
Information
Band / Volume 81
ISBN 978-3-95806-640-3

Information
Band / Volume 81
ISBN 978-3-95806-640-3

Higher-order correlation analysis in massively parallel  
recordings in behaving monkey
Alessandra Stella

81

H
ig

he
r-

or
de

r c
or

re
la

tio
n 

an
al

ys
is

 in
  

m
as

si
ve

ly
 p

ar
al

le
l r

ec
or

di
ng

s 
in

 b
eh

av
in

g 
m

on
ke

y
A

le
ss

an
dr

a 
St

el
la

In
fo

rm
at

io
n



Schriften des Forschungszentrums Jülich
Reihe Information / Information Band / Volume 81





Forschungszentrum Jülich GmbH
Institute of Neurosciences and Medicine (INM) 
Computational and Systems Neuroscience (INM-6) 

Higher-order correlation analysis in massively 
parallel recordings in behaving monkey

Alessandra Stella

Schriften des Forschungszentrums Jülich
Reihe Information / Information Band / Volume 81

ISSN 1866-1777  ISBN 978-3-95806-640-3



Bibliografische Information der Deutschen Nationalbibliothek. 
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der 
Deutschen Nationalbibliografie; detaillierte Bibliografische Daten 
sind im Internet über http://dnb.d-nb.de abrufbar.

Herausgeber Forschungszentrum Jülich GmbH
und Vertrieb: Zentralbibliothek, Verlag
 52425 Jülich
 Tel.:  +49 2461 61-5368
 Fax:  +49 2461 61-6103
 zb-publikation@fz-juelich.de
 www.fz-juelich.de/zb
 
Umschlaggestaltung: Grafische Medien, Forschungszentrum Jülich GmbH

Druck: Grafische Medien, Forschungszentrum Jülich GmbH

Copyright: Forschungszentrum Jülich 2022

Schriften des Forschungszentrums Jülich
Reihe Information / Information, Band / Volume 81

D 82 (Diss. RWTH Aachen University, 2022)

ISSN 1866-1777
ISBN 978-3-95806-640-3

Vollständig frei verfügbar über das Publikationsportal des Forschungszentrums Jülich (JuSER)
unter www.fz-juelich.de/zb/openaccess.

 This is an Open Access publication distributed under the terms of the Creative Commons Attribution License 4.0,  
 which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://creativecommons.org/licenses/by/4.0/


Animum debes mutare, non caelum.
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A B S T R A C T

It has been hypothesized that information processing in the cortical
network evolves through the subsequent activation of groups of neu-
rons called cell assemblies, and correlated activity is thought to be the
signature of their activation.

Numerous studies have assessed the presence of precisely-timed
spatio-temporal spike patterns (STPs), defined here as sequences of
spikes emitted by a set of neurons with fixed time delays between the
spikes, repeating in the same configuration in all occurrences. SPADE
(Spatio-temporal PAttern Detection and Evaluation) was introduced as
an analysis method for the detection of synchronous patterns, and then
extended for the detection of spike patterns with temporal delays in
parallel spike trains. However, the method was evaluated for the STP
detection on simple artificial data, and not yet applied on experimental
spike trains.

In this thesis we introduce an extension of the original statistical
test of SPADE, accounting for the temporal duration of the patterns,
the order of correlation and the frequency of pattern occurrence. In
this way, we assess that statistical performances are strongly improved.
Additionally, we propose an optimized implementation of the mining
algorithm of SPADE. We test the implementation on a wide range
of different hardware and on real experimental data, showing that
it results to be between one and two orders of magnitude faster and
more memory efficient.

We also propose five artificial data sets, reproducing with increasing
degree the statistical complexity of experimental data, still being
completely artificial and generated by point process models. Such
data sets may be employed as ground truth for analysis methods of
parallel spike trains. Furthermore, we compare different surrogate
techniques to evaluate their effect on parallel spike trains statistics
and on the evaluation of STP significance. Our results show that the
most classical method of uniform dithering fails as an appropriate
surrogate, since it leads to underestimation of significance. Thus, we
propose an alternative method with better performance.

Finally, we analyze with SPADE experimental data from the neural
activity recorded from the motor cortex of two macaque monkeys,
trained to execute a reaching-and-grasping task. We find that signifi-
cant STPs occur in all phases of the behavior, and are highly specific
to the behavioral context, suggesting that different cell assemblies
are active in the context of different behaviors. Moreover, our analy-
sis reveals neurons that are involved in several patterns in different
behavioral contexts, and are not clustered in space.
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Z U S A M M E N FA S S U N G

Eine gängige Hypothese zum Mechanismus der Informationsverar-
beitung im kortikalen Netzwerk ist die sequentielle Aktivierung von
Ensembles von Neuronen (’cell assemblies’), die sich durch korre-
lierte neuronale Aktivität auszeichnen. In vielen Studien wurde das
Auftreten zeitlich präziser raum-zeitlicher Muster von Aktionspoten-
tialen (Spikes) als Ausdruck von aktiven neuronalen Ensembles unter-
sucht. Diese sind definiert als Sequenzen von Spikes unterschiedlicher
Neurone mit bestimmten Zeitintervallen zwischen den Spikes, die
sich genau in dieser Konfiguration wiederholen. Zur Detektion dieser
Muster wurde die statistische Methode SPADE (Spatio-temporal PAt-
tern Detection and Evaluation) entwickelt, welche zuerst nur syn-
chrone Spike-Muster detektieren konnte, dann aber auf raum-zeitliche
Spike-Muster (STP) erweitert wurde. Allerdings wurde die Methode
bislang nur auf relativ einfachen, simulierten Daten angewandt und
getestet, und noch nicht auf experimentelle Daten angewendet.

In dieser Arbeit führe ich eine wesentliche Erweiterung zur SPADE
Methode ein, die es erlaubt auch die Dauer raum-zeitlicher Spike-
Muster, die Ordnung der Korrelation und die Anzahl der STPs angemessen
im Signifikanztest berücksichtigen. Mit dieser Verbesserung wurde
die statistische Performanz wesentlich verbessert. Zusätzlich haben
wir eine optimierte Implementation für den Mining Algorithmus von
SPADE entwickelt, welche auf verschiedener Computerhardware lauf-
fähig ist, und um 1-2 Grössenordnungen schneller ist und wesentlich
effizienter den Speicher des Computers nutzt.

Desweiteren habe ich künstliche Daten entwickelt und simuliert,
welche unterschiedliche Grade der Komplexität experimenteller Daten
nachahmen. Diese basieren vollständig auf Punktprozessmodellen,
deren zugrundeliegenden Parameter vollständig bekannt sind. Diese
Daten dienen als realistische Referenzdaten zur Validierung und Tes-
tung von Methoden zur Analyse neuronaler Spike-Folgen.

In einer weiteren Untersuchung vergleichen wir unterschiedliche
Surrogatmethoden, d.h. Methoden der gezielten Zerstörung der Zeitre-
lationen paralleler Spike-Folgen, auf deren Anwendungsmöglichkeit
zur Testung statistischer Signifikanz von Spike-Mustern. Unsere Ergeb-
nisse zeigen, dass die klassische Methode des ’uniform dithering’,
d.h. das uniforme, zufällige Versetzen von Spikezeitpunkten, nicht
als adequate Surrogatmethode dient, da sie im Kontext unserer ex-
perimentellen Daten zu einer Unterschätzung der Signifikanz führt.
Stattdessen haben wir alternative Methoden mit besserer Performanz
entwickelt.
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In der letzten hier dargestellten Studie analysierte ich experimentelle
neuronale Daten aus dem Motorkortex von zwei nicht-humanen Af-
fen, die eine motorische Aufgabe ausführen, indem die den Arm
ausstrecken und ein bestimmtes Objekt greifen. Die massiv-parallelen
gemessenen Spikefolgen verschiedener Messexperimente wurden auf
das Auftreten von STPs mit SPADE untersucht. Es zeigte sich, dass
STPs in allen Phasen des Verhaltens in einem Versuchsdurchgang mit
hoher Spezifizität auftreten, was wir als Ausdruck der Aktivierung
unterschiedlicher neuronaler Ensembles interpretieren. Darüberhin-
aus zeigt unsere Analyse, dass einzelne Neurone in unterschiedlichen
STPs involviert sind. Eine räumliche Ballung von Neuronen, die in
STPs beteiligt sind, zeigt sich hingegen nicht.
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1
I N T R O D U C T I O N

Short excerpts of this chapter are based on the publication Grün,
Quaglio, et al. (2020). The author contributed to the conceptualiza-
tion and to the writing of the manuscript. The work was done under
the supervision of Sonja Grün.

1.1 one neuron and one spike

The most important and basic cell type of the nervous system is the
neuron. In the human brain, there are about one hundred billion
neurons (Herculano-Houzel, 2009), and 1.36 billion in the macaque
cortex (Collins et al., 2010). All these numerous neurons communicate
with each another through synaptic interactions, forming extremely
complex circuits (Braitenberg and Schüz, 1998).

The brain does not comprise only neuronal cells, but also another
class of cells, called glial cells, that have the role of supporting the func-
tion of the nervous system through neural development, modulation
of synaptic action, propagation of action potentials, and even recovery
from neural injury (Kandel, Schwartz, and Jessel (2000) and Jäkel and
Dimou (2017)). Although glial cells are even more numerous than
neuronal cell (almost tenfold in number), and form intricate networks
for communication, in this thesis we will focus only on neurons when
considering the functions of the brain.

Neurons are cells that have a rather peculiar structure: they are
highly asymmetric and elongated, with several protrusions going in
different directions. The core of a neuronal cell lays in its cell body: it is
the destination of the input coming from other neurons and traversing
the dendrites, and it is the place from where the outputs destined to
other neurons leave through the axon. Both input and output consist
in electrical signals of excitation called spikes, or action potentials. When
a neuron receives an excitatory input from a neighboring neuron, the
inside of its membrane may become positively charged of ions with
respect to the outside (hyper-polarization). This causes a rapid positive
change in the membrane potential from the cells’ resting state, which is
usually negative (more positively charged ions outside than inside the
membrane). As the membrane potential becomes suddenly positive
due to incoming input, ion channels are opened, such that the voltage
difference can be again reversed as a depolarization, and the action
potential is transmitted through the axon to the connected neurons.
Successively, the membrane potential becomes negative again, and
reaches values smaller than the resting potential for a brief period of

1



2 introduction

time (usually � 1� 2ms) called refractory period (Kandel, Schwartz,
and Jessel, 2000).

Action potentials do not vary in shape and are typically treated as
events in time; in fact, they are mostly modeled mathematically as
point processes (Kaas, Eden, and Brown, 2014).

1.2 multiple neurons and multiple spikes

Considering the explanation just given, one might think of a possible
scenario in which a single neuron B receives a spike from a neighboring
neuron A, and that this input spike would generate in B a second
spike, traveling down the axon to neuron C, and generating a third
spike there, and so on. Unfortunately, this is not correct. A single
spike in input from A is not enough to exacerbate a change in the
resting potential of B so large to produce a spike. Typically, the resting
potential lays around the value of � 70mV, and it is changed only
in small amount by a single incoming spike (about a few mV). In
addition, the depolarization caused by a single spike dissipates rather
quickly with time.

What makes the transmission of information possible is the fact
that a single neuron is connected to a very large number of other
neurons, in the range of 104 (Abeles., 1991). In order to have sufficient
excitation to produce an action potential, a neuron needs to receive
several inputs from several neighboring neurons in a rather short time
span (a few milliseconds). If enough action potentials are received,
then the threshold potential (� 55mV) is passed and a spike is produced.

The impressive amount of neurons in the cerebral cortex, multiplied
by the average number of connections per neuron gives an idea of
why it is so difficult to investigate how the brain creates, processes,
and transmits information.

1.3 neural coding hypotheses

Spikes are the fundamental information units for neural communica-
tion, but it is still unclear which “alphabet” they use to talk to each
other. Taking into consideration that a single neuron needs many
inputs to cross its threshold potential (Abeles, 1982), there are two
theories of neural coding arising from this knowledge. The first one,
termed rate coding, assumes that the information lays in the modula-
tion, or co-modulation of the neuronal firing rate, i.e., the change in the
number of spikes emitted over time (often considered as a response to
a stimulus, Adrian and Zotterman, 1926; Georgopoulos et al., 1984).
This theory assumes that the decoding of incoming information is
done by a neuron through time integration of the number of input
spikes over the span of hundreds of milliseconds. Thus, decoding and
encoding of information may not depend on the exact number or time
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position of spikes, and may be rather robust to noise (Shadlen and
Newsome, 1994; Shadlen and Newsome., 1995). Nonetheless, one of
the big criticisms of rate coding lays on the observation that the time
needed for integrating the number of spikes may be too long than
biologically acceptable to account for brain functions (Masuda and
Aihara, 2003; Gollisch and Meister, 2008): e.g., visual processing for
the recognition of natural images can be achieved in under 150ms
(Thorpe, Fize, and Marlot, 1996; Gerstner and Kistler, 2002).

The second theory, termed temporal coding, introduces a framework
in which neurons coordinate their activity on shorter (a few millisec-
onds) time-scales (Dayan and Abbott, 2001), in order to allow for
quicker and more efficient processing (Gautrais and Thorpe, 1998).
Several studies have shown evidences of high temporal resolutions,
indicating that precise spike timing plays a role in neural coding (Butts
et al., 2007; Freiwald, Kreiter, and Singer, 1995; Kreiter and Singer,
1996). The type of coordination spans from spike synchronization (pair-
wise and higher-order), to sequences of precisely timed spikes (Abeles,
P. Bergman, and Vaadia, 1994; Kostal, Lansky, and Rospars, 2007). The
temporal coding theory explains learning by the modifications in the
synaptic delays which are activity dependent (Geoffrois, Edeline, and
Vibert, 1994), and these modifications can be an effect of synaptic plas-
ticity (Yuan, Isaacson, and Scanziani, 2011). Synaptic plasticity consists
in the relative strengthening or weakening of synaptic efficacy over
time, depending on the increase or decrease of the synapses’ activity.
The role of synaptic plasticity in temporal coding can be also linked
to the Hebbian rule (Hebb, 1949), stating that synaptic weights are
increased by precisely timed input-output delays, i.e., the pre-synaptic
neuron fires persistently to the post-synaptic target neuron. Moreover,
it has been shown that neurons can behave as “coincidence detectors”
(Abeles, 1982; König, Engel, and Singer, 1996), responding more reli-
ably to coordinated (synchronous) incoming spikes than independent
spiking. This strategy is not only more efficient (Chen, Rochefort, et al.,
2013) but also experimentally observed (Usrey and Reid, 1999; Usrey,
Alonso, and Reid, 2000).

Although these rate and temporal coding are usually considered
exclusive alternatives (both with their advantages and disadvantages),
they may be both implemented in the brain as neural coding mech-
anisms rather than the existence of one excluding the other (Abeles,
1982; Abeles., 1991; Tsodyks and Markram, 1997; Masuda and Aihara,
2003).

Moreover, there exist several other prominent neural coding theories,
such as population coding, taking into account the stimulus represen-
tation by using the joint activity of an entire population of neurons
(Nakahara and Amari, 2002); and sparse coding (somehow comple-
mentary to population coding) hypothesizing that the neural code
is encoded by the strong activation of selective groups of neurons
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(Chalk, Marre, and Tkačik, 2018). In this thesis we explore neural
coding within the theory of temporal coding.

1.4 precise time spike correlations : theory and evidences

The most prominent model formalizing the temporal coding scheme
is the synfire chain model (Abeles., 1991; Diesmann, Gewaltig, and
Aertsen, 1999; Ikegaya et al., 2004; Zheng and Triesch, 2014). The
model consists in a feed-forward network of neurons with many
layers, where information propagates through packets of synchronous
spikes. Successive layers are all-to-all connected by excitatory synapses,
and the dynamics arising from the activation of such networks consists
in synchronous volleys of spikes propagating from layer to layer. Thus,
the synfire chain model is based on the assumption that conduction
delays between neurons are all equal. A variant of such model was
proposed by Bienenstock (1995), where a connection with a long delay
may skip one or more pools of neurons, and it was called synfire braid
model. Izhikevic went further into considering non-synchronous (but
precisely-timed and coordinated) spiking activity within each braid in
his polychrony model (Izhikevich, 2006).

All these models are based on the assumption of neurons behaving
like coincidence detectors, and for this reason are able to robustly prop-
agate precisely-timed spikes across groups of neurons. Such spikes
may be synchronous (synfire chain) or be sequences of spikes (syn-
fire braid, polychrony, or subsampling of spikes emitted by a synfire
chain).

From a different perspective, one can decide not to focus on a partic-
ular network model, but concentrate on the form of spike correlation
that may arise within the temporal coding context. In fact, there are
several sub-hypotheses that may emerge, as there are different types
of correlation structures that may be present in the brain and able to
encode information. The chosen correlation type may depend on the
hypothesized underlying temporal precision of the neural activity, and
may go from a few milliseconds to several tens of milliseconds. Also,
the lower the temporal precision allowed within the structure of spike
correlations, the thinner is the distinction between the assumptions
of rate and temporal coding. In other words, if the precision of the
detected correlation spans several tens of milliseconds and across
neurons, it may be considered as a result of rate coding. We consider
further this aspect when analyzing the difficulties of testing properly
a statistical hypothesis for temporal coding.

Next, we briefly review different forms of precise-time correlations
investigated in literature and found in experimental studies. Evidences
of one of such correlations does not exclude the existence of others:
they may all be present simultaneously in experimental data, and may
have different roles in the propagation of information.
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Figure 1.1: Raster plots showing different types of precise time correla-
tions. Each panel shows spiking activity across neurons (y-axis)
and time (x-axis). Red dots represent spikes belonging to corre-
lation structures, whereas black dots represent the background
activity. Panel A. Pairwise correlation. Synchronous pairwise
spike correlations are present in different neuronal pair com-
binations. Panel B. higher-order synchronization. Synchronous
correlation of size 4 is present, but the neuronal participations
change randomly for every realization. Panel C. Synchronous
spike patterns. A synchronous spike pattern of four spikes (size
4) repeats 5 times, with always the same neurons being involved
in the pattern. Panel D. Spatio-temporal spike patterns (STPs).
An STP (size=4, 4 occurrences) has fixed temporal delays between
the spikes and fixed neuronal participation. Note that fixing the
delays to zero reduces to example C. Panel E. Fuzzy patterns.
Fuzzy patterns are STPs that do not have to repeat identically
in all their realizations. Missing spikes (second occurrence) and
different spike ordering (third and fourth occurrence) are allowed.
Panel F. Sequences of synchronous events (SSEs). An SSE oc-
curs twice in time, and consists in the propagation of synchronous
patterns (in this case, of size 3). Figure adapted from Quaglio,
Rostami, et al. (2018).

1.4.1 Pairwise correlation

Pairwise correlation is the first type of correlation structure investi-
gated historically in the literature (Figure 1.1A). In fact, evaluation of
correlation between two neurons was discovered to be the mathemati-
cally simplest approach, easiest to compute, and most compatible with
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the oldest recording technologies. The most prominent approach is the
cross-correlation analysis, developed by Gerstein and Clark (1964) and
by Perkel, Gerstein, and Moore (1967), which looks for coincidences of
spikes across different delays and evaluates the statistical significance
of such structures. Naturally, the existence of significant pairwise
correlation in data does not exclude the existence of higher-order cor-
relation, although the latter is mathematically and statistically harder
to evaluate. Evidence of the existence of pairwise synchronous spiking
activity in the brain has been found in many studies, across species
and areas of the brain (Eggermont, 1990; Riehle, Grün, et al., 1997;
Kilavik, Roux, et al., 2009; Zandvakili and Kohn, 2015; Dann et al.,
2016; Dettner, Münzberg, and Tchumatchenko, 2016). Moreover, in an
experimental task involving repeated behavior, pairwise correlation
can be detected within trials and across trials (Grün and Rotter, 2010).

1.4.2 Higher-order synchronization and synchronous spike patterns

The natural extension of pairwise correlation is to increase the order
of correlation and look at patterns of synchronous spikes, spanning
several neurons. Synchronous spike patterns may change the neu-
ronal participation at every realization (population synchronization, in
Figure 1.1B; Schneidman, Bialek, and Berry, 2003; Grün, Abeles, and
Diesmann., 2008; Staude, Rotter, and Grün, 2010), or involve always
the same neurons (synchronous spike patterns, in Figure 1.1C; Torre,
Picado-Muiño, et al., 2013; Russo and Durstewitz, 2017).

Evidences of higher-order synchronization has also been discovered
in several studies (with a focus on macaque and cat cortex: Villa and
Abeles, 1990; Riehle, Grün, et al., 1997; Prut et al., 1998; Villa, Tetko,
et al., 1999; Kilavik, Roux, et al., 2009; Pipa, Grün, and Vreeswijk, 2013;
Torre, Quaglio, et al., 2016; Shahidi et al., 2019).

1.4.3 Spatio-temporal spike patterns

Going beyond synchronization, it is possible to add a further dimen-
sion to the correlation, and allow for fixed temporal delays between
spikes of a repeating pattern, obtaining a spatio-temporal spike pattern
(STP; Prut et al., 1998), displayed in (Figure 1.1D). Formally, STPs
are here defined as sequences of spikes emitted from a fixed set of
neurons, repeating identically in all their occurrences, within a defined
temporal precision. STPs may derive from the variability of axonal
conduction delays of neurons coordinating their activity. Such delays
are variable, spanning from 0.3ms to 44ms, depending on the area and
on the species (Cleland et al., 1976; Ferster and Lindström, 1983). The
reason of such variability could lay in the fact that inhomogeneous
delays allow for more spike pattern configurations than homogeneous
ones, that enable instead for only one synchronous pattern. Moreover,



1.5 methods of detection of precisely timed spike correlations 7

considering all possible sequences of the neurons emitting spikes
increases the number of pattern combinations even further, thus allow-
ing for a higher storage capacity. Also spatio-temporal spike patterns
have been observed in several experimental studies (Prut et al., 1998;
Takahashi et al., 2015; Russo and Durstewitz, 2017; Oettl et al., 2020;
Russo, Ma, et al., 2021; Stella, Bouss, et al., 2022), and correspond-
ingly several methods have been introduced to detect them, which we
review in the next section.

1.4.4 Fuzzy patterns

The definition given for spatio-temporal spike patterns is not unam-
biguous, and it may change from study to study, depending on how
strict the definition of pattern is. Patterns may not repeat always in
the same configuration, but may miss one or more spikes in their
occurrences, and are also called patterns with selective participation
(Borgelt, Braune, et al., 2015). They may also switch the order of their
spikes, or exhibit larger variability in their delays, or be stretched in
time (Williams, Degleris, et al., 2020). All these examples are pictured
in Figure 1.1E. We refer to such patterns as fuzzy patterns. Some good
arguments for the relevance of such pattern definition are that it is
known that neurons likely experience synaptic failures (Budak and
Zochowski, 2019), and that spike sequences may repeat in the brain at
different speeds, e.g. in the context of hippocampal replay (Eichenlaub
et al., 2020).

1.4.5 Sequences of synchronous patterns

Finally, the last type of correlation we review consists in the union
of spike synchrony and delayed correlations: sequences of synchronous
events are defined as sequences of synchronous spikes, emitted by
specific groups of neurons, occurring in a sequence according to fixed
temporal delays (Figure 1.1F). Sequences of synchronous events are
interesting, since they can be the realization of an active synfire chain
(Gerstein, Williamns, et al., 2012; Torre, Canova, et al., 2016). The
synchronous spikes correspond to the activation of a layer of the
synfire chain, and the temporal delays correspond to the conduction
delays across layers.

1.5 methods of detection of precisely timed spike cor-
relations

Since all types of precisely timed correlation explained in the previous
section have raised interest in literature, several methods have been
developed to detect them in massively parallel spike trains. There
are considerable challenges that an analysis method needs to face,
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starting from the high dimensionality and volume of data, caused
by recent advances in electrophysiological recording techniques that
have allowed the identification of neuronal signals of hundreds, or
even thousands of neurons (Jun et al., 2017; Steinmetz et al., 2018;
Brochier et al., 2018; Juavinett, Bekheet, and Churchland, 2019; Chen,
Zhang, et al., 2020). Such large data sets require large computational re-
sources to collect, store, and analyze the data. In addition, in massively
parallel spike trains, the extraction of the chosen correlation type is
non-trivial, as the number of possible patterns increases exponentially
with the number of neurons. Thus, the number of statistical tests also
increases strongly, making classical statistical testing an inoperable
approach (Kaas, Eden, and Brown, 2014). Another complication lies in
the difficulty of evaluating correctly the temporal coding hypothesis:
it is in fact necessary to detect correlations that are independent of
the firing rate co-modulations. A common approach is to design the
statistical test for precise time correlation with the null-hypothesis
that the spike trains are mutually independent given their firing rates
(Grün, 2009; Grün and Rotter, 2010; Stella, Bouss, et al., 2022). In fact,
false positive detection may be a consequence of not taking into ac-
count firing rate co-modulations (Grün, Diesmann, and Aertsen., 2002;
Grün, Diesmann, and Aertsen, 2002; Grün, 2009). Another challenge
related to the temporal coding hypothesis is the choice of an adequate
temporal resolution for the correlation, as the time precision of brain
coding is still unclear (Bair and Koch, 1996; Butts et al., 2007; Russo
and Durstewitz, 2017). The assumed correlation precision depends on
the analysis tool, but is typically fixed to a few milliseconds (3,5,6ms)
(Riehle, Grün, et al., 1997; Prut et al., 1998; Torre, Quaglio, et al., 2016).
Again, the lower the temporal precision of the method, the thinner is
the difference between rate and temporal coding. In conclusion, given
that classical mathematical techniques and algorithms have difficulties
to cope with all the problems mentioned above, the main challenge is
the development of novel analysis methods. Researchers have made
great efforts to develop and combine new techniques, algorithms, or
networks capable of detecting precisely timed spike correlations. In
fact, developing a new method is not a simple process, since it requires
extensive multidisciplinary knowledge.

Here we briefly list the most relevant analysis tools: some of them
rely on mathematical assumptions, e.g. hard hypotheses on the un-
derlying distributions; others rely on statistical tests to evaluate sig-
nificance, but are “model-free”, e.g. employing surrogate generation;
others consist fully in computational methods, such as network train-
ing, or clustering algorithms. One method may involve steps entering
in the different, just listed categories.
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1.5.1 Cross-correlation histogram

The first technique historically employed is the cross-correlation his-
togram, invented in 1964 by Gerstein and Clark (1964), and further for-
malized in Perkel, Gerstein, and Moore (1967), with the idea that spike
train correlation might reflect functional correlation. Cross-correlation
is a general measure of similarity between two signals, expressed
as a function of the time lag. When applied to two spike trains, it
reveals the number of spikes from the first neuron that coincide with
spikes in the second neuron, after a time lag t. As it is a histogram,
the spike trains need to be binarized to express the coincidences: the
bin size of the analysis coincides with the temporal precision of the
method. The cross-correlation are tested statistically assuming as a
null-hypothesis the co-modulation of firing rate of the two neurons,
and comparing the theoretical distribution against the empirical. The
null-hypothesis distribution can be assumed as a closed form, or by
numerical simulations through surrogate generation (Grün and Rotter,
2010).

The cross-correlation histogram has been vastly used in many stud-
ies (Eggermont, 1990) and it is employed to evaluate direct connection
between two neurons (Kobayashi et al., 2019) but also common input
to the two spike trains (Dann et al., 2016), e.g. from a sensory stimulus
or from another brain area (Eggermont, 1990).

The cross-correlation histogram, besides being a widely used and
computationally simple method, has the limitation of evaluating only
pairwise correlations and not higher-order ones. Still, pairwise correla-
tions have been shown to relate to cross-area interactions, interaction
of groups of neurons, and spatial interactions (Gutzen et al., 2018).

1.5.2 Complexity analysis

The complexity distribution is defined as the distribution of the order
of population synchronization, observed across time. Practically, it is
obtained by the calculation of the population histogram (histogram of
spiking activity in time across neurons), and the extraction of its am-
plitude (Grün, Abeles, and Diesmann., 2008). Not taking into account
neuron identities, it describes the probability to observe a particu-
lar number of synchronous spikes across the entire population. The
null-hypothesis distribution of independent spiking may be evaluated
by assuming a model (e.g., independent stationary Poisson process;
single interaction process, or SIP; multiple interaction process, or
MIP; Staude, Grün, and Rotter, 2010), or by using surrogate generation
(Grün, 2009; Louis, Gerstein, et al., 2010). Typically, the null-hypothesis
distribution is subtracted from the empirical distribution. Excess syn-
chrony at a complexity value x is then detected as a positive “bump”
in the subtracted distribution. The complexity analysis is a simple and
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fast approach to detect the existence of higher-order correlations in
parallel spike data, but has the downside of not being able to show
which neurons are involved in such correlations.

Starting from the complexity concept, Pipa, Wheeler, et al. (2008)
introduced NeuroXidence, a method evaluating the complexity over
time of coordinated firing events in parallel spike trains. NeuroXidence
accounts for trial-by-trial variability, variability of the rate responses
and their latencies. The method detected higher-order coordination
activity in visual cortex data from anesthetized cats in response to a
drifting sinusoidal grating (Pipa, Wheeler, et al., 2008), and in visual
cortex (V1 and V4) data from macaque monkey engaged in a visual
task (Shahidi et al., 2019).

1.5.3 Unitary events analysis

The unitary event (UE) analysis is a statistical method focusing on the
detection of synchronous activity across neurons (unitary events), that
occur significantly more often than what is expected from the sole
firing rate (Grün, Diesmann, and Aertsen., 2002). It is able to identify
which neurons are involved in unitary events, and when those events
happen in time. The time resolved approach is performed by sliding
a temporal window (typically several tens of milliseconds) over the
data. The analysis may be performed either across neurons within one
data segment, or across trials for two neurons. Moreover, the statis-
tical evaluation may consist either in an analytical approach (Grün,
Diesmann, and Aertsen., 2002; Grün, Diesmann, and Aertsen, 2002;
Grün, Abeles, and Diesmann, 2003) or by Monte-Carlo testing through
surrogate generation (Pipa, Riehle, and Grün, 2007; Louis, Gerstein,
et al., 2010). Application of the UE analysis has been extensively done
in different areas of the brain, evidencing the presence of such syn-
chronous patterns and their relation to behavior (Riehle, Grün, et al.,
1997; Maldonado et al., 2008; Kilavik, Roux, et al., 2009; Ito et al., 2011).

1.5.4 SPADE

Methods listed so far are not able to detect spatio-temporal spike
patterns across several neurons with temporal delays between spikes.
SPADE (Spike PAttern Detection and Evaluation; Torre, Picado-Muiño,
et al., 2013; Torre, Quaglio, et al., 2016; Quaglio, Yegenoglu, et al., 2017;
Stella, Quaglio, et al., 2019) is an analysis tool that allows to detect
and statistically test spatio-temporal patterns. This technique is of
central importance to this thesis: detailed explanation of the method
is presented later in Chapter 2, as most of the later chapters deal with
the development of SPADE and its application to electrophysiological
data. In brief, SPADE uses a data mining algorithm (Frequent Itemset
Mining; Borgelt, 2012) in order to detect and count putative pattern oc-
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currences. The detected patterns are evaluated for significance through
surrogate generation, and pooled based on their order of correlation,
their temporal duration, and their occurrence frequency. Trivially, the
temporal delays between spikes may also be equal to zero, thus the
method is also able to detect synchronous activity, of any order of
correlation (> 2).

SPADE is one of the state-of-the-art methods to efficiently detect
spatio-temporal patterns in large electrophysiological data sets, and
shows to lead to a small false positive and false negative rate (Quaglio,
Yegenoglu, et al., 2017; Stella, 2017; Stella, Quaglio, et al., 2019; Stella,
Bouss, et al., 2022). Nonetheless, it detects patterns that repeat identi-
cally in all their occurrences, and due to a first-step discretization of
the spike trains, does not find the so-called “fuzzy patterns”, nor it
detects efficiently patterns re-occurring with relatively large temporal
precision (> 10ms).

1.5.5 CAD

The Cell Assembly Detection (CAD) method was introduced by Russo
and Durstewitz (2017), and allows the detection of spatio-temporal
spike patterns with different temporal delays between the spikes. It
consists in a two step agglomerative algorithm. The first step is a statis-
tical test for pairwise correlations, the second is a clustering procedure
gathering up pairwise interactions into patterns of higher-order corre-
lation, similarly in fashion to Gerstein, Perkel, and Subramanian (1978).
The statistical test assumes independence under non-stationarity and
Poisson distribution of the spike trains, making the algorithm computa-
tionally fast. Although, the assumption on the spike train distribution
makes CAD susceptible to relatively high rates of false positive and
false negative detection (Stella, 2017). On the other hand, as CAD does
not rely on spike train discretization, it is able to fastly iterate over
different temporal resolutions, and to choose the most appropriate one
for each given pattern. CAD has been employed to detect assembly
activation in rats in anterior cingulate cortex during spatial navigation
(Russo and Durstewitz, 2017), in the ventral striatum during phasic
dopamine activation (Oettl et al., 2020) and in the medial pre-frontal
cortex (Russo, Ma, et al., 2021).

1.5.6 EDIT

The edit method, published in Watanabe et al. (2019), is able to detect
fuzzy patterns in time and across neurons. It combines several steps: 1)
the calculation of the edit similarity score with exponentially growing
gap penalty, 2) a clustering technique, and 3) a profile generation
algorithm. The edit similarity score was originally invented to quantify
the similarity between two strings of letters with the minimum number
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of operations required to transform one string into another. A penalty
score is introduced to evaluate the number of operations needed to
turn one string into another. In the context of parallel spike trains,
data is segmented with a sliding time window and discretized, and
then the rate vector of coincidently firing neurons is considered as
a letter. The edit similarity scores obtained from the first step are
then clustered into groups. Finally, in order to find the core pattern
structure, an algorithm is applied by iterative comparisons within
each cluster until convergence. Each output pattern of the method has
a core pattern structure, and each realization of the (fuzzy) pattern is
then a modification of the core structure.

The method lacks a statistical test, so it is difficult to evaluate
whether the detected patterns arise as a by-product of firing rate co-
modulations. EDIT has been applied to rat hippocampal data during
spatial exploration (Mizuseki et al., 2009), and on electrophysiological
data from medial prefrontal cortex of rats performing a memory-
guided spatial sequence task (Euston, Tatsuno, and McNaughton,
2007).

1.5.7 SPOTDisCLUST

SPOTDisCLUST is an unsupervised technique to detect neuronal en-
sembles similar to EDIT (Grossberger, Battaglia, and Vinck, 2018). It
also consists in the combination of a dissimilarity score and a cluster-
ing algorithm. The first step is SPOTDis (Rubner, Tomasi, and Guibas,
1998), a dissimilarity score borrowed from the mathematical theory of
optimal transport, that computes the dissimilarity between two spik-
ing patterns. More in detail, the similarity between two spike patterns
(in two different points in time) is evaluated as the minimum transport
cost of transforming their cross-correlation matrices into each other.
The second step is the application of an unsupervised clustering algo-
rithm on the pairwise SPOTDis matrix (thus, the name of the method).
The technique has been applied successfully to macaque monkey V1

cortex, to detect spiking patterns encoding different stimuli directions.
SPOTDisCLUST has the advantage of not requiring spike train dis-
cretization, and claims to be able to detect fuzzy patterns besides
strong background spiking noise. Nonetheless, it lacks a statistical test
for the evaluation of the detected patterns, and their presence beyond
possible correlated firing rate across neurons.

1.5.8 SCCFNAD

Another algorithm able to detect fuzzy patterns is SCCFNAD (Peter
et al., 2017). It is based on sparse convolutional coding to detect
recurrent motifs up to a given temporal length, even in presence of
overlapping neurons and strong background noise. The algorithm
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is unsupervised, and is based on convolutive Non-Negative Matrix
Factorization (convNMF; Smaragdis, 2004; Smaragdis., 2006; O’grady
and Pearlmutter, 2006), which reconstructs the parallel spike train
data as a convolution of motifs and time points of realizations of
such motifs. This technique is more similar to typical population
coding detection techniques such as Principal Component Analysis
and Factor Analysis (PCA and FA; Cunningham and Yu, 2014), but is
able to find temporally precise motifs of spikes that may be considered
fuzzy patterns. Thus, the difference of output with respect of spatio-
temporal spike patterns is quite large. SCCFNAD takes as input the
number of searched patterns, which is an unwanted feature whenever
the true number of motifs is unknown, and might lead to redundant
factorization if the number of searched patterns is higher than the
number of real ones. Nonetheless, the authors argue that SCCFNAD
is able to retrieve motifs inserted in artificial data, and to detect them
as well in a real scenario, such as in in vitro hippocampal CA1 data
(Pfeiffer et al., 2014), and in vitro cortical neuron culture data (Howard
et al., 2008).

1.5.9 Seq MNF and PP-seq

Seq-MNF (Mackevicius et al., 2019) and PP-seq (Williams, Degleris, et
al., 2020) are two methods for unsupervised detection of fuzzy patterns
in neural data. The first consists in a fully algorithmic technique, based
on matrix theory without any statistical testing, whereas the second
method is based on the former but assumes a full mathematical point
process model underneath.

Seq-MNF (as SCCFNAD) is based on convolutional non-negative
matrix factorization and extends it to prevent the problem of over-
fitting, when the number of patterns is not known: taking as input
binarized parallel spike trains, it identifies spike patterns, together
with their time occurrence and their amplitude occurrence. The ex-
tension consists in an iterative sequence of optimization penalties
to reduce the number of redundant factors until convergence. The
technique proves to be able to detect synchronous patterns, sequences
of spikes, and fuzzy patterns across data with a relatively low tem-
poral precision and without any significance estimation, but also in
presence of strong noise. Seq-MNF was applied on multi-electrode
recordings from rate hippocampus during an instructed spatial ex-
ploration task (https://crcns.org/data-sets/hc), and on calcium
imaging data recorded in the songbird premotor cortical nucleus HVC
during singing (Mackevicius et al., 2019).

Williams, Degleris, et al. (2020) extend Seq-MNF by introducing a
point process model, based on the Neyman-Scott process (Neyman
and Scott, 1958), to detect patterns in continuous time and evaluating
them for significance. The approach is fully probabilistic and bayesian:

https://crcns.org/data-sets/hc
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prior distributions are assumed for the parameters of the Neyman-
Scott process, compared to the empirical data (through the likelihood
distribution), and updated until convergence with a collapsed Gibbs
sampling procedure (Miller and Harrison, 2018). Moreover, PP-seq is
able to capture occurrences of the same fuzzy patterns in time, even
if their duration changes (referred to as time warping, Williams, Kim,
et al., 2018). The method has the interesting feature of encompassing
a fully refined mathematical model, that has although many hyperpa-
rameters that need to be optimized. Also, PP-seq has been applied on
rat hippocampal recording (Grosmark and Buzsáki, 2016).

