non-empty, and stop otherwise so that J = j.

This determines J = {θnj : j = 1, ..., J}. We then denote MR the “restricted” indirect mechanism which is

the same as MD except that the buyer is permitted to choose only among messages in J .

Consider now the reporting decision of any type θnj in MR, with θnj ∈ J . Because the original mechanism

M was individually rational, pnj ≤ θnj . Because higher types are less risk averse in the sense of Assumption

A2, type θnj prefers message θnj to θnj′ with j′ < j. This implies two important observations. First, by

asking type θnj to send a message at least his true type, such a type generates expected profit at least πnj in

MR. Second, because πnj > πnj′ for any j′ < j, we must have xnj > xnj′ for all such j′.18

Finally, consider a type θn with n 6= nj for any j. If n < n1 then, whether θn participates in MR or not,

profits are higher for this type than in the original mechanism M . Suppose instead nj < n < nj+1 for some j,

18Note that πnj >πnj′ requires that xnj >xnj′ or pnj >pnj′ (or both). If pnj >pnj′ then, given that type θnj prefers
message θnj to θnj′ , it must be that xnj >xnj′ . Hence, in either case, xnj >xnj′ .
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or that n > nj for j = J . Then we recall that for any j′ < j, we have xnj > xnj′ , and also θnj prefers message

θnj to θnj′ . Therefore, by Lemma 1, θn strictly prefers message θnj to θnj′ . Hence, θn can be asked to report

a message at least θnj , generating profit at least πnj , which in turn is at least πn by construction of J .

Proof of Proposition 1

Proof. Initial observations. Note that, following a “taxation principle” (see for instance Rochet, 1985), any

mechanism with deterministic payments can be viewed as presenting a choice to the buyer among pairs of

strictly positive allocation probabilities and payments.19 There is no loss in supposing that all combinations are

chosen by some type, so there is one price for each allocation probability. By Lemma 1, higher types choose

weakly higher allocation probabilities. Also, because all combinations are chosen by some type, the prices

associated with allocation must be weakly increasing in the allocation probability. Considering momentarily

the corresponding direct mechanism, this shows that it can be represented as a weakly increasing sequence

(x∗n, p
∗
n)Nn=1.

Downward incentive constraints bind. Now consider why downward incentive constraints bind, and con-

tinue to view the mechanism as a set of options of (strictly positive) allocation probabilities and accompanying

payments. We can first use our initial observations to show that the seller’s profits are strictly increasing with

the allocation probability for any optimal mechanism. Because prices are weakly increasing, it is enough to

observe that, in an optimal mechanism, every purchase is at a strictly positive price. In fact, we can show that

no type pays a price less than θ1. A mechanism that does charge a price less than θ1 to some types can be

adjusted by revising upwards the price of every lower-priced option to θ1. Every type that chooses an option

with a price higher than θ1 in the original mechanism remains willing to choose the same option, while the

other types can be taken to choose an allocation probability that is at least the highest one associated with

price θ1. The seller then makes strictly higher profits for every type that obtained a price below θ1 in the

original mechanism. That the adjusted mechanism is strictly more profitable contradicts the optimality of the

original.

We now claim that, if θk is the lowest type making some choice (x, p) in an optimal mechanism, then

this type must be indifferent to the alternative (x′, p′) which has the next highest allocation probability, or to

not participating if there is no such alternative. Suppose for a contradiction this is not true for some choice

(x, p) and lowest type choosing this option, θk. The first case is where there is an alternative (x′, p′) with

the next highest allocation probability relative to (x, p). Then (x′, p′) is chosen by type θk−1, and θk strictly

prefers (x, p) to (x′, p′). Since θk−1 prefers (x′, p′) to any option with a lower allocation probability, θk strictly

prefers (x′, p′) to any such option by Lemma 1. Therefore, if we raise the price of the option (x, p) to some

p̃ where type θk is indifferent between (x, p̃) and (x′, p′), type θk then prefers (x, p̃) to any smaller allocation

probability. Again by Lemma 1, any type higher than θk then strictly prefers (x, p̃) to any option with a

smaller allocation probability. It follows that it is incentive compatible for any type choosing the original

option (x, p) to choose at least the probability of allocation x when the price p is changed to p̃. Because profits

are strictly increasing with the allocation probability, these types now generate strictly higher profits than

before. Also, types not choosing the original option (x, p) continue to make the same choice as before. Thus

we arrive at a new mechanism that is strictly more profitable than the original, contradicting the optimality

of the original.

