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Abstract

This paper studies trade in endogenously evolving markets exhibiting few traders at any given

point in time. Traders arrive in the market and bargain until they complete a trade. We find that,

unlike large markets, small markets feature trade delay and price dispersion, even when sellers

and buyers are homogeneous and matching frictions are small. We characterize transaction prices

as a function of the endogenous evolution of the market composition and economic conditions,

providing several novel comparative statics results. Our analysis highlights the need to incorporate

sub-market structures into the theoretical study of job, real estate, and rental markets, where

trade opportunities are typically constrained by both the geographical location and individual

characteristics of each trader.
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1 Introduction

Many dynamic markets are small: while traders come and go over time, there are few active traders

at any given date. For example, there is increasing evidence that many job seekers are locked into

small job markets determined by their commuting areas and specific skills.1 Similarly, people looking

to rent or buy housing units typically focus on geographically reduced areas and a narrow range of

characteristics (number of rooms, garden, etc.).

Two features make small markets qualitatively different from large markets. First, because of the

arrival and exit of traders, small markets are in permanent evolution. This makes their state endo-

genous and stochastic, both when the environment is stationary and when economic conditions (such

as the state of the economy, idiosyncratic market hotness, or legislative changes) evolve dynamically.

Second, each active trader in a small market has some market power at each point in time. This means

her actions will affect the timing and pricing of other transactions in the market; for example, her not

trading today may induce other traders to trade. She will therefore condition her decision to trade on

the effect of such transactions on future market dynamics.

The current paper studies how the endogenous evolution of a small market shapes the timing and

pricing of transactions. We develop a new, fully dynamic model of a small decentralized market and

obtain that the trade outcome differs qualitatively from that of a large decentralized market. We show

that prices are determined mainly by the endogenous evolution of the future excess demand, not by

the particular bargaining protocol used. Notably, small dynamic markets are shown to exhibit trade

delay and price dispersion, even when traders are homogeneous and matching frictions are small.

Our analysis illustrates that modeling a market as the sum of small dynamic markets, rather than as

a single large static market—which may be more appropriate in certain economic sectors—may lead

to theoretical predictions with significantly different qualitative features.

We propose a general model of a small dynamic market, which can be seen as a version of the large

decentralized market studied in Gale (1987). At any given moment in time, the market is composed

of a finite number of sellers, each of whom owns one unit of a homogeneous indivisible good, and

a finite number of homogeneous buyers with unit demand. There is also a multi-dimensional state

capturing the economic conditions, with both exogenously evolving components (e.g., the economic

cycle, legislation) and endogenously evolving components (e.g., market hotness, local government

policies). Once in the market, each trader (buyer or seller) is repeatedly matched at random with

traders from the other side of the market until she completes a trade. Within each match, one of the

traders is randomly chosen to make a take-it-or-leave-it offer. The other trader either accepts the offer,

1See, for example, Artuç et al. (2010), Dix-Carneiro (2014), Artuç and McLaren (2015), Marinescu and Rathelot (2018),

Manning and Petrongolo (2017), and Azar et al. (2018).
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in which case both traders leave the market, or rejects it, in which case both traders remain in the

market. We allow the arrival of traders, the matching rate, and the changes in economic conditions

to depend on the market composition and economic conditions. We study Markov perfect equilibria,

using the market composition and economic conditions as the state variable.

Our first result establishes that equilibrium offers are sometimes rejected: unlike in previous mod-

els (reviewed below), a seller and a buyer may fail to agree to trade, even though sellers and buyers

are homogeneous and have no private information. The result relies on the observation that if a

trader decides not to trade, the state of the market changes faster if she belongs to the long side of

the market than if she belongs to the short side—in the first case, matches involving other traders are

more likely to occur. Consequently, if traders on the long side of the market expect their position to

improve after a transaction takes place, their reservation value from not trading is high. Similarly, if

traders on the short side of the market expect their position to worsen after a transaction takes place,

such a possibility does not lower their reservation value by much. The gains from trade may then be

lower than the sum of the equilibrium reservation values, so trade delay may occur. We prove that,

nonetheless, there is never a “market breakdown”; that is, there is a strictly positive probability of

trade in every match.

The second result shows that when matching frictions are small, transaction prices depend only

on the evolution of the market imbalance. We first show that when traders are matched very often,

the price is independent of whether the offer is made by a seller or buyer. We call this state-dependent

price the market price. We argue that the market price corresponds to the competitive price for the

traders on the long side of the market, as it makes them indifferent between trading now and trading

later. When the market is balanced, the market price is obtained from a Rubinstein bargaining game

with randomly arriving outside options. Overall, the market price at a given date is approximated

by the expected discounted length of time in the future during which the market exhibits excess

demand under a modified law of motion for the state of the market. Such a modified law of motion

corresponds to the evolution of the state of the market if, at any time, a trader on the long side of the

market deviates to not trading. Our characterization is novel in the literature and potentially helpful

in applied work, as it expresses prices in terms of the observed evolution of the market composition,

and hence does not require knowledge about the bargaining protocol, the entry process, or the law

of motion of the evolution of market conditions. It also establishes that since the expected future

market imbalance changes over time, price dispersion remains sizable even if the matching frictions

are small, despite the homogeneity of sellers and buyers.

Our simple characterization of the price dynamics permits us to obtain novel testable predictions.

First, even if the market composition does not drift toward being balanced, the market price always

increases in expectation when there is excess supply, and it always decreases in expectation when
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there is excess demand. Second, as in the standard results for large decentralized markets, trade delay

disappears in the limit as the rate of arrival of traders becomes large. As the arrival rate increases,

it becomes increasingly cheap for each trader to wait to trade until she is on the short side of the

market, but because both buyers and sellers can do so, waiting becomes increasingly useless. In the

limit, the price depends on the economic conditions and not on the current market composition; it

equals the future expected discounted time with excess demand. Finally, we provide conditions that

ensure that there is no equilibrium trade delay; these conditions take the form of bounds on the effect

that individual transactions may have on the arrival rates. We show that, under these conditions,

raising the interest rate results in a mean-preserving spread of the distribution of market prices.

We examine some extensions of our model. We argue that our characterization of price dynamics

persists when arrival into the market is endogenized through an entry cost or when traders may

exogenously or endogenously exit the market without trading. We also discuss ways in which the

bargaining protocol can be changed so that our results continue to hold. On the other hand, we argue

that allowing gains from trade to change over time could lead to market breakdown in some states,

while allowing trader heterogeneity could lead to additional market inefficiencies.

The rest of our paper is organized as follows: after the literature review, Section 2 introduces

our model, and Section 3 provides the equilibrium analysis. Section 4 analyzes the equilibrium out-

come when the matching frictions are small. Section 5 discusses some extensions of the model and

concludes. The appendix provides the proofs of the results and some additional derivations.

1.1 Literature review

Our paper contributes to the literature on small markets with arrival and exit of traders. The paper

closest to ours, Taylor (1995), analyzes a market where sellers and buyers arrive over time at a fixed

rate. In every period, traders on the short side of the market make price offers; when the market is

balanced, the offering side is chosen at random. Taylor characterizes equilibria without delay and

shows that the price is determined by the market composition when traders are impatient, and by the

long-run population dynamics when traders are patient. We show these results also hold in a decent-

ralized market when frictions are small and arrival is fixed. Endogenous arrival and evolving market

conditions may nevertheless reverse these results, leading to price dispersion and trade delay. Our

novel characterization of price dynamics in terms of the future discounted time with excess demand

also permits us to obtain new comparative statics results regarding price dynamics and the effects of

changes in the interest rate on the distribution of prices.2

2Other, less closely related papers in this literature are those of Coles and Muthoo (1998) and Loertscher et al. (2022),

who consider a model similar to that of Taylor (1995) in which heterogeneous sellers and buyers arrive in pairs, and Said
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Our paper is also related to the extensive literature on decentralized large markets, which is re-

viewed in Osborne and Rubinstein (1990) and Gale (2000).3 The models in this literature feature a

continuum of traders and non-stochastic population dynamics, which are often assumed to be in a sta-

tionary state (an exception is the model of Manea, 2017a, which represents a non-stationary market

with a continuum of traders). For the frictionless market, Gale (1987) shows that the outcome is com-

petitive without delay or price dispersion. By contrast, we study small markets in which the market

composition undergoes permanent, endogenous stochastic evolution. The equilibrium interrelation

between arrival and pricing is key to generating delay and price dispersion.

Our work is also related to recent work on bargaining in networks. For example, Talamàs (2019)

and Elliott and Nava (2019) look at bargaining in networks with traders who trade goods and leave.4

In these papers, either there is no arrival, or traders are immediately replaced by copies of them-

selves upon transaction; furthermore, traders are heterogeneous because of their different valuations

and/or different positions in the network. Both Talamàs and Elliott and Nava show that the network

incompleteness and trader heterogeneity generate inefficiency, price dispersion, and delay. Here, we

instead study an endogenously evolving unstructured market (i.e., with a complete network) with

homogeneous traders and ask how the endogenous arrival determines—and is determined by—the

bargaining outcome. We show that, although our network is simple and traders are homogeneous,

price dispersion and delay may still arise.

Finally, our paper is also related to the literature on dynamic thin financial markets, which feature

few but large traders trading multiple shares over time. Vayanos (1999) and Rostek and Weretka

(2015) study efficiency in dynamic Kyle (1989) models, where heterogeneous traders possess private

information and gauge the impact of their actions on public information and prices. Our focus, on

the other hand, is on understanding how arrival affects bargaining outcomes in markets where each

trader trades only once, and therefore does not consider the price impact of her transactions. In this

context, inefficiencies arise not because of private information but because current trades affect future

arrivals.

(2011), who studies a dynamic market in which buyers compete in a sequence of private-value second-price auctions.

3Important contributions are those of Rubinstein and Wolinsky (1985), Gale (1987), Burdett and Coles (1997), Shimer and

Smith (2000), Atakan (2006), Satterthwaite and Shneyerov (2007), Manea (2011), and Lauermann (2012). In Section

4.3 we consider the limit where traders arrive increasingly frequently, which is interpreted as the market growing by

replication, and we compare our convergence results to the competitive outcome of this literature.

4Manea (2018) and Condorelli et al. (2016) study models where a single good is transacted along a network, and where

some of the traders endogenously become intermediaries.
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2 The model

In this section, we introduce a model similar to those of Rubinstein and Wolinsky (1985) and Gale

(1987).

Our setting has two key distinguishing features. The first is that the market is assumed to be

“small”; that is, the number of traders in the market at any given moment of time is a non-negative

integer (instead of a mass) that changes stochastically over time. Second, we place few assumptions

on the arrival and matching processes, allowing them to depend on the market composition and an

endogenously evolving variable that encodes the economic conditions. Sections 3.3 and 5.1 discuss

the motivations for our assumptions and the robustness of the results if they are changed.

State of the market. Time is continuous with an infinite horizon, t ∈ R+. There are infinitely

many potential sellers and buyers. At any given moment t, there are Ns,t ∈ {0, ..., N̄s} sellers and

Nb,t∈{0, ..., N̄b} buyers in the market, for some large N̄s, N̄b ∈N. There is also a variableωt denoting

the economic conditions, which belongs to a finite set Ω⊂Rn. We refer to (Ns,t , Nb,t ,ωt) as the state

of the market at time t, which is observed by all traders (sellers and buyers) in the market.

Arrival process. Sellers arrive in the market at a Poisson rate γs(Ns,t , Nb,t ,ωt) ∈ R+, and buyers

arrive at a Poisson rate γb(Ns,t , Nb,t ,ωt) ∈R+. Note that γs(N̄s, ·, ·) ≡ γb(·, N̄b, ·) ≡ 0.

Bargaining. For ease of exposition, our base model uses a simplistic (yet canonical) bargaining pro-

tocol. If, at time t, there are sellers and buyers in the market (i.e., Ns,t , Nb,t>0), then a match occurs

at a Poisson rate λ(Ns,t , Nb,t ,ωt)>0. When a match occurs, nature randomly selects one of the sellers

and one of the buyers in the market and also chooses which trader makes a price offer. The probability

that the seller makes the offer is ξ∈ (0, 1). The trading counter-party decides whether to accept the

offer or not. If the offer is accepted, the good is transacted, and the traders leave the market, whereas

if the offer is rejected, they remain in the market.

Dynamics of the economic conditions. The economic conditionsωt change through shocks arriving

at a Poisson rate γc(Ns,t , Nb,t ,ωt) ≥ 0. The new conditions are drawn from a distribution that depends

on the time-t state of the market.5

Payoffs. All sellers value the good at 0, and all buyers value it at 1. Both sellers and buyers discount

the future at a rate r > 0. If a seller and a buyer trade at time t at price p, then they obtain, respectively,

e−r t p and e−r t (1−p). If they never trade, they both obtain 0. Both sellers and buyers are risk-neutral

and are expected-utility maximizers.

5The economic conditions capture a broad set of economic variables relevant to the entry of traders into the market. Some

components of ω, such as shocks to the national or world economy, may evolve independently of the rest. Other compon-

ents, such as market hotness or local government policies, may be endogenous.
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Strategies. To simplify the model setting, we focus directly on Markov strategies using the state of

the market as the state variable. Thus, a trader’s strategy maps each state (Ns, Nb,ω) with Ns, Nb > 0

both to a price offer distribution in ∆(R) and to a probability of acceptance for each possible offer

received. These are interpreted to be the trader’s strategy in the bargaining game if she is matched

and the market state is (Ns, Nb,ω).

Equilibrium concept. We focus on symmetric Markov perfect equilibria, in which all traders on each

side of the market use the same strategy (see Appendix A.1 for the formal definition). We will refer

to symmetric Markov perfect equilibria simply as “equilibria.”

3 Equilibrium analysis

3.1 Equilibrium continuation values and existence

We begin this section by presenting the equations satisfied by the continuation value of a trader in

equilibrium, then state that an equilibrium exists. See Appendix A.1 for formal derivations.

Fix an equilibrium. We use Vs(Ns, Nb,ω) to denote a seller’s continuation value in state (Ns, Nb,ω)

with Ns > 0, and Vb(Ns, Nb,ω) to denote a buyer’s continuation value in state (Ns, Nb,ω) with Nb > 0;

both of these quantities are formally defined in Appendix A.1. We will sometimes refer to sellers and

buyers as, respectively, s-traders and b-traders.