1.5.10 Bayesian methods

Another approach based on Bayesian statistics is the one introduced
in Diana, Sainsbury, and Meyer (2019). The technique is able to detect
and evaluate statistically patterns of synchronous activity in parallel
spike trains. The procedure is similar to PP-seq, but simpler, as the
underlying Bayesian model is hierachical and based on the Dirichlet
process (Ferguson, 1973): estimates of noise, within-pattern synchrony,
and pattern activation are directly estimated from the data and used to
identify the neurons participating in the patterns. The model estimates
the activation and deactivation of synchronous patterns in data. In this
case, the number of patterns is a parameter of the model, continuously
updated until convergence. The detected patterns are statistically
evaluated through the probabilities estimated from the Bayesian model.
The method of Diana, Sainsbury, and Meyer (2019) has been applied on
several experimental data sets, such as large-scale functional imaging
data from mouse visual cortex and zebrafish tectum, together with
data from Neuropixel recordings in mouse visual cortex, hippocampus
and thalamus from Stringer et al. (2019).

1.5.11 ASSET

So far, none of the presented methods is able to detect sequences
of synchronous events (SSEs). ASSET (Analysis of Sequences of Syn-
chronous Events) was introduced in Torre, Canova, et al. (2016) and
consists of a sequence of steps. Time is segmented in small intervals
(bins) of a user defined length. Spike trains are binarized into 0-1
processes with a defined temporal resolution, and then an intersection
matrix I is constructed, having in each bin the indexes of the neu-
rons spiking synchronously in that specific interval and their overlap
of identical neurons in the other time bin. An SSE composed of the
same neurons occurring multiple times in the data yields a diagonal
structure in the matrix I. The method then detects and isolates such
structures with a statistical test through the evaluation of the proba-
bility matrix P, having in each entry the probability of occurrence of
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each respective entry in I, under the null hypothesis of independence
between the spike trains. P may be derived either analytically or via
surrogate generation. P is then further transformed into a matrix J of
joint probabilities of overlaps in neighboring bins. Matrices P and J are
together evaluated in their significance by a specific transformation,
and finally single significant entries are clustered together, in order to
obtain the diagonal structures.

The method was proven to be robust to variation of firing rate, both
across time and neurons, it has been applied in simulated data gen-
erating synfire chain activity, but unfortunately has not been applied
yet on electrophysiological data. Moreover, ASSET, by construction, is
able to detect SSEs that repeat only twice across time, and not multiple
times as in other pattern detection methods.

1.5.12 SPIKE-ORDER

SPIKE-order (Kreuz et al., 2017) is an algorithm able to detect consis-
tent repetitions of propagation of spikes, such as sequences of syn-
chronous events and spatio-temporal spike patterns, that the authors
denote as synfire patterns. The method is able to detect correlation
structures similar to the patterns detected by SPADE and ASSET.
Nonetheless, the approach is quite different: SPIKE-order first defines
a synfire indicator value, which allows to sort the parallel spike trains
as leaders and followers, depending on their consistency in spiking
propagation. The synfire indicator value has a maximum value of 1,
whenever all neurons propagate perfectly their spiking from first to
last in the assigned order, making a precise synfire pattern without
any noise. SPIKE-order comprises also a statistical test for the signifi-
cance of the detected patterns using surrogate generation, where the
distribution of the synfire indicator measure of the empirical data is
compared to the one of the independent surrogate data. The method
has been tested on artificially generated data, and on data recorded
via calcium imaging in acute mice CA3 hippocampal brain slices.

1.6 big data sets as a computational challenge for

analysis methods

All analysis methods presented in the previous section have the goal
of detecting different types of correlation structures in experimental
data. Depending on the scientific question, they may be applied on
data coming from different recording techniques, and in various ex-
perimental conditions (resting state or behavior). As mentioned earlier,
one of the main challenges is to cope with the extensive recordings
of today’s experiments. In the case of electrophysiological recordings,
where it is possible to record in parallel the spiking activity of single
neurons, the largest state-of-the-art data sets are from:
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� multi-electrode Utah arrays, as in Brochier et al. (2018), where
the activity of 100 to 170 neurons is captured simultaneously;

� several multi-electrode arrays, as in Chen, Zhang, et al. (2020)
(combination of several Utah arrays) or in Dann et al. (2016)
(combination of several floating multielectrode arrays), where
the activity of hundreds and (sometimes) even more than one
thousand of neurons is recorded across all arrays;

� neuropixel probes, as in Jun et al. (2017), Steinmetz et al. (2018),
and Juavinett, Bekheet, and Churchland (2019), showing the
activity of over thousands of neurons in parallel.

Moreover, data may also be recorded through calcium imaging (hun-
dreds of neurons in parallel), or from network simulations (up to
hundreds of thousands, and even millions of neurons). We do not
consider in this work the latter two options, as we are mostly concen-
trated on experimental contexts in which the temporal precision is in
the range of a few milliseconds.

As large data sets with hundreds of neurons are analyzed for higher-
order correlation detection, researchers need increasingly stronger
computational resources, from HPC clusters to supercomputers, in
order to complete the analyses in a reasonable amount of time. Such re-
sources need also enough memory to store the large data sets. Scaling
up the computer power as the data size increases is not an optimal so-
lution, and the reason is twofold. First, because the energy expenses of
such large computers can be incredibly high and not acceptable from
an environmental point of view. Secondly, because it averts the eyes
from the possibility of optimizing the analysis algorithms together
with their implementation. In fact, some pattern detection techniques
were proven to be computationally slow (Quaglio, Yegenoglu, et al.,
2017; Stella, 2017; Stella, Quaglio, et al., 2019), making the analysis
of real data unfeasible (and the method useless). The computational
speed of a technique might not only depend on the implementation,
but also on the programming language used, and on a variety of other
factors such as the data structures used for storing, and the oper-
ative system. Nonetheless, we argue that a state-of-the-art analysis
tool has to show good performances from the point of view of the
computational time, memory and energy used in a realistic scenario.

Finally, reproducibility, comparability and open source code are also
necessary standards for the advancement of this field of study (Pauli
et al., 2018; Sprenger et al., 2019).

1.7 modeling experimental parallel spike trains with

point processes

All methods presented above need to be properly tested and validated
before being applied to experimental data. The most typical test case
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for such methods consists in the application to independent stationary
point processes (typically Poisson), in order to assess the method’s
type I and type II errors. In some cases the validation is extended also
to non-stationary data (Torre, Picado-Muiño, et al., 2013; Russo and
Durstewitz, 2017; Quaglio, Yegenoglu, et al., 2017), mostly consisting
of coherent rate increases or sinusoidal rate profiles, as firing rate mod-
ulations are often responsible for false positive detection (Grün, 2009).
Nonetheless, various studies have shown that the real neural activity is
strongly different from simple independent non-stationary processes.
Prime example is the study of Mochizuki et al. (2016), showing that,
depending on the brain area and on the species, the average firing
rates and interspike intervals may largely vary across neurons, and
cannot be explained trivially by one simple point process model. For
this reason, it is necessary to generate artificial test data reproducing
closely the firing rate statistics of experimental data. The reasoning
may be extended also to other statistical features, as the interspike
interval distribution, dead time, and regularity. Several steps have
been done already in this direction (Nawrot, Boucsein, et al., 2008;
Tomar and Kostal, 2021), through the employment of a various set
of distributions as ISI distribution: exponential, shifted exponential
(corresponding to the poisson process with dead time; Deger et al.,
2012), gamma (Reeke and Coop, 2004; Pouzat and Chaffiol, 2009),
lognormal (Levine, 1991; Pouzat and Chaffiol, 2009), inverse gaussian
(Berger, Pribram, et al., 1990; Levine, 1991), and even mixtures of
exponential distributions (Bhumbra and Dyball, 2004; Trapani and
Nicolson, 2011). The closer the artificial data is to the experimental
the more robust is the validation of the method. In other words, if a
statistical method leads to large numbers of false positives (or false
negatives) when analyzing non-stationary independent data, then we
may conclude that the results obtained on electrophysiological data
cannot be trusted. The modeling of experimental data with point pro-
cess models allows also to answer scientific questions, as in Song et al.
(2018), where the authors investigate the properties of ISI-distributions
of afferent neurons of the Zebrafish lateral line. There, authors were
able to explain how differences and similarities between synapses and
innervations in the Zebrafish can lead to variations in spontaneous
activity.
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This chapter is based on the publication Stella, Quaglio, et al. (2019).
The author performed the evaluation of the statistical improvements,
the profiling of the computational performance, and the design of
the workflow; contributed to the validation of 3d-SPADE, to the
implementation of 3d-SPADE and to the writing of the manuscript.
The work was done under the supervision of Sonja Grün. Figures
in this chapter were reproduced from Stella, Quaglio, et al. (2019),
including the captions.

Background: Accurate detection of correlated neuronal activity is a
major challenge in the analysis of parallel spike trains. The correlation
structures of our interest are repetitive occurrences of precise spatio-
temporal spike patterns (STPs). In order to detect these patterns, the
SPADE method was designed. The method first counts repeating STPs
using a frequent itemset mining approach, followed by a significance
evaluation. The statistical test consisted in pooling patterns of the
same signature, i.e., pattern size and number of occurrences.

Methods: Here, we introduce an extension of the original statistical
test, which in addition accounts for the temporal duration of the
patterns, adding a third coordinate in the signature definition. We
then compare the new extension to the original method to assess
whether statistical and computational performances are improved.

Results: The application to a number of simulated data sets demon-
strates that the new test improves the statistical performances of
SPADE and avoids false positive detection. We profile the new tech-
nique also in terms of computational performance, which results to
be comparable to the previous approach. Also, the SPADE method
is made publicly available on the Elephant library. The code to re-
produce all results is published on GitHub, together with detailed
documentation and tutorials.

Conclusions: The extension of the test positively impacts the statistical
power, without affecting negatively the FN rate or the computational
performances. For these reasons, we suggest it as a replacement to the
previous approach.
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2.1 introduction

In Chapter 1 we showed different methods for the detection of correla-
tion structures in parallel spike trains. In particular, we presented the
definition of Spatio-Temporal spike Patterns (STPs), and a few meth-
ods that were designed to detect them. Here, we elaborate more in
depth the method SPADE (Torre, Picado-Muiño, et al., 2013; Quaglio,
Yegenoglu, et al., 2017; Stella, Quaglio, et al., 2019). SPADE was first
designed to detect patterns of synchronous spikes in Torre, Picado-
Muiño, et al. (2013), and was then extended to allow for the detection
of delayed spike patterns in Quaglio, Yegenoglu, et al. (2017).

In this chapter, we present the method SPADE in all its steps, and
then introduce an extension of its statistical test. The extension consists
in the consideration of a third statistical feature of a pattern, in order
to evaluate its significance. We bring forward the motivations of such
modification, and the benefits deriving from it. Moreover, we present
the software implementation of the method, and give a description
of an exemplary analysis workflow. Importantly, we focus on the
profiling of SPADE, to show that the new extension does not impact
the computational performance in time, across all the parameters
varied during the profiling assessment.

2.2 spade

The acronym SPADE stands for Spatio-temporal PAttern Detection
and Evaluation (Quaglio, Yegenoglu, et al., 2017). It takes as input
parallel spike trains, and returns significant spatio-temporal spike
patterns. It is a modular method, as it consists of three successive
steps. The first is the detection of all putative patterns in data at a
certain temporal resolution, while registering the number and the
time of their occurrences. The second step is the statistical evaluation
of significance of patterns detected in the first step, under the null
hypothesis of mutual independence of spike trains given their firing
rate (co-)modulations. The third step is a conditional test performed
on all significant patterns, in order to remove patterns arising from
the overlap of true pattern spikes and chance spikes.

2.2.1 Frequent item set mining

The exhaustive search of all patterns present in parallel spike trains
is a hard task, as the number of patterns grows exponentially with
the number of spikes (Quaglio, Yegenoglu, et al., 2017). The chosen
approach for this systematic search in SPADE is Frequent Item Set
Mining (FIM; Agrawal, Imieliński, and Swami, 1993). FIM can be
executed using different algorithms, and for the SPADE method we
chose FP-Growth (Frequent Pattern Growth; Han, Pei, and Yin, 2000).
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FP-Growth takes as input binary data, and returns a list of STP candi-
dates, together with their number of occurrences. However, the input
of SPADE is a list of parallel spike trains, with a temporal precision
given by the resolution of the recording. Thus, within SPADE, the
input to FIM is processed as following: time is discretized into ex-
clusive time intervals (bins) of a few milliseconds length b, in order
to allow a minimal temporal imprecision of interspike lags. Thus,
each spike train is transformed into a sequence of zeros and ones:
each bin corresponds to a 1 if there was at least one spike emitted
from that neuron within that time interval, and 0 otherwise. In other
words, the data is formatted into a binary matrix, where each row
corresponds to a neuron, and each column to a time bin. In this frame-
work, a spike pattern can be seen as a pattern of ones in the binary
matrix. Then, in a second step, a window W of length w is slid bin
by bin across the binary matrix (depicted in Figure 2.1): in this way,
we obtain an incidence table (i.e., FIM’s input), having in its rows the
windows at various time positions w, concatenated neuron by neuron.
Delayed spike patterns repeating exactly across windows are the item
sets searched by FIM (corresponding to green crosses in panel C of
Figure 2.1). Importantly, the length (in bin size units) of the sliding
window w indicates the maximal duration of patterns detectable by
SPADE. All patterns with duration smaller than w can be detected, all
longer patterns are ignored.

The item sets in our interest need also to be frequent and closed: an
item set is frequent if it occurs at least a fixed number times c, whereas
it is closed if there is no super set occurring at least the same number
of times. FIM looks for such structures in the binary data and returns
them as output, as a list, together with their respective occurrence
number. An exhaustive explanation of the exact functioning of FIM
and FP-Growth is presented later in Chapter 3.

2.2.2 Pattern spectrum filtering (2-dimensional)

After having returned all closed and frequent item sets, the next step
is their assessment of statistical significance, called Pattern Spectrum
Filtering (PSF). As the number of patterns retrieved by FIM is typically
very high, it is not feasible to test each single pattern individually. In
fact, the number of statistical tests is too high, and causes a multiple
testing problem: the more tests are done, the more likely erroneous
test results arise (Miller, 1981). The proposed solution for this issue
in SPADE is to pool patterns based on their size z (number of spikes),
and occurrence count c. The pair (z, c) is called signature. Then, the
significance of a signature is defined by the number of patterns exhibit-
ing that signature. The matrix collecting all signature counts is called
pattern spectrum. Importantly, in this context, the pattern spectrum
is two dimensional (as signature entries have two coordinates). The
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Figure 2.1: Data formatting for Frequent Itemset Mining in SPADE. Top
panel. Example of parallel spike trains, corresponding to N =
4 different neurons spiking together (y-axis). Each black tick
corresponds to a spike. The continuous time spike trains are
discretized into bins of a few milliseconds b (shaded vertical
stripes). A window of duration w is slid across the data, from bin
to bin. Window positions are indicated with the letter w. Second
panel. A window of dimensions w� N is transformed into a row
vector of dimensions w � N � 1. Third panel. Example showing
a part of the incidence table (FIM input). Aligning the vectors at
window positions w = i and w = i + n we see a pattern emerging,
looking a the coincidences across bins (green crosses). Bottom
panel. Same raster plot as in top panel, but with the detected
pattern in green. Figure from Stella, Quaglio, et al. (2019), under
CC-BY licence.
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statistical test is done through a Monte-Carlo approach, generating
surrogate data from the original data. Surrogates are generated by
uniform dithering (Date, Bienenstock, and Geman, 1998), i.e. by mov-
ing each single spike time from its original position by a uniform
amount, while maintaining the firing rate profile intact. In principle,
other surrogate techniques can be used, and may lead to different
results in the pattern analysis. We show in Chapter 5 how this can
impact SPADE’s results.

The p-value corresponding to a certain signature is calculated as the
ratio of surrogates containing patterns with that signature, over the
total number of surrogate realizations. The p-value spectrum is a matrix
having the same dimensions of the pattern spectrum, and storing in
each coordinate (z, c) the corresponding p-value P(z,c). Finally, only
the significant patterns are retained.

2.2.3 Pattern set reduction

The last step of SPADE is a second statistical test, called pattern set
reduction (PSR), removing patterns that are due to chance overlap
of true patterns with spikes of background spiking activity. Such
false positive patterns can have a higher size (if the chance spike
belong to another neuron that does not belong to the pattern), a higher
occurrence count (if the additional occurrences happen by chance) or
both. The test calculates the conditional significance of each pattern
given all other patterns having common spikes, and is determined by
the choice of three parameters (h, k, l). Mathematically, for any two
significant patterns A, B such that A � B, and considering the set of
non-significant signatures nssignatures, we check if:

1. (zb, cB � cA + h) 2 nssignatures, and

2. (zA � zb + k, cA) 2 nssignatures.

Then,

� if 1) and not 2) then discard B

� if 2) and not 1) then discard A

� if 1) and 2) then discard B if cB � (zB� l) � cA � (zA� l), otherwise
discard A

� if neither 1) nor 2) then keep both patterns.

Throughout the whole chapter we set the three parameters to h =

2, k = 2, l = 2, as in Torre, Quaglio, et al. (2016) and Quaglio, Yegenoglu,
et al. (2017). All patterns retained by PSR are returned by SPADE.
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2.3 extension of spade’s statistical test

In the following we present the motivation and the idea behind the
extension of the PSF statistical test of SPADE. SPADE was extensively
calibrated on artificial data sets, revealing that it is able to distinguish
true patterns inserted in data against chance patterns, leading a low
false positive count (Quaglio, Yegenoglu, et al., 2017). Nonetheless,
patterns of different temporal lengths (durations) were not present in
such data. The duration of a pattern is calculated as the time difference
between the last and the first spike. Further calibrations revealed that
patters having a longer duration are more likely to be false positive
patterns, compared to patterns with a shorter duration having the
same occurrence count (Quaglio, 2019).

2.3.1 Motivations for the extension

The reason of the test bias towards patterns with shorter duration lays
in the fact that the test itself does not account for such feature. All
patterns of any duration have the same p-value, as they are, in fact,
assigned to the same signature (z, c) in the p-value spectrum. But do
patterns of shorter and longer duration have different probabilities?
We make a sketch example in Figure 2.2: let’s consider a pattern of
three spikes (z = 3) from three different neurons, occurring only once
(c = 1), under the hypothesis of independent spiking. Varying the
temporal duration d (in bin units) of the pattern we obtain different
pattern combinations: for d = 1 the three neurons can produce only
one synchronous pattern; for d = 2 we have 5 pattern combinations,
and for d = 3 we have 12 combinations. In this scenario, one specific
single pattern of duration d = 3 is much less likely to be observed
than a pattern extending over one bin, thus it is correspondingly less
significant. The reasoning can be extended to patterns of more spikes,
or of longer durations.

On the other hand, also the window length w chosen for the analysis
has an impact on this prospect. In fact, shorter windows contain fewer
chance patterns under independence: in the sketch, a window of
length w = 1 leads to the detection of a unique pattern, w = 2
leads to 6 pattern combinations (one synchronous and 5 of duration
d = 2), w = 3 leads to 18 pattern combinations (one synchronous,
5 of duration d = 2, 12 of duration d = 3). Thus, p(z=3,c=1,d=1) �
p(z=3,c=1,d=2) � p(z=3,c=1,d=3). Smaller p-values are more likely to lead
to pattern detection.

2.3.2 The concept of the 3d-pattern spectrum

In order to solve this problem, we propose a simple extension to the
PSF test, by adding another dimension to both pattern spectrum and
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z=3 z=3

c=1 c=1

d=1

z=3

c=1

d=3

d=2

Figure 2.2: Sketch of combination of patterns with different temporal ex-
tents, but same size and occurrence. Each tick corresponds to a
spike. The y-axis represents the different neurons belonging to
the pattern, the x-axis represents time. Bins are represented by
gray shaded areas. A) A pattern of size z = 3 occurring once
(c = 1). As the duration is d = 1, the only possible pattern is
the synchronous case. B) Patterns of same size and occurrence
number, but of duration d = 2, i.e. spanning two bins. There are
five combinations of possible patterns with such characteristics.
C) Patterns of same size and occurrences, with duration d = 3.
The possible patterns with these parameters are 12.

p-value spectrum, representing the pattern durations (see Figure 2.3).
Thus, we substitute the pre-existing definition of signature (z, c) with
the triplet (z, c, d).

Besides the change in dimensionality, the test is the same as in the
2-dimensional version: patterns detected by FIM are now pooled based
on their size z, number of occurrences c and durations d. This is done
for both the input data and the generated surrogates. However, the new
approach increases significantly the number of statistical tests, which
are now multiplied by the number of possible pattern durations, i.e.
by the parameter w. Thereby, we opt a more conservative approach in
the multiple testing correction: we use the Holm-Bonferroni correction
(Holm, 1979), instead of the False Discovery Rate correction (FDR;
Benjamini and Hochberg, 1995) used previously in Torre, Picado-
Muiño, et al. (2013) and Quaglio, Yegenoglu, et al. (2017). More details
on the multiple testing correction problem in the context of SPADE
can be found in Section 4.8 and in Chapter 5.

2.3.3 Comparison and improvements of the new statistical test

In order to show that the proposed solution is effective, we create sim-
ulated data sets of N = 100 parallel Poisson spike trains, of stationary
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Figure 2.3: Example 3d-dimensional Pattern spectrum and PSF spectrum.
Left panel. 3d-pattern spectrum. On the x-axis we have the pat-
tern size z, on the y-axis the occurrence number c, on the z-axis
the duration in milliseconds (example bin size equal to 10ms). The
color coding corresponds to the number of patterns detected with
such signature. Right panel. PSF spectrum, i.e. the binary matrix
corresponding to the significant and non-significant signatures
(in red). Within a column of entries of equal size and occurrences,
different duration might be significant or not. Figure from Stella,
Quaglio, et al. (2019), under CC-BY licence.
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firing rate l = 15Hz, with a total duration of T = 10s. In such data
sets we insert 5 spike patterns of size z = 3, occurring c = 4 times,
and with duration (in milliseconds) d = 0, 2, 6, 8, 12. A raster plot of
the data is represented in Figure 2.4, where patterns are shown in red.

The data is then analyzed by SPADE, in both its 2d and 3d version,
and varying the window parameter w = 1, 4, 7, 10, 13, with a bin size
of b = 1ms. So, in total, 5 SPADE runs for the different w. The window
parameter is varied to match the pattern durations: by construction,
an analysis with parameter w is not able to detect patterns of longer
duration; nevertheless, it should be able to detect all patterns with
shorter duration. In principle, pattern durations are not known in
the case of experimental data, so the match of parameters w and d is
only possible in this setting. In the case of real data analysis, we are
interested in searching and detecting accurately the largest number
of pattern durations until the maximal value w. Other parameters of
the analysis are: a = 0.05, dither of surrogates d = 15ms, number of
surrogates=1000.

The results of the analysis are shown in the middle panel of Fig-
ure 2.4: green crosses represent the number of inserted patterns, in
function of w, whereas black bars represent the number of detected
patterns. Results show that no patterns are detected by 2d-SPADE, i.e.
using a 2d-pattern spectrum, in the case of the two longest durations
(d = 8, 12ms). On the contrary, all inserted patterns are retrieved by
3d-SPADE.

In order to verify why there are such false negatives in the case of
2d-SPADE, we look at the p-values of the inserted patterns, varying
durations and occurrences (not the size, as all patterns have the same).
In the bottom panel of Figure 2.4 we display the p-value spectra (left,
2d; right, 3d) of the 5 SPADE analyses: on the x-axis the pattern dura-
tions, separately per analysis (w, on top); on the y-axis, the occurrence
number. Significant signatures are displayed with a red dot. P-values
depend on the pattern duration only in the case of the 3-dimensional
p-value spectrum (color coded), whereas are homogeneous across
durations in the 2-dimensional case. Thus, on the left, p-values are
computed pooling over patterns independently from their durations,
whereas on the right all durations have a corresponding p-value. Com-
ing back to the argument schematized in Figure 2.2, in 2d-SPADE
all pattern combinations across durations are pooled given just their
size and occurrence number: more combinations mean more chance
patterns pooled together with the real ones, leading to larger p-values.
This can be seen by confronting the p-value color-coding of 2d-SPADE
against 3d-SPADE. In simpler words, the true patterns are “washed
out” by the large number of chance patterns, which are due to the
high number of pattern combinations across durations.

In the simple case represented here, we can mathematically formal-
ize this derivation. The p-value of signature (z, c, d) can be computed
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Figure 2.4: Statistical improvements of 3d-SPADE against 2d-SPADE. Top
panel. Raster plot representing the generated artificial data, show-
ing 15 out of the 100 parallel spike trains for a duration of 350ms.
Red spikes represents 3 of the 6 injected patterns on top of the
background activity (independent Poisson processes of constant
firing rate of l = 15Hz and a total duration T = 10s). Mid-
dle and lower panels. Right, 2d-SPADE, and right 3d-SPADE
results, respectively. Middle panel: histograms showing the num-
ber of detected significant STPs across window lengths (here:
w = 1, 4, 7, 10, 13, b = 1ms along the x-axis). Green crosses show
the total number of injected STPs. Bottom panel: p-value spectra
for 2d- and 3d-SPADE, shown for fixed pattern size z = 3 and
different number of occurrences c (y-axis) and pattern durations
d (x-axis) for different analysis window sizes w (on top). The
p-values are indicated through color in logarithmic scale (color
bar on the right). Red dots mark significant signatures. Figure
from Stella, Quaglio, et al. (2019), under CC-BY licence.



2.3 extension of spade’s statistical test 29

under independence, as the firing rate is constant for all spike trains.
In fact, as the spike trains are Poisson point processes, a pattern of size
z has a uniform probability of occurring at a given time that is equal
to p = (b � l)z. Moreover, the probability P(X > c) that the pattern
occurs at least c times across the data is distributed as a cumulative
binomial distribution of parameters p and n = T�d

b , where n corre-
sponds to the total number of window positions, and T is the total
duration of the data in bins.

We finally obtain the p-value of a specific signature p(z,c,d):

p(z,c,d) = P(X > c) � N!
(N � z)!

� d
b

.

The second factor of the equation corresponds to the number of
all possible combinations of patterns of size z and duration d. If we
compute the p-values of the 5 injected patterns, we obtain p(z,c,d) w
0.000, 0.001, 0.002, 0.003, 0.005, which are very similar results to the
ones we obtain on the simulated data. This derivation is possible
only under the assumption of Poisson distribution and independence,
and it is not robust to non-stationarities, so we can use it only in
this setting. In the case of experimental data, often showing strong
firing rate changes, we have to resort to the surrogate detection for the
p-value estimation.

In conclusion, we showed that the extension of the PSF test is able
to detect adequately all patterns injected in the simulated data, in
contrast to the previous test.

2.3.4 Validation of 3d-SPADE

After having verified 3d-SPADE, we validate its statistical performance
in terms of more variegated artificial data sets, exhibiting more com-
plex structures. The data generated here was already designed for
Quaglio, Yegenoglu, et al. (2017), and consist of four different data
sets types, with common characteristics.

All data sets are composed of N = 100 parallel spike train with
independent background spiking for a duration of T = 1s, into which
we inject patterns of sizes ranging from z = 3 to z = 10 (into the first
z neurons), and of occurrence number varying from c = 3 to c = 10.
Patterns have delays between successive spikes fixed to l = 5ms. For
all combinations of (z, c) we generate 100 realizations, leading to a
total of 8� 8� 100 = 6400 data sets.

The four data sets are represented in Figure 2.5, with their respective
firing rate profile (top row) and exemplary raster plot (second row).
They are:

� Stationary data: all neurons have a stationary background firing
rate of l = 25Hz.
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� Coherent rate jump data: the firing rate profile of all neurons
has a simultaneous increase from l = 10Hz to l = 60Hz for a
period of 100ms, which then goes back to baseline.

� Heterogeneous firing rate data: all neurons have a different
constant firing rate, ranging from l = 5Hz to l = 25Hz.

� Firing rate propagation data: neurons are divided into 5 groups
of 20 neurons, and have a sudden rate increase from l = 14Hz
to l = 100Hz for 5ms, sequentially with a delay equal to 5ms.

All data sets are analyzed with the new proposed 3d-version of
PSF, with the following parameters: b = 1ms, w = 50ms, a = 0.01,
and Holm-Bonferroni correction. Then, the number of false positives
(FPs) and false negatives (FNs) are counted. We define a FP as a
detected significant pattern that does not coincide exactly with the
injected one. FN is instead an injected pattern not detected by the
method. Here, the goal is to verify that the new version leads to the
same results of the previous SPADE version, in a context in which
there is homogeneity of pattern durations, i.e. where the problem of
under-detection of patterns is not present. In other words, our goal
is to validate 3d-SPADE against 2d-SPADE. We calculate the FP rate
and FN rate by dividing the number of data sets exhibiting at least
one FP/FN over the total number of realizations (100).

Results of the analysis are displayed in Figure 2.5: in the third,
fourth and fifth row we show the FP, FN rate, and the maximum
between FP and FN rate, respectively. Black circles represent entries
larger than 0.05, i.e. larger than the overall significance level. Results
show that the FP and FN rate is overall low, and typically large rates
are present for low occurrence number across all sizes. This is an
expected result, as injected pattern repeating a low number of times
are harder to distinguish from the chance patterns arising from the
background spiking, especially if the firing rate is relatively high. For
the second data set (coherence), we see a low FP rate, even if this is a
typical case leading to FP detection (Louis, Borgelt, and Grün, 2010).
On the other hand, we see a slightly higher number of FNs than for
the other data sets. Thus, we conclude that the new 3d-PSF leads to
good results in terms of FP and FN rate.

The next step is to verify that the performances are similar to the
ones of 2d-SPADE. We can compare the results obtained here with
Figures 6 and 7 of Quaglio, Yegenoglu, et al. (2017), where the very
same data is analyzed. Notably, we observe similar results in the two
settings, leading to the conclusion that the validation of the method
is done successfully. In addition, the agreement on the statistical
performance indicates that the Holm-Bonferroni correction is well
chosen.
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Figure 2.5: Validation of 3d-SPADE, and evaluation in terms of FP and FN
rates for four artificial data sets. Top row: rate profiles of the
background activity. From left to right: stationary firing rate (l =
25Hz), coherent rate changes, rate heterogeneity across neurons,
and rate jump propagation across successive groups of neurons.
Second row: example raster plots. Third, fourth and fifth row:
FP rate, FN rate and max(FP, FN) rate (color coded, in log-scale)
across number of pattern occurrences c (y-axis) and pattern size
z (x-axis). Black circles indicate matrix entries over 0.05. Figure
from Stella, Quaglio, et al. (2019), under CC-BY licence.
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2.4 software implementation of spade

Next, we concentrate on the implementation of SPADE. We investigate
the time profiling of the 3d-SPADE implementation, and then look at
its software within the context of the Elephant Python library. Finally,
we make a small note on how we allowed to completely reproduce
the results presented in this chapter.

2.4.1 Profiling of computational performance

In order to profile the SPADE method in terms of computational
time, we consider the time spent by the different software modules
in function of the parameters of appropriately simulated data. In
particular, we look at the time spent by the mining step (FIM) and the
PSF test, comparing the runtimes of 2d-SPADE and 3d-SPADE.

To perform the mining step, SPADE employs an external C++ im-
plementation of FP-Growth (Borgelt, 2012), which is only available for
Linux distributions. Alternatively, for non-Linux distributions, there is
the option to use a Python implementation of an algorithm called For-
mal Concept Analysis (Fast-FCA; Lindig, 2000). FCA has been proved
to be conceptually equivalent to FP-Growth in Quaglio, Yegenoglu,
et al. (2017).

We compute the running times of the complete SPADE analysis (2d
and 3d versions) each with the two FIM implementations (FP-Growth
and Fast-FCA), and of the FIM implementations alone. Thus, we have
in total six combinations: FP-Growth (C++), Fast-FCA (Python), 2d-
SPADE with FP-Growth, 3d-SPADE with FP-Growth, 2d-SPADE with
Fast-FCA, 3d-SPADE with Fast-FCA. We run all combinations on
artificial benchmark data, consisting of independent Poisson spike
trains, where we vary alternatively the typical data parameters that can
influence the runtimes: firing rate, total recording length and number
of parallel spike trains (Figure 2.6). Specifically, the parameters ranges
are:

� Stationary firing rate varying from l = 15Hz to 75Hz; N = 100
spike trains; T = 3s duration (Figure 2.6, left column)

� Recording length varying from T = 3s to 15s; N = 100 spike
trains; l = 15Hz firing rate (Figure 2.6, center column)

� Number of parallel spike trains varying from N = 100 to 500;
T = 3 s recording length; l = 15Hz firing rate (Figure 2.6, right
column).

The combinations of the parameters are chosen such that the total
average number of spikes Ns varies always in the same range, from
Ns = 4500 to 22500 (second x-axis in Figure 2.6). This is estimated
analytically as the spike trains are Poisson and stationary.



2.4 software implementation of spade 33

0

5000

10000

15000

20000

25000

co
m
pu
te
 ti
m
e 
(m
in
)

T = 3s, N = 100
FP-growth (C++)
Fast-FCA (Python)
2d FP-growth
3d FP-growth
2d Fast-FCA
3d Fast-FCA

0

50

100

150

T = 3s, λ = 15Hz

0

50

100

150

N = 100, λ = 15Hz

4500 9000 13500 18000 22500
Ns

10−2
10−1
100
101
102
103
104

lo
g 
(c
o 
pu
te
 ti
 
e)

4500 9000 13500 18000 22500
Ns

10−2
10−1
100
101
102
103
104

4500 9000 13500 18000 22500
Ns

10−2
10−1
100
101
102
103
104

15 30 45 60 75
λ (Hz)

100 200 300 400 500
N

3 6 9 12 15
T (s)

Figure 2.6: Profiling of the different components of SPADE. Runtimes as
a function of the firing rate l (left; N = 100, T = 3s), number
of parallel spike trains N (center; T = 3s, l = 15Hz), recording
time T (right; N = 100, l = 15Hz). In parallel, as a second x-axis,
runtime is represented also in function of the average number
of spikes Ns. Runtimes using Fast-FCA (Python) and FP-Growth
(C++) are indicated as blue and orange, respectively. Runtimes of
2d- and 3d-SPADE with Fast-FCA are shown in purple and green
respectively; whereas for 2d- and 3d-SPADE with FP-growth are
in light blue and red. Dotted lines show that lines may lie on top
of each other. Top row indicates runtimes in minutes, and bottom
row same results in logarithmic scale. Figure from Stella, Quaglio,
et al. (2019), under CC-BY licence.
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Results show that the FCA Python implementation is significantly
slower than the C++ FP-Growth one (Figure 2.6, bottom, in blue and
orange respectively). This is true for all parameters (left, middle and
right panels), and increases with the number of spikes, although with
different tendencies, depending on which parameter is varied. In
fact, the runtime increases exponentially as the firing rate increases,
especially for the Fast-FCA implementation (first panel), whereas the
growth is linear for the cases of varying number of parallel neurons
and recording length (middle and right panel). The tendency observed
for the firing rates is due to the higher number of spikes in the
sliding windows, making the extraction of the repeated patterns more
cumbersome.

These observations extend also for the entire run of SPADE (Figure
2.6, bottom, green/purple vs red/light blue lines). Moreover, in gen-
eral, we see that the PSF step accounts for most of the runtime, as FIM
is run iteratively on all surrogate data sets (here 2000).

Finally, we see that the differences between the compute times of
2d- and 3d-SPADE are negligible for both mining algorithms, as lines
always are lying on top of one another (red and light blue, green and
purple). Thus, we can conclude that the extension of the statistical test
does not impact the computational performance of the method.

2.4.2 Software and reproducibility

Together with the publication of the paper presented in this chapter,
the SPADE method was made available in Elephant (ELEctroPHysiol-
ogy ANalysis Toolkit, RRID:SCR_003833), an open-source library for
the analysis of electrophysiological data in the programming language
Python. Elephant focuses on analysis functions for electrode record-
ings data, such as spike trains and local field potentials. The project
has the goal of providing a common platform for analysis in the neu-
roscience community, eventually leading to easier reproducibility of
results and inter-communicability across labs using the same tool.

Elephants has several library dependencies, but the most rele-
vant are certainly NumPy (Harris et al., 2020), Quantities (https:
//pypi.org/project/quantities/), and Neo (Garcia et al., 2014). Neo,
in particular, allows for the standardized representation of electro-
physiological data, e.g. the SpikeTrain format that is the input of
SPADE.

For all previous publications on the SPADE method (Torre, Picado-
Muiño, et al., 2013; Torre, Quaglio, et al., 2016; Yegenoglu et al., 2016;
Quaglio, Yegenoglu, et al., 2017) the software was not yet publicly
available. For this reason, we want to stress the importance of the
publication in terms of open-source access to methods and tools for
electrophysiological data analysis. Together with this study, SPADE is
freely accessible for anyone to use.

https://pypi.org/project/quantities/
https://pypi.org/project/quantities/
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Parameter Definition

spike trains list of neo.Spiketrain representing the input data

bin_size time precision used to discretize the continuous time
spike trains

winlen length of the sliding window used for the analysis, in
bin units

spectrum parameter indicating the alternative options of 2d-
and 3d-SPADE. 0#0: 2d-SPADE; 03d#0: 3d-SPADE

min_spikes minimum pattern size

min_occ minimum number of occurrences of a pattern to be
considered such. It corresponds to the threshold in
FIM for an itemset to be considered frequent

min_neu minimum number of neurons of a pattern to be
considered such. It does not necessarily match
min_spikes, as one could search for patterns where a
neuron is involved multiple times in a pattern
sequence (also called autopatterns)

n_surr number of surrogates to generate to compute the
p-value spectrum

dither dither parameter for the surrogate method
generation

alpha significance level of the hypothesis test performed. If
alpha is None, no statistical test is performed

stat_corr method used for the multiple testing correction

surr_method surrogate technique chosen for the creation of the
null-hypothesis in the PSF test

psr_param triplet of parameters (h,k,l) of the pattern set
reduction test

Table 2.1: Parameters of SPADE.

SPADE is a module of the library Elephant, and can be called with
the function spade(), that performs the analysis of the data given in in-
put. An exemplary tutorial of SPADE is present at the webpage (https:
//elephant.readthedocs.io/en/latest/tutorials/spade.html). The
function takes as input many parameters, and we list in Table 2.1 the
most relevant ones within the context of this and the future chapters.

SPADE’s output consists in the p-value spectrum, the list of non
significance signatures, and a list of patterns. The method stores each
pattern as a dictionary, having as keys the neuron indexes involved in
the patterns, the lags between spikes, the times of the occurrences of
the patterns, their signature, the p-value, and the coordinates of the
pattern as returned by FIM.

https://elephant.readthedocs.io/en/latest/tutorials/spade.html
https://elephant.readthedocs.io/en/latest/tutorials/spade.html
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Moreover, SPADE has been implemented as a modular method:
each of its steps is a python function itself, occasionally dependent
on other subfunctions. For this reason, one can decide to apply only
one of its subparts, and even substitute them with alternative and/or
additional steps. Throughout the whole thesis, we exploit this feature
in many cases, especially in Chapter 3 and Chapter 5.

