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Abstract

This paper studies sequential information acquisition by an ambiguity-averse decision

maker (DM), who decides how long to collect information before taking an irreversible

action. The agent optimizes against the worst-case belief and updates prior by prior.

We show that the consideration of ambiguity gives rise to rich dynamics: compared to

the Bayesian DM, the DM here tends to experiment excessively when facing modest un-

certainty and, to counteract it, may stop experimenting prematurely when facing high

uncertainty. In the latter case, the DM’s stopping rule is non-monotonic in beliefs and

features randomized stopping.
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1 Introduction

The problem of making a decision on an action after deliberating on its merits is ubiquitous in

many situations of life. Examples include a firm contemplating a potential new project, a jury

deliberating on a verdict, a citizen pondering over his/her political vote, or a scientist evaluating

a hypothesis. The pervasiveness of such a problem makes the framework of central importance,

as seen by the extensive research on the subject matter; see Wald (1947); Arrow et al. (1949);

Moscarini and Smith (2001); Fudenberg et al. (2018); Che and Mierendorff (2019), among others.

With the exception of a few recent papers, the vast literature studying the problem considers a

Bayesian framework. The Bayesian model misses, however, a crucial aspect of the problem: the

decision maker (DM) often lacks a clear model or beliefs about the uncertainty she is facing. In

fact, Wald, often regarded as the first to formally introduce the framework, was mindful of the

ambiguity and suggests a robust approach (Wald, 1947), which anticipates the maxmin decision

rule axiomatized by Gilboa and Schmeidler (1989).

We adopt Gilboa and Schmeidler (1989) by considering a DM who has ambiguous beliefs

about the state of world and evaluates her choices against the worst-case scenario in a set of

plausible priors. Specifically, the state is either L or R and the DM must decide between two

irreversible actions, ℓ and r. At each point, the DM can stop and choose an action. Alternatively,

she can postpone her action and learn about the state. In the baseline model, the learning takes

the form of a Poisson breakthrough that confirms state R. Imagine, for instance, a CEO of a

biotech company seeking to establish the efficacy of a new drug or a theorist seeking to prove

a theorem. The Bayesian optimal strategy in such a situation calls for looking for evidence of

state R—efficacy of the drug or validity of the proof—for a duration of time, until a long stretch

of unsuccessful attempts convinces her to declare R to be unlikely and stop for action ℓ.

Introducing ambiguity in a dynamic setting raises conceptual issues about updating and dy-

namic consistency. To avoid the latter, the existing literature often follows a recursive approach,

requiring the DM to adopt a prior-by-prior updating rule on a rectangular set of priors (see Ep-

stein and Schneider 2003). Rectangularity requires the set of priors to include all measures

that can be obtained by pasting together alien posteriors, thereby guaranteeing the existence

of a single worst-case belief that guides the DM’s conditional choices. We follow a different ap-

proach: rather than assuming away dynamic inconsistency, we seek to understand its behavioral

implications for a “sophisticated” DM who recognizes potential preference reversals and deals

with them in a forward looking and rational manner. To this end, we maintain prior-by-prior
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updating, but allow for changes in the conditional worst-case scenario.

The paper shows that the consideration of ambiguity and time inconsistency gives rise to rich

dynamics in sequential learning. Late in the process, ambiguity increases the DM’s incentives to

confirm the state, thereby prolonging experimentation. After a period of looking for R-evidence,

the DM contemplates two possibilities: no such evidence exists because the state is L or instead

the state is R and she simply got unlucky. As time progresses, the DM becomes increasingly

convinced of the first. Following a sufficiently long period of futile search, the Bayesian DM

thus stops to take action ℓ. The ambiguity-averse DM, on the other hand, continues to worry

about the second possibility and, as a consequence, keeps looking for more proof. Ambiguity

aversion thus causes the DM to continue experimenting well past the time at which the Bayesian

counterpart would stop. In the context of our example, the biotech CEO or the theorist refuses

to see the “writing on the wall,” and gets hung up on proving the efficacy of the drug or the

validity of the theorem. From the perspective of an outsider, the ambiguity-averse DM would

thus be seen to exhibit prolonged indecision.

Early on, however, the DM is concerned about the opposite scenario, namely that R is

relatively unlikely and the search for evidence will be in vain. From this vantage point, her

later self’s refusal to discount R sufficiently enough to stop experimentation in time is seen as

misguided. Recognizing the peril of continued indecision, the DM must then intervene and stop

before it is too late, namely before the change in the worst-case belief occurs. The DM adopts

a mixed strategy in this case, randomizing between experimentation and stopping. She does so

by stopping according to a Poison process at a rate chosen to hedge against both events. The

stopping occurs around the point of belief switch, which is typically well before the Bayesian

DM would find it reasonable to stop. Hence, to an outside observer, the DM would be seen to

exhibit premature decisiveness.

Comparative statics yields further implications of ambiguity. An increase in ambiguity—as

measured by the size of the initial set of priors—increases the tendency for the DM to prolong

her experimentation later in the game, which increases her need to preemptively stop earlier in

the process (and, naturally, the rate at which she does so). These effects, taken together, imply

that increased ambiguity “blunts” the DM’s ability to adapt her learning strategy to the true

likelihoods of states. Strikingly, this means that, for a sufficiently large ambiguity, the DM’s

experimentation time increases rather than decreases as the true likelihood of L increases. The

combined effects also imply that the stopping time is more dispersed with larger ambiguity.
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Finally, we consider two interesting extensions of the baseline model. First, we allow the

DM to choose between two different news sources, one generating R-evidence, as before, and

the other generating L-evidence. We show that excessive learning and randomized stopping also

arise with sufficiently large ambiguity and sufficiently small information cost. In addition, the

DM may “split” her attention between the two news sources in order to hedge, even when a

Bayesian DM would not do so under any prior. Second, we consider the case of incremental

learning with diffusion signals. Although some details of the solution change, the main features

of the model—excessive learning and preemption via randomized stopping—persist in this case.

In sum, our analysis captures two behavioral traits—protracted indecision and hasty, often

unwarranted, decisiveness. The other main contribution of the paper is methodological. Ana-

lyzing dynamic decision-making under ambiguity is a priori difficult because the associated time

inconsistency problem makes the dynamic programming machinery inapplicable. We character-

ize the solution of our problem via a set of novel ‘saddle-point Hamilton-Jacobi-Bellman (HJB)

conditions’. Our HJB characterization restores the dynamic programming logic in a saddle-

point sense and hence serves as a powerful toolkit that can make analysis tractable without

compromising sharp prediction. We expect the approach, and the micro-foundation justifying

it, to be valuable beyond our setting.

Related Literature. We incorporate ambiguity into an optimal stopping framework à la Wald

(1947). Optimal stopping problems in the Bayesian framework with Poisson signals have been

analyzed in Peskir and Shiryaev (2006, ch.VI), with economic applications including Che and

Mierendorff (2019) and Nikandrova and Pancs (2018). Other applications adopt a drift-diffusion

model, e.g. Moscarini and Smith (2001), Fudenberg et al. (2018), while Zhong (2019) studies

the problem under flexible choice of information.

The paper is part of a growing literature on optimal stopping problems under ambiguity.

Most of the existing literature adopts a recursive approach, thereby precluding the possibility

of changes in the worst-case scenario and time inconsistency, e.g. Epstein and Schneider (2007),

Riedel (2009), Miao and Wang (2011), Cheng and Riedel (2013). Closest to our paper in this

literature is Epstein and Ji (2020), which studies a Wald problem in a drift-diffusion framework

with recursive preferences. Under the recursive approach, there is a single prior in the initial set

that minimizes the DM’s expected payoff at every point in time. Due to this feature, standard

dynamic programming methods are applicable and the optimal stopping rule continues to be
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described by two stopping boundaries, as in the Bayesian benchmark. By contrast, dynamic

inconsistency figures prominently in our model, which we analyze by developing a saddle-point

version of the dynamic programming technique.

There is also a growing literature looking at the implication of dynamic inconsistency due

to ambiguity in different applications. For example, Bose and Daripa (2009), Bose and Renou

(2014), Ghosh and Liu (2021) and Auster and Kellner (2022) consider auctions/mechanisms

with ambiguity-averse agents, while Kellner and Le Quement (2018) and Beauchêne et al. (2019)

study ambiguity and updating in communication and persuasion settings.

Finally there is a literature studying dynamic inconsistent stopping in other behavioral frame-

works. For instance, Barberis (2012), Xu and Zhou (2013), Ebert and Strack (2015, 2018), and

Henderson et al. (2017) analyze stopping problems under prospect theory. Christensen and Lin-

densjö (2018; 2020) study stopping problems for a class of time inconsistent models, which can

capture endogenous habit formation, non-exponential discounting and mean-variance utility.

2 Model

A DM must choose between two actions, r and ℓ, whose payoffs depend on an unknown state

ω ∈ {R,L}. Specifically, the DM’s payoffs satisfy uRr > uRℓ and uLℓ > uLr , where u
ω
a ∈ R denotes

her payoff from choosing action a ∈ {r, ℓ} in state ω ∈ {R,L}. The DM thus wants to “match”

the action with the state. We further assume uRr > uLr and uRℓ < uLℓ . This means that whether

a state is desirable or not depends on the action that the DM takes, a feature that makes

ambiguity nontrivial.1 Let Ua(p) = puRa + (1 − p)uLa denote the DM’s payoff associated with

action a when the probability of state R is p.

The DM may delay her action and acquire information. We model the DM’s information

acquisition problem as a stopping problem in continuous time. At each point in time t ≥ 0, the

DM decides whether to wait for more information or whether to stop and take an immediate

action, ℓ or r. If the DM waits (or “experiments”), she incurs a flow cost c > 0 per unit of

time. Payoffs are realized when the DM stops and takes an action. Information takes the form

of R-evidence which is received only in state R with arrival rate λ > 0. Observing news thus

conclusively reveals state R, while the absence of news is a signal favoring state L.

1If this assumption does not hold, the ambiguity-averse DM minimizing over a set of probabilities is behav-
iorally indistinguishable from a Bayesian DM, whose prior is equal to the element of the set that maximizes the
likelihood of the “bad” state.
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Bayesian benchmark. Considering the benchmark case of a Bayesian DM, let pt denote the

probability that the DM assigns to state R at time t. In the absence of news, the DM’s belief

drifts “leftward” according to

ṗt = η(pt) := −λpt(1− pt).

Intuitively, a DM becomes pessimistic toward R when she looks for R-evidence but is unable to

find any.

As is well known, the Bayesian optimal information acquisition rule can be described by two

thresholds, pBℓ and pBr . If pt ≤ pBℓ or pt ≥ pBr , the DM is sufficiently confident in the state and

takes the appropriate action without gathering any additional information. If instead pt belongs

to (pBℓ , p
B
r ), the DM experiments until either she receives R-evidence or the Bayesian update of

pt reaches the threshold pBℓ .

0————︸ ︷︷ ︸
action ℓ

pBℓ ←−←−←−←−←−←−←−←−︸ ︷︷ ︸
experimentation

pBr ————︸ ︷︷ ︸
action r

1

Let ϕ(p; p′, Uℓ(p
′)) denote the value to the Bayesian DM of experimenting until the belief p

reaches p′ < p, assuming that, if she receives R-evidence during the experimentation, she realizes

uRr , while if she does not receive such evidence until her belief reaches p′, she stops and takes

action ℓ. The standard HJB conditions characterize DM’s value function as a solution to an

ODE:

c = λp(uRr − ϕ(p)) + ϕ′(p)η(p),∀p > p′. (1)

Intuitively, the flow cost of experimentation (LHS) equals the rate of value increase due to

possible breakthrough news and belief updating in its absence (RHS). Optimal stopping calls

for p′ to be chosen optimally, so the value of the stopping problem is

Φ(p) = max
p′∈[0,p]

ϕ(p; p′, Uℓ(p
′)), (2)

and the left stopping boundary pBℓ is the associated maximizer.2 Finally, since the DM has an

option to choose r at any point in time, the DM with belief p enjoys the payoff of

Φ∗(p) = max{Φ(p), Ur(p)}, (3)

2One can also characterize the optimal stopping boundary in a dynamic programming framework by invoking
value matching and smooth pasting.
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Figure 1: Bayesian optimal stopping rule.

with the DM indifferent between experimentation and action r at the right stopping boundary

pBr . We will call Φ∗(p) the Bayesian value function throughout. Its characterization is

relegated to Appendix B.1.