Fix some type θ ∈{s, b} and some state (Ns, Nb,ω). The continuation value of a θ -trader in state

(Ns, Nb,ω) is divided into three components, corresponding to the possible events that can happen

next in the market, each weighted by the relative rate at which it occurs:

Vθ =

own match
︷ ︸︸ ︷

1
Nθ
λ

λ+γ+r V m
θ +

others’ match
︷ ︸︸ ︷

Nθ−1
Nθ

λ

λ+γ+r V o
θ +

exog. change
︷ ︸︸ ︷

γ

λ+γ+r V e
θ . (3.1)

Here and in the rest of the paper, when there is no risk of confusion, we omit the dependence of Vθ ,

V m
θ

, V o
θ

, V e
θ

, λ, and γ≡ γs+γb+γc on the state of the market. The quantities V m
θ

, V o
θ

, and V e
θ

are

defined and described below.

1. Own match: The first possibility is that the θ -trader is matched with a trader from the other

side of the market, which occurs at rate 1
Nθ
λ. Assume first θ = s (i.e., the θ -trader is a seller).

With probability ξ, she makes the offer. She can decide to offer an unacceptable price (say above

1) that the buyer rejects, in which case she obtains her continuation value of Vs. Alternatively,

she can make an offer intended to be acceptable to the buyer. Since the buyer’s continuation

value from rejecting the offer is Vb, he accepts for sure offers strictly below 1−Vb and rejects

offers strictly above 1−Vb. The standard take-it-or-leave-it logic implies that all equilibrium
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offers from the seller that are accepted with positive probability are equal to 1−Vb; hence the

seller’s continuation payoff when she makes an offer is max{Vs, 1−Vb}. With complementary

probability, 1−ξ, the buyer is chosen to make the offer. In this case, the seller receives a payoff

of Vs: in equilibrium, either the offer is not acceptable, or the offer is acceptable and she is

indifferent whether to accept it or not. Hence, we have

V m
s = ξ max{Vs, 1−Vb}+(1−ξ)Vs . (3.2)

The analogous equation for a buyer is given by

V m
b = ξVb +(1−ξ) max{Vb, 1−Vs} . (3.3)

2. Others’ match: The second possibility is that another θ -trader is matched, which occurs at rate
Nθ−1

Nθ
λ. The continuation value of a θ -trader if other traders match depends on the probability

that equilibrium offers will be accepted. This value can be written as

V o
θ = αVθ (Ns−1, Nb−1,ω)+ (1−α)Vθ , (3.4)

where α≡α(Ns, Nb,ω) is the equilibrium probability that a seller and a buyer trade when they

are matched in state (Ns, Nb,ω). It is important to notice that, if the state (Ns, Nb,ω) is such

that the net surplus from trade is positive (i.e., 1−Vs−Vb > 0), then the equilibrium offer is

accepted for sure in any match in this state (hence, α = 1), whereas if the net surplus from

trade is negative (i.e., 1−Vs−Vb < 0), then the equilibrium offer is rejected for sure (hence,

α=0).

3. Exogenous change: The third possibility is that the state of the market changes exogenously,

which occurs at rate γ ≡ γs+γb+γc.
6 Conditional on the occurrence of an exogenous change,

it consists of the arrival of a seller with probability γs
γ , the arrival of a buyer with probability

γb
γ , and a change in the economic conditions with probability γc

γ . The continuation value of a

θ -trader conditional on an exogenous change in the state of the market can then be written as

V e
θ =

γs
γ Vθ (Ns+1, Nb,ω)+ γb

γ Vθ (Ns, Nb+1,ω)+ γc
γ Ec[Vθ (Ns, Nb, ω̃)] (3.5)

for both θ ∈ {s, b}, where Ec is the expectation over the new economic conditions.

An important observation is that even though our small dynamic market evolves endogenously

through multiple events (arrivals, transactions, changes in market conditions), we can uniquely de-

termine an equilibrium from the corresponding probability of agreement in each state. Indeed, α

6In each state, the market conditions change when a transaction occurs (the rate of this event is endogenous because it

depends on the equilibrium) and when a trader arrives or there is an exogenous change (the rates of these events are

exogenous, because they do not depend on the equilibrium behavior in this state).
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uniquely pins down the continuation payoffs through equations (3.1)–(3.5), while the transaction

price is either Vs (if the buyer makes the offer) or 1−Vb (if the seller makes the offer). Also, as we

argued before, α is part of an equilibrium if and only if α = 1 when Vs+Vb < 1 and α = 0 when

Vs+Vb > 1. These observations can be used to apply standard fixed-point theorems to prove the

existence of equilibria.

Proposition 3.1. An equilibrium exists. The continuation values in an equilibrium are uniquely determ-

ined by the probability of agreement α, and satisfy equations (3.1)–(3.5).

3.2 Equilibrium properties

We continue our analysis with a result that characterizes some important features of equilibrium

behavior, in particular the possibility of delay. In the statement, and in the rest of the paper, we use θ̄

to denote the type complementary to a trader’s type θ ∈{s, b}, so {θ , θ̄}={s, b}.

Proposition 3.2. In any equilibrium, for any state (Ns, Nb,ω) with Ns, Nb>0, the following hold:

1. There is a strictly positive probability of trade in every match; that is, α>0.

2. There is trade for sure when the market is balanced; that is, α=1 when Ns=Nb.

3. If α< 1, then the traders who are on the long (short) side of the market gain (lose) from other

trades; that is, for θ ∈{s, b} such that Nθ > Nθ̄ , we have V o
θ
>Vθ and V o

θ̄
<Vθ̄ .

The results in Proposition 3.2 are either new or assumed in the literature on small centralized

dynamic markets, because delay is ruled out by construction. Conversely, in the network literature,

the heterogeneity of traders (with respect to values or position in the network) implies that some

trades never happen, while there is no notion of market balancedness in general. These results will

be important in our analysis as they will help determine the bargaining dynamics in the market.

The first part of Proposition 3.2 establishes that there is no state of the market where equilibrium

offers are rejected for sure. Hence, even though equilibrium offers may be rejected with strictly

positive probability, there is never a “market breakdown.” To see why, let (Ns, Nb,ω) be a state with

maximal V across all states, and assume for the sake of contradiction that α=0. We then have that

V = γ
γ+r V e ≤ γ

γ+r V < V ,

which is a contradiction. Intuitively, under no trade, the joint present value from agreeing in the future

is lower than V because of discounting; hence there should be trade in the state with the highest V .

The second part of Proposition 3.2 establishes that when there is a match and the market is bal-

anced (i.e., Ns = Nb), there is trade with probability one. Indeed, because the joint surplus of the
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seller and the buyer is never larger than 1 (by part 1 of the proposition), we have

V =
1

Ns
λ

λ+γ+r V m
︸︷︷︸

=1

+
Ns−1

Ns
λ

λ+γ+r V o
︸︷︷︸

≤1

+ γ
λ+γ+r V e

︸︷︷︸

≤1

≤ λ+γ
λ+γ+r < 1 .

As we can see, the joint surplus of the seller and the buyer from not agreeing is strictly lower than 1,

because they discount the time when the next event occurs. Intuitively, when the market is balanced,

the seller and the buyer “agree” on the relative likelihoods of the three types of events that could

change the state (their own matching, others’ matching, and exogenous changes).

The last part of Proposition 3.2 establishes that if equilibrium offers are rejected with positive

probability in some state (Ns, Nb,ω), then a trader on the long side of the market must benefit from

other traders’ transactions in such a state. To see this, consider the case where sellers are on the long

side of the market (i.e., Ns > Nb). The rate at which there is a match involving other traders is, from

a seller’s perspective, Ns−1
Ns
λ, while this rate is lower from a buyer’s perspective, Nb−1

Nb
λ. Thus, the

weight of the event that other traders match is larger in determining the sellers’ continuation value

than in determining the buyers’. The joint continuation value of a seller and a buyer can then be

written as

V = λ
λ+γ+r

�

(∗)
︷ ︸︸ ︷

1
Ns

V m
s +

Ns−1
Ns

V o
s + 1

Nb
V m

b +
Nb−1

Nb
V o

b

�

+ γ
λ+γ+r V e . (3.6)

If offers are rejected with positive probability, V =V m=1. By the first part of Proposition 3.2, V o and

V e are weakly lower than 1. The greater weight that a seller assigns to the event that two other traders

match makes the term (∗) in the previous expression strictly greater than 1 (which is necessary for V

to be equal to 1) only if V o
s > Vs and V o

b < Vb. In fact, this term can be written as

(∗) = Ns−Nb
Ns Nb

(V o
s −Vs)

︸ ︷︷ ︸

=(∗∗)

+ 1
Nb

V+
Nb−1

Nb
V o

︸ ︷︷ ︸

≤1

=
Ns−Nb
Ns Nb

(Vb−V o
b )

︸ ︷︷ ︸

=(∗∗∗)

+ 1
Ns

V+
Ns−1

Ns
V o

︸ ︷︷ ︸

≤1

.

It is then clear that (∗)>1 only if (∗∗) > 0 and (∗ ∗ ∗) > 0,

Trade delay

Delay in our model arises because of a novel effect: the event that other traders match (and trade)

occurs more often from the perspective of a trader on the long side of the market than from the

perspective of a trader on the short side. If a trader waits and lets others trade, this affects the endo-

genous arrival and market dynamics, but the effect depends on which side of the market the trader is

on (see Appendix B for an illustrative example where all equilibria exhibit trade delay). Hence, even

though the traders have homogeneous beliefs about the future evolution of the market, the evolution
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of the market conditional on a given trader’s deviating (and not trading)—which provides the trader’s

outside option when bargaining—depends on the side of the market to which she belongs.

Inefficient delay is often found in bargaining models with private information and adverse selec-

tion. Examples of delay in large markets with adverse selection are presented in Moreno and Wooders

(2002) and Camargo and Lester (2014).7 In small markets, trade delay may also occur for other reas-

ons; here we mention three that are closely related to our results. Jehiel and Moldovanu (1995)

analyze a bargaining setting with one seller and many asymmetric buyers, where buyers’ transac-

tions impose externalities on other buyers. They find that if the externalities are negative, there are

equilibria with “cyclical delay.” In our model, delaying trade imposes an endogenous externality on

other traders by not changing the state of the market, hence affecting its future evolution. Such an

externality is positive for traders on the long side of the market and negative for traders on the short

side. Yildiz (2004) shows that trade delay can occur when “optimistic” players with heterogeneous

beliefs bargain. Yildiz’s logic is similar to ours because, in our model, a trader’s anticipated dynamics

upon deviating not to trade depend on whether she is on the long side of the market or not. In our

model, nevertheless, players are rational and have correct (and endogenous) beliefs about the market

evolution. In Elliott and Nava (2019), bargaining delay occurs when traders expect their bargaining

position to improve because of their bargaining counterpart’ disappearing trading options (exit of pos-

sible trade partners). Such an effect is not present in a complete network with homogeneous traders,

in which we show that delay only arises when arrival is endogenous (see Proposition 4.2 below).

3.3 Discussion of assumptions

Information: We assume that traders observe the state of the market, which is a common assumption

in the bargaining literature. Given our focus on Markov perfect equilibria, all the information a player

has other than the state of the market is irrelevant (for concreteness, we can assume that the game is of

perfect information). In practice, knowledge about active markets may come from public listings (e.g.,

apps, websites), word of mouth, applications for interviews, etc. Relaxing the assumption would lead

to price discovery effects, where different traders would have different beliefs about the state of the

market (see Lauermann et al., 2017, for a treatment of this situation in large decentralized markets).

Homogeneity: We study the benchmark case of homogeneous sellers and buyers, which facilitates

comparison with models of large markets (e.g., Gale, 1987). Homogeneity makes for tractability and

7In bilateral trade models with private information, the Coase (1972) conjecture asserts that trade occurs with no delay

(see Gul et al., 1986). Nevertheless, a number of papers have identified reasons that the Coase conjecture fails in certain

settings, such as endogenous timing (Admati and Perry, 1987), adverse selection (Deneckere and Liang, 2006), capacity

choice (McAfee and Wiseman, 2008), arrival of traders (Fuchs and Skrzypacz, 2010), deadlines (Fuchs and Skrzypacz,

2013), and stochastic costs (Ortner, 2017).
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is a reasonable assumption for some markets. Intuitively, some small markets are defined by the

narrow set of characteristics that their participants share. For example, to a firm offering a technical

apprenticeship, all newly graduated candidates with a given degree may be indistinguishable; to a

family choosing accommodations for a short vacation, all two-bedroom apartments in a given location

may be equivalent.

Allowing sellers and buyers to have heterogeneous qualities or valuations for goods would make

the analysis less tractable. It would not only increase the dimensions of the state and strategy spaces,

but also make the outcome of bargaining stochastic. Indeed, Abreu and Manea (2012a,b) and Elliott

and Nava (2019) show that, in a bargaining model in networks, sometimes transactions with low

gains from trade are realized in the presence of more beneficial trade opportunities, even in the limit

where matching frictions vanish.

Stationarity of gains from trade: The gains from trade in our model are constant and normalized to

1. This assumption allows us to focus on how the arrival process affects outcomes in a small dynamic

market. Still, most of our analysis can be straightforwardly generalized to the case where the gains

from trade depend on the economic conditions and do not increase too quickly in expectation.8 For

example, we could assume that in each state (Ns, Nb,ω), the gains from trade are equal to g(ω)

instead of 1, where g : Ω→R+ satisfies

g(ω) > γc
γc+r max

ω′∈Ωc(ω)
g(ω′) (3.7)

for all states (Ns, Nb,ω) (note that the equation holds if g(·) ≡ 1), with Ωc ≡ Ωc(Ns, Nb,ω) denoting

the support of the new market conditions when an exogenous change of the economic conditions

occurs. If (3.7) holds, then Proposition 3.2 holds as well, and the results below can be generalized.

If (3.7) does not hold, then there may be states exhibiting market breakdown, where players do not

trade and wait for the surplus to increase.

Endogenous arrival: We consider a general arrival process, where arrival rates depend arbitrarily

on the state of the market. Hence, our analysis accommodates a broad range of arrival processes

and provides predictions independent of the arrival process (see Section 5.1 for a discussion on costly

entry). Allowing such generality in the study of small markets is important, as arrival processes may

differ across markets and may be difficult to discern in practice.

Relatedly, we assume that the number of traders in the market is bounded. This technical assump-

tion, which requires that the arrival rates depend on the state of the market, simplifies the intuition

8The trade surplus may depend on economic conditions affecting taxes or determining the future profitability of the match.