Another feature of the method is the support of parallel computing
through Open MPI (www.open-mpi.org). Open MPI is an open source
Message Passing Interface, that is used on parallel computers with
distributed memory and on clusters. Open MPI allows to distribute
the pattern extraction from the surrogate data in different cores, and
then collect it to compute the p-value spectrum. This is does not only
allow to optimize the memory usage, but also the computing time:
the more cores the faster the analysis becomes. This has to be taken
into account when considering the computational time of method
analyzed in Figure 2.6, where we show runtimes on one single core.
In a practical application, the total time has to be roughly divided by
the number of cores (and counting in additional the time spent for
between core communication).

Finally, we consider replicability and reproducibility of results as
an essential principle of a study. For this reason, we made public
the entire analysis and workflow of the results presented in the
publication. We used the workflow management system Snakemake
(https://snakemake.readthedocs.io) for the generation of the artifi-
cial data, its analyses, and plotting of the figures. By implementing a
Snakemake workflow, we were in fact able to run our scripts across all
parameter ranges in a distributed way. The corresponding repository
was developed under version control and is open-source available
at https://github.com/INM-6/SPADE_applications. More details on
the Snakemake software are in Section 3.4.

2.5 conclusion and discussion

In this chapter we have introduced an extension to the statistical test
of the SPADE method. The proposed extension consists in considering
the pattern duration as a third variable determining significance, in
addition to the pattern size and pattern occurrence number. We have
shown that, without this correction, patterns with longer temporal
extents are penalized and not detected successfully in data sets con-
taining patterns of different durations. We have also identified the
reasons and demonstrated them through analytical estimations. More-
over, we have validated the method against its previous 2-dimensional
version in a case in which patterns of different durations are absent.
We have thus verified that the statistical performance is impacted only
positively, even though the number of tests has grown significantly.
Finally, we have tested the performance of the method also in terms

www.open-mpi.org
https://snakemake.readthedocs.io
https://github.com/INM-6/SPADE_applications
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of compute time and seen that 3d-SPADE leads to the same runtimes
as 2d-SPADE. In fact, the runtime of the method is solely determined
by the implementation of FIM, i.e. C++ vs. Python.

The results confirm that the challenges of accurate detection of
spatio-temporal patterns in massively parallel spike trains (Chapter
1) are mostly overcome with our proposed method 3d-SPADE. The
statistical evaluation is robust to different data characteristics, thus
leading to low FP and FN rates. Importantly, this is done without
recurring to a null-hypothesis based on a simple point process model
(e.g., assuming Poissonianity), that could likely increase the FP rate
(Grün, 2009). Moreover, we show that 3d-SPADE has good compu-
tational performances thanks to parallelization. In fact, it allows the
analysis of several hundreds of neurons in parallel, that are becoming a
standard in recent electrophysiological recordings (e.g., in Neuropixel
probes; Juavinett, Bekheet, and Churchland, 2019). Finally, SPADE is
included in an open-source Python package, thus freely available for
the community to use.

Nonetheless, it is also our duty to shed some light on the limitations
of the results presented in this chapter. First of all, the test artificial
data, especially in the case of Section 2.3.3, are relatively simple.
Experimental data typically exhibits non-stationarities in the firing
rate (Riehle, Brochier, et al., 2018) and it is generally non-Poissonian
(Mochizuki et al., 2016). Moreover, non-stationarities, deviations from
Poisson, and regularities may cause the detection of false positive
patterns (Grün, 2009; Louis, Gerstein, et al., 2010; Louis, Borgelt, and
Grün, 2010). Verification of the robustness of SPADE on non-stationary
data with patterns of different durations is addressed more in depth
in Chapter 5.

Secondly, we have mentioned in Section 2.3.3 that by adding a third
dimension to the pattern spectrum the number of tests is significantly
increased. In this chapter, the number of tests were calculated as the
total number of entries of the p-value spectrum. For this reason, we
adopted a multiple testing correction (Holm-Bonferroni correction;
Holm, 1979) that is more conservative than the one previously used
(FDR, Benjamini and Hochberg, 1995). We verified in Figure 2.5 that
choosing a more conservative correction counterbalances the higher
number of tests, leading, in fact, to comparable results in terms of FP
and FN rates for 2d- and 3d-SPADE in case of absence of patterns
with different durations. The choice of an appropriate multiple testing
correction is, although, a difficult problem. Some even argue that
multiple testing correction should not be done at all (Rothman, 1990).
Without adopting the more extremist views, it may be considerable
to select which tests are “effectively” done in the case of the p-value
spectrum. In fact, the p-value spectrum is defined such that patterns of
fixed size and duration are less likely to happen the more occurrences
they exhibit. In mathematical terms, two signatures (z1, c1, d1) and
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(z2, c2, d2) such that z1 = z2, d1 = d2 and c1 > c2,have the correspond-
ing p-values p(z1,c1,d1) < p(z2,c2,d2). Thus, if the signature (z2, c2, d2) is
significant, also the signature (z1, c1, d1) is. These properties, which are
not present in classical multiple testing, may motivate us to consider
differently the number of statistical test effectively made. We explain
more in depth this idea in Chapter 5.

Finally, there are some observations that have to be made on the
implementation of the FIM algorithm in SPADE. Figure 2.6 shows that
the FP-Growth C++ implementation has a much better performance
than the Fast-FCA. The bad performances of the Python implementa-
tion might be twofold: due to the the implementation itself, and by the
programming language, which is often faster than C++ (Zehra et al.,
2020). Thus, the optimization of the Python algorithm may be neces-
sary. The same reasoning could be applied on the FP-Growth code,
which may be optimized even more, in terms of time and memory. A
solution for the latter point is addressed in the next chapter.



3
A C C E L E R AT I O N O F S PA D E : I M P R O V E M E N T S I N
PAT T E R N M I N I N G

This chapter is based on the publication Porrmann et al. (2021).
The author performed the preparation of the experimental data, the
design of the SPADE workflow and the testing in a real case scenario
of the improved implementation; contributed to the publication of
the new algorithm into the Elephant package and to the writing
of the manuscript. The work was done under the supervision of
Michael Denker and Sonja Grün. Some figures in this chapter were
reproduced from Porrmann et al. (2021) and Stella, Bouss, et al.
(2022) (when indicated), including the captions.

Background: The SPADE method was developed to find reoccurring
spatio-temporal patterns in massively parallel spike trains. However,
depending on the number of neurons and the length of recording,
SPADE can exhibit long runtimes, due to the massive number of
retrieved patterns, and, importantly, to the generic implementation of
the pattern mining step (i.e., the FP-Growth algorithm).

Methods: We identified the bottlenecks of the original implementa-
tion, as the pattern mining and the result filtering account for 85-90%
of the total runtime. We designed a new implementation of the FP-
Growth algorithm, which allows for parallel and distributed execution.
Moreover, we tested the new implementation on a wide range of
different hardware.

Results: Our implementation solves the bottlenecks present in the
previous version, and is now able to analyze large data sets (in terms of
neurons and recording length), which was not possible before due to
time and memory restrictions. Depending on the tested platform, our
implementation is between 27 and 200 times faster than the original
implementation, and between 67 and 280 times more memory efficient.

Conclusions: The newly improved FP-Growth flow is highly opti-
mized for our analysis purposes, and is the new default implemen-
tation of the SPADE method. Thanks to the optimization, we can
now investigate larger data sets in a reduced amount of time, making
SPADE even more competitive with other existing methods in the
literature.

39
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3.1 introduction

In the previous chapters we have mentioned several outlooks and
problems arising as a consequence of the development of the most
recent technologies used in electrophysiology, which allow for the
simultaneous recording of hundreds, and sometimes even thousands
of neurons (Brochier et al., 2018; Juavinett, Bekheet, and Churchland,
2019; Chen, Zhang, et al., 2020). Moreover, not only the number of
neurons may be high, but also the length of the recordings. For these
reasons, it is necessary to iteratively optimize methods to account for
the developing technologies and research techniques. The optimization
can be done not only in terms of computational time, but also in terms
of memory and energy efficiency, which are equally important. In
fact, with such optimizations, the execution of an algorithm may be
done on heterogeneous and more energy-efficient devices than regular
workstations (e.g., low-power microservers).

Typically, evaluation and optimization of algorithms in computer
science are done on synthetic and classical benchmark data, such as
the MNIST data set (LeCun, Cortes, and Burges, 1998). Nonetheless,
in the neuroscience community, there are few examples of synthetic
benchmark data, especially for the task of detecting correlations and
sequences in parallel spike trains. In fact, often method calibrations
are done on experimental data (Russo and Durstewitz, 2017; Watanabe
et al., 2019; Mackevicius et al., 2019; Williams, Degleris, et al., 2020).
The evaluation of a method for its computational performances on
real data is important to understand if the runtime is adequate (and
improved) in a real case scenario.

In Chapter 2 we have presented the computational performances
of the method SPADE for pattern detection in parallel spike trains.
There, we showed that the implementation of the default algorithm
for Frequent Itemset Mining (FP-Growth, in C++ language) led to
short runtimes when applied on simple stationary Poisson data while
varying the number of spikes. In this chapter, we extend that aspect
by introducing a customized FP-Growth implementation for SPADE,
which significantly accelerates the pattern mining. The new implemen-
tation is tested on different platforms, such as classical workstations,
high-performance microservers and low-power microservers. Depend-
ing on the device, the proposed implementation is between 27 and
200 times faster than the previous one. In addition, the peak memory
usage is decreased significantly (up to 17 times), and the energy con-
sumption is decreased up to two orders of magnitude. Importantly, all
these tests are performed on one session of real electrophysiological
data (published in Brochier et al., 2018), concatenated across differ-
ent behaviors, as usually analyzed by SPADE (Torre, Quaglio, et al.,
2016). Moreover, we present a workflow to analyze the experimental
data, based on the software Snakemake, which distributes the dif-
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ferent SPADE runs across pattern sizes and optimizes the minimum
occurrence number for the FP-Growth algorithm. The new proposed
algorithm of FP-Growth is finally included as a C++ module in the
Elephant library.

3.2 optimization of fp-growth

In this section, we present an optimization of the FP-Growth (Frequent
Pattern Growth) algorithm, specifically tailored to SPADE (Chapter
2). We first give an introduction to Frequent Itemset Mining and its
terminology, and then successively focus on FP-Growth and its imple-
mentation. We look at all parts of FP-Growth in order to identify its
bottlenecks, and then propose a new implementation with significantly
improved performances.

3.2.1 Frequent Itemset Mining

Frequent itemset mining (FIM), or frequent pattern mining, is a
method used to detect recurring patterns in databases. It was first
introduced in Agrawal, Imieliński, and Swami (1993) to solve the task
of identifying products frequently bought together in supermarkets.
Nonetheless, throughout the years it was used for many other differ-
ent purposes, such as medical image classification (Antonie, Zaiane,
and Coman, 2001), text mining (Aggarwal and Yu, 2001; Don et al.,
2007), social sensing from GPS data (Aggarwal and Abdelzaher, 2013),
software bug detection (Liu et al., 2005), detection of chemical and
biological sequences (Srinivasan et al., 1997; Hashimoto et al., 2008),
and, of course, neuroscience (Borgelt and Picado-Muiño, 2013; Picado-
Muiño et al., 2013). In the case of large databases, the output (the
number of frequent patterns) retrieved by the method can be com-
parable or larger than its input, and this is an unusual problem in
data mining (Aggarwal, Bhuiyan, and Hasan, 2014). Moreover, often
the output of FIM does not necessarily represent a useful summary,
or description of the input data. For this reason, frequent itemset
mining is frequently used as an intermediary step, followed by some
post-processing steps, with the goal of eventually reaching a concise
representation of the data, e.g. PSF statistical test as done in SPADE
(Chapter 2).

We now introduce the definitions used in FIM. A database D mined
by FIM consists of a collection of transactions. Each transaction T
is defined as a subset of items from an itemset I. The number of
occurrences of an itemset across different transactions is called support,
and an itemset is called frequent if it has support higher than a fixed
value c. Instead, the number of items of an itemset is called size. So, the
task of frequent itemset mining consists in looking for itemsets that
have a frequency higher than a certain threshold. In general, the search
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for frequent itemsets can result in redundant results, so typically the
search is restricted to closed frequent itemsets. An itemset is closed
when there exists no superset with the same or higher support, i.e. its
frequency is not trivially explained by the existence of a larger itemset.
Mining closed frequent itemsets is a much smarter approach than just
mining frequent itemsets, as it reduces significantly the size of the
output without losing information.

Putting the FIM terminology into the context of SPADE, an itemset
correspond to the set of spikes forming the STP, its size corresponds
to the number of spikes of the STP, and the support corresponds
to the set of time points at which the STP occurs. A comprehensive
table including this terminology can be found in Table 1 of Quaglio,
Yegenoglu, et al. (2017).

3.2.2 The FP-Growth algorithm

Since the introduction of FIM, many different algorithms were pre-
sented in the literature to smartly implement the detection of frequent
itemsets. The most prominent are three: Apriori (Agrawal, Srikant,
et al., 1994), FP-Growth (Han, Pei, and Yin, 2000) and Eclat (Zaki,
2000). We choose FP-Growth, as it looks for the complete set of fre-
quent itemsets in a database without resorting to candidate generation,
unlike the other approaches. It is based on a divide-and-conquer ap-
proach, and takes as input the frequency threshold c and the minimal
pattern size z. An example of the procedure can be found in Figure
1 of Porrmann et al. (2021). First, the entire database is scanned to
derive a list of frequent itemsets, which are ordered by their frequency.
All itemsets that are either non-frequent or have a size smaller than z
are discarded. Next, the database is transformed into a frequent pattern
tree (FP-tree), which conserves the information about the associations
of itemsets. The FP-tree is associated with a header table, which con-
serves recurrent links from each item to all its occurrences. Then, the
FP-tree is searched starting from all itemsets with minimum support,
and a conditional FP-tree is built for each itemset, i.e. a smaller tree
corresponding to the sub-database made of all transactions where the
itemset is present. The conditional FP-tree is recursively mined. This is
repeated independently for all items of the header table for increasing
support order. Finally, all patterns are returned, together with their
corresponding support.

3.2.3 FP-Growth within SPADE

Wicaksono, Jambak, and Saputra (2020) showed that the complexity
of the FP-Growth algorithm is O(n2), where n is the number of items.
In the context of SPADE, the number of items coincides with the total
number of spikes: this can be very large (reaching 106 in a typical
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analyzed data set), thus the mining can take considerable time. More-
over, we saw already in the previous chapter how most of SPADE’s
compute time is invested in the pattern mining across surrogate data
sets (Figure 2.6). Nonetheless, the iterations of the header table across
items are in principle independent, and can therefore be parallelized
within FP-Growth, as we show in Section 3.2.5. In the previous chapter,
parallelization was only addressed across surrogate instances, and not
within each mined data set.

We have already presented in the previous chapter (Figure 2.1)
how the parallel spike trains are formatted to become the input of
FP-Growth. Briefly, each spike train is discretized into exclusive bins
of width b; next, a window of fixed length w is shifted bin by bin;
finally, all windows are concatenated one after the other in time. The
obtained binary matrix has then neurons in its rows and bins�window
positions in its columns. This is fed into the _fpgrowth() function
of SPADE, calling the original C++ external module. The output is
then transferred from C++ into Python: as the number of retrieved
patterns can be quite high, this can take a significant amount of time.
The algorithm retains only the closed and frequent itemsets, without
taking into account that some pattern repetitions are redundant, as
they are caused by the sliding of the temporal window. In fact, one
pattern repetition is present in the data as many times as the full
pattern intersects the sliding window. Thus, these repetitions need to
be removed: the chosen approach is to simply retain only those with
the first spike aligned on the first bin.

Another feature of the method is to select patterns not only with a
minimum size (number of spikes), but also with a minimum number
of neurons involved. This means removing the so-called autopatterns,
i.e. patterns in which one neuron is involved with multiple spikes. The
removal of spurious window repetitions and autopatterns is done in a
successive step after pattern mining, in a so-called filter function. This
crucial function iterates over all patterns (thus scales with the number
of patterns), and filters out the undesired patterns, which typically
make more than 90% of SPADE’s output.

3.2.4 Bottlenecks of SPADE and proposed solutions

Taking into consideration the observations already made, we can
formalize the parts we have identified to take more time in SPADE.

The first is the pattern mining implementation itself, scaling quadrat-
ically with the number of spikes. As the original implementation is
generic, our proposed solution to mitigate the problem is to create one
which is custom-tailored to the problem at hand.

The second is the data transfer from C++ to Python after FP-Growth.
In fact, as each single pattern retrieved by FP-Growth is converted into
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a NumPy array (Harris et al., 2020), this procedure can take time and
memory.

The third bottleneck is the pattern filtering after the data transfer,
which is done fully in Python. In order to solve together the last two
tasks, we design an optimized C++ function for the pattern filtering:
in this way, patterns returned by FP-Growth are filtered faster and
more efficiently, the number of patterns is significantly reduced. Only
then the output can be transferred into NumPy array structures.

3.2.5 Custom FP-Growth implementation for SPADE

We now present the details of the proposed new FP-Growth imple-
mentation. A before and after sketch of the proposed modifications
can be found in Figure 3.1. The proposed new version is partly based
on the previous, called PyFIM (Borgelt, 2012), with a number of modi-
fications which have the purpose of optimizing the efficiency in terms
of compute time and memory:

� Filter function moved in FP-Growth. The function filtering out
autopatterns and redundant patterns due to window repetitions
is integrated into the FP-Growth algorithm. In this way, it is
performed entirely in C++ (and not in Python). This step removes
a significant amount of patterns (up to 90%). Note that the larger
the analysis window w is, the more patterns are removed due
to redundancies. In Figure 3.1, we show an example of the
reduction of data volume transferred achieved thanks to the new
implementation.

� Closed pattern detection moved after filtering. The detection
of closed patterns is a crucial step for detecting non-redundant
patterns, and is a much more complex task than looking only for
frequent patterns. We integrate this part into FP-Growth, after
the pattern mining and the filter function execution (as seen
in Figure 3.1). This step scales with the number of patterns, so
moving it after a strict filter decreases significantly the execution
time. Moreover, in contrast to the frequent pattern mining, the
closed pattern detection cannot be parallelized, so it is more
sensible to execute it in a final step.

� Implementation of pattern collector. We implement a pattern
collector to store efficiently in memory the found patterns and
their characteristics. This allows us to iterate faster over all pat-
terns detected during filtering.

� Parallelization of FP-Growth. We allow for parallelization of
the FP-Growth algorithm by integrating OpenMP1, which was

1 Open Multi-Processing - https://www.openmp.org/

https://www.openmp.org/
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c riti c all y o n t h e n u m b e r of a v ail a bl e c o r e s. M o r e o v e r, it h el p s

d r a sti c all y f r o m a m e m o r y p e r s p e cti v e, all o wi n g t h e mi ni n g of

v e r y l a r g e a m o u nt s of p att e r n s wit h o ut i n c u r ri n g i nt o m e m o r y

o v e r fl o w s, c r u ci all y i n c r e a si n g t h e p o s si bl e si z e s of a n al y z e d

d at a s et s.

3 .3 e x p e r i m e n t a l d a t a u s e d f o r f p - g r o w t h e v a l u a t i o n

T h e e v al u ati o n of t h e n e w i m pl e m e nt ati o n i s t e st e d f o r ti m e, e n e r g y

a n d m e m o r y ef fi ci e n c y o n r e al n e u r al d at a, o bt ai n e d t h r o u g h el e ct r o-

p h y si ol o gi c al r e c o r di n g s. T h e e x p e ri m e nt al d at a a r e a n al y z e d i n all

t h e f oll o wi n g c h a pt e r s, s o w e t a k e t h e o p p o rt u nit y t o i nt r o d u c e it i n

d e pt h h e r e.

B ef o r e t h at, w e st r e s s t h e n e c e s sit y of u si n g r e ali sti c d at a a s a b e n c h-

m a r k f o r s u c h t e st s. T h e g o al of t hi s st u d y i s t o o pti mi z e S P A D E f o r it s

s ci e nti fi c u s e, w hi c h i s o n r e al d at a. F o r t hi s r e a s o n, t h e e m pl o y m e nt

of si m pl e s y nt h eti c d at a i s n ot a d e q u at e, a s it d o e s n ot r e p r o d u c e t h e

c o m pl e x f e at u r e s of n e u r al d at a.
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3.3.1 Reach-to-grasp experiment

The experiment consists in a delayed reaching and grasping task
performed by two Macaque monkeys (Macaca mulatta). Recordings
are obtained through the chronic implantation of a 10 � 10 multi-
electrode Utah array (Blackrock Microsystems) in the pre-/motor
cortex. We refer to this experiment as the reach-to-grasp experiment (or
R2G experiment).

The monkeys L and N were trained to self-initiate trials by pressing
a start button (trial start, TS). After a waiting period of 400ms, a visual
cue (yellow LED) was shown to the monkey (waiting signal, WS). The
monkey is instructed to wait again for 400ms, until it is presented
to another visual cue (two LEDs on) which is lit for 300ms (from
CUE-ON to CUE-OFF). The goal of the monkey is to reach and grasp
successfully an object, with the indicated grip type and force level.
The grip can be either a precision grip (PG) or a side grip (SG): the PG
has to be performed by placing the index and thumb on the upper
and lower side of the cubic object, whereas in SG the monkey has to
place the tip of the thumb and the lateral surface of the other fingers
on the right and left sides of the object. The CUE-ON signal contains
the information of which grip has to be performed. The monkey
then waits for 1000ms, eventually receiving the GO-SIGNAL, which
contains as well the information on the amount of force to exert to
pull the object towards itself. The behavioral conditions are selected
randomly for each trial. The setup saves the times corresponding to
the start of the movement as the switch release (SR), the object touch
(OT), and the beginning of the holding period (HS). The trial protocol
is indicated in panel A of Figure 3.2. The monkey needs to maintain
the requested grip and force for 500ms, and if it is performed correctly,
receives a reward (RW) in form of apple juice.

Experimenters have recorded tens of sessions of the reach-to-grasp
experiment. We consider only one session in this chapter, one session
in Chapter 4, two in Chapter 5, and over 20 in Chapter 6. Each session
is spike sorted using the Plexon Offline Spike Sorted (version 3.3).

More details on the experimental protocol are published in Riehle,
Wirtssohn, et al. (2013), and two sessions (i140703-001 and l101210-001)
are described in Brochier et al. (2018). The two sessions are also hosted
on https://gin.g-node.org/INT/multielectrode_grasp.

https://gin.g-node.org/INT/multielectrode_grasp
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TS-ON
A

B

400ms 400ms 500ms300ms 1000ms

WS-ON GO-ON SRCUE-ON CUE-OFF

PG SG HF LF

RW-ON

Figure 3.2: Reach to grasp experiment. Panel A. Experimental protocol. The
trial start (TS-ON) is self-initiated by the monkey. A waiting signal
(WS-ON) prepares the monkey for the visual cue presented at
CUE-ON, providing the grip type instruction (PG/SG). After
1000ms, a second visual cue (GO-ON) is presented to the monkey,
specifying the force needed to pull the object (HF or LF) and the
GO signal. The switch release (SR) marks the beginning of the
movement. The monkey touches the object and maintains the grip
for 500ms until the reward (RW-ON). The timing of the behavioral
events SR and RW can vary, as they depend on reaction time and
movement speed. Panel B. Data preprocessing. Raster plot of all
neurons over time within one trial. The trial is aligned on TS-
ON. The six colors represent the position of the six trial epochs,
indicated in the legend. Figure from Stella et al. (2021).

3.3.2 Data preparation: R2G data for SPADE

We now describe more specifically the data preparation for a typical
session of the reach-to-grasp experiment. In the SPADE analysis, the
goal is to detect spike patterns occurring concurrently with behavior.
Thus, we analyze separately different sessions, further differentiating
between different trial types and periods (epochs) of each single trial.
Successful trials are segmented into six 500ms-long epochs, to account
for the behaviorally relevant events mentioned before in Section 3.3.1.
The epochs are represented in color in Figure 3.2B and are: start, cue,
early delay, late delay, movement and reward. Unsuccessful trials are dis-
carded. Segments of the same epochs and trial type are concatenated
one after the other and yield (4 trial types � 6 epochs) data sets per
session.



48 acceleration of spade

Moreover, we only consider single unit activities (SUA) with a
signal-to-noise ratio > 2.5, and with an average firing rate across trials
< 70Hz. Artifacts consisting of hypersynchronous (at sampling reso-
lution) spikes occurring across electrodes are automatically detected
by specific software and removed.

Within this chapter, we consider one of the two sessions published in
Brochier et al. (2018) (session i140703-001). In most of the analysis, we
consider the segment in which the monkey performs the reaching and
grasping movement, aligned on the SR timestamp (�200ms, +300ms).
The trial type is PGHF (thus, movement_PGHF). This data set of 32

concatenated trials has a total duration of 22.32s, and consists of
150 units (after preprocessing). Finally, a buffer time of 200ms is
inserted between successive trials. Nonetheless, we also test the new
implementation on the full non-concatenated session.

3.4 spade workflow for data analysis

Together with the data preparation, we have developed a Snakemake
workflow allowing the analysis for spatio-temporal patterns. Most of
the SPADE analyses performed in this thesis use the same workflow
described here. Nonetheless, as a Snakemake workflow is modular,
we have the possibility to modify it and adapt it to the circumstances
both from a computational and scientific question perspective. The
workflow used in this chapter is presented as a directed acyclic graph
(DAG) in Figure 3.3.

all

analyze_data
context: movement_PGHF

job_id: 0
session: i140703-001

filter_results

create_parameter_dict

analyze_data
context: movement_PGHF

job_id: 1
session: i140703-001

analyze_data
context: movement_PGHF

job_id: 2
session: i140703-001

analyze_data
context: movement_PGHF

job_id: 3
session: i140703-001

analyze_data
context: movement_PGHF

job_id: 4
session: i140703-001

analyze_data
context: movement_PGHF

job_id: 5
session: i140703-001

analyze_data
context: movement_PGHF

job_id: 6
session: i140703-001

analyze_data
context: movement_PGHF

job_id: 7
session: i140703-001

Figure 3.3: Diagram of the Snakemake workflow of the SPADE analysis.
The diagram is generated automatically by the Snakemake soft-
ware. Each node of the graph corresponds to a compute step
(i.e., a Python script and one combination of input parameters).
Top node: estimation of firing rate for the minimum number of
occurrences for FP-Growth. Second row: SPADE analysis, called
9 times for each pattern size (job_id). Third row: PSF and PSR
analysis. Fourth row: results are merged, saved and returned.

The workflow takes as input a configuration file with all parameters
of the analysis, and distributes automatically all jobs across all param-
eter combinations in all available cores. For example, the parameters
can be the analyzed sessions, the behavioral epochs (6) and the trial
types (4). Moreover, for each of these combinations, the pattern mining
is executed separately per pattern size: FIM mines patterns of a fixed
size (number of spikes), starting from 2 and ending at 9+ in steps
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of 1. This is done to further optimize the analysis, as it allows to
mine in parallel patterns of various sizes. The corresponding 8 jobs
are indicated by the rule analyze_data in the red boxes in Figure 3.3.
Furthermore, for each pattern size, we estimate the expected number
of occurrences of a chance pattern, and set it as the minimum number
of occurrences for FP-Growth. Mathematically, the expected number
of occurrences is calculated by estimating the distribution of average
firing rates of all neurons within one data set. By taking the 95%
percentile of the average firing rate distribution and assuming that all
spike trains are distributed as stationary point processes, we estimate
the number of occurrences that a pattern exhibits under independent
firing. Patterns with such a number of repetitions would be anyway
rejected by the following test, and their search would only result in
a longer mining runtime. The estimation is performed as a first step
in the workflow, corresponding to the rule create_parameter_dict.
Furthermore, we fix a lower bound for pattern occurrences to 10 across
all sizes (� 30% of the trials), as we are not interested in patterns not
related to the repeated behavior. The percentile parameter and the
lower bound for pattern occurrences are user-defined, and can be fixed
to 0 if all patterns need to be retrieved.

The pattern mining per size is done not only on the original data, but
also on the surrogate data sets (if n_surr> 0), leading for each pattern
size, occurrence number, and duration, the distribution of the number
of patterns retrieved. In other words, each rule analyze_data returns
“slices” of the pattern spectrum across the z dimension. Successively,
all results are gathered for the statistical testing, in order to construct
the 3-dimensional pattern spectrum in rule filter_results (in green in
Figure 3.3). There, the p-value spectrum is constructed. The PSF test
uses this spectrum and, followed by the PSR test, yields the significant
patterns. In rule all, all results files are created and returned.

3.4.1 Workflow in the context of FP-Growth evaluation

The SPADE workflow explained previously is used in this chapter in
order to evaluate the performances of the new FP-Growth implemen-
tation against the previous. We fix a bin size (temporal resolution of
the analysis) of 5ms, and a window length w = 20, corresponding to a
maximal pattern duration of 100ms. The corresponding total number
of transactions and unique items is 3602 and 3000, respectively. The
number of surrogates is fixed to 0, as we want to compare single exe-
cutions of the code. Table 3.1 represents the different configurations
of pattern sizes and number of pattern occurrences, together with the
number of detected patterns, and the number of filtered patterns.

It is remarkable to see the absolute numbers of pattern combinations
arising from the mining, for such a relatively small data set with a few
thousands transactions. For example, the pattern mining of sizes 4 to 7
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Job Min. spikes Min. occ. Patterns Filtered patterns

0 2 88 200,971 22,709

1 3 25 16,477,189 1,562,086

2 4 12 246,958,100 8,486,483

3 5 10 424,713,012 398,618

4 6 10 259,915,712 41

5 7 10 109,269,024 0

6 8 10 29,385,509 0

7 9 10 4,637,531 0

Table 3.1: Characteristics of the eight jobs used for the evaluation. First col-
umn: job_id in the Snakemake workflow. Second column: Pattern
size being mined. Third column: minimum occurrences estimated
per size. Fourth column: number of mined patterns before the filter-
ing step. Fifth column: number of patterns returned after filtering.
Table from Porrmann et al. (2021).

returns several hundreds of millions of candidate patterns. This brings
even more evidence to the necessity of post-processing of the results
of frequent itemset mining, as referenced in Section 3.2.1. Moveover,
the discrepancy between the number of frequent patterns retrieved
by the FP-Growth and the number of filtered patterns motivates the
decision of moving the closed pattern detection after the filtering. In
fact, this reduces considerably time and memory consumption, since
between 90% and 100% of the patterns are filtered away.

3.5 fp-growth and its improvements on experimental

data

In this section, we evaluate the performance of our new FP-Growth
implementation, in terms of runtime, memory consumption and en-
ergy efficiency. The evaluation is performed on several devices and
in comparison to the original implementation. We refer to the full
runtime as the total runtime required by the three steps of pattern
mining, data conversion to Python, and pattern filtering. We show that
1) the new implementation is highly optimized across all evaluation
measures, 2) it is now possible to perform the analysis on low-power
devices, 3) it is possible to perform the analysis on large data sets in a
reasonable time.

3.5.1 Devices used for testing

Here we list the different platforms used for the implementations
comparison:
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� Baseline: workstation Intel Xeon E5-1650 v4 (6 cores running at
3.60 GHz) server CPU and 256GB quad-channel DDR4 memory,
with Ubuntu 16.04

� RECS|Box2 server (Oleksiak, Kierzynka, Piatek, Agosta, et al.,
2017; Oleksiak, Kierzynka, Piatek, Berge, et al., 2019; Porrmann
et al., 2021), which integrates different types of low-power and
high-performance microservers:

– microserver equipped with a HiSilicon Hi1616 (Kunpeng
916) dotriaconta-core ARM processor (32 cores running at
2.4GHz) and 64GB of quad- channel DDR4 memory, run-
ning CentOS 7.6, in a dual-socket configuration (resulting
in 64 cores/128GB)

– ADLINK Express-BD7 13 module, equipped with an Intel
Xeon D- 1577 (16 cores running at 1.30GHz) and 32GB
dual-channel DDR4 memory running Ubuntu 18.04

– ADLINK Express-CFR-E 14 microserver, equipped with an
Intel Xeon E-2276ME (6 cores running at 2.8GHz) and 32GB
of dual-channel DDR4 memory, running Ubuntu 18.04

– NVIDIA Jetson AGX Xavier, with a hexa-core NVIDIA
Carmel ARMv8.2 CPU and 32GB of DDR4 memory, run-
ning Ubuntu 18.04

– NVIDIA Jetson NX Xavier, with a octa-core NVIDIA Carmel
ARMv8.2 CPU and 8GB of DDR4 memory, running Ubuntu
18.04

– 4 NVIDIA Jetson TX2 Xavier, with a quad-core ARM Cortex-
A57 CPU, and a dual-core NVIDIA Denver 2 CPU, with
and 8GB of DDR4 memory, running Ubuntu 18.04

The energy efficiency was evaluated by measuring each platform’s sys-
tem power consumption during the execution of the analysis. System
power consumption refers to the amount of power consumed by the
entire system after the power supply unit (PSU), i.e., CPU, memory,
storage, and system accessories.

An overview of the characteristics of each platform can be found in
Table 7 of Porrmann et al. (2021).

3.5.2 Improvements in time, memory, and energy efficiency

We represent the results of the analysis across the different platforms
in Table 3.2 and in Figure 3.4. In Table 3.2 we report for each platform
the runtime in seconds, and the energy consumption in Joule and
Wh. Moreover, we distinguish between the run of the sole FP-Growth
(in blue) against the full pattern mining flow, which comprehends

2 Resource-Efficient Cluster Server – https://embedded.christmann.info/products.
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pattern filtering, closed pattern detection, and conversion to Python
(in orange).

More details on the runs on each platform, differentiating between
the time spent on the sole FP-Growth, closed pattern detection and
conversion to Python, with their corresponding peak memory con-
sumptions, can be found in Porrmann et al. (2021) in Tables 3,4,5 and
6.

Evaluation on the Workstation

In order to create the performance baseline of the original code, we
executed the latest SPADE version (Elephant version 0.9.0) on the
workstation (computer cluster). Importantly, the execution of the orig-
inal workflow was impossible to execute on all other devices due to
memory restrictions. The peak memory consumption of the different
job executions depends on the size of the mined patterns: increasingly
complex jobs can take from a minimum of 1 second to a maximum
of 2 hours, and have a peak memory consumption of 70GB (Figure
3.1). The high memory consumption is caused by the conversion of
the closed patterns from C++ to Python, after which the filtering is
performed. The complete execution of the entire workflow takes 6

hours and 13 minutes (first column in Figure 3.4, and first row of Table
3.2), and 1.45MJ of energy consumption.

On the other hand, the optimized implementation was executed
both in single- and multi-threaded (12-threads) mode, indicated as
ST and MT in Table 3.2. With the new implementation, we reduced
the peak memory consumption to a maximum of 4GB (Figure 3.1).
The single-threaded complete run required 18min and 11s, making it
21 times faster than baseline and 20 times more memory efficient; on
the other hand, the multi-threaded run required 3min and 17s, thus
being 114 times faster than baseline and 67 times more energy efficient
(Table 3.2).

Evaluation on the RECS|Box for Server Processors

The server processors here taken into consideration are the Hi1616

microserver, the ADLINK Express-BD7, and the ADLINK Express-
CFR-E, all embedded in the RECS|Box platform.

Remarkably, the Hi1616 microserver obtains the highest parallel
processing speed and the lowest runtime across all platforms, achiev-
ing the complete run with the optimized implementation in 57% of
the time and 64% of the energy compared to the workstation. With
respect to the baseline, it is 200 times faster and 105 times more energy
efficient (Table 3.2).

The ADLINK Express-BD7 results in a similar runtime to the Hi1616

microserver, but requires less energy (47% of the workstation). Com-
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pared to the original workflow, it is 113 times faster and 143 more
energy efficient (Table 3.2).

Finally, the ADLINK Express-CFR-E employs the same runtime
as the workstation, but 55% of the energy; whereas, with respect to
baseline, it is 114 times faster and uses 112 times less energy.

Evaluation on the RECS|Box for Embedded Processors

The embedded processors of the RECS|Box are the NVIDIA Jetson
AGX Xavier, the NVIDIA Jetson Xavier NX, and the NVIDIA Jetson
TX2. Regarding the latter device, we run the evaluation on a single
device, two, three and four in parallel with OpenMPI. Importantly,
these devices have been characterized by lower power consumption
than traditional processors.

As we see in Figure 3.4, the best performance in terms of the runtime
is achieved by the AGX Xavier, followed by the Jetson TX2, and by
the Xavier NX. By confronting their runtime with the workstation
running in multithreading, we notice that all embedded processors
require longer runtimes, although consuming significantly less energy
(25% of the workstation). For this reason, we suggest that the use of
such devices is adequate whenever energy-efficiency is deemed to be
of more importance than runtime. Moreover, the three devices are
between 280 and 165 times more energy efficient, and between 59 and
27 times faster than the baseline.

Regarding the use of several Jetson TX2 microservers in parallel,
the performances significantly improve. In fact, four Jetson TX2 mod-
ules achieve the same runtime performance of a workstation, while
consuming a third of the required energy.
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System Power
(W)

Runtime
(s)

Energy IOV

Joule Wh Energy Runtime

Workstation
(Baseline)

64.8 22,379.4 1,450,182 403.83 1 1

Workstation
(ST)

65.0 1091.2 70,879 19.69 20 21

Workstation
(MT)

109.9 196.8 21,638 6.01 67 114

Express-
BD7

51.1 198.9 10,164 2.82 143 113

Express-
CFR-E

60.3 197.0 11,887 3.30 122 114

Hi1616 123.3 111.8 13,780 3.82 105 200

AGX
Xavier

20.4 430.7 8,786 2.44 165 52

Xavier NX 6.7 816.1 5,468 1.52 265 27

Jetson TX2 9.1 571.2 5,181 1.44 280 39

2x Jetson
TX2

17.8 336.8 5,986 1.66 242 66

3x Jetson
TX2

25.0 243.8 6,093 1.69 238 92

4x Jetson
TX2

31.4 212.6 6,670 1.85 217 105

Table 3.2: Report on runtime and energy consumption across all platforms.
Energy consumed is represented in Joule and Wh. We represent
also the improvement over the baseline (IOV) workstation run of
the original algorithm, in terms of multiplicative factors, for both
energy and runtime. Table from Porrmann et al. (2021).
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Figure 3.4: Runtime and Energy Consumption of all Platforms. MT refers
to the multi-threaded, ST to the single-threaded and Original to
the baseline (currently used) version. We consider separately the
run of FP-Growth (in blue) and the total pattern mining flow
(FP-Growth + filtering + closed pattern detection + conversion
to Python) in orange. Dots represent the energy consumptions
of each run, in Joule (right y-axis). Figure from Porrmann et al.
(2021).