Figure 1 illustrates graphically the value to the Bayesian DM in a typical situation. The

downward sloping line shows the DM’s expected payoff from taking action ℓ as a function of

the probability p she assigns to state R. Similarly, the upward sloping line represents the DM’s

expected payoff from taking action r. The crossing point p̂ is the belief at which the DM is

indifferent between actions ℓ and r. The blue curve depicts Φ, i.e. the value from experimenting

with stopping belief pBℓ . The optimal value Φ∗ can be seen as the upper envelope of Φ and

U := Uℓ ∨ Ur. Naturally, the experimentation range (pBℓ , p
B
r ) depends on the flow cost c; the

range shrinks as c increases and disappears when

c ≥ c := λ
(uRr − uRℓ )(uLℓ − uLr )

(uRr − uRℓ ) + (uLℓ − uLr )
. (4)

The threshold c is the value of c at which Φ(p̂) = U(p̂).

Ambiguity. We assume that the DM faces ambiguity over the likelihood of state R and that

her preferences are represented by the maxmin expected utility model (Gilboa and Schmeidler,

1989). According to this model, the DM seeks to maximize her payoff guarantee across a

set of priors, described by an interval of probabilities on state R: P0 = [p
0
, p0]. We assume

0 < p
0
≤ p0 < 1.

It will be useful to consider the DM’s optimal information acquisition rule from the perspec-
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tive of time 0. Specifically, suppose the DM can commit to a dynamic strategy that maximizes

her expected payoff against the worst prior in P0. Finding such a strategy amounts to analyzing

a zero-sum game between the DM and adversarial nature choosing p ∈ P0 to minimize the DM’s

expected payoff. Its equilibrium—a saddle point—describes the DM’s highest value obtained

from any information acquisition rule. By the minmax theorem, the value of the saddle point

can be obtained by the minimax problem where nature first chooses a prior in P0 and the DM

then chooses her best strategy for the chosen prior (see Osborne and Rubinstein (1994) Propo-

sition 22.2). It follows that the minimax value is simply the lowest Bayesian value Φ∗ within

P0, or

min
p∈P0

Φ∗(p).

In particular, the commitment value coincides with the Bayesian value at the left-most belief p
0

of P0 if the prior beliefs P0 are sufficiently far to the right, and at the right most belief p0, if P0

is sufficiently far to the left, as depicted in Figure 2. For later purpose, we denote the global

minimizer of Φ∗ by

p∗ := arg min
p∈[0,1]

Φ∗(p).

The commitment solution is characterized in Appendix B.2. While the maxmin commitment

value is easily obtained, the saddle point strategy on the part of the DM requires a little care.

If p∗ < pBr or pBr ̸∈ P0, then the maxmin strategy is indeed the Bayesian optimal strategy for

the worst belief in P0. If p∗ = pBr ∈ P0, however, nature’s indifference, which is needed for the

saddle point requirement, calls for the DM to randomize. If c < c, then the DM must randomize

between r and experimentation. If instead c ≥ c, experimentation is too costly and the DM

mixes between actions r and ℓ with probabilities ρ̂ and 1− ρ̂, respectively, where ρ̂ satisfies

ρ̂U ′
r(p) + (1− ρ̂)U ′

ℓ(p) = 0. (5)

Updating and preference reversals. A key question is how the DM updates her ambiguous

beliefs as information arrives. We assume that the DM uses Full Bayesian Updating :3 she

updates each element of P0 according to Bayes rule and considers the worst case over the set of

posterior beliefs obtained in this way. The set of posteriors at time t > 0 is thus given by an

interval Pt := [p
t
, pt], where pt is the Bayesian update of the initial lower bound p

0
and pt is the

3This rule is also referred to as prior-by-prior updating.
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Figure 2: Worst-case scenario (indicated by the red dashed line) at the start of experimentation
(left panel) and at the ex-ante optimal stopping time (right panel).

Bayesian update of the initial upper bound p0. As time progresses and no breakthrough occurs,

the interval Pt drifts to the left. In the process, the interval expands in size as it moves away

from the right boundary and shrinks as it approaches the left boundary. Rescaling the belief in

terms of a log-likelihood ratio keeps the interval “size” constant. Hence, from now on, we shall

refer to

∆ := ln

(
p0

1− p0

)
− ln

(
p
0

1− p
0

)
as the degree of ambiguity. It is easy to verify that ∆ does not vary as one updates beliefs over

time.

As is well known, the Full Bayesian Updating rule does not guarantee dynamic consistency.

To see this, suppose the interval P0 is sufficiently far to the right so that p
0
minimizes Φ∗ over

P0 (see the left panel of Figure 2). If p
0
< pBr , the DM’s optimal (commitment) plan at time 0

is to experiment until either she receives R-evidence or the Bayesian update p
t
of p

0
reaches pBℓ .

Once the intended stopping point t where p
t
= pBℓ is reached, however, the worst-case belief is

no longer given by p
t
but instead by pt, as illustrated in the right panel of Figure 2. According to

pt, the optimal plan (as prescribed by the commitment solution) is to acquire more information,

until the Bayesian update of pt reaches the stopping boundary pBℓ . Hence, later selves of the

DM will renege on the original plan prescribed by the commitment solution and experiment

excessively from the perspective of the original self.

A dynamic inconsistency arises as a result of a switch in the worst-case scenario. When the

DM experiments, she is concerned about two events: 1) not receiving R-evidence in state L and
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2) taking action ℓ in state R. At the start of the experimentation phase, pessimism about the

first event dominates and the worst-case belief is given by p
t
, which minimizes the likelihood

of R. When the DM gets closer to the intended stopping point, the concern about taking the

wrong action looms large and the worst-case belief switches to pt, i.e. the belief maximizing the

likelihood of R. The new worst-case belief calls for more experimentation, thereby creating a

conflict with the preferences of earlier selves. A sophisticated DM understands that later selves

deviate from the commitment plan by experimenting for too long and optimizes accordingly.

We next analyze the behavior of such a DM.

3 Sophisticated Stopping Rule

We now analyze the dynamic behavior of a sophisticated DM. The dynamic inconsistency prob-

lem requires us to analyze the DM’s stopping problem as an intrapersonal game in which a

current self plays against future selves.

3.1 Intrapersonal game.

At each point in time t ≥ 0, the DM decides between continuing to gather information and

stopping, taking as given the choices of her future selves. If a breakthrough occurs, all posteriors

in the updated set are equal to one, so it is optimal for the DM to stop and take action r. Taking

this part of the strategy as given, it is without loss of generality to condition the DM’s strategy

on the set of posteriors rather than time. Indeed, in the absence of R-evidence, there is a one-

to-one mapping between calendar time and the set of posteriors. Having fixed ∆ as a primitive,

we can index the possible sets of posteriors by their upper bound p ∈ (0, 1). The right-most

belief in the set, p, is thus our state variable. We denote the set of posteriors at state p by

P (p) :=

{
p ≤ p : ln

(
p

1− p

)
− ln

(
p

1− p

)
≤ ∆

}
,

and define p(p) := minP (p) as the lower bound of this set. Clearly, it follows that p
t
= p(pt).

A Markov strategy is a measurable function σ : (0, 1) → [0,∞) × [0, 1] × [0, 1], with

σ(p) = (ν(p),m(p), ρ(p)). The strategy specifies a stopping rate ν(p), an instantaneous stopping

probability m(p), and the probability of taking action r conditional on stopping ρ(p). Intuitively,

densities in the distribution of stopping points are accommodated by interior stopping rates
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ν(p), while atoms in the distribution over stopping points are captured by positive values of

m(p). To ensure that a strategy σ induces a well-defined stopping time, we impose the following

admissibility restrictions on strategies: (1) every connected set P ⊆ [0, 1] with m(p) = 1 for all

p ∈ P contains its supremum; (2) there is a finite set Mσ ⊂ (0, 1) such that m(p) ∈ (0, 1) only

if p ∈Mσ.4

Fixing a strategy σ, we denote by V σ(p, p) the DM’s expected payoff at state p when the

strategy is evaluated at belief p. Nature’s goal is to minimize V σ(p, p) at each state p. Since

V σ(p, p) is a convex combination of the payoffs that strategy σ yields in state R and in state

L with coefficient p, the DM’s value V σ(p, p) is linear in the first argument. Nature’s problem

thus has a bang-bang solution. Letting π(p) ∈ P (p) denote nature’s choice at state p, we define
a solution concept as follows.

Definition 1. A strategy σ = (ν,m, ρ) constitutes a pseudo equilibrium if for each state p ∈
(0, 1), there exists some π = π(p) with

π(p) ∈ arg min
p∈P (p)

V σ(p, p) (6)

such that5

U(π) ≤ V σ(π, p); (7)

U(π) = V σ(π, p) if ν(p) or m(p) > 0; (8)

ρ(p) ∈ arg max
ρ∈[0,1]

ρUr(π) + (1− ρ)Uℓ(π). (9)

A strategy σ is a pseudo equilibrium if, given nature’s choice π, no self of the DM has an

incentive to deviate. Due to the continuous time nature of our game, many pseudo equilibria

exist. For instance, it is a pseudo equilibrium for the DM to stop at every state and choose the

optimal action against the worst-case belief. If some self of the DM were to deviate and refuse to

stop, her infinitesimally close future selves would stop immediately. Since experimentation for

an instant yields zero probability of a breakthrough, the deviation is never profitable. However,

4Condition (1) requires that whenever a strategy specifies instantaneous stopping for an interval of states,
then the interval is closed on the right. This ensures that the stopping time is well defined when the belief
drifts toward a (left) stopping boundary. Meanwhile, Condition (2) states that the set of states in which the
DM randomizes instantaneously between continuation and stopping is finite. In principle, such states can be
(countably) infinite, but this extra flexibility proves irrelevant.

5Recall that U = Uℓ ∨ Ur is the maximum stopping payoff from actions ℓ and r.
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the prescribed strategy is implausible and simply an artifact of the continuous time nature of

our game.

To rule out such implausible strategies, we focus on the pseudo equilibria in which the DM can

control her action for a vanishingly small amount of time. Formally, for any pseudo equilibrium

σ we imagine the DM who can commit at each time t her action for period [t, t + ϵ) against

adversarial nature, anticipating that σ will follow after t+ϵ. We then require σ to be obtained as

a limit of such ϵ-commitment solutions as ϵ→ 0.6 Such a vanishing control over future behavior

avoids total coordination failure among selves. As justified in Appendix A.1 more precisely, the

refinement introduces a saddle-point version of dynamic programming conditions.

To begin, for a value function V : [0, 1]2 → R, define a functional:

G(m, ν, ρ, p, p, V, dV ) =m
[
Uρ(p)− V (p, p−)

]
+ (1−m)

[
−c+ ν(Uρ(p)− V (p, p−))

+pλ(uRr − V (p, p−)) + Vp(p, p−)η(p) + Vp(p, p−)η(p)
]
,

where dV is the gradient of the value function, V (p, p−) := limp′↑ p V (p, p′), and Vx(p, p−) :=

limp′↑ p
∂V (p,p′)

∂x
.7 Recall η(p) = −λp(1 − p) denotes the law of motion. The functional G has

a familiar interpretation from the dynamic programming literature. Its first term captures a

value increase when the DM stops with a point mass m; she collects Uρ(p) − V (p, p−). The

second term (inside the square brackets) captures a value increase when the DM “continues.”

In this case, at the flow cost c, the DM engages in a flow stopping at rate ν and experimentation

yielding a breakthrough at rate λp: her value increases by Uρ(p) − V (p, p−) in the former case

and by uRr − V (p, p−) in the latter case. The last two terms track the change of value arising

from the updating of the state p and the updating of the current belief.

For each p ∈ (0, 1), consider a saddle point version of Hamilton-Jacobi-Bellman equations:

0 = max
m,ν,ρ

G(m, ν, ρ, π(p), p, V, dV ), (10)

σ(p) = (m(p), ν(p), ρ(p)) ∈ argmax
m,ν,ρ

G(m, ν, ρ, π(p), p, V, dV ), (11)

6This refinement is similar in effect to taking a limit of the behavior in discrete times models as the time
interval shrinks to zero; in such models the DM’s experimentation during a unit period has some non-negligible
probability of producing breakthrough. The current refinement accomplishes the same effect within a continuous
time framework.

7We use the left limits of the value function and its partial derivatives (a) to make sure the conditions are
well defined even at point where the derivatives do not exist and (b) since the belief drifts downwards and the
value function in the HJB equation reflects the continuation value.
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π(p) ∈ arg min
p∈P (p)

G(m(p), ν(p), ρ(p), p, p, V, dV ). (12)

Condition (10) captures the optimality requirement embodied in the value function: the variation

from the optimal value for the DM is precisely zero at the equilibrium. Condition (11) requires

the DM’s flow decision to be optimal against nature’s choice π, taking her future strategy as

given. This is not required in Definition 1, as is seen in the implausible “always stopping”

behavior. Finally, (12) chooses the belief to be worst for the DM against the flow action, taking

the continuation strategy into consideration. Effectively, equations (10), (11), and (12) represent

the saddle point version of HJB equations.

We define our equilibrium as follows:

Definition 2. A pseudo equilibrium σ = (ν,m, ρ), together with π, is an intrapersonal equilib-

rium, or simply an equilibrium, if it satisfies (10), (11), and (12) for each p ∈ (0, 1).