For example, in response to a shortage of specialized labor, a local government may offer free housing to newly-hired

workers; such a subsidy may increase the joint gains from trade for an employer and employee.
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and the proofs; however, it can easily be dropped.9 In a model without bounds on the number of

traders, an arrival process independent of the composition of the market leads to a market with a

growing number of traders; hence the market is not small in the long run.10

Endogenous matching rates: Most of the literature on large decentralized markets has focused,

mostly for analytical convenience, on quadratic matching technologies, where λ(Ns, Nb,ω)=λNs Nb

for some λ∈R++. We do not make assumptions on the functional form of the matching rate, but we

will mostly focus on the limit of vanishing matching frictions. In Section 5.1 we discuss the interpret-

ation of matching frictions as attention frictions.

4 Small matching frictions

We now turn to the case where matching frictions are small, that is, where traders in the market are

matched frequently. This may be a plausible assumption in some small dynamic markets, such as

localized housing markets or job markets for specific occupations, where the rate at which traders

(can) meet once they are in the market is much higher than the rate of arrivals in the market. As in

the large markets literature, studying the case where frictions are small allows us to provide a sharper

characterization of the equilibrium outcome.

4.1 Notation and a preliminary result

To analyze the case where matching frictions are small, we separate each state’s matching rate λ=

λ(Ns, Nb,ω) into two parts. The first is a state-independent common factor k> 0. The second is a

function `(Ns, Nb,ω), which measures the relative rate at which traders match in each state. Thus,

from now on, we use the expressions λ(Ns, Nb,ω) and k `(Ns, Nb,ω) interchangeably.

The difficulty in characterizing how equilibrium outcomes change “when matching frictions are

small” is that our model may have multiple equilibria. We therefore introduce the following notation

to obtain the properties of equilibrium outcomes as k increases. The notation “'” indicates that the

difference between the terms on the two sides tends to 0 in any equilibrium as k goes to +∞ under

any equilibrium sequence (see footnote 11). The following result establishes that when the matching

9See the proof of Proposition 3.1 for a demonstration of the existence of an equilibrium for N̄b= N̄s=+∞. The results in

Proposition 3.2 extend to the situation where γ is bounded.

10Indeed, since sellers and buyers leave the market in pairs, Nt≡Ns,t−Nb,t evolves independently of the equilibrium behavior

when γ is independent of (Ns,t , Nb,t ) (which requires N̄s= N̄b=+∞). The variance of Nt+∆−Nt is then independent of

Nt , implying that, from the time-t perspective, the variance of Nt̂ grows to infinity as t̂ →∞. If instead, for example,

buyers are more likely to arrive when they are on the short side of the market than when they are on the long side, the

market remains small in the long run (see Section IV in Taylor, 1995, for a simple specification).
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frictions are small, the joint continuation value of a seller and a buyer is close to the joint surplus they

obtain from trade.

Lemma 4.1. V ' 1 for all states (Ns, Nb,ω) with Ns, Nb > 0.11

To obtain intuition for Lemma 4.1, assume that matches occur very frequently; that is, λ (or k)

is large. Note that, for a fixed equilibrium, there are three kinds of states. The first kind comprises

all states where Ns, Nb > 0 and equilibrium offers are rejected with positive probability. For these

states, V = 1. The second kind comprises all states where either Ns = 1 or Nb = 1 (or both). For

example, if there is only one buyer, he can wait almost costlessly until he is able to make an offer

and then obtain 1−Vs≥Vb; hence Vs+Vb is close to 1 for these states. Finally, the third kind of state

comprises those where Ns, Nb>1 and there is immediate trade. In a state in this set, a θ -trader has the

option to wait for a transaction between two other traders to take place (which occurs soon, because

there is immediate trade and matches are frequent), so Vθ (Ns−1, Nb−1,ω) is an approximate lower

bound on Vθ . This implies that V (Ns−1, Nb−1,ω) is an approximate lower bound on V , which is itself

bounded above by 1. If (Ns−1, Nb−1,ω) belongs to the first or second kind of state, we have that

V (Ns−1, Nb−1,ω) is approximately equal to 1. We can use the same argument again if it belongs to

the third kind. It is clear that after at most min{Ns, Nb}−1 times, a state of one of the first two kinds

is reached. Because the expected time for this to happen shrinks to 0 as k →∞, we have that V is

approximately equal to 1 for states of the third kind as well.

An immediate and important consequence of Lemma 4.1 is that, when the matching frictions are

small, a seller is approximately indifferent between trading and not trading when Ns>Nb≥1. This is

obviously true if α<1 (i.e., in the first kind of state defined above). When, instead, α=1, the payoff

of a seller is

Vs '
1
Ns

Vs +
Ns−1

Ns
Vs(Ns−1, Nb−1,ω) . (4.1)

Thus, from the previous equation, it follows that Vs ' Vs(Ns−1, Nb−1,ω); that is, the seller obtains

approximately the same payoff if she follows the equilibrium strategy and if she decides not to trade

in state (Ns, Nb,ω).

Another implication of Lemma 4.1 is that within-state price dispersion vanishes when the matching

frictions are small. Indeed, the transaction price in state (Ns, Nb,ω) is either Vs (if the buyer makes the

offer) or 1−Vb (if the seller makes the offer). Because V ' 1, we have that Vs ' 1−Vb. Therefore, we

call Vs = Vs(Ns, Nb,ω) the market price (in state (Ns, Nb,ω)); this is the approximate price at which

11The notation “V ' 1” should be read as follows: “For any sequence (kn)n tending to +∞ and for any corresponding

sequence of equilibria, we have that lim supn→∞ |Vn−1|= 0.” That is, for any ε>0, |Vn−1|< ε in any equilibrium for n

big enough (note that Vn can be different in different equilibria).
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transactions take place when the state is (Ns, Nb,ω). The following section shows that there is market

price dispersion across states.

4.2 Characterization of the market price

We now provide a characterization of the market price. We do so by modifying the probability measure

that determines the evolution of the state of the market.

Each equilibrium induces a probability measure determining the evolution of the state of the mar-

ket. Under such a measure, transactions occur at rate α(Ns,t , Nb,t ,ωt)λ(Ns,t , Nb,t ,ωt), and exogen-

ous changes in the state of the market occur at rate γ(Ns,t , Nb,t ,ωt). While the equilibrium measure

characterizes the market dynamics, it cannot be directly used to obtain each trader’s outside option

when bargaining. The reason is that to obtain a trader’s outside option when bargaining, we have to

compute her value from deviating to not trading, which changes the market evolution.

As we saw earlier, traders on the long side of the market are indifferent between trading and not

trading. To compute the value from not trading, we introduce a new measure, under which exogenous

changes in the state of the market occur in exactly the same way as under the equilibrium measure,

but transactions occur at rate






Nb,t−1
Nb,t

α(Ns,t , Nb,t ,ωt)λ(Ns,t , Nb,t ,ωt) if Ns,t≤Nb,t ,
Ns,t−1

Ns,t
α(Ns,t , Nb,t ,ωt)λ(Ns,t , Nb,t ,ωt) if Ns,t>Nb,t ,

(4.2)

instead of at rate α(Ns,t , Nb,t ,ωt)λ(Ns,t , Nb,t ,ωt). If sellers are on the long side of the market (i.e.,

Ns,t>Nb,t) and a seller decides to deviate and refrain from trading until the market is balanced, the

market evolves according to the modified measure. Note that the dynamics of the state of the market

under the modified measure are determined from the equilibrium dynamics of the state of the market

(and can be uniquely pinned down by an external observer who observes only the evolution of the

state).

Our technique of changing the measure to compute equilibrium prices resembles the use of risk-

neutral measures in studying financial markets. The risk-neutral measure makes an asset’s current

price equal to the value that a competitive, risk-neutral seller derives by trading later instead of now.

The current value of a financial asset in a complete market is then equal to its payoffs in the future,

discounted at the risk-free rate, averaged using the risk-neutral measure. In a slight abuse of lan-

guage, we call our modified measure the risk-neutral measure (of the fixed equilibrium). Because the

competitive side of the market (i.e., the one with more traders) stochastically changes over time in our

model, our risk-neutral measure makes a trader on the long side of the market indifferent between

trading now and trading later. The following proposition shows that our risk-neutral measure can be

used to characterize the market price.
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Proposition 4.1. For any state (Ns,0, Nb,0,ω0), we have that

Vs(Ns,0, Nb,0,ω0) ' Ẽ

�∫ ∞

0

e−r t
�

INs,t<Nb,t
+ξINs,t=Nb,t

�

r dt

�

, (4.3)

where Ẽ is the expectation using the risk-neutral measure.

Proposition 4.1 gives an approximation of the transaction (and market) price in state (Ns,0, Nb,0,ω0)

in terms of the equilibrium dynamics of the state of the market and the probability that a seller makes

an offer. It is a discounted average (under the risk-neutral measure) of the amount of future time for

which the market exhibits excess demand, adjusted by the amount of time for which it is balanced.

Our characterization of prices in terms of the future evolution of the market composition is novel in

the literature. Since the price only depends on the bargaining protocol in proportion to the discounted

amount of future time for which the market is balanced, Proposition 4.1 can be used in applied work

without much knowledge of the primitives of the model. From observing the evolution of the market

composition, one can test whether prices were accurate predictors of the future market imbalance. As

we will see, the simplicity of equation (4.3) will permit us to obtain new comparative statics results.

To obtain some intuition for Proposition 4.1, fix a state (Ns, Nb,ω) where the market is imbalanced.

If there are more sellers than buyers (i.e., if Ns > Nb), sellers are approximately indifferent about

whether to trade or not, and this implies that

Vs '
Ns−1

Ns
αλ

Ns−1
Ns
αλ+γ+r

Vs(Ns−1, Nb−1,ω)+ γ
Ns−1

Ns
αλ+γ+r

V e
s . (4.4)

A similar equation can be obtained when there are more buyers than sellers in the market (replacing

s by b and Ns by Nb). Using Lemma 4.1 we can write, when Ns<Nb,

'Vs
︷︸︸︷

1−Vb '
r

Nb−1
Nb

αλ+γ+r
+

Nb−1
Nb

αλ

Nb−1
Nb

αλ+γ+r
(

'Vs(Ns−1,Nb−1,ω)
︷ ︸︸ ︷

1−Vb(Ns−1, Nb−1,ω))+ γ
Nb−1

Nb
αλ+γ+r

(

'V e
s

︷ ︸︸ ︷

1−V e
b ) . (4.5)

When the market is imbalanced, the outcome resembles Bertrand competition between agents on the

long side of the market (e.g., Taylor, 1995). Indeed, in a match, the payoff a trader on the long

side of the market obtains from trading is very close to her continuation value if she does not trade

and instead waits until the state of the market changes. Importantly, in a small dynamic market, the

continuation value is endogenous and is driven by the expectation of future trade opportunities.

Consider now a state (Ns, Nb,ω) where the market is balanced (i.e., Ns = Nb). Proposition 3.2

establishes that there is trade in every match. Consequently, when Ns> 1, equation (4.1) holds, so

Vs ' Vs(Ns−1, Nb−1,ω). Each seller is approximately indifferent between trading and letting other

traders trade until she is alone in the market with a single buyer. Consider then the case where only

one seller and one buyer are in the market (i.e., Ns =Nb = 1). The disagreement value of the seller
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(i.e., her value from deciding not to trade) is γ
γ+r V e

s . Similarly, the reservation value of the buyer is
γ
γ+r V e

b . As the frequency with which offers are made increases, the transaction price is determined by

the limit outcome of a two-player bargaining game à la Rubinstein (1982). The “size of the pie” over

which the traders bargain is not 1, but rather the trade surplus net of the sum of the outside options;

that is,

1− γ
γ+r (V

e
s + V e

b ) '
r
γ+r .

The seller obtains her disagreement value, r
γ+r V e

s , plus a fraction of the pie equal to the probability

with which she makes offers, ξ r
γ+r ; so12

Vs '
r
γ+r ξ+

γ
γ+r V e

s . (4.6)

Equations (4.4)–(4.6) indicate that under the risk-neutral measure, Vs approximately satisfies the

equations satisfied by the continuation payoff of a fictitious agent who receives a flow payoff equal to

0 when there is excess supply (equation (4.4)), a flow payoff equal to 1 when there is excess demand

(equation (4.5)), and a flow payoff equal to ξ when the market is balanced (equation (4.6)). The

right-hand side of equation (4.3) gives an expression for this value.

Changes in continuation values

As we argued before, when the matching frictions are small and Ns,0≥Nb,0, a close-to-optimal strategy

for a seller at time 0 is to refrain from trading until she is the only seller in the market. The same

applies to a buyer if, instead, Ns,0<Nb,0. It then follows that

Vs(Ns,0, Nb,0,ω0) '







Ẽ[e−r τ0 Vs(1, 1,ωτ0
)] if Ns,0 ≥ Nb,0 ,

1− Ẽ[e−r τ0 (1−Vs(1,1,ωτ0
))] if Ns,0 < Nb,0 ,

(4.7)

where τ0 is the first time at which the market contains only one seller and one buyer. This observation

can be used to prove the following result.

Corollary 4.1. Fix an imbalanced state (Ns,0, Nb,0,ω0)where θ -traders are on the long side of the market.

If Vθ ,0>0 and t>0 is small, then E[Vθ ,t ]�Ẽ[Vθ ,t ]�Vθ ,0, where “�” means that the inferior limit of the

left-hand side minus the right-hand side is non-negative under any equilibrium sequence as k→∞.

An implication of Corollary 4.1 is that when the market is imbalanced, the market price increases

in expectation when there is excess supply and decreases when there is excess demand. Remarkably,

this result is independent of whether the state of the market tends toward being balanced or not.

12In the proof of Proposition 4.1, we obtain equation (4.6) by first computing Vs(1,1,ω) and Vb(1,1,ω) from equation

(3.1) and then taking the limit as λ→+∞ (see equations (A.5) and (A.6)).
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To obtain some intuition for Corollary 4.1, assume that there is excess supply at time t. Because

sellers are approximately indifferent between trading and not trading, the expected price must in-

crease over time to compensate for the cost of waiting to trade. The rate at which transactions happen

in this state under the equilibrium strategy is equal to αλ, which is higher than the transaction rate

under the risk-neutral measure,
Ns,t−1

Ns,t
αλ. Hence, given that a seller’s continuation payoff increases

when other traders trade (see Proposition 3.2), the expected increase in the sellers’ continuation pay-

off is larger under the equilibrium measure than under the risk-neutral measure.