19The buyer can also choose not to participate, which means zero allocation probability and zero payment.
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The second and remaining case is where there is no allocation probability lower than (x, p). By assumption,

then, p < θk where θk is the lowest type receiving the good with positive probability. Analogous to the previous

case, we consider raising this price to p̃ = θk. Any type willing to participate in the original mechanism

remains willing to participate. Because (x, p) represents the least profitable option for the seller in the original

mechanism, it follows that profits strictly increase in the adjusted mechanism. This again contradicts the

optimality of the original mechanism.

Finally, note that we have shown each type is indifferent to mimicking the choice of the downward

adjacent type, or to not participating in the case of the lowest type, θ1. This is either because the lower

type makes the same choice, or because of the indifference to the next highest allocation probability, or to

non-participation, as shown above. Therefore, considering the direct mechanism, we have for all n = 1, . . . , N ,

x∗nvn(p∗n)=x∗n−1vn(p∗n−1), where we put x∗0 = p∗0 = 0.

Highest type receives allocation probability one. Now consider the highest allocation probability. If

this is less than one, the probability can be increased to one and the payment adjusted (weakly) upwards

so that the lowest type that chooses this option in the original mechanism remains indifferent to the next

highest allocation probability. Since this type prefers the highest allocation probability to all other options,

all higher types also prefer the highest probability by Lemma 1, and profits in the mechanism strictly increase.

Considering direct mechanisms, this shows that optimality requires x∗N = 1.

Existence and uniqueness of the optimal mechanism. Existence of an optimal mechanism can be seen

from the following observations. Given that downward incentive constraints bind, profits can be determined

simply from the choice of allocations (xn)Nn=1, and are continuous in these allocations. Also, the allocations

themselves are from the compact set
{

(x1, ..., xN )∈ [0, 1]N : x1 ≤ ...≤ xN
}

.

Let us therefore now show that the optimal mechanism is unique. Suppose for a contradiction that there

are distinct mechanisms (xAn , p
A
n )Nn=1 and (xBn , p

B
n )Nn=1, both of which are optimal.

We show first that there is a type θn such that xAn , x
B
n > 0 and pAn 6= pBn . Suppose for a contradiction

this is not true; that is, assume that for all types θn with xAn , x
B
n > 0 we have pAn = pBn . Consider the smallest

value nA such that xAnA > 0 and the smallest value nB such that xBnB > 0. If nA > nB then, from the above

characterization of an optimal mechanism, we have pAnA = θnA > pBnA , contradicting our previous assumption

which implies pAnA = pBnA . Given that a contradiction can also be reached for the case nA < nB , it must be

that nA = nB = n. Since downward constraints bind in both mechanisms, for all n > n, we have

xAn
xAn−1

=
vn(pAn−1)

vn(pAn )
=
vn(pBn−1)

vn(pBn )
=

xBn
xBn−1

.

Therefore, for all n > n,
xAn
xAn

=
xBn
xBn

.

Since xAN = xBN = 1, we have xAn = xBn for all n, but then the mechanisms (xAn , p
A
n )Nk=1 and (xBn , p

B
n )Nk=1 are

not distinct.

Now, consider the mechanism determined as follows. The buyer reports his type θn, then the allocation

probability and payment is determined by one of the two distinct mechanisms according to a 50/50 random-

ization. This can be described by the “reduced” mechanism that has allocation probability xCn = 1
2x

A
n + 1

2x
B
n

for report θn. For θn such that xCn > 0, it specifies HC
n to put mass

xAn
xAn+xBn

on pAn and the remaining mass on
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pBn . Incentive compatibility of the new mechanism is equivalent to the requirement that, for all n, k,

(
1
2x

A
n + 1

2x
B
n

)( xAn
xAn+xBn

vn(pAn ) +
xBn

xAn+xBn
vn(pBn )

)
≥
(

1
2x

A
k + 1

2x
B
k

)( xAk
xAk +xBk

vn(pAk ) +
xBk

xAk +xBk
vn(pBk )

)
or

xAn vn(pAn ) + xBn vn(pBn ) ≥ xAk vn(pAk ) + xBk vn(pBk ).

This inequality holds by incentive compatibility of (xAn , p
A
n )Nn=1 and (xBn , p

B
n )Nn=1, so (xCn , H

C
n )Nn=1 is incentive

compatible. Individual rationality similarly is inherited from (xAn , p
A
n )Nn=1 and (xBn , p

B
n )Nn=1. Moreover, it is

readily checked that the new mechanism (xCn , H
C
n )Nn=1 attains the same optimal profit as (xAn , p

A
n )Nn=1 and

(xBn , p
B
n )Nn=1. However, it does not have deterministic payments, which contradicts Lemma 2.