3.5.3 Scaling in terms of recording length and number of neurons

Finally, we analyzed the scalability of the proposed new implemen-
tation by varying the characteristics of the analyzed data sets, such
as the recording length and the number of neurons. The device of
choice to execute the benchmarking was the workstation system. We
saved for all data sets and both implementations the total runtime,
i.e. FP-Growth, filtering, closed pattern detection and conversion to
Python. We considered in total four data sets, with the following
characteristics:

1. Concatenated data set movement_PGHF, consisting of 150 neu-
rons and 22.32s of duration, used as a baseline,

2. Entire session i140703-001, of recording length equal to 16min
and 43s and 150 neurons,

3. Short recording, consisting in the first 5s of the baseline data set
with the complete set of recorded neurons,

4. Data set with increased number of units (total of 300), obtained
by duplicating the spike trains two times of the baseline data set,
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5. Data set with an increased number of units (total of 450), ob-
tained by duplicating the spike trains three times of the baseline
data set.

We represent the data set characteristics, the number of found patterns,
and the runtime spent by both implementations in Table 3.3, both in
seconds and in percentages with respect to the baseline data set.

The first noticeable result is that the original implementation is un-
able to process the full session, terminating after 30 hours and 200GB
of memory consumed. On the other hand, the new implementation
completes successfully the full analysis in less than an hour.

We also notice that with the increasing number of neurons, the new
implementation does not scale as well as the original: tripling the
neurons corresponds to a sixfold increase in the runtime, whereas the
original implementation does not even triple. The bottlenecks causing
this weaker scaling are two: first, the closed pattern detection is not
parallelizable, and secondly, the data conversion to Python is a heavy
task when the number of patterns is particularly high (� 65 million for
the second data set). Nonetheless, one needs to take into consideration
that the runtime spent in the analysis of the short data set is 22 times
faster than the original implementation, 65 times faster for the data
set with 300 neurons, and 51 times faster for the data set with 450

neurons.

Data
set

Length
(s)

Neurons Found
patterns

Original flow Optimized flow

Runtime
(s)

Baseline Runtime
(s)

Baseline

Baseline 22.32 150 10,214,712 22379.4 100% 196.8 100%

Long 1003.00 150 7,097,875 - - 3052.6 1551%

Short 5.00 150 73.172 89.4 0.4% 4.0 2%

300

Neu-
rons

22.32 300 28,077,304 28257.7 126% 432.2 220%

450

Neu-
rons

22.32 450 64,933,631 64167.5 287% 1241.1 631%

Table 3.3: Full runtime (in seconds) comparison of the original and the
optimized flow for different data sets.

3.6 reproducibility and code publication on elephant

The electrophysiological recording session, the data preprocessing
workflow, the SPADE workflow and the new FP-Growth implementa-
tion were all made publicly available. The full recording corresponding



3.7 conclusion and discussion 57

to session i140703-001 can be found at https://gin.g-node.org/

INT/multielectrode_grasp. The code to preprocess and concatenate
the data, together with the source code of the module presented
in this Chapter are in the Github repository https://github.com/

fporrmann/FPG. The new proposed implementation of the SPADE
method is instead included in the Elephant library at: https://github.
com/NeuralEnsemble/elephant and featured in the release 0.11.0.

These materials altogether make the results presented in this Chap-
ter fully reproducible.

3.7 conclusion and discussion

In this chapter, we have proposed a new custom implementation of
the FP-Growth algorithm for the SPADE method. We have shown that
the original implementation and the successive pattern filter function
were the most time and memory-consuming parts of the method. This
limited significantly the possible analysis of electrophysiological data
sets, and had a strong impact on the scientific questions that could be
posed about the current data sets at hand and future work.

The FP-Growth implementation used generally in SPADE was a
generic and external C++ implementation by Borgelt (2012), down-
loaded automatically from its original website when installing the
Elephant package. For this reason, it was not custom-tailored to the
task of mining spatio-temporal spike patterns as it is currently done in
SPADE. In fact, it involved only the pattern mining, whereas the filter-
ing of redundant and closed patterns was done completely in Python
in a second step. These bottlenecks caused a significantly increased
runtime and memory consumption, which made the analyses of large
data sets impossible.

The new implementation proposed here consists of a multi-threaded
C++ module which reproduces entirely the functionality and the re-
sults of the original workflow, and improves significantly the perfor-
mance, in terms of runtime (between 27 and 200 times faster) and
in terms of energy (between 67 and 280 times less memory usage),
depending on the tested device. To do so, we embedded the pattern
filtering in the C++ module, and performed it before the closed pattern
detection. Moreover, thanks to the OpenMPI platform, we integrated
multi-threading and distributed computing into the implementation,
optimizing significantly the memory used by the mining algorithm.

We tested the new FP-Growth implementation across a series of
different devices, namely a workstation system, a Hi1616 microserver,
an ADLINK Express-BD7, an ADLINK Express-CFR-E, and three
embedded computing devices (Xavier NX, AGX Xavier and Jetson
TX2). This allowed us not only to test the implementation on different
devices for its robustness, but also to test which hardware was best
suited for our particular purpose. Importantly, the variety of devices

https://gin.g-node.org/INT/multielectrode_grasp
https://gin.g-node.org/INT/multielectrode_grasp
https://github.com/ fporrmann/FPG
https://github.com/ fporrmann/FPG
https://github.com/NeuralEnsemble/elephant
https://github.com/NeuralEnsemble/elephant


58 acceleration of spade

used also enabled us to identify the best compromise between time
and energy consumption.

We identified that FP-Growth consumed the largest portion of run-
time across all devices but the HI1616. The latter device had, in fact,
the fastest execution time, which was unfortunately compensated by
its low power in running sequentially the next steps of the workflow,
resulting in long overall runtime and relatively high energy consump-
tion. It is not easy to identify which platform has the absolute best
performances regarding runtime and energy, as there is no platform
having the lowest consumption in both categories. Nonetheless, we
observe that the most balanced ratio is achieved by the parallel use
of two or three Jetson TX2 devices. When we concentrate on one sole
aspect, we see that one Jetson TX2 reaches the lowest energy consump-
tion, whereas the Hi1616 has the fastest runtime. Finally, the longest
runtime and energy expenditure was achieved by the single-threaded
jobs on the workstation.

We also tested the scaling in terms of recording length and number
of parallel neurons on real electrophysiological data. Crucially, the
new implementation is able to finish the processing of a full recording
session in less than an hour. In contrast, the original implementation
was not able to complete the task, reaching the wall runtime of 30

hours. For both, the scaling shows good results, although our imple-
mentation does not scale as well as the original when increasing the
number of neurons. Nonetheless, we have to notice that besides the
scaling, the runtime is considerably improved with respect to the old
scenario. Thanks to our optimization, we are able to analyze data
in a feasible amount of time, especially when we are interested in
the statistical evaluation of the mined patterns, as FP-Growth is not
applied on the original data set, but also on all its surrogates. As an
anecdotal example, the execution of the entire SPADE workflow on
the concatenated data of one session of the reach-to-grasp data set,
across all epochs and trial types, takes now on our computer cluster
approximately 2.5-3 hours. Although this depends strongly on the
number of users and on the cluster load and specifics, the previous
implementation required typically 2 days. Thus, a crucial result of
this chapter is that our new FP-Growth implementation allows us to
process data sets, to design analyses (and thus to answer scientific
questions) which were not possible before. The reduced time and
memory consumption enable us to investigate entire recording ses-
sions (Brochier et al., 2018), data sets recorded from multiple Utah
arrays (Chen, Zhang, et al., 2020) or Neuropixel probes (Juavinett,
Bekheet, and Churchland, 2019).

The future outlook of the project is to optimize even further the
implementation, by accelerating the sections that until now can be
only completed sequentially, i.e. the closed pattern detection and
the conversion to Python. Another possible optimization could be to
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include the filtering deeper into the implementation, for instance, by
identifying from the start which patterns have their first spike at the
beginning of the window. Moreover, the exploration of execution on
GPU might also be a point of interest.

Another point is the dependence of the FP-Growth algorithm on bi-
nary input, which could be resolved as an outlook. In fact, the patterns
mined by FP-Growth have to repeat identically in all their realizations.
Borgelt (2012) introduced a version of FIM, called CoCoNAD, which is
able to detect patterns in continuous time, without resorting to spike
train binarization in input. Unfortunately, the algorithm is only able to
detect synchronous patterns. Some effort has been spent in exploring
possible extensions, unfortunately with no success. The issue of binary
input to FIM is strictly linked to what is presented in Chapter 5, where
we show which problems can arise in presence of binarized spike
trains and surrogate generation.

Finally, a possible limitation of the study is the univocal choice of
the used data set. Experimental data is highly variable, and different
recordings exhibit different characteristics in terms of firing rates,
number of sorted units and number of spikes. Moreover, the ground
truth of experimental data is fundamentally unknown, and, mining
algorithms and statistical methods are typically tested on synthetic
(thus, controlled) benchmark data sets. Unfortunately, there are no
publicly available benchmark data sets (to our knowledge) that re-
produce closely the real features of experimental data, while being
fully artificial. We try to close the gap, and fill this absence in the next
chapter, by presenting a set of artificial data sets we designed, which
are modeled on experimentally recorded parallel spike trains, and the
corresponding workflow for their generation.





4
R E A L I S T I C M O D E L I N G O F E X P E R I M E N TA L D ATA
T H R O U G H P O I N T P R O C E S S E S

This chapter is novel work and has not yet been published. The
author generated the artificial data, performed the analysis of the
artificial data, and wrote the manuscript; contributed to the design
of the artificial data and to the design of the Snakemake workflow.
The work was done under the supervision of Sonja Grün, with
the collaboration of Alexander Kleinjohann, Robin Gutzen, Pietro
Quaglio, Julia Sprenger, Vahid Rostami (in alphabetical order).

Background: Point process theory has been extensively explored to
model electrophysiological data. The classical approach consists in
using established models and assuming stationarity of the neuronal
firing rate. However, whenever non-stationary processes are gener-
ated, the proposed model rarely includes further statistical features
of experimental data, such as regularity, dead time and higher-order
correlations.

Methods: In this chapter, we introduce a list of statistical features
that need to be taken into consideration in order to closely model an
exemplary recording session of electrophysiological data. The statistics
include non-stationary firing rate, dead time, regularity, pairwise and
higher-order correlations. Furthermore, we present the existing point
process models, techniques and tools to generate artificial data with
such statistical features.

Results: We introduce five artificial data sets, all modeling some of
the statistical characteristics of a recording session of the reach-to-grasp
experiment. We analyze all simulated data sets with different tech-
niques and compare their statistics to the original data. The data sets
have been employed in the context of the Advanced Neural Data Anal-
ysis (ANDA; https://projects.g-node.org/advanced-course-2020/)
spring school, where participants had to distinguish the identity of
each data set through data analysis. In addition, we present a strategy
to tackle the task, and are able to identify all data sets using sim-
ple to increasingly complicated approaches. Finally, we present the
Snakemake workflow designed for data generation.

Conclusions: The generated data sets reproduce the statistical com-
plexity of experimental data with increasing degree, while being fully
artificial and generated in a controlled way. Thus, they can be em-
ployed as ground truth data for testing and benchmarking of existing
and future methods for the analysis of parallel spike trains. Moreover,
they can be used for didactic purposes, in order to approach experi-
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mental data in the early stages of study and research, as done during
the ANDA spring school.

4.1 introduction

Accurate mathematical modeling of experimental neural data is a
hard task. Numerous approaches have been tried, in particular in
the context of spike train data (Grün and Rotter, 2010). A potential
strategy is to model neuronal networks, and analyze their spiking
output. However, the resulting statistics are not predictable and not
yet corresponding to what is observed in experimental data. Modeling
spike trains coincides essentially with modeling multi-dimensional
point processes, where every spike corresponds to an event in time,
and every dimension corresponds to a neuron.

The classical approach consists in using established point process
models, typically stationary, and in estimating the firing rate of each
spike train by averaging the number of spikes over the time domain.
Although this has the evident advantage of being mathematically
simple, and allows easy derivations, it often results in not sufficiently
and closely describing the statistics and the variability of neural data.
Moreover, there is no agreement on which point process is the best for
the task of modeling neural data. Sometimes using one single model
may not be sufficient, and even if it is, there is evidence suggesting
that the fit and the parameters of the point process model depend on
the brain area, on the task, and even on the species.

In fact, in Mochizuki et al. (2016), the authors looked at spike trains
recorded from behaving mice, rats, cats and monkeys. By analyzing the
ISI distributions, the firing rate and their regularities, they conclude
that there is a systematic difference across brain regions, and, actually,
a larger one across areas than across species. Moreover, the study
shows that the activity is rather random in visual and prefrontal
cortical areas, regular in motor areas, and bursty in the hippocampal
regions. Besides the general tendencies of regularity, the standard
deviations in the estimated fits for the distributions of various point
processes were found to be rather large. Results of this study, which
is only one example of the many available in literature (Nawrot,
Boucsein, et al., 2008; Nawrot, 2010; Song et al., 2018; Tomar and
Kostal, 2021), motivate the argument that properly modeling spike
train data through point processes is not an easy task.

In addition, another complication lays in choosing which statistical
features of the real data are relevant and may be modeled by the point
process. Typically, firing rate profile, regularity and auto-correlation
(Nawrot, Boucsein, et al., 2008; Mochizuki et al., 2016; Riehle, Brochier,
et al., 2018) are considered, but one may decide to include further
statistics. Also, there may not be point process models that bring to-
gether all the features we want to reproduce. To our knowledge, there
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are little to no examples in literature of careful and systematic model-
ing of experimental data sessions through advanced point processes,
by bridging together different estimation techniques.

In this chapter, we present a set of artificially generated data sets,
closely modeled to experimental data. The artificial data sets are
generated automatically thanks to a Snakemake workflow (Section
2.4.2), which, given some initial parameters, generates parallel spike
trains closely reproducing features of the real data, including firing
rate non-stationarities, dead times, regularity, and even correlation of
various orders, spatial and temporal structures. Moreover, we employ
different point process models for our purposes, such as the Poisson
process with dead time and the Gamma process.

The artificial data can be used as benchmark data sets for analysis
methods of parallel spike trains, given that their generation is con-
trolled (as the ground truth is known, and it is fully reproducible) but
still represent the classical challenges of experimental data analysis.
Importantly, it has been used in an educational context for the final
data challenge of the Advanced Neural Data Analysis spring school
(ANDA; https://projects.g-node.org/advanced-course-2020/) across
all its editions, where students were presented with six data sets, and
had the task of identifying the real data set from the artificial, and to
discover how the artificial data sets were generated.

In the first section we review the features of the experimental data
we wish to include in our model. Secondly, we review the point
process models chosen to model the experimental data, and how the
parameters needed for the model can be estimated. Then, we present
all six data sets, ordered in increasing complexity. Finally, we show the
statistics of the generated data sets, and possible strategies to identify
them.

4.2 relevant features of experimental data and how to

reproduce them

When modeling experimental data, it is not straightforward to identify
which statistical features are reproducible. Moreover, for each feature
there may be many useful techniques, and, sometimes, it may be
necessary to develop new ones. However, there is also the possibility
that it is very hard, if not impossible, to model the wanted feature.

Here, we reduce this rather complicated question into one use case:
let us consider one example session of experimental data, look at its
characteristics from a statistical perspective, and let us find possible
solutions for modeling it. The data set of choice here is the session
i140703-001 of the reach-to-grasp experiment, presented already in
Section 3.3.1.

https://projects.g-node.org/advanced-course-2020/
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4.2.1 Number of parallel processes and recording length

The first step to model an experimental session is to fix the number of
parallel processes to the number of recorded neurons, and to set the
time domain of the point process to the recording length. Part of the
task also consists in pre-processing the experimental data correspond-
ingly, identifying the single-unit or multi-unit activity, and choosing
the excerpt of the recording (e.g., only the successful trials, segments
of the session dependent on behavior, the entire recording session).

In our case, session i140703-001 consists of 150 neurons recorded
in parallel, with a total recording length of 22.32min. We retain only
the successful trials (in total, 32), and consider only single unit activity
with a signal-to-noise ratio higher than 2.5.

4.2.2 Firing rate (stationary and non-stationary)

The classical definition of neuronal firing rate is the ratio of number
of spikes over time (typically a window). The concept is essential
both for the hypotheses of rate and temporal coding. In fact, for the
former, the information lays in the firing rate variation, for the latter,
the information lays beyond. Thus, for both cases, it is essential to
properly estimate the firing rate, as the spike times can be extremely
variable, even under identical conditions (Mochizuki et al., 2016).
In fact, the ground truth is not known in the case of experimental
data, nonetheless, a wide range of measures have been designed and
employed to do this task (see Tomar, 2019 for a review).

One option is to estimate the firing rate by time averaging, and
then generate the corresponding stationary point process with the
parameter l. Besides being the easiest approach, it may wash out the
important features (and the corresponding information) as investi-
gated in Nawrot, Aertsen, and Rotter, 1999; Baker and Gerstein, 2001;
Yu et al., 2006. Experimental data, in fact, typically exhibits strong non-
stationarities due to behavior, change of states, etc, and the estimated
stationary rate may differ quite strongly from the true underlying rate.
Moreover, it may be hard to find segments of quasi-stationary activity,
even in resting state recordings (Dąbrowska et al., 2021).

The alternative, more precise (but also more challenging) option,
is to estimate the firing rate as a function evolving in time l(t). This
can be done in numerous ways, starting from the simplest, which is
the time histogram method (Gerstein and Kiang, 1960), sometimes
referred also as post-stimulus time histogram method (PSTH; Johnson,
1978). The PSTH method depends on the chosen temporal resolu-
tion (through a bin width parameter), and might not represent the
firing rate fluctuations accurately (Härdle et al., 1991). Some also pro-
posed techniques to optimize the choice of the bin width (Shimazaki
and Shinomoto, 2007; Omi and Shinomoto, 2011). Other methods for
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non-stationary firing rate estimation consist in kernel smoothing, i.e.
convolving the spike times with a kernel function. This is done by
fixing a kernel function of a certain width parameter, and obtain the
function l(t) as the weighted average of the spikes around the ker-
nel at any given instant (Parzen, 1962; Nawrot, Aertsen, and Rotter,
1999). Following the same line, there are also more refined approaches,
where the bandwith parameter is optimized using a pre-defined er-
ror criterion (globally optimized kernel smoothing; Shinomoto, 2010);
or where a locally optimized bandwidth parameter is estimated to
allow for better fitting (adaptive kernel smoothing; Shimazaki and
Shinomoto., 2010).

Variations of the firing rates in the reach-to-grasp experiment have
been studied in Riehle, Brochier, et al. (2018), and show that firing rates
exhibit increases near the movement onset. The strength of the increase
depends on the monkey. In our case, as we plan to estimate the firing
rate neuron by neuron independently across the entire recording, we
use the globally optimized kernel smoothing by Shinomoto (2010). The
technique automatically detects the optimal kernel width given the
data, and then convolves the spike train with a Gaussian kernel. The
firing rate is estimated trial by trial in order to avoid border effects.

4.2.3 Dead time and refractory period

Biological neurons also exhibit a relative refractory period, an interval
of time after spike emission in which no spikes can be produced, due
to a brief hyperpolarization of the cell membrane before going back to
its resting potential (Kandel, Schwartz, and Jessel, 2000). Typically, the
relative refractory period lasts one to two milliseconds, depending on
the neuron and the amount of input received. In general, the identifi-
cation of the relative refractory period is a complicated mathematical
problem, given the interspike interval distribution. However, it can
be done with different non-parametric estimation methods (Hampel
and Lansky, 2008). Often, in electrophysiological recordings, the only
information at hand is the dead time introduced by the spike sorting
procedure which, which is a parameter that can be set by experimenter.

Biologically plausible stochastic point process should include these
features into the model, in order to mimic the real neuronal activity.
We discuss in the next section which models are appropriate for the
task. In case of our specific experimental session, the dead time is
fixed during spike sorting for each neuron to 1.2ms (Brochier et al.
2018).

4.2.4 Regularity

Numerous studies have investigated the role of neural variability at sin-
gle neuron level (Maimon and Assad, 2009; Nawrot, 2010; Shinomoto,
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Kim, et al., 2009). Results have shown that variability dynamics are
correlated to behavioral context: regular firing can increase or de-
crease, depending on whether a movement is planned or executed
(Riehle, Brochier, et al., 2018), indicating that this is a relevant feature
of spiking activity. In particular, there are many measures to estimate
spike train ir-/regularity, depending whether it is evaluated on the ISI
distribution or on the spike count.

Spike time irregularity is often quantified by the coefficient of varia-
tion (CV), i.e. the ratio of the dispersion of the ISI over its mean, which
captures variability over the time scale of tens to hundreds of mil-
liseconds. A CV< 1 corresponds to regular spiking, whereas CV> 1
corresponds to bursty spiking (Nawrot, 2010). The CV is a classical
measure, but it is only a valid estimate for stationary processes, as
it tends to be largely overestimated in case of firing rate irregulari-
ties (Ponce-Alvarez, Kilavik, and Riehle, 2010). For this reason, other
measures have been defined, such as the CV2 (Holt et al., 1996) based
on neighboring ISIs, or the local variation measure (LV; Shinomoto,
Miura, and Koyama, 2005). The observed regularity of neuronal spike
trains has motivated the study of different classes of stochastic point
processes, which are able to exhibit spike timing regularity depending
on the parameter choice.

An alternative to the use of local measures to estimate the CV for
non-stationary rates is the Operational Time transformation (or time
warping; Reich, Victor, and Knight, 1998; Nawrot, Boucsein, et al.,
2008). The approach exploits the Time Rescaling theorem (Brown et al.,
2001), and transforms the non-stationary process into a new time axis
where the empirical process has unit rate, and the estimate for the CV
can be obtained (Nawrot, 2010).

Trial-by-trial spike count variability is measured through the Fano
Factor (FF; Shadlen. and Newsome, 1998; Nawrot, Boucsein, et al.,
2008), which is defined as the ratio between the variance and the mean
spike count measured across trials. Thus, the Fano Factor evaluates
variability over longer time scales, and regarding stochastic point
process models, it is more complicated to model. However, for the
simple case of renewal point processes, its distribution can be derived
(Nawrot, 2010; Vreeswijk, 2010).

Statistics and average values of CV, CV2 and FF in the context of the
reach-to-grasp experiment have been calculated in Riehle, Brochier,
et al. (2018), by considering numerous experimental sessions. Results
show that average values of CV2 and FF change depending on the
behavioral contexts (waiting period vs. movement execution; see in
particular Figure 3 therein). In fact, the average values for the CV2 are
lower during the waiting period than during the movement execution,
although being in both cases lower than 1, meaning that the activity is
relatively regular. The FF are instead higher during the waiting period
than during movement, but also stay below 1. In order to model such
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results, we choose a point process which incorporates regularity, e.g.
the Gamma process (presented next in Section 4.3.3).

4.2.5 Pairwise correlation

Another observed feature in massively parallel recordings is the pres-
ence of correlations between pairs of neurons (Eggermont, 1990; Riehle,
Grün, et al., 1997; Kilavik, Roux, et al., 2009; Zandvakili and Kohn,
2015; Dettner, Münzberg, and Tchumatchenko, 2016). Pairwise corre-
lations can be of different types, at a spike count level such as spike
count covariances (Cohen and Kohn, 2011; Dahmen et al., 2021) or
correlations (Tchumatchenko and Wolf, 2011; Vinci et al., 2016); or
being precise timing correlations (synchronous or delayed; Riehle,
Grün, et al., 1997; Kilavik, Roux, et al., 2009; Cutts and Eglen, 2014;
Zandvakili and Kohn, 2015). Here we concentrate on the latter case.

The precisely timed pairwise correlations may arise simply from the
structure of the network (i.e., two neurons sharing the same input), but
may also have a functional role in the brain and in the transmission of
information (as in the temporal coding hypothesis).

4.2.5.1 Baseline correlation

In the first case, two neurons can produce baseline correlations, which
may exceed what is expected solely by the firing rate profile. These
correlations may be a by-product of the network structure (Kriener et
al., 2008; Tetzlaff et al., 2012), and may arise from existing anatomical
connections (Kobayashi et al., 2019). Importantly, in the case of the
reach-to-grasp experiment, such correlations are also shown to be of
long range, e.g. spanning the entire surface of a Utah multi-electrode
array (Dahmen et al., 2021).

Baseline correlations can be modeled by different stochastic models,
such as two-dimensional marked point processes (SIP, MIP, or CPP;
Staude, Grün, and Rotter, 2010; Quaglio, Rostami, et al., 2018), but also
by superposition of correlated and stationary spikes onto the inde-
pendent background for the two neurons involved in the correlation
pair.

4.2.5.2 Functional correlation

On the other hand, the pairwise correlations may be functional, and
thus may depend on the state on the network and on the task per-
formed (Riehle, Grün, et al., 1997; Dann et al., 2016). Precisely-timed
delayed and synchronous patterns of size 2 are found to be correlated
to the behavior (Riehle, Grün, et al., 1997; Kilavik, Roux, et al., 2009;
Torre, Quaglio, et al., 2016; also Chapter 6). Functional correlations
are dynamic and appear to be modulated during the trial, as they are
related to the momentary behavior. Thus, they may depend on the
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trial epoch and on the trial type for the case of the reach-to-grasp data
set.

A possible approach to model functional correlations is to generate
two identical spike trains with a firing rate modulated with respect
to the behavior, as observed in the real data sets, and superimpose
them for limited time to their corresponding independently modeled
background activity.

4.2.6 Higher-order correlation

Finally, the last feature we include in our data sets is the presence
of higher-order correlations. Such correlations have been observed in
many experiments, and are typically related to behavior (Villa and
Abeles, 1990; Villa, Tetko, et al., 1999; Riehle, Grün, et al., 1997; Prut
et al., 1998; Pipa, Grün, and Vreeswijk, 2013; Torre, Quaglio, et al.,
2016; Russo and Durstewitz, 2017; Shahidi et al., 2019). In Chapter
6 we present evidence of the existence of higher-order correlations
in the form of spatio-temporal spike patterns in the reach-to-grasp
experiment.

A possible way to generate precisely timed correlations of order n
is similar to the approach of pairwise correlations: either with a n-
dimensional SIP, MIP or CPP process (Staude, Grün, and Rotter, 2010),
or via spike train superposition. Spike train superposition consists
in generating the higher order correlations, and injecting them over
the background activity simulated by independent processes. The
advantage of the latter approach is that spike trains generated to
model the higher-order correlations can be shifted by specified delays
to produce synthetic spatio-temporal patterns.

4.3 point process models for generation of artificial

data

One may consider to employ a neural network model as a generator
of artificial parallel spike data. However, network models are not able
to include parameters of the wanted spike data yet, thus parameters
of the output spike trains (rates, CV, correlations etc) cannot be easily
estimated in advance. Stochastic point process models are instead
a well-defined mathematical representation, and useful for the pur-
poses of description, exploration, and interpretation of measured data
(Cardanobile and Rotter, 2010). Different types of stochastic point
processes are used in the literature for modeling electrophysiological
spike trains (Cox and Lewis, 1966; Perkel, Gerstein, and Moore, 1967;
Tuckwell, 2006).

We present here the classically used Poisson process, the Poisson
process with dead time (PPD; Deger et al., 2012), and the Gamma
process. Poisson and Gamma processes are widely used in the litera-
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ture to model spike trains, and have been studied extensively from a
mathematical perspective (Nawrot, Boucsein, et al., 2008). The PPD
process is less studied, however, it is equally relevant for our pur-
poses, as it incorporates biological features that the other processes
do not allow. Other point processes models have been researched in
the literature (Tomar and Kostal, 2021), such as the Lognormal pro-
cess (Levine, 1991; Pouzat and Chaffiol, 2009), the Inverse Gaussian
process (Berger, Pribram, et al., 1990; Levine, 1991), and also models
considering mixtures of exponential distributions to capture bimodal
activity (Bhumbra and Dyball, 2004; Trapani and Nicolson, 2011).

4.3.1 Poisson point process

The Poisson process is the simplest and most studied point process. It
can be defined through the characterization of its interspike interval
distribution, which is an exponential random variable of parameter
l > 0. Equivalently, the spike count distribution in a finite time
domain is distributed as a Poisson random variable. The process can
also be non-stationary, i.e. when l(t) > 0, t 2 T.

The Poisson process has been used in many studies to model parallel
spike trains (Vreeswijk, 2010; Quaglio, Yegenoglu, et al., 2017; Stella,
2017), although it does not reproduce some important intrinsic features
of neural data, both from a statistical and biological perspective. First,
the Poisson process does not allow a dead time (or a refractory period),
as interspike intervals are independent and can be arbitrarily small.
Secondly, the process cannot reproduce the regularity that we see in
experimental data, as the CV of a Poisson process is always equal to 1.

4.3.2 Poisson point process with dead time

The Poisson process with dead time (PPD) is a variation of the Poisson
process, which incorporates a dead time by shifting the interspike
interval distribution by a fixed amount t > 0 (Cardanobile and Rotter,
2010; Deger et al., 2012). The parameter t indicates the dead time.
Intuitively, a PPD of parameter t = 0 corresponds to a pure Poisson
process. As for the pure Poisson process, the PPD can be stationary (of
parameter l > 0), or non stationary, defined then by the instantaneous
firing rate function l(t) > 0, t 2 T.

For the PPD process we can also calculate a corresponding effective
firing rate ˜l >l. This corresponds to the firing rate of the process
conserving the expected number of spikes under Poisson distribution,
and corrects for the time window t in which no spike can be emitted.
The effective firing rate is formulated as (Bouss, 2020)

l̃ =
l

1� lt
. (4.1)
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Regarding the regularity, there are closed form expressions for CV
and CV2 statistics of a PPD (Deger et al., 2012; Bouss, 2020), which
both depend on the dead time t

CV =
l

l̃
= 1� lt (4.2)

CV2 = 1� 2lt + O(t2). (4.3)

The respective formulae can be derived also in the case of non-
stationary PPD. An exhaustive explanation can be found in Bouss
(2020). There are easily derivable expressions for such statistics, and
those depend on only two parameters, the firing rate and the dead
time.

4.3.3 Gamma point process

The Gamma point process, as the Poisson process and the PPD process,
also belongs to the family of renewal processes. It has been extensively
studied for modeling of realistic spike trains, as it can be used to model
both regular and bursty spiking (Nawrot, Boucsein, et al., 2008; Pouzat
and Chaffiol, 2009; Vreeswijk, 2010). A stationary Gamma process
is defined by its interspike interval distribution, which depends on
two parameters l > 0, g > 0, where g is called the shape factor of the
process

p(t) = gl
(glt)g�1

G(g)
exp(�glt) (4.4)

for t > 0. A special case of the Gamma process is the Poisson process,
obtained when g = 1. When g > 1, the process results to be regular,
i.e. it exhibits a bump in the ISI distribution approximately at 1/l;
when g < 1, the process results to be bursty.

There exist also closed form expressions for the CV and CV2 of a
Gamma process depending only on the shape factor

CV =
1p
g

(4.5)

CV2 =
G(2g)

g(2g�1G(g))2 . (4.6)
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Importantly, the second formula can be inverted numerically, lead-
ing thus to an estimate for the shape parameter when the CV2 is
estimated from the data.

The Gamma process can also be non-stationary, with an instan-
taneous rate function l(t) > 0, t 2 T. It thus reduces to be only a
Markov process, not anymore of renewal property.

4.3.4 Generation of non-stationary point processes

Non stationary point processes can be generated in two different
ways. The first is the so-called thinning method (Lewis and Shedler,
1979; Cardanobile and Rotter, 2010), which is an algorithm based on
a rejection sampling logic. The thinning method is often used in the
case of the Poisson process, and can be extended to the PPD.

The second approach exploits the time rescaling theorem: a station-
ary process is created in operational time, and then becomes non-
stationary through the inverse transformation. This second approach
is particularly effective for the Gamma process: we can generate a sta-
tionary process with the same CV2 in operational time of the real data
by using the inverse of equation (4.6). Then using the backward trans-
formation to real time, we obtain a non-stationary Gamma process
with the desired firing rate profile.

4.3.5 Surrogates as alternative to point process models

Finally, an alternative to generating spike trains through a point pro-
cess model is surrogate generation. We outlined already in Chapter
2 that surrogates are a model-free approach to generate spike trains,
and we investigate a number of techniques in great details in Chapter
5.

4.4 the data sets

Now we present five generated data sets, ordered by increasing model-
ing complexity, and confront their statistics to the original experimen-
tal session. All data sets share the common characteristics of having
the same number of neurons and the same duration of the original
session: 150 neurons for 22.32 minutes of recording. Moreover, a dead
time d = 1.2ms is inserted in all data sets, and we enforce the same
temporal precision as the experimental data (30kHz). The five artificial
data sets, together with the original experimental one, are displayed in
Figure 4.1 with different colors. The figure shows the first successful
trial of session i140703-001 of Monkey N.
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Figure 4.1: Raster plot of the original and the artificial data set. The raster
plots represent the first correct trial of the session, which is 4 s
long. Colors indicate the different data sets: experimental data set
(green), PPD data set (yellow), Gamma data set (black), Baseline
correlation data set (red), Functional correlation data set (blue),
Dithered data set (purple).
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4.4.1 PPD data set

For the first data set, we choose as a point process model the Poisson
process with dead time, fixed to d = 1.2ms. We estimate the firing
rate profile, neuron by neuron and trial by trial, with the globally
optimized Gaussian kernel smoothing of Shinomoto (2010). Then, we
generate for each neuron a non-stationary PPD with the thinning
method. All spike trains are generated independently.

4.4.2 Gamma data set

In the second data set, we model parallel spike trains with a Gamma
process. As explained in Section 4.3.4, we estimate the CV2 of the
original neuron trial by trial, generate the corresponding Gamma
process in operational time, and then obtain the non-stationary process
with the backwards transformation, independently for each spike train.

4.4.3 Baseline correlation data set

The baseline correlation data set consists in parallel spike trains mod-
eled with a Gamma process as in Section 4.4.2, where we inject pair-
wise synchronous correlations. The correlations do not depend on
behavior: the correlated pairs spike synchronously for any trial type
or behavioral epoch, and have the same coincidence rate. Moreover,
neurons belonging to such pairs are preferentially sampled according
to their euclidean distance with a triangular distribution: the closer
the neurons are in electrode distance, the higher the probability is
that they are involved in a correlated pair. We generate 120 correlated
pairs of neurons, and for simplicity we inject correlations only in the
first unit sorted per electrode (unit_id=1). Correlations are slightly
jittered, according to a uniform distribution U([0, 05]ms), and their
correlation rate consists of 5% of the original population firing rate
profile. Analogously, the background rate profile for the same neu-
rons is generated such that it compensates the remaining 95% of the
original rate profile. In this way, the superposition of the independent
background with the correlated spike rates gives the target firing rate
of the original neurons.

4.4.4 Functional correlation data set

For the functional correlation data set, we generate Gamma parallel
spike trains as in Section 4.4.2, but we inject correlations of different
orders and with a trial event dependent non-stationary rate. The
correlation firing rate profile consists of 5 parabulae, with their maxima
centered on the time points corresponding to the trial initiation cue
(WS-ON), on the cue presentation (CUE-ON), on the go signal (GO-
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ON), around the switch release (SR), and finally at the reward (RW-
ON). We vary the characteristics of the injected correlations depending
on the epoch:

� epoch 1 (start):

– synchronous pairwise correlation, slightly jittered according
to U([0, 05]ms)

– 80 pairs of neurons for the entire data set, sampling not
behavior related

– correlation rate of 3Hz

� epoch 2, 3, 5 (cue-on, waiting, reward):

– synchronous pairwise correlation, slightly jittered according
to U([0, 05]ms)

– 80 pairs of neurons, sampled separately depending on the
epoch and the trial type

– correlation rate of 3Hz

� epoch 4 (movement):

– synchronous correlation of order 10, slightly jittered accord-
ing to U([0, 05]ms)

– 10 neurons involved in the pattern, sampled randomly and
separately depending on the trial type

– correlation rate of 9Hz

For all correlation orders, as for the baseline correlation data set, we
generate the background firing rate of the correlated spike trains as
the difference between the original target rate and the correlation rate.

4.4.5 Dithered data set

The last data set is not based on a process problem, but simulated
by surrogate generation. All spike trains are generated by Uniform
Dithering with Dead Time (UDD; Bouss, 2020; Stella, Bouss, et al.,
2022), which consists in dithering each spike around its original posi-
tion independently, while keeping the dead time constraint in between
successive spikes (here d = 1.2ms). In this case, the dithering distri-
bution is uniform of parameter d = 15ms. We present in the next
Chapter (Section 5.3.1) more details about this technique and about
the statistical features of the surrogate realizations.

4.5 intermezzo : educational context of anda spring

school

The data sets proposed here were originally devised to be used in the
context of the Advanced Neural Data Analysis (ANDA) spring school,
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which took part in 2017, 2018, 2019 and 2021. In all editions, the data
sets were presented during the second week of the school, during the
so-called “data challenge”, where students had the task of identifying
the real data set from the artificial ones. Depending on the edition, the
students were presented different hints about the generation of the
artificial data sets.

Students had to engage in collaborative work by designing a re-
search strategy in small groups, and to present their findings on the
last day of the spring school. The groups could apply classical meth-
ods presented during the first week of the school, but also choose their
own. This showed a vast number of different strategies, from classical
ones to more refined techniques, some of them similar to the ones
presented in Section 4.6.

4.6 statistical characteristics of the data sets

In this section, we present the generated data sets, and look at their
statistics. Thus, we employ tools of increasing complexity, which are
helpful to explore differences and similarities across the data sets. A
few of these tools were already presented in 1. We assign a color to
each data set, which is the same for all figures:

� experimental data set: green

� PPD data set: yellow

� Gamma data set: black

� baseline correlation data set: red

� functional correlation data set: blue

� dithered data set: purple

At the end of each session, we assume the perspective of a student of
the ANDA workshop: we know the characteristics of the six data sets,
but we do not know which one is which. This is an example to show
that the data sets are helpful for the benchmarking of analysis tools
and for didactic purpose. At the end of each section, we write down
our conclusions in a text box.

4.6.1 Firing rate

In Figure 4.2, we display the population histogram (PSTH) of all
spike trains per data set, binned at 20ms resolution for one trial.
The chosen trial is the first successful trial of trial type PGHF (trial
n.6). Different colors represent the different data sets, as in Figure 4.1
(where the same trial is represented). We observe that all data sets have
very similar firing rate profile over one trial, evidencing a firing rate
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increase during the movement period (around 2.5ms). Therefore, the
generation of non-stationary point process models with the strategies
chosen in Section 4.4 leads to good results. The experimental and the
dithered data set have very similar PSTHs, characterized by a higher
peak at movement execution than the other data sets. In the dithered
data set, the modification of the individual spike times at the fine
temporal resolution of 15ms does not impact the firing rate profile at
the population level.

What have we learnt so far?
There are no conclusions on the identity of the data we can obtain
only through the observation of the PSTH.

4.6.2 ISI distribution

In Figure 4.2, on the right column, we represent the interspike inter-
val distribution of all neurons within one trial. The chosen trial, as
before, is the first successful trial of trial type PGHF (trial n.6). The
experimental and the dithered data have a very similar ISI distribution.
We inspect more in details the modifications made by the surrogate
procedure on experimental data in the next chapter.