The precise microfoundation for this solution concept based on vanishing commitment power

is provided in Appendix A.1. The HJB conditions for dynamic decisions under ambiguity, and

the micro-foundation justifying them, are of independent interest that we believe are applica-

ble well beyond the particular setting we consider here. While time inconsistency makes the

dynamic programming machinery inapplicable, the HJB characterization restores the dynamic

programming logic in a saddle point sense. This characterization serves as a powerful toolkit

that can make analysis tractable without compromising sharp prediction, as we argue is the case

here.

3.2 Main Result

To state our main result, we introduce an additional threshold for the flow cost c:

c :=
δr

δr + δℓ
c,

where δa = |uRa − uLa | denotes the payoff difference across the two states given the DM’s action

a ∈ {ℓ, r}. As can be easily seen, c is strictly smaller than c, i.e. the Bayesian threshold defined

in Section 2. We will focus on the case in which the Bayesian value function Φ∗ attains its

minimum at p∗ < pBr such that Φ′(p∗) = 0, as graphed in Figure 3. This case, labeled Case

1, occurs when the value of outright action r is not too high. The opposite case, labeled Case
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2, in which p∗ = pBr , or Φ
′(p∗) < 0 (as graphed in Figure 7) will be treated at the end of this

section.

Theorem 1. In Case 1, the following intrapersonal equilibrium exists.

(i) Suppose c ≥ c. The DM does not acquire information. If p ≤ p̂, she takes action ℓ;

if p(p) ≥ p̂, she takes action r; if p̂ ∈ (p(p), p), she randomizes between ℓ and r with

probability ρ̂.

(ii) Suppose c < c and Φ′(p∗) = 0. For each c ∈ (0, c) there is a threshold ∆c ∈ (0,+∞]

with ∆c = +∞ if and only if c ≤ c such that the intrapersonal equilibrium is described as

follows:

(a) If ∆ ≤ ∆c, there exist cutoffs 0 < p1 < p2 ≤ p3 < p4 < 1 with p1 = pBℓ and p2 = p∗

such that8

(m(p), ν(p), ρ(p)) =



(1, 0, 0)

(0, 0, ·)

(0, ν∗(p), 0)

(0, 0, ·)

(1, 0, 1)

π(p) =



p if p ∈ [0, p1]

p if p ∈ (p1, p2]

π∗(p) if p ∈ (p2, p3)

p(p) if p ∈ [p3, p4)

p(p) if p ∈ [p4, 1],

where ν∗(p) > 0 and π∗(p) ∈ (p(p), p), for p ∈ (p2, p3), and p2 < p3 if and only if

Φ(p∗) < Uℓ(p(p
∗)).

(b) If ∆ > ∆c, the equilibrium has the same structure as in (a) except that

(m(p), ν(p), ρ(p)) = (1, 0, ρ̂) and π(p) = p̂,

for p ∈ [p3, p4).

We structure the discussion of Theorem 1 according to the level of experimentation costs.

8We leave ρ unspecified if m = ν = 0.
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High experimentation costs. If c ≥ c, the DM does not experiment, and her equilib-

rium strategy coincides with the commitment solution described in Proposition B.2. This is

a consequence of the facts that 1) given c ≥ c, the DM’s commitment solution involves no

experimentation, as we have seen in Section 2, and 2) implementing this solution requires no

commitment. The DM’s value in this case is V σ(π(p), p) = minp∈P (p) U(p).

Low experimentation costs. Our main focus will lie on the case c ≤ c. Under this re-

striction, the equilibrium is always described by Theorem 1-(ii)(a) and can be illustrated as

follows:

0————︸ ︷︷ ︸
action ℓ

p1←−←−←−←−︸ ︷︷ ︸
pure exp.

p2←−←−←−←−←−︸ ︷︷ ︸
mixed stopping (ℓ)

p3←−←−←−←−︸ ︷︷ ︸
pure exp.

p4————︸ ︷︷ ︸
action r

1

When p is sufficiently extreme (p ≤ p1 or p ≥ p4), the DM takes an immediate action without

gathering additional information. This is qualitatively similar to Bayesian DM, although the

exact stopping boundaries are not the same. For the remaining states, however, the character-

ization is qualitatively different if ∆ is sufficiently large. Unlike the Bayesian DM, there is a

middle region of states, where the DM randomizes between experimentation and action ℓ at a

positive rate. To derive the solution we leverage the fact that in the absence of breakthrough

news, the set of beliefs drifts to the left. Hence, we explain the logic of the equilibrium strategy

via backward induction, starting from a far left set of beliefs.

• Region 1: p ≤ p1. The first threshold p1 coincides with the Bayesian stopping boundary

pBℓ . If p ≤ pBℓ , then stopping followed by action ℓ is optimal for all beliefs in [p(p), p] and thus

constitutes the equilibrium strategy for our ambiguous-averse DM. The worst-case belief under

this strategy is p.

• Region 2: p ∈ (p1, p2]. In Region 2, the right-most belief p continues to be the worst-case

belief for all p ∈ (p1, p2] and the DM follows the Bayesian optimal stopping rule with respect to

p. Since p < p1 = pBℓ , this strategy entails experimentation until either a breakthrough occurs

or the Bayesian update of p reaches pBℓ . The right boundary p2 := p∗ of this region is the belief

at which the Bayesian value function attains its minimum.

For each state p, we can then evaluate the expected payoff of strategy σ at alternative beliefs
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Figure 3: The value segment (in green) and worst-case belief for p ∈ (p1, p2).

p, denoting the value V σ(p, p) as a function of the belief p. The set of values corresponding to

possible alternative beliefs, {(p, V σ(p, p)) : p ∈ P (p)}, forms a linear segment, which we will call

value segment throughout (see for instance Figure 3). It is useful to track the movement of the

value segment, as time moves backward or forward. Note that the value segment is tangent to

the value function Φ at p, due to the fact that the stopping rule is Bayesian optimal with respect

to p.9 Tangency at this point implies that the value segment is downward sloping and, hence,

that V σ(p, p) is indeed minimized at p = p. This means that nature optimally chooses the right

most belief, justifying the earlier hypothesis. At p = p∗ =: p2, the value segment becomes flat

(see Figure 4), as we assumed Φ′(p∗) = 0. Hence, at p = p∗ all posteriors in [p(p), p] minimize

the DM’s expected payoff.

• Regions 3: p ∈ (p2, p3]. Moving further back in time, suppose the state p is slightly higher

than p∗ and the DM contemplates experimenting according to the strategy prescribed in Region

2. The value segment becomes now upward sloping, implying that the worst-case scenario is

described by p(p) rather than p. We then distinguish two cases. If the amount of ambiguity

∆ is sufficiently small and, hence, the value segment is sufficiently “short,” experimentation is

optimal at the worst-case belief p(p) (see Figure 4, left panel).10 The randomization region,

Region 3, is empty here, and we directly transition to Region 4 at p = p∗. More interestingly,

if ∆ is sufficiently large such that the value segment crosses the stopping payoff line Uℓ from

9Bayesian optimality of the strategy with respect to p clearly implies V σ(p, p) = Φ(p). This, together with
linearity of V σ(p, p) in the first argument and the fact that Φ(p) ≥ V σ(p, p) holds for all p ∈ (pBℓ , p

B
r ), implies

that the value segment is tangent to Φ at p.
10Formally, we have V σ(p(p∗), p∗) ≥ Uℓ(p(p∗)).
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Figure 4: The value segment and worst-case belief for p = p2 with V σ(p(p∗), p∗) ≥ Uℓ(p(p∗))
(left panel) and V σ(p(p∗), p∗) < Uℓ(p(p∗)) (right panel).

below, then at state p = p∗ experimentation is dominated by stopping followed by ℓ according

to the worst-case belief p(p∗) (see Figure 5, right panel). Choosing ℓ, however, cannot be

an equilibrium either, as nature would now choose p, which makes it optimal for the DM to

experiment. The intrapersonal equilibrium is thus in mixed strategies, where the DM randomizes

between experimentation and action ℓ.

The DM’s value and the equilibrium stopping rate in the mixed stopping region can be

derived via the saddle-point HJB condition. Randomization between experimentation and action

ℓ requires that the coefficient of ν in (11) must vanish and thus:

V (π(p), p) = Uℓ(π(p)). (13)

Graphically, the stopping payoff Uℓ and the value segment must cross at the worst-case belief

π(p), making the DM indifferent between experimentation and action ℓ. Since the required belief

π(p) will be in the interior of [p(p), p], for nature to optimally choose it, the value segment must

remain flat so that all posteriors in [p(p), p] minimize the DM’s expected payoff. We can thus

write V (p, p) = V̂ (p),∀p. Substituting this into the DM’s indifference condition (13), we obtain

nature’s choice

π(p) =
uLℓ − V̂ (p)

uLℓ − uRℓ
. (14)

The randomization by the DM in turn implies that the derivative of the objective in (11) with
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Figure 5: The value segment and worst-case belief for p ∈ (p2, p3).

respect to p must vanish. This fact, together with V (p, p) = V̂ (p),∀p, yields the equilibrium

stopping rate

ν(p) =
λ(uRr − V̂ (p))

uLℓ − uRℓ
. (15)

Using (14) and (15), the value function V̂ (p) is derived by substituting for π and ν in the HJB

condition (10), which gives rise to the following differential equation:

p(1− p)V̂ ′(p) =

(
uRr − V̂ (p)

)(
uLℓ − V̂ (p)

)
uLℓ − uRℓ

− c

λ
. (ÔDE)

Together with the boundary condition V̂ (p2) = Φ(p2), (ÔDE) admits a unique solution, describ-

ing the DM’s value in Region 3.

The reason that the DM stops according to a Poisson process, and thus with vanishing

probability (rather than positive probability), is because when p ≈ p∗, the value segment is

already arbitrarily close to flat, so it takes a vanishingly small stopping probability to turn

the value segment completely flat. The same situation and intuition are repeated as we move

backward in time: for a positive range of states, labeled Region 3, the DM repeatedly hedges

between experimentation and Poisson stopping at a positive rate ν(p).

Intuitively, the repeated hedging by the DM can be seen as a resolution of conflicts between

current and future selves. On the one hand, the DM is highly uncertain about the state and thus

finds it optimal to acquire information. On the other hand, the DM is aware that the journey
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Figure 6: The value segment and worst-case belief for p ∈ (p3, p4) in the case of ∆ small.

of experimentation will take on its own life, with the future selves doing too much of it from

her current perspective. The randomized stopping resolves the conflict and restores the delicate

balance between the multiple selves. While at first glance it may seem odd that the randomized

stopping arises in the middle region around p∗, this is no coincidence. As noted earlier, it

is precisely where preference reversal and dynamic inconsistencies arise. As will be seen, this

seemingly peculiar feature of the equilibrium proves quite robust across different specifications

of the learning environment and technologies.

• Regions 4: p ∈ (p3, p4]. As already mentioned, when ambiguity ∆ is small, Region 3 is

empty, and Regions 2 and 4 collapse to a single experimentation region. Its right boundary,

p4, occurs at the point where, according to the worst-case belief p(p), action r yields the same

expected payoff as experimentation, i.e. Ur(p(p4)) = V σ(p(p4), p4). Graphically, p4 can be seen

as the point where the left endpoint of the value segment crosses the stopping payoff Ur (see

right panel of Figure 6). It is important to notice that at p = p4, the value of p(p) lies strictly to

the left of the Bayesian stopping boundary pBr . This follows from the fact that the DM’s future

selves follow a rule that is optimal with respect to p but not with respect to p(p). From the

perspective of p(p), the value of experimentation is thus strictly lower than the Bayesian value

Φ(p(p)). This means that the DM with p(p) is more inclined to stop than the Bayesian DM

with the corresponding belief.

Next consider the case in which ∆ is sufficiently large so that Region 3 with mixed stopping

is nonempty. The right boundary of the mixed stopping region, p3, is given by the state p at

which the value segment separates from Uℓ and experimentation becomes again optimal for all
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posteriors in [p(p), p] (see Figure 5). To the right of p3, we then have a second region of pure

experimentation, Region 4. The value segment becomes upward sloping in this region, so p(p)

becomes the worst-case belief. As with the case of small ∆, the right boundary of Region 4

is determined as the point where the left end of the value segment reaches the stopping pay-

off Ur. Notice, however, that the value segment in the experimentation region remains below

the Bayesian value function. Compared to the case of small ∆, the possibility of randomiza-

tion in future states reduces the value of experimentation further, which pushes the stopping

boundary p4 towards the middle. Intuitively, the DM here is discouraged from experimentation,

and is thus more inclined to stop, not only because it leads to the excessive experimentation in

the distant future, but also because it leads to the inefficient stopping in the intermediate future.

We now complete the characterization by addressing several remaining cases and issues. The

reader interested in the behavioral implications of the baseline characterization may skip to the

next section.