4.3 No delay

We now study the case where trade delay vanishes when the matching frictions become small. To this

end, we first present a condition on the primitives, which will turn out to be sufficient for our analysis.

Condition 1. γθ (Ns−1,Nb−1,ω)
γ(Ns−1,Nb−1,ω)+r ≤

γθ
γ+r +

r
γ+r

1
3 for all θ ∈{s, b, c} and (Ns, Nb,ω) with Ns, Nb>1.

Condition 1 requires that transactions have little effect on the arrival of traders and on economic

conditions, limiting the possibility that traders on the long side of the market benefit significantly from

the transactions of other traders.

Proposition 4.2. Assume Condition 1 holds. Then trade delay vanishes as matching frictions disappear;

that is, αλ
αλ+r ' 1 for any state (Ns, Nb,ω) with Ns, Nb > 0. Furthermore, there exists a function p :

{−N̄b, ..., N̄s}×Ω→ [0,1] such that Vs(Ns, Nb,ω) ' p(Ns−Nb,ω) for all states (Ns, Nb,ω).

Proposition 4.2 establishes that Condition 1 is sufficient to ensure that trade delay disappears

when the matching frictions are small. Intuitively, by Proposition 3.2, trade delay occurs in a given

state only if the gain that traders on the long side of the market obtain from other traders’ transactions

is big enough to compensate for discounting. The proof of Proposition 4.2 shows that, because (by

Condition 1) the arrival of buyers cannot increase much after a transaction, this gain is small compared

to the cost of waiting, so there is no equilibrium with trade delay.

Note that Condition 1 holds trivially in the large markets studied by Rubinstein and Wolinsky

(1985) and Gale (1987), which exhibit no trade delay. Indeed, the equilibrium rate of arrival of

traders—which, in their models, is a discrete-time flow—is independent of the state of the market.

Hence, in these models, delaying trade does not change the joint continuation value of the traders.

This argument cannot be applied to a small dynamic market when Condition 1 does not hold: because

transactions affect the state of the market, traders may have the incentive to let others trade, delaying

their own transactions until their bargaining power is higher.

Under Condition 1, the time it takes for the short side of the market to clear vanishes as the

matching frictions disappear, so, for most of the time, one side of the market is empty. That is, when
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k is large, it is likely that either Ns,t =0 or Nb,t =0 at any given time t>0. The limit dynamics of the

state of the market (under either the equilibrium or the risk-neutral measure) can then be described

by the evolution of the net supply, Nt ≡ Ns,t −Nb,t , and the economic conditions, ωt .

The limit equilibrium and risk-neutral measures of the net supply coincide when the market is

imbalanced. Hence, for example, equation (4.7) also holds for the equilibrium measure. If Nt > 0,

the net supply Nt increases by 1 at rate γs(Nt , 0,ωt) and decreases by 1 at rate γb(Nt , 0,ωt), while

the economic conditions ωt change at rate γc(Nt , 0,ωt). When the market is balanced, the limit

measures may differ: under the equilibrium measure, a seller and a buyer immediately agree, and

the market state changes at rate γ(0,0,ωt), whereas, under the risk-neutral measure, the seller and

buyer remain in the market, and so the market state changes at rate γ(1,1,ωt).

Changes in r

We now consider the effect that changing the discount rate has on the distribution of market prices.

In this section, we focus on a stationary market, that is, the case where the economic conditions

do not change over time (i.e., Ω={ω}). We also require the following condition on the arrival rates.

Condition 2. For any state (Ns, Nb,ω) we have γs>0 if Ns≤Nb and γb>0 if Ns≥Nb.

Condition 2 is mild, because it requires only that sellers arrive with positive probability when

buyers are on the long side of the market, and vice versa. It is not difficult to see that if the market

is stationary and Conditions 1 and 2 hold, then each equilibrium generates an ergodic distribution

of the state of the market; that is, there is a unique probability measure F on Z such that, for each

value of the net supply N , limt→∞ Pr(Nt =N) ' F({N}) independently of the initial state. Because

by Proposition 4.2 there is no trade delay when k is large under Condition 1, this distribution of

states does not depend on the discount rate when the matching frictions are small. Nevertheless, the

corresponding ergodic distribution of market prices does.

Proposition 4.3. If Condition 1 holds and the market is stationary, then p defined in Proposition 4.2 is

decreasing in N. If Condition 2 also holds, then increases in r generate spreads of the ergodic distribution

of market prices.13 If, additionally, γθ (0,0,ω) = γθ (1, 1,ω) for both θ ∈ {s,b}, then such spreads are

mean-preserving.

Proposition 4.3 establishes three important features of the market price. The first feature is in-

tuitive, and appears in different forms in different settings (e.g., Gale, 1987, and Taylor, 1995): the

13Recall that a cumulative distribution function (CDF) F1 on R is said to be a spread of another CDF F2 if there exists a

value x̄∈R such that F1(x)≥F2(x) for all x< x̄ and F1(x)≤F2(x) for all x> x̄ .
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market price depends negatively on the net market supply. Our result is general in that it is independ-

ent of the process governing the evolution of the market composition. It follows from the competition

between agents on the long side of the market (recall equation (4.7)) and the fact that the time it

takes for the market to become balanced is increasing in the degree of imbalance of the market when

the market is stationary, as well as the fact that there is no delay.

The second feature of the market price is new: increasing r raises the ergodic market price disper-

sion. This follows again from (4.7), and because an increase in the discount rate r lowers the expected

discount factor of the time it takes for the market to become balanced from a given net supply. Hence,

the market price for a given N tends to become more extreme when r increases.14 For instance, in

the limit where r→∞, p(N ,ω)→0 for all N>0, and p(N ,ω)→1 for all N<0.

The third feature of the market price is also new: the spread generated by an increase in r is

mean-preserving when γθ (0, 0,ω)=γθ (1, 1,ω) for both θ ∈{s, b}. The reason is that, because trade

delay vanishes when the matching frictions disappear, the limit equilibrium and risk-neutral measures

coincide under the additional assumption of Condition 2, and the ergodic probability that the market

has excess demand is independent of r. Also, from equation (4.3), the ergodic mean of the market

price can be approximated by the ergodic probability with which the market exhibits excess demand

plus the ergodic probability that the market is balanced multiplied by ξ. Hence it is independent of

r. In summary, although changes in r change the ergodic distribution of market prices, they do not

change its mean.15

4.4 Large arrival rates

In this section we analyze the trade outcome when the rate of arrival of traders into the market

is large. Our analysis sheds light on the role of the friction that remains in the market when the

matching frequency is high, that is, the time that a trader must wait to trade when she is on the long

side of the market. We then answer, from a small-market perspective, one of the salient questions in

the literature on decentralized bargaining in large markets: that of whether lowering frictions leads

to a competitive outcome. As in the previous models of large markets, our answer sheds light on

whether and how frictions may be magnified or mitigated by the traders’ equilibrium behavior in the

14The negative direct effect that an increase in r has on p(N ,ω) when N > 0 may sometimes be compensated for by

an increase in p(0,ω) (recall that p(N0,ω0) ' Ẽ[e−r τ0 p(0,ω)] from equation (4.7)). Nevertheless, as the proof of

Proposition 4.3 shows, the direct effect dominates if N is large enough.

15More generally, if the arrival rates in states (0,0,ω) and (1,1,ω) are close (but not equal), or if the ergodic likelihood

that the market is balanced is low, Proposition 4.3 establishes that increases in the interest rate will increase the spread

of prices while keeping their mean approximately unchanged.
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market.16

In practice, increases in the arrival rate occur when similar markets are unified into bigger ones.

Such market unification may arise, for example, from the launch of websites providing information on

job offerings, rental prices, or housing prices in nearby locations, which make it easier for sellers and

buyers to be active in different small markets. Market unification may also result from improvements

in transportation infrastructure, such as new metro stations or roads, that reduce commute time.

We begin with some notation. Fix two functions, γ̃s and γ̃b, mapping states to non-negative num-

bers, and two non-negative sequences, (kn)n and (Mn)n, tending to +∞. For each n, we consider the

model with arrival rates γs =Mn γ̃s, γb =Mn γ̃b and, as before, λ= kn `. In this section, the notation

“'” indicates that, for any sequences (kn)n and (Mn)n tending to +∞ and any sequence of corres-

ponding equilibria, the difference between the terms on the two sides tends to zero (see footnote 11).

The following result characterizes the limit trade outcome as the market grows and matching frictions

disappear.

Proposition 4.4. For all states (Ns, Nb,ω) with Ns, Nb>0 we have αλ
αλ+r '1. If Conditions 1 and 2 hold,

then for each ω∈Ω there is some p∗(ω)∈(0,1) such that Vs(Ns, Nb,ω)'p∗(ω) for all (Ns, Nb,ω).

Proposition 4.4 provides two results regarding the limit trade outcome. The first establishes that

the discount factor until a transaction happens, which is equal to αλ
αλ+r , tends to 1; that is, trade

delay disappears. The second states that price dispersion is only a function of the market conditions;

that is, for each ω the market price tends to a “competitive price” p∗(ω) independent of the market

composition. Hence, like large decentralized markets, small dynamic markets with high entry of

traders and low matching frictions feature both low trade delay and a single price, even if the number

of traders at each point in time is small.

Intuition for Proposition 4.4 can be obtained as follows: as the rate of arrival of traders increases,

the current state of the market becomes less relevant in determining the current price, because each

trader in the market can wait for the market composition to change without incurring much of a

delay cost. For some initial state (Ns,0, Nb,0,ω0), the delay cost of not trading until the state reaches

(Ns, Nb,ω0) in the support of the ergodic distribution of the state of the market tends to 0 as n→∞.

It may then seem that the option of waiting to trade becomes increasingly attractive to all traders

16For instance, Gale (1987) characterizes the limit trade outcome in the large-market version of our model as the discount

rate tends to 0, and obtains that it converges to that of a competitive market. The limit price is either 0 or 1, depending

on whether there are more sellers or buyers in the market. Other papers have identified settings where the trade outcome

fails to converge to the competitive one. Such failure of convergence may be due, for example, to asymmetric information

between traders (Satterthwaite and Shneyerov, 2007; Lauermann and Wolinsky, 2016), heterogeneity on each side of

the market (Lauermann, 2012), or a lack of knowledge about the state of the market (Lauermann et al., 2017). See

Lauermann (2013) for a review of other reasons for the failure of convergence.
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in the market. However, this is not possible when the matching frictions are small: the sum of the

continuation values of a seller and a buyer is always close to 1, independently of the value of the arrival

rates. Hence, even though waiting is increasingly cheap, it is also increasingly worthless, because the

price variation across states becomes increasingly small.

To provide further intuition for Proposition 4.4, let NΣs,t and NΣb,t denote, respectively, the number

of sellers and the number of buyers who arrived in the market between time 0 and time t, including

the ones who “arrived” (or were present) at time 0. Then Nt = Ns,t−Nb,t = NΣs,t−NΣb,t ; thus, equation

(4.3) holds if we replace Ns,t and Nb,t by NΣs,t and NΣb,t , respectively. As traders arrive more frequently,

the price (e.g., at time 0) approximates the (ergodic) probability that more sellers than buyers will

arrive in the future. Hence, the effective market to which a trader (at time 0) has access grows

intertemporally. Given that the endogenous arrival process keeps a small market balanced, the price

is interior. In contrast, the competitive price in large markets with small matching frictions is typically

equal to either 0 (when there is excess supply) or 1 (when there is excess demand). The competitive

price in a small dynamic market is a convex combination of the two extremes, each weighted according

to the probability that the market features excess supply or demand.

The price can be obtained by solving a system of equations (one equation for each value ω ∈ Ω),

which is given by

p∗(ω) = r
γc+r p̄(ω)+ γc

γc+r Ec[p∗(ω̃)|ω] , (4.8)

where p̄(ω) ≡ E[INs<Nb
+ ξINs=Nb

|ω] is the expected market price under the ergodic distribution

of market compositions for ω, and where Ec[·|ω] is the expectation over the new market conditions

given the ergodic distribution of market compositions for ω. Hence, current and future economic

conditions affect the current price in the limit where the market grows by replication, but the price is

independent of the current market composition.

5 Extensions and conclusions

5.1 Extensions

This section discusses some generalizations of our model, which illustrate how our results can be

extended beyond some of the assumptions we have made. They also give a sense of the robustness of

our findings, by indicating that different specifications of a small dynamic market yield similar sets of

results.

Costly entry. Entering some markets requires a sunk investment. For example, people selling or

renting out houses have to condition their housing units and design advertisements; workers entering
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a job market may have to update their market-specific knowledge and prepare documentation (CVs,

cover letters, reference letters, etc.). Potential traders may therefore perform a cost–benefit analysis,

comparing the cost of entering a market with the expected gains, before deciding whether to enter.

To accommodate such a possibility, we could extend our model in the following way.17

Consider an extended model where, instead of directly entering the market, sellers and buyers

become active at some respective state-independent rates γ̄s and γ̄b. Assume, for concreteness, that

γ̄s>γ̄b, and that sellers have entry cost c∈(0, 1), while buyers’ entry cost is 0. In an equilibrium of this

model, if a seller becomes active when the state is (Ns, Nb,ω), she enters the market if the net payoff

from doing so, Vs(Ns+1, Nb,ω)−c, is above the payoff from some fixed outside option normalized

to be 0 (which may come from selling the good in another market or keeping it for herself). This

implies that the arrival of sellers into the market is equal to 0 if Vs(Ns+1, Nb,ω) < c and to γ̄s if

Vs(Ns+1, Nb,ω)>c; otherwise it belongs to [0, γ̄s] (the entry rate can be smoothed out assuming the

entry cost is drawn from some continuous random variable).

Any equilibrium outcome in such a model corresponds to an equilibrium outcome of our model

under some specification of the primitives. Hence, our characterization of the market price in Pro-

position 4.1 holds with costly entry, as does the tendency of prices to revert to the price in a balanced

market (Corollary 4.1). Under costly entry, equilibrium prices would fluctuate closely around the

competitive price c with frequent entry, despite the potential for a hold-up problem after the sunk

cost has been paid. Costly entry would naturally keep the market frequently balanced, since excess

supply would decrease the net entry of sellers, while excess demand would decrease the net entry of

buyers.