The ISI distribution of the PPD data set is exponential, showing a
surplus of short interspike intervals between successive spikes with re-
spect to the original data set. This is characteristic only of Poisson and
PPD spike trains. On the contrary, the Gamma, baseline and functional
correlation data sets almost do not exhibit short ISIs: the probability
distribution increases from short ISIs to a maximum around 300ms,
which decays rather slowly. The baseline and the functional correlation
data sets have an almost identical ISI distribution.

What have we learnt so far?
From the ISI distribution we distinguish the yellow data set as the
PPD data set, due to the exponential shape of the distribution. The
distributions of the experimental and the dithered are similar, but
do not help us in an exclusive choice. Finally, we group together the
black, red and blue data set as Gamma-based data sets, due to the
Gamma shape of the ISI distribution.

4.6.3 Spike count

Next, we inspect the distribution of the number of spikes. First, we
show the spike count of a single spike train across all data sets. In
Figure 4.3A, we see that the experimental data and the dithered data
set have exactly the same spike count, whereas the other data sets
have a slightly higher one. To further investigate whether this is a
constant property across all spike trains, we represent in Figure 4.3C
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Figure 4.2: Firing rate and ISI distribution of all data sets. Left panel.
PSTH calculated on the first successful trial (trial 6) of the type
PGHF. Right panel. ISI distribution across all neurons in the same
trial.
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the difference between the spike count of all artificial data sets and
the experimental data set. We plot neurons on the x-axis, and trials
on the y-axis. Thus, each entry of the matrix corresponds to the spike
count of neuron i and trial j in the experimental data minus the spike
count of neuron i and trial j in the respective artificial data set. The
experimental and the dithered data set have the same spike count for
all spike trains, whereas the Gamma data set is the one showing a
smaller variance in the spike count with respect to the others. Overall,
the maximal difference between the artificial and the real data sets is
40 spikes.

Finally, we calculate the spike time difference between all spike
times of the experimental and the dithered data set. The resulting
distribution is displayed in Figure 4.3B: the maximal difference in
time is exactly at the dither parameter (15ms), and has a slight peak
around zero. The reason is that the dithering distribution is not exactly
uniform. In fact, we do not employ the simple uniform dithering
technique, since we preserve the dead time of each single spike train.
Thus, a spike is more likely to be close to their original position, due
to the fact that it cannot be too near to the preceding and the following
spike.

What have we learnt so far?
By looking at the spike count distribution, and at the spike time
difference, we can conclude that the green and the purple data set
are the experimental and the dithered data set. However, we cannot
yet conclude which is which.
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C

Figure 4.3: Spike count distributions of all data sets. Panel A. Histogram
of the spike count of one spike train across all data sets. Panel
B. Spike time difference between all spikes of the experimental
and the dithered data set, calculated spike train by spike train.
Panel C. Heatmap of the difference in spike count, between each
artificial data set and the experimental one. The difference is
calculated neuron by neuron (x-axis) and trial by trial (y-axis). It
is obtained by considering the spike count of a certain neuron in
a certain trial of the data set of choice and subtracting it to the
corresponding spike count of the original data set at the same
neuron and trial.

4.6.4 Variability of ISIs and spike counts

In this next step, we calculate the variability of interspike intervals
and spike counts, through the measures of CV2 and Fano Factor,
respectively. In Figure 4.4, we plot on the left the CV2 distribution of
all spike trains, and on the right the FF distribution of all spike trains
across all trials.

Regarding the CV2, we see that the original data has most values
below 4, with a peak around 0.75 and a heavy tail on low values. Thus,
most neurons are relatively to highly regular. None of the artificial
data sets are able to exactly reproduce the original distribution: the
PPD data set is centered around 1, whereas the Gamma data set is
centered to lower values around 0.6. The baseline and the functional
data set have a peaky distribution centered around 0.75, very similar
to each other.

Finally, the dithered data set shows a similar distribution to the orig-
inal, although spike trains are generally less regular. In comparison,
the experimental data has a longer left tail of more regular neurons
(0.3 <CV< 0.6) that are not present in the PPD data set. In fact, uni-
form dithering techniques modify the variability of the original spike
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train by making it more similar to a Poisson process (Louis, Gerstein,
et al., 2010; Platkiewicz, Stark, and Amarasingham, 2017). Thus, the
CV and the CV2 distributions shift towards 1. In the particular case of
UDD, the CV is biased to values lower than 1 because of the regularity
imposed by the dead time, similarly than for the case of the PPD pro-
cess (Bouss, 2020). Further analyses on the modifications of surrogate
techniques to the regularity of spike train data are presented in 5.

Regarding the FF, the distribution of the original data is centered
around 1, with a heavy tail on the right, and highest values are around
5. As it has the same spike count, the dithered data set has exactly the
same distribution of the original data. The PPD data has on average
higher values, with the distribution shifted of about 1. Finally, the FF
of the three Gamma-based data sets are quite similar, not so different
from the original.

Next, we look into the distributions of CV2 and FF during the
waiting and the movement periods (Figure 4.5). The waiting period
corresponds to the time window of 500ms directly after cue offset
(during movement preparation). The movement period corresponds
to a 500ms epoch centered around the movement execution, i.e., from
200ms before to 300ms after the switch release.

We observe that the distributions of CV2 and FF are more peaky
than across the entire session. During the waiting period, the activity
is on average more stationary than in the movement period, where
there are typically strong non-stationarities in correspondence to the
movement execution (Riehle, Brochier, et al., 2018). In particular, the
CV2 distribution of the original data changes from waiting period to
movement, becoming wider and with a lower peak. We see again that
the PPD data has on average a CV2 of 1, whereas the Gamma-based
data sets are more regular. Moreover, as before, dithered spike trains
show to be less regular than the experimental ones (green vs. purple
left tail of the CV2 distributions).

What have we learnt so far?
From the study of CV2 and FF we distinguish the yellow data set
as the PPD, due to the fact that the CV2 and FF is on average 1,
as it is expected from analytical derivations. We see that the black
data set stands out from the red and the blue, revealing itself to be
the most regular (and in particular to be more regular than red and
blue). Thus, we may identify the black data set as the Gamma data
set, without inserted correlations.
From the study of the spike count we infer that the experimental
and the dithered data are either the green or the purple data. Since
the dithering process decreases the regularity of highly regular
spike trains, we identify the purple data set as the dithered data
set. Consequently, since the green data set has a higher fraction of
spike trains with low CV2s than the purple, we recognize it as the
experimental data set.
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4.6.5 Pairwise correlations

Here we focus on the analysis of pairwise correlations. First, we
calculate the matrices of the correlation coefficients across all units and
trials (Figure 4.6), and we observe that there are no visible differences
between the data sets.
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Figure 4.6: Correlation matrices of all data sets, calculated across all pairs
of spike trains in the entire recording time.

Then, we subsample the entries of the correlation matrices to inves-
tigate the temporal structure of the pairwise correlations. We select the
100 pairs of neurons with the highest correlations per data set, and we
calculate the histogram of the rate of pairwise synchronous spike event
across trials of type precision grip (PGHF + PGLF; Figure 4.7). The
experimental and the dithered data sets (in green and purple) have
very similar profiles, with a high peak centered around movement
execution. Also the PPD and the gamma data set are rather similar
(yellow and black). The baseline correlation data set (in red) has a
higher and constant correlation rate, with a lower peak at movement
initiation. Finally, the functional correlation data set (in blue) shows
clearly the parabolic shape of the inserted correlations at the different
epochs.
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(PGHF+PGLF).

What have we learnt so far?
Thanks to the analysis on pairs evidencing the highest correlations,
we are able to identify the red and the blue data set as the baseline
and the functional correlation data set, respectively, due to the
shape of the profile of their correlation rate. However, the two data
sets cannot be identified from the sole observation of the pairwise
correlation matrix.

4.6.6 Higher-order correlations

Finally, we apply two different higher-order correlation detection tech-
niques to all six data sets. First, we analyze the data sets through the
complexity distribution, which evaluates the distribution of different
orders of synchronous correlation in the data (Section 1.5.2). By look-
ing solely at the complexity distribution (Figure 4.8A, left column), we
do not see any differences across the data sets: all exhibit an increase
with a peak at 4, and then decrease until 9. However, more information
is obtained when we subtract the complexity distribution of the aver-
age of N = 100 surrogate realizations, obtained by uniform dithering
(max dither d = 15ms; Figure 4.8A, right column). In this way, we may
see the discrepancy in the amount of synchrony present in the original
data set versus its independent surrogates, evidenced in a negative
dip. The experimental data set and the dithered are very similar, and
they both have a small dip at complexity 2. Prominently, we see a
strong dip in both the baseline and the functional correlation data sets
at complexity 2 and 3. This means that there are more synchronies
of the respective sizes in the original data than in the independent
surrogates. In fact, both in the baseline and functional correlation data
sets we inserted synchronous correlations of size 2.

However, we do not see the higher-order correlations of complexity
10 inserted in the functional correlation data set. We then resort to the
SPADE analysis (Section 3.4), which is designed to detect higher order
correlations in parallel spike trains. We concatenate segments corre-
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A B

Figure 4.8: Analysis of higher-order correlations. Panel A. Complexity dis-
tribution. Left column, complexity distribution calculated on the
entire time duration and all spike trains across all data sets (rows,
indicated with different colors). Right column, complexity distri-
bution of the original data set, diminished by the average complex-
ity distribution of 100 surrogates generated by uniform dithering.
Panel B. SPADE analysis of concatenated data during the move-
ment epoch of the trial types PGHF (red) and SGLF (blue).
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sponding to the movement epoch, and separately for the trial types
PGHF and SGLF. We specifically look for higher-order correlations
of size 10, use N = 100 surrogates for the statistical evaluation, and
a bin size of 1ms. By using SPADE, we are able to detect the injected
patterns in the functional correlation data set. Results are displayed in
Figure 4.8B, in red for PGHF and SGLF (where we show only two and
one pattern occurrences, respectively, in a small excerpt of data).

What have we learnt so far?
From the analysis of higher-order correlations through the com-
plexity distribution and SPADE, we are able to characterize the
baseline and the functional correlation as the red and blue data
sets, respectively. Additionally, we identify the blue data set as the
one including functional correlations, as we detect the higher-order
correlations inserted in the movement epoch with SPADE.

4.7 workflow for data generation

The data sets presented in this Chapter are generated using a Snake-
make workflow (Section 2.4.2), and thus are fully reproducible. The
workflow is of simple structure, and presented as a diagram in Figure
4.9.

all

cut_trials

generate_artificial_data

generate_correlation_structure

Figure 4.9: DAG diagram of the
Snakemake workflow.

The first rule cut_trials has
the task of loading the elec-
trophysiological data, cutting
the trials, identifying the cor-
rect ones, and removing the un-
wanted spike trains (MUA ac-
tivity, noisy channels). The rule
outputs a Neo block (Garcia et
al., 2014), with as many seg-
ments as the number of tri-
als, and the file correspond-
ing to the real data set. The
rule generate_correlation_structure

generates the correlation struc-
tures for the baseline correlation
and the functional correlation
data set. In a first step, it samples

the neuron pairs involved in pairwise correlations for the baseline cor-
relation data set, taking as input the number of correlated pairs chosen
for each data set, their rate as a fraction of the population rate, and the
spatial distribution for baseline correlation. Secondly, the script sam-
ples the neurons involved in pairwise and higher-order correlations
for the functional correlation data set, given the number of correlated
pairs for the data set, the size of the higher-order patterns and their
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rate profiles. In the third step, the rule generate_artificial_data

creates the five artificial data sets, taking as input the real data set
output of the first rule, and the correlation structure output of the
second rule. All data sets are in the same Neo format as the original
one. Finally, rule all checks if all data sets are returned successfully.

4.8 conclusion and discussion

In this chapter, we have shown an example approach of modeling
an experimental session of electrophysiological recordings through
a combination of point process models and spike train generation
tools. First, we listed which statistical features of the original data set
we wanted to model in our simulated data, together with possible
approaches and techniques to reproduce such statistics. Next, we
considered two point process models, the PPD process with dead
time (PPD) and the Gamma process, and possible ways of generating
non-stationary point processes. In addition, we presented surrogate
generation as an alternative method to model experimental spike
trains.

Putting together all information gathered in the first sections, we
generated five artificial data sets, reproducing selective statistical fea-
tures of the original data: a data set of independent spike trains
modeled as PPD process with dead time (’PPD’); a data set of inde-
pendent spike trains modeled as Gamma process (’Gamma’); a data
set of Gamma spike trains with inserted baseline pairwise correla-
tions of constant rate (’Baseline correlation’); a data set of Gamma
spike trains with inserted functional correlations of varying rate, both
pairwise and higher-order (’Functional correlation’); and a data set
obtained by surrogate generation using uniform dithering with dead
time (’Dithered’).

The data sets were employed in the Advanced Neural Data Analysis
(ANDA) spring school as a weekly project for the participants. The
students had the task of identifying the data sets, given a few hints
about their generation. The task was quite hard for the participants
to solve, as it required good knowledge of statistical techniques for
data analysis and properties of experimental data. As anecdotal evi-
dence, we report that in 2021, when students received no information
about the data generation, few groups where able to solve the task
successfully, and some were able to give only partial educated guesses.

Next, we presented the statistical characteristics of all data sets,
by applying classical analysis techniques in increasing order of com-
plexity. We looked at differences and similarities of the five artificial
data sets at the level of firing rate, ISI distribution, spike count, CV2,
FF, pairwise correlations and higher-order correlations. Our analyses
show that the dithered data set was the simulated data set that was the
most similar to the experimental one. Thus, generating surrogate spike
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trains with a dithering parameter of d = 15ms does not impact much
most of the spike train statistics. The Gamma, the baseline correlation,
and the functional correlation data set had also similar statistics, since
they were all based on a background Gamma process. The PPD data
set stood out from the others in many analyses; in particular in its ISI,
CV2 and FF distribution. These results correspond to our expectations,
given the point processes and the techniques used to model the spike
trains.

Additionally, our analyses enabled us to label all data sets, despite
their rather complicated design. A brief summary of the results is in
Table 4.1, where we mark which approach helped the identification of
each data set. Naturally, the proposed solution is not unique and is not
meant to be a comprehensive strategy: there are many approaches we
have not explored that may lead to the same conclusions. In fact, cross-
correlation analysis and Unitary Events analysis (Grün, Diesmann,
and Aertsen, 2002) may have helped identifying the baseline and
functional correlations. Other pattern detection methods, such as CAD
(Russo and Durstewitz, 2017), may have detected the synchronous
patterns inserted in the functional correlation data set. Moreover, the
study of spike train autostructure may have identified the dithered
data set (Stella, Bouss, et al., 2022).

The artificial data sets are generated with a Snakemake workflow,
using mainly tools already developed in the python packages Neo
(Garcia et al., 2014) and Elephant (RRID:SCR_003833). The same is
valid for the employed analysis techniques, as Elephant is designed
principally for this purpose. The Snakemake workflow takes as in-
put a parameter file: thus, the input parameters can be changed in
order to generate different data set realizations. Consequently, the
artificial data sets may result in being more similar or more different
from the original data set, making the task more/less complicated
for the students of the ANDA school. Moreover, we could extend
the data generation by using different point process models other
than Gamma and PPD. However, this is not yet implemented in the
Elephant package.

The workflow for data generation could also be generalized by
changing the input data set, allowing to generate artificial data from
any experimental session, provided that it is a list of spike trains or a
Neo block.

To conclude, the presented data sets have statistical features that
are similar enough to the experimental data, and can be used for
benchmarking in a real case scenario. In the next chapter, we generate
artificial data sets of independent spike trains, in order to evaluate the
statistical power of different surrogate techniques in a SPADE analysis.
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G E N E R AT I N G S U R R O G AT E S F O R S I G N I F I C A N C E
E S T I M AT I O N O F S PAT I O - T E M P O R A L S P I K E
PAT T E R N S

This chapter is based on the publication Stella, Bouss, et al. (2022).
The author designed the artificial data, performed the analysis of
the artificial data and of the experimental data; contributed to the
design of the surrogate techniques and their implementation, to the
evaluation of the statistical properties of the surrogate techniques
and to the writing of the manuscript. The work was done under
the supervision of Günther Palm and Sonja Grün. Figures in this
chapter were reproduced from Stella, Bouss, et al. (2022), including
the captions.

Background: SPADE identifies statistically significant spatio-temporal
spike patterns (STPs) by surrogate generation in spike train data. First,
it binarizes the spike trains and examines the data for STPs by counting
repeated pattern occurrences using frequent itemset mining. Then, it
evaluates the STP significance by comparison to pattern counts derived
from surrogate data: modifications of the original data with destroyed
spike correlations but conserving the firing rate profile. To avoid
erroneous results, surrogate data are required to retain the statistical
properties of the original data as much as possible. A classically chosen
surrogate technique is Uniform Dithering (UD), which displaces each
spike independently according to a uniform distribution.

Methods: We present five surrogate techniques, in addition to UD:
uniform dithering with dead time (UDD), joint-ISI dithering (JISI-D),
ISI-Dithering (ISI-D), window shuffling (WIN-SHUFF) and trial shift-
ing (TR-SHIFT). We examine their statistical properties such as spike
loss, ISI characteristics, effective movement of spikes, and arising false
positives when applied to different ground truth data sets: first, on
stationary, and the,n on non-stationary point processes models mim-
icking statistical properties of experimental data. Finally, we analyze
two sessions of experimental data with the six surrogate techniques.

Results: We find that binarized UD surrogates of our experimental
data (motor cortex) contain fewer spikes than the binarized original
data. As a consequence, false positives occur. We identify the reason
for the spike reduction, which is the lack of conservation of short
ISIs. When looking at non-stationary data, we observe a large number
of FPs when UD is applied, and a very low number for the other
methods. The analysis of experimental data shows good results for all
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alternative surrogate techniques to UD, retrieving patterns related to
the monkey behavior.

Conclusions: We conclude that UD is not an appropriate method
for surrogate generation when applied on non-stationary and regular
data with dead time. Thus, it should not be used in the context of STP
evaluation with SPADE. Nonetheless, the alternative methods lead
to good statistical performance. We conclude that trial-shifting best
preserves the features of the original data and has a low expected
false-positive rate. Moreover, the analysis of the experimental data
provides consistent STPs across the alternative surrogates.
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5.1 introduction

Surrogate generation is a popular approach for the statistical evalua-
tion of precise spike time correlations in parallel spike trains (Abeles
and Gat, 2001; Grün, Diesmann, and Aertsen., 2002; Grün, 2009). As
many methods for detection and statistical evaluation of higher-order
correlations have been developed in the past years (discussed in the
introductory chapter 1), also many surrogate techniques have been
designed. Nonetheless, surrogate techniques have not been compared
so far in the context of spike correlations exceeding the pairwise level
(Louis, Gerstein, et al., 2010).

Typically, surrogates are used in statistics (and thus in statistical
neuroscience) when the definition of an exact test is difficult or even
impossible (Kass, Ventura, and Brown, 2005; Ventura, 2010). In statisti-
cal mathematics, the approach is commonly referred to as bootstrap test
of hypothesis and consists in the random generation of time series data,
reproducing various statistical properties of the originally measured
data set. It is widely used and effective (Efron and Tibshirani, 1993), as,
in fact, many practical applications often require numerical solutions.
In the context of temporal coding (Section 1.3), we want to test whether
the millisecond precise temporal correlations found in the data hap-
pen by chance or represent a feature of the brain network dynamics.
Thus, in the null-hypothesis (also called “independent model”), the
fine temporal correlations in the data emerge only by chance: if the
null-hypothesis is rejected, the correlations are statistically significant.

In this chapter, we are interested in the detection of significant
spatio-temporal spike patterns with temporal delays, which are con-
sidered to be signatures of the activation of cell assemblies. Numerous
studies have been published, showing evidences of the presence of
higher-order correlations in spike train data (Villa and Abeles, 1990;
Martignon et al., 1995; Riehle, Grün, et al., 1997; Prut et al., 1998;
Villa, Tetko, et al., 1999; Kilavik, Roux, et al., 2009; Shimazaki, Amari,
et al., 2012). As we know from the preceding chapters, the SPADE
method is able to detect spatio-temporal spike patterns with temporal
delays, and to test them statistically (Stella, Quaglio, et al., 2019). In
particular, the null-hypothesis for the significance test is generated
through surrogate data that implement independence between the
spike trains given the varying firing rates. Thus, the methods used to
generate surrogates are chosen such that putative precise time correla-
tions in the original data are destroyed, while the remaining statistical
characteristics of the spike trains, e.g., firing rate (co-)modulations,
are preserved. The classical and most intuitive approach for surrogate
generation is uniform dithering (also called jittering or teetering; Date,
Bienenstock, and Geman 1998; Hatsopoulos et al. 2003; Stark and
Abeles 2009; Louis, Borgelt, and Grün 2010; Pazienti, Maldonado, et al.
2008), which was employed in numerous experimental studies (Abeles
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and Gat, 2001; Hatsopoulos et al., 2003; Gerstein, 2004; Maldonado
et al., 2008). Uniform dithering was also used for the significance
testing of spike patterns of synchronous spikes using the “old” SPADE
method (Torre, Picado-Muiño, et al., 2013; Torre, Quaglio, et al., 2016),
and for the calibration of the “new” SPADE method for the evaluation
of spatio-temporal spike patterns, but only using non-homogeneous
Poisson spike data (Stella, Quaglio, et al., 2019).

We discover from the application of SPADE on real experimental
data from the reach-to-grasp data set (Section 3.3.1) that uniformly
dithered surrogates after discretization contain fewer spikes than the
original data, possibly leading to false positive detection, as explored
in (Louis, Gerstein, et al., 2010; Grün, 2009). Thus, this issue has to be
explored in more details, and the causes for the spike count reduction
need to be assessed before continuing with the analysis.

This chapter identifies the reasons for the spike count reduction
in UD surrogates within SPADE. In fact, we first evaluate the spike
count reduction on reach-to-grasp data, and discover that the effect is
particularly strong when neurons have a high firing rate. Thanks to
analytical derivations on simple stationary point processes, we find
that the reason lies in the joint use of uniform dithering and clipping,
whenever the original spike train has a dead time or is regularly firing.

Thus, we look for alternative surrogate methods in substitution to
uniform dithering, by investigating surrogate generation techniques
available in literature (Pipa, Wheeler, et al., 2008; Gerstein, 2004), and
by newly designing a few, which preserve the ISI distribution and the
firing rate profile of a single neuron. The surrogate techniques taken
into account are: Uniform Dithering (UD), Uniform dithering with
dead time (UDD), Isi Dithering (ISI-D), Joint-ISI Dithering (JISI-D),
Trial Shifting (TR-SHIFT), and Window Shuffling (WIN-SHUFF).

In Section 5.5, these alternative surrogates are analyzed by their
statistical properties and compared to UD. In order to do this, we
generate surrogates of ground truth data which do not contain pat-
terns, i.e., independent stationary point processes (familiar to us, as
already described in Chapter 4): Poisson process, Poisson process with
dead-time (PPD), and Gamma process. We look at how the original
spike trains are changed by surrogate generation by looking at some
spike train statistics, such as the ISI distributions, cross correlations,
auto-correlations, preservation of sudden changes in the firing rate,
regularity (CV and CV2), but also the effective movement of the spikes
from their original position.

In Section 5.6, we evaluate the performance of the surrogates by
analyzing independent non-stationary data and looking at false pos-
itive rates. The artificial data are modeled as independent PPD and
Gamma processes with instantaneous firing rates estimated on a trial-
by-trial and neuron-by-neuron level from the experimental data. All
parameters of the two processes are estimated from real data: the PPD
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includes the same dead-time fixed during the spike sorting process,
and the Gamma process is generated with a shape factor using the CV
of the real data, similarly to what presented in the previous chapter.
The modeled data are then segmented in behaviorally relevant epochs,
which are analyzed separately by SPADE. As a result, we observe
the number of FPs per data set and observe that UD generates for
both point process models a large number of FPs as compared to the
alternative surrogates. Moreover, we see that neurons predominantly
involved in FPs have a relatively high firing rate (l > 20Hz) and are
regular (CV2<1).

Finally, in the last section (5.7), we use SPADE to analyze two
experimental sessions of the reach-to-grasp experiment of two different
monkeys, and vary the surrogate technique. Importantly, we find
numerous spatio-temporal spike patterns in almost all segments of
the trial. When using UD as a surrogate technique, we detect a large
number of patterns, which we mostly interpret as putative FPs, given
the results obtained on artificial data. In contrast, the alternative
surrogates yield fewer STPs but more than expected by the null-
hypothesis. In addition, we obtain almost the same patterns across
trial epochs and monkeys, supporting the robustness of our results.

In the discussion, we interpret the results of all analyses and con-
clude on trial-shifting as the surrogate of choice, since it preserves
almost all statistical features of the spike trains, leads to the smallest
change of the statistical properties, thus it is expected to neither over-
nor underestimate the significance of the patterns.

5.2 formulation of a null-hypothesis through surro-
gate generation

Across this thesis, we have already extensively described the SPADE
method in Chapter 2, improving the statistical test by including the
pattern length into the evaluation, and in Chapter 3, by optimizing
the mining algorithm. In this chapter, we concentrate on the study
and the evaluation of a series of surrogate techniques, and take the
opportunity to observe how varying the surrogate technique impacts
SPADE’s results.

As already explained, SPADE consists of various steps, summarized
in Figure 5.1. Here we briefly recap what is important to understand
the context of the study.

First, time is discretized into exclusive time intervals, or bins, which
are a few milliseconds long and define the temporal imprecision of the
detected patterns. Under this discretization, all spike trains undergo
binarization, also called clipping, i.e. the number of spikes within each
bin are counted, and the bin content is reduced to 1 if a bin contains
more than 1 spike, and 0 otherwise. The binarized spike trains are then
the input of Frequent Itemset Mining (FIM; Section 3.2.1; Zaki., 2004;
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Borgelt, 2012; Picado-Muiño et al., 2013), which yields the number
of occurrences and the occurrence times of each detected pattern.
Then, all pattern counts are collected in the pattern spectrum, i.e., a
3d-histogram where the dimensions correspond to the number of
spikes z, the number of pattern repetitions c, and the temporal extent
from first to last spike d (see Chapter 2). The triplet (z, c, d) is called
signature.

The first test of SPADE (pattern spectrum filtering, or PSF) consists
in evaluating the probability of each signature, instead of each pattern.
As in any statistical test, we need to define a null-hypothesis H0 and an
alternative hypothesis H1. From a neuroscientific perspective, we aim
at testing whether the found patterns emerge as an effect of precisely
timed neuronal coordination, or are merely a by-product of the rate
profile of independently firing neurons. From a statistical perspective,
our H0 states that spike trains are mutually independent given their
single and joint firing rate modulations and that the observed patterns
happen by chance. If a signature is assigned to a p-value lower than
the significance threshold (after multiple testing correction), then all
patterns with that signature are said to be statistically significant.

In the SPADE method, the null-hypothesis is not formulated an-
alytically, by the assumption of a point process model, but through
surrogates simulation. More in general, surrogates are one way of
generating a null-hypothesis which is “model free”, with a Monte
Carlo approach. They are often used in statistical applications when-
ever a formalized assumption on the distribution is hard to calculate
or too restrictive. They are also subdivided into two groups (Theiler
and Prichard, 1996): typical realizations, when time series are generated
as outputs of a model fitted to the original data, and constrained real-
izations, when time series are created from the original data through
a suitable transformation (algorithm). In the context of SPADE, we
generate surrogates through constrained realizations, and in particular,
through the method called uniform dithering (UD; Date, Bienenstock,
and Geman, 1998; Louis, Gerstein, et al., 2010; Hatsopoulos et al.,
2003). Uniform dithering is a classical approach: it displaces each
spike independently by a random amount d from its original position
in time, and d is sampled, independently from each spike, from a
uniform distribution U([�D,+D]). The maximum displacement D is
usually a multiple of the bin size (Pipa, Wheeler, et al., 2008).

Each surrogate realization undergoes the same procedure as the
original data: clipping, FIM, pooling of patterns per signature. Thus,
for each signature, we define its p-value as the ratio of number of data
sets exhibiting at least a pattern with such signature, over the total
number of surrogates. The FDR correction (Benjamini and Hochberg,
1995) on the significance level is applied, given the multiple tests
performed. The number of tests considered is the number of occupied
entries of the pattern spectrum having the highest number of occur-
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rences per size and duration. Finally, spurious patterns are filtered by
the PSR test (Section 2.2.3).

We already explained in Chapter 2 that SPADE is a modular method:
its steps can be modified and exchanged in a simple manner. Previ-
ously, we have focused on improving the performances of FIM by
substituting and optimizing its implementation. Here, the focal point
is that, as shown in Figure 5.1, the structure of the SPADE method
is independent from the surrogate technique that we decide to use.
Different surrogates implement different null-hypotheses, depending
on which statistical features are preserved and which are destroyed,
and may lead to different results. This is of main importance for
any surrogate-based statistical test, besides the particular example
of SPADE. Thus, it is necessary to verify which surrogate technique
is more appropriate for the scientific question, given the statistical
features of the data at hand.

5.3 spike count reduction in surrogates generated by

uniform dithering

Here, we take into consideration two sessions of the reach-to-grasp
experiment (Section 3.3.1), one for monkey N and one for monkey L
(session i140703-001 and l101210-001). The session of monkey N is
the same examined in the two preceding chapters. The neuronal firing
rates and their ISI regularity were shown to be highly variable and
behavior-dependent (Riehle, Brochier, et al., 2018). The goal is to verify
whether the statistical features of the spike trains are conserved after
clipping and surrogate generation, which are two steps of the SPADE
analysis. First, we look at the spike count per neuron before and after
the binarization steps for both the original and surrogate data. This
coincides with counting the number of spikes of the spike train, in
continuous time, and the number of occupied bins in its discretized
version. As the bin size is typically of a few milliseconds (here 5ms),
we expect to have more spikes in the continuous time spike train than
in the clipped one, as more than one spike can be in one bin (i.e., we
expect a spike count reduction after clipping). We also expect that the
spike count reduction increases monotonically with the firing rate,
because the higher of number of spikes is, the more spikes are clipped
away. Nonetheless, we want that this behavior is conserved in the
surrogates, as they should conserve the spike count of the original
data.

Figure 5.2A shows for each neuron the spike count reduction (i.e.
number of spikes - number of occupied bins) of the clipped spike train
for both the original data (blue) and the UD surrogates (orange), as
a function of the firing rate. We notice that the two quantities do not
coincide: there is a difference in the spike count of up to 10% between
the surrogates and the original data (Figure 5.2A, bottom, gray). Such
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a mismatch in the spike count is troublesome, as surrogates, whenever
the clipping step is applied in a particular statistical test, should
conserve the statistical features of the original data. In the specific case
of the SPADE method, this difference can lead to a reduced pattern
count of the surrogates as compared to the original data. Ultimately,
this can yield to an overestimation of the significance of the patterns,
resulting in false positive detection.

5.3.1 Uniform dithering

The method (Date, Bienenstock, and Geman 1998) consists in dis-
placing each spike by a small uniformly distributed random jitter
� U[�D,+D] around its original time position. This is represented
in Figure 5.4A. Uniform dithering is also known by the names: “jit-
tering” or “teetering”, is a classical choice for surrogate generation
due to its simplicity. UD was employed in several experimental stud-
ies (Abeles and Gat, 2001; Hatsopoulos et al., 2003; Gerstein, 2004;
Shmiel et al., 2006; Maldonado et al., 2008; Torre, Quaglio, et al.,
2016), for the significance evaluation of pairwise synchrony (i.e., cross-
correlogram significance estimation, Grün, 2009; Louis, Gerstein, et al.,
2010), higher-order synchrony and pattern detection (Abeles and Gat,
2001; Gansel and Singer, 2012; Torre, Canova, et al., 2016). Importantly,
it was the surrogate technique of choice for synchrony and STP evalu-
ation using SPADE (Torre, Picado-Muiño, et al., 2013; Torre, Quaglio,
et al., 2016; Quaglio, Yegenoglu, et al., 2017; Stella, Quaglio, et al.,
2019).

The parameter D of the uniform distribution determines the max-
imal displacement of a spike from its original position in time, and
typically, it is fixed as a multiple of the bin size (e.g., 15 � 25ms).
This parameter must be chosen appropriately, because whenever it is
too small, it causes insufficient displacement of the correlated spikes,
of the correlated spikes, failing to ensure the independence of the
surrogate data. However, if D is fixed too large, it yields a strongly
smoothed firing rate profile, failing to preserve the statistical features
of the original data. So, in the former case, it may lead to the under-
estimation of significance, and in the latter, to an overestimation of
significance.

We will see (5.5) that uniform dithering also affects - more or less
strongly - other intrinsic statistical properties of the spike trains, e.g.
the ISI distribution, the spike order, the regularity, and the autocorre-
lation. Here, the maximal spike displacement is D = 25ms.
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Figure 5.2: Modification of spike trains due to binarization. Panel A. Spike
count reduction resulting from binarization and UD surrogate
generation. Results from the analysis of two experimental data
sets (sessions i140703-001 and l101210-001) in behavioral con-
text movement_PGHF of monkeys N (left) and L (right). Top panel:
Spike count decrease as a function of the average firing rate. Blue
crosses indicate the spike count reduction caused only by binariza-
tion of the original spike trains, orange crosses for UD surrogates,
normalized by the spike counts of the original continuous-time
spike train. Orange bars indicate the SD calculated across 100
surrogates. Bottom panel: residuals (gray) computed as the spike
count difference between the clipped original spike trains (blue)
and the UD surrogates (orange). Panel B and C. Interval statis-
tics of the data. B shows the ISI distribution of 2 neurons from
monkey N (left) and 2 for monkey L (right; in blue). In gray are
the ISIs of the respective UD surrogates with mean (dark gray)
and SD over 500 realizations in light gray. The bin size (here: 5ms)
is shown by the dashed dark blue line. In C the CV2 distributions
are shown for all neurons (C, left subpanel). C, right subpanels,
show the respective minimal ISI from the ISI distributions of all
neurons. The dead-times assigned by the spike sorting algorithm
are indicated by the dotted gray line (1.2ms for monkey N and
1.6ms for monkey L). Figure from Stella, Bouss, et al. (2022).
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5.3.2 Origin of spike count reduction

5.3.2.1 Investigation on experimental data

The dithering procedure does not delete any spike: only the clipping
step yields a reduction of the spike count. We see in Figure 5.2 that
in the surrogate data set this spike count reduction is typically larger
than in the original data. This is not trivial and we aim to understand
1) why this is the case, and 2) how to avoid that. Therefore, we explore
here the reason for the spike count reduction.

First, we look into the ISI distribution resulting from the surrogate
manipulation. Figure 5.2B, shows the ISI distribution for two neurons
of the original data (in blue; right for monkey N, left for monkey L)
and of the uniform dithered surrogates (in gray). We observe that the
ISI distribution peaks at a certain value in the original data, between 5

and 10ms, whereas the ISI distributions of the surrogate data decay
exponentially, including a high amount of short ISIs. Thus, we infer
that short ISIs have a lower probability in original than in surrogate
data, resulting in less regular surrogate spike trains.

This can be observed by looking at the regularity of the original
data, here calculated by the CV2 measure, which, in contrast to the
regular CV, compensates for non stationary firing rates (Holt et al.,
1996). In Figure 5.2C, left subpanels, we see that the CV2 distribution
of all experimental spike trains is rather below 1, i.e. the resulting
processes are more regular than Poisson. We address the question
whether UD surrogates also exhibit different CV2s in Section 5.5.

The difference in the ISI distribution between the original and the
UD surrogates can be also seen from the perspective of the minimal
ISI: Figure 5.2C, right subpanels show that the original data have a
minimal ISI of 1.3ms for monkey N and of 1.6ms for monkey L. These
quantities correspond, as we already have mentioned in Chapter 4, to
the dead times fixed during spike sorting (Brochier et al., 2018). The
ISI distributions of the surrogate data in Figure 5.2B do not have a
dead time, as there is no constraint in the UD algorithm, and spikes
can be infinitely close in time.

5.3.2.2 Analytical investigation

To evaluate the effect of the spike count reduction in clipped spike
trains due to uniform dithering, we derive it analytically for two
simple point processes: the Poisson process with dead time (Section
4.3.2), and the gamma process (Section 4.3.3). Both processes are of
constant rate, but we vary the dead times d and the shape factors g,
to account for the variability we observe in experimental data.

We calculate the spike count reduction as 1� Nclip/N, where Nclip
is the number of clipped spikes and N the total number of spikes,
and plot it in Figure 5.3. The analytical derivation is described fully in
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Surrogate

Uniform

dithering

Clipped

timebin

Original

1 1 0 1 0 1 1 1 

0 0 0 1 0 1 0 0 

Figure 5.3: Origins of spike count reduction. Panel A. The sketch shows
how a regular spike train is binarized. Below, it is illustrated
how UD may change the spike times such that multiple spikes
end up in single bins. The resulting binarized surrogate spike
data are shown at the bottom. In contrast, due to the regular
ISIs of the original process, its binned data are hardly losing
spikes in comparison to the dithered version. Panel B. Spike count
reduction (after binning in 5ms intervals and clipping) shown as
analytical results (see Supplementary Information S1) for renewal
point process models (PPD, left and Gamma process, right; solid
lines, respectively), each with 4 different parameter sets (PPD:
d = 1.5, 2.0, 2.5, 3.0ms, Gamma: g = 1, 1.5, 2, 2.5, different colors).
The dashed lines show the same quantity for their UD surrogates.
The firing rate of the processes is also varied and shown along
the x-axis. The spike count reduction is shown on the y-axis,
expressed as 1� Nclip/N, where Nclip is the number of clipped
spikes and N is the total number of spikes. Panel C. P-value
spectrum of the original data (top) and of their UD surrogates
(bottom) for mined patterns (of size 3 only) for a range of different
pattern durations d (y-axis), and pattern counts (x-axis). The p-
values are expressed by colors ranging from dark blue to light
blue (see the color bar, identical for both spectra). The bin size
is 5ms. The PPD data are of 100 realizations of n = 20 parallel
independent spike trains with parameters l = 60Hz, d = 1.6ms.
The p-value spectrum for its uniformly dithered surrogates of
the PPD data are derived from 5000 surrogates, dither parameter
D = 25ms. Figure from Stella, Bouss, et al. (2022).
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Bouss (2020). The graphs show the spike count reduction as a function
of the firing rate, left for PPD, and right for gamma process. For the
PPD (left), the spike reduction the longer the dead time is, the lower
the spike count reduction. Moreover, we see a higher spike count
reduction in the UD surrogates (dotted lines) than for the original
process (filled lines), for all dead times. On the other hand, the gamma
process (right), has an increase of spike count reduction for higher
firing rates (however more parabolical than PPD), and the larger the
shape factor, the lower the spike count reduction. Finally, when g = 1,
we have the special case of the Poisson process, where the spike count
reduction increases with the firing rate more linearly than the gamma
process.