Proof of Proposition 2

Proof. Because the expression in Equation (1) is continuous and strictly concave in x1, it has a unique

maximizer x∗1 ∈ [0, 1]. Using that β1 = 1− β2, the derivative of this expression with respect to x1 at x1 =0 is

(1− β2)θ1 + β2
v2(θ1)

v′2(θ2)
.

Hence, strict concavity of the expression implies that x∗1 = 0 if and only if β2 ≥ β ≡ θ1
θ1− v2(θ1)

v′2(θ2)

> θ1
θ2

.20

Similarly, the derivative of the expression in Equation (1) with respect to x1 at x1 =1 is

(1− β2)θ1 + β2
v2(θ1)

v′2(θ1)
.

Strict concavity implies x∗1 = 1 if and only if β2 ≤ β ≡ θ1
θ1− v2(θ1)

v′2(θ1)

< θ1
θ2

.21 It is then necessarily the case that

x∗1 ∈ (0, 1) if and only if β2∈(β, β̄).

Proof of Proposition 3

Proof. Using that higher types receive a higher allocation (by Lemma 1), we may assume that, in a determ-

inistic mechanism, all types above a threshold obtain a unit with probability one, while all types below the

threshold obtain it with probability zero. This outcome is induced by a posted price equal to the threshold

type. The optimal posted price is p∗ ∈ (θ, θ̄), the maximizer of p(1−F (p)) mentioned in the text. Letting θ∗

be the threshold type, the first-order condition for the optimal threshold is

1− F (θ∗)− θ∗f(θ∗) = 0. (5)

Now, we introduce mechanisms in which some types also purchase with probability 1/2. By Lemma 1,

20The last inequality follows from the concavity of v2, which implies the inequality v′2(θ2)(θ2− θ1) < v2(θ2)−v2(θ1),
together with our normalization v2(θ2) = 0.

21The last inequality follows from the concavity of v2, which implies the inequality v′2(θ1)(θ2− θ1) > v2(θ2)−v2(θ1),
together with our normalization v2(θ2) = 0.
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the buyer will follow a threshold rule. Letting ε ∈ (0, θ∗−θ), we consider mechanisms in which types θ ≥ θ∗

obtain the good with certainty, types θ ∈ [θ∗ − ε, θ∗) obtain it with probability 1/2, and types θ < θ∗ − ε do

not obtain the good at all. Incentive compatibility implies there is one price associated with each probability

of obtaining the good.

Incentive compatibility requires the threshold type θ∗−ε to be indifferent between not receiving the good

and receiving it with probability 1/2. Therefore the payment for receiving the good with probability 1/2,

made conditional on receiving it, must be θ∗ − ε. Incentive compatibility also requires indifference of type θ∗

between receiving the good with certainty and with probability 1/2, so the payment to receive it with certainty

must be p(ε) satisfying

1− e−R(θ∗−p(ε)) = 1
2

(
1− e−Rε

)
.

We can solve for p(ε) to obtain

p(ε) = θ∗ + 1
R log

(
1
2 + 1

2e
−Rε).

We refer to the mechanism which offers the options of purchase at probability 1/2 at price θ∗−ε and purchase

with probability 1 at price p(ε) as the “new” mechanism. This is a perturbation of the optimal deterministic

mechanism.

We can compute profits in the new mechanism as

1
2 (F (θ∗)− F (θ∗−ε))(θ∗−ε) + (1− F (θ∗))

(
θ∗+ 1

R log
(

1
2 + 1

2e
−Rε)).

The first derivative of the profits of the new mechanism with respect to ε is

1
2f(θ∗−ε)(θ∗−ε)− 1

2 (F (θ∗)− F (θ∗−ε))− (1−F (θ∗))
e−Rε

1 + e−Rε
.

Using the first-order condition in Equation (5), it is easily seen that the first derivative evaluated at ε = 0 is

0. Similarly, the second derivative evaluated at ε = 0 can be written as

− 1
2f
′(θ∗)θ∗ − f(θ∗) + (1− F (θ∗))R4 .

Then notice that this is positive whenever R is taken large enough, noting θ∗ does not depend on R. In this

case, we conclude that ε = 0 is a local minimum and so profits can be improved strictly by taking ε > 0. That

is, a random mechanism is strictly more profitable.

Proof of Proposition 4

Proof. Attaining or approaching expected profits Π∗. Recall that (x∗n, p
∗
n)Nn=1 denotes the optimal static

mechanism. Let x∗0 ≡ 0, and let (nj)
J
j=1 be the (unique) increasing sequence containing all indices satisfying

x∗nj−1 < x∗nj (thus θn1
is the smallest type obtaining the good with positive probability).