Exogenous and endogenous exit. A common assumption in the large-market literature is that θ -

traders leave the market at some (typically state-independent) Poisson rate ρθ > 0, for each θ ∈

{s, b}. This assumption is often made to keep the size of the market stationary when the arrival rates

are constant, incorporating the observation that traders sometimes exit the market for exogenous

reasons. Making such an assumption in our model adds an extra term equal to Nsρs +Nbρb to each

denominator in equation (3.1), as well as an extra term

1
λ+γ+r+Nsρs+Nbρb

�

(Ns−1)ρs Vs(Ns−1, Nb,ω)+Nbρb Vs(Ns, Nb−1,ω)
�

on the right-hand side of the equation when θ = s (and a similar term when θ = b). The additional

term plays a role similar to that of the term corresponding to the exogenous change of the state of the

market in equation (3.1): it also corresponds to an exogenous (i.e., equilibrium-independent) change

in the state of the market.

17In the large markets literature, Manea (2017b) shows the existence of steady states in a similar specification.
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More generally, our model can be adapted to accommodate endogenous exit. In a job market,

endogenous exit may correspond to workers moving to other commuting zones when wages are low

in their current zones. Similarly, house-seekers may end up looking for houses with different char-

acteristics when the prices of houses in their desired sub-market are high (e.g., a family may end up

buying an apartment instead of a house with a garden). To incorporate endogenous exit, we can add

a stochastic process determining the decision times (arriving at some Poisson rate) at which a trader

can decide whether to leave the market or not. Leaving the market gives a θ -trader an exogenous

continuation value equal to V θ ≥0 (possibly depending on ω and satisfying V s+V b < 1). Equilibria

of this extended model would feature some states (typically highly imbalanced) where traders on the

long side of the market would choose to exit with some probability, and other states with no exit.

Additionally, there would be some highly imbalanced states such that, after the arrival of a trader

on the long side of the market, another trader on the long side of the market would almost imme-

diately leave. As in the previous case with costly entry, the state of the market would tend to stay

approximately balanced in a model with either exogenous or endogenous exit.

Attention frictions. The matching rate of our model can be interpreted in terms of attention fric-

tions faced by traders. Consider, for example, a model where traders draw “attention times” in-

stead of “meeting” other traders; a θ -trader in the market draws attention times at a (possibly state-

independent) Poisson rate λθ > 0, for θ ∈{s, b}. When a trader draws an attention time, she chooses

a trader on the other side of the market (if any) and makes him an offer. This model with attention

frictions generates the same (symmetric Markov perfect) equilibria as our model with18

λ≡ Nsλs +Nbλb and ξ≡ Ns λs
Ns λs+Nb λb

.

The limit where “matching frictions vanish” considered in Section 4 corresponds, in the model with

attention frictions, to the limit where “attention frictions vanish.”

More general bargaining protocol. In our base model, the bargaining protocol in each match consists

of a take-it-or-leave-it offer by a randomly chosen trader. This bargaining protocol is often used in the

literature, which helps us compare our results to previous work. We now argue that our results apply

to a broader set of bargaining protocols satisfying individual rationality.

We can black-box the bargaining protocol into the outcome of a match between a seller and a buyer,

summarized as a probability of agreement α and some (potentially stochastic) transfers (dependent

18Our results can be straightforwardly generalized to the case where the bargaining protocol (captured by ξ) depends on

the state of the market. In this case, ξ in equation (4.3) should be replaced by ξ(1, 1,ωt ). Our results also apply when

r, interpreted as the interest rate, depends on the economic conditions.
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on whether agreement occurs). Thus, we can write equations (3.2) and (3.3) as

V m
s = αE[p̃|agreement] + (1−α) (Vs +E[p̃|disagreement]) ,

V m
b = αE[1−p̃|agreement] + (1−α) (Vb−E[p̃|disagreement]) ,

while equations (3.4) and (3.5) remain the same. If the bargaining protocol satisfies individual ra-

tionality, we have that V m
θ
≥ Vθ for both θ ∈ {s, b} (i.e., V m

θ
∈ [Vθ , 1−Vθ̄ ]), which implies α= 0 and

E[p̃|disagree]=0 whenever Vs+Vb>1. If one additionally requires that agreement occur whenever

the gains from agreement are strictly positive, then α = 1 and E[p̃|agree] ∈ [Vs, 1−Vb] whenever

Vs+Vb<1. It is then not difficult to see that if the bargaining protocol satisfies individual rationality

and there is some ξ=ξ(Ns, Nb,ω)∈ (0, 1) such that E[p̃|agree] = ξVs + ξ (1−Vb), then our results

continue to hold.19

5.2 Conclusions

We have studied decentralized bargaining in small dynamic markets. These are markets where traders

arrive and leave over time, and there are few active traders at any given date.

The model is tractable while keeping the endogenous arrival process general. Our explicit charac-

terization of the price in terms of the evolution of the market may serve as a guide for future empirical

work and has allowed us to obtain novel implications for the price process that are amenable to testing.

First, the higher competitiveness of traders on the long side of the market implies that the primitives

affect prices only through the discounted length of future time during which the market has excess

demand. It also implies that prices tend to converge to the price in a balanced market, even if the

market composition fails to become more balanced. Second, the ergodic distribution of market com-

positions tends not to depend on the interest rate, which implies that increases in the interest rate

tend to result in mean-preserving spreads of the distribution of market prices. Finally, since the mar-

ket composition changes faster when multiple markets are unified, prices tend to depend less on the

number of traders currently in the market and more on the evolution of the economic conditions.

Our setting is flexible and can be generalized in several directions. We have already indicated

some interesting avenues for research, such as allowing for trader heterogeneity or studying price

discovery by limiting the information about the state of the market. Another possible extension is

to explicitly model the costly relocation of traders between different sub-markets. This could lead to

new insights on endogenous gentrification (see Guerrieri et al., 2013, for a centralized large-market

19If ξ=0 for all states or ξ=1 for all states, then prices degenerate to 0 or 1, respectively, by the usual Diamond paradox.

If the bargaining protocol is such that there is a probability 1−ᾱ of exogenous breakdown, then the match frequency λ

can be normalized to λ/ᾱ; the results for our model then apply to the normalized model (where ᾱ=1).
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approach) or the sectorial mobility of workers (see Artuç and McLaren, 2015, for evidence), as well

as on the effects that idiosyncratic and common shocks have on mobility across markets. The analysis

of these and other extensions is left to future research.

A Omitted expressions and proofs of the results

A.1 Payoffs and equilibria

In the Appendix we use S ≡{0, ..., N̄s},B≡{0, ..., N̄b}, S ∗≡S \{0}, andB∗≡B\{0}. Fix a strategy

for the sellers (πs,αs) and a strategy for the buyers (πb,αb). For each type θ ∈ {s, b} and state

(Ns, Nb,ω)∈S ∗×B∗×Ω, πθ (Ns, Nb,ω)∈∆(R) is the distribution of price offers that θ -traders make

if they are matched and chosen to make the offer in state (Ns, Nb,ω), and αθ ( · ; Ns, Nb,ω) : R→ [0,1]

maps each price offer received to a probability of acceptance.

Payoffs: Fix a strategy profile {(πθ ,αθ )}θ∈{s,b} and state (Ns, Nb,ω). We compute the continu-

ation value the strategy profile gives to a seller (denoted Vs(Ns, Nb,ω)) and to a buyer (denoted

Vb(Ns, Nb,ω)) using standard recursive analysis. They satisfy equation (3.1) (for both θ ∈ {s, b}),

where now the expected continuation values conditional on being selected in the match given by

V m
s (Ns, Nb,ω) ≡ ξEp̃

�

αb(p̃) p̃+(1−αb(p̃))Vs(Ns, Nb,ω)
�

�πs

�

+(1−ξ)Ep̃

�

αs(p̃) p̃+(1−αs(p̃))Vs(Ns, Nb,ω)
�

�πb

�

and (A.1)

V m
b (Ns, Nb,ω) ≡ ξEp̃

�

αb(p̃) (1−p̃)+ (1−αb(p̃))Vb(Ns, Nb,ω)
�

�πs

�

+(1−ξ)Ep̃

�

αs(p̃) (1−p̃)+ (1−αs(p̃))Vb(Ns, Nb,ω)
�

�πb

�

(A.2)

instead of equations (3.2) and (3.3), where the continuation value of the type-θ trader conditional

on some other traders being selected in the match is given by

V o
θ (Ns, Nb,ω) ≡ ξEp̃

�

αb(p̃)Vθ (Ns−1, Nb−1,ω)+ (1−αb(p̃))Vθ (Ns, Nb,ω)
�

�πs

�

+(1−ξ)Ep̃

�

αs(p̃)Vθ (Ns−1, Nb−1,ω)+ (1−αs(p̃))Vθ (Ns, Nb,ω)
�

�πb

�

(A.3)

instead of by equation (3.4), and where V e
θ

satisfies equation (3.5).20 It is convenient to set Vs(0, Nb,ω)=

Vb(Ns, 0,ω)=0 for all Ns∈S and Nb∈B , so the domain of Vs and Vb is S ×B×Ω.

For each fixed strategy profile, the system of equations 〈(3.1), (A.1), (A.2), (A.3), (3.5)〉 has a

unique solution for (Vs, Vb) by the standard fixed-point argument. Indeed, we can replace Vb with

Ws ≡ 1− Vb and use the system of equations to define an operator mapping each pair of functions

20As in the main text we keep the notation short by omitting the explicit dependence of λ and γ on the state (Ns, Nb,ω),

and we use αθ (p̃) to denote αθ (p̃; Ns, Nb,ω).
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(Vs, Ws) : S ×B ×Ω→ R2 into another pair of similar functions. It is then easy to verify that such

an operator satisfies the sufficient Blackwell conditions for a contraction.

Equilibrium concept: We use the principle of optimality to define our equilibrium concept. More

concretely, we say that {(πθ ,αθ )}θ∈{s,b} is a symmetric Markov perfect equilibrium if the corresponding

continuation values—solving the system of equations



(3.1), (A.1), (A.2), (A.3), (3.5)
�

—are such that,

for each (Ns, Nb,ω), θ ∈{s, b} and π
θ
, the pair (πθ (Ns, Nb,ω),αθ (·; Ns, Nb,ω)) maximizes the right-

hand side of equation (A.1) if θ=s and right-hand side of (A.2) if θ=b.

A.2 Proofs of the results

Proof of Proposition 3.1

Proof. Fix an equilibrium, assuming it exists, given by (πθ ,αθ , Vθ ), hence solving the system of equa-

tions 〈(3.1), (A.1), (A.2), (A.3), (3.5)〉. Standard arguments imply that if there is a positive probability

that offers made by a seller are accepted in state (Ns, Nb,ω), then the equilibrium probability that

such offers are equal to 1− Vb(Ns, Nb,ω) is one. Similarly, an equilibrium offer by a buyer in state

(Ns, Nb,ω) is accepted with positive probability in equilibrium if and only if it is equal to Vs(Ns, Nb,ω).

Since these offers make the receiver of the offer indifferent between accepting them or not, it is

without loss of generality (to prove the existence of equilibria) to focus on equilibria where, in each

state (Ns, Nb,ω) and for all θ ∈ {s, b}, sellers offer 1−Vb(Ns, Nb,ω) and buyers offer Vs(Ns, Nb,ω) for

sure, and a θ -trader accepts the equilibrium offer with some probability

α̂s(Ns, Nb,ω) = αs(Vs; Ns, Nb,ω) and α̂b(Ns, Nb,ω) = αb(1− Vb; Ns, Nb,ω) .

Thus, equations (A.1) and (A.2) can be replaced by equations (3.2) and (3.3). Note that the continu-

ation values of a seller and a buyer only depend on α̂b and α̂s through

α≡ (1−ξ) α̂b +ξα̂s (A.4)

(see equation (A.3)), with the convention that α(Ns, Nb,ω) = 0 whenever Ns = 0 or Nb = 0, and

so equation (A.3) can be replaced by equation (3.4). Hence, equations (3.1)–(3.5) determine the

continuation payoffs in an equilibrium.

Fix some α ∈ [0, 1]S
∗×B∗×Ω, interpreted as a putative equilibrium probability of trade. We can

compute the equilibrium continuation values in each state by solving equations in (3.1)–(3.5), and

let Vs(·;α) and Vb(·;α) denote the corresponding solutions. Note also that a seller and a buyer

are indifferent on making an acceptable offer at state (Ns, Nb,ω) if and only if Vs(Ns, Nb,ω;α) +

Vb(Ns, Nb,ω;α) = 1. Hence, there is no θ ∈ {s, b} such that the θ -trader has a profitable deviation at
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a given state (Ns, Nb,ω) ∈ S ∗×B∗×Ω if and only if

α(Ns, Nb,ω) ∈



















{0} if Vb(Ns, Nb,ω;α)+ Vs(Ns, Nb,ω;α) > 1,

[0,1] if Vb(Ns, Nb,ω;α)+ Vs(Ns, Nb,ω;α) = 1,

{1} if Vb(Ns, Nb,ω;α)+ Vs(Ns, Nb,ω;α) < 1.

The argument is standard. Intuitively, for example, consider the case Vs(Ns, Nb,ω;α)+Vb(Ns, Nb,ω;α) >

1 and assume, for the sake of contradiction, that αs(Ns, Nb,ω) > 0. If a buyer makes the equilibrium

offer (equal to Vs(Ns, Nb,ω;α)) at state (Ns, Nb,ω) he obtains

αs (1−Vs(Ns, Nb,ω;α))+ (1−αs)Vb(Ns, Nb,ω;α)

= Vb(Ns, Nb,ω;α)−αs

�

Vs(Ns, Nb,ω;α)+Vb(Ns, Nb,ω;α)−1
�

< Vb(Ns, Nb,ω;α) .

If, instead, he offers Vs(Ns, Nb,ω;α)− ε, for some ε>0, the seller rejects the offer for sure, and so the

buyer obtains Vb(Ns, Nb,ω;α). The buyer is then better off deviating.

To conclude the proof of existence of equilibria, we define A : [0,1]S
∗×B∗×Ω ⇒ [0, 1]S

∗×B∗×Ω as

follows:

A(α)(Ns, Nb,ω) =



















{0} if Vs(Ns, Nb,ω;α)+ Vb(Ns, Nb,ω;α) > 1,

[0,1] if Vs(Ns, Nb,ω;α)+ Vb(Ns, Nb,ω;α) = 1,

{1} if Vs(Ns, Nb,ω;α)+ Vb(Ns, Nb,ω;α) < 1.