So, a) why does a Poisson-like process lose more spikes through
binarization than a process with a non-exponential ISI distribution,
and b) why does uniform dithering lead to a loss of spikes compared
to the original experimental data? As shown above (Figure 5.2B),
uniform dithering generates a more Poisson-like ISI distribution than
the one of the experimental data. Such a process contains spikes that
follow each other in short intervals.

Given the results of the analytical derivation, we conclude that a
Poisson-like process (i.e. a UD surrogate) loses more spikes through
binarization than a process with a non-exponential ISI distribution.
The reason is illustrated in Figure 5.3A: spikes corresponding to the
short ISI intervals of the UD surrogates are more likely to fall within
a bin, and they are reduced to a 1 during binarization, leading to a
reduced count. In the sketch of Figure 5.3A, we start from Nclip = 8
spikes in the original binned spike train, and obtain Nclip = 4 in the
surrogate.

This is less likely to happen in a PPD process, as it has a dead
time, and in a regular gamma process. Thus, a surrogate technique
preserving spike train dead time and regularity may lead to a lower
spike count reduction.

5.3.3 Consequences of spike count reduction

So, what are the consequences of the spike count reduction on the
results of SPADE? Summing up, we showed above that the binarization
of the spike trains through binning and clipping leads to a reduction
of spike counts, in particular for processes that have rather regular
interspike intervals, e.g., for PPD or Gamma processes. SPADE derives
the significance of STPs by use of surrogate data. In case of uniform
dithering as a surrogate method, the interspike intervals are affected,
because the spikes are dithered in the range of �D around each spike.
This has the consequence that spikes are dithered into neighboring
ISIs, i.e., a regular process is becoming more Poisson-like, and the ISI
distribution becomes closer to an exponential function. This in turn
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leads to a stronger reduction of spike counts in the surrogate data as
compared to our original data. In fact, even if the original data were
independent, the pattern count from the surrogates would be smaller
just because of the reduced spike count; therefore, this would yield
to an overestimation of the significance of the patterns present in the
original data. In other words: we expect to get false positive patterns.

Now, we verify whether there is indeed overestimation of signifi-
cance through the analysis of simple independent data. We generate
20 parallel artificial independent PPD spike trains with a constant
firing rate of l = 60Hz, dead-time of d = 1.6ms, and a duration of
1s. In order to evaluate the probability of patterns occurring in these
independent data, we generate 5000 realization of the independent
PPD processes and use FIM to extract the patterns and generate the
p-value spectrum. In other words, knowing the ground truth model,
we use new spike train realizations as surrogates. There, the resulting
patterns occur by chance. In parallel, we create 5000 surrogate data
sets by dithering the original data set, and calculate the corresponding
p-values. In this way, we can compare the p-value spectrum of the
ground truth data (Figure 5.3C, top panel) with the p-value spectrum
of the surrogate data (same figure, bottom panel).

In this figure, we fix the pattern size to z = 3, and display p-values
across durations and number of occurrences. The comparison of the
two p-value spectra shows that UD surrogates have fewer pattern
counts as the ground truth data, thus the corresponding p-values
are smaller. As a consequence, entries of the pattern spectrum of
the original data are statistically significant when compared to UD
surrogates, although the original data is independent. Thus, detected
significant patterns are classified as false positives.

Finally, we conclude that the combination of clipping and uniform
dithering causes a reduction in spike count, especially when the spike
data contains a dead time and/or it is regular, both characteristics
of motor cortex data (Mochizuki et al., 2016). We stress that this is a
general result, which does not restrict only to the case of the SPADE
method, but for any method employing spike train discretization and
surrogate generation. Thus, we take the opportunity to find a solution
for such problem, and at the same time to explore alternative surrogate
techniques, and their statistical characteristics.

5.4 alternative surrogate techniques

Now we look into alternative surrogate methods, and focus on five,
three of which are already presented in literature, and two newly
developed by us. The methods are: Uniform Dithering with Dead
Time (UDD), Joint-ISI Dithering (JISI-D), ISI Dithering (ISI-D), Trial
Shifting (TR-SHIFT) and Window Shuffling (WIN-SHUFF).
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their ability to preserve relevant features of the spike trains, such as
spike counts, non-stationarity of firing rates, ISI distribution, auto-
correlation, joint-ISI distribution, etc. Thus, for simplicity we have
pre-selected methods (among the many existing in literature) such
that some of these statistical features are conserved by design.

5.4.1 Uniform dithering with dead time

Uniform dithering with dead-time (UDD) is a modification of uniform
dithering (Bouss, 2020; Figure 5.4D), where the estimated dead-time d
is conserved during the temporal displacement of each spike. UDD
implements this by giving a time constraint over the time window to
the intervals to the neighboring spikes minus the dead-time d. Thus,
two dithered spikes cannot have a temporal distance smaller than the
dead-time, making the displacement of each spike not independent
from the one of its neighbor.

As described above in Section 5.3.2, a dead-time may be introduced
by spike sorting. Further, the biological absolute refractory period of
neurons can yield minimal intervals larger than those inserted by the
spike sorting.

Of course, in order to conserve the dead time d, we need to estimate
it. In the easiest case, it can just be fixed to the dead time fixed during
spike sorting. Otherwise, whenever this is not known, UDD fixes it to
the minimum interspike interval across all spike trains. In case of low
firing rate regime, the minimum ISI can be in the range of hundreds
of milliseconds, complicating the estimation of a biologically plausible
refractory period. Thus, we define a threshold parameter dmax such
that, if the minimal interspike interval exceeds dmax , then we set
d = dmax (here, we set dmax = 4ms).

5.4.2 Joint-ISI dithering

Joint interspike interval dithering (JISI-D; Figure 5.4E; Gerstein, 2004;
Louis, Gerstein, et al., 2010) is designed to approximately preserve
the distribution of the preceding and following interspike intervals
relative to a spike, according to the joint-ISI probability distribution.
The probability distribution is derived for every spike train through
the calculation of the joint-ISI histogram (here, with a default bin size
of 1ms), which is two-dimensional: preceding and following ISI on the
x and y axis, respectively. Dithering one spike according to the joint-ISI
histogram corresponds to moving the spike along the anti-diagonal of
the joint-ISI distribution (Gerstein, 2004; Louis, Gerstein, et al., 2010).

In order to precisely estimate the joint-ISI probability distribution,
one may need very long recordings (best estimate is for infinite time
domain), especially for low firing rates. For this reason, in order to
account for sparse data sets and short recordings, we apply on the
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joint-ISI histogram a 2d-Gaussian smoothing with variance s2, where
s is in the order of milliseconds (Louis, Gerstein, et al., 2010; Bouss,
2020). The sparser the data set, the higher s should be; on the other
hand, the lower s is, the higher is the danger of overfitting.

5.4.3 ISI dithering

ISI dithering (ISI-D; Figure 5.4F) is a special case of the Joint-ISI
dithering. The main difference is that the ISI distribution collapses the
first interval ISI distribution and the second interval ISI distribution
of the Joint-ISI histogram to one combined distribution.

This coincides with assuming that successive ISIs are independent,
i.e. that the joint-ISI histogram can be represented as the product of
the ISI histogram with itself, (pj-ISI(t, t0) = pISI(t) � pISI(t

0). Thus, not
the distribution of pairs of ISIs are preserved, but the distribution of
the single ISIs independently from their order.

5.4.4 Trial shifting

Trial shifting (TR-SHIFT; Pipa, Wheeler, et al., 2008; Louis, Borgelt,
and Grün, 2010) consists of shifting all spike times of one entire spike
train identically by a random uniform amount � U[�D,+D], inde-
pendently neuron by neuron and trial by trial. The data segmentation
(e.g., in trials) is necessary, otherwise the shifting of the entire spike
train in time does not destroy sufficiently the present temporal coordi-
nations. Therefore, the method is only applicable to data which can
be segmented into different trials in a meaningful way. Alternatively,
the data have to be segmented artificially, e.g., spontaneous/ongoing
data.

TR-SHIFT has the benefit of preserving exactly the spike train
statistics within trials, i.e., firing rates, ISI distributions, and auto-
correlation (Table 5.1).

5.4.5 Window shuffling

Finally, we introduce window shuffling (WIN-SHUFF), which divides
the spike train into successive and exclusive small windows of du-
ration DWS. Such windows are further divided into bins of length b
(thus, DWS should be a multiple of b). Bin contents are then shuffled
within each window, and spike times are randomized within each bin.
Alternatively, windows can also be slid through the data. In this con-
text, we show results only for the first option. This method conserves
the number of spikes of the original data and the number of occupied
bins in the clipped original data, i.e., there is no risk of spike count
reduction (Table 5.1). In the case of a SPADE analysis, the bin size b
of window shuffling and of SPADE should coincide. The firing rate
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profile is modified by the local shuffling of the spikes, and its degree
of similarity to the original profile depends from the parameter DWS.
To facilitate the comparison to the other methods, we fix throughout
the paper the window of randomization equal to twice the dither
parameter of the other surrogate methods (DWS = 2D).

5.5 statistical comparison of surrogate methods

To understand the preservation of statistical features by the surrogate
methods, we compare the features here numerically on example data
sets. First we investigate whether any of the five alternatives prevents
the reduction in spike count that we observe using uniform dither-
ing. Moreover, we inspect additional statistics across the surrogate
techniques, such as the ISI distribution, the auto-correlation function,
the cross-correlation function, the firing rate dynamics, the regularity
(CV) to understand potential violations of these features that may
lead to false positives. Additionally, we quantify the ratio of moved
spikes i.e., the number of spikes that have a different bin position in
the surrogate as compared to the original spike train, to verify that
the obtained surrogates are not too similar to the original spike trains.
The preservation of the considered statistical measures is crucial, since
we aim to create surrogate spike trains that are statistically similar to
the original data while destroying the precise spike timing to avoid
false-positive results. The conservation of the ISI distribution, spike
count, and firing rate profile is of major relevance: experimental spike
data from recordings at our hand show a certain degree of inter-spike
interval regularity and variable firing rates, which thus are features
that need to be included in the null hypothesis.

To evaluate the impact of the surrogates onto the statistical features,
we generate independent and stationary artificial spike trains (details
are explained in the caption of Figure 5.5) and create surrogates with
all surrogate methods. We model the artificial spike trains as three
different renewal point processes: Poisson spike trains, PPD spike
trains of fixed dead time d = 1.6ms, and gamma spike trains of fixed
regularity g = 1.23 (corresponding to CV2 = 0.75, cfr. Riehle, Brochier,
et al., 2018). Each of them emphasizes a particular feature to be taken
care of: Poisson spike trains are chosen as a reference, since they are
often used to model spike trains; PPD spike trains model specifically
the dead time induced through the spike sorting; gamma spike trains
are used to model the ISI distribution of the experimental spike data,
which are in tendency more regular than Poisson.

Finally, we sum up all results in Table 5.1, giving a yes/no answer
to the question if the statistics are preserved or not by the surrogate
technique.
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Figure 5.5: Overview of surrogate statistics. Panel A.. Spike count reduction
of the artificially generated spike train data in blue (for Poisson,
left; PPD d = 1.6ms, middle; Gamma, right, g = 1.23 - corre-
sponding to a CV2 of 0.75) after binarization (bin width of 5ms)
together with the corresponding surrogates in different colors
(UD: orange, UDD: green, JISI-D: pink, ISI-D: violet, TR-SHIFT:
red, WIN-SHUFF: brown). The spike count reduction is expressed
as 1 minus the ratio of number of spikes in the spike train after
clipping (Nclip) over the total number of spikes N. The firing rate
is constant for each spike train and varies across realizations from
10 to 100Hz in steps of 10Hz (along the x-axis). The spike train
durations are fixed such that, given the firing rate, all spike trains
have an expected spike count of 10, 000 spikes. Panel B. ISI distri-
butions of original and surrogate spike trains as a function of the
time lag t in milliseconds (resolution of 1ms). For each process,
the corresponding spike trains have a firing rate of 60Hz and
an average spike count of 500, 000 spikes. The ISI region smaller
than 5ms, is shown in an inset at the upper right corner. Panel C.
Cross-correlation between the original spike train (Poisson, PPD,
and Gamma, in left, middle and right column, respectively) with
each of the surrogates (same color code as in A and B), blue is the
correlation with the original spike train with itself (i.e., the auto-
correlation) as reference. Panel D. Auto-correlation histograms
before (solid blue) and after surrogate generation (colored lines).
For C and D, the x-axis shows the time lag t between the refer-
ence spikes and the surrogate spikes (C) and the other spikes in
the spike train (D). For panels C and D, we use the same data
as in panel B. In panels E, F, and G, we only examine Gamma
spike trains. Panel E. Relation of the original CV (x-axis) against
the CV of the surrogates (y-axis). Parameters are the same as in
Panels B, C and D (right), but we vary the CV (CV = 1/

p
g) in

steps of 0.05, ranging from 0.4 to 1.2 (l = 60Hz). Panel F. The
ratio of moved spikes (Nmoved) over the spike count N. We show
it as a function of the firing rate from 10 to 100Hz in steps of
10Hz on the x-axis (g = 1.23). Panel G. Conservation of the rate
profile of a Gamma spike train (g = 1.23) and its corresponding
surrogates. The firing rate change is a step function, going from
10Hz to 80Hz (10, 000 realizations, spike train duration of 150ms),
and is computed as a PSTH with a bin size of 1ms. Figure from
Stella, Bouss, et al. (2022).
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5.5.1 Spike Count Reduction in relation to to Spike Train Statistics

In Figure 5.5A-B-D, we show the spike count reduction, the ISI dis-
tribution, and the auto-correlation for artificially generated model
data (“original”) and for surrogate spike trains that are generated as
a manipulation of the original artificial spike train data. We combine
these three aspects since we want to show the relation of the spike
count reduction due to binning and clipping to the ISI distribution.

For renewal processes, the ratio of the spike count after clipping Nclip
over the original spike count N depends only on the ISI distribution
p(t) and the bin size b via

Nclip

N
=

b∫
0

dt(1� t

b
)r(t). (5.1)

We remind that only interspike intervals smaller than the bin size
can cause a spike to be discarded by clipping. Further, the ISI distribu-
tion and the auto-correlation are closely related given their definition.
The interspike interval distribution shows the density of time intervals
of all spikes to their following spikes, whereas the auto-correlation
shows the density of time intervals between an arbitrary reference
spike and all other spikes.

The auto-correlation has always a central peak at t = 0, resulting
from the correlation of each spike with itself. It also typically converges
in limit to the firing rate l, and we call this value the baseline. If a
spike train is not a realization of a renewal process, the serial ISI
correlations are another appearing factor for the calculation of the
auto-correlation, besides the ISI distribution (Vreeswijk, 2010).

Poisson process

For Poisson data, the spike count loss increases approximately linearly
with firing rate for all surrogates, and in the same degree for the
original Poisson process (blue), up to around 20% for l = 100Hz. Our
goal is that original and surrogates have the same (or very similar)
spike count after clipping. In this regard, we distinguish two groups
of surrogate methods.

The first group, consisting of UD, TR-SHIFT, and WIN-SHUFF, fol-
lows closely the spike count reduction of the Poisson process. This is
closely related to the fact that these methods preserve the ISI distribu-
tion for Poisson processes (Figure 5.5B, left). UD generally tends to
create a Poisson-like ISI distribution, thus, when applied to a Poisson
process, it preserves the ISI distribution.

The auto-correlation of surrogates belonging to this first group
(Panel C, left) follows closely the one of the original data, i.e., it is
characterized by a central peak for t = 0 and a flat line at the firing
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rate l. The flat line is typical for the Poisson process, signifying that
the presence of a single spike does not have a statistical influence on
the temporal position of any other spike, a feature that is also called
memorylessness. TR-SHIFT, by construction, does not have an impact
neither on the ISI distribution nor on the auto-correlation. Hence,
it does not change the spike count reduction. For WIN-SHUFF, the
quantity that is by construction preserved is the spike count: since the
technique shuffles the bin contents inside a window, the same amount
of spikes is discarded by clipping as in the original data. Moreover, it
preserves the ISI distribution and the auto-correlation.

The group of surrogates that does not preserve the spike count
reduction includes UDD, JISI-D, and ISI-D. We can analyze these three
methods in the same manner, since the displacing procedures are very
similar. We can see in Figure 5.5A (left) that the spike count reduction
for these three methods is for all firing rates slightly lower than for
the original data. This is linked to a corresponding change in the
ISI distribution (Panel B, left). The amount of ISIs smaller than 5ms
decreases slightly from the original, and this is compensated by an
increase in the range of 15 to 30ms. In fact, given that the displacement
of a single spike is bound to the neighboring spikes in JISI-D, ISI-D
and UDD, the probability to get two spikes very close to each other
decreases slightly, and the probability in turn increases around the
order of the dither parameter. Since there are fewer ISIs smaller than
5ms, fewer spikes are discarded by clipping with respect to the original
spike train. The same phenomenon is present also in cases of PPD
and gamma spike trains, but less prominently (panel B, center and
right column). Regarding the auto-correlation function (left column,
panel D), we observe that in the neighborhood of the reference spike
(jtj < 15ms), the density of other spikes is reduced, but increased
outside this range. This can be explained not only by the change in the
ISI distribution but also by the arising serial ISI correlations, i.e., the
surrogate spike trains are not renewal but have a memory dependence.
Concluding, the application of the different surrogate methods on
Poisson processes UD, TR-SHIFT, and WIN-SHUFF conserve more
closely the three discussed measures than UDD, JISI-D, and ISI-D.

PPD process

Now we investigate in the middle column the PPD spike trains. This
model yields a much lower spike count reduction of the original spike
trains than the Poisson process (compare blue lines in panel A of left
column against right column). In fact, in PPD there are no interspike
intervals smaller than the dead time. Thus, spikes are less likely to
be discarded, since they are too close to their preceding or following
spike: the dead time distances spikes from each other. Nonetheless,
the spike count reduction is still monotonously increasing with the
firing rate up to values higher than 10% for firing rates of 100Hz
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(panel A, center, in blue). For values higher than the dead time, the
ISI distribution (panel B, center, in blue) is an exponential decay as
for the standard Poisson process. For values lower than the dead time,
the ISI distribution is zero. As a consequence, the auto-correlation of
the original spike train (center column, panel D, blue line) is zero for
jtj < d except for the central delta peak at t = 0. Outside this region
(jtj � d), the auto-correlation converges to the baseline within a small
number of dead times, meaning that the presence of the reference
spike does not have any influence on spikes further away than a few
dead times.

When UD is applied on PPD spike trains, we observe that the spike
count reduction of the surrogates is similar to the one of Poisson spike
trains (panel A, compare blue line left column, against orange line
middle column). This increased spike count reduction is, in fact, a
result of the changed ISI distribution. The ISI distribution becomes
more like an exponential decay, i.e., more Poisson-like (panel B, center
column, orange line), as UD does not preserve the dead time of the
spike train data. The auto-correlation of UD surrogates is clearly
different than the one of the original data (panel D, center column,
orange line vs blue line). Besides having the central peak for t = 0,
the auto-correlation increases almost linearly with jtj, and reaches
the baseline at jtj = 50ms (twice the dither parameter). Thus, in UD
surrogates the interval between two spikes can be arbitrarily small.

The other surrogate methods match quite well the spike count
reduction of the original PPD data (panel A, center column) but show
different behaviors for the ISI distribution and the auto-correlation.
First, we notice that UDD, JISI-D, ISI-D, and TR-SHIFT preserve the
dead time. The ISI distribution (center column, panel B) is preserved
exactly for TR-SHIFT and very closely for UDD, JISI-D, and ISI-D.
UDD, JISI-D, and ISI-D reflect the dead time conservation in the auto-
correlation, i.e., the auto-correlation is zero for 0 < jtj < d. Outside
this region, the autocorrelation for UDD, JISI-D, and ISI-D is similar to
the Poisson case behavior (green, pink and violet lines in Panel D, left
vs middle). The dithering procedure induces serial correlations and
thus the auto-correlation is at the maximum at around jtj = 25ms,
i.e, the dithering parameter D. WIN-SHUFF has by construction the
same spike count as the original PPD data (panel A, center column,
in brown). However, the ISI distribution is changed (panel B, center
column): for intervals smaller than the bin size of WIN-SHUFF (here
5ms as used for the SPADE analyses), the ISI distribution of the
surrogate is different from the one of the original PPD spike train.
Within the first 5ms, the ISI distribution increases and does not start at
p(t = 0) = 0 as the other methods (except UD). The auto-correlation
of WIN-SHUFF surrogates differ from the PPD’s auto-correlation, as
it does not show a peak at jtj = d. In conclusion, TR-SHIFT exactly
preserves the quantities of the original PPD data but also WIN-SHUFF,
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UDD, ISI-D, and JISI-D do not differ strongly. UD shows significant
differences, especially for the spike count reduction.

Gamma process

Spike count reduction, ISI distribution, and auto-correlation of gamma
spike trains are shown in the right column of Figure 5.5 panels A, B, C
respectively. Gamma spike trains are modeled with a shape factor of
g = 1.23 (CV2 = 0.75) and thus show a more regular spiking behavior
than Poisson. Additionally, they do not exhibit a dead time but a
relative refractory period (Nawrot, Boucsein, et al., 2008). In fact, the
maximum of the ISI distribution is not at t = 0, but in this case around
4ms (panel B, right column, blue line). The distribution then decreases,
being similar to an exponential decay for high values of t .

The spike count reduction of gamma spike trains lies in between
those of Poisson and PPD process (blue line, panel A, right column
vs left and center). The auto-correlation (panel D, right column, blue
line) shows a central peak at t = 0. Further, it increases from jtj > 0
and it is close to the baseline already for jtj = 30ms.

Comparing the spike count reduction across surrogate methods,
only TR-SHIFT and WIN-SHUFF (panel A, right column, red and
brown) exactly match the one of the original gamma spike trains.
Instead, UD and UDD (orange and green) show a higher spike count
reduction, and JISI-D and ISI-D (pink and violet) show a lower spike
count reduction. UD returns a ISI distribution similar to the one of a
Poisson process (panel B, right column, orange), yielding an increase
in spike count reduction (panel A, right column, orange). The auto-
correlation of UD surrogates on gamma spike trains is similar to the
one of UD surrogates on PPD spike trains (orange, panel B, right vs
center). Since the gamma process does not exhibit a strict dead time,
we see that its UDD surrogates result in a higher spike count reduction
(panel A, right column, in green). UDD contains an amount of small
ISIs similar to UD surrogates, as seen from their ISI distribution (panel
B, right column, in green). In fact, the UDD algorithm estimates a
dead time for each neuron from the data, and given that the gamma
spikes do not exhibit one, the dead time is set to zero, thus spikes
are uniformly displaced within the preceding and the following spike
(up to the dithering parameter). JISI-D and ISI-D show a decrease
in the spike count reduction with respect to the original spike train
and all other surrogate techniques (panel A, right, pink and violet
are lower than all other lines). In other words, there are more spikes
after clipping in the surrogates than in the original spike trains. This is
relevant, as having more spikes in the null-hypothesis might influence
the statistical test in the opposite direction, rising the significance level
and the specificity of the test.

The decrease in the spike count reduction of JISI-D and ISI-D is
directly linked to a change in the ISI distribution. Comparing to the
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original gamma ISI distribution, we observe that they have a similar
shape (as both methods are designed to preserve such feature), but the
JISI-D and ISI-D surrogates have lower values in the ISI distribution
for ISIs smaller than 5ms. An effect that we also observed for the
Poisson spike trains.

The auto-correlations of ISI-D/ JISI-D surrogates have lower values
than the one of Gamma spike trains for jtj < 15ms. For higher jtj, the
auto-correlation is above the baseline, as we have seen it for Poisson
and PPD spike trains and explained it as a consequence of arising
serial ISI correlations. Again, WIN-SHUFF (in brown) matches the
spike count reduction of the Gamma spike trains exactly. Moreover, it
follows closely the ISI distribution of the non-manipulated data with
small deviations for intervals smaller than 5ms. TR-SHIFT (in red)
preserves by construction all three features.

To summarize, for gamma spike trains, we have surrogate methods
that give a higher (UD, UDD) and lower (JISI-D, ISI-D) spike count
reduction. Only TR-SHIFT and WIN-SHUFF preserve the spike count
reduction of gamma spike trains. The ISI distribution is only preserved
by TR-SHIFT but also surrogates of JISI-D, ISI-D, and WIN-SHUFF,
have a quite close ISI distribution.

5.5.2 Are surrogates uncorrelated?

Here, we evaluate to which extent two surrogate realizations gen-
erated from the same spike train are correlated, i.e., the amount of
synchronous and lagged correlation (Figure 5.5 panel D), since we
want to ensure that the null-hypothesis of independence (expressed
by the surrogates) holds true. As a measure of correlation, we calcu-
late their cross-correlation histogram. The cross-correlation function
expresses the degree of independence between two spike trains: the
flatter the function is, the more independent the spike trains are. To
give a reference to the plotted cross-correlations, we show the auto-
correlation of the original spike train (Figure 5.5 panel D, in blue).

In general, we observe that all methods follow a triangular trend.
The triangular shape arises from the fact that all methods displace
spikes locally around their original positions. For UD, it can be analyt-
ically proven that the triangular structure arises from the convolution
of two boxcar functions, where each boxcar function corresponds to
the uniform distribution of displacements of each spike (Bouss, 2020).
UD, TR-SHIFT and WIN-SHUFF (orange, red and brown lines) have a
similar behavior, and almost exactly follow a triangular shape. UDD,
ISI-D and JISI-D show a more prominent peak around zero, because
spikes are constrained to the preceding and the following spikes. In
the case of short joint interspike intervals (i. e., three spikes being close
to each other), there is less room for spike displacement: surrogate
instances are less independent from one another.
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So, in summary, all methods do not create fully uncorrelated surro-
gates. When comparing surrogate realizations of the same spike train,
we observe that given an arbitrary spike of one surrogate realization,
there is an increased probability for a spike in another realization
to follow of about �50ms (twice the dither parameter), in decaying
fashion from 0ms delay to �50ms delay. This is due, for all methods,
to the local displacement of the spikes, and depends on the dither
parameter. The larger the dither parameter is, the flatter the CCH is
(thus the more independent the surrogates realizations are).

5.5.3 Coefficient of Variation of ISIs

Figure 5.5E illustrates how the CV of the surrogates differs in contrast
to the original Gamma process (l = 60Hz, CV ranging from 0.4 to
1.2 in steps of 0.05). Non-preservation of the CV can be a source of
false positives, in particular for small CVs or CVs > 1 (Pipa, Grün, and
Vreeswijk, 2013). UD changes the CV the most, from original 0.4 to
0.75, meaning that the original regularity is not preserved ; moreover,
it increases with a low slope to a maximum slightly over 1.0 for the
original CV of 1.25, leading to reduced burstiness. WIN-SHUFF and
UDD behave similarly to UD, but start at a lower CV for CV = 0.4 of
the original data; moreover, UDD stays below UD for all CVs. WIN-
SHUFF has a slightly higher slope and reaches a maximum still below
the original Gamma process.

JISI-D, ISI-D and TR-SHIFT start with identical CVs than Gamma,
and TR-SHIFT preserves always the CV. Despite JISI-D and ISI-D have
a lower slope as the Gamma process, they still reach high values about
0.05 less than the highest CV at 1.25.

In summary, although the ISI distributions seem not to be strongly
affected, the effect on the CVs can be very strong. For UD, UDD, and
WIN-SHUFF, the CV slightly changes, and for JISI-D and ISI-D, the
CV decreases. Only for TR-SHIFT, the CV is unchanged.

5.5.4 Ratio of moved spikes

We also ensure that the surrogate spike trains are adequately different
from the original spike trains, i.e., that a sufficient amount of spikes
are displaced from their original positions (Figure 5.5 panel F). A
measure to calculate this is the number of spikes that are displaced
from their original bin position in the surrogate spike train. Two spikes
exchanging their bin positions are not counted. We generate original
data and its surrogate data and vary the firing rate (from 10 to 100Hz
in steps of 10Hz).

As a reference, we first calculate this measure on two independent
realizations of a gamma spike train (g = 1.23), blue line in panel
E. We notice that for low firing rates, the ratio is close to 1: almost
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all spikes are in different bin positions. With increasing firing rates,
the two binned realizations of the original gamma process have a
decreasing ratio of moved spikes. Due to the high firing rate, the two
spike trains result in having more occupied bins, and thus more shared
occupied bins. Ideally, the generation of a surrogate should be similar
to generating a different realization of the underlying process, i.e., the
colored lines should be as close as possible to the blue line. None of
the surrogate techniques meet this ideal case, and the difference to
the independent case is almost constant (around 10%). Nonetheless,
for all surrogate methods, we observe that the ratio of moved spikes
decreases with increasing firing rates, which corresponds to the fact
that more bins are occupied and thus, besides the original spikes being
moved, the resulting binned surrogate spike train is more similar to
the binned original.

In the results, we distinguish two groups: 1) UD, TR-SHIFT and
WIN-SHUFF; 2) UDD, ISI-D and JISI-D. The latter group displaces less
spikes especially for higher firing rates. These two groups are the same
as observed in the independence (CCH) analysis at zero delay. The
more spikes are not displaced, the higher is the percentage of spikes in
two realizations which are in the same position. Hence, the higher peak
at zero-delay in the CCHs. A surrogate with more non-moved spikes
generates a null-hypothesis with an amount of correlation similar to
the original data, and thus leads to under-detection of patterns (false
negatives). The higher the firing rates, the less spikes are moved, and
thus the tendency for false negatives increases. As a consequence, we
can expect that JISI-D, ISI-D, and UDD in general tend to yield more
false negatives than WIN-SHUFF, UD, and TR-SHIFT.

5.5.5 Rate change in surrogates

Changes in the firing rate profile of the surrogates may be a source
for false positives (Grün, 2009). An optimal surrogate method should
closely follow the original firing rate profile, if the statistical test is for
precise time correlations. Here, we test here an extreme case where the
original data have a rate step (as in Louis, Gerstein, et al., 2010), going
from 10Hz to 80Hz (Figure 5.4G). We observe that for all surrogates
(but WIN-SHUFF) the firing rate step is converted into a smoothed
linear increase, starting at 25ms (dither parameter D) before the step
and ends at 25ms after the rate step. This behavior has already been
derived analytically and through simulations in Louis, Gerstein, et al.
(2010) for UD: it corresponds to the convolution of the step function of
the firing rate with the dither (boxcar) function. Instead, WIN-SHUFF
introduces a second step in the firing rate profile, because the method
generates a locally-stationary firing rate within the shuffling window
(here 50ms). We conclude that all surrogate techniques smooth the
original firing rate profile, whereas WIN-SHUFF creates an additional



118 generating surrogates for stp detection

Feature/Method UD UDD ISI-D JISI-D TR-
SHIFT

WIN-
SHUFF

Spike Count no approx. approx. approx. yes yes

ISI no no approx. approx. yes approx.

Dead time no yes yes yes yes no

Auto-
correlation

no no no no yes approx.

Firing rate
modulation

approx. approx. approx. approx. approx. approx.

Spike train
regularity
(CV < 1;
regular)

no no approx. approx. yes no

Spike train
regularity
(CV > 1;
bursty)

no no approx. approx. yes approx.

Table 5.1: Table summarizing the statistical properties of the six discussed
surrogate techniques conserve (yes/ approx./ no). The dead-time
conservation is evaluated based only on results of PPD process, oth-
erwise on the results for all data models (Poisson, PPD, Gamma).
Figure from Stella, Bouss, et al. (2022).

intermediate locally stationary rate step. Thus, we expect for strong
increases in the firing rates that the firing rates of the surrogates are
smoothed, and thus a tendency for false positives.

5.5.6 Summary of the effects of surrogates on the spike-train statistics

Table 1 summarizes the statistical properties of the respective surrogate
methods with respect to spike train features, and to which degree. We
combine the results obtained for the three data models (Poisson, PPD,
gamma). We denote the features as preserved (’yes’), approximately
preserved (’approx.’), and not preserved (’no’). Given the insights
obtained, we expect that surrogates generated with UD lead to a large
number of FPs due to the spike count reduction. UDD surrogates
might lead to FPs in case of regular data without dead-time). The
study of the similarity of the surrogates to the original processes
shows that JISI-D, ISI-D, and UDD may lead to an underestimation
of significance. Finally, the technique preserving the most statistics
without showing any disadvantages is TR-SHIFT.
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5.6 spade analysis of artificial data across surrogate

techniques

Next, we compare the surrogate techniques to artificial data sets
modeled on two experimental data sets (Brochier et al., 2018) to study
their effect in terms of false positive detection (Louis, Gerstein, et
al., 2010). The experimental data are the two reach-to-grasp sessions
already mentioned in Section 5.3. Details on the experiment are in
Section 3.3.1. Similarly to the data described in the preceding Chapter
4, we model spike trains with the same non-stationary firing rate
profiles as the experimental data, and use as point process models a)
the PPD to mimic the dead-time of the data (due to spike sorting), and
also b) Gamma processes to account for their CVs. The spike trains
are independent and thus all observed spike patterns occur by-chance
and, if detected, are considered as false positives (FPs).

5.6.1 Simulation of experimental data and SPADE analysis

The artificial data sets are created with the same number of spike
trains of the original data sets, which are segmented and concatenated
across epochs and trial types as in Section 3.3.2. Moreover, we use
the original single trial firing rate profiles of the individual neurons,
estimated with an optimized kernel density estimation as designed in
Shinomoto, 2010; Shimazaki and Shinomoto., 2010. For the PPD data,
the dead-time is estimated for each neuron and each combination of
epoch and trial type by taking their minimum ISI (fourth inset, panel A
of Figure 5.6). For the gamma data, we estimate the CV of the process
in operational time (Nawrot, Boucsein, et al., 2008) and then transform
the CV into the shape factor (g = 1

CV2 ; Vreeswijk, 2010): in this way,
g is fixed for each neuron and combination of epoch and trial type.
The process is generated in operational time and then transformed
back into real time. We obtain a CV2 distribution of all neurons of the
gamma data which is close to the one of the experimental data (third
inset, panel A of Figure 5.6). However, the Gamma process does not
have an absolute dead-time but for g < 1 , as it has a low probability
for small ISIs and can be regarded as containing a relative dead-time
(Nawrot, Boucsein, et al., 2008). Finally, the firing rate of the artificial
data for both processes is very similar to the one of the original spike
train (first inset, panel A of Figure 5.6).

For each experimental session, we concatenate data across the six
behavioral epochs (start, cue, early delay, late delay, movement and hold)
and the four trial types (PGHF, PGLF, SGHF, SGLF), resulting in 24

total data sets. Each of the 24 sets of concatenated data is modeled
using the two point process models, resulting in a total of 2� 24� 2 =

96 data sets. We apply the SPADE analysis on all data sets, separately
for each of the six surrogate techniques, for a total of 576 SPADE
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analyses. We set the bin size to 5ms, the maximum pattern duration
to 60ms, the significance level to a = 0.05, and use 5000 surrogates.
The dither parameter is set to D = 25ms for all surrogate methods. All
patterns returned by the SPADE analysis are counted as false positives.

5.6.2 False positive analysis

We show in Panel B of Figure 5.6 the number of false-positive for the
PPD (left) and the Gamma modeled data sets (right). For each data
model, we show as a histogram the number of FPs per data set and the
total number of FPs (in text) across the six surrogate methods (color
coded). Our results show that all surrogate techniques lead a small
number of FPs, except UD. For the PPD process in Figure 5.6B, left we
have the following numbers: UD (522; 88.1%), UDD (13; 2.2%), JISI-D
(14; 2.3%), ISI-D (14; 2.3%), TR-SHIFT (15; 2.5%), and WIN-SHUFF (14;
2.4%). The analysis of the Gamma data leads to the following number
of FPs: UD (302; 77.6%), UDD (52; 13.4%), JISI-D (8; 2%), ISI-D (8; 2%),
TR-Shift (9; 2.3%), and WIN-SHUFF (10; 2.6%).

We conclude that UD leads to a very high false positive rate com-
pared to the other surrogate methods, which was expected from the re-
sults of the previous sections. UDD retrieves a relatively high number
of FPs on gamma data, which was also expected from our observations
in Section 5.5.1. Instead, the remaining surrogate techniques exhibit a
similar number of FPs.

Given these observations, it is possible to distinguish four groups of
FPs (and, thus, of neurons), depending on which surrogate techniques
they are expressed in:

1. FPs present only in the SPADE analysis performed with UD
surrogates (in orange in Figure 5.7);

2. FPs present in all surrogate techniques (in blue);

3. FPs present in both UD and UDD surrogates (green);

4. FPs present in any other combination of surrogate methods (red).

In order to investigate which features neurons involved in FPs have,
we estimate firing rate and regularity of such neurons. In Figure 5.7A
we plot the average firing rates (over time and trials) for every data
set. Neurons that do not exhibit FPs are presented in gray. In general,
we find FPs in all analyzed data sets, but one (monkey L, movement,
Gamma, all conditions). Moreover, all neurons involved in FPs have
an average firing rate higher than 20Hz. Neurons belonging to the
first group (only UD surrogates) are the largest set, and are present
for both monkeys, point process models, and in almost all data sets.
The second group is present for both monkeys and models, but more
neurons are involved in the PPD case. The third group is present
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in both monkeys, but only for the Gamma model. This was already
expected, given the higher spike count reduction, for UD and UDD in
the case of Gamma spike trains (Section 5.5.1).

Regarding the regularity, we plot the CV2 in Figure 5.7B, averaged
over trials, of all units. We observe that FPs occur in neurons with a
relatively low CV2 (CV2 < 1), but, importantly, this does not happen
for neurons with very low CV2s (especially for monkey N). Given the
results of Pipa, Grün, and Vreeswijk (2013), we would expect that the
most regular spike trains would be involved in false-positive patterns,
which is not the case here. In general, neurons with CV2 > 1, i.e.
bursty neurons, are not involved in FPs.
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Figure 5.6: Evaluation and analysis of false positives across surrogate tech-
niques for pattern detection with SPADE. Panel A. Compari-
son of statistics of the original to the generated artificial data
during the movement epoch (PGHF trial type). In blue, orange
and green we represent original, PPD and Gamma data spike
trains respectively. Left graph: average firing rate of a single unit
across one epoch of 500ms; second from left: ISI distribution of
a single unit; third from left: average CV2 estimated trial wise
for all neurons; fourth from left: dead-time as minimum ISI for
all neurons. Panel B. number of false positives (FPs) detected
across surrogate techniques (color coded) normalized over the
48 (2 sessions� 6 epochs� 4 trial types) data sets analyzed, left
for PPD and right for Gamma process data analyses. Numbers
in text represent the total number of FPs over all data sets per
surrogate technique. Figure from Stella, Bouss, et al. (2022).