When J = 1 the seller can attain expected profits Π∗ through a constant price path with price equal

to p∗n1
. All buyers with type weakly above θn1

buy upon arrival, and all buyers with type strictly below θn1

never buy. If J = 2 the seller can attain expected profits Π∗ with a price process consisting of a regular price

p∗n2
, with random discounts with price p∗n1

arriving at a constant Poisson rate λn1 = rx∗n1
/(1−x∗n1

). In this

case, all buyers with type weakly above θn2
buy upon arrival at the regular price, all buyers with type strictly
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below θn2
and weakly above θn1

wait and buy at the discounted price, and all buyers with type strictly below

θn1
never buy.

Assume, for the rest of the proof, that J > 2. Consider the following price process, characterized as a

process with J states {σj}Jj=1 and by some value Λ > 0. Initializing the state at t = 0 to σJ , the price process

is described as follows:

1. In state σJ the price is p∗nJ , and the state changes to state σJ−1 at rate λnJ−1
=

rx∗nJ−1

1−x∗nJ−1

.

2. In state σj , for j = 1, ..., J−1, the price is p∗nj . At rate Λ the state changes to state σJ and, if j > 1,

at rate mΛ
j Λ the state changes to state σj−1, where mΛ

j is obtained below.

For each j = 2, ..., J−1, we choose mΛ
j so that the expected discounting for the first time the state becomes

σj , starting in state σJ , is x∗nj . This is achieved if the following equation is satisfied:

x∗nj−1
= x∗nj

(
Λ

Λ+mΛ
j Λ+r

x∗nj−1
+

mΛ
j Λ

Λ+mΛ
j Λ+r

)
⇒ mΛ

j =
((1−x∗nj )Λ+r)x∗nj−1

Λ(x∗nj
−x∗nj−1

) > 0 .

We will show that the profits generated by this stochastic price process approach Π∗ as we take Λ→∞.

To do so, it will be enough to show that each type θn that arrives in state σJ purchases as soon as the price

falls to p∗n, or never purchases if x∗n = 0. By construction, the expected discounting until this time is x∗n. We

do not need to analyze the behavior of cohorts arriving in states other than σJ since their contribution to

expected profits vanishes as Λ→∞.

Consider then why the specified strategy for each type θn of waiting to purchase at p∗n (assuming x∗n > 0)

is incentive compatible. As observed for the Hybrid Mechanism, stationarity of the price path (with the future

evolution summarized at any point by the state σj) implies the optimality of a stationary strategy. Also, for

any such strategy there is a highest state σj′ in which the buyer is willing to purchase, if the strategy specifies

any purchase at all. This state, if any, completely characterizes the buyer’s purchase decision starting in state

σJ , as states fall in sequence (a state lower than σj′ cannot be reached without first passing through this state

itself). As with the Hybrid Mechanism, any stationary strategy that involves purchase then induces (starting

in state σJ) an expected discounting xnj′ for some j′, with purchase at price pnj′ . Incentive compatibility for

type θn then evaluates the willingness to purchase as soon as the price is p∗n. That is, it requires Un,n ≥ Un,nj′
for all nj′ , which is the same incentive constraint as for the static mechanism.

Condition to exactly attain profits Π∗. Now consider why profits Π∗ are not exactly attainable when

J > 2. Achieving total expected profits Π∗ would require achieving these profits almost surely for almost

every cohort t. This implies that expected discounting to each price p∗nj must be given almost surely by x∗nj
for almost every cohort t. This is only possible if, with probability one, the first purchase by types θn2 and

θn1 after date zero are at prices p∗n2
and p∗n1

, respectively. Denote the corresponding purchase dates τ̃n2 and

τ̃n1
. Expected discounting must satisfy E[τ̃n2

] = x∗n2
and E[τ̃n1

] = x∗n1
. Were this not the case, we could find a

positive measure of cohorts in a neighborhood of date zero which, with positive probability, do not purchase at

prices p∗n2
and p∗n1

for types θn2
and θn1

with expected discounting to purchase of x∗n2
and x∗n1

, and therefore

profits would be less than Π∗. Our aim will be to show that the expected discounting E[τ̃n2
] = x∗n2

and

E[τ̃n1
] = x∗n1

is, nonetheless, incompatible with obtaining total profits Π∗.

We will use that incentive compatibility requires τ̃n1 > τ̃n2 almost surely. This is because otherwise type

θn2 can earn a higher payoff by purchasing at p∗n1
= θn1 < p∗n2

whenever this price is offered first. Let K2 be
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the event that τ̃n2
<∞. A consequence of the previous claim is then that Pr(τ̃n1

−τ̃n2
<ε|K2)→ 0 as ε tends

to zero.