Standard arguments apply to show that A(·) has a closed graph, and that A(α) is, for all α ∈ [0, 1],

non-empty and convex. Hence, the existence of equilibria follows from Kakutani’s fixed point theorem.

Existence when N̄s = N̄b = +∞. Fix some functions λ,γs,γb : Z2
+×Ω→R++×R+×R+, where γs

and γb are bounded. Consider a sequence (N̄sn, N̄bn)n strictly increasing in both arguments. For each

n, we can construct a model with a finite state space as follows (“the n-th model”). In the n-th model,

λn coincides with λ, now with domain S n×Bn×Ω≡ {0, ..., N̄sn}×{0, ..., N̄bn}×Ω. The arrival rates

in the n-th model is, for each (Ns, Nb,ω) ∈ S n×Bn×Ω, are

γn
s (Ns, Nb,ω) =







γs(Ns, Nb,ω) if Ns < N̄s
n,

0 if Ns = N̄s
n,

and

γn
b(Ns, Nb,ω) =







γs(Ns, Nb,ω) if Nb < N̄b
n,

0 if Nb = N̄b
n.
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For each n, let αn characterize an equilibrium of the n-th model. Fix some ω ∈ Ω (the argument

can be made for each value of the economic conditions). Let µ : N→N2 be a bijective ordering of

N2. Initialize (αn
0)n = (αn)n. Then, for each m ∈N, we use (αn

m−1)n to recursively construct (αn
m)n as

follows. Let αm be the minimum cluster point of (αn
m−1(µ(m),ω))n (recall that the set of cluster points

of a sequence is closed). If there is an increasing subsequence of (αn
m−1(µ(m),ω))n converging to αm,

then we let (αn
m)n be the biggest subsequence of (αn

m−1)n such that (αn
m−1(µ(m),ω))n is increasing

and converging to αm. If no increasing subsequence of (αn
m−1(µ(m)))n converging to αm exists,

then there must exist a decreasing subsequence of (αn
m−1(µ(m),ω))n converging to αm. In this case,

(αn
m)n be the largest decreasing subsequence of (αn

m)n such that (αn
m−1(µ(m),ω))n is decreasing and

converges to αm.

Note that, as explained above, for each m there exists some αm ∈ [0, 1] and a subsequence (αn
m)n

of (αn)n such that (αn
m(µ(m

′),ω))n converges to αm′ for all m′ ∈ {1, ..., m}. It is then easy to prove

that, in fact, α : N2 ×Ω → [0, 1] given by α(Ns, Nb,ω) = αµ−1(Ns,Nb,ω)(Ns, Nb,ω) characterizes an

equilibrium in the infinite model.

Proof of Proposition 3.2

Proof. The proof follows from the arguments in the main text.

Proof of Lemma 4.1

Proof. Throughout the proof, we fix a sequence (kn)n tending to +∞ and, for each n, an equilibrium

for the model in which the matching rate is λ= kn `. For each n and fixed state (Ns, Nb,ω), we let

Vθ ,n ≡ Vθ ,n(Ns, Nb,ω) denote the continuation value of a θ -trader in the n-th equilibrium in state

(Ns, Nb,ω), for θ ∈ {s, b}, and αn ≡αn(Ns, Nb,ω) denote the probability of trade in a match in this

equilibrium.

LetM ∗ ≡ S ∗×B∗×Ω denote the set of all states of the market with at least one seller and one

buyer. LetM n
1 ,M n

2 , andM n
3 , denote, respectively, the first, the second, and the third, kinds of states

described in the main text after the statement of Lemma 4.1 in the n-th equilibrium (so {M n
i }i=1,2,3

is a partition ofM ∗ for all n). Taking a subsequence if necessary, assume that for all n and for each

state (Ns, Nb,ω) there is some i = i(Ns, Nb,ω) ∈ {1, 2,3} such that (Ns, Nb,ω) ∈M n
i(Ns,Nb,ω)

for all n

in the subsequence. Assume, to ease notation and without loss of generality for the argument, that

the subsequence above is equal to the original sequence. There are then three cases:

1. It is clear that for all (Ns, Nb,ω) ∈M n
1 for all n we have Vn = 1 for all n, so Vn→ 1.

2. Assume (Ns, Nb,ω) ∈M n
2 for all n and, without loss of generality, that Nb=1 (the case Ns=1
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is analogous). Then, as indicated in the main text, a strategy available to the buyer is to wait

until he makes the offer and offer Vs,n (if the state of the market has not changed before). This

implies

Vb,n ≥
(1−ξ) kn `

(1−ξ) kn `+ γ+ r
︸ ︷︷ ︸

→1

(1− Vs,n)+
γ

(1−ξ) kn `+ γ+ r
︸ ︷︷ ︸

→0

V e
b,n .

Hence, since Vs,n + Vb,n ≤ 1 for all n (by Proposition 3.2), we have Vs + Vb ' 1.

3. Assume finally that (Ns, Nb,ω) ∈M n
3 for all n and, without loss of generality, that Ns ≥ Nb > 1

(the case 1< Ns < Nb is analogous). Here we proceed by induction. Assume that (Ns, Nb,ω) ∈

M n
3 is such that Ns is minimal among all states (N ′s , N ′b,ω′) ∈ M n

3 with N ′s ≥ N ′b > 1. A

strategy available to a seller is not trading until the state changes and then continuing with the

equilibrium strategy, which implies

Vs,n ≥
Ns−1

Ns
kn `

Ns−1
Ns

kn `+ γ+ r
︸ ︷︷ ︸

→1

Vs,n(Ns−1, Nb−1, ω̃)+
γ

Ns−1
Ns

kn `+ γ+ r
︸ ︷︷ ︸

→0

V e
s,n .

A buyer who follows the same strategy obtains

Vb,n ≥
Nb−1

Nb
kn `

Nb−1
Nb

kn `+ γ+ r
︸ ︷︷ ︸

→1

Vb,n(Ns−1, Nb−1,ω)+
γ

Nb−1
Nb

kn `+ γ+ r
︸ ︷︷ ︸

→0

V e
s,n .

Hence, we have that V � V (Ns−1, Nb−1,ω). By the assumption that Ns is minimal we have

(Ns−1, Nb−1,ω) ∈M n
1 ∪M

n
2 for all n, and therefore V (Ns−1, Nb−1,ω) ' 1. This implies that

V ' 1. One can proceed recursively to show that the result holds for all Ns.

Proof Proposition 4.1

Proof. As in the proof of Lemma 4.1, throughout the proof, we fix a sequence (kn)n tending to +∞

and, for each n, an equilibrium for the model in which the matching rate is λ= kn `. For each n and

fixed state (Ns, Nb,ω), we let Vθ ,n ≡ Vθ ,n(Ns, Nb,ω) denote the continuation value of a θ -trader in the

n-th equilibrium in state (Ns, Nb,ω), for θ ∈ {s, b}, and αn ≡ αn(Ns, Nb,ω) denote the probability of

trade in a match in this equilibrium.

Assume, without loss of generality for our arguments and taking a subsequence if necessary, that

for each state (N ′s , N ′b,ω′) ∈ S ∗×B∗×Ω the agreement rate at such a state, equal to

αn(N
′
s , N ′b,ω′) kn `(N

′
s , N ′b,ω′) ,
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tends to some value δ(N ′s , N ′b,ω′)∈ [0,+∞] as n increases (with the convention that αn(N
′
s , N ′b,ω′) =

0 when N ′s = 0 or N ′b = 0).

Preliminary result: We first note that using the standard analysis in Rubinstein (1982), we have that

equation (4.6) holds for Vs,n. Indeed, when (Ns, Nb,ω) is such that Ns=Nb=1 we have

Vθ ,n =
kn `

kn `+γ+r (ξθ (1−Vθ̄ ,n)+ (1−ξθ )Vθ ,n)+
γ

kn `+γ+r V e
θ ,n (A.5)

for all θ ∈ {s, b}, where ξs ≡ ξ and ξb ≡ 1−ξ. The previous equation coincides with the equation

for the continuation payoff in a two-player Rubinstein bargaining where the “threat point” (i.e., value

from not trading) for the θ -trader is r
γ+r V e

θ ,n. Solving for Vb,n and Vs,n, we have

Vθ ,n =
kn `

kn `+γ+r

� r
γ+r + γ (1−V e

n )
�

ξθ +
γ
γ+r V e

θ ,n .

Hence, since V e
n '1 by Lemma 4.1, we have

lim
n→∞

�

�

r
γ+r ξθ +

γ
γ+r V e

θ ,n− Vθ ,n

�

�= 0 , (A.6)

that is, Vθ ,n '
r
γ+r ξθ +

γ
γ+r V e

θ ,n.

Definitions: For each n, define a function Ṽθ ,n : S ×B ×Ω → [0, 1], interpreted as the payoff of

a θ -trader when she decides to trade only when the market is balanced, as follows. It is obtained

solving equations (3.1), (3.4) and (3.5) (adding tildes to all Vθ ’s), and instead of equations (3.2)

and (3.3), we now require that Ṽ m
θ ,n = Ṽθ ,n when Ns 6=Nb (no trade when the market is imbalanced)

and Ṽ m
θ ,n = V m

θ ,n when Ns =Nb (trade for sure when the market is balanced). Note that for θ = s and

Ns 6=Nb, equation (3.1) can be rewritten as equation (4.4) replacing “'” by “=”, adding tildes to all

V ’s, and replacing α by αn. We can obtain an analogous equation for Ṽb,n.

Proof that Ṽθ ' Vθ whenever Nθ ≥ Nθ̄ : Our first goal is to show that, independently of the choice of

the the sequence (kn)n and a corresponding sequence equilibria,

lim
n→∞

|Ṽs,n− Vs,n|= 0 for all Ns ≥ Nb and lim
n→∞

|Ṽb,n− Vb,n|= 0 for all Ns ≤ Nb ;

or, in our notation, Ṽs ' Vs for all Ns ≥ Nb and Ṽb ' Vb for all Ns ≤ Nb. (As in the main text, “'”

means equal except for terms that go to 0 as n increases.) We then define Wn ≡Wn(Ns, Nb,ω) to be

equal to Ṽs,n when Ns ≥ Nb, and to be equal to 1− Ṽb,n when Ns < Nb.

For each n and state (Ns, Nb,ω), let Ds,n ≡ Ds,n(Ns, Nb,ω) denote |Vs,n − Ṽs,n|, and let Db,n ≡

Db,n(Ns, Nb,ω) denote |Vb,n − Ṽb,n|. Let also Dn denote Db,n when Ns ≥ Nb and Ds,n when Ns < Nb.

Assume, without loss of generality and for simplicity (considering a subsequence if necessary), assume

that D ≡ limn→∞ Dn is well defined for all states.
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We want to prove that D(Ns, Nb,ω) = 0 in any state (Ns, Nb,ω). To do so we assume, for the sake

of contradiction, that D(N ′s , N ′b,ω′) > 0 for some state (N ′s , N ′b,ω′). We let D̄ denote the maximal

value of D among all states, and we assume without loss of generality that there is at least one state

(N ′s , N ′b,ω′) with N ′s ≥ N ′b > 0 where D(N ′s , N ′b,ω′) = D̄. We let (Ns, Nb,ω) be a state with satisfying

that D(Ns, Nb,ω) = D̄ and Ns is minimal among all states (N ′s , N ′b,ω′) such that both N ′s ≥ N ′b > 0 and

D(N ′s , N ′b,ω′) = D̄. We rule out the possibility that D̄ > 0 by reaching a contradiction in four separate

cases (which cover all possible states):

1. Assume first that Ns = Nb. We aim at proving that for all ε > 0 there is some n such that
�

�Ṽs,n − Vs,n

�

� < ε. To see this recall that, by Proposition 3.2, there is immediate trade when the

market is balanced and, by Lemma 4.1, Vb ' 1− Vs. If Ns = Nb = 1 it is clear, by the definition

of Ṽs, that Vs ' V m
s ' Ṽs. Proceeding similarly, we have that it is also the case that W = Ṽs ' Vs

because, as n increases, it is increasingly unlikely that an arrival happens before the market

clears. If instead Ns=Nb>1 we have

Vs '
1
Ns

Vs +
Ns−1

Ns
Vs(Ns−1, Nb−1, ω̃) ⇒ Vs ' Vs(Ns−1, Nb−1,ω) . (A.7)

and similarly

Ṽs '
1
Ns

Vs +
Ns−1

Ns
Ṽs(Ns−1, Nb−1,ω) .

Hence, if Ns = Nb = 2 it is clear that we also have Vs ' V m
s ' Ṽs. Proceeding recursively, we

have that Vs ' V m
s ' Ṽs holds for any Ns = Nb > 0. Hence, Vs ' Ṽs = Ws (i.e., D̄ = 0) whenever

Ns = Nb, which is a contradiction.

2. Assume now that Ns > Nb and δ = δ(Ns, Nb,ω) < +∞. This is the case where the rate at

which transactions happen remains finite as the matching frictions disappear. This implies that,

for n large enough, we have Vn = 1. Also, since a seller is indifferent between trading or not,

we have

Dn =
Ns−1

Ns
αn kn `

Ns−1
Ns
αn kn `+γ+r

Dn(Ns−1, Nb−1,ω)+ γ
Ns−1

Ns
αn kn `+γ+r

De
n .

While the left-hand side tends to D̄, the right-hand side tends to
Ns−1

Ns
δ

Ns−1
Ns
δ+γ+r

D(Ns−1, Nb−1,ω)+ γ
Ns−1

Ns
δγ+r

De ≤
Ns−1

Ns
δ+γ

Ns−1
Ns
δ+γ+r

D̄ < D̄ .

This is a contradiction.

3. Assume next that Ns > Nb = 0 (and so `(Ns, Nb,ω) = 0). In this case, we have

Dn =
γ
γ+r De

n ⇒ D̄ ≤ γ
γ+r D̄ .

This is, again, a contradiction.
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4. Assume finally that Ns > Nb > 0 and δ =∞. Note that this implies that equation (A.7) holds

and, additionally,

Ṽs '
1
Ns

Ṽs +
Ns−1

Ns
Ṽs(Ns−1, Nb−1,ω) ⇒ Ṽs ' Ṽs(Ns−1, Nb−1,ω) .

This implies that

D̄ ≤ D(Ns−1, Nb−1,ω) .