In summary, we observe that UD leads to the highest number of FPs,
followed by UDD (for Gamma data). Neurons having an average firing
rate higher than 20Hz, and a CV2 < 1 are predominantly involved in
FPs. Furthermore, the remaining FPs lead to a low false positive rate,
which is expected given a certain significance threshold.
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Figure 5.7: Average Firing rate and CV2 of neurons participating in FP
patterns against all neurons. Panel A. Average firing rate of
neurons for each monkey (N at the top and L at the bottom),
epoch (y axis) and behavioral type (for each epoch ordered as
PGHF, PGLF, SGHF, SGLF). Left PPD data, and right Gamma data.
Colored dots represent individual units involved in FPs: blue dots
indicate average firing rate of units involved in FP patterns found
for all surrogate techniques, orange dots for UD surrogates, green
dots for UD and UDD only, and red dots for other combinations
of different surrogate techniques. Grey dots represent the average
firing rate of individual units not involved in any FP. Panel B.
Average CV2 of neurons for each monkey (N at the top and L
at the bottom), same structure as (A). Figure from Stella, Bouss,
et al. (2022).
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5.7 application to experimental data

As a last step we analyze the two sessions of experimental data with
SPADE and use all six surrogate techniques. Naturally, we do not
know the ground truth of experimental recordings, and do not know
whether there is presence of spatio-temporal spike patterns and their
amount. However, we can compare the results obtained by changing
the statistical testing through the choice of the surrogate technique.

We represent in Figure 5.8 the number of significant patterns for
each epoch (x axis) and trial type (different colors). The results are
shown separately for each monkey, as the two sessions have different
statistics in terms of regularity, dead times and firing rates. The number
of patterns found per surrogate techniques is: UD (N:203, L:121), UDD
(N:14, L:14), JISI-D (N:10, L:10), ISI-D (N:10, L:10), TR-SHIFT (N:7,
L:14), WIN-SHUFF (N:11, L:11). Importantly, we detect more patterns
(almost double the amount) by analyzing experimental data than in
artificial data, except for UD and UDD (on Gamma data) surrogates.

We detect a much higher number of significant patterns for UD
surrogates (note different y-axis scale) as compared to the other five
surrogate techniques, and this happens for both monkeys. Patterns
occur mostly during the movement (mov) epoch, where the firing
rates are highest.

Considering all other surrogate methods, we find patterns across
all epochs for session i140703-001 (Figure 5.8, left column), and the
numbers are relatively similar within and across epochs. During the
start epoch, all surrogates show patterns in relation to SGLF, but some
(UDD and TR-SHIFT) also in relation to SGHF, and others in relation
to PGHF (JISI-D, ISI-D and WIN-SHUFF). In cue epoch, all surrogates
find patterns in PGLF trials (Figure 5.8, left column, light blue). During
early delay (earl-d) all surrogate techniques find patterns for PGHF
trials, and for UDD, a pattern for SGHF, and one in PGLF trials for
WIN-SHUFF. During the late waiting epoch (late-d) patterns occur
only in PGHF and PGLF trials (Figure 5.8, left column, blue and light
blue), and patterns in SGHF trials for UDD (green, second row). In
the movement epoch (Figure 5.8, left column, pink), the same pattern
occurs for SGLF behavioral context in all surrogates, but TR-SHIFT.
Finally, during hold, we find patterns in PGLF trials for all surrogate
techniques, a pattern in SGHF trials for UDD and a pattern in PGHF
trials for JISI-D, ISI-D and WIN-SHUFF.

Looking now at the results obtained for session l101210-001 (Figure
5.8, right column), we see that patterns are detected only in epochs
late delay, movement and hold. During the second phase of the wait-
ing period (late-d) four out of the five surrogates detect the same
patterns (1 for SGLF and 1 for SGHF). Most patterns occur during the
movement epoch for PGHF, PGLF, and SGHF, however in different
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combinations. During the hold epoch only for UDD and TR-SHIFT we
find one pattern for PGHF and one for PGLF.

Previous results obtained by the analysis on this experiment (Riehle,
Brochier, et al., 2018, Figure 2) showed that monkey L has on average
a shorter reaction time and steeper a rate increase in the movement
epoch than monkey N, which could be an explanation of the high
amount of patterns. On the other hand, monkey N shows patterns in
all epochs, remaining in almost constant number.

5.8 observations on past analysis and on coconad

Over 20 sessions of the reach-to-grasp experiment have been analyzed
for synchronous patterns in Torre, Quaglio, et al. (2016), where the
authors found numerous patterns using UD as the surrogate tech-
nique of choice. As we have shown that UD may cause a high false
positive rate, one might question the findings of Torre, Quaglio, et al.
(2016). However, in Torre, Quaglio, et al. (2016) the authors employed
a different mining algorithm, called CoCoNAD (Picado-Muiño et al.,
2013; Borgelt and Picado-Muiño, 2013) able to mine patterns in con-
tinuous time without discretization. In Figure 5.9 we compare the
number of synchronies detected by CoCoNAD and FIM. We find more
synchronous spike patterns using CoCoNAD (right) as compared to
using FIM with (left) all surrogate methods. With UD, there is a small
reduction of detected patterns for UD.

Figure 5.9 shows that the use of UD may lead to an underestimation
of the number of occurrences of synchronous spikes. It is outside of
the scope of this chapter to study more thoroughly the reasons and the
effects of this behavior within that particular analysis. However, we
speculate that the application of our proposed surrogate alternatives
would yield a lower number of detected patterns. Unfortunately, it
was not yet possible to design a mining algorithm able to detect spatio-
temporal spike patterns with delays in continuous time as CoCoNAD
does for synchrony..
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Figure 5.8: Analysis of experimental data. SPADE results for two sessions
of experimental data: session i140703-001 (left) and session
l101210-001 (right). Histograms represent the number of sig-
nificant patterns detected by SPADE in each epoch (start, cue,
early-delay, late-delay, movement and hold), color coded accord-
ing to the grip type (precision/side grip -PG/SG- and low/high
force -LF/HF). Each row corresponds to one surrogate technique
(note the different y-axis scale for UD). Figure from Stella, Bouss,
et al. (2022).
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Figure 5.9: Comparison of number of synchronies detected by CoCoNAD
and FIM in function of firing rate. The control data consists of
100 realizations of f two independent 5s-long PPD spike trains
(d = 1.6ms), generated independently for each firing rate. Firing
rate ranges from 10 to 100Hz in steps of 10Hz. Synchronies are
measured with a temporal precision of 5ms. Spike trains are
analyzed with CoCoNAD (left) and FIM (right), and with different
surrogate techniques (colored). One surrogate instance is created
for each spike train realization. Figure from Stella, Bouss, et al.
(2022).

5.9 discussion

In this chapter, we have showed that the combination of uniform
dithering and binarization of a spike train leads to a difference in
the spike count between the original and the surrogate realizations
(Figure 5.2). We found with analytical and point process simulations
that the spike count reduction increases monotonically with the firing
rate (Figure 5.3B, Figure 5.5A). Moreover, we showed that neuronal
dead-time and firing regularity (Figure 5.3B) play a large role in the
spike count reduction, which are factors present predominantly in
neural data, and in particular in experimental data from pre-/motor
cortex of macaque monkey we analyzed in this thesis (Riehle, Brochier,
et al., 2018; Brochier et al., 2018).

In the context of detection of spatio-temporal spike pattern with
SPADE, we observed that the spike count reduction causes an overes-
timation of pattern significance in the original data (Figure 5.3C) and
thus to false positive detection.

We then compared five alternative surrogate approaches to UD
(Figure 5.4): uniform dithering with dead-time (UDD), window shuf-
fling (WIN-SHUFF) -both newly introduced-, joint interspike interval
dithering (JISI-D; Gerstein, 2004), interspike interval dithering (mod-
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ified from Gerstein, 2004), and trial shifting (Pipa, Wheeler, et al.,
2008). The common goal of all methods is to displace the exact spike
times of each neuron and destroy possible precise correlations in the
original data, while keeping the firing rate profile as close as possible
to the original. However, other statistical features may be differently
modified by each algorithm. Thus, we looked at different statistics
of surrogates, such as the spike counts, the ISI distribution, the auto-
correlation, the cross-correlation, the firing rate modulations, the ratio
of moved spikes, and the regularity (Table 5.1). These were evaluated
on stationary artificial spike trains using three models (Poisson, PPD,
and Gamma spike trains) (Figure 5.5). Results of this evaluation show
that UD does not preserve the spike count and the ISI distribution,
and leads to a very strong spike count reduction for the PPD model,
and very small for the Gamma model. For the case of Poisson data,
there are very small discrepancies between the spike count of the orig-
inal data and the surrogates for all methods. As neural data typically
exhibit a dead-time or a refractory period, we concluded that UD is
not an adequate method to estimate correlations within our context,
especially for higher firing rate regimes. The method preserving more
strongly all statistical features results to be TR-SHIFT.

We tested the surrogate alternatives in a SPADE analysis in terms of
false positive rate on non-stationary independent spike trains modeled
on experimental data. We generated non stationary data similar to a
use-case scenario, such that all features that typically cause compli-
cations in the null-hypothesis estimation would be closely modeled
(Grün, 2009). The analysis of the non-stationary data led to a large
number of FPs when using UD as a surrogate method, showing that
UD should not be used in this context. Instead, all other surrogates
showed a considerably low number of FPs, taking into account that a
minimal number of false positives is to be expected, as it is inherent
to any statistical test.

Finally, we analyzed two sessions of experimental data from Brochier
et al. (2018): all surrogates lead to find patterns, however, UD in a
much greater number (Figure 5.8). Thus, we consider the patterns
detected by UD as putative false positives, still considering that for
experimental data we have no ground truth at hand.

Instead, we consider the patterns retrieved using the other surrogate
methods as significant. Importantly, we found that the patterns re-
trieved for UDD, JISI-D, ISI-D, WIN-SHUFF, and TR-SHIFT are highly
overlapping, i.e., they show the almost identical participating neurons,
lags, and number of occurrences. The conclusion is that the five surro-
gate techniques, although they move the spikes in different ways, lead
to an almost identical significance level.

We conclude that all five surrogate techniques are valid alternatives
to UD. However, we suggest TR-SHIFT as the surrogate of choice
for SPADE, since 1) it is of easy explanation and implementation,
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2) it reflects more closely the hypothesis of temporal coding, 3) it
reproduces precisely the most relevant spike trains statistics (Table 5.1
and Figure 5.5), 4) does not lead to more FPs than the other methods,
and, 5) employs fewer parameters than other methods with the same
statistical performance.

Our conclusions are not only exclusive and restricted to the context
of SPADE, as surrogate techniques are vastly used in studies and
methods for correlation evaluation (Gerstein, Perkel, and Subramanian,
1978; Hatsopoulos et al., 2003; Pipa and Grün, 2003; Pipa, Diesmann,
and Grün, 2003; Pazienti and Grün, 2007; Pipa, Riehle, and Grün, 2007;
Maldonado et al., 2008; Smith and Kohn, 2008; Pazienti, Maldonado,
et al., 2008; Grün, 2009; Louis, Gerstein, et al., 2010; Dann et al.,
2016; Torre, Canova, et al., 2016). With this chapter, we argue that the
surrogate method needs to be chosen appropriately and cautiously
case by case.

In this chapter, we have focused on surrogate techniques preserving
the firing rate profile of the original neurons. Methods such as spike
train randomization (within single trials; Grün, Riehle, and Diesmann,
2003), spike exchange (across neurons or trials; Harrison, Amarasing-
ham, and Geman, 2007; Smith and Kohn, 2008), ISI shuffling (within
and across trials; Nádasdy et al., 1999; Masuda and Aihara, 2003;
Ikegaya et al., 2004; Rivlin-Etzion et al., 2006), spike shuffling across
neurons (within-trial; Nádasdy et al., 1999; Ikegaya et al., 2004) are
not able to preserve the firing rate (Grün, 2009). Other methods have
been created to preserve the spike train’s auto-correlation, under the
assumption of stationarity and Markovianity of a process (Ricci et al.,
2019; Perinelli et al., 2020). Several studies have already looked at
the impact of different surrogate techniques in the case of spike time
correlations. For example, in Louis, Gerstein, et al. (2010), the authors
looked at the influence of surrogate techniques on cross-correlation
analysis of two parallel spike trains; in Grün (2009) and Louis, Ger-
stein, et al. (2010), the focus was on the effect of surrogate techniques
on Unitary Events (Grün, Diesmann, and Aertsen., 2002; Grün, Dies-
mann, and Aertsen, 2002; Pipa and Grün, 2003; Pipa, Diesmann, and
Grün, 2003; Pipa, Riehle, and Grün, 2007; Pipa, Grün, and Vreeswijk,
2013). Moreover, some studies also already evidenced issues of UD
surrogates (Louis, Gerstein, et al., 2010), in particular in the case of the
Poisson process (Platkiewicz, Stark, and Amarasingham, 2017), but
never in the context of multiple parallel spike trains, or in the context
of binarization. In this chapter, we extended studies of comparisons of
surrogate techniques to the context of spatio-temporal spike patterns.
The relevance of this further step is sensible, as delayed higher-order
correlations in parallel spike trains may be involved in the processing
of information in the brain (Abeles., 1991; Diesmann, Gewaltig, and
Aertsen, 1999; Izhikevich, 2006; Bienenstock, 1995; Oettl et al., 2020).
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Some authors discuss the employment of surrogates as a liabil-
ity more than an asset (Staude, Rotter, and Grün, 2010; Russo and
Durstewitz, 2017), because their employment can be computationally
expensive, and motivating an analytical closed-form testing as a lighter
alternative. However, the estimation of a spike train model for the
null-hypothesis often involves assumptions or approximations that
may as well provoke the detection of false positives (Grün, 2009; Pipa,
Grün, and Vreeswijk, 2013; Stella, 2017), especially in the presence of
time-varying rates.

The implementation of all surrogate techniques and of SPADE is in-
cluded in the Elephant python package http://python-elephant.org.
Moreover, the results of the entire chapter are fully reproducible and
publicly available at https://github.com/INM-6/SPADE_surrogates.

Having chosen the surrogate technique more appropriate for our
method and our data, we apply SPADE to a larger number of sessions
of reach-to-grasp data in the next chapter. There, we look into their
statistics and features, to test for their behavioral relevance.

http://python-elephant.org
https://github.com/INM-6/SPADE_surrogates
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S PAT I O - T E M P O R A L S P I K E PAT T E R N S I N M A C A Q U E
M O T O R C O RT E X

This chapter is novel work and has not yet been published. The
author performed the analysis of the experimental data, the analysis
of the results, and wrote the chapter. The work was done under the
supervision of Sonja Grün.

Background: The cell assembly hypothesis postulates that neurons co-
ordinate their activity through the formation of repetitive co-activation
of groups. Here, we assume that assembly activity is expressed by the
occurrence of spatio-temporal patterns (STPs) of spikes emitted by
neurons that are members of the assembly.

Methods: In order to test this hypothesis, we use the method SPADE,
presented in the preceding chapters, which is capable of detecting
significant STPs in parallel spike trains. We analyze 20 experimental
sessions, each of about 15min recording, consisting of parallel spike
data recorded by a 10x10 electrode Utah array in the pre-/motor
cortex of two macaque monkeys performing a reach-to-grasp task. The
monkeys have four behavioral conditions of grasping and pulling an
object consisting of combinations of two possible grip types (precision
or side grip) and two different amounts of force required to pull the
object (low or high). We segment each session into 6 behavioral epochs
of 500ms duration and analyze them independently for the occurrence
of STPs. Each significant STP is identified by its neuron composition,
its number and times of occurrences and the delays between spikes.

Results: We evaluate if cell assemblies are active in relation to motor
behavior by analyzing all sub-sessions with the SPADE method. We
find that significant STPs indeed occur in all phases of the behavior.
Their size ranges between 2 and 6 neurons, and their maximal spatial
extent is 60ms. The STPs show very high specificity to the behavioral
context, i.e. within the different trial epochs and across conditions
(different grip, trial epochs, and force type combinations). This sug-
gests that different assemblies are active in the context of different
behavior. Within a recording session, we typically find one neuron
that is involved in all STPs. The neurons involved in STPs within a
session are not clustered on the Utah array, but may be far apart.

Conclusions: We conclude that the detected patterns are highly spe-
cific to behavior, and that neurons involved in patterns may be central
to a mechanism producing highly temporally precise correlated activ-
ity in the brain, due to their hub structure, which is not necessarily
clustered in space.

131
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6.1 introduction

The relevance of spike synchronization at millisecond precision in neu-
ral activity has been strongly discussed over the last decades. In the
course of the debate of temporal versus rate coding, however, various
studies showed the efficacy of synchronous over asynchronous input
in spike responses, leading eventually to the emergence of the concept
of the neuron as a coincidence detector (Abeles, 1982; Rudolph and
Destexhe, 2003). Many studies have presented evidences of various
types of precise-time spike correlations, such as pairwise synchrony
(Aertsen, Gerstein, et al., 1989), delayed pairwise correlations (Perkel,
Gerstein, Smith, et al., 1975; Eggermont., 1992; Freiwald, Kreiter, and
Singer, 1995; Zandvakili and Kohn, 2015), synchronous higher-order
correlation (Aertsen, Vaadia, et al., 1991; Riehle, Grün, et al., 1997; Pipa,
Grün, and Vreeswijk, 2013; Torre, Quaglio, et al., 2016; Shahidi et al.,
2019), and delayed higher-order correlation (Russo and Durstewitz,
2017; Oettl et al., 2020; Stella, Bouss, et al., 2022). All these correla-
tions were defined in different ways (as explained in the introductory
chapter 1), detected with different methods, but all share the underly-
ing scientific hypothesis regarding neural coding: that complex brain
functions are mediated by the activity and the activation of neural
assemblies.

Evidences of such correlations have been shown for both, cortical
and subcortical areas, in particular in visual areas (Berger, Warren,
et al., 2007; Zandvakili and Kohn, 2015; Shahidi et al., 2019), pre-
frontal cortex and motor cortex (Prut et al., 1998; Riehle, Grün, et al.,
1997; Torre, Quaglio, et al., 2016). Moreover, particularly in the case of
spatio-temporal pattern detection, the investigated area is mostly the
hyppocampus, due to the recurring activity during spatial tasks and
memory reactivations (Peter et al., 2017; Kreuz et al., 2017; Watanabe
et al., 2019; Diana, Sainsbury, and Meyer, 2019; Williams, Degleris, et
al., 2020). Thus, there is still a gap to be filled to detect spatio-temporal
spike patterns in the motor cortex during behavior, in particular for
the temporal precision (� 5ms) we have assumed throughout this
thesis (Chapter 1).

In the previous chapters, we have expended strong efforts into the
iterative improvement, optimization and development of the SPADE
method, which is now able to efficiently deal with high dimensional
data, and to quickly detect and to evaluate correctly the statistical
significance of spatio-temporal spike patterns (STPs). In this conclud-
ing chapter, we apply SPADE to electrophysiological data in order to
determine the emergence of spatio-temporal spike patterns in relation
to behavior. In particular, we analyze N=20 sessions of the reach-to-
grasp experiment (Section 3.3.1), i.e. from Utah array recordings of
pre-/motor cortex of macaque monkey involved in a delayed reach-
ing and grasping task. The sessions are recorded from two different
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monkeys over several months (10 sessions per monkey). As for the pre-
vious chapters, each session is analyzed individually and separately
for each of four trial types and six trial segments. We analyze the STPs
returned by SPADE during each behavioral context, evaluate their
neuronal composition, order of correlation and respective frequency.
Moreover, we investigate the properties of the neurons involved in
patterns, such as their position on the electrode array and their av-
erage firing rate distribution. We calculate the pattern specificity of
different behavioral contexts, i.e., epoch, trial type and force level, and
find a very high (almost maximum) specificity in all contexts. Finally,
our analysis shows that there are neurons involved in multiple STPs,
across (and almost never within) behavioral contexts, suggesting that
they have a central role in the coordination of conveyed information
through precise time temporal correlations.

6.2 materials and methods

6.2.1 Data

We analyze electrophysiological data recorded from the motor cortex
of two macaque monkeys (monkey N and monkey L) from the reach-to-
grasp experiment. The experimental setup and experimental protocol
was described earlier in detail in Chapter 3.

We consider in total 20 sessions of the reach-to-grasp experiment (10

per monkey), recorded over the time span of months. For monkey N,
the recordings were performed in 2014, from June to July; whereas, for
monkey L recordings started in October 2010 and finished in February
2011. Each session has a duration of approximately 15 minutes and
consists in the succession of around 120 trials. The full list of sessions
is in Table 6.2.

6.2.2 SPADE analysis

6.2.2.1 Data concatenation

The data are segmented and concatenated as described in Chapter
3 and follow the logic of the analysis of Chapter 5. In short, we
concatenate trials of the same trial type and trial epoch, and consider
only successful trials. Details about the segmentation can be found
in Torre, Quaglio, et al. (2016). Given that we have four trial types
(PGHF, PGLF, SGHF, SGLF) and six trial epochs (start, cue, early delay,
late delay, movement, and hold), we have a total of 24 data sets of
concatenated data per session. Thus, we have a total of 24� 20 =

480 data sets on which we run a SPADE analysis. Epochs and their
alignment with respect to behavioral events are indicated in Table 6.1.
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Epoch name Trigger tpre tpost

start TS-ON -250ms 250ms

cue CUE-ON -250ms 250ms

early delay CUE-OFF 0ms 500ms

late delay GO-ON -500ms 0ms

movement SR -200ms 300ms

hold RW-ON -500ms 0ms

Table 6.1: Definition of trial epochs. Trial epochs are segments of time into
which a trial is divided. Each epoch has a temporal duration of
500ms, is aligned on a certain trigger, starts at the time ttrigger + tpre
and ends at time ttrigger + tpost.

6.2.2.2 Parameters used

The parameters used for the SPADE analysis are represented in Table
6.2. The temporal resolution of the pattern detection is set to 5ms,
and the maximal temporal duration allowed for the patterns is 12

bins (i.e. 60ms). The surrogate technique used is trial shifting (Section
5.4.4), with a dithering parameter of 25ms. The significance level is
set to 95% (a = 0.05), before applying the Holm-Bonferroni correction
(Holm, 1979) to account for the number of statistical tests. Other
parameters presented in the table are set accordingly to the analyses
of the previous chapters (Table 2.1, Chapter 3, Chapter 5).

6.2.3 Calculation of pattern specificity to behavior

We present a measure to evaluate the specificity of the patterns to the
behavior of the monkey. The experimental protocol consists in two
grip modalities and two force levels that the monkey is instructed
to perform. Moreover, to associate the presence of STPs to behavior,
we segment each trial into six epochs. Consequently, we have results
obtained from three different contexts: grip types (PG, SG; two in-
stances), force levels (HF, LF; two instances), and behavioral epochs
(start, cue, early-delay, late-delay, movement, hold; six instances).

We can then define the specificity of a certain instance of a context,
depending on whether the patterns detected are found only in that
instance, or are detected in other instances as well (specific vs. non-
specific). Torre, Quaglio, et al. (2016) propose the following: let Pi be
the set of significant patterns detected by SPADE in the i-the instance.
For each instance containing at least one significant pattern (Pi 6= Æ),
we define its specificity Si as the fraction of patterns in Pi that are not
present in any other Pj 6= Pi:
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Parameter Value

sessions [’i140613-001-04’, ’i140616-001-04’,

’i140617-001-05’, ’i140627-001-05’,

’i140701-001-05’, ’i140702-001-09’,

’i140703-001-05’, ’i140704-001-04’,

’i140718-001-03’, ’i140725-002-06’,

’l101006-002-03’, ’l101007-001-02’,

’l101013-002-02’, ’l101015-001-04’,

’l101108-001-03’, ’l101110-003-04’,

’l101111-002-04’, ’l101126-002-02’,

’l101210-001-02’, ’l110209-001-06’]

epochs [’start’, ’cue1’, ’earlydelay’,

’latedelay’, ’movement’, ’hold’]

trial_types [’PGHF’, ’PGLF’, ’SGHF’, ’SGLF’]

bin_size 5ms

winlen 12

spectrum 03d#0

min_spikes 2

min_occ 10

percentile_poiss 95

percentile_rates 90

dither 25ms

alpha 0.05

stat_corr ’fdr_bh’

surr_method ’trial_shifting’

psr_param [2,2,2]

firing_rate_threshold 70Hz

Table 6.2: Parameters of the SPADE analysis.
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Si =
jPin([j 6=iPj)j
jPij

.

The specificity index takes values in the range [0, 1]: it is equal to
1 whenever all patterns detected in a certain instance are not present
in any other instance of the same context, and it is 0 whenever all
patterns of all instances completely overlap. However, we also need to
determine when two patterns overlap. Two spatio-temporal patterns
coincide if they share the same neurons and the same lag constellations.
Alternatively, we can also determine that two patterns are the same
if they share only their members, even though they may spike with
different temporal delays. This results in two different specificity
indexes: Si,lags and Si,neurons, where the former is stricter than the latter.
We calculate the specificity for all instances of all contexts with both
indexes.

6.3 results

6.3.1 Statistics of detected spatio-temporal spike patterns

We analyze data from large-scale simultaneous recordings in pre-
/motor cortex of macaque monkeys from the reach-to-grasp experi-
ment (Section 3.3.1). In search for signatures of active cell assemblies,
we use SPADE to detect spatio-temporal spike patterns in several ses-
sions of the experiment. In order to independently analyze data from
different trial types and epochs (behavioral contexts), the spike data
are extracted from behavioral epochs and concatenated. The temporal
precision of the detected STPs is set to 5ms, timescale that is consistent
with direct neuronal communication. Maximum allowed temporal
duration of patterns is set to 60ms.

SPADE detects in total 119 patterns (monkey N: 61, monkey L: 58)
over N=20 sessions. Statistics of results over all sessions are displayed
in Figure 6.1. Patterns are detected over all epochs of the trial (first
panel): in higher numbers during start and movement for monkey N,
whereas rather uniformly for monkey L. Typically, we detect around
6 patterns per session (mean = 5.95� 3.26), although in one session
(i140617-001) we do not detect any pattern. Patterns are formed by
spikes emitted by different cells, and we find 2-6 neurons per patterns
(mean = 2.9� 0.93 cells; second panel of Figure 6.1). The majority of
patterns are formed by two and three spikes. Regarding the temporal
delays between the spikes, we observe that for both monkeys the
whole range of delays (0 to 60ms) is covered and we do not see a
tendency towards preferred delays or oscillatory activity. However,
we see a slight preference for temporal delays around 10 to 30ms,
and that synchronous patterns are found in a very low number for
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monkey L. Finally, significant STPs detected by SPADE occur from 10

(requested minimum) to a maximum of 280 times (mean = 67� 64.05;
median = 32). Occurrence numbers depend on the pattern size: the
larger the size is, the lower the occurrence number. In fact, patterns
of size 2 have a higher frequency of occurrence (not shown). Torre,
Picado-Muiño, et al. (2013) and Torre, Quaglio, et al. (2016) showed
for synchronous patterns that the number of occurrences needed for a
pattern to become significant is reduced significantly with size.
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Figure 6.1: Pattern statistics for both monkeys (columns). Top panel. His-
togram of pattern count in all different behavioral epochs. Second,
third and fourth panel. Distribution of pattern size, pattern lags
and occurrence numbers across all data sets.

To characterize whether the involvement in STPs is a property
of all the recorded neurons or only of a subset, we calculate the
percentage of neurons involved in STPs over the total recorded neurons
per session. This is shown in Figure 6.2 as a histogram, together
with the number of recorded units on top of the histogram bar. We
observe two very different tendencies for the two monkeys: monkey
N has a low percentage of STP involvement (mean = 3.96� 2.14%)
but a higher number of recorded units (mean = 143� 14.82 units),
whereas monkey L has a relatively high percentage of STP involvement
(mean = 22.43� 4.26%) but a lower number of recorded units (mean =
70.5� 13.93 units). The total number of analyzed neurons across the
20 sessions is 2140.
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Figure 6.2: Percentage of neurons involved in patterns over the total num-
ber of units analyzed per session. Bar height represents the
percentage, number on top of bar represents the total number
of units per session, after spike sorting, data cleaning and pre-
processing. Sessions named with code i14[...] and l10[...]
indicate monkeys N and L, respectively.

6.3.2 Pattern specificity to behavior

After having examined the general statistics of the patterns detected by
SPADE, we observe single pattern realizations concurrently with the
monkey behavior. In fact, so far we have not represented STPs together
with background spikes. In Figure 6.3, we represent three different
sessions and data sets where we detect 1, 2 and 1 pattern, respectively.
The epoch is determined by the last segment of the preparatory period,
in the 500ms preceding the GO signal (red vertical lines). Spikes are
plotted in black, and pattern spikes are marked by colored squares.
Different colors represent different patterns. Each panel represents
a single unit, with time on the x-axis and successive trials on the
y-axis. The bottom sub-panels represent the PSTH of all spikes of the
plotted neurons (black) against the pattern PSTH (in gray). We observe
that patterns of lower sizes (left column) have a higher occurrence
frequency than patterns of higher sizes (middle and right column).
However, the pattern PSTH is much lower than the PSTH of all spikes
for each neuron (gray vs black lines in PSTH panels). Interestingly, we
also observe that the same units may be involved in different patterns,
consisting of different temporal delays, and that even single spikes
may be belonging to different patterns (middle column; blue and
orange squares on the same spike).

A different way to represent patterns is to align their occurrences
to the first spike, as in Figure 6.4. There, we depict the results of the
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Figure 6.3: Raster plot of three example spatio-temporal patterns. Black
dots correspond to spikes, whereas colored squares indicate
spikes belonging to STPs. Different colors indicate different pat-
terns. Spike trains are aligned to the behavioral event that deter-
mines the epoch used for the segmentation of the SPADE analysis
(i.e. ’GO-ON’ signal; red vertical lines). Each raster plot represents
one unit (top left of each sub-panel), with time on the x-axis and
different trials on the y-axis. The left panel represents a pattern
of two neurons detected in session l101111-002-04 (monkey L)
in the epoch late-delay, with trial type SGLF. The central panel
depicts two patterns of three spikes, both involving the same
three neurons, but with different temporal delays, detected in
session i140613-001-04 (monkey N) in the epoch late-delay, trial
type SGLF. The right panel represents a pattern of four spikes
detected in session i140702-001-09 (monkey N) in the epoch
late-delay, trial type SGHF. In the bottom sub-panels, in black and
grey, respectively, PSTHs of all spikes and pattern spikes of the
three units are shown.
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same data sets as in Figure 6.3. We plot only the blue pattern in the
middle column. Red dots correspond to pattern spikes, and each panel
represents one unit, with time on the x-axis and pattern occurrences
on the y-axis. Remember that STPs cannot have a duration longer
than 60ms in this SPADE analysis. The light blue and green color
alternating bands indicate pattern occurrences in different trials: the
color changes whenever the pattern occurrence is in a successive trial.
This alignment shows that STPs are highly precise in their temporal
resolution. Moreover, there is no tendency of decrease or increase
of pattern frequency throughout the course of the recording session:
we do not see a change in the frequency of the alternation of light
blue/green bands with the number of occurrences. Finally, as the STP
size increases, the number of occurrences decreases. In this case, a
pattern of size 2, 3 and 4 (left, middle and right) occurs 202, 19 and 18

times, respectively.
In order to assess quantitatively whether the significant STPs are

specific to behavior, we consider three behavioral contexts: grip type,
force level and trial epoch. Each of these contexts has more than one
instance: 2 grip types, 2 force levels and 6 epochs. For each instance
i, we calculate the specificity indexes Si,neuron and Si,lags defined in
Section 6.2.3. The first index considers two patterns to be equal if they
overlap only on the level of the STP members, whereas the second also
checks if the order of spikes and their temporal delays match. Note
that the second definition gives more conditions for two patterns to be
considered equal, thus it may lead to higher values (higher specificity).
Both indexes take value between 1 (maximum specificity) and 0 (no
specificity). We assign no specificity value to the instances in which
no significant pattern has been detected.

We calculate both specificity indexes over all sub-sessions, separately
for the two monkeys, and represent their distributions in Figure 6.5,
divided per grip type (left), force level (middle) and epoch (right). The
values are represented as box plots: if all values are concentrated on
1, then the box plot reduces to a line. Outliers are depicted with a
diamond shape.

The values of the specificity Sneurons of the grip type (two top rows,
left column), calculated separately for each monkey (first and second
row) irrespective of the force level, are higher for SG (min. quartile
> 0.8) than PG (min. quartile > 0.25) for both monkeys. However, in
one sub-session, the specificity for SG is equal to 0, meaning that all
patterns detected in that sub-session overlap with those detected for
the PG type. Regarding the Slags of the grip type (two bottom rows,
left column), we see that both PG and SG have specificities always
equal to 1 but in one sub-session (black diamonds) for both instances.

Analogously, we compute the pattern specificities Sneurons and Slags
for the force level (Figure 6.5; middle column), irrespective of the
grip modality. Patterns detected in both instances HF and LF have
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Figure 6.4: Patterns aligned on the first spike. Pattern occurrences are
aligned to the first spike of the pattern. Spikes belonging to
the pattern are marked in red. Different colored bands represent
the pattern occurrence within one trial. Trials are ordered along
the y-axis. The left panel represents a pattern of two neurons
detected in session l101111-002-04 (monkey L) in the epoch late-
delay, with trial type SGLF. The central panel depicts one pattern
of three spikes, detected in session i140613-001-04 (monkey N)
in the epoch late-delay, trial type SGLF. The right panel repre-
sents a pattern of four spikes detected in session i140702-001-09
(monkey N) in the epoch late-delay, trial type SGHF.
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specificity values close to 1 (lines at the top of each sub-panel), besides
a few cases represented as outliers for Sneurons (black diamonds at 0.4
for monkey L and at 0, 0.7 and 0.5 for monkey N). Importantly, for
Slags, we retrieve always maximum specificity for all detected patterns.

Finally, we calculate the same indexes separately for each trial epoch,
pooling across trials irrespective of the grip type and force level (Figure
6.5; right column). Most epochs have a maximum specificity Sneuron

of 1 for monkey L, and similarly for monkey N, besides the epoch of
the cue presentation, where the specificities are rather low (median
at 0.2). Monkey N exhibits two sub-sessions with pattern specificity
Sneuron = 0 in trial epoch start and late-delay. However, the index Slags
returns values always equal to 1 for both monkeys and for all epochs
(two bottom rows, right column).

Considering the results we have obtained for both specificity in-
dexes, we conclude that if we consider patterns to be determined by
both their neuron composition and their lag constellations, all patterns
detected are highly specific to behavior, in terms of grip modality,
force level and trial epoch. However, if the definition of STP is relaxed
by considering only its neuronal members, the specificity decreases,
especially for the grip type, still assuming values higher than 0.5. Inter-
preting STPs as the signature of activation of Hebbian assemblies, their
high (maximal) specificity may suggest that assemblies are activated
in a selective manner to different behavioral contexts.

6.3.3 Spatial distribution of patterns on the electrode array

The experimental recordings were performed using a 10� 10 Utah
electrode array (Blackrock Microsystems), with four electrodes kept
non-active (unconnected) to allow for wiring (Brochier et al., 2018,
Figure 1). The electrodes covered part of the dorsal pre-motor and
primary motor cortex, along the central sulcus.

Neurons involved in STPs are distributed over the whole array. In
fact, we calculate the number of times a neuron was involved in a
pattern, separately per monkey and trial type. In Figure 6.6, we display
a color map representing the electrode position of such units, over all
sessions, normalized by the number of SUAs detected per electrode.
If two units are recorded from the same electrode, we sum their
respective number of patterns they belong to. We see that patterns are
scattered all over the electrode array, and that their distribution differs
depending on the trial type. There are no electrodes prominently
involved in patterns, besides a maximum of 1 reached in the case
on monkey L SGHF (yellow). Moreover, there are many electrodes
on which no pattern is detected (dark violet). In red, we represent
the unconnected electrodes, and in gray the electrodes in which no
SUA was recorded. Results for single sessions and the distribution of
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Figure 6.5: Specificity of patterns for different behaviors. The three
columns represent the pattern specificity at each instance of the
three behavioral contexts: grip type (PG vs SG; first column),
force level (HF vs LF; second column), epoch (third column). The
values are calculated for each monkey (monkey L and N in even
and odd rows, respectively) across all sessions and concatenated
data sets. All values are then depicted as a box plot. The first
two rows represent the specificity index Sneurons calculated only
considering the STP members, whereas the second two rows rep-
resent the index Slags,that identifies an STP considering both its
neuron members and lag constellations. The first index is stricter
than the second.
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Figure 6.6: Count of number of patterns for each electrode of the Utah
Array, for each monkey (rows) and trial type (columns). For
each session, we count the number of times neurons are detected
on each electrode participated in an STP, and then sum over
all sessions, separately per monkey and trial type. The count is
normalized by the number of SUAs detected in each electrode,
over all sessions. The lighter the color, the more patterns have
members detected on the electrode. Red squares indicate the four
unconnected electrodes; gray squares indicate the electrodes in
which no SUA was detected.

the number of SUAs per monkey are displayed in the supplementary
material (Figure 6.10 and Figure 6.9, respectively).

The distance between electrodes of the recording Utah array is
400mm in the horizontal and 566mm in the diagonal direction, respec-
tively. Various experimental studies showed a decay of spike corre-
lations between neurons with the increase of their distance (Berger,
Warren, et al., 2007; Torre, Quaglio, et al., 2016). However, this is in
contrast with more recent studies that bridge analytical models and
experimental results from the reach-to-grasp experiment (Dahmen
et al., 2021). Here, we extracted all neurons involved in STPs and
calculated the euclidean distance between pairs of neurons firing after
each other in an STP. For example, taken a pattern of neurons (1,2,3)
and delays (5,10) ms, we calculate the distance between neurons 1 and
2, and 2 and 3. The histogram representing such distances is in Figure
6.7, and is normalized by the number of possibilities a certain distance
may occur on the Utah array. As a control, we create surrogates by
randomly generating the electrode positions of the STP members for
every pattern and session. To have a reliable estimate, we repeat the
procedure 1000 times. The average and twice the standard deviation
are represented by the gray line and gray bands in Figure 6.7.
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Figure 6.7: Histogram representing the euclidean distances on the elec-
trode array between neurons involved in patterns. The maximal
distance is 5400mm, and the histogram is calculated with a bin
width of 400mm. The histogram is calculated by pooling over all
sessions, and normalized by the number of possibilities each dis-
tance may occur on the electrode array. The gray line represents
the average electrode distance calculated on surrogates. Surrogate
are generated by randomly placing of STP members on the elec-
trode array (N=1000). Gray bands represent twice the standard
deviation around the mean.

We observe that the vast majority of neurons firing successively
in patterns are recorded from electrodes that are 0 to 4.2mm apart,
relatively uniformly distributed. However, two distances of 0.4mm
and 4mm exceed the surrogate estimate of independence. Results for
each individual session are in the supplementary material (Figure
6.11).