Intermediate experimentation costs. Consider next the case in which c ∈ (c, c). Theo-

rem 1 shows that for each c ∈ (c, c) there exists a threshold ∆c ∈ R such that for ∆ ≤ ∆c

the equilibrium continues to be described by case (a) of Theorem 1, as described above. If

instead ∆ > ∆c, the fourth region features randomization between actions ℓ and r rather than

experimentation.

0————︸ ︷︷ ︸
action ℓ

p1←−←−←−←−︸ ︷︷ ︸
pure exp.

p2←−←−←−←−←−︸ ︷︷ ︸
mixed stopping (ℓ)

p3 —————︸ ︷︷ ︸
mixing between ℓ and r

p4————︸ ︷︷ ︸
action r

1

The equilibrium behavior for the first three regions is the same as in the case with low

experimentation costs. In the third region, however, where the DM randomizes between ex-

perimentation and action ℓ, the value segment may drop as low as the point at which the two

stopping payoff lines, Uℓ and Ur, cross. The state at which this occurs constitutes our new

boundary p3. The DM’s value at this point is equal to minp U(p) = U(p̂), the minimal expected

payoff that the DM can guarantee to herself by randomizing between actions ℓ and r with prob-

abilities 1 − ρ̂ and ρ̂, respectively. At states to the right of this point, randomizing between

immediate actions with ρ̂ strictly dominates experimentation with randomized stopping, giving

rise to the fourth region [p3, p4). Its right boundary is the state p that satisfies p(p) = p̂. Further
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to the right, where p(p) > p̂, the DM optimally takes action r. The solution for intermediate

costs c ∈ (c, c) and large ambiguity ∆ > ∆c can thus be viewed as a combination of the previous

two solutions.

Case 2: Φ′(p∗) < 0. The formal characterization of the intrapersonal equilibrium for the case

Φ′(p∗) < 0 is relegated to Appendix B.7. Compared with the case Φ′(p∗) = 0, there is only

one significant change. At the right boundary of the first experimentation region (p1, p2), the

stopping distribution has an atom: the DM takes action r with positive probability m(p2) and

experiments with the complementary probability.

0————︸ ︷︷ ︸
action ℓ

p1←−←−←−←−︸ ︷︷ ︸
pure exp.

p2︸︷︷︸
m>0

←−←−←−←−︸ ︷︷ ︸
mixed stopping (ℓ)

p3←−←−←−←−←−︸ ︷︷ ︸
pure exp. or mixing ℓ/r

p4————︸ ︷︷ ︸
action r

1

Moving backwards in time through the experimentation region (p1, p2), the value segment re-

mains downward sloping as the state p approaches p2 = p∗. The unique worst-case belief in the

limit as p ↗ p∗ is thus p. For states to the right of p∗, the Bayesian optimal strategy under p

is to take action r rather than experimenting. Taking action r in those states does, however,

not constitute an intrapersonal equilibrium, as the worst-case belief under this strategy would

be p(p) rather than p. The DM must therefore experiment with positive probability in states to

the right of p∗. To make experimentation optimal, the value segment must be weakly upward

sloping for states belonging to an interval (p∗, p∗ + ε). This property requires the DM to take

action r with strictly positive probability at state p = p∗. Graphically, the DM’s randomization

flips the left end of the value segment downwards, so that it is flat at p = p∗, as illustrated in

Figure 7.

Uniqueness. In Appendix B.8, we prove that the intrapersonal equilibrium is unique when

either c < c or c ≥ c. When c ∈ [c, c), however, there is an additional class of intrapersonal

equilibria. Fix any q ∈ [p̂, p−1(p̂)). We then construct a strategy profile (σ̃, π̃) indexed by q as

follows. For each p ≤ q, (σ̃, π̃) = (σ, π), the intrapersonal equilibrium defined in Theorem 1; for

each p ∈ (q, p−1(p̂)], σ̃(p) = (m̃(p), ν̃(p), ρ(p)) = (1, 0, ρ̂) and π̃(p) = p̂; and for each p > p−1(p̂),

σ̃(p) = (m̃(p), ν̃(p), ρ(p)) = (1, 0, 1) and π̃(p) = p(p). In words, the DM follows the same

strategy as in Theorem 1 for states p ≤ q but stops immediately for states p > q, followed

by the “hedging” mixed action ρ̂ if p̂ ∈ [p(p), p] and action r if p̂ < p(p). Since c < c, this
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Figure 7: Case Φ′(p∗) < 0. The value segment for p↗ p∗ and p = p∗.

new strategy is worse for the DM regardless of the belief whenever p > q. In fact, the value

function jumps down at the “switching” state p = q. Nevertheless, the strategy profile—there

is a continuum of such indexed by q ∈ [p̂, p−1(p̂))—satisfies all requirements of our solution

concept, including the HJB conditions. The intuition is that, even though the HJB conditions

capture the control over vanishingly proximate future actions, these conditions are not strong

enough, since there always exists some ϵ < p− q such that deviating only until the state falls to

p− ϵ will not generate a strictly higher payoff.

Nevertheless, we view these equilibria as implausible. First of all, we see that σ̃, regardless

of q, is Pareto worse than σ for all selves of the DM evaluated at the worst-case beliefs. Hence, σ̃

will be eliminated if the multi-selves of the DM can coordinate on the selection of equilibria, as

is often invoked in the name of “consistent planning;” see Siniscalchi (2011).11 Second, we could

strengthen the notion of vanishing commitment to eliminate the equilibria. Namely, instead of

requiring the equilibrium strategy profile to be a limit of the ϵ-commitment solution pointwise

for each p, one could require the limit convergence to be uniform across all p’s. The profile (σ̃, π̃)

cannot survive this stronger test, since for any ϵ > 0, there will always exist a state p ∈ (q, q+ϵ),

such that the ϵ-commitment solution for the DM at that state will be to deviate to σ and enjoy

a discontinuous payoff jump.12

11More precisely, Siniscalchi (2011) requires the current self to break a tie in favor of her earlier self. See Ebert
and Strack (2018) for a related approach.

12One could adopt this stronger requirement as a solution concept. We do not take this approach for two
reasons. First, the uniform convergence requirement is not easy to check since it requires one to verify the
equi-continuity property of the value function. Second, the requirement jeopardizes the existence in the more
general Poisson model we discuss in Appendix C.1 and Appendix C.1. The unique intrapersonal equilibrium
presented in Theorem 4 involves a discontinuous value function when the cost is intermediate, which does not
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Knightian Uncertainty. The extreme case in which p = 0 and p = 1, known as Knigh-

tian uncertainty, constitutes an important theoretical benchmark. Naturally, the equilibrium

characterization for this case is obtained as the limit of the solution we characterized above for

(p
0
, p0)→ (0, 1).

Proposition 1. Assume P0 = [0, 1]. If c ≥ c, the DM mixes between immediate actions ℓ and

r with probability ρ̂. Otherwise the DM mixes between experimentation and stopping followed by

ℓ at a stationary rate

ν̃ =
λ

δℓ
(uRr − ũ), where ũ =

uRr + uLℓ
2

−

√(
uRr − uLℓ

2

)2

+
c

λ
δℓ.

This solution is the limit of the equilibrium strategy characterized in Theorem 1 (Theorem 3 for

Case 2) for the case 0 < p
0
< p0 < 1 as (p

0
, p0)→ (0, 1).

As (p
0
, p0)→ (0, 1), Region 3 featuring randomized stopping takes over the entire region to

the right of p∗. Starting from p0 close to one, the state p will then remain in Region 3 for an

arbitrarily large amount of time. In the extreme case, when [p
0
, p0] = [0, 1], the DM’s set of

priors remains unchanged in the absence of breakthrough news. Hence, under any Markovian

strategy the DM either stops immediately or stops at a constant rate. The latter is optimal if

and only if c ≤ c.

We can interpret the Knightian solution as a form of hedging by the DM to ensure her

payoff equalizes between the states. Indeed, it is easy to verify that the stationary stopping rate

ν̃ satisfies the following equality:

uLℓ −
c

ν̃
=

λ

ν̃ + λ
uRr +

ν̃

ν̃ + λ
uRℓ −

c

ν̃ + λ
. (16)

The LHS shows the DM’s payoff from stopping at a constant rate ν̃ when the state is L. In

state L the DM never observes a breakthrough and thus always ends up taking the correct

action. The downside is a relatively high expected cost of experimentation equal to c/ν̃. The

RHS shows the DM’s payoff when the state is R. Now, the DM receives R-evidence before she

stops experimenting, with positive probability λ/(ν̃ + λ). With the complimentary probability,

however, the DM takes the wrong action and receives the lower payoff uRℓ . The payoff gross of

survive the stronger refinement.
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experimentation costs is then lower in state R than in state L, which is compensated by the

DM experimenting for shorter periods (in expectation) and therefore incurring a lower expected

cost of experimentation equal to c/(ν̃ + λ).

The role of randomization. Whether randomization helps to hedge against ambiguity de-

pends on the DM’s internal view on how the uncertainty unfolds (see Saito (2015) and Ke and

Zhang (2020)). We adopt the assumption that the DM views the game against nature as one

with simultaneous moves. Hence, in the DM’s mind, nature cannot condition her choice on

the outcome of the DM’s randomization. If the DM takes on an even more pessimistic view,

believing that nature can adjust her choice after the DM’s randomization outcome, any realiza-

tion of a mixed strategy will be evaluated according to the worst-case belief for this realization,

so the DM has no incentives to randomize. Modifying the setting in this way clearly changes

the characterization of our solution for the case when ambiguity is large. It does, however, not

erase the DM’s desire to stop preemptively in anticipation of a long experimentation phase when

ambiguity is large, as we show next. Stopping occurs again at intermediate sets of beliefs where

the worst-case belief is about to switch. Anticipating this, earlier selves of the DM are happy to

experiment until that point. Rather than an interval with randomized stopping, we thus obtain

an isolated stopping point. To keep the proof short, we restrict attention to the symmetric case

where uRr = uLℓ =: δ and uRℓ = uLr = 0.

Proposition 2. Suppose the DM is restricted to pure strategies. Assume Φ′(p∗) = 0, c < c and

payoffs are symmetric. If ∆ is sufficiently large, then there is a state p ∈ (0, 1) such that the

DM takes action ℓ at p and experiments on a left and right neighborhood of p.

4 Behavioral Implications of Ambiguity

In this section, we perform comparative statics to further explore the behavioral implications of

ambiguity.

Prolonged Learning and Indecision. We first investigate the DM’s incentive to prolong

her experimentation late in the game and how it varies with ambiguity. For this latter purpose,

it is more convenient to use the mid-point belief θ in log-likelihood ratio as the state; namely, θ

is chosen so that z(θ) =
z(p)+z(p)

2
, where z(p) := ln( p

1−p
). We then represent the DM’s prior set
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of beliefs as P (θ) = [p(θ), p(θ)], where p(θ) < θ < p(θ). One interpretation is that θ is the true

probability that ω = R. Alternatively, θ may be the “subjective” belief of the corresponding

Bayesian DM.

We are interested in studying how DMs with different degrees of ambiguity respond to a

change in state θ. Naturally, an increased ambiguity is represented by the shift of the prior set

from P (θ) to Q(θ) = [q(θ), q(θ)], such that q(θ) < p(θ) and p(θ) < q(θ).

Let TP (θ) and TQ(θ) respectively denote the expected lengths of experimentation time under

ambiguity P and Q. We have the following result.

Proposition 3 (Length of experimentation). Suppose c < c so that experimentation occurs

under some θ. There exists θ̂ ∈ (0, θ], where θ := sup{θ : TP (θ) > 0}, such that TQ(θ) ≥ TP (θ)

if θ < θ̂ and TQ(θ) ≤ TP (θ) if θ ∈ [θ̂, θ). Further, T ′
Q(θ) < T ′

P (θ) for θ < θ̂.

In words, an increased ambiguity leads the DM to prolong her experimentation when the

likelihood θ of state R is not too large. For a benchmark, consider the Bayesian DM with

p0 = θ. The length of experimentation for the Bayesian DM is concave and strictly increasing

for θ not too large,13 as illustrated in Figure 8. There are two competing forces. As θ increases,

on the one hand, experimentation is more likely to produce conclusive R-evidence; this tends to

shorten experimentation. On the other hand, the DM adjusts her learning strategy to lengthen

its duration as θ rises. For θ not too large, the latter effect dominates the former effect, so the

overall learning time increases as R becomes more likely.

The single crossing property stated in Proposition 3 captures the sense in which ambiguity

13See Proposition 1 of Che and Mierendorff (2019).
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blunts the responsiveness with which the DM adjusts her strategy to a change in θ. The reduced

responsiveness to θ corresponds to the behavioral trait of “indecisiveness.” In the extreme case

as Q→ [0, 1], the learning strategy becomes completely inelastic or unresponsive to the change

in the reference belief θ. In this situation, only the first effect plays a role, so that the learning

time actually decreases as the likelihood θ of R actually rises (see Figure 8).