(The inequality is owed to the fact that the absolute value is a convex function.) This contra-

dicts the assumption that Ns is minimal among all states (N ′s , N ′b,ω′) with N ′s ≥ N ′b > 0 where

D(N ′s , N ′b,ω′) = D̄.

Conclusion of the proof: We have proven that D(Ns, Nb,ω) = 0 for any state (Ns, Nb,ω). Hence, we

have W ' 1− Vb for all Ns ≥ Nb and W ' 1− Vb for all Ns < Nb. Furthermore, when Ns = Nb = 1, we

can rewrite equation (A.6) as

W ' r
γ+r ξ+

γ
γ+r W e .

As a result, W satisfies equations (4.4)–(4.6) replacing all Vs’s by the corresponding W ’s. As argued

in the main text, this implies that W satisfies equation (4.3).

Proof of Corollary 4.1

Proof. As in the proof of Proposition 4.1, we fix a sequence (kn)n tending to +∞ and, for each n, an

equilibrium for the model with λ = kn `. Also as in the proof of Proposition 4.1, we assume without

loss of generality that, for each state (Ns, Nb,ω), the values Vs,n, Vb,n, and αn kn ` tend to some (state-

dependent) values Vs, Vb, and δ∈ [0,+∞] as n increases, respectively.

Fix time t = 0 and state (Ns, Nb,ω). Assume, without loss of generality for our arguments,

that Ns > Nb. For each ∆ > 0, we use Vs,∆ ≡ Vs,∆(Ns, Nb,ω) denote the continuation value of

the seller at time ∆ if (Ns,0, Nb,0,ω0) = (Ns, Nb,ω) (which is a stochastic random variable). Then,

E[Vs,∆] ≡ E[Vs,∆(Ns, Nb,ω)] indicates the expected continuation value of the seller at time ∆ if

(Ns,0, Nb,0,ω0) = (Ns, Nb,ω). (Note that since the agreement rate converges to δ, the limit distri-

bution of (Ns,∆, Nb,∆,ω∆) as n→∞ is well defined for any ∆> 0.)

We will now prove that, for any imbalanced state (Ns,0, Nb,0,ω0)≡(Ns, Nb,ω) where θ -traders are
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on the long side of the market,21

r Vθ ,0 '
Ẽ[Vθ ,∆]− Vθ ,0

∆
+O(∆) �

E[Vθ ,∆]− Vθ ,0

∆
+O(∆) , (A.8)

where Vθ ,∆ ≡ Vθ (Ns,∆, Nb,∆,ω∆). It is clear that (A.8) implies Corollary 4.1, since it implies

Vθ ,0 ≺ Vθ ,0 + r Vθ ,0∆' Ẽ[Vθ ,∆]+O(∆2) �E[Vθ ,∆]+O(∆2) .

To prove that equation (A.8) holds, we divide the analysis into three cases (which cover all states) for

the case θ=s (the case θ=b is analogous):

1. Assume first that the state (Ns, Nb,ω) is such that Nb = 0. It is clear that, in this case,22

E[Vs,∆] = (1−γ∆)Vs+γ∆V e
s +O(∆2) = Ẽ[Vs,∆]+O(∆2) .

Since, from equation (3.1), we have r Vs = γ (V
e

s − Vs), we have that

r Vs =
E[Vs,∆]− Vs

∆
+O(∆) =

Ẽ[Vs,∆]− Vs

∆
+O(∆) .

2. Assume now that the state (Ns, Nb,ω) is such that δ <+∞. In this case, we have that

E[Vs,∆] =(1−(δ+γ)∆)Vs+δ∆Vs(Ns−1, Nb−1, ω̃)+γ∆V e
s +O(∆2)

as∆→ 0. The same equation holds if E is replaced by Ẽ on the left-hand side and δ is replaced

by Ns−1
Ns
δ on the right-hand side. Also, we can use equation (3.1) to obtain

r Vs =
Ns−1

Ns
δ (Vs(Ns−1, Nb−1,ω)− Vs)+γ (V

e
s − Vs) .

It is then clear that
Ẽ[Vs,∆]−Vs

∆ ' r Vs +O(∆) as ∆ → 0. Furthermore, it is easy to show (see

the proof of Proposition 4.2) that Vs(Ns−1, Nb−1,ω) − Vs =
Nb Ns

Ns−Nb

r
δ > 0, and so we have

E[Vs+∆]−Vs
∆ � r Vs +O(∆) as ∆→ 0.

3. Assume finally that the state (Ns, Nb,ω) is such that δ = +∞. In this case, we have

Vs = Vs(Ns−1, Nb−1, ω̃) .

We consider two subcases:

21Consistently with footnote 11, the equality “'” in equation (A.8) should be read as “For any sequence (kn)n

and corresponding sequence of equilibria, and for any state (Ns,t , Nb,t ,ωt ), the function ∆ 7→ R(∆) ≡

lim supn→∞
� Ẽt [Vθ ,n,t+∆]−Vθ ,n,t

∆ − r Vθ ,n,t
�

is such that lim∆↘0 R(∆) = 0.”

22Note that, since (Ns,0, Nb,0,ω0)=(Ns, Nb,ω), we have Vs=Vs,0.
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(a) Assume first that Nb = 1. This implies that, after a transaction, the new state has zero

buyers, and then the analysis of part 1 above applies. We then have

r

=Vs
︷ ︸︸ ︷

Vs(Ns−1, Nb−1,ω) =

=E[Vs,∆]
︷ ︸︸ ︷

E[Vs,∆(Ns−1, Nb−1,ω)]−

=Vs
︷ ︸︸ ︷

Vs(Ns−1, Nb−1,ω)

∆
+O(∆) .

The same argument applies by replacing E with Ẽ.

(b) Now, we proceed by induction. For each Nb > 1, we assume that equation (A.8) holds for

all states with lower number of buyers. Hence, either δ(Ns−1, Nb−1,ω) = +∞ (and the

result applies then to state (Ns−1, Nb−1,ω) by part 2 of this proof), or δ(Ns−1, Nb−1, ω̃) <

+∞, so the induction hypothesis dictates that the result holds. Then, we have

r Vs(Ns−1, Nb−1,ω) �
E[Vs,∆(Ns−1, Nb−1,ω)]− Vs(Ns−1, Nb−1,ω)

∆
+O(∆) .

The previous inequality holds with equality “'” if the expectation operator E is replaced

by Ẽ.

Proof of Proposition 4.2

Proof. We assume that Condition 1 holds. For each state (Ns, Nb,ω), we use Vs,n and Vb,n to denote

the continuation values of sellers and buyers in the n-th equilibrium, respectively, and αn to denote

the probability of acceptance of an equilibrium offer.

As in the proof Proposition 4.1 we assume, taking a subsequence if necessary, that for each state

(Ns, Nb,ω), the continuation values Vb,n and Vs,n converge to some values Vb = Vb(Ns, Nb,ω) and Vs =

Vs(Ns, Nb,ω), and the transaction rate δn ≡ αn kn ` converges to some δ = δ(Ns, Nb,ω) ∈ [0,+∞].

Equations for Vs: We first focus on characterizing the limit continuation value of seller, Vs for states

(Ns, Nb,ω) such that Ns > Nb ≥ 1. The equations are given by:

1. Consider first the case where Ns > Nb ≥ 1 and δ <+∞. Using equation (3.1) for both θ = s, b,

and using the fact that Vs,n + Vb,n = 1 if n is big enough, we can write

Vs,n =
Ns−1

Ns
δn

Ns−1
Ns
δn+γ+r

(Vs,n(Ns−1, Nb−1,ω))+ γ
Ns−1

Ns
δn+γ+r

V e
s,n

= 1− r
Nb−1

Nb
δn+γ+r

+
Nb−1

Nb
δn

Nb−1
Nb

δn+γ+r
(1−Vb,n(Ns−1, Nb−1,ω))+ γ

Nb−1
Nb

δn+γ+r
(1−V e

s,n) .

Using Lemma 4.1 we have that Vb = 1− Vs for all states (given that Vs and Vb are the limits of

Vs,n and Vb,n as n→∞, respectively, we can replace “'” by “=”). Therefore, the previous two

equalities can be rewritten in the limit, as

Vs = Vs(Ns−1, Nb−1,ω)− Nb Ns
Ns−Nb

r
δ = γ

γ+r V e
s + r

γ+r
(Ns−1)Nb

Ns−Nb
. (A.9)

35



It is then clear that there is no state where δ = 0; that is, there is no state where trade occurs at

a rate that becomes arbitrarily small as k increases (the logic for this result is analogous to part

1 of Proposition 3.2). Note that the second equality of equation (A.9) implies that, as indicated

in part 3 of Proposition 3.2, traders on the long side of the market gain from other’s transactions

in states where is trade delay; i.e., when Vs(Ns−1, Nb−1,ω)>Vs in our case (since Ns>Nb).

2. Consider now the case where Ns>Nb≥1 and δ=+∞. In this case, equation (4.1) implies that

Vs = Vs(Ns−1, Nb−1,ω) . (A.10)

Proof that of Vs=Vs(Ns−1, Nb−1,ω) whenever Ns>Nb≥1: For each state (Ns, Nb,ω) with Ns>Nb≥

1, we define ∆ ≡ Vs(Ns−1, Nb−1,ω)− Vs, and ∆ = 0 for each state (Ns, Nb,ω) with Ns = Nb > 0.

Since, from equations (A.9) and (A.10) it follows that Vs(Ns−1, Nb−1,ω) ≥ Vs, it is the case that

∆ ≥ 0 for all states with Ns ≥ Nb. Let (Ns, Nb,ω) be a state which maximizes ∆(N ′s , N ′b,ω′) among

all states with N ′s ≥ N ′b ≥ 1 and assume, for the sake of contradiction, that ∆ > 0 (so necessarily

Ns > Nb > 0). If there are multiple states with this property, assume that (Ns, Nb,ω) is such that Ns is

minimal among all of them.

Assume first that (Ns, Nb,ω) is such that δ = +∞. In this case, Vs(Ns−1, Nb−1,ω) = Vs (from

equation (A.10)), hence∆=0, a contradiction. Then, it is necessarily the case that (Ns, Nb,ω) is such

that δ <+∞. In this case, using equation (A.9), we have that

∆=
γ̂s
γ̂+r Vs(Ns, Nb−1,ω)+ γ̂b

γ̂+r Vs(Ns−1, Nb,ω)+ γ̂c
γ̂+r Ec[Vs(Ns−1, Nb−1, ω̃)]

−
� γs
γ+r Vs(Ns+1, Nb,ω)+ γb

γ+r Vs(Ns, Nb+1,ω)+ γc
γ+r Ec[Vs(Ns, Nb, ω̃)] + r

γ+r
Nb (Ns−1)

Ns−Nb

�

,

where the variables with a hat are evaluated at the state (Ns−1, Nb−1,ω). After some algebra, we

obtain that the right-hand side of the previous equation is weakly smaller than

γ
γ+r ∆

≡(∗)
︷ ︸︸ ︷

− r
γ+r

Nb (Ns−1)
Ns−Nb

+
� γ̂s
γ̂+r−

γs
γ+r

�

Vs(Ns+1, Nb,ω)+
� γ̂b
γ̂+r−

γb
γ+r

�

Vs(Ns, Nb+1,ω)+
� γ̂c
γ̂+r−

γc
γ+r

�

Ec[Vs(Ns, Nb, ω̃)]
︸ ︷︷ ︸

≡(∗∗)

,

We will reach a contradiction (and then rule out that ∆ > 0) if the summation of the terms (∗) and

(∗∗) in the previous equation is non-positive. (Indeed, in this case, ∆ ≤ γ
γ+r ∆, which is not possible

if ∆> 0.) Note first that

(∗∗) ≤max
� γ̂s
γ̂+r −

γs
γ+r , 0

	

+max
� γ̂b
γ̂+r −

γb
γ+r , 0

	

+max
� γ̂c
γ̂+r −

γc
γ+r , 0

	

≤ r
γ+r ,

where the last inequality holds because of Condition 1(b). Therefore,

(∗)+ (∗∗) ≤ − r
γ+r

Nb (Ns−1)
Ns−Nb

+ r
γ+r ≤ 0 ,
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and so the result holds.

Proof of no delay: We have shown that Vs = Vs(Ns−1, Nb−1,ω) for all (Ns, Nb,ω) satisfying Ns >

Nb≥1. Equation (A.9) cannot be satisfied for δ<+∞, and therefore it must be that δ=+∞. In

words, there is no asymptotic delay in all states (Ns, Nb,ω) with Ns>Nb≥1. Symmetric arguments

can be used for states where Nb>Ns≥1. Since, by Proposition 3.2, there is no delay when the market

is balanced, we conclude that there is no asymptotic delay in any state.

Properties of p: We now prove that p satisfying the conditions in the statement exists. We use p(·, ·)

to denote the solution of equations

p(N ,ω) = γs
γ+r p(N+1,ω)+ γb

γ+r p(N−1,ω)+ γc
γ+r Ec[p(N , ω̃)] if N>0 , (A.11)

p(N ,ω) = r
γ+r +

γs
γ+r p(N+1,ω)+ γb

γ+r p(N−1,ω)+ γc
γ+r Ec[p(N , ω̃)] if N<0 , (A.12)

p(0,ω) = r
γ(1,1,ω)+r ξ+

γs(1,1,ω)
γ(1,1,ω)+r p(1,ω)+ γb(1,1,ω)

γ(1,1,ω)+r p(−1,ω)+ γc(1,1,ω)
γ(1,1,ω)+r Ec[p(0, ω̃)] , (A.13)

where the arrival rates are evaluated at state (N , 0,ω) when N > 0 and at state (0,−N ,ω) when

N < 0. The function p(·, ·) can be proven to be unique using standard fixed-point arguments similar

to those in Section A.1. These equations are equivalent to equations (4.4)–(4.6) (as n→∞) replacing

Vs(Ns, Nb,ω) by p(Ns−Nb,ω), so it is clear that Vs(Ns, Nb,ω) ' p(Ns−Nb,ω) for all states (Ns, Nb,ω).

Proof of Proposition 4.3

Proof. Assume Conditions 1 and 2 hold and the market is stationary. Since there is only one value ω

for the economic conditions, it is convenient to use p(·) to denote p(·,ω) defined in Proposition 4.2.