6.3.4 Overlap of STP members

Next, we take into consideration the neurons involved in STPs, and
calculate the number of STPs they participate in. We do not take into
consideration the data set they were detected in, given by the combi-
nation of trial epoch and type, but consider the overall session. Results
show that there is a restricted number of units per session involved in
several patterns, typically across epochs and trial types. We represent
this in form of a hypergraph in Figure 6.8A. A hypergraph (Berge,
1973) is a generalization of a graph in which an edge can connect more
than two nodes (differently from classical graphs, where an edge joins
precisely two nodes). Hypergraphs are a more complicated represen-
tation than regular graphs, but typically the nodes are represented
by points, and hyperedges are shown as smooth curves similar to
Venn diagrams enclosing the nodes (Mäkinen, 1990). In our context,
neurons are represented by nodes, and patterns are represented by
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Figure 6.8: Characteristics of neurons involved in patterns. Panel A. Hy-
pergraph representation of neurons involved in patterns within
one experimental session. Each dot represents a unit. Each color
groups together units involved in a single STP. Panel B. Degree
distribution of STP members calculated across all sessions. The
degree of a unit is calculated as the number of STPs it partici-
pates in. Panel C. Average firing rate distributions calculated per
neuron separately for each data set. On the left, distribution for
all neurons, on the right, distribution of the sole STP members.
The hypergraph visualization was originally designed by Björn
Müller (Müller, 2020).

the hyperedges, drawn in different colors. Results show that most
neurons (nodes) are involved in only one pattern, but prominently,
there are some neurons involved in several patterns, and sometimes
in all patterns detected within a session (ex. session i140704-001 in
Panel A of Figure 6.8). However, this does not mean that the overlap
is present within the same trial, or epoch, but just in the overall ses-
sion. Moreover, we observe that hypergraphs of many sessions consist
in one unique component, i.e., they are not disjoint. Only three ses-
sions (i140702-001, i140718-001 and i140725-002) have correspond-
ing hypergraphs made of two components (not shown).

In order to evaluate how central a node is in its hypergraph, we
define its degree as the number of hyperedges it is connected to. This
is a simple extension of the degree concept of classical graphs to
hypergraphs. In our context, the degree of a neuron is the number of
patterns it participates in. The degree distribution across all sessions
and neurons (Panel B of Figure 6.8) has its peak at 1, and decreases
with the degree. The highest degree is reached by one unit and is
equal to 9. Results from individual sessions are displayed in Figure
6.8.
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6.3.5 Firing rate of STP members

We calculate the average firing rate of STP members and compare it
to the distribution of all neurons recorded in all sessions. Previous
studies on data recorded from the same experiment have shown
that the firing rate of certain units may change strongly, (increasing
or decreasing), especially from the waiting to the movement period
(Riehle, Brochier, et al., 2018). Thus, to have a better estimate of the
firing rate, we calculate its average for each data set (i.e. the behavioral
context during one particular grip-force context) rather than for the
entire session. In fact, the same unit may have different firing rates
depending on the trial epoch and the trial type. The average firing rate
of all units is displayed in the left of panel C of Figure 6.8, whereas
the average firing rate of STP members is in the right of the same
panel and figure. The firing rate distribution of all neurons follows
a rather exponential distribution, where the lower firing rates have
a predominant role, and higher firing rates (40 to 60Hz) are little to
not represented. However, neurons involved in STPs exhibit a very
different distribution, with minimum values at around 17Hz, and
a maximum at 70Hz; the peak is reached at around 30Hz. Results
of this comparison on individual sessions are in Figure 6.13. This
analysis reveals that STPs are preferentially composed by spikes of
neurons emitted by neurons with a relatively high firing rate. This was
already observed in other studies (Prut et al., 1998), where patterns
were observed in concurrence with firing rate onsets.

6.4 discussion

This Chapter presents a search for precise spatio-temporal spike pat-
terns in the pre-/motor cortex of macaque monkeys involved in an
instructed delayed reaching and grasping task (Riehle, Wirtssohn,
et al., 2013; Brochier et al., 2018). The underlying hypothesis is that
the emergence of such patterns is a signature of the activation of
cell assemblies, selectively triggered for each different behavior and
experimental condition. Our results indicate that STPs are frequently
found in such parallel spike trains, and quantitative analysis of their
properties and of their members suggests that STPs are functionally
related and specific to behavior.

By using the pattern detection method SPADE, presented in the
preceding chapters, we analyzed numerous sessions of experimental
data from two monkeys. The patterns occurred over all epochs (Figure
6.1), and consisted of primarily 2 and 3 spikes, but up to 6 spikes. The
order of correlation of the detected patterns is on average higher than
the one retrieved for the study of Torre, Quaglio, et al. (2016), where
the authors detected synchronous spike patterns (i.e., with no temporal
delays between spikes) in the same experiment. In the same study,
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patterns were retrieved mostly in the movement execution period, and
less in other epochs, which is in contrast to our study. The differences
between the two studies are numerous, and we underline them as
we discuss our results. However, there are substantial methodological
differences in SPADE from the study of Torre, Quaglio, et al. (2016) to
here, which can be summarized in a few points as:

� the extension of the method from the detection of synchronous
spike patterns to spatio-temporal patterns with delays (Quaglio,
Yegenoglu, et al., 2017),

� the modification of the statistical test to account for pattern
duration (Stella, Quaglio, et al., 2019; Chapter 2),

� the use of a Frequent Itemset Mining algorithm employing spike
train discretization (FP-Growth) instead of a continuous time
approach (CoCoNAD; Chapter 3)

� the application of trial shifting instead of uniform dithering as a
surrogate method (Stella, Bouss, et al., 2022; Chapter 5).

These differences are discussed singularly in the listed publications
and chapters, and may jointly lead to the differences in the results
statistics we present here.

In our results, the STP delays extended from 0ms (synchronous
spikes) to 60ms. Although most of the literature until now has col-
lected numerous examples of synchronous activity in cortex (Kilavik,
Roux, et al., 2009; Zandvakili and Kohn, 2015; Torre, Quaglio, et al.,
2016), some studies have determined spatio-temporal spike patterns
with longer temporal extents, of even hundreds of milliseconds (Prut
et al., 1998; Russo and Durstewitz, 2017). Our results may imply that
the detected correlations result from multi-synaptic interactions. In-
vestigating patterns spanning over hundreds of milliseconds (in line
with the monkeys reaction times presented in Riehle, Brochier, et al.,
2018) with SPADE is possible, however, it would result in a significant
increase in computational cost as the mining computing time increases
with the window parameter (Chapter 2). This is a possible outlook of
the study, however, outside of the scope of this chapter.

The significant patterns occurred from 10 to over 270 times, depend-
ing on the number of spikes of the pattern (Figure 6.3). The percentage
of neurons involved in STPs over the total number of recorded neurons
in a session is strongly different between the two monkeys (Figure
6.2). Moreover, we examined the occurrence of single patterns, and ob-
served that pattern spikes are only a small fraction of the total spiking
activity of the STP members (Figure 6.3). Interestingly, some units may
be involved in multiple patterns, and even the same set of neurons
may be involved in different patterns, with different temporal delays
between the spikes. In a few cases, we observe that even some spikes
are involved in multiple patterns. Furthermore, we verified whether
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STPs occur more often at the beginning or at the end of the session,
but saw no quantitative change in their frequency of occurrence with
the passing of trials (Figure 6.4).

We evaluated the specificity of STPs to the behavioral context, such
as trial type, force level, and trial epoch. We employed the same
specificity index Sneurons as Torre, Quaglio, et al. (2016) used for syn-
chronous patterns and further extended it as Slags to the case of STPs
with temporal delays between the spikes. The measure was designed
as the fraction of patterns detected in a instance of a behavioral context
which are not present in any other instance. A specificity close to 1

may indicate that the detected STPs are involved in the information
processing specifically for that behavioral context. Our results show
that specificity indexes are very high or equal to 1 for trial type, force
level and epoch (Figure 6.5) whenever we identify patterns with their
neuron members and lag constellations. The high pattern specificity
with respect to the trial epochs matches older studies evidencing
that different neuronal populations are activated in the movement
preparation and execution in similar motor tasks (Wise, Weinrich, and
Mauritz, 1983; Riehle and Requin, 1989; Riehle, 2005; Kilavik, Confais,
et al., 2010). However, if we relax the identification of a pattern by
only its neuron members, the specificity is lowered in all contexts,
especially with respect to the grip type. This is in contrast with what
was discovered in Milekovic et al. (2015) and Torre, Quaglio, et al.
(2016), where, respectively, a higher decoding precision/specificity
from LFP data/synchronous spike patterns was retrieved for the grip
type than the force level in the same experiment. As the specificity Slags
based on the pattern matching of neurons and lags is more precise
and adapted to the STP definition, and in our results leads to high (al-
most maximum specificity values), we conclude that spatio-temporal
pattern activity may contribute to the processing of information of
all behavioral contexts of the instructed-delay reaching and grasping
task.

Furthermore, we studied the spatial distribution of STP members
on the electrode array (Figure 6.6), and the distance between neurons
spiking successively within an STP. Our results show that STP mem-
bers are distributed over the extent of the whole Utah array, and their
distances are almost homogeneous over all possible distances, besides
the largest ones (diagonals), which are not represented. This may re-
sult in the concerted activity between neurons that are not necessarily
directly connected. Previous studies found that pairwise and higher
synchrony between neurons decayed with distance (Gray et al., 1989;
Murthy and Fetz, 1996; Berger, Warren, et al., 2007; Smith and Kohn,
2008; Torre, Quaglio, et al., 2016), which did not take into account
delayed correlations. More recent studies also evidenced spike count
covariances, synchronous and delayed correlations at larger distances
(Dann et al., 2016; Dahmen et al., 2021) in floating multi-electrode and
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Utah arrays, respectively. Some studies also showed the presence of
highly synchronous spiking activity across different areas, such as the
pre-frontal cortex and the striatum in rats (Oberto et al., 2021).

We further investigated if patterns detected in the same session were
formed by distinct or overlapping sets of neurons, and discovered
that there are neurons involved in multiple, and, sometimes, in all
patterns detected within a session (Figure 6.8A). Such neurons may
be considered as hubs, due to the high number of patterns they are
involved in (Figure 6.8B). This was also discovered in other contexts
(Dann et al., 2016; Torre, Quaglio, et al., 2016): in particular, Dann
and colleagues discovered a functionally connected network, with
small world topology and rich club structure in the fronto-parietal areas
of the macaque monkey during active behavior. The fact that the
same neuron may be involved in different STPs in different behavior
may indicate that there are units which are central to a network
regulating the correlated spiking activity, and switching to different
correlation modes (i.e., patterns) depending on function. Moreover, the
STP members have on average a higher firing rate than non-members
(Figure 6.8C). This may, on the one hand, be due to the statistical test
of SPADE, where a high occurrence frequency corresponds to high
significance; on the other hand may be due to an intrinsic property
of neurons involved in correlated spiking activity. Even if the former
reason may be more relevant and discourage the latter, we still have to
consider that if STPs do have a functional role in the network, they do
have to repeat reliably and concurrently with behavior, thus leading
to a high number of spikes and a higher firing rate.

Concluding, in this chapter we demonstrated the presence of precisely-
timed spatio-temporal spike patterns in the pre-/motor cortex of the
macaque monkey. Importantly, such patterns show to be behavior
specific, and may be an indication of the presence of assemblies being
activated during the task. The assemblies may include tens or even
hundreds of neurons, however, given the sub-sampling of our experi-
mental setting, we may capture their activation in the form of patterns
composed of a few neurons.

We have not yet investigated whether it is possible to decode the
behavior given different STP characteristics, such as their STP rate,
neuron and lag constellation, and to compare their decoding accuracy
to the one of the firing rate, as done in Shahidi et al. (2019). Another
possible extension of this study is to analyze the characteristics of
the neurons involved in several STPs, and correlate their rate to other
properties other than the firing rate, such as their inhibitory or exci-
tatory nature, regularity, and their latency with respect to reaction
time and stimulus presentation. Finally, former analyses of parallel
spike trains for higher-order correlations with the Unitary Events anal-
ysis revealed that precisely-timed synchronous correlations are better
locked to local field potential (LFP) than individual spikes (Denker,
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Roux, et al., 2011). A similar analysis could be done for our results,
in order to test whether STP activity constitutes a crucial spatial and
temporal component of the LFP.

supplementary figures



152 stps in macaque motor cortex

0 5 10
0

5

10

y

i140613-001

0 5 10
0

5

10
i140616-001

0 5 10
0

5

10
i140617-001

0 5 10
0

5

10
i140627-001

0 5 10
0

5

10
i140701-001

0 5 10
0

5

10

y

i140702-001

0 5 10
0

5

10
i140703-001

0 5 10
0

5

10
i140704-001

0 5 10
0

5

10
i140718-001

0 5 10
0

5

10
i140725-002

0 5 10
0

5

10

y

l101006-002

0 5 10
0

5

10
l101007-001

0 5 10
0

5

10
l101013-002

0 5 10
0

5

10
l101015-001

0 5 10
0

5

10
l101108-001

0 5 10
x

0

5

10

y

l101110-003

0 5 10
x

0

5

10
l101111-002

0 5 10
x

0

5

10
l101126-002

0 5 10
x

0

5

10
l101210-001

0 5 10
x

0

5

10
l110209-001

Position of pattern neurons

Figure 6.9: Color map representing the position of STP members for each
session on the electrode array. Axes represent the x and y po-
sitions on the array. Yellow/violet entries represent the pres-
ence/absence of STP members on that electrode.
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Figure 6.10: Color maps of the total number of SUAs recorded on each
electrode of the recording Utah array summed across all se-
lected sessions. Red squares indicate the four unconnected elec-
trodes.



154 stps in macaque motor cortex

0 2700
0

2

4

6

Re
l. 
fre

qu
en

cy

i140613-001

0 2700
0

2

4

6
i140616-001

0 2700
0

2

4

6
i140617-001

0 2700
0

2

4

6
i140627-001

0 2700
0

2

4

6
i140701-001

0 2700
0

2

4

6

Re
l. 
fre

qu
en

cy

i140702-001

0 2700
0

2

4

6
i140703-001

0 2700
0

2

4

6
i140704-001

0 2700
0

2

4

6
i140718-001

0 2700
0

2

4

6
i140725-002

0 2700
0

2

4

6

Re
l. 
fre

qu
en

cy

l101006-002

0 2700
0

2

4

6
l101007-001

0 2700
0

2

4

6
l101013-002

0 2700
0

2

4

6
l101015-001

0 2700
0

2

4

6
l101108-001

0 2700
electrode 

 distance (μm)

0

2

4

6

Re
l. 
fre

qu
en

cy

l101110-003

0 2700
electrode 

 distance (μm)

0

2

4

6
l101111-002

0 2700
electrode 

 distance (μm)

0

2

4

6
l101126-002

0 2700
electrode 

 distance (μm)

0

2

4

6
l101210-001

0 2700
electrode 

 distance (μm)

0

2

4

6
l110209-001

Figure 6.11: Histograms representing for each session, the euclidean dis-
tance on the electrode array between neurons involved in pat-
terns. The maximal distance is 5400mm, and the histogram is
calculated with a bin width of 400mm. Each histogram is calcu-
lated by pooling over all sessions, and normalized by the number
of possibilities each distance may occur on the electrode array.



6.4 discussion 155

1 2 3 4 5 6 7 8 910
0

5

Co
un

t

i140613-001

1 2 3 4 5 6 7 8 910
0

5

i140616-001

1 2 3 4 5 6 7 8 910
0

5

i140617-001

1 2 3 4 5 6 7 8 910
0

5

i140627-001

1 2 3 4 5 6 7 8 910
0

5

i140701-001

1 2 3 4 5 6 7 8 910
0

5

Co
un

t

i140702-001

1 2 3 4 5 6 7 8 910
0

5

i140703-001

1 2 3 4 5 6 7 8 910
0

5

i140704-001

1 2 3 4 5 6 7 8 910
0

5

i140718-001

1 2 3 4 5 6 7 8 910
0

5

i140725-002

1 2 3 4 5 6 7 8 910
0

5

Co
un

t

l101006-002

1 2 3 4 5 6 7 8 910
0

5

l101007-001

1 2 3 4 5 6 7 8 910
0

5

l101013-002

1 2 3 4 5 6 7 8 910
0

5

l101015-001

1 2 3 4 5 6 7 8 910
0

5

l101108-001

1 2 3 4 5 6 7 8 910
Degree

0

5

Co
un

t

l101110-003

1 2 3 4 5 6 7 8 910
Degree

0

5

l101111-002

1 2 3 4 5 6 7 8 910
Degree

0

5

l101126-002

1 2 3 4 5 6 7 8 910
Degree

0

5

l101210-001

1 2 3 4 5 6 7 8 910
Degree

0

5

l110209-001

Figure 6.12: Degree distribution of STP members for each session. The de-
gree of a unit is calculated as the number of STPs it participates
in.
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Figure 6.13: Average firing rate distributions calculated per neuron sepa-
rately for each data set and session. In blue, the distribution
over all neurons, in red the distribution only over STPs members.
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D I S C U S S I O N A N D P E R S P E C T I V E S

The scope of this thesis was to improve from a statistical and a com-
putational perspecitve existing methods for the detection of spatio-
temporal patterns in large-scale electrophysiological recordings, and
to investigate the occurrence of such patterns concurrently to behavior
in the motor cortex of the macaque brain.

Precisely-timed spatio-temporal spike patterns (STPs) have been
shown in numerous studies (Riehle, Grün, et al., 1997; Prut et al.,
1998; Takahashi et al., 2015; Russo and Durstewitz, 2017; Oettl et al.,
2020; Russo, Ma, et al., 2021; Stella, Bouss, et al., 2022). However, the
definition of STPs often varies in the literature, since they can be char-
acterized in numerous ways, depending on the scientific hypothesis
regarding neural coding and on the assumed model. Spike patterns
can be synchronous, with delays between spikes, and may not repeat
always in the same configuration (e.g., allow for selective participation,
exchanged spike order, delay and duration variability; for a review
of such definitions see Chapter 1). In this thesis, we define a STP
as a sequence of spikes emitted by a set of neurons with fixed time
delays between the spikes, repeating in the same configuration in all
occurrences, up to a determined temporal precision.

The detection of STPs in parallel spike trains is generally performed
with ad-hoc designed methods (Abeles and Gerstein, 1988; Abeles,
Bergman, et al., 1993; Prut et al., 1998; Grün, Diesmann, and Aertsen.,
2002; Grün, Diesmann, and Aertsen, 2002; Torre, Picado-Muiño, et
al., 2013; Quaglio, Yegenoglu, et al., 2017; Russo and Durstewitz,
2017), which need to be able to computationally handle large-volume
data sets, as the most recent technologies allow for the simultaneous
recording of hundreds (sometimes thousands) of neurons in parallel
(Schaffelhofer and Scherberger, 2016; Brochier et al., 2018; Steinmetz
et al., 2018; Juavinett, Bekheet, and Churchland, 2019). Such methods
must be able to distinguish the STPs from the background noise
in a robust and efficient way, thus requiring high specificity and
sensitivity of the significance evaluation. Moreover, neurons have
been shown to exhibit different firing rates depending on behavior
(Mochizuki et al., 2016) and exhibit strong firing rate non-stationarities
and interval variability (Riehle, Brochier, et al., 2018). Such phenomena
can confound the statistical test, causing under- or over-evaluation of
significance (Grün, 2009; Louis, Gerstein, et al., 2010). For this reason,
methods for correlation detection in parallel spike trains need to be
tested on controlled and reproducible benchmark data sets, which
replicate the statistical features of real electrophysiological data.

157
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Torre, Picado-Muiño, et al. (2013) introduced SPADE (Spatio-temporal
PAttern Detection and Evaluation), an analysis method for the search
for synchronous spikes patterns. SPADE was further extended by
Quaglio, Yegenoglu, et al. (2017) to allow for the detection of STPs in
parallel spike trains. The method identifies recurring patterns through
Frequent Itemset Mining (Aggarwal, Bhuiyan, and Hasan, 2014), and
then evaluates the obtained STPs for significance under the null hy-
pothesis of independence given the firing rate co-variation of neurons.
The null hypothesis is implemented through surrogate generation.
Finally, a conditional test removes spurious false positive patterns
resulting from a by-product of the overlap of chance spikes and true
patterns. SPADE was successfully used to analyze electrophysiolog-
ical data in Torre, Quaglio, et al. (2016), to prove the emergence of
behaviorally-locked spike synchronization in the motor cortex. How-
ever, the STP detection with SPADE was evaluated on simple artificial
data, and never applied on real electrophysiological spike trains. In
this thesis, we further developed SPADE, improved its statistical and
computational performance, and used it to show the presence of STP
activity in the motor cortex of the macaque monkey. Furthermore,
we designed and produced benchmark data sets for the evaluation
of parallel spike train analysis methods. Finally, we investigated the
impact of different surrogate techniques on the significance evaluation
of precisely-timed higher-order correlations.

More precisely, we have addressed these yet unresolved issues and
questions:

1. Can we improve SPADE from a statistical and computational
perspective, making it able to sustain the variability of neuronal
data without incurring into erroneous detection?

2. Which statistical features of electrophysiological recordings have
to be reproduced in artificial data for the evaluation of parallel
spike train analysis methods?

3. How do different null-hypotheses, implemented via different
surrogate generation methods, influence the outcome of STP
detection?

4. Are STPs present in large scale electrophysiological recordings,
and which is their role in the information processing of the
motor cortex? How does STP activity relate to behavior? And,
what are the differences with respect to the results obtained for
the case of synchronous spikes of Torre, Quaglio, et al. (2016)?

We answered these questions in different chapters of this thesis.
In Chapter 1, we laid down the definition of STP in the context of

neural coding, presented a review of existing methods for the detection
of spike-time correlations in parallel spike trains, and motivated the
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challenges in modeling experimental spike trains with parallel point
processes.

We answered part of the first question in Chapter 2, where we intro-
duced an extension of the original statistical test of SPADE, accounting
for the temporal duration of the patterns, the order of correlation and
the frequency of pattern occurrence. By comparing the new exten-
sion to the original method, we assessed that statistical performances
were strongly improved. In fact, the application to simulated data
sets demonstrated that the new test avoided false positive and false
negative errors. Importantly, we published the SPADE method in the
Elephant library, together with detailed documentation and tutorials.

Chapter 3 completes the answer of the first question, by introducing
an optimized implementation of the mining algorithm of SPADE (FP-
Growth), which strongly improved the computational performances.
The new implementation allows for parallel and distributed execution,
and was tested on a wide range of different hardware setups with
real experimental data. We also showed that the new implementation
is between 1 and 2 order of magnitudes faster and more memory
efficient, enabling STP detection for large data sets, which previously
required prohibitively large computational power. Thus, we can now
investigate larger data sets in a reduced amount of time, making
SPADE even more competitive with other existing methods in the
literature.

Chapter 4 deals with the second question: we introduced a list of
statistical features to take in consideration when modeling electrophys-
iological data, such as non-stationary firing rate, dead time, regularity,
pairwise and higher-order correlations. We also presented point pro-
cess models, techniques and tools to generate artificial data with the
desired statistical features. Thus, we created five artificial data sets,
which reproduced with increasing degree the statistical complexity
of experimental data, while being fully artificial and generated in a
controlled way. Such data sets can be employed as ground truth for
testing and benchmarking of methods for the analysis of parallel spike
trains. Moreover, they can be used for didactic purposes to approach
experimental data in the early stages of study and research, as we did
during the Advanced Neural Data Analysis (ANDA) spring school.

The third question is answered in Chapter 5. We compared the
classical surrogate technique of Uniform Dithering (UD) against five
other surrogate algorithms, two of which we introduced for the first
time. The comparison was first done on spike trains based on point
process models with constant firing rate, and then non-stationary
artificial data serving as ground truth to assess the pattern detection in
a more complex and realistic setting. We determined which statistical
features of the original spike trains are modified and to which extent.
Our results show that UD fails as an appropriate surrogate method
because it leads to a spike count difference in the context of spike train
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discretization, and thus to a large number of false positives. Based
on such results, we concluded that trial shifting is the best suited
surrogate technique for SPADE.

Finally, we answer the last question in Chapter 6, where we analyzed
numerous sessions of neural activity data from the motor cortex of two
macaque monkeys, trained to execute a delayed reaching-and-grasping
task. The data were recorded by a 10x10 electrode Utah array located at
the boundary between the pre-motor and motor cortex. The monkeys
had four possible behavioral instructions for the grasping and pulling
of an object: two grip types (precision or side grip) and two force
levels (low or high). The data was segmented into behavioral epochs
of 500ms duration, and analyzed independently for the occurrence
of STPs, depending on the trial task. To evaluate if cell assemblies
are active concurrently with motor behavior, we applied SPADE on
all sub-sessions. We found that significant STPs occur in all phases
of the behavior, with very high specificity to the behavioral context,
i.e. across conditions (different grip type, trial epochs, and force level
combinations), suggesting that different cell assemblies are active in
the context of different behaviors. Strikingly, we found the pattern
specificity to strongly correlate with the force level, the first ever neural
to motor force correlate found in this set of experiments. Different
studies on the same data showed that movement related potential of
the LFP (Riehle, Wirtssohn, et al., 2013), synchronous activity (Torre,
Quaglio, et al., 2016), planar and synchronous LFP waves (Denker,
Zehl, et al., 2018), and spike count variability (Riehle, Brochier, et al.,
2018) are related to behavioral events and grip type, but never on
force level. Moreover, we observed that there are neurons involved in
several patterns in different behavioral contexts, although they are not
necessarily clustered in space, and exhibit a relatively high firing rate
(> 20Hz).

Based on these results, we propose future research directions aimed
at gaining further insights on the relevance of methods for the detec-
tion of higher-order correlations and on the mechanisms which may
be explaining the presence of such signatures of spatio-temporal spike
patterns in neural activity.

possible improvements for spatio-temporal spike pattern

detection methods

In the next paragraphs we propose and discuss three different aspects
which could be developed in the context of the SPADE method, and
more in general for methods for higher-order correlation in parallel
spike trains.
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Spike train discretization

The definition of STP we have considered throughout this thesis re-
quires that each pattern repeats identically in all its realizations. Prac-
tically, this is implemented in SPADE by enforcing the discretization
of the spike train in input before applying frequent itemset mining
(FIM). Each spike train is reduced to a sequence of zeros and ones,
indicating absence and presence (respectively) of one or more spikes
in a certain time interval, typically of a few milliseconds. This is a com-
mon approach, used in most methods for the analysis of higher-order
correlation detection methods (Grün, Diesmann, and Aertsen., 2002;
Grün, Diesmann, and Aertsen, 2002; Pipa, Riehle, and Grün, 2007;
Schneidman, Berry, et al., 2006; Shimazaki, Amari, et al., 2012; Russo
and Durstewitz, 2017). However, the original spike train is naturally a
continuous time process, and the discretization (binning) leads to a
series of disadvantages. The first one is the boundary problem: two
spikes may be separated by an interval of time smaller than the bin
width, and end up in bins that are not aligned with respect to the
binning grid, thus leading to pattern detection failure. The second
is the bivalence problem: two pattern occurrences are either fully
overlapping in neuron identity and lags (up to bin width) or fully
disjoint. Small variations in the time lags lead to different patterns
identification, and there is no concept for “similar patterns”. The third
problem is clipping: labeling a bin with a one does not distinguish
whether one or multiple spikes have been emitted in that interval of
time. As we saw in Chapter 5 this can have strong repercussions in
a SPADE analysis, and prevents from performing analyses on longer
timescales (e.g., tens of milliseconds). In fact, a large bin width leads
to spike train binary vectors consisting of mostly ones, if the firing
rate is high enough, and, consequently, to spurious results.

These issues were reviewed in Borgelt and Picado-Muiño (2013) for
the synchrony case, leading to the design of a pattern mining algorithm
CoCoNAD, able to detect synchronous patterns in continuous time,
which, unfortunately, is not extendable to the detection of patterns
with delays. However, a possible outlook of this project is to design
a brand new algorithm for the detection of STPs in continuous time.
This would be extremely relevant not only for future advances in
computational neuroscience, but also more generally for the data
mining literature and community.

Fuzzy pattern detection

In addition to temporal imprecision in different realizations of the
same STP, another issue is selective participation of the member neu-
rons. In other words, in single STP instances, some spikes may be
missing due to synaptic failure, to imprecision in the recording device
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or of the spike sorting setup, or to intrinsic mechanisms of the system.
SPADE does not allow the detection of such “fuzzy patterns”, how-
ever, other approaches relying on different methodologies do (Peter
et al., 2017; Mackevicius et al., 2019; Diana, Sainsbury, and Meyer, 2019;
Williams, Degleris, et al., 2020), which are reviewed in the introductory
chapter of this thesis (Chapter 1). Of these, we consider as promising
the method called PP-seq (Williams, Degleris, et al., 2020), claiming
the ability to detect fuzzy patterns which may be even warped in
time. However, the method was never applied on Utah array electrode
recordings nor on motor cortex data, and it is unclear whether the
results would be comparable to those of SPADE.

Borgelt, Braune, et al. (2015) proposed an algorithm to mine syn-
chronous spike patterns with selective participation and in continuous
time, which was nonetheless never applied on experimental data, and
never extended to STP detection. A possible research outlook is thus
to modify (or extend, or redesign) the pattern mining algorithm of
SPADE to allow for the detection of fuzzy patterns, or to detect them
as a post-processing step. The latter option could be implemented by
searching for all subsets of a detected significant pattern in a SPADE
analysis with a FIM run, by exploring different similarity measures or
pattern completion methods. The best strategy lies in the methodology
which is most able to cope with a high number of pattern combinations
and high data volumes with a short runtime, possibly in parallel.

Bias towards neurons with high firing rates

In SPADE’s significance testing, we pool patterns given their order of
correlation, their duration, and, crucially, their number of occurrences.
The frequency of occurrence of a pattern determines its probability:
this is intuitive, as we tend to consider patterns “surprising” whenever
they reoccur more often than others. As a practical example, we are
more surprised if the same seven numbers are extracted seven times
in a row at the lottery, than when the same numbers are extracted only
once. The reasoning is similar for the case of STPs: a pattern of size
seven and duration 10ms occurring seven times is more surprising
than the same pattern occurring only once. However, lottery numbers
have always the same extraction probability, but this is not the case for
neurons, since they may have different firing rates which additionally
may vary in time. Low firing rate neurons are thus less likely to be
involved in significant patterns, since they may form patterns with
fewer occurrence numbers. Such patterns would not pass the signifi-
cance test, because they have to compete with patterns occurring more
often. Unfortunately, no simple solution to this problem exists. On
the one hand, occurrence frequency is a key factor for the attribution
of significance to patterns in relation to behavior, which cannot be
disregarded in the significance test: how can patterns be locked to
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repeated behavior if they do not systematically repeat when the be-
havior occurs? On the other hand, testing each single pattern given
the firing rate information of all its members leads to a combinatorial
explosion of firing rates and calculations. We have seen in Chapter 3

that FIM returns hundreds of billions of STP candidates per data set.
We are currently investigating a possible solution for this apparent

impasse, by taking into consideration an analytical derivation of the
probability of pattern repetitions given their surprise measure (Palm,
2012). The idea is to combine the information of duration, pattern
repetition, pattern size, and firing rate in a single measure called
pattern quality. The statistical test would then consist in the comparison
of the quality distribution of the original data against the one of the
surrogates. Such statistical test is still to be implemented and tested
on ground truth data, but may solve possible double standards in the
significance evaluation of STPs and other higher-order structures of
spikes.

mechanisms explaining the presence of stp activity in

the cerebral cortex

Next, we discuss three mechanisms, interpretations, and outlooks
regarding results we obtained in Chapter 6, where we assessed the
presence of spatio-temporal pattern activity in the motor cortex during
behavior.

Detectability of spatio-temporal patterns arising from synfire chains

In this thesis, we argued that information may be encoded in the cortex
by precise temporal alignment of neural activity. The presence of such
activity has been proven by many studies (Abeles and Gerstein, 1988;
Villa and Abeles, 1990; Villa, Tetko, et al., 1999; Prut et al., 1998; Riehle,
Grün, et al., 1997; Torre, Quaglio, et al., 2016), as well as in the last
chapter of this thesis. However, mechanisms in the brain leading to
such fine temporal correlations are still unknown.

The synfire chain model (Abeles., 1991) is a neural network model
enabling the propagation of synchronous spiking activity in time and
space. The model consists in an all to all connected feedforward net-
work of neurons with similar transmission delays: whenever enough
neurons are activated in the first layer, the activity propagates in a
stable manner and produces volleys of synchronous spikes from sub-
sequent layers. This model has been widely studied from both an
analytical (Câteau and Fukai, 2001; Diesmann, Gewaltig, and Aertsen,
1999; Rossum, Turrigiano, and Nelson, 2002) and experimental (Reyes,
2003; Barral, Wang, and Reyes, 2019) perspective.

It is still unclear whether synfire chain activity may be observable
given the strong sub-sampling of electrophysiological recordings. In
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fact, activated neurons may not be detectable given the experimental
setup if they are not within the sensitive region of the electrode tips.
However, if a few neurons of different groups of the synfire chain are
detected, and the synfire chain propagates reliably and concurrently
to a certain behavior, we would observe spatio-temporal patterns of
spikes. Thus, the question is twofold in our context: 1) are synfire
chains detectable given the recording setup of the reach-to-grasp
experiment? 2) if so, does the synfire chain model explain the patterns
we observe? A study performed by Berling (2020) gives a positive
answer to the synfire chain observability question. There, parameter
scans of a model for detectability of synfire chains demonstrate that
such activity may be observable in almost any realistic parameter
combination. Currently, preliminary results give a positive answer
also to the second question: sub-sampling of activated synfire chains
may lead to STP statistics similar to our observations in experimental
data.

Spatio-temporal patterns and their relation to oscillations and LFP

The hypothesis that information is conveyed by the coordinated spik-
ing patterns of specific groups of neurons has been investigated
through the detection of precise synchrony (Riehle, Grün, et al., 1997;
Kilavik, Roux, et al., 2009; Torre, Quaglio, et al., 2016) and also spatio-
temporal patterns of spikes (Prut et al., 1998). The scale of this analysis
is rather precise in time (millisecond precision) and space (neuron
level). Additionally, spatio-temporal patterns of neuronal activity are
explored also on a mesoscopic scale, by looking at the local field
potential (LFP). The relationship between LFP oscillations and spike
synchronization has been assessed on a relatively slow time scale,
since LFP activity is interpreted as a summary of all the neuronal
firing in the immediate vicinity of the recording electrodes. A direct
link between LFP oscillations and coincident spiking events has been
found in Denker, Roux, et al. (2011), where the Unitary Event analysis
showed a strong phase locking of pairwise spike synchrony to the LFP
cycle. Such locking was not explained by the phase-locking of individ-
ual neurons alone. Similar results have been found by Ito et al. (2011),
when studying the relation between spike synchronization, LFP phase
and first spike responses in the visual system of the macaque monkey.
Moreover, beta oscillations of the LFP have been shown to organize
in propagating spatio-temporal phase patterns of different types (e.g.,
planar, circular, radial, synchronous waves; Denker, Zehl, et al., 2018).
However, the relationship between such waves and higher-order spike
correlations is still unclear. Thus, it would be interesting to investigate
whether there is a phase locking of pattern spikes and wave patterns,
given the results we obtained in the reach-to-grasp experiment. Con-
sidering that such LFP waves are prominent when the beta amplitude
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is high, one could restrict the analysis to the patterns detected in the
preparatory period (Riehle, Wirtssohn, et al., 2013).

On a different level, analysis of the functional network topology at
the single neuron level has shown a clear presence of hub neurons,
organized as a rich-club in the grasping circuit of the macaque brain
(Dann et al., 2016). Such hub neurons predominantly showed oscilla-
tory synchrony in the alpha and beta range, whereas non-oscillatory
units were predominantly units in the periphery of the functional
network. In our results, we found the presence of several neurons in-
volved in multiple patterns, which may be central in the coordination
of pattern activity. On the same line of thought, it would be interesting
to study whether these neurons also evidence oscillatory synchrony
in the same frequency ranges.

Analysis of multi-area recordings in the cerebral cortex during behavior

Finally, in this thesis we have analyzed data recorded from one area
(the motor cortex) and thus considered patterns arising locally in
cortical space. It is unclear the role of spatio-temporal patterns in
the mechanism of global information transmission, i.e., across brain
areas. Some studies have presented evidences of synchronous activity
spanning different areas (V1 and V2, Zandvakili and Kohn, 2015; M1,
F5 and AIP, Dann et al., 2016; V1 and V4, Shahidi et al., 2019), thus we
expect STPs to arise as a global phenomenon as well. Moreover, evi-
dences of cross-area interaction mediated through highly synchronous
activity have been already shown in the pre-frontal cortex and striatum
of the rat (Oberto et al., 2021).

Looking for STPs across different areas could also provide insight
into the circumstances under which STPs carry a feedforward or a
feedback signal (Torre, Quaglio, et al., 2016; Oettl et al., 2020). More-
over, given the recent optimization of the SPADE method (Chapter 3),
the analysis of larger recordings can now be achieved in a reasonable
time. Of our particular interest is the detection of STPs in the context
of the so-called vision-for-action experiment (de Haan et al., 2018).
The experiment consists in a visually guided tracking task, where two
monkeys are trained to track visual targets appearing on a hexagonal
grid, either in a sequential fashion or with a self-decided sequence.
The electrophysiological activity is recorded through five electrode
arrays situated in areas from motor, visual and parietal cortices, respec-
tively in M1 (motor cortex), V1 (primary visual cortex), V2 (secondary
visual cortex), DP (dorsal prelunate gyrus), and 7A (parietal cortex).
Hand and eye movements are recorded simultaneously along the
brain activity. Assessing the presence of STP activity could confirm
whether patterns have a role in the coordination of visually guided
motor behavior across different brain areas.
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Chalk, Marre, and Tkačik (2018). “Toward a unified theory of efficient,
predictive, and sparse coding.” In: Proceedings of the National Academy
of Sciences 115.1, pp. 186–191.

Chen, Rochefort, et al. (2013). “Reactivation of the Same Synapses
during Spontaneous Up States and Sensory Stimuli.” In: Cell Reports
4.1, pp. 31–39. issn: 2211-1247.

Chen, Zhang, et al. (2020). “A Large-Scale High-Density Weighted
Structural Connectome of the Macaque Brain Acquired by Predicting
Missing Links.” In: Cerebral Cortex, pp. 1–17.

Cleland et al. (1976). “Lateral geniculate relay of slowly conducting
retinal afferents to cat visual cortex.” In: The Journal of physiology
255.1, pp. 299–320.

Cohen and Kohn (2011). “Measuring and interpreting neuronal corre-
lations.” In: Nature Review Neuroscience 14.7, pp. 811–819.

Collins et al. (2010). “Neuron densities vary across and within cortical
areas in primates.” In: PNAS 107.36, pp. 15927–15932.

Cox and Lewis (1966). The Statistical Analysis of Series of Events. Methuen’s
Monographs on Applied Probability and Statistics. London: Methuen.

Cunningham and Yu (2014). “Dimensionality reduction for large-scale
neural recordings.” In: Nature neuroscience 17.11, pp. 1500–1509.

Cutts and Eglen (2014). “Detecting pairwise correlations in spike trains:
an objective comparison of methods and application to the study of
retinal waves.” In: Journal of Neuroscience 34.43, pp. 14288–14303.
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