Note that attaining total expected profits Π∗ requires that, with probability one, almost all cohorts

arriving after τ̃n2
generate expected profits Π∗. This requires, in particular, that expected discounting to τ̃n1

is almost surely equal to x∗n1
. This implies that we must have Eτ̃n1

[
e−r(τ̃n1

−τ̃n2
)|τ̃n2

]
= x∗n1

almost surely on

K2. Otherwise we would have that, for a positive measure of cohorts immediately following τ̃n2 , with positive

probability, the expected discounting to date τ̃n1 would differ from x∗n1
. This conclusion can be obtained using

that Pr(τ̃n1−τ̃n2<ε|K2)→ 0 as ε tends to zero, as noted above.

Now, by the law of iterated expectations, we have

Eτ̃n1

[
e−rτ̃n1

]
= Pr(K2)Eτ̃n1

,τ̃n2

[
e−rτ̃n2 e−r(τ̃n1

−τ̃n2
)
∣∣K2

]
= Pr(K2)Eτ̃n2

[
e−rτ̃n2Eτ̃n1

[
e−r(τ̃n1

−τ̃n2
)
∣∣τ̃n2

]∣∣K2

]
= Eτ̃n2

[
e−rτ̃n2

]
x∗n1

= x∗n2
x∗n1

,

which is strictly less than x∗n1
. This indeed violates that expected discounting to τ̃n1

is x∗n1
, which is what we

wanted to show.

Proof of Proposition 5

Proof. Sufficiency. Consider now a high type arriving at t such that Conditions (2) and (3) hold. At any

date s > t such that he has not yet purchased and there has not been a discount in [t, s], if the price at time s

is p∗2, he obtains a payoff v2(p∗2) from buying immediately. By Proposition 1, this payoff is equal to x∗1v2(θ1).

By instead delaying and purchasing at the next price discount, he expects the weakly larger payoff

E
[
e−r(τ̃

t
1−s)

∣∣τ̃ t1 > s
]
v2(θ1).

Hence, if the buyer elects not to purchase upon arrival at date t, his payoff from purchasing at some time

s > t (given that no price discount occurs in [t, s]) is no greater than by purchasing at the next price discount.

Given Condition (2), it is then incentive compatible for the buyer to purchase on arrival at date t.

Necessity. Now, consider a t such that Condition (2) holds while Condition (3) fails. For any s > t, let Kt,s

denote the event that τ̃ t1 > s, and let K ′t,s be its complement. Then there is s > t such that Pr(Kt,s) > 0 and

E
[
e−r(τ̃

t
1−s)

∣∣Kt,s

]
< x∗1.

Since E
[
e−r(τ̃

t
1−t)

]
= x∗1, we have

x∗1 = (1−Pr(Kt,s))E
[
e−r(τ̃

t
1−t)

∣∣K ′t,s]+ Pr(Kt,s)e
−r(s−t)E

[
e−r(τ̃

t
1−s)

∣∣Kt,s

]
.

So, necessarily, (
1−Pr(Kt,s)

)
E
[
e−r(τ̃

t
1−t)

∣∣K ′t,s] > (1−Pr(Kt,s)e
−r(s−t))x∗1. (6)

The payoff of a high type arriving at t and purchasing at the next price discount or at date s, whichever comes
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first, is

(1−Pr(Kt,s))E
[
e−r(τ̃

t
1−t)

∣∣K ′t,s]v2(θ1) + Pr(Kt,s)e
−r(s−t)v2(p∗2) (7)

The first term of Equation (7) is strictly greater than
(
1−Pr(Kt,s)e

−r(s−t))x∗1v2(θ1) by the previous inequality

(i.e., Equation (6)), while the second term is equal to Pr(Kt,s)e
−r(s−t)x∗1v2(θ1). Therefore, the expression

in Equation (7) is strictly greater than x∗1v2(θ1), which is equal (by Lemma 1) to v2(p∗2). This shows that

purchasing immediately with probability one gives the buyer a strictly lower payoff than waiting and purchasing

at the next discount date, or at date s, whichever comes first. In particular, immediate purchase at date t is

not incentive compatible.

Appendix II: Conditions for attaining Π∗

This Appendix proves the statement at the end of Section 4: there exists a price process attaining Π∗ if and

only if there are no two values x∗n′ , x
∗
n′′ ∈ (0, 1) with x∗n′ 6= x∗n′′ . The “if” part follows from the arguments in

the proof of Proposition 4. To show the “only if” part, we first introduce incentive-compatible price processes

and their optimality. Then we state and show the result.