Proof of the first result: For each N̄ ≥ 0, one can rewrite equation (4.7) (recall that, under Condition

1, equation (4.7) holds also for the equilibrium measure) for all N ≥ N̄ as

p(N) = E[e−r τ̄ p(N̄)|N0=N ] ,

where τ̄ is the stochastic time it takes the net supply to reach N̄ for the first time. Intuitively, for a

fixed net supply N̄ ≥ 0 and a state with more excess supply N ≥ 0, a seller is indifferent to waiting

to trade until the excess supply reaches N̄ .23 It is then clear, using for example N̄ = 0, that p(·) is

decreasing on {−N̄b, ..., N̄s}.

23In fact, as n →∞, a seller is indifferent between waiting or trading at any state with excess supply N > 0. Since the

excess supply’s changes are of size one, a seller’s payoff when the excess supply is N ≥ N̄ ≥ 0 can be computed as her

payoff if she does not trade until the excess supply is N̄ and then she trades immediately.
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Proof of the second result: Consider now an increase on the discount rate from r1 to r2, with r1 < r2,

and let pri (·) denote the market price function for each ri , i = 1,2. Assume that pr1(0) ≥ pr2(0) (the

reverse case is analogous). In this case, for all N > 0 we have pr1(N) > pr2(N). Indeed, using τ0

to denote the (stochastic) time it takes for the market to become balanced (which is independent of

r) and using equation (4.7) (recall again that, under Condition 1, equation (4.7) holds also for the

equilibrium measure), we can write

pr1(N) = E
�

e−r1 τ0
�

�N0=N
�

pr1(0) >E
�

e−r2 τ0
�

�N0=N
�

pr2(0) = pr2(N) . (A.14)

Let N̄ be the maximum value satisfying pr1(N̄) < pr2(N̄). Notice that equation (4.7) can be rewritten,

for any N ≤ N̄ < 0 and i ∈ {1, 2}, as

pri (N) = 1−E
�

e−ri τ̄
�

�N0=N
�

(1−pri (N̄)) ,

where τ̄ is the first time where Nt = N̄ . It is then clear, using equation (A.14) and pr1(N̄) < pr2(N̄),

that for all N ≤ N̄ we have pr1(N) < pr2(N). Thus, in fact, N̄ is such that

pr1(N) ≥ pr2(N) for all N > N̄ and pr1(N) < pr2(N) for all N ≤ N̄ .

This property (and the fact that the ergodic distribution of N is independent of the discount rate)

ensures that the ergodic distribution of pr2(N) is a spread of pr1(N).

Proof of the third result: Assume finally that γb(0,0,ω)=γb(1, 1,ω) and γs(0, 0,ω)=γs(1,1,ω). In

this case, the limit ergodic distributions of N under both the equilibrium and the risk-neutral measures

coincide. Let F be such a distribution. Then, the expected price under such a distribution is

E[p(Ñ)|F ] =
∑

Ñ∈Z

F({Ñ}) p(N) .

It is also the case that

lim
t→∞

E[pt ] = E[p(Ñ)|F ] = lim
t→∞

E
�∫∞

t e−r (s−t) (INs<0+ξINs=0) r ds
�

= E
�

IÑ<0+ξIÑ=0

�

�F
�

= F(−N)+ξ F({0}) ,

where −N is the set of strictly negative integers. This proves that the ergodic mean of the market

price is independent of r.

Proof of Proposition 4.4

Proof. Proof of the first result. Similar to the proof of Proposition 4.1, now fix a sequence (kn, Mn)n

tending to (+∞,+∞) and, for each n, an equilibrium of the model where λ= kn ` and (γb,n,γs,n) =
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Mn (γ̃b, γ̃s). For each state (Ns, Nb,ω) with Ns, Nb > 0, we use δ̃n(Ns, Nb,ω) the trade rate at such state

in the n-th equilibrium under the risk-neutral measure as in equation (4.2). Taking a subsequence if

necessary, assume that (δ̃n(Ns, Nb,ω))n tends to some limit δ̃(Ns, Nb,ω) ∈R+ ∪{+∞} for all states

(Ns, Nb,ω).

As in the main text, we use τ0 to denote the stopping time until the market is balanced. Further-

more, for each state (Ns, Nb,ω) and n, we define24

φn(Ns, Nb,ω) ≡ 1− Ẽn

�

e−r τ0
�

�(Ns,0, Nb,0,ω0)=(Ns, Nb,ω)
�

∈ [0, 1] , (A.15)

where the expectation is computed using the risk-neutral measure of the n-th equilibrium. Note that

if Ns = Nb then φn(Ns, Nb,ω) = 0. Also, it satisfies the equation

φn(Ns, Nb,ω)= r
δ̃n+γ+r

+
δ̃n

δ̃n+γn+r
φn(Ns−1, Nb−1,ω)

+
γs,n

δ̃n+γn+r
φn(Ns+1, Nb,ω)+

γb,n

δ̃n+γn+r
φn(Ns, Nb+1,ω)+ γω

δ̃n+γn+r
Ec[φn(Ns, Nb, ω̃)] ,

(A.16)

where δ̃n should be replaced with 0 when Ns = 0 or Nb = 0.

Take a subsequence of our original sequence satisfying that, for all states of the world (N ′s , N ′b,ω′),

(φn(N
′
s , N ′b,ω′))n converges to some φ(N ′s , N ′b,ω′). Assume, for the sake of contradiction, that φ̄ ≡

max(N ′s ,N ′b,ω′)φ(N
′
s , N ′b,ω′) > 0. Assume φ(N ′s , N ′b,ω′) = φ̄ for some state (N ′s , N ′b,ω′) with N ′s > N ′b

(the other case is analogous). Let (Ns, Nb,ω) be such that Ns > Nb and satisfy that, for all other states

(N ′s , N ′b,ω′) with N ′s > N ′b and φ(N ′s , N ′b,ω′) = φ̄, (i) N ′s − N ′b ≥ Ns − Nb, and that (ii) if N ′s − N ′b =

Ns−Nb then N ′s > Ns. Thus, (Ns, Nb,ω) has a minimal excess supply among all states with maximal

φ and, among those with the lowest excess supply, has a minimal number of sellers. If Nb = 0 then

we can write (A.16) as

→φ̄
︷ ︸︸ ︷

φn(Ns, Nb,ω) =

→0
︷ ︸︸ ︷

r
γn
(1−φn(Ns, Nb,ω))

+
γs,n
γn
φn(Ns+1, Nb, ω̃)
︸ ︷︷ ︸

→≤φ̄

+
γb,n
γ

︸︷︷︸

>0

φn(Ns, Nb+1, ω̃)
︸ ︷︷ ︸

→<φ̄

+
γc
γn

Ec[φn(Ns+1, Nb, ω̃)]
︸ ︷︷ ︸

→≤φ̄

,

where we used that γ̃b > 0 because Nb < Ns (by Condition 2) and that Ns− (Nb+1)<Ns −Nb. This

is a clear contradiction; hence, it must be that Nb > 0. Assume, then, that Nb > 0. In this case, since

24In equation (A.15), the expectation operator on the right-hand side averages the discounting of all times it takes for the

market to become balanced if the initial state (Ns,0, Nb,0,ω0) is equal to (Ns, Nb,ω).
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(Ns−1)− (Nb−1) = Ns−Nb we have φ(Ns−1, Nb−1,ω) < φ̄. We can write (A.16) as

→φ̄
︷ ︸︸ ︷

φ(Ns, Nb,ω) =

→0
︷ ︸︸ ︷

r
δ̃n+γn

(1−φ(Ns, Nb,ω))+ δ̃n

δ̃n+γn

→<φ̄
︷ ︸︸ ︷

φn(Ns−1, Nb−1,ω)

+
γs,n

δ̃n+γn
φn(Ns+1, Nb,ω)
︸ ︷︷ ︸

→≤φ̄

+
γb,n

δ̃n+γn
φn(Ns, Nb+1,ω)
︸ ︷︷ ︸

→<φ̄

+
γc

δ̃n+γn
Ec[φn(Ns, Nb, ω̃)]
︸ ︷︷ ︸

→<φ̄

.

Given that the δ̃n cannot tend to 0 (see the proof of Corollary 4.1), the limit of the right-hand side of

the previous expression as n→∞ is strictly smaller than φ̄. It is then clear that we reach, again, a

contradiction.

The previous argument implies that φ(Ns, Nb,ω) = 0 for all states (Ns, Nb,ω); that is, the dis-

counting until the market balances (under the risk-neutral measure) is 1. Using equation (4.7), we

have then that limn→∞ Vs,n(Ns, Nb,ω) = limn→∞ Vs,n(1, 1,ω) for all states (Ns, Nb,ω). Hence, we

have limn→∞
r
δ̃n

= 0 for all states. This implies that delay vanishes as n→ 0 also under the equilib-

rium measure.

Proof of the second result. We want to prove that there is a well-defined p∗(ω) for each ω ∈ Ω. By

the first part of this proof, the trade rate under the risk-neutral measure δ̃n is such that limn→∞
r
δ̃n

= 0

for all states. Hence, the discounted time it takes for the distribution of the market composition to

approximate the ergodic distribution of the market composition for a given initial ω0 shrinks to 0. It

is then clear that equation (4.8) follows from equation (4.3). Note that when the market is stationary,

we have that, by Proposition 4.1, p∗(ω0) is equal to the probability that Ns < Nb under the ergodic

distribution plus ξ multiplied by the probability that Ns = Nb under the ergodic distribution.

B An example with trade delay

This section sheds light on how to trade delay may arise in equilibrium.

Instead of describing the whole model, we focus on a particular state and presume some con-

tinuation values in neighboring states. It is not difficult to construct a full model where the same

arguments we use here apply. We focus on one state of the world (Ns, Nb,ω) = (2, 1,ω), that is, a

state with two sellers and one buyer in the market, and where the economic conditions are equal to

some ω∈Ω. We set, for simplicity, γs>γb = γc = 0 (all rates are evaluated at (2,1,ω)). If a seller

arrives, the buyer has a high continuation payoff, assumed to be 1, and the sellers obtain 0. If instead,

a transaction occurs before the arrival of a seller, the remaining seller obtains a high continuation

payoff, which is assumed to be equal to 1.25

25The continuation values after arrivals are assumed to be 0 or 1 to simplify the analysis, and can be approximated in a
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We first compute the continuation values of the sellers and the buyer under the assumption that,

in each match, the price offer is equal to the continuation value of the trader receiving the offer, and

that such an offer is accepted for sure (i.e., equations (3.1)–(3.5) hold with α= 1). The continuation

values in state (2,1,ω) solve the following system of equations:

Vs =

own match
︷ ︸︸ ︷

λ/2
λ+γ+r

�

ξ(1−Vb)+(1−ξ)Vs

�

+

others’ match
︷ ︸︸ ︷

λ/2
λ+γ+r 1 +

exog. change
︷ ︸︸ ︷

γ
λ+γ+r 0 ,

Vb =
λ

λ+γ+r

�

ξVb+(1−ξ)(1−Vs)
�

︸ ︷︷ ︸

own match

+ 0
λ+γ+r 0
︸ ︷︷ ︸

others’ match

+ γ
λ+γ+r 1
︸ ︷︷ ︸

exog. change

.

Solving the previous system of equations, we obtain

Vs + Vb = 1+ γ (λ−2 r)−2 r2

(γ+λ+r) (2γ+(1−ξ)λ+2 r) ,

which is strictly higher than 1 if λ is large or r is small. As we see, a seller’s value if she decides not to

trade at state (2,1,ω) is λ/2
λ/2+γ+r , so she is not willing to trade at a price lower than this value. Also,

the buyer obtains a continuation value equal to γ
γ+r from not trading, so he is not willing to trade at

a price higher than r
γ+r = 1− γ

γ+r . As a result, if either λ is large or r is small, any equilibrium in this

reduced version of our model has the property that offers are rejected with positive probability. Using

α to denote the probability of agreement in a match in state (2, 1,ω) (which ensures that Vs+Vb=1),

we have

α= min
�

1, 2 r (γ+r)
γλ

	

.

Notice that the rate at which an agreement occurs in state (2,1,ω) (which equals αλ) converges to
2 r (γ+r)

γ as λ becomes big; that is, a significant trade delay remains even in the limit where matching

frictions disappear.

To obtain further intuition, observe that the weight of a (own or other’s) match in both the sellers’

and the buyer’s payoffs is the same, equal to λ
λ+γ+r . Nevertheless, conditional on a match occurring,

each seller is chosen with probability 1
2 , and therefore she obtains 1

2 V m
s + 1

2 V o
s ; while the buyer is

chosen for sure and he obtains V m
b . Hence, even if V m ≤ 1, the sum of the payoffs of a seller and a

buyer conditional on a match may be bigger than 1 if sellers benefit from other’s transactions (note

that 1
2 V o

s + 1
2 V m

b may be bigger than 1
2). Then, equilibrium trade delay occurs when traders on the

long side of the market benefit when other traders trade, as they assign a larger probability that other

traders trade than the traders on the short side of the market.

full version of our model. For instance, a high continuation payoff for the remaining seller after a transaction is obtained

if the arrival of buyers is high after the transaction. Analogously, a high continuation value of the buyers when a seller

arrives follows from the fact that there are more sellers than buyers in the market even if the other buyer arrives. Such

changes in the market can be encoded in changes in the market conditions ω.
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In the example, equilibrium offers are rejected with a positive probability. Trade delay occurs,

even when matching frictions are small, despite the fact that the sellers are identical and there is no

information asymmetry. The equilibrium behavior of the sellers in the market resembles a war of attri-

tion: each one trades at the rate that makes the other seller (and buyer) indifferent regarding whether

to trade or not. From each seller’s perspective, this delay lowers the value of making unacceptable

offers because doing so comes with the risk of another seller arriving. As time passes, either one of

the sellers trades (and the remaining seller obtains a high payoff), or another seller arrives (and all

sellers obtain a low continuation payoff).

Our example illustrates that trade delay may occur when transactions affect the future arrival rates

of traders into the market. This may be the case when a house sold to a celebrity in an unfashionable

neighborhood attracts other celebrities, leading to gentrification. Similarly, in a local labor market,

the absence of specialized workers (teachers, doctors, etc.) may lead the local government to initiate

a subsidy program (free housing, lower taxes, etc.) to increase the arrival of workers into the market.

Employers may then have the incentive to let other employers hire the current workers in the market

and wait to hire until the subsidy program is in place. More generally, transactions may make some

markets more visible to otherwise inattentive traders, increase the value of the goods being sold in the

market (see the discussion on time-varying gains from trade in Section 5.1), or may trigger actions

by third parties (regulators, market makers, etc.).
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