Premature Decisiveness. While the Bayesian optimal stopping time is deterministic condi-

tional on not receiving R-evidence, a sufficiently large ambiguity leads to randomized stopping

at earlier points in time. Therefore, the ambiguity-averse DM exhibits early “decisiveness” not

shown by her Bayesian counterpart. At the same time, an increased ambiguity also leads to

prolonged experimentation, as seen in Proposition 3, which increases the likelihood of later stop-

ping. The combined effect is the increased dispersion of the stopping times. To formalize this

result, consider again two prior sets P and Q corresponding to two different ambiguity levels

with P ⊂ Q. Let FP (t) denote the probability that the DM stops by time t when the initial set

of priors is P .

Proposition 4 (Dispersion of stopping times.). Assume c ≤ c and Φ′(p∗) ≥ 0. Let P and Q be

such that P ⊆ Q. There exists a time t̂ such that FQ(t) ≥ FP (t) for all t < t̂ and FQ(t) ≤ FP (t)

for all t > t̂.

Proposition 4 shows that the stopping time distribution under the two nested sets P and Q

exhibits a single crossing property. This property indicates that the distribution over stopping

times under the larger set Q is more dispersed than the one under P . Indeed, whenever the

mean stopping time under P is weakly greater than under Q, then FP second-order stochastically

dominates FQ (when the means are equal, FQ constitutes a mean-preserving spread of FP ). The

single crossing property implies that the range of potential stopping points spreads as ambiguity

becomes larger: an expansion of the initial set of priors leads to an earlier first potential stopping

point and a later last potential stopping point. The property is illustrated in Figure 9, where we

plot the cumulative probability of stopping conditional on state L for the Bayesian DM (orange

graph) and the ambiguity-averse DM (blue graph).

Can the two traits coexist? According to our theory, ambiguity-aversion leaves potentially

testable behavioral markers—prolonged indecision and impulsive decisiveness. While seemingly

contradictory, there is a coherent logic that ties these two traits together. For illustration,
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Figure 9: Cumulative distribution of stopping times (conditional on ω = L) for the Bayesian DM
and the ambiguity-averse DM when sophisticated (in blue) and naive (in green). In the graph,
τ(p, q) denotes the time it takes for belief p to be updated to q in the absence of R-evidence.

consider again the theorist seeking to prove a new theorem with unknown validity. According to

our theory, ambiguity—with regard to the unknown validity of the theorem—makes it difficult

for the theorist to dismiss the validity of the theorem even after many unsuccessful attempts to

prove it. Hence, ambiguity might lead the DM to a costly process of continued trial that could

be seen by the outsider as a “wilde goose chase”. Recognizing that such an obsessive pursuit is

in the offing—perhaps also reminded by how such endeavors ended in the past—the DM may

simply refrain from getting into the situation by stopping early; the theorist may prematurely

give up after making a few unsuccessful attempts at proving the theorem.

While the empirical plausibility of the connection between these two traits remains unclear,

there is some evidence of their coexistence. Barkley-Levenson and Fox (2016) find indecision

and impulsivity to be positively correlated among the respondents of their behavioral survey,

and reach an interpretation uncannily close to our theory:

Our findings suggest ... indecisiveness and impulsivity can be viewed as two sides

of the same coin. Both indecisiveness and impulsivity are maladaptive behavioral

responses to difficulty engaging with a decision. We surmise that these responses

arise from a common desire to avoid negative affect that some individuals experience

when making choices. ... they may behave in an impulsive manner, hastily choosing

in order to avoid unpleasant deliberation over opportunity costs. (Barkley-Levenson

and Fox, 2016)
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The role of sophistication. While the feature of prolonged learning as a response to ambi-

guity does not hinge on the DM’s sophistication, premature decisiveness is driven by the DM’s

ability to correctly forecast her future behavior and respond accordingly. Indeed, a fully naive

DM—one who acts according to the best plan given by the current worst-case scenario but fails

to carry out the plans of earlier selves—only exhibits the first behavioral trait and will thus

always experiment longer than the corresponding Bayesian DM. The sophisticated DM, on the

other hand, will engage in preemptive stopping when ambiguity is sufficiently large, so she will

tend to stop earlier than her naive counterpart. Note, however, that both DMs share the same

final stopping points, so with positive probability both stop at the same time. We illustrate this

feature in Figure 9: the CDF for the naive DM first-order stochastically dominates that of the

sophisticated DM.

It is also interesting to contrast the sophisticated and naive DMs with a DM who has full

commitment power. As we saw in Section 2, the commitment solution is given by the Bayesian

optimal stopping rule for the prior in [p
0
, p0] that minimizes the Bayesian value function Φ∗.

Assuming p0 > p∗, the graph illustrating the commitment solution is thus qualitatively similar

to that of the Bayesian DM in Figure 9. Specifically, a committed DM will stop before a naive

one. The comparison with a sophisticated DM is ambiguous, except that the latter’s stopping

time is more dispersed in the sense established in Proposition 2.

5 Extensions

Our results are robust to different learning environments. Here, we extend the baseline model to

consider two canonical ones. Our discussion will be largely informal, with the detailed analysis

relegated to Appendix C. We also assume throughout that the stopping payoffs are symmetric:

uRr = uLℓ = δ > 0 and uRℓ = uLr = 0.

5.1 General Poisson Learning

One could consider a general Poisson model introduced by Che and Mierendorff (2019): at each

instant, the DM may seek either R-evidence (as before) or L-evidence. One interpretation is

that there are two news sources emitting the two types of evidence. The DM may then allocate

a share α ∈ [0, 1] of her attention to the R-evidence news source and a share 1 − α to the

L-evidence news source, and receive the evidence proportionately at rates αλ in state R and
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at rates (1 − α)λ in state L. For instance, a theorist may try either to “prove” a theorem (R-

evidence), to find a “counter-example” disproving it (L-evidence), or to divide effort between

the two endeavors.

As before, the Bayesian optimal strategy is characterized by two stopping boundaries, but

as shown by Che and Mierendorff (2019), the optimal learning strategy becomes nontrivial.

Figure 10 summarizes the strategy for two different ranges of learning costs.

p=

|
0

——————–︸ ︷︷ ︸
action ℓ

pBℓ ←−←−←−←−←−︸ ︷︷ ︸
α=1

p̌−→−→−→−→−→︸ ︷︷ ︸
α=0

pBr ——————–︸ ︷︷ ︸
action r

|
1

(a) intermediate cost: c ∈ [c∗, c), where c∗ := λδ
1+e2 .

p=

|
0

—————︸ ︷︷ ︸
action ℓ

pBℓ ←−←−←−︸ ︷︷ ︸
α=1

pBL−→−→︸ ︷︷ ︸
α=0

p∗︸︷︷︸
α= 1

2

←−←−︸ ︷︷ ︸
α=1

pBR−→−→−→︸ ︷︷ ︸
α=0

pBr —————︸ ︷︷ ︸
action r

|
1

(b) low cost: c < c∗.

Figure 10: Bayesian optimal strategy.

The (Bayesian) DM adopts the two types of Poisson signals for different beliefs p. If the

belief is close to a stopping boundary or if c is not too low, the DM looks for a contradictory

evidence—i.e., L-evidence when p is relatively high and R-evidence when p is relatively low.

Intuitively, the DM is seeking to “rule out” the less likely state. When such evidence does not

arrive, the belief drifts outward, toward a stopping boundary. Upon reaching that boundary

belief, the DM stops and chooses the action matching the likely state.

If the cost is low and p is in a middle range, the DM seeks confirmatory evidence—i.e., R-

evidence if p is relatively large and L-evidence if p is relatively small. When such evidence does

not arrive, the DM becomes more uncertain, and her belief drifts inwardly toward p∗ = 1/2.

Once p∗ = 1/2 is reached, the DM splits her attention between the two news sources with

α = 1/2. Her belief then never moves, and learning continues indefinitely until either evidence

is obtained. Intuitively, at that belief, the DM finds both types of experimentation equally

tempting and acts like a “Buridan’s donkey,” unable to drift away from the belief that causes

the dilemma.

Suppose now the DM is ambiguity averse, endowed with an interval of priors. How would

the presence of the additional news source affect her behavior? Several patterns of behavior

established from the baseline model continue to hold. First, close to a stopping boundary,
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Figure 11: The case of intermediate c and large ∆.

the “inner-most” belief becomes the worst-case belief, and the DM learns—which she does

by seeking contradictory evidence much like the Bayesian DM—until that belief reaches the

Bayesian stopping boundary. Hence, the DM learns excessively compared with the Bayesian

counterpart.

Next, when the cost is not too small (its precise range being specified in Appendix C.2),

the DM may also engage in randomized stopping much like in the baseline model. As before,

this happens when the ambiguity is sufficiently large so that the set of priors contains p =

1/2 (corresponding to the minimizer of the Bayesian value function), and the associated value

segment crosses the stopping payoff associated with either action ℓ or r. Specifically, when the

prior set is toward the left side, the DM randomizes between R-evidence seeking and stopping

with action ℓ (as before); when the prior set is toward the right side, the randomization is between

L-evidence seeking and stopping with action r. See the former case depicted in Figure 11 (left

panel).

A new feature also emerges. The DM now adopts split-attention learning for a range of prior

sets. While this strategy is also employed by the Bayesian DM, it becomes more valuable as a

hedging device since it allows the DM to collect both types of evidence. An ambiguity-averse

DM may thus use the split-attention strategy even when the Bayesian DM would not. For

instance, Figure 11 depicts the case of intermediate costs, where the (Bayesian) value of seeking

confirmatory evidence followed by split attention (the orange curve) is strictly below the value of

seeking contradictory evidence (the blue curve). In this case, it is never optimal for a Bayesian

DM to employ split-attention learning. Yet, as depicted in the right panel of Figure 11, the

ambiguity-averse DM adopts this strategy when ambiguity is sufficiently large and the prior set
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is sufficiently centered.14 In this situation, split-attention learning supplants the randomized

stopping strategy as a superior hedging device.

In sum, the equilibrium exhibits the behavioral patterns observed in the baseline model,

such as excessive learning and premature stopping, but it also features a new strategy, namely

split attention. Whenever the DM adopts the latter strategy, she continues learning until she

fully resolves the uncertainty. This behavior thus provides another pattern of excessive learning,

when it is seen from the perspective of a Bayesian observer with comparable beliefs.

5.2 Incremental Learning

So far, we have focused on Poisson learning. Alternatively, one could consider an incremental

learning model in which the signal follows a diffusion process. Suppose the DM receives a signal

X ∈ R about the state ω ∈ {L,R} at a flow cost of c per unit time, which follows the process:

dXt = µωdt+ σdBt,

where µR > µL. As usual, it is more convenient to convert X into a belief, particularly into a

log-likelihood ratio Z, where

dZt =
ψ

σ
dXt −

ψ

σ

(
µR + µL

2

)
dt = ±ψ

2

2
dt+ ψdBt,

and ψ := µR−µL

σ
is the signal-to-noise ratio (see Daley and Green (2012, 2020) for example).

Then, the Bayesian optimal behavior is characterized by two stopping boundaries (in terms of

log-likelihood ratio), zBℓ and zBr , such that the DM stops and chooses ℓ if z ≤ zBℓ , she stops

and chooses r if z ≥ zr, and she experiments if z ∈ (zBℓ , z
B
r ). Given the symmetry of payoffs

zBℓ < 0 < zBr = −zBℓ , where z = 0 corresponds to the belief of p = 1/2. As before, the stopping

boundaries are graphically depicted by tangent points of the Bayesian value function, denoted

by ΦB, at the stopping payoffs (which are nonlinear due to the change of variable): see Figure 12.

Consider now an ambiguity-averse DM whose prior set is represented by an interval Y (z) :=

[z − ∆
2
, z + ∆

2
]. In contrast to before, let us index the “state” by the midpoint z. Upon suitable

modification, the intra-personal equilibrium is characterized much like in the baseline model.

14More specifically, this happen when the set of priors includes the interval [p−, p+] such that p− < 1/2 < p+,
where these parameters are characterized in Appendix C.1.
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Figure 12: Agent’s value when experimenting (left) and when stopping (right), with worst-case
belief ζ(z) and boundaries zℓ := zℓ +∆/2 and zr := zr −∆/2.

If the ambiguity small, there are again two stopping boundaries zℓ < 0 < zr (where zr = −zℓ
given the symmetry) such that the DM experiments if and only if the state z belongs to the inter-

val (zℓ, zr). As before, the inner-most belief constitutes the worst-case belief. That is, stopping

for action ℓ occurs at state zℓ when the DM is indifferent between stopping and experimenting

at her right-most belief zℓ +
∆
2
; and likewise for the stopping for action r. Differently from the

Poisson model, however, the stopping belief zℓ +
∆
2
no longer coincides with the Bayesian stop-

ping boundary zBℓ . In fact, one can show that zBℓ < zℓ +
∆
2
< 0 < zr − ∆

2
< zBr .