Let 〈Ω, (Ft)t∈[0,∞),P〉 be some filtered probability space.

Definition 1. A price process is a pair (P, τ) satisfying that:

1. P is a stochastic process defined on 〈Ω, (Ft)t∈[0,∞),P〉.
2. For each pair (n, t), τn,t is a stopping time predictable with respect to the filtration generated by P and

satisfying that τn,t(ω) ≥ t for all ω ∈ Ω.22

Note that this definition specifies not only a stochastic process for prices, but also the stopping time τn,t

which should be interpreted as the purchase time of a buyer of type θn who arrives to the market at date t.

Incentive compatibility of a price process is defined as follows.

Definition 2. We say that (P, τ) is incentive compatible if, for all n and all t,

E[e−r(τ̂−t)vn(Pτ̂ )] ≤ E[e−r(τn,t−t)vn(Pτn,t)]

for all stopping times τ̂ predictable with respect to the filtration generated by P satisfying that τ̂(ω) ≥ t for all

ω ∈ Ω.

Optimality is then defined as follows.

Definition 3. We say that (P, τ) is optimal if it maximizes

∫ ∞
0

N∑
n=1

βnE[e−rτ̂n,t P̂τ̂n,t ]rdt

among all incentive compatible price processes (P̂ , τ̂).

22A stopping time may be finite or infinite valued. A value τn,t(ω) = ∞ indicates that the buyer of type θn does
not purchase.
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Define Πt ≡
∑N
n=1 βne

−r(τn,t−t)Pτn,t to be the realization of profits from a buyer arriving at date t.

Recall that expected profits for any cohort are bounded above by the optimal static profits Π∗. Therefore, the

principal’s discounted profits are equal to
∫∞

0
E[Πt]e

−rtrdt ≤ Π∗. The result to be shown is then the following.

Proposition 6. If there exist n and m such that 0<x∗m<x
∗
n<1, there is no incentive compatible price process

giving Π∗ to the principal.

Proof. The proof will be by contradiction. From now on, we assume with a view to contradiction that there

is a price process (P, τ) that gives the principal a payoff equal to Π∗; that is,
∫∞

0
E[Πt]e

−rtrdt = Π∗. We will

assume, without loss of generality, that (Ft)t is the filtration generated by P . We divide the proof into three

steps:

Step 1: In this step, we define the set T of dates t such that, for some n, either (i) there is At ∈ Ft with

P(At) > 0 such that

E[e−r(τn,t−t)|At] 6= x∗n (8)

or (ii) there is At ∈ Ft with P(At) > 0 such that P(Pτn,t = p∗n|At) < 1. The result to be established is that

the set T has Lebesgue measure zero. To see this, note that by Proposition 1 (and the equivalence between

allocation probabilities of the static mechanism and expected discounting in a dynamic setting), for dates

t ∈ T we can find At ∈ Ft (chosen so that E[e−r(τn,t−t)|At] 6= x∗n or P(Pτn,t = p∗n|At) < 1 for some n) for

which E[Πt|At] < Π∗. In addition, we know that, for all t, and any B∈Ft, E[Πt|B] ≤ Π∗. Therefore, taking

B = Ω\At, we obtain

E[Πt] = P(At)E[Πt|At] + P(Ω\At)E[Πt|Ω\At] < Π∗

for all t ∈ T . It follows that, if the integral defining the seller’s discounted payoff
∫∞

0
E[Πt]e

−rtrdt is well-

defined, it is strictly less than Π∗. This contradicts our assumption that the seller obtains Π∗.

We then observe that, for any t /∈ T , any A∈Ft with P(A)>0, we have

P
(
τn,t<τm,t or τn,t=τm,t=∞

∣∣A ) = 1

for all n and all m such that x∗n>x
∗
m. This is immediate when x∗m = 0, since then P (τm,t=∞) = 1. If instead

x∗m > 0, we argue that P( τn,t < τm,t or τn,t=τm,t =∞|A ) < 1 would imply that the type θn buyer has a

profitable deviation to stopping time τn,t ∧ τm,t. Higher profits under this stopping time can be explained by

observing that either there is positive probability that the buyer purchases at price p∗m < θn whereas he does

not purchase under τn,t, or there is a positive probability that the buyer purchases earlier and hence at price

p∗m rather than at p∗n, where p∗m<p
∗
n.

Finally note that there is no loss in profits for the seller if we assume that all buyers with the same type

play the same continuation strategy. That is, τn,t′(ω)=τn,t(ω) for all t′ ∈ [t, τn,t(ω)].