15 Namely, the

DM stops experimenting before stopping becomes Bayesian optimal for all beliefs in the set. To

see this, consider the case where the DM’s right-most belief is close to zBℓ . If the DM continues

experimentation, there is a small chance that the state drifts all the ways to the other side of

the right stopping boundary. The DM understands that if this happens, she will stop only when

the left-most belief reaches the stopping boundary. From the viewpoint of the right-most belief,

there is hence excessive experimentation close to the right stopping boundary, which reduces

the value of experimenting. The same applies to the other side. The argument further implies

that in the experimentation region, there is no belief in [z− ∆
2
, z+ ∆

2
] for which the equilibrium

strategy is Bayesian optimal. This means that the value segment for the ambiguity-averse DM is

strictly below, and thus never touches, the Bayesian value function, as illustrated in Figure 12.

Graphically, in the small ambiguity case, the value segment is sufficiently short so that

its lower end does not fall below the stopping payoff. Otherwise stopping becomes optimal

under the worst-case belief, as we illustrate in Figure 13 (left panel). In such situations, the DM

15Epstein and Ji (2020) obtain a qualitatively similar result for the case of rectangular sets of priors.
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Figure 13: The case of large ∆: on the left, profitable deviation if the DM would experiment;
on the right, intrapersonal equilibrium with mixed stopping (followed by r).

again randomizes between experimentation and stopping. Mixed stopping works here as follows:

starting from z = 0, if z moves slightly to the left, the DM mixes between experimentation and

stopping followed by action r; if instead z moves slightly to the right, the DM mixes between

experimentation and stopping followed by ℓ. This pattern is analogous to how randomized

stopping occurs in the baseline model. Intuitively, mixing with action r when z < 0 (resp. ℓ

when z > 0) hedges the DM against the possibility that the state is in fact R (resp. L) and,

hence, that experimentation will take a very long time.

Apart from technical details (discussed in Appendix C.2), the solution method and quali-

tative features of the solution thus extend to the drift-diffusion model. In particular: 1) the

DM has incentives to engage in excessive experimentation close to the stopping boundaries; 2)

if ambiguity is large and the flow cost c is small, the DM will exert self control and preempt

herself from experimenting excessively by randomly stopping at intermediate sets of beliefs.

6 Concluding Remarks

This paper studies the canonical Wald problem under the assumption that the DM faces uncer-

tainty about the underlying probabilities of the different states. We consider a DM who seeks

to maximize her payoff guarantee and updates beliefs prior by prior. Given the assumption that

ambiguity concerns the state but not the information technology, switches in the DM’s worst-

case scenario naturally arise, thereby leading to violations of dynamic consistency. Rather than

ruling out such violations, we seek to understand their behavioral implications on information
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acquisition. The main technical challenge is then to solve the DM’s optimization problem in

the presence of dynamic preference reversals. We develop a new method, based on saddle-

point HJB conditions, and provide a micro-foundation for the approach. The method proves

highly tractable and is applicable to dynamic optimization problems well beyond information

acquisition, such as real options theory, dynamic portfolio choice, or search models.

An open question is how our solution changes under different updating rules. Prior-by-prior

updating entails that the DM updates on the state but not on the probability model. On the

other extreme of the spectrum is maximum likelihood updating (Gilboa and Schmeidler, 1993),

according to which the DM only retains those priors which explain the data best. In our setting,

this would not be very interesting, as the DM, in the absence of a breakthrough, would discard

all priors but the left-most after the first instant of time. There are, however, less extreme

versions that combine features of both updating rules (e.g. Cheng (2021)). It will be interesting

to explore the implications of such rules on the incentives to acquire information in dynamic

settings.

We focus on the case where the DM is fully sophisticated and thus correctly forecasts the

behavior of her future selves. An open question is how the results extend to the case where

the DM is partially naive. For instance, the DM may be paying attention only at certain

points in time. This could be modelled by having a Poisson clock run in parallel, which then

determines the times at which the DM contemplates the actions of her future selves and optimizes

accordingly (otherwise she follows the naively optimal plan). A higher Poisson rate would thus

capture a more sophisticated DM. Given such a model, one could ask how the DM’s welfare

(say with respect to initial preferences) would depend on the level of sophistication. We leave

these interesting questions for future research.

A Appendix

A.1 Microfoundation of the saddle-point HJB equations

We now justify our equilibrium concept, or the use of saddle-point HJB equations. The idea is

to imagine that at each point in time, the DM can control, or commit to, her actions for a brief

period of time, say ϵ > 0. She thus acts dynamically consistently for a brief period of time, while
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taking as given the strategies of her future selves beyond that time interval. We then require

the strategy to be a limit of the ϵ-dynamically consistent strategies as ϵ→ 0.

To make this formal, fix a candidate strategy σ∗. Suppose that, at any state p and any time t,

the DM can commit to any strategy σ (possibly different from σ∗) during a time interval [t, t+ϵ),

for some ϵ > 0, and the strategy switches to σ∗ thereafter. Let (σϵ(·), πϵ(·)) be the saddle point

strategy for such an ϵ horizon problem (followed by σ∗), or an ϵ-commitment solution. We say

that a pseudo equilibrium (σ∗, π∗) is dynamically credible if for each p there is a sequence of

ϵ-commitment solutions (σϵ(p), πϵ(p)) that converges to (σ∗, π∗) as ϵ→ 0. We further say that a

pseudo equilibrium (σ∗, π∗) is well-behaved if, for each p ∈ (0, 1), V σ∗
(π∗(p), p), V σ∗

p (π∗(p), p) and

V σ∗
p (π∗(p), p−) are well-defined and continuous at (π∗(p), p). We now provide the justification

based on dynamic consistency.

Write W σ
ϵ (p, p) for the DM’s value when the DM follows strategy σ for ϵ-period, followed by

the candidate strategy σ∗. Then,

W σ
ϵ (p, p)

=m(p)Uρ(p)(p) + (1−m(p))

[
−p
∫ p

pϵ
e−

∫ τ(p,p′)
0 (λ+ν(pτ ))dτ

(
−c+ λuRr + ν(p′)uRρ(p′)

) 1

η(p′)
dp′

− (1− p)
∫ p

pϵ
e−

∫ τ(p,p′)
0 ν(pτ )dτ

(
−c+ ν(p′)uLρ(p′)

) 1

η(p′)
dp′

+
(
pe−

∫ τ(p,pϵ)
0 (λ+ν(pτ ))dτ + (1− p)e−

∫ τ(p,pϵ)
0 ν(pτ )dτ

)
V σ∗

(pϵ, pϵ)
]
,

where for any q ∈ [0, 1], qδ denotes the δ-ahead update of belief q, and for any p, p′ ∈ [0, 1] with

p < p′

τ(p, p′) :=
1

λ
ln

(
p

1− p
1− p′

p′

)
denotes the time it takes for the Bayesian update of p to reach p′ in the absence of R-evidence.

Let (σϵ(·), πϵ(·)) denote an ϵ-commitment solution. Then, it must satisfy the following saddle

point condition: for each p

σϵ(p) ∈ argmaxσW
σ
ϵ (πϵ(p), p) (17)

πϵ(p) ∈ argminp∈P (p)W
σϵ
ϵ (p, p). (18)

Let Wϵ(πϵ, p) := W σϵ
ϵ (πϵ, p) be the saddle point value of the ϵ-commitment solution at p.
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The ϵ-commitment saddle point valueWϵ(πϵ, p) is characterized as follows: For any δ ∈ (0, ϵ),

Wϵ(πϵ, p)

= max
m,ν,ρ

m(p)Uρ(p)(πϵ) + (1−m(p))

[
−πϵ

∫ p

pδ
e−

∫ τ(p,p′)
0 (λ+ν(pτ ))dτ

(
−c+ λuRr + ν(p′)uRρ(p′)

) 1

η(p′)
dp′

− (1− πϵ)
∫ p

pδ
e−

∫ τ(p,p′)
0 ν(pτ )dτ

(
−c+ ν(p′)uLρ(p′)

) 1

η(p′)
dp′

+

(
πϵe

−
∫ τ(p,pδ)
0 (λ+ν(pτ ))dτ + (1− πϵ)e−

∫ τ(p,pδ)
0 ν(pτ )dτ

)
Wϵ−δ(π

δ
ϵ , p

δ)

]
.

Following the dynamic programming principle, the RHS does not depend on any δ ∈ (0, ϵ).

Hence, the derivative of the RHS with respect to δ evaluated at δ = 0 must equal zero. So, we

obtain the standard HJB equations:16

0 = max
m,ν,ρ

G(m, ν, ρ, πϵ, p,Wϵ, dWϵ), (19)

σϵ(p) = (mϵ(p), νϵ(p), ρϵ(p)) ∈ argmax
m,ν,ρ

G(m, ν, ρ, πϵ, p,Wϵ, dWϵ). (20)

Likewise, by the saddle point condition, Wϵ(πϵ, p) is also equivalently characterized as: for

any δ ∈ (0, ϵ),

Wϵ(πϵ, p)

= min
p
mϵ(p)Uρϵ(p)(p) + (1−mϵ(p))

[
−p
∫ p

pδ
e−

∫ τ(p,p′)
0 (λ+νϵ(pτ ))dτ

(
−c+ λuRr + νϵ(p

′)uRρ(p′)

) 1

η(p′)
dp′

− (1− p)
∫ p

pδ
e−

∫ τ(p,p′)
0 νϵ(pτ )dτ

(
−c+ νϵ(p

′)uLρ(p′)

) 1

η(p′)
dp′

+

(
pe−

∫ τ(p,pδ)
0 (λ+νϵ(pτ ))dτ + (1− p)e−

∫ τ(p,pδ)
0 νϵ(pτ )dτ

)
W σ

ϵ−δ(p
δ, pδ)

]
.

16Since Wϵ−δ(π
δ
ϵ , p

δ) = Wϵ(πϵ, p−) +
∂Wϵ(πϵ,p−)

∂p η(πϵ)δ+
∂Wϵ(πϵ,p−)

∂p η(p)δ+ o(δ), the derivative of Wϵ−δ(π
δ
ϵ , p

δ)
with respect to δ is:

lim
δ↓0

Wϵ−δ(π
δ
ϵ , p

δ)−Wϵ(πϵ, p−)

δ
=

∂Wϵ(πϵ, p−)

∂p
η(πϵ) +

∂Wϵ(πϵ, p−)

∂p
η(p).
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Following the dynamic programming principle, the RHS does not depend on any δ ∈ (0, ϵ).

Hence, the derivative of the RHS with respect to δ evaluated at δ = 0 must equal zero. So, we

obtain the standard HJB equations:

πϵ ∈ arg min
p∈P (p)

G(mϵ, νϵ, ρϵ, p, p,Wϵ, dWϵ). (21)

The proof is Appendix Appendix B.3.We begin with a useful observation:

Lemma A.1. Suppose a well-behaved pseudo equilibrium (σ∗, π∗) is dynamically credible. Then,

for each p ∈ (0, 1), for any sequence such that (σϵ(p), πϵ(p)) → (σ∗(p), π∗(p)) as ϵ → 0,

Wϵ(πϵ(p), p−)→ V σ∗
(π∗(p), p−),

∂Wϵ(πϵ(p),p−)

∂p
→ V σ∗

p (π∗(p), p−), and
∂Wϵ(πϵ(p),p−)

∂p
→ V σ∗

p (π∗(p), p−).

The result now follows.

Theorem 2. If a well-behaved pseudo equilibrium is dynamically credible, then it is an in-

trapersonal equilibrium. Conversely, if there is a unique intrapersonal equilibrium, then it is

dynamically credible.

Proof. Fix any p. By the dynamic credibility of (σ∗, π∗), for each p ∈ (0, 1), there exists

a sequence of ϵ such that an associated ϵ-commitment solution (σϵ(p), πϵ(p)) converges to

(σ∗(p), π∗(p)) as ϵ → 0. Given the continuity assumption, by Lemma A.1, Wϵ(πϵ(p), p−) →
V σ∗

(π∗(p), p−),
∂Wϵ(πϵ(p),p−)

∂p
→ V σ∗

p (π∗(p), p−), and
∂Wϵ(πϵ(p),p−)

∂p
→ V σ∗

p (π∗(p), p−).

Next, observe that G is continuous. Hence, by Berge’s maximum theorem, the maximized

value is continuous and the set of maximizers must be upper hemicontinuous, which in this case

should mean a closed graph. Hence, (10) and (11) must follow from (19) and (20) in the limit

as ϵ→ 0.

Applying the same argument, (12) follows from (21) in the limit as ϵ→ 0. Again, by Berge’s

maximum theorem the minimized value is continuous and the set of minimizers must be upper

hemicontinuous, which implies a closed graph. Hence, the conditions must hold in the limit as

ϵ→ 0.