Step 2: In this step we introduce the following notation. For any t, t′, t′′ ∈R+, any n, let Kt′,t′′

n,t ≡ {ω|t′ ≤
τn,t(ω)<t′′}, and let Kt′,∞

n,t ≡ {ω|t′≤τn,t(ω)}. We then show the following result.

Lemma 3. Fix some n and m, with n>m and with x∗n∈ (0, 1). Then, for t, t′, t′′∈R+\T with t≤ t′<t′′≤∞,
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we have P(Kt′,t′′

n,t ) > 0 and

x∗m
x∗n

=
E
[
e−r(τm,t−t

′)
∣∣Kt′,t′′

n,t

]
E
[
e−r(τn,t−t

′)
∣∣Kt′,t′′

n,t

] . (9)

Proof. We first want to show that, for t, t′, t′′ ∈ R+\T with t ≤ t′ < t′′ ≤∞, P(Kt′,t′′

n,t ) > 0. This will be a

result of what we call Claim A: For t, t1, t2 ∈ R+\T with t≤ t1<t2<t1−log(x∗n)/r and with P(Kt1,∞
n,t ) > 0,

we have P(Kt1,t2
n,t ),P(Kt2,∞

n,t )>0. Given t, t′, t′′ ∈ R+\T with t≤ t′<t′′≤∞, we then arrive at P(Kt′,t′′

n,t )>0

by applying Claim A iteratively along a sequence of dates ((t
(i)
1 , t

(i)
2 ))i∈N, requiring t

(1)
1 = t, t

(i)
1 = t

(i−1)
2 for

all i > 1, and t
(i)
1 < t

(i)
2 < t

(i)
1 − log(x∗n)/r for all i. The first iteration is with t1 = t

(1)
1 (observing that then

Kt1,∞
n,t = Ω) and t2 = t

(1)
2 ; then the ith iteration is with t1 = t

(i)
1 and t2 = t

(i)
2 . This establishes that each event

K
t
(i)
1 ,t

(i)
2

n,t has strictly positive probability.

To show Claim A, consider any t1, t2 ∈R+\T with t≤ t1 < t2 <t1− log(x∗n)/r and with P(Kt1,∞
n,t ) > 0.

Applying Step 1, after noting Kt1,∞
n,t ∈ Ft1 , we have:23

x∗n = E[e−r(τn,t−t1)|Kt1,∞
n,t

]
=
P(Kt1,t2

n,t )

P(Kt1,∞
n,t )

E
[
e−r(τn,t−t1)

∣∣Kt1,t2
n,t

]︸ ︷︷ ︸
(∗)

+
P(Kt2,∞

n,t )

P(Kt1,∞
n,t )

e−r(t2−t1)︸ ︷︷ ︸
(∗∗)

E
[
e−r(τn,t−t2)

∣∣Kt2,∞
n,t

]︸ ︷︷ ︸
(∗∗∗)

. (10)

Note first that, if P(Kt1,t2
n,t ) >0, then the term (∗) is no smaller than e−r(t2−t1). It then follows that, because

t2 <t1 − log(x∗n)/r, P(Kt1,t2
n,t )/P(Kt1,∞

n,t )<1 and hence P(Kt2,∞
n,t ) > 0. Note also that, since Kt2,∞

n,t ∈ Ft2 and

since τn,t(ω)=τn,t2(ω) for all ω∈Kt2,∞
n,t , it follows that (∗∗∗) is equal to x∗n whenever P(Kt2,∞

n,t )>0 (from Step

1). Furthermore, given t2>t1, we have that (∗∗) is strictly smaller than 1; hence it must be that P(Kt1,t2
n,t )>0.

We conclude that the probabilities of both Kt1,t2
n,t and Kt2,∞

n,t are strictly positive, which establishes the claim.

To establish the lemma, let then t, t′, t′′ ∈ R+\T with t ≤ t′ < t′′ ≤ ∞. Observe that

x∗m = E[e−r(τm,t′−t
′)|Kt′,∞

n,t ]

= E[e−r(τm,t−t
′)|Kt′,∞

n,t ]

=
P(Kt′,t′′

n,t )

P(Kt′,∞
n,t )

E
[
e−r(τm,t−t

′)
∣∣Kt′,t′′

n,t

]
+
P(Kt′′,∞

n,t )

P(Kt′,∞
n,t )

e−r(t
′′−t′) E

[
e−r(τm,t−t

′′)
∣∣Kt′′,∞

n,t

]︸ ︷︷ ︸
(∗∗)

. (11)

The second equality holds because τm,t(ω)≥ t′ for almost all ω ∈ Kt′,∞
n,t (since P(τn,t < τm,t or τn,t=τm,t =

∞) = 1), and so τm,t(ω) = τm,t′(ω) for almost all ω ∈ Kt′,∞
n,t . Since Kt′′,∞

n,t ∈ Ft′′ , and since τm,t = τm,t′′ on

Kt′′,∞
n,t , we have that (∗∗) is equal to x∗m. Considering Equation (11) for distinct m and n as in the lemma, as

well as m taken equal to n, generates two equations which together imply Equation (9).