Conversely, suppose (σ∗, π∗) is intrapersonal equilibrium. Then, it satisfies (10), (11), and

(12), for each p. Hence, for each p, V σ∗
(π∗(p), p), V σ∗

p (π∗(p), p) and V σ∗
p (π∗(p), p−) are well-

defined and continuous at (π∗(p), p). Take a sequence (subsequence if necessary) of ϵ > 0

such that (σϵ, πϵ,Wϵ(πϵ(p), p), ∂Wϵ(πϵ(p), p)/∂p, ∂Wϵ(πϵ(p), p)/∂p) all converge to some limit,

say (σ0, π0,W0(π0(p), p), W̃0,p(π0(p), p), W̃0,p(π0(p), p)). The reason that such a sequence can
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be found is as follows. First, (Wϵ(πϵ(p), p), ∂Wϵ(πϵ(p), p)/∂p) is bounded within a compact

set
[
min{uRℓ , uLr },max{uRr , uLℓ }

]
× [uRℓ − uLℓ , u

R
r − uLr ]. This together with (20) means that

νϵ(p) can be bounded within [0, ν] for some large ν. The boundedness of νϵ(p) in turn means

that ∂Wϵ(πϵ(p), p)/∂p can be bounded within an compact set. This proves that the converg-

ing sequence can be found for each p. Next, since ∂2Wϵ(πϵ(p), p)/∂p∂p = 0 for all ϵ (which

follows from the fact that Wϵ(·, p) is linear), we have W̃0,p(π0(p), p) = ∂W0(π0(p), p)/∂p and

W̃0,p(π0(p), p) = ∂W0(π0(p), p)/∂p. It is immediate that the limiting strategy profile (σ0, π0) is a

pseudo equilibrium. Also using the same argument as above, we conclude that the limit strategy

profile (σ0, π0), together with the value function W0, satisfies (10), (11), and (12) for each p.

Therefore, (σ0, π0) is also an intrapersonal equilibrium. The uniqueness of the equilibrium then

means that (σ0, π0) = (σ∗, π∗), so for each p, (σ∗(p), π∗
0(p)) is a limit of some ϵ-commitment

solution (σϵ(p), πϵ(p)) as ϵ→ 0. Hence, (σ∗, π∗) is dynamically credible.

A.2 Proof of Theorem 1

For our purpose, we first establish a preliminary result about the Bayesian value function. Recall

the solution ϕ to the ODE (1). Then, the following lemma holds.

Lemma A.2. For any p > pBℓ , ϕ
′(p; p, Uℓ(p))− U ′

ℓ(p) > 0 whenever ϕ(p; p, Uℓ(p)) = Uℓ(p).

Proof. Define δω := |δωr − δωℓ |, ω = L,R. It follows from (1) that

λp(1− p)(ϕ′(p; p, Uℓ(p))− U ′
ℓ(p)) = λp(uRr − ϕ(p; p, Uℓ(p)))− c+ λ(1− p)(uLℓ − Uℓ(p))

= λ
(
puRr + (1− p)uLℓ − Uℓ(p)

)
− c

= λpδR − c,

where the second equality uses the fact that ϕ(p; p, Uℓ(p))) = Uℓ(p). Since the last line is strictly

increasing in p and equals 0 when p = pBℓ , the above claim is proven.

For the proof, for each region of p’s, we will specify the strategy profile (σ, π) and the

associated value V σ(p, p) that are not fully specified in Theorem 1. We will then verify the value

function together with the strategy profile (σ, π) satisfy the equilibrium conditions.

For ease of presentation, we shall mainly focus on Case 1. Further, we will assume that either

c < c or c ∈ (c, c] but ∆ < ∆c, where ∆c will be specified later (in Region 3 in Appendix A.2.1).
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We call this casemain case. We will first treat the main case in Appendix A.2.1. The remaining

cases will be treated in Appendix A.2.2 and Appendix B.7.

A.2.1 Main Case

Region 1: p ∈ [0, p1], where p1 := pBℓ .

• Computation of equilibrium value. Recall that the strategy σ calls for an immediate

choice of ℓ for all state p ≤ pBℓ = p1. It thus immediately follows that the value associated with

that strategy is:

V σ(p, p) := Uℓ(p), for all p ∈ [0, p1].

• Verification of equilibrium conditions. With V σ(p, p) = Uℓ(p), m(p) = 1 and ρ(p) = 0

imply that π(p) = p is a minimizer in (12). Since U ′
ℓ(p) < 0 by assumption, π(p) = p is the

unique minimizer in (6). Substituting V σ(p, p) = Uℓ(p), V
σ
p (p, p) = U ′

ℓ(p), V
σ
p (p, p) = 0, and

π(p) = p, (10) simplifies to

max
m,ν,ρ

m [Uρ(p)− Uℓ(p)] + (1−m)
[
−c+ ν(Uρ(p)− Uℓ(p)) + pλ(uRr − Uℓ(p)) + U ′

ℓ(p)η(p)
]
= 0.

With m = 1 and ρ = 0, the LHS is zero. Moreover, for any ρ, ν, simple algebra shows that

the coefficient of (1 − m) is non-positive for all p ≤ p1. Hence σ = (1, 0, 0) is a maximizer

and both (10) and (11) are satisfied for V σ(p, p) = Uℓ(p). Setting m(p) = 1 and ρ(p) = 0, the

objective in (12) is independent of p and π(p) = p is a minimizer. Hence we have shown that for

the posited strategy profile (σ, π) satisfy the equilibrium conditions, (6)–(12) for all p ∈ [0, p1].

Region 2: p ∈ (p1, p2], where p2 := p∗.

• Computation of equilibrium value. Recall that the strategy σ calls on the DM to ex-

periment until p drifts to p1 = pBℓ . Fix any state p in this region. To compute the associated

value V σ(·, p), it is useful to ask: for which belief p ∈ P (p) is the continuation strategy σp

Bayesian optimal? The answer is p = p, since the strategy is exactly what a Bayesian DM with

belief p will do—experimenting until p reaches the Bayesian optimal stopping belief pBℓ = p1.

Consequently, we must have

V σ(p, p) = Φ(p).
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Since the strategy needs not be optimal for any DM with belief p ̸= p (including p outside P (p)),

we must have

V σ(p, p) ≤ Φ(p),∀p ∈ [0, 1].

Finally, since V σ(p, p)—the valuation of a fixed action path—must be linear in p, the preceding

observations must imply:

V σ(p, p) := Φ(p) + (p− p)Φ′(p), for all p ∈ (p1, p2]. (22)

• Verification of equilibrium conditions. Since Φ′(p) ≤ 0 for all p ∈ (p1, p2], V
σ
p (p, p) ≤ 0

and therefore π(p) = p is a minimizer in (6). With π(p) = p we have

V σ(π(p), p) = Φ(p), V σ
p (π(p), p) = Φ′(p), V σ

p (π(p), p) = 0.

Therefore (10) simplifies to

max
m,ν,ρ

m [Uρ(p)− Φ(p)] + (1−m)
[
−c+ ν(Uρ(p)− Φ(p)) + pλ(uRr − Φ(p)) + Φ′(p)η(p)

]
= 0.

Since Φ(p) ≥ U(p) for any p, ν = 0 is optimal. Moreover, m = 0 is optimal since we have from

(1)

−c+ pλ(uRr − Φ(p)) + Φ′(p)η(p) = 0

for the Bayesian value function. Therefore (10) and (11) are satisfied for all p ∈ (p1, p2]. Con-

dition (12) holds since m(p) = ν(p) = 0 implies that the objective in (12) is given by

− c+ pλ
(
uRr − (Φ(p) + (p− p)Φ′(p))

)
− λp(1− p)Φ′(p)− λp(1− p)(p− p)Φ′′(p)

=− c+ pλ
(
uRr − (Φ(p) + (1− p)Φ′(p))

)
− λp(1− p)(p− p)Φ′′(p).

Differentiating this with respect to p yields

λ
(
uRr − (Φ(p) + (1− p)Φ′(p))

)
− λp(1− p)Φ′′(p).

Differentiating the ODE for the Bayesian Value function (see (1)) with respect to p we obtain

that this is expression is equal to zero. Hence π(p) is a minimizer in (12).

To summarize, we have shown that for the posited profile (σ, π), together with the value
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function V σ, satisfy (6)–(12) for all p ∈ (p1, p2].

Region 3: p ∈ (p2, p3].

This region exists only when the ambiguity is sufficiently large so that V σ(p(p2), p2) < Uℓ(p(p2)).

If this inequality is reversed, then we set p3 = p2, and Region 3 is empty. Assuming the inequality,

we will specify the upper bound p3, and the critical cost c and ambiguity level ∆c referred to in

the statement of the theorem. Finally, we will specify ν(p) and π(p) fully for p in this region.

• Specification of ν and π and equilibrium value. The strategy σ for this region involves

randomization between experimentation and stopping for ℓ, with the latter done at a Poisson rate

ν(p). Meanwhile, nature chooses belief π(p) ∈ P (p). Here, we specify (ν, π) precisely, together

with the value V σ(p, p) associated with the strategy. We first construct a value function V (p, p)

that satisfies the equilibrium conditions, (6)-(12), given the candidate strategy σ. We will then

establish that the constructed function V (p, p) indeed coincides with the value of σ.

To begin, fix any p > p2. First, the fact that the DM randomizes between experimentation

and action ℓ means that the coefficient of ν in (11) must vanish, which implies (13). For the

required belief π(p) to be nature’s choice satisfying (6), it is sufficient, and will be seen also

necessary, to have Vp(p, p) = 0. Namely,

V (p, p) = V̂ (p), ∀p. (23)

Substituting this into (13), we get (14). The randomization by DM in turn implies that the

derivative of the objective in (11) with respect to p must vanish. This fact, together with (23)

yields (15).

It now remains to specify the function V̂ (p). To this end, we use (14),(15) and (23) to simplify

(10) and obtain the differential equation (ÔDE). Together with the boundary condition that

V̂ (p2) = Φ(p2), (ÔDE) admits a unique solution:17

V̂ (p) :=
C(

1−p
p

)u2−u1
δℓ + C

u1 +

(
1−p
p

)u2−u1
δℓ(

1−p
p

)u2−u1
δℓ + C

u2, (24)

17The derivation of the solution appears in Appendix B.5.
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where

C :=
u2 − Φ(p2)

Φ(p2)− u1

(
1− p2
p2

)u2−u1
δℓ

, (25)

and u1 and u2 are lower and higher roots of a quadratic equation; namely,

u1,2 :=
uRr + uLℓ

2
±

√(
uRr − uLℓ

2

)2

+
c

λ
δℓ. (26)

It is instructive to visualize how nature’s feasible “set of values” evolves on the equilibrium

path as p drifts down in this region. Our construction so far indicates that at each state the

feasible set forms a flat segment {(p, V̂ (p)) : p ∈ [p(p), p]}, and the belief at which the segment

crosses ℓ-payoff function Uℓ(p) is precisely nature’s choice π(p). As p falls in this region, the

segment shifts left. The starting state of Region 3, or its right most boundary, p3, is the state

such that its associated value segment just meets or “touches” the ℓ-payoff function Uℓ(p) at the

former’s left-most end. Formally, p3 is defined by:

V̂ (p3) = Uℓ(p(p3)). (27)

Let û := minp∈[0,1] U(p). The following observations are useful to establish:

Lemma A.3. (i) V̂ (·) is strictly decreasing, and V̂ (p) ∈ (u1, u2) for all p > p2.

(ii) If V σ(p(p2), p2) < Uℓ(p(p2)) (i.e., the condition for Region 3 to exist holds) and u1 > uRℓ ,

then there exists a unique solution p3 ∈ (p2, 1).

(iii) If c ≤ c, then u1 ≥ û, so V σ(·, p2) > û for all p ≥ p2. If c ∈ [c, c), there exists ∆c > 0 such

that V σ(·, p3) = V̂ (p3) ≥ û if and only if ∆ < ∆c.

Proof. The proof can be found in Appendix B.4 below.

Lemma A.3-(i) implies that the value segment shifts up (as well as shifts left) as p drifts

down.18 Next, Lemma A.3-(ii) implies that p3 is well defined and above p2 whenever the region

exists. Last, Lemma A.3-(iii) ensures that the value segment remains above û for all p ∈ (p2, p3],

18One can also see that V σ is continuous, including at the boundary. This follows from the fact that V̂ (p2) =
Φ(p2), and that p2 = p∗ and Φ′(p∗) = 0.
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if either c ≤ c or if c ∈ [c, c) but ∆ < ∆c, for some ∆c > 0. Our verification below will use this

fact, assuming the sufficient condition.

So far, our value function V (p, p) is constructed from HJB equations along with (6). We

now claim the value function indeed represents the value of the candidate strategy σ:

Lemma A.4. For all p ∈ (p2, p3), V (p, p) = V σ(p, p).

Proof. See Appendix B.6.

• Verification of equilibrium conditions. To verify (10)–(11), note that the definition of

π(p) in (14) implies that Uℓ(π(p))−V σ(π(p), p) = 0. We have already observed from Lemma A.3-

(iii) that V σ(·, p) ≥ û for all p ∈ (p2, p3]. This further implies that π(p) ≤ p̂ for p ∈ (p2, p3].

Therefore ρ(p) = 0 is a maximizer in (10)–(11). By (13), ν(p) as defined in (15) is a maximizer

as well. It remains to show that m(p) = 0 is a maximizer and the RHS in (10)–(11) is equal

to zero, both of which would follow if the coefficient of (1−m) in the objective in (10)–(11) is

equal to zero. We can use (13) and (23) to simplify the coefficient of (1−m) to:

− c+ π(p)λ(uRr − V̂ (p))− λp(1− p)V̂ (p), (28)

which vanishes precisely because V̂ solves (ÔDE). We thus conclude thatm(p) = 0 is a minimizer

in (11). We have thus verified (24) and (11).

To verify (12) note that, with m(p) = ρ(p) = 0 and ν(p) defined in (15), the derivative of

the objective in (12) with respect to p simplifies to:

ν(p)
(
uRℓ − uLℓ

)
+ λ(uRr − V (π(p), p)) = ν(p)

(
uRℓ − uLℓ

)
+ λ

(
uRr − V̂ (p)

)
= 0,

where we have used Vp(π(p), p) = Vpp(π(p), p) = 0. Hence, we conclude that π(p) satisfies (12).

It also satisfies (6) since V σ(p, p) is constant in p.

Region 4: p ∈ (p3, p4].

Here, p4 will be defined as part of the analysis.

Computation of equilibrium value. Recall that the strategy σ calls on the DM to exper-

iment fully at each state p > p3 until state p3 is reached. To compute the associated value
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V σ(p, p), it is useful to consider a (hypothetical) Bayesian DM who would find such a strategy

optimal. To this end, we represent the DM’s problem as a stopping problem where the stopping

payoff is the continuation value v∗∗ := V̂ (p3):
19

Auxiliary Problem: Imagine a hypothetical Bayesian DMwith any belief p ≥ p(p3)

who at each instant may experiment or stops. She may experiment until either

breakthrough occurs or her belief reaches p(p3). If she stops at any point, she collects

the payoff V̂ (p3) (independent of p). The optimal value of this stopping problem is:

Ψ(p) = max
p′∈[p(p3),p]

ϕ(p; p′, v∗∗). (29)

Let p∗∗ denote the optimal stopping belief. We note that Ψ(p∗∗) = v∗∗ and Ψ′(p∗∗) ≥
0, with equality holding whenever p∗∗ > p(p3) (a consequence of smooth pasting).

We can easily see that p∗∗ ∈ [p(p3), p3).
20

Fix any state p > p3. We ask: for what belief p is the continuation strategy σp optimal

over Region 3? Recall σp prescribes: “experiment for the duration of τ(p, p3) and, absent

breakthrough by the end of the experimentation, stop and collect V̂ (p3),” where τ(p, p′) denotes

the time it takes for a belief to drift from p to p′. Since, by definition, p∗∗ is the optimal stopping

belief, the answer to the above question is precisely the belief, q(p), such that

τ(p, p3) = τ(q(p), p∗∗). (30)

In words, it is the belief that would be updated to p∗∗ after the prescribed duration τ(p, p3) of

experimentation.21 Since p∗∗ is the optimal stopping belief in the above Auxiliary Problem, a

DM with belief q(p) finds the prescribed strategy optimal at state p and thus will realize the

19Recall that if Region 3 does not exist, then p3 = p2 = p∗, so V̂ (p3) = V̂ (p2) = Φ(p2), as defined before. All
subsequent results hold since Vp(p, p2) = Φ′(p2) = Φ′(p∗) = 0.

20To see that p∗∗ < p3, it suffices to show that p∗∗ < p∗ since p∗ ≤ p3. To show p∗∗ < p∗, suppose otherwise.
Then,

λp∗∗(1− p∗∗)Ψ
′(p∗∗) = λp∗∗(u

R
r −Ψ(p∗∗))− c = λp∗∗(u

R
r − v∗∗)− c > λp∗(u

R
r − Φ(p∗))− c = Ψ′(p∗) ≥ 0,

where the first and second last equalities follow from the fact that both Ψ and Φ solve (1), the strict inequality
from v∗∗ < Φ(p) for all p, and the last inequality holds since p3 ≥ p∗.

21Obviously, q(p3) = p∗∗.
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value of Ψ(q(p)). Consequently,

V σ(q(p), p) = Ψ(q(p)).

What about a DM with belief p ̸= q(p)? Her value is weakly below Ψ(q(p)) and as noted before

linear in p. This pins down the value function for belief p at state p:

V σ(p, p) := Ψ(q(p)) + (p− q(p))Ψ′(q(p)). (31)

We define p4 to be such that

V σ(p(p4), p4) = Ur(p(p4)). (32)

• Verification of equilibrium conditions. We first claim that π(p) = p(p) is a worst-case

belief satisfying (6). This follows from the fact, for any p ∈ P (p), p ≥ p3,

V σ
p (p, p) = Ψ′(q(p)) ≥ 0,

where the equality follows from (31) and the inequality from the convexity of Ψ(·) and Ψ′(p∗∗) ≥
0.

We next verify (11). First, we show that ν(p) = 0. To this end, we first observe:

Lemma A.5. For all p > p3, V
σ(p(p), p) ≥ Uℓ(p(p)).

Proof. Note V σ(p(p3), p3) = V̂ (p3) ≥ Uℓ(p(p3)).
22 Next, note that p(p3) > pB

r
and V σ(p(p3), p3) =

ϕ(p(p3); p(p3), Uℓ(p(p3))). Since, by Lemma A.2, ϕ(p; p, Uℓ(p)) can only cross Uℓ(p) from below,

we have
dV σ(p(p),p)

dp

∣∣∣
p=p3

≥ U ′
ℓ(p(p3)). Observe further V σ(p(p), p) = ϕ(p(p); p(p3), Uℓ(p(p3))) is

convex in p(p) whereas Uℓ(p(p)) is linear in p(p). Combining the two facts leads to the desired

conclusion.

Next, we observe that Uℓ(p(p3)) = V̂ (p3) > û. This means that

V σ(p(p3), p3) = Uℓ(p(p3)) > Ur(p(p3)).

By definition of p4, we have V σ(p(p), p) > Ur(p(p)) for all p ∈ (p3, p4). Combining this with

Lemma A.5, we conclude that ν(p) = 0.

22If V σ(p(p2), p2) < Uℓ(p(p2)), then the inequality holds with equality by definition. If V σ(p(p2), p2) ≥
Uℓ(p(p2)), then the inequality follows from the fact that p3 = p2.
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Next, we prove m(p) = 0. Substituting ν(p) = 0 and π(p) = p(p), the objective in (11)

becomes

m
[
Uρ(p)− V (p, p−)

]
+ (1−m)

[
−c+ λp(uRr − V (p, p−)) + Vp(p, p−)η(p) + Vp(p, p−)η(p)

]
,

where we suppress the argument of p(p) for notational ease. Note that the coefficient of m is

negative (by the same argument as for ν = 0). The coefficient of (1−m) can be written

− c+ λp(uRr − V (p, p−)) + Vp(p, p−)η(p) + Vp(p, p−)η(p)

=− c+ λp
(
uRr −Ψ(q(p))− (p− q(p))Ψ′(q(p))

)
+ η(p)Ψ′(q(p)) + η(p)

[
(p− q(p))Ψ′′(q(p))q′(p)

]
=− c+ λq(p)

(
uRr −Ψ(q(p))

)
+ η(q(p))Ψ′(q(p))

+ λ(p− q(p))
[
uRr −Ψ(q(p))− (1− q(p))Ψ′(q(p))− q(p)(1− q(p))Ψ′′(q(p))

]
=0,

where we have used (31) for the first equality and q′(p) = η(q(p))
η(p)

for the second equality.23 The

last equality follows since Ψ satisfies (1) and its derivative vanishes. We have shown that the

coefficient of m in the objective in (10) and (11) is negative and the coefficient of (1 − m) is

zero. Therefore, m = 0 is a maximizer and (10) holds.

It remains to verify (12). Substituting m(p) = ν(p) = 0, the objective becomes the same

as the coefficient of 1−m above, except that p is replaced by p. Differentiating the expression

with respect to p yields:

λ
(
uRr −Ψ(q(p))− (1− q(p))Ψ′(q(p))

)
− λq(p)(1− q(p))Ψ′′(q(p)) = 0,

where the equality follows from the fact that Ψ satisfies (1), so its derivative, which coincides

with the LHS of the above equation, must vanish.

23This holds since τ(q(p), q(p3)) = τ(p, p3) implies that ln q(p)
1−q(p) − ln p∗

1−p∗
= ln p

1−p − ln p3

1−p3
. Hence the

difference in log-likelihood ratios of q(p) and p is constant

ln
q(p)

1− q(p)
− ln

p

1− p
= K,

for some K. Differentiating this with respect to p, we obtain q′(p) = η(q(p))
η(p) .
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We have thus shown that the objective in (12) is independent of p and hence the requirement

that p = p(p) is a minimizer in (12) is satisfied.

Region 5: p ∈ [p4, 1].

• Computation of equilibrium value. Recall that the strategy σ calls for an immediate

choice of r for all states p ∈ [p4, 1]. It thus immediately follows that the value associated with

that strategy is:

V σ(p, p) := Ur(p), for all p ∈ [p4, 1].

• Verification of equilibrium conditions. Since Ur(·) is increasing, π(p) = p(p) satisfies

(6); given m(p) = ρ(p) = 1, the coefficient of p in the objective of (12) vanishes, so π(p) = p(p)

is also a minimizer in (12).

Substituting π(p) = p(p) = p and V σ(p, p) = Ur(p) in (10)–(11) we get the following expres-

sion for p > p4

m
[
Uρ(p)− Ur(p)

]
+ (1−m)

[
−c+ λp

(
uRr − Ur(p)

)
− λp(1− p)U ′

r(p)
]

=m
[
Uρ(p)− Ur(p)

]
+ (1−m)

[
−c+ λp

(
Ur(1)− Ur(p)− (1− p)U ′

r(p)
)]

=m
[
Uρ(p)− Ur(p)

]
+ (1−m)(−c),

where the last line follows since Ur(p) is linear. Recall that Uℓ(p(p4)) ≤ V σ(p(p4), p4) =

Ur(p(p4)), so we note that Uℓ(p) ≤ Ur(p) for p ≤ p4. Therefore, m(p) = ρ(p) = 1 satifes

(11). Substituting these, we also have (10).

A.2.2 Case 1 with c ≥ c and ∆ > ∆c

In this case, Region 4 as well as its boundaries p3 and p4 need to be modified. Theorem 1

specifies

(m(p), ν(p), ρ(p)) =
(
1, 0, δℓ

δr+δℓ

)
, (33)

and π(p) = p̂, for p ∈ [p3, p4), where p3 is now set at p′3, which satisfies V̂ (p′3) = û. We note that

this new p′3 is smaller than the original p3 and is still larger than p2.
24 p4 is now set at p′4, which

24Recall V̂ (·) is strictly decreasing. Since V̂ (p3) < û when c ∈ (c, c) and ∆ > ∆c, we have p′3 < p3. We also
have p′3 > p2 since V̂ (p2) = Φ(p2) > max{Uℓ(p2), Ur(p2)} ≥ û.
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uniquely satisfies p(p′4) = p̂. One can see that p′4 > p′3. Given σ(p) for this region, the value of

the strategy is given by V σ(p, p) = û.

It is straightforward to verify that V σ(p, p) = û together with π(p) = p̂ and (33) satisfy

(6)–(12) for p ∈ (p3, p4). Indeed, inserting π(p) = p̂ and V σ(p, p) = û as well as V σ
p (p, p) = 0

and V σ
p (p, p) = 0, the objective in (10) becomes −(1 −m)c. Hence m = 1 is optimal and (10)

holds. Since the objective is independent of ν and ρ, (11) also holds. At p = p3, we have

V σ(p, p−) = V̂ σ(p3) = û and V σ
p (p, p−) = 0, and V σ

p (p, p−) < 0, but we can employ the same

argument as in Region 3 to show that the coefficients of m and (1−m), in the objective is zero

and hence m = 1 is optimal.

Finally, we verify (12). Inserting (33), and V σ(p, p−) = V σ(p, p) = û in the objective in

(12), we see that the objective is equal to zero and hence π(p) = p̂ is a minimizer. Finally,

V σ
p (p, p) = 0 implies that (6) holds.
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