(End of proof of Lemma 3, proof of Proposition 6 continues.)

Step 3: We now assume that 0 < x∗m < x∗n < 1 and conclude the argument. For t, t′, t′′ ∈ R+\T with

23Note that, in expressions such as equation (10), if the conditioning event for a conditional expectation has prob-
ability zero, we take the conditional expectation to equal zero.
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t ≤ t′ < t′′ ≤ ∞, we have

(∗)︷ ︸︸ ︷
E
[
e−r(τm,t−t

′)
∣∣Kt′,t′′

n,t

]
=P
(
Kt′,t′′

m,t

∣∣Kt′,t′′

n,t

)
E
[
e−r(τm,t−t

′)
∣∣Kt′,t′′

n,t ∩K
t′,t′′

m,t

]
+ e−r(t

′′−t′)P
(
K
t′,t′′

m,t

∣∣Kt′,t′′

n,t

)
E
[
e−r(τm,t−t

′′)
∣∣Kt′,t′′

n,t ∩K
t′,t′′

m,t

]︸ ︷︷ ︸
(∗∗)

.

Since Kt′,t′′

n,t ∩ K
t′,t′′

m,t ∈ Ft′′ , we have that (∗∗) is equal to x∗m. Now, let δ̄ = −1
r log

(
1
2x
∗
n + 1

2

)
, and suppose

additionally that t′′ − t′ < δ̄ so that e−r(t
′′−t′) > 1

2x
∗
n + 1

2 . Then, using Equation (9) (to replace (∗)) and that

P
(
K
t′,t′′

m,t

∣∣Kt′,t′′

n,t

)
= 1− P

(
Kt′,t′′

m,t

∣∣Kt′,t′′

n,t

)
, we obtain

P
(
Kt′,t′′

m,t

∣∣Kt′,t′′

n,t

)
=

x∗m
x∗n

≥e−r(t
′′−t′)︷ ︸︸ ︷

E
[
e−r(τn,t−t

′)
∣∣Kt′,t′′

n,t

]
−

≤1︷ ︸︸ ︷
e−r(t

′′−t′) x∗m

E
[
e−r(τm,t−t

′)
∣∣Kt′,t′′

n,t ∩K
t′,t′′

m,t

]︸ ︷︷ ︸
≤1

−e−r(t′′−t′)x∗m
≥ x∗m
x∗n

e−r(t
′′−t′) − x∗n

1− e−r(t′′−t′)x∗m
.

The term on the right-hand side of this inequality is decreasing in t′′−t′. Using the specification of δ̄, given

t, t′, t′′ ∈ R\T with t′′−t′ ∈ (0, δ̄), we have

P
(
Kt′,t′′

m,t

∣∣Kt′,t′′

n,t

)
≥ x∗m(1− x∗n)

x∗n(2− (1 + x∗n)x∗m)
> 0. (12)

Now let δ ∈ (0, δ̄) and specify Kδ
n,m,t ≡

{
ω : τm,t(ω) ∈ (τn,t(ω), τn,t (ω) + δ]

}
. Note that, for any t,

limδ→0 P
(
Kδ
n,m,t

)
=0. Now, pick any t ∈ R\T and choose a strictly increasing sequence (tk)

∞
k=0 in R\T with

t0 = t and such that tk+1−tk ∈ (δ/2, δ) for all k. Then

P
(
Kδ
n,m,t|τn,t(ω)<∞

)
≥
∞∑
k=0

P
(
K
tk,tk+1

n,t |τn,t(ω) <∞
)
P
(
K
tk,tk+1

m,t

∣∣Ktk,tk+1

n,t

)
≥ x∗m(1− x∗n)

x∗n(2− (1 + x∗n)x∗m)
. (13)

The first inequality holds because K
tk,tk+1

m,t ∩Ktk,tk+1

n,t ⊂ Kδ
n,m,t ∩K

tk,tk+1

n,t . The second inequality follows from

Equation (12). Considering Equation (13) as δ → 0, we obtain a contradiction to the previous observation

that limδ→0 P
(
Kδ
n,m,t

)
=0..
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